EMNLP 2011

Conference on Empirical Methods in Natural Language
Processing

Proceedings of the Conference

July 27-31, 2011



(©2011 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@Qaclweb.org

ISBN 978-1-937284-11-4 / 1-937284-11-5

ii



General Chair’s Preface

Welcome to EMNLP 2011, Conference on Empirical Methods in Natural Language Processing, a
conference organised annually by SIGDAT, the Association for Computational Linguistics’ special
interest group on linguistic data and corpus-based approaches to NLP. This year the conference is held
from July 27th to 29th at the John MclIntyre Conference Centre, Edinburgh, UK.

This year EMNLP is, for the first time, not only a stand alone conference, but also an anchor conference
to several workshops, that are held on July 30th and July 31st at the Informatics Forum, Edinburgh.

This year’s conference continues the successful growing trend of previous years, attracting the largest
number of papers to date for EMNLP and requiring a large organisational effort. I would like to thank
all the people involved.

Regina Barzilay from MIT and Mark Johnson from Macquarie University chaired a large scientific
programme committee and introduced several innovations in the submission, selection and final
scheduling of papers.

Marie Candito, of Paris Diderot University, in collaboration with the ACL workshop chairs, selected
the workshops, seven of which have been affiliated to EMNLP. They have received a large number of
submissions and generated very interesting programmes.

Special thanks go to the publication chair Wanxiang Che, from Harbin Institute of Technology, who
had to deal with EMNLP’s now famous just-in-time schedule.

We are very grateful to Bonnie Webber and Miles Osborne, from the University of Edinburgh, for
accepting the demanding task of organising the largest and most complex EMNLP ever and allowing
us to hold this conference in such a remarkable city. Thanks also go to Francesco Figari the webmaster,
and to all the student volunteers that make the conference possible.

Miles Osborne is also the contact person for an interesting affiliated event sponsored by Google and
the Scottish and Informatics Computer Science Alliance: an Intense Summer School on Hadoop and
Natural Language Processing, that will take place in Edinburgh for two days before the conference.

Thanks also to David Yarowsky and Ken Church from SIGDAT who provided much useful information
from past conferences and Graeme Hirst and Priscilla Rasmussen from ACL for their help and advice.

This year’s EMNLP’s sponsors are Google, Yahoo and Textkernel. We thank them for their very
welcome contributions, which were obtained by the efforts of the local organisers and of Massimilano
Ciaramita (Google) and Stefan Riezler (Heidelberg University), our ACL sponsorship committee
members for Europe.

Finally, and foremost, thank to all the authors and conference attendees that have made and will make
this conference a success and source of inspiration.

Paola Merlo, University of Geneva
EMNLP 2011 General Chair
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Program Chairs’ Preface

Welcome to the EMNLP 2011 conference, hosted this year by the the extremely impressive University
of Edinburgh.

EMNLP 2011 received 628 submissions, a new record for the conference. The program committee,
consisted of 20 area chairs and 545 PC members from Asia, Europe, and North America, was able to
accept 149 papers in total (for an acceptance rate of 23.7%). Among them, 94 (i.e., 63%) of the papers
were accepted for oral presentations, and 54 (i.e., 36%) for poster presentations. Submissions from
PC chairs were handled by the general chair in an off-line procedure that applied considerably stricter
acceptance requirements than for ordinary submissions.

First and foremost, we would like to thank the authors who submitted their work to EMNLP 2011.
The sheer number of submissions reflects how broad and active our field is. We are deeply indebted
to the area chairs and the PC members for their hard work. They enabled us to make a wonderful
program and to provide valuable feedback to the authors. We are extremely pleased that our invited
speaker David McAllester has agreed to talk at EMNLP. Many thanks to local arrangements chairs,
Bonnie Webber and Miles Osborne, who enabled the conference to be held in Edinburgh, one of the
great intellectual cities of the world. We’d also like to thank the publications chair, Wanxiang Che,
who put this volume together. We greatly benefited from advice from Hang Li and Lluis Marquez who
kindly shared with us their experience from EMNLP 2010. Special thanks to the general chair, Paola
Merlo, who provided much valuable advice and assistance in the past months. We are grateful to David
Yarowksy for assistance with a variety of aspects of the conference. Rich Gerber and the START team
responded to our questions quickly, and helped us manage the large number of submissions smoothly;
we would like to thank them as well.

This year’s conference is innovative in several ways. The conference contains three additional plenary
sessions compared to previous EMNLP conferences; these are used to highlight a diverse set of papers
of interest to the entire EMNLP audience. We hope this will help counter the disciplinary fragmentation
that some of us feel the standard multi-track conference structure encourages.

For the first time, submitted papers could be optionally accompanied by up to 10MB of supplementary
material, which could consist of data, code, and text. Papers can reference the supplementary material
in much the same way a paper might refer to software or a tech report available from the authors’ web
site (albeit without revealing the authors’ identities). Reviewers were encouraged but not required to
view the supplementary material.

A major challenge this year concerned undisclosed double submissions and plagiarism (especially self-
plagiarism) involving papers accepted at other international conferences. We believe this is an issue
that must addressed by the broader research community. Our community needs clear, well-publicised,
standards on double and overlapping submissions, and also needs procedures for sharing information
between relevant conferences to discourage double submission and self-plagiarism.

But we don’t want to blow this issue out of proportion. By far the vast majority of EMNLP submissions
described creative, innovative work that taken together substantially advances the field. The success of
a conference is really a result of the great efforts of everybody involved. We hope that you enjoy this
year’s conference in the historic city of Edinburgh!

Regina Barzilay and Mark Johnson
EMNLP 2011 Program Co-Chairs
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Abstract

Extracting biomedical events from literature
has attracted much recent attention. The best-
performing systems so far have been pipelines
of simple subtask-specific local classifiers. A
natural drawback of such approaches are cas-
cading errors introduced in early stages of the
pipeline. We present three joint models of
increasing complexity designed to overcome
this problem. The first model performs joint
trigger and argument extraction, and lends it-
self to a simple, efficient and exact infer-
ence algorithm. The second model captures
correlations between events, while the third
model ensures consistency between arguments
of the same event. Inference in these models
is kept tractable through dual decomposition.
The first two models outperform the previous
best joint approaches and are very competi-
tive with respect to the current state-of-the-
art. The third model yields the best results re-
ported so far on the BioNLP 2009 shared task,
the BioNLP 2011 Genia task and the BioNLP
2011 Infectious Diseases task.

1 Introduction

Whenever we advance our scientific understanding
of the world, we seek to publish our findings. The
result is a vast and ever-expanding body of natural
language text that is becoming increasingly difficult
to leverage. This is particularly true in the context
of life sciences, where large quantities of biomedi-
cal articles are published on a daily basis. To sup-
port tasks such data mining, search and visualiza-
tion, there is a clear need for structured representa-
tions of the knowledge these articles convey. This is

1

indicated by a large number of public databases with
content ranging from simple protein-protein interac-
tions to complex pathways. To increase coverage of
such databases, and to keep up with the rate of pub-
lishing, we need to automatically extract structured
representations from biomedical text—a process of-
ten referred to as biomedical text mining.

One major focus of biomedical text mining has
been the extraction of named entities, such genes
or gene products, and of flat binary relations be-
tween such entities, such as protein-protein interac-
tions. However, in recent years there has also been
an increasing interest in the extraction of biomedi-
cal events and their causal relations. This gave rise
to the BioNLP 2009 and 2011 shared tasks which
challenged participants to gather such events from
biomedical text (Kim et al., 2009; Kim et al., 2011).
Notably, these events can be complex and recursive:
they may have several arguments, and some of the
arguments may be events themselves.

Current state-of-the-art event extractors fol-
low the same architectural blueprint and divide
the extraction process into a pipeline of three
stages (Bjorne et al., 2009; Miwa et al., 2010c). First
they predict a set of candidate event trigger words
(say, tokens 2, 5 and 6 in figure 1), then argument
mentions are attached to these triggers (say, token
4 for trigger 2). The final stage decides how ar-
guments are shared between events—compare how
one event subsumes all arguments of trigger 6 in fig-
ure 1, while two events share the three arguments
of trigger 4 in figure 2. This architecture is prone
to cascading errors: If we miss a trigger in the first
stage, we will never be able to extract the full event

Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1-12,
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Figure 1: (a) sentence with target event structure to extract; (b) projection to a set of labelled graph over tokens.

it concerns. Current systems attempt to tackle this
problem by passing several candidates to the next
stage. However, this tends to increase the false pos-
itive rate. In fact, Miwa et al. (2010c) observe that
30% of their errors stem from this type of ad-hoc
module communication.

Joint models have been proposed to overcome this
problem (Poon and Vanderwende, 2010; Riedel et
al., 2009). However, besides not being as accurate
as their pipelined competitors, mostly because they
do not yet exploit the rich set of features used by
Miwa et al. (2010b) and Bjorne et al. (2009), they
also suffer from the complexity of inference. For
example, to remain tractable, the best joint system
so far (Poon and Vanderwende, 2010) works with
a simplified representation of the problem in which
certain features are harder to capture, employs local
search without certificates of optimality, and further-
more requires a 32-core cluster for quick train-test
cycles. Existing joint models also rely on heuristics
when it comes to deciding which arguments share
the same event. Contrast this with the best current
pipeline (Miwa et al., 2010c; Miwa et al., 2010b)
which uses a classifier for this task.

We present a family of event extraction mod-
els that address the aforementioned problems. The
first model jointly predicts triggers and arguments.
Notably, the highest scoring event structure under
this model can be found efficiently in O (mn) time
where m is the number of trigger candidates, and
n the number of argument candidates. This is
only slightly slower than the O (m/n) runtime of a
pipeline, where m/’ is the number of trigger candi-
dates as filtered by the first stage. We achieve these
guarantees through a novel algorithm that jointly
picks best trigger label and arguments on a per-token
basis. Remarkably, it takes roughly as much time to
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train this model on one core as the model of Poon
and Vanderwende (2010) on 32 cores, and leads to
better results.

The second model enforces additional constraints
that ensure consistency between events in hierarchi-
cal regulation structures. While inference in this
model is more complicated, we show how dual de-
composition (Komodakis et al., 2007; Rush et al.,
2010) can be used to efficiently find exact solutions
for a large fraction of problems.

Our third model includes the first two, and explic-
itly captures which arguments are part in the same
event—the third stage of existing pipelines. Due to
a complex coupling between this model and the first
two, inference here requires a projected version of
the sub-gradient technique demonstrated by Rush et
al. (2010).

When evaluated on the BioNLP 2009 shared task,
the first two models outperform the previous best
joint approaches and are competitive when com-
pared to current state-of-the-art. With 57.4 F1 on
the test set, the third model yields the best results
reported so far with a 1.1 F1 margin to the results
of Miwa et al. (2010b). For the BioNLP 2011 Ge-
nia task 1 and the BioNLP 2011 Infectious Diseases
task, Model 3 yields the second-best and best results
reported so far. The second-best results are achieved
with Model 3 as is (Riedel and McCallum, 2011),
the best results when using Stanford event predic-
tions as input features (Riedel et al., 2011). The
margins between Model 3 and the best runner-ups
range from 1.9 F1 to 2.8 F1.

In the following we will first introduce biomedical
event extraction and our notation. Then we go on to
present our models and their inference routines. We
present related work, show our empirical evaluation,
and conclude.
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2 Biomedical Event Extraction

By bio-molecular event we mean a change of state
of one or more bio-molecules. Our task is to extract
structured information about such events from nat-
ural language text. More concretely, let us consider
part (a) of figure 1. We see a snippet of text from a
biomedical abstract, and the three events that can be
extracted from it. We will use these to characterize
the types of events we ought to extract, as defined
by the 2009 BioNLP shared task. Note that for the
shared task, protein mentions are given by the task
organizers and hence do not need to be extracted.

The event E1 in the figure refers to a Phosphory-
lation of the TRAF2 protein. It is an instance of a
set of simple events that describe changes to a sin-
gle gene or gene product. Other members of this
set are: Expression, Transcription, Localization, and
Catabolism. Each of these events has to have exactly
one theme, the protein of which a state change is de-
scribed. A labelled edge in figure 1a) shows that
TRAF?2 is the theme of E1.

Event E3 is a Binding of TRAF2 and CDA40.
Binding events are particular in that they may have
more than one theme, as there can be several bio-
molecules associated in a binding structure. This is
in fact the case for E3.

In the top-center of figure 1a) we see the Regu-
lation event E2. Such events describe regulatory or
causal relations between events. Other instances of
this type of events are: Positive Regulation and Neg-
ative Regulation. Regulations have to have exactly
one theme; this theme can a be protein or, as in our
case, another event. Regulations may also have zero
or one cause arguments that denote events or pro-
teins which trigger the regulation.

In the BioNLP shared task, we are also asked to
find a trigger (or clue) token for each event. This
token grounds the event in text and allows users to
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quickly validate extracted events. For example, the
trigger for event E2 is “inhibit”, as indicated by a
dashed line.

2.1 Event Projection

To formulate the search for event structures of the
form shown in figure 1a) as an optimization prob-
lem, it will be convenient to represent them through
a set of binary variables. We introduce such a rep-
resentation, inspired by previous work (Riedel et al.,
2009; Bjorne et al., 2009) and based on a projection
of events to a graph structure over tokens, as seen
figure 1b).

Consider sentence x and a set of candidate trig-
ger tokens, denoted by Trig (x). We label each can-
didate ¢ with the event type it is a trigger for, or
None if it is not a trigger. This decision is rep-
resented through a set of binary variables e; ;, one
for each possible event type ¢. In our example we
have eg pingaing = 1. The set of possible event types
will be denoted as T, the regulation event types as
Tree & {PosReg, NegReg, Reg} and its complement
as Toreg ©TN\ Treg-

For each candidate trigger © we consider the argu-
ments of all events that have ¢ as trigger. Each ar-
gument a will either be an event itself, or a protein.
For events we add a labelled edge between ¢ and the
trigger j of a. For proteins we add an edge between
7 and the syntactic head j of the protein mention. In
both cases we label the edge ¢ — j with the role
of the argument a. The edge is represented through
a binary variable a; j,, where r € R is the argu-
ment role and R = {Theme, Cause, None}. The
role None is active whenever no Theme or Cause
role is present. In our example we get, among oth-
€IS, 42 4 Theme — 1.

So far our representation is equivalent to map-
pings in previous work (Riedel et al., 2009; Bjorne et
al., 2009) and hence shares their main shortcoming:
we cannot differentiate between two (or more) bind-
ing events with the same trigger but different argu-
ments, or one binding event with several arguments.
Consider, for example, the arguments of trigger 6 in
figure 1b) that are all subsumed in a single event. By
contrast, the arguments of trigger 4 shown in figure
2 are split between two events.

Previous work has resolved this ambiguity



through ad-hoc rules (Bjorne et al., 2009) or with
a post-processing classifier (Miwa et al., 2010c).
We propose to augment the graph representation
through edges between pairs of proteins that are
themes in the same binding event. For two protein
tokens p and ¢ we represent this edge through the
binary variable b, ,. Hence, in figure 1b) we have
bs9 = 1, whereas for figure 2 we get b1 g = b1 g = 1
but bg s = 0. By explicitly modeling such “sib-
ling” edges we not only minimize the need for post-
processing. We can also improve attachment deci-
sions akin to second order models in dependency
parsing (McDonald and Pereira, 2006). Note that
while merely introducing such variables is easy, en-
forcing consistency between them and the e;; and
a; jr variables is not. We address this in section
3.3.1.

Reconstruction of events from solutions (e, a, b)
can be done almost exactly as described by Bjorne
et al. (2009). However, while they group binding
arguments according to ad-hoc rules based on de-
pendency paths from trigger to argument, we simply
query the variables by, ;.

To simplify our exposition we introduce addi-
tional notation. We denote the set of protein head
tokens with Prot (x); the set of a possible targets
for outgoing edges from a trigger is Cand(x) %
Trig (x) U Prot (x). We will often omit the do-
mains of indices and instead assign them a fixed do-
main in advance: i,l € Trig (x), j,k € Cand (x),
p,q € Prot(x), r € Rand ¢t € T . Bold face
letters are used to denote composite vectors e, a
and b of variables e;;, a;;, and by, 4. The vector
y is the joint vector of e,a and b. The short-form
e; < t will mean Vt' : e;p < 0,y where ;4 is
the Kronecker Delta. Likewise, a;; < r means
Yr! Qj jr! 57“,7""

3 Models

In this section we will present three structured pre-
diction models of increasing complexity and expres-
siveness, as well as their corresponding MAP infer-
ence algorithms. Each model m can be represented
by a mapping from sentence x to a set of legal struc-
tures )V, (x), and a linear scoring function

Sm (Y; X, W) = <W7 f (Y7 X)> : (1
4

Here f is a feature function on structures y and input
x, and w is a weight vector for these features.

We can use the scoring function s,,, and the set of
legal structures )V, (x) to predict the event h,, (x)
for a given sentence x according to

h,, (x) ©arg max s, (y;x,w). (2

YEYVm(x)
For brevity we will from now on omit observations x
and weights w when they are clear from the context.

3.1 Model 1

Model I performs a simple version of joint trigger
and argument extraction. It independently scores
trigger labels and argument roles:

si(ea)® Y sr(i )+ Y sr(ifr). 3)

€it=1 ag,j,r=1

Here st (i,t) = (wr, fr (4,t)) is a per-trigger scor-
ing function that measures how well the event la-
bel t fits to token i. Likewise, sg(i,j,7) =
(wr, fr (4, 7, 7)) measures the compatibility of role
r as label for the edge : — j.

The jointness of Model 1 stems from enforcing
consistency between the trigger label of 7 and its out-
going edges. By consistency we mean that: (a) there
18 at least one Theme whenever there is an event at 7;
(b) only regulation events are allowed to have Cause
arguments; (c) all arguments of a None trigger must
have the None role. We will denote the set assign-
ments that fulfill these constraints by O and hence
have )} & O.

Enforcing (e,a) € O guarantees that we never
predict triggers ¢ for which no sensible, high-
scoring, argument j can be found. It also ensures
that when we see an “obvious” argument edge i — j
with high score s (i, j, r) there is pressure to extract
a trigger at ¢, even if the fact that 7 is a trigger may
not be as obvious.

3.1.1 Inference

As it turns out, the maximizer of equation 2 can be
found very efficiently in O (mn) time where m =
|Trig (x)| and n = |Cand (x)|. The corresponding
procedure, bestOut(-), is shown in algorithm 1. It
takes as input a vector of trigger and edge penalties
c that are added to the local scores of the st and
sr functions. For Model 2 and 3 we will use these



penalties to enforce agreement with predictions of
other inference subroutines. When using Model 1
by itself we set them to 0. We point out that the
scoring function s is multiplied with % throughout
the algorithm. For doing inference in Model 1 and
2 this has no effect, but when we use bestOut(-) for
Model 3 inference, it is required.

The bestOut (c) routine exploits the fact that the
constraints of Model 1 only act on the label for
trigger ¢ and its outgoing edges. In particular, en-
forcing consistency between e; ; and outgoing edges
a; ;. has no effect on consistency between ¢;; and
ay jr for any other trigger ¢/ # i. Moreover,
for a given trigger the constraints only differenti-
ate between three cases: (a) regulation event, (b)
non-regulation event and (c) no event. This means
that we can extract events on a per-trigger basis,
and find the best per-trigger structure by compar-
ing cases (a), (b) and (c). Note that bestOut (c)
uses the shorthand emptyOut (¢) to denote the par-
tial assignment e; < None and Vj : a; ; < None.
The function s$ (i,y) & D i€t (Ci,t + %ST (4, t)) +
Zj’r Qi jr (Ci,j,r + %SR (4,4, 'r)) is a per-trigger
frame score with penalties c.

3.2 Model 2

Model 1 may still predict structures that cannot be
mapped to events. For example, in figure 1b) we
may label token 5 as Regulation, add the edge

5 “2%° 2 but fail to label token 2 as an event. While
consistent with (e,a) € O, this violates the con-
straint that every active edge must either end at a
protein, or at an active event trigger. This is a re-
quirement on the label of a trigger and the assign-
ment of roles for its incoming edges.

Model 2 enforces the above constraint in addition
to (e,a) € O, while inheriting the scoring function
from Model 1. Hence, using I to denote the set of as-
signments with consistent trigger labels and incom-

ing edges, we get Vo & ) NTand s (y) & 51 (y).

3.2.1 Inference

Inference in Model 2 amounts to optimizing
s9 (e,a) over O N 1. This is more involved, as we
now have to ensure that when predicting an outgoing
edge from trigger 1 to trigger [ there is a high-scoring
event at [. We follow Rush et al. (2010) and solve
this problem in the framework of dual decomposi-
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Algorithm 1 Sub-procedures for inference in Model
1,2 and 3.
best label and outgoing edges for all triggers under penalties ¢
bestOut (c) :
Vi y? < emptyOut (i)
y! « out (i, c, ﬁeg,R)
y? < out (i,¢, T-reg, R \ {Cause})
Yi ¢ argmaxye o y1 v2y 85(4,y)
return (y;),

best label and incoming edges for all triggers under penalties c
bestIn (c) :
Vi yY + emptyln (1)
y! «in(l,c, T, R\ {None})
yi ¢ argmaxyeyo 1y 85 (1, y)
return (y;),

pick best binding pairs p, q and trigger i for each using penalties c
bestBind (c) :
Vp,q bpq < [sB (P, q) + max; ¢; p g > 0]
Ipq < {ilcipg = maxiicip g
ifb,, =1ormaxycy,, >0
Vi i tipg 4 [i € Ipg] [Ipgl ™
else
Vi : t@p,q ~0
return (b, t)

best label in T’ and outgoing edge roles in R for i, using penalties c
out (i,c, T, R) :
e; < argmaxXycr %ST (i,8) +cit
Q; bestTheme(i,c) < Theme
Vj  a;j < argmaxyer g5r (i,4,7) + Cijr
return (e;, a;)

best label in T, incoming edge roles in R

and outgoing protein roles, using costs c

in(l,c,T,R) :
€ < arg max;er %ST (I, t) + e
Vi a;; ¢ arg max,cp %SR (0, 0,7) 4+ cigr
Vp app < argmax,cp %SR (lapv ’I") + Clpyr
return (e;, a;)

best Theme argument for %

bestTheme (i, c) :
s (j) £ max;,, %SR (4,7,7) + cijnr
A= %SR (4,7, Theme) + C; j Theme —
return arg max; A (j)

s ()




tion. To this end we write our optimization problem
as

o r
maximize —s3(e,a)+ -ss(€,a)
e,a,e,a 2 2
subjectto  (e,a) € OA (e,a) € IN (M2)
e—eNa=a

and note that this problem could be solved separately
for e,a and e, a if the coupling constraints e = €
and a = a were removed.

M2 is an Integer Linear Program, as variables are
binary and both objective and constraints can be rep-
resented through linear constraints.! Dual decompo-
sition solves a Linear Programming (LP) relaxation
of M2 (that allows fractional values for all binary
variables) through subgradient descent on a particu-
lar dual of M2. This dual can be derived by intro-
ducing Lagrange multipliers for the coupling con-
straints. Its attractiveness stems from the fact that
calculating the subgradient amounts to solving the
decoupled problems in isolation. If, by design, these
decoupled problems can be solved efficiently, we
can often quickly find the optimal solution to an LP
relaxation of our original problem.

Dual decomposition applied to Model 2 is shown
in algorithm 2. It maintains the dual variables A
that will appear as local penalties in the subprob-
lems to be solved. The algorithm will try to tune
these variables such that at convergence the coupling
constraints will be fulfilled. This is done by first op-
timizing s, (e, a) over O and s; (€, a) over I. Now,
whenever there is disagreement between two vari-
ables to be coupled, the corresponding dual param-
eter is shifted, increasing the chance that next time
both models will agree. For example, if in the first
iteration we predict €6 ging = 1 but €ging = 0, we
set A\¢.pina = —a Where a is some stepsize (chosen
according to Koo et al. (2010)). This will decrease
the coefficient for egging, and increase the coeffi-
cient for €6 ping. Hence, we have a higher chance of
agreement for this variable in the next iteration.

The algorithm repeats the process described
above until all variables agree, or some predefined
number R of iterations is reached. In the former case
we in fact have the exact solution to the original ILP.

"The ILP representation could be taken from the MLNs of
Riedel et al. (2009) and the mapping to ILPs of Riedel (2008).
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Algorithm 2 Subgradient descent for Model 2, and
projected subgradient descent for Model 3.

require:
R: max. iteration, Qut . stepsizes

t < 0 [model 2,3] X <— 0 [model 2,3] pt <— O [model 3]

repeat
model
2 (e, a) < bestOut ()
23 (e,a)< bestln (=)
3 (e, a) < bestOut (c® (X, 1))
3 (b, t) < bestBind (cbmd (u))
23 Aig i —ag (e — i)
23 Aigr < Aigr — o (Gigr — Qi)
3 Mgﬁq ugﬁq — v (€iBina — ti,p,q)} N
1 1
s [u?fff,q — ¢t (@i p,Theme — ti,p,q)} N
are?2 2
3 M?,r;%,q — [M?,r;g),q — o (@i,g, Theme — ti,p,q)} n
23t —t+1

until no A\, g changedort > R
return (e, a)/model 2] Or (€,a,b) [model 3]

In the later case we have no such guarantee, but find
that in practice the solutions are still of high qual-
ity. Notice that we could still assess the quality of
this approximation by measuring the duality gap be-
tween primal score and the final dual score.

Algorithm 2 for Model 2 requires us to opti-
mize s3(e,a) over O and sy (€,a) over I. The
former, with added penalties, can be done with
bestOut(c). As the constraint set for I again
decomposes on a per-token basis, solving the
latter problem requires a very similar procedure,
and again O (mn) time. Algorithm 1 shows this
procedure under bestIn(c). It chooses, for each
trigger candidate, the best label and incoming
set of arguments together with the best outgoing
edges to proteins. Adding edges to proteins is
not strictly required, but simplifies our exposition.
Algorithm bestIn(c) requires a per-trigger incoming
score:  sS(l,y;) = > el (Cht + %ST (l,t)) +
Z” i, (cMr + %SR (1,1, 'r)) +
pr alpr (cl,m« + %SR 1, p, T)) . Finally, note
that emptyln (¢) not only assigns None as trigger la-
bel of ¢ and to all incoming edges, but also greedily
picks outgoing protein edges (as done within in(-)).



3.3 Model 3

Model 2 does not predict the b, , variables that rep-
resent protein pairs p, g in bindings. Model 3 fixes
this by (a) adding binding variables b, ;, into the ob-
jective, and (b) enforcing that the binding assign-
ment b is consistent with the trigger and argument
assignments e and a. We will also enforce that the
same pair of entities p,q cannot be arguments in
more than one event together.
The scoring function for Model 3 is simply

S3 (e7a7 b) = 52 (e7a7b) + Z SB (pa Q) .
bp,q=1

“4)

Here sg (p, q) = (wg, fs (p, q)) is a per-protein-pair
score based on a feature representation of the lexical
and syntactic relation between both protein heads.

Our strategy will be based on enforcing consis-
tency partly through linear constraints which we du-
alize, and partly within our search algorithm. To
this end we first introduce a set of auxiliary binary
variables ¢; , , . When a t; ;, , is active, we enforce
that there is a binding trigger at ¢ with proteins p
and ¢ as Theme arguments. A set of linear con-
straints can be used for this: €;pinga — tipg > 0,
@i, p,Theme — Lip,g = 0 and @j,q,Theme — Lip,g = 0 for
all suitable ¢, p and g. We denote the set of assign-
ments (e, a, t) that fulfill these constraints by T.

Consistency between e, a and b can now be en-
forced by making sure that t is consistent with e and
a, and that b is consistent with this t. The latter
means that an active b, , requires a trigger 7 to point
to p and ¢. Or in other words, #;, , = 1 for exactly
one trigger :.

With the set of consistent assignments (b, t) re-
ferred to as B, and a slight abuse of notation, this
gives us V3 & Y,NTNB. Note thatitis (e,a, t) € T
that will be enforced by dualizing constraints, and
(b,t) € B that will be enforced within search.

3.3.1 Inference

We note that inference in Model 3 can be per-

formed by solving the following problem:

. 1 r

maximize s, (e,a) + 5s2(ea) + > ss(p.g)
bp,q=1

subjectto (e, a) ,a) €I A (b,t) € BA

e =aA(eat)eT.

(M3)
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Again, without the final row, M3 would be separa-
ble. We exploit this by performing dual decompo-
sition with a dual objective that has multipliers A
for the coupling constraints and multipliers p for the
constraints which enforce (e, a,t) € T. The result-
ing subgradient descent method is also shown in al-
gorithm 2. Notably, since the constraints for T are
inequalities, we require a projected version of the
descent algorithm which enforces p > 0. This man-
ifests itself when g is updated using the [-], projec-
tion.

We have already described how to find the best
e,a and e, a assignments. What changes for Model
3 is the derivation of the penalties for e and a
that now come from both A and p. We set
A 1) = Nt + ipina Yoy Hipg For j ¢
Prot (x) we set ¢f'}, (A, p) € \ijr; otherwise we

out argl arg2

use C; s r A p) = ijir T Zp Kijp T Zq Hig.j

For finding a (b,t) € B that maximizes
>_b,.,=1 58 (P, q) we use bestBind (c), as shown in
algorithm 1. It groups together two proteins p, q if
their score plus the penalty of the best possible trig-
ger i exceeds 0. In this case, or if there is at least one
trigger with positive penalty c; , , > 0, we activate
the set of triggers I (p, ¢) with maximal score.

Note that when several triggers ¢ maximize the
score, we assign them all the same fractional value
| (p,q)|~". This enforces the constraint that at most
one binding event can point to both p and ¢ and also
means that we are solving an LP relaxation. We
could enforce integer solutions and pick arbitrary
triggers at a tie, but this would lower the chances
of matching against predictions of other routines.

The penalties for bestBind (c) are derived from

: bind _ g argl
the dual p by setting ¢;')% (1) = i pg i
arg2
509"

3.4 Training

We choose prediction-based passive-aggressive (PA)
online learning (Crammer and Singer, 2003) with
averaging to estimate the weights w for each of our
models. PA is an error-driven learner that shifts
weights towards features of the gold solution, and
away from features of the current guess, whenever
the current model makes a mistake.

PA learning takes into account a user-defined
loss function for which we use a weighted sum



of false positives and false negatives: [ (y,y’) &

FP(y,y’) + aFN(y,y’). We set & = 3.8 by op-
timizing on the BioNLP 2009 development set.

4 Related Work

Riedel et al. (2009) use Integer Linear Programming
and cutting planes (Riedel, 2008) for inference in
a model similar to Model 2. By using dual de-
composition instead, we can exploit tractable sub-
structure and achieve quadratic (Model 2) and cu-
bic (Model 3) runtime guarantees. An advantage of
ILP inference are guaranteed certificates of optimal-
ity. However, in practice we also gain certificates
of optimality for a large fraction of the instances
we process. Poon and Vanderwende (2010) use lo-
cal search and hence provide no such certificates.
Their problem formulation also makes n-gram de-
pendency path features harder to incorporate. Mc-
Closky et al. (2011b) cast event extraction as depen-
dency parsing task. Their model assumes that event
structures are trees, an assumption that is frequently
violated in practice. Finally, all previous joint ap-
proaches use heuristics to decide whether binding
arguments are part of the same event, while we cap-
ture these decisions in the joint model.

We follow a long line of research in NLP that ad-
dresses search problems using (Integer) Linear Pro-
grams (Germann et al., 2001; Roth and Yih, 2004;
Riedel and Clarke, 2006). However, instead of us-
ing off-the-shelf solvers, we work in the framework
of dual decomposition. Here we extend the approach
of Rush et al. (2010) in that in addition to equality
constraints we dualize more complex coupling con-
straints between models. This requires us to work
with a projected version of subgradient descent.

‘While tailored towards (biomedical) event extrac-
tion, we believe that our models can also be ef-
fective in a more general Semantic Role Label-
ing (SRL) context. Using variants of Model 1,
we can enforce many of the SRL constraints—such
as “unique agent” constraints (Punyakanok et al.,
2004)—without having to call out to ILP optimiz-
ers. Meza-Ruiz and Riedel (2009) showed that in-
ducing pressure on arguments to be attached to at
least one predicate is helpful; this is a soft incoming
edge constraint. Finally, Model 3 can be used to effi-
ciently capture compatibilities between semantic ar-
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guments; such compatibilities have also been shown
to be helpful in SRL (Toutanova et al., 2005).

5 Experiments

We evaluate our models on several tracks of the 2009
and 2011 BioNLP shared tasks, using the official
“Approximate Span Matching/Approximate Recur-
sive Matching” F1 metric for each. We also investi-
gate the runtime behavior of our algorithms.

5.1 Preprocessing

Each document is first processed by the Stanford
CoreNLP? tokenizer and sentence splitter. Parse
trees come from the Charniak-Johnson parser (Char-
niak and Johnson, 2005) with a self-trained biomed-
ical parsing model (McClosky and Charniak, 2008),
and are converted to dependency structures again us-
ing Stanford CoreNLP. Based on trigger words col-
lected from the training set, a set of candidate trigger
tokens Trig (x) is generated for each sentence x.

5.2 Features

The feature function fy (i,¢) extracts a per-trigger
feature vector for trigger ¢ and type t € 7.
It creates one active feature for each element in
{t,t € Treg} x feats (i). Here feats (i) denotes a
collection of representations for the token i: word-
form, lemma, POS tag, syntactic heads, syntactic
children, and membership in two dictionaries taken
from Riedel et al. (2009).

For fg (i, j,7) we create active features for each
element of {r} x feats(i,j). Here feats(i,7) is
a collection of representations of the token pair
(i,7) taken from Miwa et al. (2010c) and contains:
labelled and unlabeled n-gram dependency paths;
edge and vertex walk features, argument and trigger
modifiers and heads, words in between.

For f (p, ¢) we re-use the token pair representa-
tions from fr. In particular, we create one active
feature for each element in feats (p, q).

5.3 Shared Task 2009

We first evaluate our models on the Bionlp 2009 task
1. The training, development and test sets for this

http://nlp.stanford.edu/software/
corenlp.shtml



SVT BIND REG TOT
McClosky | 754 484 404 535
Poon 775 479 441 555
Bjoerne 779 422 455 557
Miwa 786 469 477 578
M1 772 43.0 458 56.2
M2 779 424 476 572
M3 784 48.0 491 58.7

Table 1: F1 scores for the development set of Task 1 of
the BioNLP 2009 shared task.

task consist of 797, 150 and 250 documents, respec-
tively.

Table 1 shows our results for the development set.
We compare our three models (M1, M2 and M3) and
previous state-of-the-art systems: McClosky (Mc-
Closky et al., 2011a), Poon (Poon and Vander-
wende, 2010), Bjoerne (Bjorne et al., 2009) and
Miwa (Miwa et al., 2010b; Miwa et al., 2010a). Pre-
sented is F1 score for all events (TOT), regulation
events (REG), binding events (BIND) and simple
events (SVT).

Model 1 is outperforming the previous best joint
models of Poon and Vanderwende (2010), as well as
the best entry of the 2009 task (Bjorne et al., 2009).
This is achieved without careful tuning of thresh-
olds that control flow of information between trigger
and argument extraction. Notably, training Model 1
takes approximately 20 minutes using a single core
implementation. Contrast this with 20 minutes on 32
cores reported by Poon and Vanderwende (2010).

Model 2 focuses on regulation structures and re-
sults demonstrate this: F1 for regulations goes up by
nearly 2 points. While the impact of joint modeling
relative to weaker local baselines has been shown
shown by Poon and Vanderwende (2010) and Riedel
et al. (2009), our findings here provide evidence that
it remains effective even when the baseline system
is very competitive.

With Model 3 our focus is extended to binding
events, improving F1 for such events by at least 5 F1.
This also has a positive effect on regulation events,
as regulations of binding events can now be more
accurately extracted. In total we see a 1.1 FI in-
crease over the best results reported so far (Miwa et
al., 2010b). Crucially, this is achieved using only a
single parse tree per sentence, as opposed to three
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SVT BIND REG TOT
McClosky | 68.3 46.9 333 48.6
Poon 69.5 425 37.5  50.0
Bjoerne 702 444  40.1 520
Miwa 72.1 50.6 453 563
M1 71.0 42.1 419 534
M2 70.5 413 43.6 53.7
M3 71.1 529 452 558
M3+enju | 72.6 526 469 574

Table 2: F1 scores for the test set of Task 1 of the BioNLP
2009 shared task.

used by Miwa et al. (2010a).

Table 2 shows results for the test set. Here with
Model 1 we again already outperform all but the re-
sults of Miwa et al. (2010a). Model 2 improves F1
for regulations, while Model 3 again increases F1
for both regulations and binding events. This yields
the best binding event results reported so far. No-
tably, not only are we able to resolve binding am-
biguity better. Binding attachments themselves also
improve, as we increase attachment F1 from 61.4 to
62.7 when going from Model 2 to Model 3.

Miwa et al. (2010b) use two parsers to generate
their input features. For fairer comparison we aug-
ment Model 3 with syntactic features based on the
enju parser (Miyao et al., 2009). With these features
(M3+enju) we achieve the best results on this dataset
reported so far, and outperform Miwa et al. (2010b)
by 1.1 F1 in total, 1.6 F1 on regulation events and
2.0 F1 on binding events.

We also apply Model 3, with slight modifications,
to the BioNLP 2009 task 2 which requires cellu-
lar locations to be extracted as well. With 53.0 F1
we fall 2 points short of the results of Miwa et al.
(2010b) but still substantially outperform any other
reported results on the dataset. More parse trees may
again substantially improve results, as well as task-
specific constraint and feature sets.

5.4 Shared Task 2011

We entered the Shared Task 2011 with Model 3,
primarily focusing on Genia track (task 1), and the
Infectious Diseases track. The Genia track differs
from the 2009 task by including both abstracts and
full text articles. In total 908 training, 259 develop-
ment and 347 test documents are provided.



Genia Task 1 Infectious Diseases

System TOT | System TOT
M3+Stanford | 56.0 | M3+Stanford | 55.6
M3 55.2 | M3 534
UTurku 53.3 | Stanford 50.6
MSR-NLP 51.5 | UTurku 44.2
ConcordU 50.3 | PNNL 42.6

Table 3: F1 scores for the test sets of two tracks in the
BioNLP 2011 Shared Task.

The top five entries are shown in table 3. Model
3 is the best-performing system that does not use
model combination, only outperformed by a version
of Model 3 that includes Stanford predictions (Mc-
Closky et al., 2011b) as input features (Riedel et al.,
2011). Not shown in the table are results for full pa-
pers only. Here M3 ranks first with 53.1 F1, while
M3+Stanford comes in second with 52.7 F1.

The Infectious Diseases (ID) track of the 2011
task has 152 train, 46 development and 118 test
documents. Relative to Genia it provides less data
and introduces more types of entities as well as
the biological process event type. Incorporating
these changes into our models is straightforward,
and hence we omit details for brevity.

Table 3 shows the top five entries for the Infec-
tious Diseases track. Again Model 3 is the best-
performing system that does not use model combi-
nation, outperformed only by Model 3 with Stanford
predictions as features. We should point out that
the feature sets and learning parameters were kept
constant when moving from Genia to ID data. The
strong results we observe without any tuning to the
domain indicate the robustness of joint modeling.

5.5 Runtime Behavior

Table 4 shows the asymptotic complexity of our
three models with respect to m = |Trig (x)|, n =
|Cand (x)| and p = |Prot(x)|. We also show the
number of iterations needed on average, the average
time in milliseconds per sentence,” and the fraction
of sentences we get certificates of optimality for.

As expected, Model 1 is most efficient, both
asymptotically and on average. Given that its ac-
curacy is already good, it can serve as a basis for

3Measured without preprocessing and feature extraction.
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‘ Complexity Iter. Time  Exact
MI1 | O (nm) 1.0 60ms 100%
M2 | O (Rnm) 104 183ms 96%
M3 | O (Rnm + Rp*m) 11.7  297ms  94%

Table 4: Complexity and Runtime Behavior.

large-scale extraction tasks. Models 2 and 3 re-
quire several iterations and more time, while pro-
viding slightly less certificates. However, given the
improvement in F1 they deliver, and the fact prepro-
cessing steps such as parsing would still dominate
the average time, this seems like a reasonable price

to pay.
6 Conclusion

We presented three joint models for biomedical
event extraction. Model 1 reaches near-state-of-the-
art results, outperforms all previous joint models
and has quadratic runtime guarantees. By explicitly
capturing regulation events (Model 2), and binding
events (Model 3) we achieve the best results reported
so far on several event extraction tasks. The runtime
penalty we pay is kept minimal by using dual de-
composition. We also show how dual decomposition
can be used for constraints that go beyond coupling
equalities.

We use joint models, a decomposition technique
and supervised online learning. This recipe can be
successful in many settings, but requires expensive
manual annotation. In the future we want to inte-
grate weak supervision techniques to train extractors
with existing biomedical databases, such as KEGG,
and only minimal amounts of annotated text.
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Abstract

Online discussion forums are a valuable
means for users to resolve specific information
needs, both interactively for the participants
and statically for users who search/browse
over historical thread data. However, the com-
plex structure of forum threads can make it
difficult for users to extract relevant informa-
tion. The discourse structure of web forum
threads, in the form of labelled dependency re-
lationships between posts, has the potential to
greatly improve information access over web
forum archives. In this paper, we present the
task of parsing user forum threads to deter-
mine the labelled dependencies between posts.
Three methods, including a dependency pars-
ing approach, are proposed to jointly clas-
sify the links (relationships) between posts
and the dialogue act (type) of each link. The
proposed methods significantly surpass an in-
formed baseline. We also experiment with “in
situ” classification of evolving threads, and es-
tablish that our best methods are able to per-
form equivalently well over partial threads as
complete threads.

1 Introduction

Web user forums (or simply “forums”) are online
platforms for people to discuss information and ob-
tain information via a text-based threaded discourse,
generally in a pre-determined domain (e.g. IT sup-
port or DSLR cameras). With the advent of Web
2.0, there has been an explosion of web authorship in
this area, and forums are now widely used in various
areas such as customer support, community devel-
opment, interactive reporting and online eduction.
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In addition to providing the means to interactively
participate in discussions or obtain/provide answers
to questions, the vast volumes of data contained in
forums make them a valuable resource for “support
sharing”, i.e. looking over records of past user inter-
actions to potentially find an immediately applica-
ble solution to a current problem. On the one hand,
more and more answers to questions over a wide
range of domains are becoming available on forums;
on the other hand, it is becoming harder and harder
to extract and access relevant information due to the
sheer scale and diversity of the data.

This research aims at enhancing information ac-
cess and support sharing, by mining the discourse
structure of troubleshooting-oriented web user fo-
rum threads. Previous research has shown that sim-
ple thread structure information (e.g. reply-to struc-
ture) can enhance tasks such as forum information
retrieval (Seo et al., 2009) and post quality assess-
ment (Lui and Baldwin, 2009). We aim to move be-
yond simple threading, to predict not only the links
between posts, but also show the manner of each
link, in the form of the discourse structure of the
thread. In doing so, we hope to be able to perform
richer visualisation of thread structure (e.g. high-
lighting the key posts which appear to have led to
a successful resolution to a problem), and more fine-
grained weighting of posts in threads for search pur-
poses.

To illustrate the task, we use an example thread,
made up of 5 posts from 4 distinct participants, from
the CNET forum dataset of Kim et al. (2010b), as
shown in Figure 1. The discourse structure of the
thread is modelled as a rooted directed acyclic graph
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0+Questjon-Question

User A | HTML Input Code
Post 1 ...Please can someone tell me how to create an input
box that asks the user to enter their ID, and then allows
them to press go. It will then redirect to the page ...
7
T+Ans We’\'A”SWGf 2+Answer-Answer
User B | Re: htmlinput code
Post 2 Part 1: create a form with a text field. See ... Part
2: give it a Javascript action

3+Question-Add

asp.net C# video
I've prepared for you video.link click ...

1+Answer-Confirmation 4+Answer-Answer

User A [ Thank You!

Post 4 Thanks a lot for that ... | have Microsoft Visual
Studio 6, what program should | do this in? Lastly,
how do | actually include this in my site? ...

User D
Post 5

A little more help
.. You would simply do it this way: ... You could
also just ... An example of this is ...

Figure 1: A snippeted and annotated CNET thread

(DAG) with a dialogue act label associated with each
edge of the graph. In this example, UserA initiates
the thread with a question (dialogue act = Question-
Question) in the first post, by asking how to create
an interactive input box on a webpage. In response,
UserB and UserC provide independent answers (di-
alogue act = Answer-Answer). UserA responds to
UserC to confirm the details of the solution (dia-
logue act = Answer-Confirmation), and at the same
time, adds extra information to his/her original ques-
tion (dialogue act = Question-Add); i.e., this one
post has two distinct dependency links associated
with it. Finally, UserD proposes a different solution
again to the original question.

To predict thread discourse structure of this type,
we jointly classify the links and dialogue acts be-
tween posts, experimenting with a variety of su-
pervised classification methods, namely dependency
parsing and linear-chain conditional random fields.
In this, we build on the earlier work of Kim et al.
(2010b) who first proposed the task of thread dis-
course analysis, but only carried out experiments on
post linking and post dialogue act classification as
separate tasks. In addition to achieving state-of-the-
art accuracy over the task, we carry out in-depth
analysis of classification effectiveness at different
thread depths, and establish that the accuracy of our
method over partial threads is equivalent to that over
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full threads, indicating that the method is applica-
ble to in-situ thread classification. Finally, we in-
vestigate the role of user-level features in discourse
structure analysis.

2 Related Work

This work builds directly on earlier work of a subset
of the authors (Kim et al., 2010b), whereby a novel
post-level dialogue act set was proposed, and used
as the basis for annotation of a set of threads taken
from CNET. In the original work, we proposed a set
of novel features, which we applied to the separate
tasks of post link classification and dialogue act clas-
sification. We later applied the same basic method-
ology to dialogue act classification over one-on-one
live chat data with provided message dependencies
(Kim et al., 2010a), demonstrating the generalisabil-
ity of the original method. In both cases, however,
we tackled only a single task, either link classifica-
tion (optionally given dialogue act tags) or dialogue
act classification, but never the two together. In this
paper, we take the obvious step of exploring joint
classification of post link and dialogue act tags, to
generate full thread discourse structures.

Discourse disentanglement (i.e. link classifica-
tion) and dialogue act tagging have been studied
largely as independent tasks. Discourse disentangle-
ment is the task of dividing a conversation thread
(Elsner and Charniak, 2008; Lemon et al., 2002)
or document thread (Wolf and Gibson, 2005) into
a set of distinct sub-discourses. The disentangled
discourse is sometimes assumed to take the form of
a tree structure (Grosz and Sidner, 1986; Lemon et
al., 2002; Seo et al., 2009), an acyclic graph struc-
ture (Rosé et al., 1995; Schuth et al., 2007; Elsner
and Charniak, 2008; Wang et al., 2008; Lin et al.,
2009), or a more general cyclic chain graph struc-
ture (Wolf and Gibson, 2005). Dialogue acts are
used to describe the function or role of an utterance
in a discourse, and have been applied to the anal-
ysis of mediums of communication including con-
versational speech (Stolcke et al., 2000; Shriberg et
al., 2004; Murray et al., 2006), email (Cohen et al.,
2004; Carvalho and Cohen, 2005; Lampert et al.,
2008), instant messaging (Ivanovic, 2008; Kim et
al., 2010a), edited documents (Soricut and Marcu,
2003; Sagae, 2009) and online forums (Xi et al.,



2004; Weinberger and Fischer, 2006; Wang et al.,
2007; Fortuna et al., 2007; Kim et al., 2010b). For a
more complete review of models for discourse dis-
entanglement and dialogue act tagging, see Kim et
al. (2010b).

Joint classification has been applied in a number
of different contexts, based on the intuition that it
should be possible to harness interactions between
different sub-tasks to the mutual benefit of both.
Warnke et al. (1997) jointly performed segmenta-
tion and dialogue act classification over a German
spontaneous speech corpus. In their approach, the
predictions of a multi-layer perceptron classifier on
dialogue act boundaries were fed into an n-gram
language model, which was used for the joint seg-
mentation and classification of dialogue acts. Sut-
ton and McCallum (2005) performed joint parsing
and semantic role labelling (SRL), using the results
of a probabilistic SRL system to improve the accu-
racy of a probabilistic parser. Finkel and Manning
(2009) built a joint, discriminative model for pars-
ing and named entity recognition (NER), address-
ing the problem of inconsistent annotations across
the two tasks, and demonstrating that NER bene-
fited considerably from the interaction with parsing.
Dahlmeier et al. (2009) proposed a joint probabilis-
tic model for word sense disambiguation (WSD) of
prepositions and SRL of prepositional phrases (PPs),
and achieved state-of-the-art results over both tasks.

There has been a recent growth in user-level
research over forums. Lui and Baldwin (2009)
explored a range of user-level features, including
replies-to and co-participation graph analysis, for
post quality classification. Lui and Baldwin (2010)
introduced a novel user classification task where
each user is classified against four attributes: clar-
ity, proficiency, positivity and effort. User commu-
nication roles in web forums have also been studied
(Chan and Hayes, 2010; Chan et al., 2010).

Threading information has been shown to en-
hance retrieval effectiveness for post-level retrieval
(Xi et al., 2004; Seo et al., 2009), thread-level
retrieval (Seo et al., 2009; Elsas and Carbonell,
2009), sentence-level shallow information extrac-
tion (Sondhi et al., 2010), and near-duplicate thread
detection (Muthmann et al., 2009). These results
suggest that the thread structural representation used
in this research, which includes both linking struc-
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ture and the dialogue act associated with each link,
could potentially provide even greater leverage in
these retrieval tasks.

Another related research area is post-level classi-
fication, such as general post quality classification
(Weimer et al., 2007; Weimer and Gurevych, 2007;
Wanas et al., 2008; Lui and Baldwin, 2009), and
post descriptiveness in particular domains (e.g. med-
ical forums: Leaman et al. (2010)). It has been
demonstrated (Wanas et al., 2008; Lui and Bald-
win, 2009) that thread discourse structure can signif-
icantly improve the classification accuracy for post-
level tasks.

Initiation-response pairs (e.g. question—answer,
assessment—agreement, and blame—denial) from on-
line forums have the potential to enhance thread
summarisation or automatically generate knowledge
bases for Community Question Answering (cQA)
services such as Yahoo! Answers. While initiation—
response pair identification has been explored as a
pairwise ranking problem (Wang and Rosé, 2010),
question—answer pair identification has been ap-
proached via the two separate sub-tasks of ques-
tion classification and answer detection (Cong et al.,
2008; Ding et al., 2008; Cao et al., 2009). Our
thread discourse structure prediction task includes
joint classification of post roles (i.e. dialogue acts)
and links, and could potentially be performed at the
sub-post sentence level to extract initiation—-response
pairs.

3 Task Description and Data Set

The main task performed in this research is joint
classification of inter-post links (Link) and dialogue
acts (DA) within forum threads. In this, we assume
that a post can only link to an earlier post (or a vir-
tual root node), and that dialogue acts are labels on
edges. It is possible for there to be multiple edges
from a given post, e.g. if a post both confirms the va-
lidity of an answer and adds extra information to the
original question (as happens in Post4 in Figure 1).
We experiment with two different approaches to
joint classification: (1) a linear-chain CRF over
combined Link/DA post labels; and (2) a depen-
dency parser. The joint classification task is a nat-
ural fit for dependency parsing, in that the task is
intrinsically one of inferring labelled dependencies



between posts, but it has a number of special prop-
erties that distinguish it from standard dependency
parsing:

strict reverse-chronological directionality: the
head always precedes the dependent, in terms
of the chronological sequencing of posts.

non-projective dependencies: threads can contain
non-projective dependencies, e.g. in a 4-post
thread, posts 2 and 3 may be dependent on
post 1, and post 4 dependent on post 2; around
2% of the threads in our dataset contain non-
projective dependencies.

multi-headedness: it is possible for a given post to
have multiple heads, including the possibility
of multiple dependency links to the same post
(e.g. adding extra information to a question
[Question-Add] as well as retracting infor-
mation from the original question [Question-
Correction]); around 6% of the threads in our
dataset contain multi-headed dependencies.

disconnected sub-graphs: it is possible for there to
be disconnected sub-graphs, e.g. in instances
where a user hijacks a thread to ask their
own unrelated question, or submit an unrelated
spam post; around 2% of the threads in our
dataset contain disconnected sub-graphs.

The first constraint potentially simplifies depen-
dency parsing, and non-projective dependencies are
relatively well understood in the dependency parsing
community (Tapanainen and Jarvinen, 1997; Mc-
Donald et al., 2005). Multi-headedness and dis-
connected sub-graphs pose greater challenges to de-
pendency parsing, although there has been research
done on both (McDonald and Pereira, 2006; Sagae
and Tsujii, 2008; Eisner and Smith, 2005). The
combination of non-projectivity, multi-headedness
and disconnected sub-graphs in a single dataset,
however, poses a challenge for dependency parsing.
In addition to performing evaluation in batch
mode over complete threads, we consider the task of
“in situ thread classification”, whereby we predict
the discourse structure of a thread after each post.
This is intended to simulate the more realistic set-
ting of incrementally crawling/updating thread data,
but needing to predict discourse structure for partial
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threads. We are interested in determining the rela-
tive degradation in accuracy for in situ classification
vs. batch classification.

As our dataset, we use the CNET forum dataset
of Kim et al. (2010b),! which contains 1332 an-
notated posts spanning 315 threads, collected from
the Operating System, Software, Hardware and Web
Development sub-forums of cnet.? Each post is la-
belled with one or more links (including the possi-
bility of null-links, where the post doesn’t link to
any other post), and each link is labelled with a di-
alogue act. The dialogue act set is made up of 5
super-categories: Question, Answer, Resolution
(confirmation of the question being resolved), Re-
production (external confirmation of a proposed so-
lution working) and Other. The Question category
contains 4 sub-classes: Question, Add, Confirma-
tion and Correction. Similarly, the Answer cate-
gory contains 5 sub-classes: Answer, Add, Confir-
mation, Correction and Objection. For example,
the label Question-Add signifies the Question su-
perclass and Add subclass, i.e. addition of extra in-
formation to a question. For full details of the dia-
logue act tagset, see Kim et al. (2010b).

Dependency links are represented by their relative
position in the chronologically-sorted list of posts,
e.g. 1 indicates a link back to the preceding post,
and 2 indicates a link back two posts.

Unless otherwise noted, evaluation is over the
combined link and dialogue act tag, including the
combination of superclass and subclass for the
Question and Answer dialogue acts. For ex-
ample, 1+Answer-Answer indicates a dependency
link back one post, which is an answer to a question.
The most common label in the dataset is 1+Answer-
answer (28.4%).

4 Learners and Features

4.1 Learners

To predict thread discourse structure, we use a struc-
tured classification approach — based on the find-
ings of Kim et al. (2010b) and Kim et al. (2010a)
— and a dependency parser. The structured clas-
sification approach we experiment with is a linear-

! Available from http://www.csse.unimelb.edu.
au/research/lt/resources/conll12010-thread/
http://forums.cnet.com/



chain conditional random field learner (CRF: Laf-
ferty et al. (2001)), within which we explore two
simple approaches to joint classification, as is ex-
plained in Section 5.1. Dependency parsing (Kiibler
et al., 2009) is the task of automatically predicting
the dependency structure of a token sequence, in
the form of binary asymmetric dependency relations
with dependency types.

Standardly, CRFs have been applied to tasks such
as part-of-speech tagging, named entity recognition,
semantic role labelling and supertagging, where the
individual tokens are single words. Similarly, de-
pendency parsing is conventionally applied to sen-
tences, with single-word tokens. In our case, our
tokens are thread posts, with much greater scope for
feature engineering than single words, and techni-
cal challenges in scaling the underlying implemen-
tations to handle potentially much larger feature sets.

As our learners, we deployed CRFSGD (Bot-
tou, 2011) to learn the CRF, and MaltParser (Nivre
et al., 2007) as our dependency parser. CRFSGD
uses stochastic gradient descent to efficiently solve
the convex optimisation problem, and scales well to
large feature sets. We used the default parameter set-
tings for CRFSGD, with feature templates includ-
ing all unigram features of the current token as well
as bigram features combining the previous output to-
ken with the current token.

MaltParser implements transition-based parsing,
where no formal grammar is considered, and a tran-
sition system, or state machine, is learned to map a
sentence onto its dependency graph. One feature of
MaltParser that makes it well suited to our task is
that it is possible to define feature models of arbi-
trary complexity for each token. In presenting the
thread data to MaltParser, we represent the null-
link from the initial post of each thread, as well as
any disconnected posts, as the root.

To the best of our knowledge, there is no past
work on using dependency parsing to learn thread
discourse structure. Based on extensive experimen-
tation, we determined that the MaltParser configu-
ration that obtains the best results for our task is the
Nivre algorithm in arc-standard mode (Nivre, 2003;
Nivre, 2004), using LIBSVM (Chang and Lin, 2011)
with a linear kernel as the learner, and a feature
model with exhaustive combinations of features re-
lating to the features and predictions of the first/top
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three tokens from both “Input” and “Stack”.? As
such, MaltParser is actually unable to predict any
non-projective structures, as experiments with algo-
rithms supporting non-projective structures invari-
ably led to lower results. In our choice of parsing al-
gorithm, we are also unable to detect posts with mul-
tiple heads, but can potentially detect disconnected
sub-graphs.

4.2 Features

The features used in our classifiers are as follows:

Structural Features:

Initiator a binary feature indicating whether the
current post’s author is the thread initiator.

Position the relative position of the current post,
as a ratio over the total number of posts in the
thread.

Semantic Features:

TitSim the relative location of the post which has
the most similar title (based on unweighted co-
sine similarity) to the current post.

PostSim the relative location of the post which
has the most similar content (based on un-
weighted cosine similarity) to the current post.

Punct the number of question marks (QuCount),
exclamation marks (ExCount) and URLs
(UrlCount) in the current post.

UserProf the class distribution (in the training
thread) of the author of the current post.

These features are drawn largely from the work
of Kim et al. (2010b), with two major differences:
(1) we do not use post context features because our
learners (i.e. CRFSGD and MaltParser) inherently
capture Markov chains; and (2) our UserProf fea-
tures are customised to the class set associated with
the task at hand, e.g. the UserProf features for the
standalone linking task take the form of the link la-
bels (and not dialogue act labels) of the posts by the
relevant author in the training data. Table 1 shows
the feature representation of the third post in a thread



Feature Value Explanation

Initiator 1.0  post from the initiator
ExCount 4.0 4 exclamation marks
QuCount 0.0 0 question marks
UrlCount 0.0 O0URLs

Position 025 &1=231

PostSim 2.0 most similar to post 1
TitSim 2.0  most similar to post 1

UserProf x counts for posts of each
class from the same author

in the training data

Table 1: The feature presentation of the third post in a
thread of length 8

of length 8. The values of each feature are scaled to
the range [0, 1] before being fed into the learners.
We also experimented with other features,
including raw bag-of-words lexical features,
dimensionality-reduced lexical features (using
principal components analysis), and different post
similarity measures such as longest common subse-
quence (LCS) match. While we were able to obtain
gains in isolation, when combined with the other
features, these features had no impact, and are thus
not included in the results presented in this paper.

5 Classification Methodology

All our experiments were carried out based on strati-
fied 10-fold cross-validation, stratifying at the thread
level to ensure that all posts from a given thread
occur in a single fold. The results are primarily
evaluated using post-level micro-averaged F-score
(F,: B = 1), and additionally with thread-level F-
score/classification accuracy (i.e. the proportion of
threads where all posts have been correctly classi-
fied*), where space allows. Statistical significance
is tested using randomised estimation (Yeh, 2000)
with p < 0.05. Initial experiments showed it is
hard for learners to discover which posts have multi-
ple links, largely due to the sparsity of multi-headed
posts (which account for less than 5% of the total
posts). Therefore, only the the most recent link for

Shttp://maltparser.org/userguide.html#
parsingalg

4Classification accuracy = F-score at the thread-level, as
each thread is assigned a single label of correct or incorrect.
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each multi-headed post was included in training, but
evaluation still considers all links.

5.1 Joint classification

In our experiments, we test two basic approaches to
joint classification for the CRF: (1) classifying the
Link and DA separately, and composing the predic-
tions to form the joint classification (Composition);
and (2) combining the Link and DA labels into a sin-
gle class, and applying the learner over the posts
with the combined class (Combine). Note that
Composition has the potential for mismatches in
the number of Link and DA predictions it gener-
ates, causing complications in the class composition.
Even if the same number of labels is predicted for
both Link and DA, if multiple tags are predicted in
both cases, we are left with the problem of determin-
ing which link label to combine with which dialogue
act label. As such, we have our reservations about
Composition, but as the CRF performs strict 1-of-
n labelling, these are not issues in the experiments
reported herein.

MaltParser natively handles the combination of
Link and DA in its dependency parsing formulation.

5.2 In Situ Thread Classification

One of the biggest challenges in classifying the dis-
course structure of a forum thread is that threads
evolve over time, as new posts are posted. In or-
der to capture this phenomenon, and compare the
accuracy of different models when applied to partial
thread data (artificially cutting off a thread at post
N) vs. complete threads.’ This is done in the fol-
lowing way: classification over the first two posts
only ([1, 2]), the first four posts ([1,4]), the first six
posts ([1,6]), the first eight posts ([1,8]), and all
posts ([all]). In each case, we limit the test data
only, meaning that the only variable in play is the
extent of thread context used to learn the thread dis-
course structure for the given set of posts. We break
down the results in each case into the indicated sub-
threads, e.g. we take the predictions for [all], and
break them down into the results for [1,2], [1,4],
[1,6], [1,8] and [all], for direct comparison with the
predictions over the respective sub-thread data.

3In practice, completeness is defined at a given point in time,
when the crawl was done, and it is highly likely that some of the
“complete” threads had extra posts after the crawl.



Method Link DA
Kim et al. (2010b) 863 / .676 751 / 543
CRFSGD 891 /7 .727 795 /1 .609

Table 2: Post/thread-level component-wise classification
F-scores for Link and DA classes

6 Experiments and Analysis

6.1 Joint classification

As our baseline for the task, we first use a sim-
ple majority class classifier in the form of the sin-
gle joint class of 1+Answer-Answer for all posts,
which has a post-level F-score of 0.284. A stronger
baseline is to classify all first posts as 0+Question-
Question and all subsequent posts as 1+Answer-
answer, which achieves a post-level F-score of
0.515 (labelled as Heuristic).

As described in Section 5.1, one approach to joint
classification with CRFSGD is to firstly conduct
component-wise classification over Link and DA
separately, and compose the predictions. The results
for the separate Link and DA classification tasks are
presented in Table 2, along with the best results for
Link and DA classification from Kim et al. (2010b).
At the component-wise tasks, our method is superior
to Kim et al. (2010b), based on a different learner
and slightly different feature set.

Next, we compose the component-wise clas-
sifications for the CRF into joint classifications
(Composition). We contrast this with the com-
bined class approach for CRFSGD and MaltParser
(jointly presented as Joint in Table 3). With the
combined class results, we additionally ablate each
of the feature types from Section 4.2, and also
present results for a dummy model, where no fea-
tures are provided and the prediction is based simply
on sequential priors (Dummy). The results are pre-
sented in Table 3, along with the Heuristic baseline
result.

Several interesting things can be observed from
the post-level F-score results in Table 3. First, with
no features (Dummy), while CRFSGD performs
slightly worse than the Heuristic baseline, Malt-
Parser significantly surpasses the baseline. This is
due to the richer sequential context model of Malt-
Parser. Second, the single feature with the greatest
impact on results is UserProf, i.e. user profile fea-
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Method CRFSGD MaltParser
Heuristic 515%/ 311
“Dummy 508%/ .394%  533%/ 356%
Composition .728%/ .553* —
“Joint+ALL 756 1578 138/ 578
—Initiator 745 1 .569 [708%/ .534*
—Position 750 / .565 736 / .568
—PostSim 753 /1 578 737 | 568
—TitSim 760 / 587 734 1 571
—Punct 745 1 571 735 1 578
—UserProf 672/ 527 701%/ .536™

Table 3: Post/thread-level Link-DA joint classification F-
scores (“*” signifies a significantly worse result than that
for the same learner with ALL features)

tures extracted from the training data; CRFSGD in
particular benefits from this feature. We return to ex-
plore this effect in Section 6.4. Third, although the
Initiator feature does not have much effect on CRF-
SGD, it affects the performance of MaltParser sig-
nificantly. Further experiments shown that the com-
bination of Initiator and UserProf is sufficient to
achieve a competitive result (i.e. 0.731). It therefore
seems that MaltParser is more robust than CRF-
SGD, whose performance relies crucially on user-
level features which must be learned from the train-
ing data (i.e. UserProf).

Looking to the thread-level F-scores, we observe
some interesting divergences from the post-level F-
score results. First, with no features (Dummy),
CRFSGD significantly outperforms both the base-
line and MaltParser. This appears to be because
CRFSGD performs particularly well over short
threads (e.g. of length 3 and 4), but worse over
longer threads. Second, the best thread-level F-
scores from CRFSGD (i.e. 0.587) and MaltParser
(i.e. 0.578) are not significantly different, despite the
discrepancy in post-level F-score (where CRFSGD
is markedly superior in this case). With the extra
features, the performance of MaltParser on short
threads appears to pick up noticeably, and the differ-
ence in post-level predictions is over longer threads.

If we evaluate the two models over DA super-
classes only (ignoring mismatches at the subclass
level for Question and Answer), the post-level F-
scores for joint classification with ALL features for
CRFSGD and MaltParser are 0.803 and 0.787, re-
spectively.



Approaches Link DA

Component-wise .891 / 727" 795 / .609
CRFSGD decomp .893 / .749 785 / .603
MaltParser decomp  .870%/ .730* 766"/ 571"

Table 4: Post/thread-level Link and DA F-scores from
component-wise classification, and from Link-DA clas-
sification decomposition (“*” signifies a significantly
worse result than the best result in that column)

Looking at the performance of CRFSGD (in
Combine mode) and MaltParser on disconnected
sub-graphs, while both models did predict a small
number of non-initial posts with null-links (includ-
ing MaltParser predicting 5 out of 6 posts in a sin-
gle thread as having null-links), none were correct,
and neither model was able to correctly predict any
of the 6 actual non-initial instances of null-links in
the dataset.

Finally, we took the joint classification results
from CRFSGD and MaltParser using ALL fea-
tures, and decomposed the predictions into Link and
DA. The results are presented in Table 4, along with
the results for component-wise classification from
Table 2. Somewhat surprisingly, the decomposed
predictions are mostly slightly worse than the re-
sults for the component-wise classification, despite
achieving higher F-score for the joint classification
task. This is simply due to the combined method
tending to get both labels correct or both labels
wrong, for a given post.

6.2 Post Position-based Result Breakdown

One question in thread discourse structure classifica-
tion is how accurate the predictions are at different
depths in a thread (e.g. the first two posts vs. the sec-
ond two posts). A breakdown of results across posts
at different positions is presented in Figure 2.

The overall trend for both CRFSGD and Malt-
Parser is that it becomes increasingly hard to clas-
sify posts as we continue through a thread, due to
greater variability in discourse structure and greater
sparsity in the data. However, it is interesting to note
that the results for CRFSGD actually improve from
posts 7 and 8 ([7,8]) to posts 9 and onwards (]9, ]).
To further investigate this effect, we performed class
decomposition over the joint classification predic-
tions, and performed a similar breakdown of posts

20

0.9+

I CRFSGD
[ IMaltParser ||

[12] [34] [56] [7.8] [9)] All

Posts
Figure 2: Breakdown of post-level Link-DA results for
CRFSGD and MaltParser based on post position
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Figure 3: Breakdown of post-level Link and DA F-score
based on the decomposition of CRFSGD and Malt-
Parser classifications

for Link and DA; the results are presented in Fig-
ure 3. It is clear that the anomaly for CRFSGD
comes from the DA component, due to there being
greater predictability in the dialogue for final posts
in a thread (users tend to confirm a successful reso-
lution of the problem, or report on successful exter-
nal reproduction of the solution). MaltParser seems
less adept at identifying that a post is at the end
of a thread, and predicting the dialogue act accord-
ingly. This observation is congruous with the find-
ings of McDonald and Nivre (2007) that errors prop-
agate, due to MaltParser’s greedy inference strat-
egy. The higher results for Link are to be expected,
as throughout the thread, most posts tend to link lo-
cally.



o Bldown | “'nol w4 e s (Al
1,2] LT/ p— - - -
[1,4] 046/947  836/841  — -
[1,6] .946/.947  .840/.841  .800/.794 — —
1,8] 046/947  840/841 800L794 780/769  —
[Al] 946/946 840838 8001791 776767 756.738

Table 5: Post-level Link-DA F-score for CRFSGD/MaltParser, based on in situ classification over sub-threads of
different lengths (indicated in the rows), broken down over different post extents (indicated in the columns)

6.3 In Situ Structure Prediction

As described in Section 5.2, we simulate in situ
thread discourse structure prediction by removing
differing numbers of posts from the tail of the thread,
and applying the trained model over the resultant
sub-threads. The results for in situ classification are
presented in Table 5, with the rows indicating the
size of the test sub-thread, and the columns being a
breakdown of results over different portions of the
classified thread. The reason that we do not pro-
vide numbers for all cells in the table is that the size
of the test sub-thread determines the post extents we
can breakdown the results into, e.g. we cannot return
results for posts 1-4 ([1, 4]) when the size of the test
thread was only two posts ([1, 2]).

From the results, we can see that both CRFSGD
and MaltParser are very robust when applied to par-
tial threads, to the extent that we actually achieve
higher results over shortened versions of the thread
than over the complete thread in some instances, al-
though the only difference that is statistically signif-
icant is over [1, 8] for CRFSGD, where the predic-
tion over the partial thread is actually superior to that
over the complete thread. From this, we can con-
clude that it is possible to apply our method to partial
threads without any reduction in effectiveness rela-
tive to classification over complete threads. As such,
our method is shown to be robust when applied to
real-time analysis of dynamically evolving threads.

6.4 User profile feature analysis

In our experiments, we noticed that the user profile
feature (UserProf) is the most effective feature for
both CRFSGD and MaltParser. To gain a deeper
insight into the behaviour of the feature, we binned
the posts according to the number of times the author
had posted in the training data, evaluated based on a
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. Posts Total Total
Bin uscore
peruser users  posts
High 224.6 251 1 251
Medium 1~41.7 4~48 45 395
Low 0 2~4 157 377
Very Low 0 1 309 309

Table 6: Statistics for the 4 groups of users

user score (uscore) for each user:

Z;Ll:l Spi, j

1

uscore; =

where n; is the number of posts by user i, and sy, . is
the number of posts by user ¢ that occur as training
instances for other posts by the same author. uscore
reflects the average training—test post ratio per user
in cross-validation. Note that as we include all posts
from a given thread in a single partition during cross-
validation, it is possible for an author to have posted
4 times, but have a uscore of 0 due to those posts all
occurring in the same thread.

We ranked the users in the dataset in descending
order of uscore, sub-ranking on n; in cases of a tie
in uscore. The users were binned into 4 groups
of roughly equal post size. The detailed statistics
are shown in Table 6, noting that the high-frequency
bin (“High”) contains posts from a single user. We
present the post-level micro-averaged F-score for
posts in each bin based on CRFSGD, with and with-
out user profile features, in Figure 4.

Contrary to expectation, the UserProf features
have the greatest impact for users with fewer posts.
In fact, a statistically significant difference was ob-
served only for users with no posts in the training
data (uscore = 0), where the F-score jumped over
10% in absolute terms for both the Low and Very
Low bins. Our explanation for this effect is that the
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Figure 4: Post-level joint classification results for users
binned by uscore, based on CRFSGD with and without
UserProf features)

Very Low

lack of user profile information is predictive of the
sort of posts we can expect from a user (i.e. they
tend to be newbie users, asking questions).

7 Conclusions and Future Work

In this research, we explored the joint classification
of web user forum thread discourse structure, in the
form of a rooted directed acyclic graph over posts,
with edges labelled with dialogue acts. Three classi-
fication approaches were proposed: separately pre-
dicting Link and DA labels, and composing them
into a joint class; predicting a combined Link-DA
class using a structured classifier; and applying de-
pendency parsing to the problem. We found the
combined approach based on CRFSGD to perform
best over the task, closely followed by dependency
parsing with MaltParser.

We also examined the task of in situ classification
of dialogue structure, in the form of predicting the
discourse structure of partial threads, as contrasted
with classifying only complete threads. We found
that there was no drop in F-score over different sub-
extents of the thread in classifying partial threads,
despite the relative lack of thread context.

In future work, we plan to delve further into de-
pendency parsing, looking specifically at the impli-
cations of multi-headedness and disconnected sub-
graphs on dependency parsing. We also intend to
carry out meta-classification, combining the predic-
tions of CRFSGD and MaltParser.

Our user profile features were found to be the
pick of our features, but counter-intuitively, to bene-
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fit users with no posts in the training data, rather than
prolific users. We wish to explore this effect further,
including incorporating unsupervised user-level fea-
tures into our classifiers.
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Abstract

This paper describes an algorithm for exact
decoding of phrase-based translation models,
based on Lagrangian relaxation. The method
recovers exact solutions, with certificates of
optimality, on over 99% of test examples.
The method is much more efficient than ap-
proaches based on linear programming (LP)
or integer linear programming (ILP) solvers:
these methods are not feasible for anything
other than short sentences. We compare our
method to MOSES (Koehn et al., 2007), and
give precise estimates of the number and mag-
nitude of search errors that MOSES makes.

1 Introduction

Phrase-based models (Och et al., 1999; Koehn et
al., 2003; Koehn et al.,, 2007) are a widely-used
approach for statistical machine translation. The
decoding problem for phrase-based models is NP-
hard!; because of this, previous work has generally
focused on approximate search methods, for exam-
ple variants of beam search, for decoding.

This paper describes an algorithm for exact
decoding of phrase-based models, based on La-
grangian relaxation (Lemaréchal, 2001). The core
of the algorithm is a dynamic program for phrase-
based translation which is efficient, but which allows
some ill-formed translations. More specifically, the
dynamic program searches over the space of transla-
tions where exactly N words are translated (/N is
the number of words in the source-language sen-
tence), but where some source-language words may
be translated zero times, or some source-language
words may be translated more than once. La-
grangian relaxation is used to enforce the constraint

"'We refer here to the phrase-based models of (Koehn et al.,
2003; Koehn et al., 2007), considered in this paper. Other vari-
ants of phrase-based models, which allow polynomial time de-
coding, have been proposed, see the related work section.
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that each source-language word should be translated
exactly once. A subgradient algorithm is used to op-
timize the dual problem arising from the relaxation.

The first technical contribution of this paper is the
basic Lagrangian relaxation algorithm. By the usual
guarantees for Lagrangian relaxation, if this algo-
rithm converges to a solution where all constraints
are satisfied (i.e., where each word is translated ex-
actly once), then the solution is guaranteed to be
optimal. For some source-language sentences how-
ever, the underlying relaxation is loose, and the algo-
rithm will not converge. The second technical con-
tribution of this paper is a method that incrementally
adds constraints to the underlying dynamic program,
thereby tightening the relaxation until an exact solu-
tion is recovered.

We describe experiments on translation from Ger-
man to English, using phrase-based models trained
by MOSES (Koehn et al., 2007). The method
recovers exact solutions, with certificates of opti-
mality, on over 99% of test examples. On over
78% of examples, the method converges with zero
added constraints (i.e., using the basic algorithm);
99.67% of all examples converge with 9 or fewer
constraints. We compare to a linear programming
(LP)/integer linear programming (ILP) based de-
coder. Our method is much more efficient: LP or
ILP decoding is not feasible for anything other than
short sentences,” whereas the average decoding time
for our method (for sentences of length 1-50 words)
is 121 seconds per sentence. We also compare our
method to MOSES, and give precise estimates of the
number and magnitude of search errors that MOSES
makes. Even with large beam sizes, MOSES makes
a significant number of search errors. As far as we
are aware, previous work has not successfully re-

?For example ILP decoding for sentences of lengths 11-15
words takes on average 2707.8 seconds.

Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 26-37,
Edinburgh, Scotland, UK, July 27-31, 2011. (©2011 Association for Computational Linguistics



covered exact solutions for the type of phrase-based
models used in MOSES.

2 Related Work

Lagrangian relaxation is a classical technique for
solving combinatorial optimization problems (Korte
and Vygen, 2008; Lemaréchal, 2001). Dual decom-
position, a special case of Lagrangian relaxation, has
been applied to inference problems in NLP (Koo et
al., 2010; Rush et al., 2010), and also to Markov ran-
dom fields (Wainwright et al., 2005; Komodakis et
al., 2007; Sontag et al., 2008). Earlier work on be-
lief propagation (Smith and Eisner, 2008) is closely
related to dual decomposition. Recently, Rush and
Collins (2011) describe a Lagrangian relaxation al-
gorithm for decoding for syntactic translation; the
algorithmic construction described in the current pa-
per is, however, very different in nature to this work.

Beam search stack decoders (Koehn et al., 2003)
are the most commonly used decoding algorithm
for phrase-based models. Dynamic-programming-
based beam search algorithms are discussed for both
word-based and phrase-based models by Tillmann
and Ney (2003) and Tillmann (2006).

Several works attempt exact decoding, but effi-
ciency remains an issue. Exact decoding via integer
linear programming (ILP) for IBM model 4 (Brown
et al.,, 1993) has been studied by Germann et al.
(2001), with experiments using a bigram language
model for sentences up to eight words in length.
Riedel and Clarke (2009) have improved the effi-
ciency of this work by using a cutting-plane algo-
rithm, and experimented with sentence lengths up
to 30 words (again with a bigram LM). Zaslavskiy
et al. (2009) formulate the phrase-based decoding
problem as a traveling salesman problem (TSP), and
take advantage of existing exact and approximate
approaches designed for TSP. Their translation ex-
periment uses a bigram language model and applies
an approximate algorithm for TSP. Och et al. (2001)
propose an A* search algorithm for IBM model 4,
and test on sentence lengths up to 14 words. Other
work (Kumar and Byrne, 2005; Blackwood et al.,
2009) has considered variants of phrase-based mod-
els with restrictions on reordering that allow exact,
polynomial time decoding, using finite-state trans-
ducers.

The idea of incrementally adding constraints to
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tighten a relaxation until it is exact is a core idea in
combinatorial optimization. Previous work on this
topic in NLP or machine learning includes work on
inference in Markov random fields (Sontag et al.,
2008); work that encodes constraints using finite-
state machines (Tromble and Eisner, 2006); and
work on non-projective dependency parsing (Riedel
and Clarke, 2006).

3 The Phrase-based Translation Model

This section establishes notation for phrase-based
translation models, and gives a definition of the de-
coding problem. The phrase-based model we use is
the same as that described by Koehn et al. (2003), as
implemented in MOSES (Koehn et al., 2007).

The input to a phrase-based translation sys-
tem is a source-language sentence with /N words,
T1Ty...TN. A phrase table is used to define the
set of possible phrases for the sentence: each phrase
is a tuple p = (s,t,e), where (s,t) are indices rep-
resenting a contiguous span in the source-language
sentence (we have s < t), and e is a target-language
string consisting of a sequence of target-language
words. For example, the phrase p = (2, 5, the dog)
would specify that words x5 . . . x5 have a translation
in the phrase table as “the dog”. Each phrase p has
a score g(p) = g(s,t,e): this score will typically
be calculated as a log-linear combination of features
(e.g., see Koehn et al. (2003)).

We use s(p), t(p) and e(p) to refer to the three
components (s, t, e) of a phrase p.

The output from a phrase-based model is a
sequence of phrases y = (pip2...pr). We
will often refer to an output y as a derivation.
The derivation y defines a target-language transla-
tion e(y), which is formed by concatenating the
strings e(p1), e(p2), - . ., e(pr). For two consecutive
phrases py, = (s,t,e) and ppq = (s', ¢, '), the dis-
tortion distance is defined as §(¢,s') = |t + 1 — §/|.
The score for a translation is then defined as

L L-1
Fy) = hle@)+D_ g(pr)+Y_ nx(t(pr), s(Pria))
k=1 k=1

where 7 € R is often referred to as the distortion
penalty, and typically takes a negative value. The
function h(e(y)) is the score of the string e(y) under



a language model.’
The decoding problem is to find

arg max f(y)

where ) is the set of valid derivations. The set ) can
be defined as follows. First, for any derivation y =
(p1p2 - . .pL), define y(i) to be the number of times
that the source-language word x; has been translated
in y: that is, y(i) = Y5 [[s(or) < i < t(pw)l],
where [[r]] = 1 if 7 is true, and O otherwise. Then
Y is defined as the set of finite length sequences
(p1p2 - . . pr) such that:

1. Each word in the input is translated exactly
once: thatis, y(i) = 1fori=1...N.

2. For each pair of
Pk, Pkt for k=

S(t(pr), s(Pr+1))
distortion limit.

consecutive  phrases
1...L — 1, we have
< d, where d is the

An exact dynamic programming algorithm for
this problem uses states (wi,ws,b,7), where
(w1, ws) is a target-language bigram that the par-
tial translation ended with, b is a bit-string denoting
which source-language words have been translated,
and r is the end position of the previous phrase (e.g.,
see Koehn et al. (2003)). The bigram (wy,ws) is
needed for calculation of trigram language model
scores; r is needed to enforce the distortion limit,
and to calculate distortion costs. The bit-string b
is needed to ensure that each word is translated ex-
actly once. Since the number of possible bit-strings
is exponential in the length of sentence, exhaustive
dynamic programming is in general intractable. In-
stead, people commonly use heuristic search meth-
ods such as beam search for decoding. However,
these methods have no guarantee of returning the
highest scoring translation.

4 A Decoding Algorithm based on
Lagrangian Relaxation

We now describe a decoding algorithm for phrase-
based translation, based on Lagrangian relaxation.

3The language model score usually includes a word inser-
tion score that controls the length of translations. The relative
weights of the g(p) and h(e(y)) terms, and the value for 7, are
typically chosen using MERT training (Och, 2003).
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We first describe a dynamic program for decoding
which is efficient, but which relaxes the y(i) = 1
constraints described in the previous section. We
then describe the Lagrangian relaxation algorithm,
which introduces Lagrange multipliers for each con-
straint of the form y(i) = 1, and uses a subgradient
algorithm to minimize the dual arising from the re-
laxation. We conclude with theorems describing for-
mal properties of the algorithm, and with an example
run of the algorithm.

4.1 An Efficient Dynamic Program

As described in the previous section, our goal is to
find the optimal translation y* = arg max,cy f(v).
We will approach this problem by defining a set )’
such that Y C ), and such that

argmax f(y)
yey’

can be found efficiently using dynamic program-
ming. The set )’ omits some constraints—
specifically, the constraints that each source-
language word is translated once, i.e., that y(i) = 1
for + = 1... N—that are enforced for members
of ). In the next section we describe how to re-
introduce these constraints using Lagrangian relax-
ation. The set )’ does, however, include a looser
constraint, namely that Zi\i 1y(@) = N, which re-
quires that exactly N words are translated.

We now give the dynamic program that defines
YV'. The main idea will be to replace bit-strings (as
described in the previous section) by a much smaller
number of dynamic programming states. Specifi-
cally, the states of the new dynamic program will
be tuples (wy,ws,n,l,m,r). The pair (wy,ws) is
again a target-language bigram corresponding to the
last two words in the partial translation, and the inte-
ger r is again the end position of the previous phrase.
The integer n is the number of words that have been
translated thus far in the dynamic programming al-
gorithm. The integers [ and m specify a contiguous
span z; . . . x,, in the source-language sentence; this
span is the last contiguous span of words that have
been translated thus far.

The dynamic program can be viewed as a
shortest-path problem in a directed graph, with
nodes in the graph corresponding to states
(w1, wa,n,l,m,r). The transitions in the



graph are defined as follows. For each state
(w1, wq,n,l,m,r), we consider any phrase
p = (s,t,e) with e = (eg...ep—1epr) such that:
1) §(r,s) < d;and 2) t < [ or s > m. The former
condition states that the phrase should satisfy the
distortion limit. The latter condition requires that
there is no overlap of the new phrase’s span (s, )
with the span (I, m). For any such phrase, we create
a transition

(wy,wa,n,l,m,r) M (wi, wh, n', ', m! 7"
where
;v | (enr—1,em) ifM>2
¢ (wl’wQ) o { (wg,el) itTM=1
en =n+t—s+1
(i, t) ifs=m+1
o (I'm)y=2< (s,m) ift=101-1
(s, t) otherwise
o' =1t

The new target-language bigram (w/, wj) is the last
two words of the partial translation after including
phrase p. It comes from either the last two words
of e, or, if e consists of a single word, the last word
of the previous bigram, ws, and the first and only
word, ey, in e. (I';m’) is expanded from (I, m) if
the spans (/,m) and (s, t) are adjacent. Otherwise,
(I, m") will be the same as (s, t).

The score of the transition is given by a sum
of the phrase translation score g(p), the language
model score, and the distortion cost 1 x §(r, s). The
trigram language model score is h(ej|wi,ws2) +
h(62|w2, 61) + Zf‘i;z h(6i+2|6i, 62‘—}—1)’ where
h(ws|wy,wsz) is a trigram score (typically a log
probability plus a word insertion score).

We also include start and end states in the directed
graph. The start state is (<s>, <s>,0,0,0,0) where
<s> is the start symbol in the language model. For
each state (wy, we,n,l,m,r), such that n = N, we
create a transition to the end state. This transition
takes the form

(N,N+1,</8>)
-

(w1, wa, N,l,m,r) END

For this transition, we define the score as score =

h(</s>|wi,wsy); thus this transition incorporates
the end symbol </ s> in the language model.

The states and transitions we have described form

a directed graph, where each path from the start state
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to the end state corresponds to a sequence of phrases
p1p2 ... pr. We define )’ to be the full set of such
sequences. We can use the Viterbi algorithm to solve
arg maxycy f(y) by simply searching for the high-
est scoring path from the start state to the end state.

The set )’ clearly includes derivations that are ill-
formed, in that they may include words that have
been translated O times, or more than 1 time. The
first line of Figure 2 shows one such derivation (cor-
responding to the translation the quality and also the
and the quality and also .). For each phrase we show
the English string (e.g., the quality) together with the
span of the phrase (e.g., 3, 6). The values for (i) are
also shown. It can be verified that this derivation is a
valid member of ). However, y(i) # 1 for several
values of i: for example, words 1 and 2 are trans-
lated O times, while word 3 is translated twice.

Other dynamic programs, and definitions of ),
are possible: for example an alternative would be
to use a dynamic program with states (w1, w2, n, 7).
However, including the previous contiguous span
(I,m) makes the set )’ a closer approximation to
Y. In experiments we have found that including the
previous span (I, m) in the dynamic program leads
to faster convergence of the subgradient algorithm
described in the next section, and in general to more
stable results. This is in spite of the dynamic pro-
gram being larger; it is no doubt due to )’ being a
better approximation of ).

4.2 The Lagrangian Relaxation Algorithm

We now describe the Lagrangian relaxation decod-
ing algorithm for the phrase-based model. Recall
that in the previous section, we defined a set )’ that
allowed efficient dynamic programming, and such
that Y C ). Ttiseasytoseethat Y = {y : y €
Y, and Vi, y(i) = 1}. The original decoding
problem can therefore be stated as:

argmax f(y) suchthatVi, y(i) =1
yey’

We use Lagrangian relaxation (Korte and Vygen,
2008) to deal with the y(i) = 1 constraints. We
introduce Lagrange multipliers (i) for each such
constraint. The Lagrange multipliers u(7) can take
any positive or negative value. The Lagrangian is

L(u,y) = f(y) + Z u(i)(y(i) — 1)



Initialization: u%(i) -0 fori=1...N
fort=1...T
y' = argmax,cy, L(u'~",y)

ify'!(i)=1for i=1...N

return v’
else
fori=1...N

ul(i) = u' ") — o' (y'(5) — 1)

Figure 1: The decoding algorithm. o > 0 is the step size
at the ¢’th iteration.

The dual objective is then

L(u) = max L(u, y).
yey’

and the dual problem is to solve

min L(u).
u
The next section gives a number of formal results de-
scribing how solving the dual problem will be useful
in solving the original optimization problem.

We now describe an algorithm that solves the dual
problem. By standard results for Lagrangian re-
laxation (Korte and Vygen, 2008), L(u) is a con-
vex function; it can be minimized by a subgradient
method. If we define

Yy, = arg max L(u,y)
yey’

and v, (i) = yu(i) — 1 fori = 1... N, then =, is
a subgradient of L(u) at u. A subgradient method
is an iterative method for minimizing L(u), which
perfoms updates u’ < u'~! —aly,:—1 where a! > 0
is the step size for the ¢’th subgradient step.

Figure 1 depicts the resulting algorithm. At each
iteration, we solve

arg max <f<y> + 3 uliyli) - 1>)

ye)’

= arg max (f(y) + Z u(z)y(z))

ye)’

by the dynamic program described in the previous
section. Incorporating the >, u(7)y(7) terms in the
dynamic program is straightforward: we simply re-
define the phrase scores as
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t
g,(S, 2 6) = g(s, 2 6) + Z u(l)
1=S8

Intuitively, each Lagrange multiplier u(z) penal-
izes or rewards phrases that translate word i; the al-
gorithm attempts to adjust the Lagrange multipliers
in such a way that each word is translated exactly
once. The updates u/(i) = u!~1(i) — o (y*(i) — 1)
will decrease the value for u(i) if y*(i) > 1, in-
crease the value for u(4) if y*(i) = 0, and leave u(4)
unchanged if y'(i) = 1.

4.3 Properties

We now give some theorems stating formal proper-
ties of the Lagrangian relaxation algorithm. These
results for Lagrangian relaxation are well known:
for completeness, we state them here. First, define
y* to be the optimal solution for our original prob-
lem:

Definition 1. y* = argmax,cy f(y)

Our first theorem states that the dual function pro-
vides an upper bound on the score for the optimal
translation, f(y*):

Theorem 1. For any value of v € RY, L(u) >

fy).
Proof
L{u) = max f(y) + 2wy —1)
s )+ 3D ul0) ) - 1)
= max f(y) Z

The first inequality follows because ) C )’. The
final equality is true since any y € ) has y(i) =
1 for all ¢, implying that ), u(7)(y(i)—1) =0. O

The second theorem states that under an appropri-
ate choice of the step sizes o', the method converges
to the minimum of L(u). Hence we will successfully
find the tightest possible upper bound defined by the
dual L(u).

Theorem 2. For any sequence o',o?,... If 1)

lim oot — 0 2) Y2, ab = oo, then
lim; o0 L(u!) = min, L(u)
Proof. See Korte and Vygen (2008). O



Input German: dadurch kénnen die qualitat und die regelmaBige postzustellung auch weiterhin sichergestellt werden .

t L(ut™1) yt (i) derivation y*

I -10.0988 0022330020001 the qS&iIi?y and gl;z ?696 2;12 ?ﬁs quaﬁ{y6and 2{52 1918

2 CLLIS97 0010001004151 ?Fuf re7g7ul7ar I%A;iITQ 00113;1360{0 12k;e12 coﬁgﬂl}gto 12I:z,e12 coﬁ?iﬁ&e?to 12t;e12 coﬁ?irﬁgto be gj;r’ai?eed .

3 -123742 3312200010001 in thlai 3vay, 2;12 iér? tlh’ui qﬁél?ty in th; 3vay , |the qf&ili?y and 2I§2 118

4 118623 0100011330301 ?:ér? the régular distribu?i(;r? should gl’sg é;s’ulrtla distributié)r? should gl’sg é;éulré distribuﬁi)r? should glgg ;;éjré e 13‘
5 139916 0011324000101 ?r’\e?) re7g7ul7ar 2;13 re7g;7ul7ar 2;12 re7g’ul7ar 6tf71§ qﬁél?ty and thsé r7egular elnlsijeld e 13‘

6 156558 1112020111111 in th;i \2Nay, the q?:;a‘llity of ?ﬁf qu;llyit?/ of ?ﬁ(—? distribui(yar:3 should cor?ti’nlu% to |be gjgryaa?eed .

70 -161022 TITILLELLLLLL inthzt alay, thezzuility and th5€, Zagular distribuztsié)ri3 should cor?tinlu% to |be gj;r’ai?eed.

Figure 2: An example run of the algorithm in Figure 1.

For each value of ¢ we show the dual value L(u!~!), the

derivation y*, and the number of times each word is translated, (i) for i = 1... N. For each phrase in a derivation
we show the English string e, together with the span (s,t): for example, the first phrase in the first derivation has
English string the quality and, and span (3, 6). At iteration 7 we have y'(i) = 1 fori = 1... N, and the translation is

returned, with a guarantee that it is optimal.

Our final theorem states that if at any iteration the
algorithm finds a solution 4 such that (i) = 1 for
1 =1... N, then this is guaranteed to be the optimal
solution to our original problem. First, define

Definition 2. y,, = arg max, ¢y L(u, y).
We then have the theorem
Theorem 3. If 3 u, s.t. y,(i) = 1fori =1...N,
then f(yy) = f(y*), i.e. yy is optimal.
Proof. We have
L(u) =max f(y)+ Y u(i)(y(i) — 1)
i

ye)y’

= f(yu) + Zu(z)(yu(z) - 1)
= f(yu)

The second equality is true because of the defini-
tion of y,. The third equality follows because by
assumption y,, (i) = 1 fori = 1...N. Because
L(u) = f(yy) and L(u) > f(y*) for all u, we have
flyu) > f(y*). Buty* = argmaxyey f(y), and
yu € YV, hence we must also have f(y,) < f(y*). It
follows that f(y,) = f(y*). O

In some cases, however, the algorithm in Figure 1
may not return a solution 3* such that y*(i) = 1
for all . There could be two reasons for this. In
the first case, we may not have run the algorithm
for enough iterations 7" to see convergence. In the
second case, the underlying relaxation may not be
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tight, in that there may not be any settings v for the
Lagrange multipliers such that y,, (i) = 1 for all 4.

Section 5 describes a method for tightening
the underlying relaxation by introducing hard con-
straints (of the form y(i) = 1 for selected values of
7). We will see that this method is highly effective
in tightening the relaxation until the algorithm con-
verges to an optimal solution.

4.4 An Example of the Algorithm

Figure 2 shows an example of how the algorithm
works when translating a German sentence into an
English sentence. After the first iteration, there are
words that have been translated two or three times,
and words that have not been translated. At each
iteration, the Lagrangian multipliers are updated to
encourage each word to be translated once. On
this example, the algorithm converges to a solution
where all words are translated exactly once, and the
solution is guaranteed to be optimal.

S Tightening the Relaxation

In some cases the algorithm in Figure 1 will not
converge to y(i) 1 for ¢ 1...N because
the underlying relaxation is not tight. We now de-
scribe a method that incrementally tightens the La-
grangian relaxation algorithm until it provides an ex-
act answer. In cases that do not converge, we in-
troduce hard constraints to force certain words to be
translated exactly once in the dynamic programming
solver. In experiments we show that typically only a




Optimize(C,u)
while (dual value still improving)
y* = arg max, ey, L(u,y)
ify*(i)=1fori=1...N
elsefori:=1... N
w(i) = u(i) — o (y* (i) — 1)
count(i)=0fori=1...N
fork=1...K
y* = arg max, ey, L(u,y)
ify*(i)=1fori=1...N
elsefori=1... N
u(i) = u(i) — o (y*(3) — 1)
count (i) = count (i) + [[y*(7) # 1]]
Let C' = set of G i’s that have the largest value for
count(), that are not in C, and that are not adjacent to
each other
return Optimize(C UC’, u)

return y*

return y*

Figure 3: A decoding algorithm with incremental addi-
tion of constraints. The function Optimize(C, u) is a re-
cursive function, which takes as input a set of constraints
C, and a vector of Lagrange multipliers, w. The initial
call to the algorithm is with C = ), and u = 0. o > 0 is
the step size. In our experiments, the step size decreases
each time the dual value increases from one iteration to
the next; see Appendix A.

few constraints are necessary.
GivenasetC C {1,2,..., N}, we define

Ve={y:ye), andViecC, y(i)=1}

Thus )/, is a subset of ), formed by adding hard
constraints of the form y(i) = 1to ). Note that ),
remains as a superset of ), which enforces y(i) =
1 for all 4. Finding argmax,ecyr f (y) can again
be achieved using dynamic programming, with the
number of dynamic programming states increased
by a factor of 2/°l: dynamic programming states of
the form (wq,wa,n,l, m,r) are replaced by states
(w1, we,n,l,m,r,bc) where be is a bit-string of
length |C|, which records which words in the set C
have or haven’t been translated in a hypothesis (par-
tial derivation). Note thatif C = {1... N}, we have
Vi = Y, and the dynamic program will correspond
to exhaustive dynamic programming.

We can again run a Lagrangian relaxation algo-
rithm, using the set )/, in place of ). We will use
Lagrange multipliers u() to enforce the constraints
y(i) = 1 fori ¢ C. Our goal will be to find a
small set of constraints C, such that Lagrangian re-
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laxation will successfully recover an optimal solu-
tion. We will do this by incrementally adding el-
ements to C; that is, by incrementally adding con-
straints that tighten the relaxation.

The intuition behind our approach is as follows.
Say we run the original algorithm, with the set ),
for several iterations, so that L(u) is close to con-
vergence (i.e., L(u) is close to its minimal value).
However, assume that we have not yet generated a
solution y* such that (i) = 1 for all 7. In this case
we have some evidence that the relaxation may not
be tight, and that we need to add some constraints.
The question is, which constraints to add? To an-
swer this question, we run the subgradient algorithm
for K more iterations (e.g., K = 10), and at each it-
eration track which constraints of the form y(i) = 1
are violated. We then choose C to be the G con-
straints (e.g., G = 3) that are violated most often
during the K additional iterations, and are not ad-
jacent to each other. We recursively call the algo-
rithm, replacing )’ by V(; the recursive call may
then return an exact solution, or alternatively again
add more constraints and make a recursive call.*

Figure 3 depicts the resulting algorithm. We ini-
tially make a call to the algorithm Optimize(C, u)
with C equal to the empty set (i.e., no hard con-
straints), and with u(z) = 0 for all 4. In an initial
phase the algorithm runs subgradient steps, while
the dual is still improving. In a second step, if a so-
lution has not been found, the algorithm runs for K
more iterations, thereby choosing G additional con-
straints, then recursing.

If at any stage the algorithm finds a solution y*
such that y*(7) = 1 for all 4, then this is the so-
lution to our original problem, argmaxy,cy f(y).
This follows because for any C C {1...N} we
have Y C )/; hence the theorems in section 4.3 go
through for Y/, in place of ), with trivial modifica-
tions. Note also that the algorithm is guaranteed to
eventually find the optimal solution, because even-
tuallyC ={1...N},and Y = V.

*Formal justification for the method comes from the rela-
tionship between Lagrangian relaxation and linear program-
ming relaxations. In cases where the relaxation is not tight,
the subgradient method will essentially move between solu-
tions whose convex combination form a fractional solution to
an underlying LP relaxation (Nedi¢ and Ozdaglar, 2009). Our
method eliminates the fractional solution through the introduc-
tion of hard constraints.



# iter. 1-10 words 11-20 words 21-30 words 31-40 words | 41-50 words All sentences

0-7 166 (89.7 %) | 219 (392 %)| 34 ( 6.0 %) 2 (06%) 0 ( 0.0%)| 421 (23.1%)| 23.1%
8-15 17 (1 92%)| 187 (33.5%)| 161 (284 %)| 30 ( 8.6%)| 3 ( 1.8%)| 398 21.8%)| 449 %
16-30 1 (05%)| 93 (16.7%)| 208 (36.7 %) | 112 (323 %)| 22 (13.1 %)| 436 (23.9 %)| 68.8%
31-60 1 (05%)| 52 (93%)| 105 (18.6%)| 99 (28.5%)| 62 (369 %)| 319 (17.5%)| 863 %
61-120 0 ( 0.0%) T (13%)| 54 (95%)| 89 (25.6%)| 45 (26.8%)| 195 (10.7%)| 97.0%
121-250 0 ( 0.0%) 0 ( 0.0%) 4 (07%)| 14 (40%)| 31 (185%)| 49 ( 2.7 %)| 99.7 %
X 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 1 (03%)| 5 ( 3.0%) 6 (0.3%)| 100.0 %

Table 1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences that fail to

converge after 250 iterations. 97% of the examples converge within 120 iterations.

# cons. 1-10 words 11-20 words | 21-30 words 31-40 words | 41-50 words All sentences

0-0 183 (989 %) | 511 (91.6 %) | 438 (77.4 %)| 222 (64.0%)| 82 (48.8%)| 1,436 (78.7 %)| 78.7 %
1-3 2 (1.1%)| 45 ( 8.1%)| 94 (16.6%)| 87 (25.1 %)| 50 (29.8 %) 278 (152 %)| 94.0 %
4-6 0 ( 0.0%) 2 (04%)| 27 (48%)| 24 (69%)| 19 (11.3 %) 72 (39%)| 979 %
7-9 0 (0.0%) 0 (0.0%) 7 (12%)| 13 (37%)| 12 ( 7.1 %) 32 (1.8%)| 99.7 %
X 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%) 1 (03%)| 5 ( 3.0%) 6 ( 0.3%)| 100.0 %

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count (i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the

examples converge without adding any constraints.

The remaining question concerns the “dual still
improving” condition; i.e., how to determine that the
first phase of the algorithm should terminate. We do
this by recording the first and second best dual val-
ues L(u') and L(u”) in the sequence of Lagrange
multipliers u', u?, ... generated by the algorithm.
Suppose that L(u”) first occurs at iteration ¢”. If
% < €, we say that the dual value does not
decrease enough. The value for € is a parameter of
the approach: in experiments we used € = 0.002.

See the supplementary material for this submis-
sion for an example run of the algorithm.

When C # (), A* search can be used for de-
coding, with the dynamic program for )’ provid-
ing admissible estimates for the dynamic program
for J>. Experiments show that A* gives significant
improvements in efficiency. The supplementary ma-
terial contains a full description of the A* algorithm.

6 Experiments

In this section, we present experimental results to
demonstrate the efficiency of the decoding algo-
rithm. We compare to MOSES (Koehn et al., 2007),
a phrase-based decoder using beam search, and to
a general purpose integer linear programming (ILP)
solver, which solves the problem exactly.

The experiments focus on translation from Ger-
man to English, using the Europarl data (Koehn,
2005). We tested on 1,824 sentences of length at
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most 50 words. The experiments use the algorithm
shown in Figure 3. We limit the algorithm to a max-
imum of 250 iterations and a maximum of 9 hard
constraints. The distortion limit d is set to be four,
and we prune the phrase translation table to have 10
English phrases per German phrase.

Our method finds exact solutions on 1,818 out
of 1,824 sentences (99.67%). (6 examples do not
converge within 250 iterations.) Table 1 shows the
number of iterations required for convergence, and
Table 2 shows the number of constraints required
for convergence, broken down by sentence length.
In 1,436/1,818 (78.7%) sentences, the method con-
verges without adding hard constraints to tighten the
relaxation. For sentences with 1-10 words, the vast
majority (183 out of 185 examples) converge with
0 constraints added. As sentences get longer, more
constraints are often required. However most exam-
ples converge with 9 or fewer constraints.

Table 3 shows the average times for decoding,
broken down by sentence length, and by the number
of constraints that are added. As expected, decod-
ing times increase as the length of sentences, and
the number of constraints required, increase. The
average run time across all sentences is 120.9 sec-
onds. Table 3 also shows the run time of the method
without the A* algorithm for decoding. The A* al-
gorithm gives significant reductions in runtime.



# cons. 1-10 words | 11-20 words | 21-30 words 31-40 words 41-50 words All sentences

A* w/o A* w/o A*  w/o A* w/o A* w/o A* w/o
0-0 0.8 0.8 9.7 10.7 47.0 537 | 153.6 178.6 402.6 4924 64.6 76.1
1-3 2.4 29 [ 232 28.0 80.9 102.3 | 2774 360.8 686.0 877.7 | 241.3 309.7
4-6 0.0 0.0 | 28.2 388 | 111.7 163.7 | 309.5 575.2 | 1,552.8 1,709.2 | 555.6 699.5
7-9 0.0 0.0 0.0 0.0 | 166.1 500.4 | 361.0 1,467.6 | 1,167.2 3,222.4 | 620.7 1,914.1
mean | 0.8 09 | 109 12.3 57.2 72.6 | 203.4 299.2 679.9 9534 | 1209 168.9
median| 0.7 0.7 8.9 9.9 48.3 54.6 | 169.7 202.6 484.0 606.5 352  40.0

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without

using A*.
method ILP LP

set length mean median mean median | % frac.
o | 1-10 2752 1329 10.9 44 | 124 %

Y 11-15 2,707.8 1,138.5 177.4 66.1 | 40.8 %
16-20 | 20,583.1 3,692.6 | 1,374.6 637.0 | 59.7 %

V' 1-10 2572 1577 18.4 8.9 1.1 %
11-15 3607.3 1838.7 476.8 161.1 3.0 %

Table 4: Average and median time of the LP/ILP solver (in
seconds). % frac. indicates how often the LP gives a fractional
answer. )’ indicates the dynamic program using set )’ as de-
fined in Section 4.1, and )"’ indicates the dynamic program us-
ing states (w1, wa, n, r). The statistics for ILP for length 16-20
are based on 50 sentences.

6.1 Comparison to an LP/ILP solver

To compare to a linear programming (LP) or inte-
ger linear programming (ILP) solver, we can im-
plement the dynamic program (search over the set
V') through linear constraints, with a linear ob-
jective. The y(i) = 1 constraints are also lin-
ear. Hence we can encode our relaxation within an
LP or ILP. Having done this, we tested the result-
ing LP or ILP using Gurobi, a high-performance
commercial grade solver. We also compare to
an LP or ILP where the dynamic program makes
use of states (w1, wa, n,r)—i.e., the span (I,m) is
dropped, making the dynamic program smaller. Ta-
ble 4 shows the average time taken by the LP/ILP
solver. Both the LP and the ILP require very long
running times on these shorter sentences, and run-
ning times on longer sentences are prohibitive. Our
algorithm is more efficient because it leverages the
structure of the problem, by directly using a combi-
natorial algorithm (dynamic programming).

6.2 Comparison to MOSES

We now describe comparisons to the phrase-based
decoder implemented in MOSES. MOSES uses
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beam search to find approximate solutions.

The distortion limit described in section 3 is the
same as that in Koehn et al. (2003), and is the same
as that described in the user manual for MOSES
(Koehn et al., 2007). However, a complicating fac-
tor for our comparisons is that MOSES uses an ad-
ditional distortion constraint, not documented in the
manual, which we describe here.’> We call this con-
straint the gap constraint. We will show in experi-
ments that without the gap constraint, MOSES fails
to produce translations on many examples. In our
experiments we will compare to MOSES both with
and without the gap constraint (in the latter case, we
discard examples where MOSES fails).

We now describe the gap constraint. For a se-
quence of phrases pi, ..., pg define O(p; ...pg) to
be the index of the left-most source-language word
not translated in this sequence. For example, if
the bit-string for p; ...pg is 111001101000, then
O(p1...pk) = 4. A sequence of phrases p; ...pr,
satisfies the gap constraint if and only if for £ =
2...L, [t(pr) + 1 — 0(p1...px)| < d, where d is
the distortion limit. We will call MOSES without
this restriction MOSES-nogc, and MOSES with this
restriction MOSES-gc.

Results for MOSES-noge Table 5 shows the
number of examples where MOSES-nogc fails to
give a translation, and the number of search errors
for those cases where it does give a translation, for
arange of beam sizes. A search error is defined as a
case where our algorithm produces an exact solution
that has higher score than the output from MOSES-
nogc. The number of search errors is significant,
even for large beam sizes.

3Personal communication from Philipp Koehn; see also the
software for MOSES.



Beam size Fails | # search errors percentage
100 | 650/1,818 214/1,168 18.32 %

200 | 531/1,818 207/1,287 16.08 %

1000 | 342/1,818 115/1,476 7.79 %
10000 | 169/1,818 68/1,649 4.12 %

Table 5: Table showing the number of examples where
MOSES-noge fails to give a translation, and the num-
ber/percentage of search errors for cases where it does give a
translation.

Diff. MOSES-gc MOSES-gc | MOSES-nogc
' s =100 5 =200 5=1000
0.000- 0.125 | 66 (24.26%)| 65 (24.07%)| 32 ( 27.83%)

0.125- 0.250 | 59 (21.69%)| 58 (21.48%)| 25 ( 21.74%)
0.250- 0.500 | 65 (23.90%)| 65 (24.07%)| 25 ( 21.74%)
0.500— 1.000 | 49 (18.01%)| 49 (18.15%)| 23 ( 20.00%)
1.000— 2.000 | 31 (11.40%)| 31 (11.48%)| 5 ( 4.35%)
2.000- 4.000 | 2 ( 0.74%)| 2 (074%)| 3 ( 2.61%)
4.000-13.000 | 0 ( 0.00%)| 0O ( 0.00%)| 2 ( 1.74%)

Table 6: Table showing statistics for the difference between the
translation score from MOSES, and from the optimal deriva-
tion, for those sentences where a search error is made. For
MOSES-gc we include cases where the translation produced by
our system is not reachable by MOSES-gc. The average score
of the optimal derivations is -23.4.

Results for MOSES-gc  MOSES-gc uses the gap
constraint, and thus in some cases our decoder will
produce derivations which MOSES-gc cannot reach.
Among the 1,818 sentences where we produce a so-
lution, there are 270 such derivations. For the re-
maining 1,548 sentences, MOSES-gc makes search
errors on 2 sentences (0.13%) when the beam size is
100, and no search errors when the beam size is 200,
1,000, or 10,000.

Table 6 shows statistics for the magnitude of
the search errors that MOSES-gc and MOSES-nogc
make.

BLEU Scores Finally, table 7 gives BLEU scores
(Papineni et al., 2002) for decoding using MOSES
and our method. The BLEU scores under the two
decoders are almost identical; hence while MOSES
makes a significant proportion of search errors, these
search errors appear to be benign in terms of their
impact on BLEU scores, at least for this particular
translation model. Future work should investigate
why this is the case, and whether this applies to other
models and language pairs.

7 Conclusions

We have described an exact decoding algorithm for
phrase-based translation models, using Lagrangian
35

type of Moses | beam size | # sents Moses  our method
100 | 1818 | 244773 24.5395

200 | 1,818 | 24.4765 24.5395

MOSES-ge 1,000 | 1,818 | 24.4765 24.5395
10,000 | 1,818 | 24.4765 24.5395

100 | 1,168 | 27.3546 27.3249

200 | 1,287 | 27.0591 26.9907

MOSES-noge 1,000 | 1476 | 265734 26.6128
10,000 | 1,649 | 25.6531 25.6620

Table 7: BLEU score comparisons. We consider only
those sentences where both decoders produce a transla-
tion.

relaxation. The algorithmic construction we have
described may also be useful in other areas of NLP,
for example natural language generation. Possi-
ble extensions to the approach include methods that
incorporate the Lagrangian relaxation formulation
within learning algorithms for statistical MT: we see
this as an interesting avenue for future research.

A Step Size

Similar to Koo et al. (2010), we set the step size at
the ¢’th iteration to be o = 1/(1 + A?), where A is
the number of times that L(u()) > L(u®'~V) for
all t' < t. Thus the step size decreases each time the
dual value increases from one iteration to the next.

Acknowledgments Yin-Wen Chang and Michael
Collins were supported under the GALE program
of the Defense Advanced Research Projects Agency,
Contract No. HR0011-06-C-0022. Michael Collins
was also supported by NSF grant IIS-0915176.

References

Graeme Blackwood, Adria de Gispert, Jamie Brunning,
and William Byrne. 2009. Large-scale statistical
machine translation with weighted finite state trans-
ducers. In Proceeding of the 2009 conference on
Finite-State Methods and Natural Language Process-
ing: Post-proceedings of the 7th International Work-
shop FSMNLP 2008, pages 39-49, Amsterdam, The
Netherlands, The Netherlands. IOS Press.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19:263-311, June.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2001. Fast decoding and
optimal decoding for machine translation. In Proceed-



ings of the 39th Annual Meeting on Association for
Computational Linguistics, ACL 01, pages 228-235.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology, NAACL 03,
pages 48-54.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondfej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the ACL on Inter-
active Poster and Demonstration Sessions, ACL *07,
pages 177-180.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of the
MT Summit.

Nikos Komodakis, Nikos Paragios, and Georgios Tziri-
tas. 2007. MRF optimization via dual decomposition:
Message-passing revisited. In Proceedings of the 11th
International Conference on Computer Vision.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi
Jaakkola, and David Sontag. 2010. Dual decompo-
sition for parsing with non-projective head automata.
In Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1288-1298, Cambridge, MA, October. Association for
Computational Linguistics.

Bernhard Korte and Jens Vygen. 2008. Combinatorial
Optimization: Theory and Application. Springer Ver-
lag.

Shankar Kumar and William Byrne. 2005. Local phrase
reordering models for statistical machine translation.
In Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, HLT *05, pages 161-168.

Claude Lemaréchal. 2001. Lagrangian Relaxation.
In Computational Combinatorial Optimization, Op-
timal or Provably Near-Optimal Solutions [based
on a Spring School], pages 112-156, London, UK.
Springer-Verlag.

Angelia Nedi¢ and Asuman Ozdaglar. 2009. Approxi-
mate primal solutions and rate analysis for dual sub-
gradient methods. SIAM Journal on Optimization,
19(4):1757-1780.

Franz Josef Och, Christoph Tillmann, Hermann Ney, and
Lehrstuhl Fiir Informatik. 1999. Improved alignment
models for statistical machine translation. In Pro-
ceedings of the Joint SIGDAT Conference on Empiri-
cal Methods in Natural Language Processing and Very
Large Corpora, pages 20-28.

36

Franz Josef Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient A* search algorithm for statisti-
cal machine translation. In Proceedings of the work-
shop on Data-driven methods in machine translation -
Volume 14, DMMT °01, pages 1-8, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Computa-
tional Linguistics, ACL ’03, pages 160—167.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
ACL 2002.

Sebastian Riedel and James Clarke. 2006. Incremental
integer linear programming for non-projective depen-
dency parsing. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP °06, pages 129-137, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Sebastian Riedel and James Clarke. 2009. Revisiting
optimal decoding for machine translation IBM model
4. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, Companion Volume: Short Papers, NAACL-
Short *09, pages 5-8, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Alexander M. Rush and Michael Collins. 2011. Exact
decoding of syntactic translation models through La-
grangian relaxation. In Proceedings of ACL.

Alexander M Rush, David Sontag, Michael Collins, and
Tommi Jaakkola. 2010. On dual decomposition and
linear programming relaxations for natural language
processing. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 1-11, Cambridge, MA, October. Association for
Computational Linguistics.

David A. Smith and Jason Eisner. 2008. Dependency
parsing by belief propagation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 08, pages 145-156.

David Sontag, Talya Meltzer, Amir Globerson, Tommi
Jaakkola, and Yair Weiss. 2008. Tightening LP relax-
ations for MAP using message passing. In Proceed-
ings of the 24th Conference on Uncertainty in Artifi-
cial Intelligence, pages 503-510.

Christoph Tillmann and Hermann Ney. 2003. Word re-
ordering and a dynamic programming beam search al-
gorithm for statistical machine translation. Computa-
tional Linguistics, 29:97-133, March.

Christoph Tillmann. 2006. Efficient dynamic pro-
gramming search algorithms for phrase-based SMT.



In Proceedings of the Workshop on Computationally
Hard Problems and Joint Inference in Speech and Lan-
guage Processing, CHSLP ’06, pages 9—16.

Roy W. Tromble and Jason Eisner. 2006. A fast
finite-state relaxation method for enforcing global con-
straints on sequence decoding. In Proceedings of
the main conference on Human Language Technology
Conference of the North American Chapter of the As-
sociation of Computational Linguistics, HLT-NAACL
’06, pages 423-430, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Martin Wainwright, Tommi Jaakkola, and Alan Will-
sky.  2005. MAP estimation via agreement on
trees: Message-passing and linear programming. In
IEEE Transactions on Information Theory, volume 51,
pages 3697-3717.

Mikhail Zaslavskiy, Marc Dymetman, and Nicola Can-
cedda. 2009. Phrase-based statistical machine transla-
tion as a traveling salesman problem. In Proceedings
of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume
1 - Volume 1, ACL °09, pages 333-341, Stroudsburg,
PA, USA. Association for Computational Linguistics.

37



Optimal Search for Minimum Error Rate Training

Michel Galley
Microsoft Research
Redmond, WA 98052, USA
mgalley@microsoft.com

Abstract

Minimum error rate training is a crucial compo-
nent to many state-of-the-art NLP applications,
such as machine translation and speech recog-
nition. However, common evaluation functions
such as BLEU or word error rate are generally
highly non-convex and thus prone to search
errors. In this paper, we present LP-MERT, an
exact search algorithm for minimum error rate
training that reaches the global optimum using
a series of reductions to linear programming.
Given a set of N-best lists produced from S
input sentences, this algorithm finds a linear
model that is globally optimal with respect to
this set. We find that this algorithm is poly-
nomial in N and in the size of the model, but
exponential in S. We present extensions of this
work that let us scale to reasonably large tuning
sets (e.g., one thousand sentences), by either
searching only promising regions of the param-
eter space, or by using a variant of LP-MERT
that relies on a beam-search approximation.
Experimental results show improvements over
the standard Och algorithm.

1 Introduction

Minimum error rate training (MERT)—also known
as direct loss minimization in machine learning—is a
crucial component in many complex natural language
applications such as speech recognition (Chou et al.,
1993; Stolcke et al., 1997; Juang et al., 1997), statisti-
cal machine translation (Och, 2003; Smith and Eisner,
2006; Duh and Kirchhoff, 2008; Chiang et al., 2008),
dependency parsing (McDonald et al., 2005), summa-
rization (McDonald, 2006), and phonetic alignment
(McAllester et al., 2010). MERT directly optimizes
the evaluation metric under which systems are being
evaluated, yielding superior performance (Och, 2003)
when compared to a likelihood-based discriminative
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method (Och and Ney, 2002). In complex text gener-
ation tasks like SMT, the ability to optimize BLEU
(Papineni et al., 2001), TER (Snover et al., 2006), and
other evaluation metrics is critical, since these met-
rics measure qualities (such as fluency and adequacy)
that often do not correlate well with task-agnostic
loss functions such as log-loss.

While competitive in practice, MERT faces several
challenges, the most significant of which is search.
The unsmoothed error count is a highly non-convex
objective function and therefore difficult to optimize
directly; prior work offers no algorithm with a good
approximation guarantee. While much of the ear-
lier work in MERT (Chou et al., 1993; Juang et al.,
1997) relies on standard convex optimization tech-
niques applied to non-convex problems, the Och al-
gorithm (Och, 2003) represents a significant advance
for MERT since it applies a series of special line min-
imizations that happen to be exhaustive and efficient.
Since this algorithm remains inexact in the multidi-
mensional case, much of the recent work on MERT
has focused on extending Och’s algorithm to find
better search directions and starting points (Cer et al.,
2008; Moore and Quirk, 2008), and on experiment-
ing with other derivative-free methods such as the
Nelder-Mead simplex algorithm (Nelder and Mead,
1965; Zens et al., 2007; Zhao and Chen, 2009).

In this paper, we present LP-MERT, an exact
search algorithm for /N-best optimization that ex-
ploits general assumptions commonly made with
MERT, e.g., that the error metric is decomposable
by sentence.! While there is no known optimal algo-

'Note that MERT makes two types of approximations. First,
the set of all possible outputs is represented only approximately,
by N-best lists, lattices, or hypergraphs. Second, error func-
tions on such representations are non-convex and previous work
only offers approximate techniques to optimize them. Our work
avoids the second approximation, while the first one is unavoid-
able when optimization and decoding occur in distinct steps.

Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 38—49,
Edinburgh, Scotland, UK, July 27-31, 2011. (©2011 Association for Computational Linguistics



rithm to optimize general non-convex functions, the
unsmoothed error surface has a special property that
enables exact search: the set of translations produced
by an SMT system for a given input is finite, so the
piecewise-constant error surface contains only a fi-
nite number of constant regions. As in Och (2003),
one could imagine exhaustively enumerating all con-
stant regions and finally return the best scoring one—
Och does this efficiently with each one-dimensional
search—but the idea doesn’t quite scale when search-
ing all dimensions at once. Instead, LP-MERT ex-
ploits algorithmic devices such as lazy enumeration,
divide-and-conquer, and linear programming to effi-
ciently discard partial solutions that cannot be max-
imized by any linear model. Our experiments with
thousands of searches show that LP-MERT is never
worse than the Och algorithm, which provides strong
evidence that our algorithm is indeed exact. In the
appendix, we formally prove that this search algo-
rithm is optimal. We show that this algorithm is
polynomial in N and in the size of the model, but
exponential in the number of tuning sentences. To
handle reasonably large tuning sets, we present two
modifications of LP-MERT that either search only
promising regions of the parameter space, or that rely
on a beam-search approximation. The latter modifica-
tion copes with tuning sets of one thousand sentences
or more, and outperforms the Och algorithm on a
WMT 2010 evaluation task.

This paper makes the following contributions. To
our knowledge, it is the first known exact search
algorithm for optimizing task loss on N-best lists in
general dimensions. We also present an approximate
version of LP-MERT that offers a natural means of
trading speed for accuracy, as we are guaranteed to
eventually find the global optimum as we gradually
increase beam size. This trade-off may be beneficial
in commercial settings and in large-scale evaluations
like the NIST evaluation, i.e., when one has a stable
system and is willing to let MERT run for days or
weeks to get the best possible accuracy. We think this
work would also be useful as we turn to more human
involvement in training (Zaidan and Callison-Burch,
2009), as MERT in this case is intrinsically slow.

2 Unidimensional MERT

Let f{ = f)...fg denote the S input sentences
of our tuning set. For each sentence f, let C; =
39

e 1...es N denote a set of NV candidate translations.
For simplicity and without loss of generality, we
assume that N is constant for each index s. Each
input and output sentence pair (fs, e ,,) is weighted
by a linear model that combines model parameters
W = wy...wp € RP with D feature functions
hi(f,e,~)...hp(f,e,~), where ~ is the hidden
state associated with the derivation from f to e, such
as phrase segmentation and alignment. Furthermore,
let h, , € RP denote the feature vector representing
the translation pair (fs, e ,).

In MERT, the goal is to minimize an error count
E(r,e) by scoring translation hypotheses against a
set of reference translations r{ = ry...rg. As-
suming as in Och (2003) that error count is addi-
tively decomposable by sentence—i.e., E(ry, e})
> s E(rs, e5)—this results in the following optimiza-
tion problem:?

& — arg min { ZE(rs,é@s;w))}

s=1

= argmin { i i E(rs, e50)(€s,n, 8(Fs; W))}

s=1n=1
where M

é(fs; w) = arg max {wThsvn}
ne{l..N}

The quality of this approximation is dependent on
how accurately the [N-best lists represent the search
space of the system. Therefore, the hypothesis list is
iteratively grown: decoding with an initial parameter
vector seeds the N-best lists; next, parameter esti-
mation and V-best list gathering alternate until the
search space is deemed representative.

The crucial observation of Och (2003) is that the
error count along any line is a piecewise constant
function. Furthermore, this function for a single sen-
tence may be computed efficiently by first finding the
hypotheses that form the upper envelope of the model
score function, then gathering the error count for each
hypothesis along the range for which it is optimal. Er-
ror counts for the whole corpus are simply the sums
of these piecewise constant functions, leading to an

%A metric such as TER is decomposable by sentence. BLEU
is not, but its sufficient statistics are, and the literature offers
several sentence-level approximations of BLEU (Lin and Och,
2004; Liang et al., 2006).



efficient algorithm for finding the global optimum of
the error count along any single direction.

Such a hill-climbing algorithm in a non-convex
space has no optimality guarantee: without a perfect
direction finder, even a globally-exact line search may
never encounter the global optimum. Coordinate as-
cent is often effective, though conjugate direction set
finding algorithms, such as Powell’s method (Powell,
1964; Press et al., 2007), or even random directions
may produce better results (Cer et al., 2008). Ran-
dom restarts, based on either uniform sampling or a
random walk (Moore and Quirk, 2008), increase the
likelihood of finding a good solution. Since random
restarts and random walks lead to better solutions
and faster convergence, we incorporate them into our
baseline system, which we refer to as 1D-MERT.

3 Multidimensional MERT

Finding the global optimum of Eq. 1 is a difficult
task, so we proceed in steps and first analyze the
case where the tuning set contains only one sentence.
This gives insight on how to solve the general case.
With only one sentence, one of the two summations
in Eq. 1 vanishes and one can exhaustively enumer-
ate the N translations ey, (or e, for short) to find
the one that yields the minimal task loss. The only
difficulty with S = 1 is to know for each translation
e, whether its feature vector hy ,, (or h,, for short)
can be maximized using any linear model. As we
can see in Fig. 1(a), some hypotheses can be maxi-
mized (e.g., hy, hs, and hy), while others (e.g., hs
and hjy) cannot. In geometric terminology, the former
points are commonly called extreme points, and the
latter are interior points.> The problem of exactly
optimizing a single N-best list is closely related to
the convex hull problem in computational geometry,
for which generic solvers such as the QuickHull al-
gorithm exist (Eddy, 1977; Bykat, 1978; Barber et
al., 1996). A first approach would be to construct the
convex hull conv(h; ... hy) of the N-best list, then
identify the point on the hull with lowest loss (h; in
Fig. 1) and finally compute an optimal weight vector
using hull points that share common facets with the

3Specifically, a point h is extreme with respect to a convex
set C (e.g., the convex hull shown in Fig. 1(a)) if it does not lie
in an open line segment joining any two points of C. In a minor
abuse of terminology, we sometimes simply state that a given
point h is extreme when the nature of C'is clear from context.
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. . .

Figure 1: N-best list (h; ...hy) with associated losses
(here, TER scores) for a single input sentence, whose
convex hull is displayed with dotted lines in (a). For effec-
tive visualization, our plots use only two features (D = 2).
While we can find a weight vector that maximizes h; (e.g.,
the w in (b)), no linear model can possibly maximize any
of the points strictly inside the convex hull.

optimal feature vector (hy and hy). Unfortunately,
this doesn’t quite scale even with a single /V-best list,
since the best known convex hull algorithm runs in
O(NLP/21+1Y time (Barber et al., 1996).*
Algorithms presented in this paper assume that D
is unrestricted, therefore we cannot afford to build
any convex hull explicitly. Thus, we turn to linear
programming (LP), for which we know algorithms
(Karmarkar, 1984) that are polynomial in the number
of dimensions and linear in the number of points, i.e.,
O(NT), where T = D3®. To check if point h; is
extreme, we really only need to know whether we can
define a half-space containing all points h; ... hy,
with h; lying on the hyperplane delimiting that half-
space, as shown in Fig. 1(b) for h;. Formally, a
vertex h; is optimal with respect to arg max,{wTh;}
if and only if the following constraints hold:’
wih; =y 2
wTh; <y, foreach j #1 3)
w is orthogonal to the hyperplane defining the half-
space, and the intercept y defines its position. The

*A convex hull algorithm polynomial in D is very unlikely.
Indeed, the expected number of facets of high-dimensional con-
vex hulls grows dramatically, and—assuming a uniform distribu-
tion of points, D = 10, and a sufficiently large N—the expected
number of facets is approximately 10° N (Buchta et al., 1985).
In the worst case, the maximum number of facets of a convex
hull is O(NP/2 /| D/2]!) (Klee, 1966).

3A similar approach for checking whether a given point is
extreme is presented in http://www.ifor.math.ethz.
ch/~fukuda/polyfaqg/node22.html, but our method
generates slightly smaller LPs.



above equations represent a linear program (LP),
which can be turned into canonical form

maximize c'w
subjectto Aw <b

by substituting y with wTh; in Eq. 3, by defining
A = {anati<n<ni<d<p With apg = hjq — hiq
(where h q is the d-th element of h;), and by setting
b = (0,...,0)T = 0. The vertex h; is extreme if
and only if the LP solver finds a non-zero vector w
satisfying the canonical system. To ensure that w is
zero only when h; is interior, we set ¢ = h; — h,,,
where h, is a point known to be inside the hull (e.g.,
the centroid of the N-best list).® In the remaining
of this section, we use this LP formulation in func-
tion LINOPTIMIZER (h;; hy ... hy), which returns
the weight vector w maximizing h;, or which returns
0 if h; is interior to conv(h; ... hy). We also use
conv(h;; hy ... hy) to denote whether h; is extreme
with respect to this hull.

Algorithm 1: LP-MERT (for S = 1).
input :sent.-level feature vectors H = {h; ... hy}
input :sent.-level task losses F ... En, where
En = E(I‘l, eLn)
output : optimal weight vector w

1 begin

> sort N-best list by increasing losses:
2 (i1...in) < INDEXSORT(E] ... EN)
3 for n < 1to N do

> find W maximizing i,-th element:

4 W < LINOPTIMIZER (h;,; H)
5 if W £ 0 then
6 | return W
7 return 0

An exact search algorithm for optimizing a single
N-best list is shown above. It lazily enumerates fea-
ture vectors in increasing order of task loss, keeping
only the extreme ones. Such a vertex h; is known to
be on the convex hull, and the returned vector w max-
imizes it. In Fig. 1, it would first run LINOPTIMIZER
on hs, discard it since it is interior, and finally accept
the extreme point h;. Each execution of LINOPTI-
MIZER requires O(NT') time with the interior point

SWe assume that h; ... hy are not degenerate, i.e., that they
collectively span R”. Otherwise, all points are necessarily on
the hull, yet some of them may not be uniquely maximized.
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Figure 2: Running times to exactly optimize IV -best lists
with an increasing number of dimensions. To determine
which feature vectors were on the hull, we use either linear
programming (Karmarkar, 1984) or one of the most effi-
cient convex hull computation tools (Barber et al., 1996).

method of (Karmarkar, 1984), and since the main
loop may run O(N) times in the worst case, time
complexity is O(N2T). Finally, Fig. 2 empirically
demonstrates the effectiveness of a linear program-
ming approach, which in practice is seldom affected
by D.

3.1 Exact search: general case

We now extend LP-MERT to the general case, in
which we are optimizing multiple sentences at once.
This creates an intricate optimization problem, since
the inner summations over n = 1...N in Eq. 1
can’t be optimized independently. For instance,
the optimal weight vector for sentence s = 1 may
be suboptimal with respect to sentence s = 2.
So we need some means to determine whether a
selection m = m(1)...m(S) € M = [1, N} of
feature vectors hy ,,,(1) ... hg () 1s extreme, that is,
whether we can find a weight vector that maximizes
each hy ;,,(5). Here is a reformulation of Eq. 1 that
makes this condition on extremity more explicit:

S
m = argmin { E(rs, €5 mm )} “)
conv(h[m];H) SZ:; "
meM
where

S
h[m] = Z hs,m(s)
s=1

H= (] hm]

m’eM



One naive approach to address this optimization
problem is to enumerate all possible combinations
among the S distinct IV-best lists, determine for each
combination m whether h{m] is extreme, and return
the extreme combination with lowest total loss. It is
evident that this approach is optimal (since it follows
directly from Eq. 4), but it is prohibitively slow since
it processes O(N®) vertices to determine whether
they are extreme, which thus requires O(N°T) time
per LP optimization and O(N?T) time in total. We
now present several improvements to make this ap-
proach more practical.

3.1.1 Sparse hypothesis combination

In the naive approach presented above, each LP
computation to evaluate conv(h[m]; H) requires
O(N®T) time since H contains N vertices, but
we show here how to reduce it to O(NST') time.
This improvement exploits the fact that we can elimi-
nate the majority of the N'° points of H, since only
S(N —1)+1 are really needed to determine whether
h[ml] is extreme. This is best illustrated using an ex-
ample, as shown in Fig. 3. Both h; ; and hs 1 in (a)
and (b) are extreme with respect to their own /N-best
list, and we ask whether we can find a weight vector
that maximizes both hy ; and hy ;. The algorith-
mic trick is to geometrically translate one of the two
N-best lists so that hy ; = hj ;, where hj, is the
translation of h’271. Then we use linear programming
with the new set of 2N — 1 points, as shown in (c), to
determine whether hy ; is on the hull, in which case
the answer to the original question is yes. In the case
of the combination of h; ; and hy 5, we see in (d) that
the combined set of points prevents the maximization
hy 1, since this point is clearly no longer on the hull.
Hence, the combination (hy 1,hs 2) cannot be maxi-
mized using any linear model. This trick generalizes
to S > 2. In both (c) and (d), we used S(N — 1) + 1
points instead of N to determine whether a given
point is extreme. We show in the appendix that this
simplification does not sacrifice optimality.

3.1.2 Lazy enumeration, divide-and-conquer

Now that we can determine whether a given combi-
nation is extreme, we must next enumerate candidate
combinations to find the combination that has low-
est task loss among all of those that are extreme.
Since the number of feature vector combinations is
O(N*®), exhaustive enumeration is not a reasonable
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Figure 3: Given two N-best lists, (a) and (b), we use
linear programming to determine which hypothesis com-
binations are extreme. For instance, the combination hy ;
and hy ; is extreme (c), while h; ; and hy 5 is not (d).

option. Instead, we use lazy enumeration to pro-
cess combinations in increasing order of task loss,
which ensures that the first extreme combination for
s =1....S that we encounter is the optimal one. An
S-ary lazy enumeration would not be particularly ef-
ficient, since the runtime is still O(N*) in the worst
case. LP-MERT instead uses divide-and-conquer
and binary lazy enumeration, which enables us to
discard early on combinations that are not extreme.
For instance, if we find that (hy 1,hs 2) is interior for
sentences s = 1,2, the divide-and-conquer branch
for s = 1...4 never actually receives this bad com-
bination from its left child, thus avoiding the cost
of enumerating combinations that are known to be
interior, e.g., (h171,h2,2, h371,h4,1).

The LP-MERT algorithm for the general case is
shown as Algorithm 2. It basically only calls a re-
cursive divide-and-conquer function (GETNEXTBEST)
for sentence range 1 . .. S. The latter function uses bi-
nary lazy enumeration in a manner similar to (Huang
and Chiang, 2005), and relies on two global variables:
7 and L. The first of these, Z, is used to memoize the
results of calls to GETNEXTBEST; given a range of
sentences and a rank n, it stores the nth best combina-
tion for that range of sentences. The global variable
L stores hypotheses combination matrices, one ma-
trix for each range of sentences (s,t) as shown in
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Figure 4: LP-MERT minimizes loss (TER) on four sen-
tences. O(N*) translation combinations are possible,
but the LP-MERT algorithm only tests two full combi-
nations. Without divide-and-conquer—i.e., using 4-ary
lazy enumeration—ten full combinations would have been
checked unnecessarily.

Algorithm 2: LP-MERT
input :feature vectors H = {h, »}, . g <<y
input :task losses E = {E877L}1<s<;;1;n<1_\r’_

where sent.-level costs E;n—:: E (ITS, €sn)

output : optimal weight vector W and its loss L

1 begin

> sort N-best lists by increasing losses:

2 for s < 1to S do

3 | (is,1.-is,n) < INDEXSORT(Ey 1..Eqs n)

> find best hypothesis combination for 1...S:

4 (h,, H,, L) + GETNEXTBEST(H, E, 1, 5)

5 W < LINOPTIMIZER (h,; H,)

6 return (W, L)

Fig. 4, to determine which combination to try next.
The function EXPANDFRONTIER returns the indices
of unvisited cells that are adjacent (right or down) to
visited cells and that might correspond to the next
best hypothesis. Once no more cells need to be added
to the frontier, LP-MERT identifies the lowest loss
combination on the frontier (BESTINFRONTIER), and
uses LP to determine whether it is extreme. To do so,
it first generates an LP using COMBINE, a function
that implements the method described in Fig. 3. If
the LP offers no solution, this combination is ignored.
LP-MERT iterates until it finds a cell entry whose
combination is extreme. Regarding ranges of length
one (s = t), lines 3-10 are similar to Algorithm 1 for
S =1, but with one difference: GETNEXTBEST may
be called multiple times with the same argument s,
since the first output of GETNEXTBEST might not be
extreme when combined with other feature vectors.
Lines 3-10 of GETNEXTBEST handle this case effi-
ciently, since the algorithm resumes at the (n + 1)-th
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Function GetNextBest(H,E,s,t)
input :sentence range (s, t)
output: h,: current best extreme vertex
output: H,: constraint vertices
output: L: task loss of h,

> Losses of partial hypotheses:

1 L+ L[s, ]
2 if s =t then
> n is the index where we left off last time:

3 | n + NBRows(L)

4 Hs < {hs71...hs7N}

5 | repeat

6 n—n+1

7 W < LinOpTimizER (h ;3 H)

8 Ln,1] < E;;,

9 |untilw #£0

10 | return (h,; ,H, Lin,1])

11 else

12 |u+ [(s+1)/2],vu+1

13 | repeat

14 while HasINCOMPLETEFRONTIER(L) do

15 (m,n) < ExPANDFRONTIER(L)

16 x < NBRows(L)

17 y + NBCoLuMmNs (L)

18 for m' + =+ 1 tom do

19 | Z[s,u,m'] < GETNEXTBEST(H, E, s, u)
20 forn' < y+ 1tondo
21 | Z[v,t,n] - GETNEXTBEST(H, E, v, t)
2 L{m, n] + Loss(Z[s, u, m])+Loss(Z[v, t,n])
23 (m,n) < BESTINFRONTIER (L)

24 (b, Hyy L) < Zs, u,m]
25 (hy,, Hy, Ly,) < Z[v, t,n]

26 (hy, H,) « ComBINE(h,,, H,, 0y, Hy)
27 W < LINOPTIMIZER (h,; H.,)
28 | until w £ 0

29 | return (h,, H,,L[m,n])

element of the N-best list (where n is the position
where the previous execution left off).” We can see
that a strength of this algorithm is that inconsistent
combinations are deleted as soon as possible, which
allows us to discard fruitless candidates en masse.

3.2 Approximate Search

We will see in Section 5 that our exact algorithm
is often too computationally expensive in practice
to be used with either a large number of sentences
or a large number of features. We now present two

"Each N-best list is augmented with a placeholder hypothesis
with loss +o00. This ensures n never runs out of bounds at line 7.



Function Combine(h, H, h', H')
input :H, H': constraint vertices
input :h, h': extreme vertices, wrt. H and H'
output:h,, H,: combination as in Sec. 3.1.1
for i < 1 to size(H) do
for i « 1to size(H') do
| H] < H|+h
return (h+h', H U H’)

[ R S N

approaches to make LP-MERT more scalable, with
the downside that we may allow search errors.

In the first case, we make the assumption that we
have an initial weight vector wy that is a reasonable
approximation of W, where wg may be obtained ei-
ther by using a fast MERT algorithm like 1D-MERT,
or by reusing the weight vector that is optimal with
respect to the previous iteration of MERT. The idea
then is to search only the set of weight vectors that
satisfy cos(W,wg) > ¢, where ¢ is a threshold on
cosine similarity provided by the user. The larger the
t, the faster the search, but at the expense of more
search errors. This is implemented with two simple
changes in our algorithm. First, LINOPTIMIZER sets
the objective vector ¢ = wg. Second, if the output
w originally returned by LINOPTIMIZER does not
satisfy cos(W, wq) > ¢, then it returns 0. While this
modification of our algorithm may lead to search
errors, it nevertheless provides some theoretical guar-
antee: our algorithm finds the global optimum if it
lies within the region defined by cos(W, wq) > t.

The second method is a beam approximation of LP-
MERT, which normally deals with linear programs
that are increasingly large in the upper branches of
GETNEXTBEST’s recursive calls. The main idea is
to prune the output of COMBINE (line 26) by model
score with respect to Wyeg, Where wy; is our cur-
rent best model on the entire tuning set. Note that
beam pruning can discard h, (the current best ex-
treme vertex), in which case LINOPTIMIZER returns
0. wpes 1s updated as follows: each time we pro-
duce a new non-zero w, run wy.s < W if w has a
lower loss than wy.s; on the entire tuning set. The
idea of using a beam here is similar to using cosine
similarity (since Wy, constrains the search towards
a promising region), but beam pruning also helps
reduce LP optimization time and thus enables us to
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explore a wider space. Since wpes; often improves
during search, it is useful to run multiple iterations of
LP-MERT until wy.s; doesn’t change. Two or three
iterations suffice in our experience. In our experi-
ments, we use a beam size of 1000.

4 Experimental Setup

Our experiments in this paper focus on only the ap-
plication of machine translation, though we believe
that the current approach is agnostic to the particular
system used to generate hypotheses. Both phrase-
based systems (e.g., Koehn et al. (2007)) and syntax-
based systems (e.g., Li et al. (2009), Quirk et al.
(2005)) commonly use MERT to train free param-
eters. Our experiments use a syntax-directed trans-
lation approach (Quirk et al., 2005): it first applies
a dependency parser to the source language data at
both training and test time. Multi-word translation
mappings constrained to be connected subgraphs of
the source tree are extracted from the training data;
these provide most lexical translations. Partially lexi-
calized templates capturing reordering and function
word insertion and deletion are also extracted. At
runtime, these mappings and templates are used to
construct transduction rules to convert the source tree
into a target string. The best transduction is sought
using approximate search techniques (Chiang, 2007).

Each hypothesis is scored by a relatively standard
set of features. The mappings contain five features:
maximum-likelihood estimates of source given target
and vice versa, lexical weighting estimates of source
given target and vice versa, and a constant value that,
when summed across a whole hypothesis, indicates
the number of mappings used. For each template,
we include a maximum-likelihood estimate of the
target reordering given the source structure. The
system may fall back to templates that mimic the
source word order; the count of such templates is a
feature. Likewise we include a feature to count the
number of source words deleted by templates, and a
feature to count the number of target words inserted
by templates. The log probability of the target string
according to a language models is also a feature; we
add one such feature for each language model. We
include the number of target words as features to
balance hypothesis length.

For the present system, we use the training data of
WMT 2010 to construct and evaluate an English-to-
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Figure 5: Line graph of sorted differences in

BLEUn4r1[%)] scores between LP-MERT and 1D-MERT
on 1000 tuning sets of size S = 2,4, 8. The highest differ-
ences for S = 2,4, 8 are respectively 23.3, 19.7, 13.1.

German translation system. This consists of approx-
imately 1.6 million parallel sentences, along with a
much larger monolingual set of monolingual data.
We train two language models, one on the target side
of the training data (primarily parliamentary data),
and the other on the provided monolingual data (pri-
marily news). The 2009 test set is used as develop-
ment data for MERT, and the 2010 one is used as test
data. The resulting system has 13 distinct features.

5 Results

The section evaluates both the exact and beam ver-
sion of LP-MERT. Unless mentioned otherwise, the
number of features is D = 13 and the N-best list size
is 100. Translation performance is measured with
a sentence-level version of BLEU-4 (Lin and Och,
2004), using one reference translation. To enable
legitimate comparisons, LP-MERT and 1D-MERT
are evaluated on the same combined N-best lists,
even though running multiple iterations of MERT
with either LP-MERT or 1D-MERT would normally
produce different combined N-best lists. We use
WMTO9 as tuning set, and WMT10 as test set. Be-
fore turning to large tuning sets, we first evaluate
exact LP-MERT on data sizes that it can easily han-
dle. Fig. 5 offers a comparison with 1D-MERT, for
which we split the tuning set into 1,000 overlapping
subsets for S = 2,4, 8 on a combined N-best after
five iterations of MERT with an average of 374 trans-
lation per sentence. The figure shows that LP-MERT
never underperforms 1D-MERT in any of the 3,000
experiments, and this almost certainly confirms that
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length | tested comb.  total comb. order
8 639,960 1.33 x 102  O(N?®)
4 134,454 2.31 x 10!  O(2N*)
2 49,969 430,336  O(4N?)
1 1,059 2,624  O(8N)

Table 1: Number of tested combinations for the experi-
ments of Fig. 5. LP-MERT with S = 8 checks only 600K
full combinations on average, much less than the total
number of combinations (which is more than 10%°).
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Figure 6: Effect of the number of features (runtime on
1 CPU of a modern computer). Each curve represents a
different number of tuning sentences.

LP-MERT systematically finds the global optimum.
In the case S = 1, Powell rarely makes search er-
rors (about 15%), but the situation gets worse as S
increases. For S = 4, it makes search errors in 90%
of the cases, despite using 20 random starting points.
Some combination statistics for S up to 8 are
shown in Tab. 1. The table shows the speedup pro-
vided by LP-MERT is very substantial when com-
pared to exhaustive enumeration. Note that this is
using D = 13, and that pruning is much more ef-
fective with less features, a fact that is confirmed in
Fig. 6. D = 13 makes it hard to use a large tuning
set, but the situation improves with D = 2...5.
Fig. 7 displays execution times when LP-MERT
constrains the output W to satisfy cos(wg, W) > t,
where ¢ is on the x-axis of the figure. The figure
shows that we can scale to 1000 sentences when
(exactly) searching within the region defined by
cos(wp, W) > .84. All these running times would
improve using parallel computing, since divide-and-
conquer algorithms are generally easy to parallelize.
We also evaluate the beam version of LP-MERT,
which allows us to exploit tuning sets of reasonable
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32 64 128 256 512 1024

1D-MERT | 22.93 20.70 18.57 16.07 15.00 15.44
our work | 25.25 2228 19.86 17.05 15.56 15.67
+2.32 +1.59 +1.29 +0.98 +0.56 +0.23

Table 2: BLEUn4r1[%] scores for English-German on
WMTO9 for tuning sets ranging from 32 to 1024 sentences.

size. Results are displayed in Table 2. The gains
are fairly substantial, with gains of 0.5 BLEU point
or more in all cases where S < 512.8 Finally, we
perform an end-to-end MERT comparison, where
both our algorithm and 1D-MERT are iteratively used
to generate weights that in turn yield new N-best lists.
Tuning on 1024 sentences of WMT10, LP-MERT
converges after seven iterations, with a BLEU score
of 16.21%; 1D-MERT converges after nine iterations,
with a BLEU score of 15.97%. Test set performance
on the full WMT10 test set for LP-MERT and 1D-
MERT are respectively 17.08% and 16.91%.

6 Related Work

One-dimensional MERT has been very influential. It
is now used in a broad range of systems, and has been
improved in a number of ways. For instance, lattices
or hypergraphs may be used in place of /NV-best lists
to form a more comprehensive view of the search
space with fewer decoding runs (Macherey et al.,
2008; Kumar et al., 2009; Chatterjee and Cancedda,
2010). This particular refinement is orthogonal to our
approach, though. We expect to extend LP-MERT

80ne interesting observation is that the performance of 1D-
MERT degrades as S grows from 2 to 8 (Fig. 5), which contrasts
with the results shown in Tab. 2. This may have to do with the
fact that N-best lists with S = 2 have much fewer local maxima
than with ' = 4, 8, in which case 20 restarts is generally enough.
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to hypergraphs in future work. Exact search may be
challenging due to the computational complexity of
the search space (Leusch et al., 2008), but approxi-
mate search should be feasible.

Other research has explored alternate methods
of gradient-free optimization, such as the downbhill-
simplex algorithm (Nelder and Mead, 1965; Zens
et al., 2007; Zhao and Chen, 2009). Although the
search space is different than that of Och’s algorithm,
it still relies on one-dimensional line searches to re-
flect, expand, or contract the simplex. Therefore, it
suffers the same problems of one-dimensional MERT:
feature sets with complex non-linear interactions are
difficult to optimize. LP-MERT improves on these
methods by searching over a larger subspace of pa-
rameter combinations, not just those on a single line.

We can also change the objective function in a
number of ways to make it more amenable to op-
timization, leveraging knowledge from elsewhere
in the machine learning community. Instance re-
weighting as in boosting may lead to better param-
eter inference (Duh and Kirchhoff, 2008). Smooth-
ing the objective function may allow differentiation
and standard ML learning techniques (Och and Ney,
2002). Smith and Eisner (2006) use a smoothed ob-
jective along with deterministic annealing in hopes
of finding good directions and climbing past locally
optimal points. Other papers use margin methods
such as MIRA (Watanabe et al., 2007; Chiang et al.,
2008), updated somewhat to match the MT domain,
to perform incremental training of potentially large
numbers of features. However, in each of these cases
the objective function used for training no longer
matches the final evaluation metric.

7 Conclusions

Our primary contribution is the first known exact
search algorithm for direct loss minimization on V-
best lists in multiple dimensions. Additionally, we
present approximations that consistently outperform
standard one-dimensional MERT on a competitive
machine translation system. While Och’s method of
MERT is generally quite successful, there are cases
where it does quite poorly. A more global search
such as LP-MERT lowers the expected risk of such
poor solutions. This is especially important for cur-
rent machine translation systems that rely heavily on
MERT, but may also be valuable for other textual ap-



plications. Recent speech recognition systems have
also explored combinations of more acoustic and lan-
guage models, with discriminative training of 5-10
features rather than one million (L66f et al., 2010);
LP-MERT could be valuable here as well.

The one-dimensional algorithm of Och (2003)
has been subject to study and refinement for nearly
a decade, while this is the first study of multi-
dimensional approaches. We demonstrate the poten-
tial of multi-dimensional approaches, but we believe
there is much room for improvement in both scalabil-
ity and speed. Furthermore, a natural line of research
would be to extend LP-MERT to compact representa-
tions of the search space, such as hypergraphs.

There are a number of broader implications from
this research. For instance, LP-MERT can aid in the
evaluation of research on MERT. This approach sup-
plies a truly optimal vector as ground truth, albeit
under limited conditions such as a constrained direc-
tion set, a reduced number of features, or a smaller
set of sentences. Methods can be evaluated based on
not only improvements over prior approaches, but
also based on progress toward a global optimum.
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Appendix A: Proof of optimality

In this appendix, we prove that LP-MERT (Algorithm 2)
is exact. As noted before, the naive approach of solving
Eq. 4 is to enumerate all O(NN*®) hypotheses combinations
in M, discard the ones that are not extreme, and return
the best scoring one. LP-MERT relies on algorithmic
improvements to speed up this approach, and we now show
that none of them affect the optimality of the solution.

Divide-and-conquer. Divide-and-conquer in Algo-
rithm 2 discards any partial hypothesis combination
h[m(j) ...m(k)] if it is not extreme, even before consid-
ering any extension h[m(i)...m(j)...m(k)...m(l)].
This does not sacrifice optimality, since if conv(h; H)
is false, then conv(h; H U G) is false for any set G.
Proof: Assume conv(h; H) is false, so h is interior to
H. By definition, any interior point h can be written as
a linear combination of other points: h =} . A\;h;, with
Vi(h; € H,h; #h, A\; > 0) and >, \; = 1. This same
combination of points also demonstrates that h is interior
to H U G, thus conv(h; H U G) is false as well.
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Sparse hypothesis combination. We show here
that the simplification of linear programs in Section 3.1.1
from size O(N®) to size O(NS) does not change the
value of conv(h; H). More specifically, this means that
linear optimization of the output of the COMBINE method
at lines 26-27 of function GETNEXTBEST does not
introduce any error. Let (g1 ...gy) and (h; ...hy) be
two IN-best lists to be combined, then:

U 14
Conv(gﬁhv; (g: +hy) U gu +h; )

i=1
= COTL’U(

Proof: To prove this equality, it suffices to show that: (1)
if g, +h, is interior wrt. the first conv binary predicate
in the above equation, then it is interior wrt. the second
conv, and (2) if g, +h,, is interior wrt. the second conv,
then it is interior wrt. the first conv. Claim (1) is evident,
since the set of points in the first conv is a subset of the
other set of points. Thus, we only need to prove (2). We
first geometrically translate all points by —g,, —h,,. Since
g, +h, is interior wrt. the second conv, we can write:

Q)

Uu v
OZZZ/\i,J(gz+h] Su hv)
=1 j=1
Uu Vv ’ u Vv
= ZZ Aij(8 — 8u) + ZZ)‘i7j(h7 —h,)
i=1 j=1 i=1 j=1
U \4 \4 U
= Z(gz - gu) Z )\i,j + Z(hj - hv) Z )\Zj
i=1 j=1 j=1 i=1
U \%
= Z )‘; (gl gu) =+ Z /\/U+] (hJ hv)
i=1 j=1

where {\;}1<i<yt4v values are computed from
{)\1 j}1<1'<U,1§j§V as follows: )\; = Zj /\i,jai S [1, U]
and )\’Uﬂ > i Nij,J € [1,V]. Since the interior
point is 0, X} values can be scaled so that they sum to 1
(necessary condition in the definition of interior points),
which proves that the following predicate is false:

14
—gu) U U (hj - hv))

U

conv <0; Ut

i=1

which is equivalent to stating that the following is false:

U \%
conv (gu +hy; | J(gi +hy) U U (8 + hj))
i=1 Jj=1
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Abstract

We describe a method for prediction of lin-
guistic structure in a language for which only
unlabeled data is available, using annotated
data from a set of one or more helper lan-
guages. Our approach is based on a model
that locally mixes between supervised mod-
els from the helper languages. Parallel data
is not used, allowing the technique to be ap-
plied even in domains where human-translated
texts are unavailable. We obtain state-of-the-
art performance for two tasks of structure pre-
diction: unsupervised part-of-speech tagging
and unsupervised dependency parsing.

1 Introduction

A major focus of recent NLP research has involved
unsupervised learning of structure such as POS
tag sequences and parse trees (Klein and Manning,
2004; Johnson et al., 2007; Berg-Kirkpatrick et al.,
2010; Cohen and Smith, 2010, inter alia). In its
purest form, such research has improved our un-
derstanding of unsupervised learning practically and
formally, and has led to a wide range of new algo-
rithmic ideas. Another strain of research has sought
to exploit resources and tools in some languages (es-
pecially English) to construct similar resources and
tools for other languages, through heuristic “projec-
tion” (Yarowsky and Ngai, 2001; Xi and Hwa, 2005)
or constraints in learning (Burkett and Klein, 2008;
Smith and Eisner, 2009; Das and Petrov, 2011; Mc-
Donald et al., 2011) or inference (Smith and Smith,
2004). Joint unsupervised learning (Snyder and
Barzilay, 2008; Naseem et al., 2009; Snyder et al.,
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2009) is yet another research direction that seeks to
learn models for many languages at once, exploiting
linguistic universals and language similarity. The
driving force behind all of this work has been the
hope of building NLP tools for languages that lack
annotated resources.'

In this paper, we present an approach to using
annotated data from one or more languages (helper
languages) to learn models for another language that
lacks annotated data (the farget language). Unlike
the previous work mentioned above, our framework
does not rely on parallel data in any form. This is
advantageous because parallel text exists only in a
few text domains (e.g., religious texts, parliamentary
proceedings, and news).

We focus on generative probabilistic models pa-
rameterized by multinomial distributions. We be-
gin with supervised maximum likelihood estimates
for models of the helper languages. In the second
stage, we learn a model for the target language using
unannotated data, maximizing likelihood over inter-
polations of the helper language models’ distribu-
tions. The tying is performed at the parameter level,
through coarse, nearly-universal syntactic categories
(POS tags). The resulting model is then used to ini-
tialize learning of the target language’s model using
standard unsupervised parameter estimation.

Some previous multilingual research, such as
Bayesian parameter tying across languages (Co-
hen and Smith, 2009) or models of parameter

! Although the stated objective is often to build systems for
resource-poor languages and domains, for evaluation purposes,
annotated treebank test data figure prominently in this research
(including in this paper).
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drift down phylogenetic trees (Berg-Kirkpatrick and
Klein, 2010) is comparable, but the practical as-
sumption of supervised helper languages is new to
this work. Naseem et al. (2010) used universal
syntactic categories and rules to improve grammar
induction, but their model required expert hand-
written rules as constraints.

Herein, we specifically focus on two problems
in linguistic structure prediction: unsupervised POS
tagging and unsupervised dependency grammar in-
duction. Our experiments demonstrate that the pre-
sented method outperforms strong state-of-the-art
unsupervised baselines for both tasks. Our approach
can be applied to other problems in which a sub-
set of the model parameters can be linked across
languages. We also experiment with unsupervised
learning of dependency structures from words, by
combining our tagger and parser. Our results show
that combining our tagger and parser with joint
inference outperforms pipeline inference, and, in
several cases, even outperforms models built using
gold-standard part-of-speech tags.

2  Overview

For each language ¢, we assume the presence of a
set of fine-grained POS tags F, used to annotate the
language’s treebank. Furthermore, we assume that
there is a set of universal, coarse-grained POS tags
C such that, for every language ¢, there is a determin-
istic mapping from fine-grained to coarse-grained
tags, Ay : Fy — C. Our approach can be summa-
rized using the following steps for a given task:

1. Select a set of L helper languages for which there
exists annotated data (D1, ..., D). Here, we use
treebanks in these languages.

2. Forall £ € {1,..., L}, convert the examples in
Dy by applying A\, to every POS tag in the data,
resulting in D,. Estimate the parameters of a
probabilistic model using Dy. In this work, such
models are generative probabilistic models based
on multinomial distributions,? including an HMM
and the dependency model with valence (DMV)
of Klein and Manning (2004). Denote the subset
of parameters that are unlexicalized by 0. (Lex-
icalized parameters will be denoted n(®).)

*In §4 we also consider a feature-based parametrization.
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3. For the target language, define the set of valid un-

lexicalized parameters
L L
o= {0 0= Bexb).> P =1,8> 0} ,
/=1 =1
ey

for each group of parameters k, and maximize
likelihood over that set, using the target-language
unannotated data (/. Because the syntactic cate-
gories referenced by each 6“) and all models in ©
are in C, the models will be in the same parametric
family. (Figure 1 gives a graphical interpretation
of ©.) Let the resulting model be 6.

4. Transform 6 by expanding the coarse-grained
syntactic categories into the target language’s
fine-grained categories. Use the resulting model
to initialize parameter estimation, this time over
fine-grained tags, again using the unannotated
target-language data (/. Initialize lexicalized pa-
rameters 7 for the target language using standard
methods (e.g., uniform initialization with random
symmetry breaking).

The main idea in the approach is to estimate a
certain model family for one language, while using
supervised models from other languages. The link
between the languages is achieved through coarse-
grained categories, which are now now common-
place (and arguably central to any theory of natural
language syntax). A key novel contribution is the
use of helper languages for initialization, and of un-
supervised learning to learn the contribution of each
helper language to that initialization (step 3). Addi-
tional treatment is required in expanding the coarse-
grained model to the fine-grained one (step 4).

3 Interpolated Multilingual Probabilistic
Context-Free Grammars

Our focus in this paper is on models that consist
of multinomial distributions that have relationships
between them through a generative process such as
a probabilistic context-free grammar (PCFG). More
specifically, we assume that we have a model defin-
ing a probability distribution over observed surface
forms x and derivations y parametrized by 0:



(0,1,0)

German

Czech

Italian

English

(0,0,1) (1,0,0)

Figure 1: A simple case of interpolation within the 3-
event probability simplex. The shaded area corresponds
to a convex hull inside the probability simplex, indicating
a mixture of the parameters of the four languages shown

in the figure.

K Ng
k=1i=1
K Ng
=exp Y Y fri(w y)logbh; (3)
k=1 1i=1

where f; is a function that “counts” the number
of times the kth distribution’s ¢th event occurs in
the derivation. The parameters 6 are a collection
of K multinomials (01, ...,0f), the kth of which
includes IV, events. Letting 8, = (0. 1,...,0k N, )s
each 0y, ; is a probability, such that V&, Vi, 0 ; > 0
and Vi, SN 60 = 1.

3.1

Our framework places additional, temporary con-
straints on the parameters 8. More specifically, we
assume that we have L existing, parameter estimates
for the multinomial families from Eq. 3. Each such
estimate 0(6), for 1 < ¢ < L, corresponds to a the
maximum likelihood estimate based on annotated
data for the ¢th helper language. Then, to create a
model for new language, we define a new set of pa-
rameters 6 as:

Multilingual Interpolation

L l
=" Beby), @)
/=1
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where 3 is the set of coefficients that we will now
be interested in estimating (instead of directly esti-
mating ). Note that for each k, 2521 Ber = 1and
By > 0.

3.2 Grammatical Interpretation

We now give an interpretation of our approach relat-
ing it to PCFGs. We assume familiarity with PCFGs.
For a PCFG (G, 8) we denote the set of nontermi-
nal symbols by N, the set of terminal symbols by
3, and the set of rewrite rules for each nonterminal
A € N by R(A). Each r € R(A) has the form
A — «a where « € (N UX)*. In addition, there is
a probability attached to each rule 6 4_,, such that
VA e N, ZQ:(A—NX)ER(A) 040 = 1. A PCFG can
be framed as a model using Eq. 3, where 6 corre-
spond to K = || multinomial distributions, where
each distribution attaches probabilities to rules with
a specific left hand symbol.

We assume that the model we are trying to
estimate (over coarse part-of-speech tags) can be
framed as a PCFG (G, 0). This is indeed the case
for part-of-speech tagging and dependency grammar
induction we experiment with in §6. In that case,
our approach can be framed for PCFGs as follow-
ing. We assume that there exists L set of parameters
for this PCFG 81, ..., 6" each corresponding to
a helper language. We then create a new PCFG G’
with parameters 8’ and 3 as follows:

1. G contains all nonterminal and terminal symbols
in G, and none of the rules in G.

2. For each nonterminal A in G, we create a new
nonterminal a4 o for ¢ € {1,...,L}.

3. For each nonterminal A in G, we create rules
A — ayyforl € {1,..., L} which have proba-
bilities BA_WM.

4. For each rule A — « in G, we add to G’ the rule
aap — o with

— ¥ (5)

()

where 6,”,  is the probability associated with
rule A — « in the ¢th helper language.

At each point, the derivational process of this
PCFG uses the nonterminal’s specific 3 coefficients



to choose one of the helper languages. It then se-
lects a rule according to the multinomial from that
language. This step is repeated until a whole deriva-
tion is generated.

This PCFG representation of the approach in §3
points to a possible generalization. Instead of using
an identical CFG backbone for each language, we
can use a set of PCFGs, (G9,0Y)) with an iden-
tical nonterminal set and alphabet, and repeat the
same construction as above, replacing step 4 with
the addition of rules of the form a4 o — « for each
rule A — « in GY. Such a construction allows
more syntactic variability in the language we are try-
ing to estimate, originating in the syntax of the var-
ious helper languages. In this paper, we do not use
this generalization, and always use the same PCFG
backbone for all languages.

Note that the interpolated model can still be un-
derstood in terms of the exponential model of Eq. 3.
For a given collection of multinomials and base
models of the form of Eq. 3, we can analogously
define a new log-linear model over a set of ex-
tended derivations. These derivations will now in-
clude L x K features of the form g, x(x,y), cor-
responding to a count of the event of choosing the
fth mixture component for multinomial k. In addi-
tion, the feature set f;(x,y) will be extended to
a feature set of the form fyj ;(x,y), analogous to
step 4 in constructed PCFG above. The model pa-
rameterized according to Eq. 4 can be recovered by
marginalizing out the “g” features. We will refer to
the model with these new set of features as “the ex-
tended model.”

4 Inference and Parameter Estimation

The main building block commonly required for un-
supervised learning in NLP is that of computing fea-
ture expectations for a given model. These feature
expectations can be used with an algorithm such as
expectation-maximization (where the expectations
are normalized to obtain a new set of multinomial
weights) or with other gradient based log-likelihood
optimization algorithms such as L-BFGS (Liu and
Nocedal, 1989) for feature-rich models.
Estimating Multinomial Distributions Given a
surface form x, a multinomial k£ and an event 7 in the
multinomial, “feature expectation” refers to the cal-
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culation of the following quantities (in the extended
model):

Elferi(z,y)] =2, p(@,y[6)feri(z,y) 6)
E[gﬁ,k(mv y)] = Zy p(mv Yy | e)gf,k’(wa y) (7)

These feature expectations can usually be computed
using algorithms such as the forward-backward al-
gorithm for hidden Markov models, or more gener-
ally, the inside-outside algorithm for PCFGs. In this
paper, however, the task of estimation is different
than the traditional task. As mentioned in §2, we are
interested in estimating 3 from Eq. 4, while fixing
6“). Therefore, we are only interested in computing
expectations of the form of Eq. 7.

As explained in §3.2, any model interpolating
with the 3 parameters can be reduced to a new log-
linear model with additional features representing
the mixture coefficients of 3. We can then use the
inside-outside algorithm to obtain the necessary fea-
ture expectations for features of the form gy 1, (, y),
expectations which assist in the estimation of the 3
parameters.

These feature expectations can readily be used
in estimation algorithms such as expectation-
maximization (EM). With EM, the update at itera-
tion ¢ would be:

E[ger(z,y)]
> Elger(z,y)]’

where the expectations are taken with respect to
B%1 and the fixed 0¥ for¢ = 1,..., L.
Estimating Feature-Rich Directed Models Re-
cently Berg-Kirkpatrick et al. (2010) found that
replacing traditional multinomial parameterizations
with locally normalized, feature-based log-linear
models was advantageous. This can be understood
as parameterizing :

By = ®)

g _expph(k i)
o Zexp@b—rh(k‘,i’)

7:/

©)

where h(k, i) are a set of features looking at event i
in context k. For such a feature-rich model, our mul-
tilingual modeling framework still substitutes € with
a mixture of supervised multinomials for L helper
languages as in Eq. 4. However, for computational



convenience, we also reparametrize the mixture co-
efficients 3:

eXP Y,k

Bekg=—F
> p—1 €XD Vel k

10)

Here, each vy is an unconstrained parameter, and
the above “softmax” transformation ensures that 3
lies within the probability simplex for context k.
This is done so that a gradient-based optimization
method like L-BFGS (Liu and Nocedal, 1989) can
be used to estimate ~ without having to worry about
additional simplex constraints. For optimization,
derivatives of the data log-likelihood with respect to
~ need to be computed. We calculate the derivatives
following Berg-Kirkpatrick et al. (2010, §3.1), mak-
ing use of feature expectations, calculated exactly as
before.

In addition to these estimation techniques, which
are based on the optimization of the log-likelihood,
we also consider a trivially simple technique for es-
timating 3: setting 3; ; to the uniform weight L1,
where L is the number of helper languages.

5 Coarse-to-Fine Multinomial Expansion

To expand these multinomials involving coarse-
grained categories into multinomials over fine-
grained categories specific to the target language ¢,
we do the following:

e Whenever a multinomial conditions on a coarse
category ¢ € C, we make copies of it for each fine-
grained category in A\; ' (c) C F;.% If the multino-
mial does not condition on coarse categories, it is
simply copied.

e Whenever a probability §; within a multinomial
distribution involves a coarse-grained category c
as an event (i.e., it is on the left side of the condi-
tional bar), we expand the event into |\; ! (c)| new
events, one per corresponding fine-grained cate-

gory, each assigned the value b 4
Az (0]

3We note that in the models we experiment with, we always
condition on at most one fine-grained category.

*During this expansion process for a coarse event, we tried
adding random noise to Mfgﬁ and renormalizing, to break
symmetry between the fine events, but that was found to be
harmful in preliminary experiments.
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The result of this expansion is a model in the
desired family; we use it to initialize conventional
unsupervised parameter estimation. Lexical param-
eters, if any, do not undergo this expansion pro-
cess, and they are estimated anew in the fine grained
model during unsupervised learning, and are initial-
ized using standard methods.

6 Experiments and Results

In this section, we describe the experiments under-
taken and the results achieved. We first note the
characteristics of the datasets and the universal POS
tags used in multilingual modeling.

6.1 Data

For our experiments, we fixed a set of four helper
languages with relatively large amounts of data,
displaying nontrivial linguistic diversity: Czech
(Slavic), English (West-Germanic), German (West-
Germanic), and Italian (Romance). The datasets are
the CoNLL-X shared task data for Czech and Ger-
man (Buchholz and Marsi, 2006),> the Penn Tree-
bank for English (Marcus et al., 1993), and the
CoNLL 2007 shared task data for Italian (Monte-
magni et al., 2003). This was the only set of helper
languages we tested; improvements are likely pos-
sible. We leave an exploration of helper language
choice (a subset selection problem) to future re-
search, instead demonstrating that the concept has
merit.

We considered ten target languages: Bulgarian
(Bg), Danish (Da), Dutch (N1), Greek (El), Japanese
(Jp), Portuguese (Pt), Slovene (Sl), Spanish (Es),
Swedish (Sv), and Turkish (Tr). The data come
from the CoNLL-X and CoNLL 2007 shared tasks
(Buchholz and Marsi, 2006; Nivre et al., 2007). For
all the experiments conducted, we trained models
on the training section of a language’s treebank and
tested on the test set. Table 1 shows the number of
sentences in the treebanks and the size of fine POS
tagsets for each language.

Following standard practice, in unsupervised
grammar induction experiments we remove punctu-
ation and then eliminate sentences from the data of
length greater than 10.

SThese are based on the Prague Dependency Treebank

(Haji¢, 1998) and the Tiger treebank (Brants et al., 2002) re-
spectively.



Pt Tr Bg Jp El Sv Es Sl NI Da
Training sentences | 9,071 | 4,997 | 12,823 | 17,044 | 2,705 | 11,042 | 3,306 | 1,534 | 13,349 | 5,190
Test sentences 288 623 398 709 197 389 206 402 386 322
Size of POS tagset 22 31 54 80 38 41 47 29 12 25

Table 1: The first two rows show the sizes of the training and test datasets for each language. The third row shows the
number of fine POS tags in each language including punctuations.

6.2 Universal POS Tags

Our coarse-grained, universal POS tag set consists
of the following 12 tags: NOUN, VERB, ADJ
(adjective), ADV (adverb), PRON (pronoun), DET
(determiner), ADP (preposition or postposition),
NUM (numeral), CONJ (conjunction), PRT (parti-
cle), PUNC (punctuation mark) and X (a catch-all
for other categories such as abbreviations or foreign
words). These follow recent work by Das and Petrov
(2011) on unsupervised POS tagging in a multilin-
gual setting with parallel data, and have been de-
scribed in detail by Petrov et al. (2011).

While there might be some controversy about
what an appropriate universal tag set should include,
these 12 categories (or a subset) cover the most fre-
quent parts of speech and exist in one form or an-
other in all of the languages that we studied. For
each language in our data, a mapping from the
fine-grained treebank POS tags to these universal
POS tags was constructed manually by Petrov et al.
(2011).

6.3 Part-of-Speech Tagging

Our first experimental task is POS tagging, and here
we describe the specific details of the model, train-
ing and inference and the results attained.

6.3.1 Model

The model is a hidden Markov model (HMM),
which has been popular for unsupervised tagging
tasks (Merialdo, 1994; Elworthy, 1994; Smith and
Eisner, 2005; Berg-Kirkpatrick et al., 2010).°6 We
use a bigram model and a locally normalized log-
linear parameterization, like Berg-Kirkpatrick et al.
(2010). These locally normalized log-linear mod-
els can look at various aspects of the observation x
given a tag y, or the pair of tags in a transition, in-
corporating overlapping features. In basic monolin-

SHMMs can be understood as a special case of PCFGs.
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gual experiments, we used the same set of features
as Berg-Kirkpatrick et al. (2010). For the transi-
tion log-linear model, Berg-Kirkpatrick et al. (2010)
used only a single indicator feature of a tag pair, es-
sentially equating to a traditional multinomial dis-
tribution. For the emission log-linear model, sev-
eral features were used: an indicator feature con-
joining the state y and the word z, a feature checking
whether  contains a digit conjoined with the state v,
another feature indicating whether = contains a hy-
phen conjoined with y, whether the first letter of z is
upper case along with the state y, and finally indica-
tor features corresponding to suffixes up to length 3
present in & conjoined with the state y.

Since only the unlexicalized transition distribu-
tions are common across multiple languages, assum-
ing that they all use a set of universal POS tags, akin
to Eq. 4, we can have a multilingual version of the
transition distributions, by incorporating supervised
helper transition probabilities. Thus, we can write:

L
Oy = 3 Bryby sy (11)
/=1
We use the above expression to replace the transi-
tion distributions, obtaining a multilingual mixture
version of the model. Here, the transition probabili-
ties H;Qy/ for the /th helper language are fixed after
being estimated using maximum likelihood estima-

tion on the helper language’s treebank.

6.3.2 Training and Inference

We trained both the basic feature-based HMM
model as well as the multilingual mixture model by
optimizing the following objective function:’

N
L) = logy pa,y|4) - Clp3
i=1 ]

"Note that in the objective function, for brevity, we abuse
notation by using 1) for both models — monolingual and multi-
lingual; the latter model is also parameterized by ~y.



Method Pt Tr Bg Ip El Sv Es SI NI Da || Avg
Uniform+DG 45.7 | 43.6 | 38.0 | 60.4 | 36.7 | 37.7 | 31.8 | 35.9 | 43.7 | 36.2 || 41.0
Mixture+DG 51.5 | 38.6 | 35.8 | 61.7 | 38.9 | 39.9 | 40.5 | 36.0 | 50.2 | 399 || 43.3
DG (B-Ketal, 2010) || 53.5 | 27.9 | 34.7 | 52.3 | 353 | 34.4 | 40.0 | 33.4 | 454 | 48.8 || 40.6
()
Method Pt Tr Bg Ip El Sv Es SI NI | Da | Avg
Uniform+DG 83.8 | 504 | 81.3 | 77.9 | 80.3 | 69.0 | 82.3 | 82.8 | 79.3 | 82.0 || 76.9
Mixture+DG 84.7 | 50.0 | 82.6 | 799 | 80.3 | 67.0 | 83.3 | 82.8 | 80.0 | 82.0 || 77.3
DG (B-K et al., 2010) || 754 | 50.4 | 80.7 | 83.4 | 88.0 | 61.5 | 82.3 | 75.6 | 79.2 | 82.3 || 75.9

(b)

Table 2: Results for unsupervised POS induction (a) without a tagging dictionary and (b) with a tag dictionary con-
structed from the training section of the corresponding treebank. DG (at the bottom) stands for the direct gradient
method of Berg-Kirkpatrick et al. (2010) using a monolingual feature-based HMM. “Mixture+DG” is the model where
multilingual mixture coefficients 3 of helper languages are estimated using coarse tags (§4), followed by expansion
(§5), and then initializing DG with the expanded transition parameters. “Uniform+DG” is the case where 3 are set
to 1/4, transitions of helper languages are mixed, expanded, and then DG is initialized with the result. For (a), eval-
uation is performed using one-to-one mapping accuracy. In case of (b), the tag dictionary solves the problem of tag
identification and performance is measured using per word POS accuracy. “Avg” denotes macro-average across the

ten languages.

Note that this involves marginalizing out all possible
state configurations y for a sentence x, resulting in
a non-convex objective. As described in §4, we opti-
mized this function using L-BFGS. For the mono-
lingual model, derivatives of the feature weights
took the exact same form as Berg-Kirkpatrick et al.
(2010), while for the mixture case, we computed
gradients with respect to -, the unconstrained pa-
rameters used to express the mixture coefficients 3
(see Eq. 10). The regularization constant C' was set
to 1.0 for all experiments, and L-BFGS was run till
convergence.

During training, for the basic monolingual
feature-based HMM model, we initialized all param-
eters using small random real values, sampled from
N(0,0.01). For estimation of the mixture parame-
ters «y for our multilingual model (step 3 in §2), we
similarly sampled real values from A/(0,0.01) as an
initialization point. Moreover, during this stage, the
emission parameters also go through parameter es-
timation, but they are monolingual, and are initial-
ized with real values sampled from N(0,0.01); as
explained in §2, coarse universal tags are used both
in the transitions and emissions during multilingual
estimation.

After the mixture parameters ~ are estimated, we
compute the mixture probabilities 3 using Eq. 10.
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Next, for each tag pair y,y’, we compute 6,_,,/,
which are the coarse transition probabilities inter-
polated using 3, given the helper languages. We
then expand these transition probabilities (see §5) to
result in transition probabilities based on fine tags.
Finally, we train a feature-HMM by initializing its
transition parameters with natural logarithms of the
expanded @ parameters, and the emission parame-
ters using small random real values sampled from
N(0,0.01). This implies that the lexicalized emis-
sion parameters 7 that were previously estimated in
the coarse multilingual model are thrown away and
not used for initialization; instead standard initial-
ization is used.

For inference at the testing stage, we use min-
imum Bayes-risk decoding (or “posterior decod-
ing”), by choosing the most probable tag for each
word position, given the entire observation x. We
chose this strategy because it usually performs
slightly better than Viterbi decoding (Cohen and
Smith, 2009; Gancheyv et al., 2010).

6.3.3 Experimental Setup

For experiments, we considered three configura-
tions, and for each, we implemented two variants of
POS induction, one without any kind of supervision,
and the other with a tag dictionary. Our baseline is



the direct gradient approach of Berg-Kirkpatrick et
al. (2010), which is the current state of the art for this
task, outperforming classical HMMs. Because this
model achieves strong performance using straight-
forward MLE, it also serves as the core model within
our approach. This model has also been applied in
a multilingual setting with parallel data (Das and
Petrov, 2011). In this baseline, we set the number
of HMM states to the number of fine-grained tree-
bank tags for the given language.

We test two versions of our model. The first ini-
tializes training of the target language’s POS model
using a uniform mixture of the helper language mod-
els (i.e., each f,, = % = i), and expansion from
coarse-grained to fine-grained POS tags as described

in §5. We call this model “Uniform+DG.”

The second version estimates the mixture coeffi-
cients to maximize likelihood, then expands the POS
tags (§5), using the result to initialize training of the
final model. We call this model “Mixture+DG.”

No Tag Dictionary For each of the above configura-
tions, we ran purely unsupervised training without a
tag dictionary, and evaluated using one-to-one map-
ping accuracy constraining at most one HMM state
to map to a unique treebank tag in the test data, us-
ing maximum bipartite matching. This is a variant of
the greedy one-to-one mapping scheme of Haghighi
and Klein (2006).8

With a Tag Dictionary We also ran a second ver-
sion of each experimental configuration, where we
used a tag dictionary to restrict the possible path se-
quences of the HMM during both learning and infer-
ence. This tag dictionary was constructed only from
the training section of a given language’s treebank.
It is widely known that such knowledge improves
the quality of the model, though it is an open debate
whether such knowledge is realistic to assume. For
this experiment we removed punctuation from the
training and test data, enabling direct use within the
dependency grammar induction experiments.

8We also evaluated our approach using the greedy version of
this evaluation metric, and results followed the same trends with
only minor differences. We did not choose the other variant,
many-to-one mapping accuracy, because quite often the metric
mapped several HMM states to one treebank tag, leaving many
treebank tags unaccounted for.
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6.3.4 Results

All results for POS induction are shown in Ta-
ble 2. Without a tag dictionary, in eight out of ten
cases, either Uniform+DG or Mixture+DG outper-
forms the monolingual baseline (Table 2a). For six
of these eight languages, the latter model where the
mixture coefficients are learned automatically fares
better than uniform weighting. With a tag dictionary,
the multilingual variants outperform the baseline in
seven out of ten cases, and the learned mixture out-
performs or matches the uniform mixture in five of
those seven (Table 2b).

6.4 Dependency Grammar Induction

We next describe experiments for dependency gram-
mar induction. As the basic grammatical model,
we adopt the dependency model with valence (Klein
and Manning, 2004), which forms the basis for state-
of-the-art results for dependency grammar induc-
tion in various settings (Cohen and Smith, 2009;
Spitkovsky et al., 2010; Gillenwater et al., 2010;
Berg-Kirkpatrick and Klein, 2010). As shown in Ta-
ble 3, DMV obtains much higher accuracy in the su-
pervised setting than the unsupervised setting, sug-
gesting that more can be achieved with this model
family.® For this reason, and because DMV is eas-
ily interpreted as a PCFG, it is our starting point and
baseline.

We consider four conditions. The independent
variables are (1) whether we use uniform 3 (all set to
%) or estimate them using EM (as described in §4),
and (2) whether we simply use the mixture model to
decode the test data, or to initialize EM for the DMV.
The four settings are denoted “Uniform,” “Mixture,”
“Uniform+EM,” and “Mixture+EM.”

The results are given in Table 3. In general, the
use of data from other languages improves perfor-
mance considerably; all of our methods outperform
the Klein and Manning (2004) initializer, and we
achieve state-of-the-art performance for eight out of
ten languages. Uniform and Mixture behave simi-
larly, with a slight advantage to the trained mixture
setting. Using EM to train the mixture coefficients
more often hurts than helps (six languages out of
ten). It is well known that likelihood does not cor-

°Its supervised performance is still far from the supervised
state of the art in dependency parsing.



Method Pt Tr Bg Ip El Sv Es S1 NI Da | Avg
Uniform 78.6 | 45.0 | 75.6 | 56.3 | 57.0 | 74.0 | 73.2 | 46.1 | 50.7 | 59.2 || 61.6
Mixture 76.8 | 453 | 755 | 583 | 59.5 | 732 | 759 | 46.0 | 51.1 | 599 || 62.2
Uniform+EM 78.7 | 439 | 747 | 59.8 | 73.0 | 70.5 | 75.5 | 41.3 | 459 | 51.3 || 61.5
Mixture+EM 79.8 | 44.1 | 72.8 | 63.9 | 72.3 | 68.7 | 76.7 | 41.0 | 46.0 | 55.2 || 62.1
EM (K & M, 2004) 425|363 | 543 | 43.0| 41.0 | 423 | 38.1 | 37.0 | 38.6 | 414 || 414
PR (Getal., ’10) 47.8 | 53.4 | 54.0 | 60.2 - 422 |1 62.4 | 50.3 | 379 | 44.0 -

Phylo. (B-K & K, °10) || 63.1 - - - - 583 ] 63.8 149.6 | 45.1 | 41.6 -

Supervised (MLE) 81.7 | 75.7 | 83.0 | 89.2 | 81.8 | 83.2 | 79.0 | 74.5 | 64.8 | 80.8 || 79.3

Table 3: Results for dependency grammar induction given gold-standard POS tags, reported as attachment accuracy
(fraction of parents which are correct). The three existing methods are: our replication of EM with the initializer from
Klein and Manning (2004), denoted “EM”’; reported results from Gillenwater et al. (2010) for posterior regularization
(“PR”); and reported results from Berg-Kirkpatrick and Klein (2010), denoted “Phylo.” “Supervised (MLE)” are oracle
results of estimating parameters from gold-standard annotated data using maximum likelihood estimation. “Avg”

denotes macro-average across the ten languages.
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Figure 2: Projection of the learned mixture coefficients
through PCA. In green, Japanese. In red, Dutch, Danish
and Swedish. In blue, Bulgarian and Slovene. In ma-
genta, Portuguese and Spanish. In black, Greek. In cyan,
Turkish.

relate with the true accuracy measurement, and so
it is unsurprising that this holds in the constrained
mixture family as well. In future work, a different
parametrization of the mixture coefficients, through
features, or perhaps a Bayesian prior on the weights,
might lead to an objective that better simulates ac-
curacy.

Table 3 shows that even uniform mixture coef-
ficients are sufficient to obtain accuracy which su-
percedes most unsupervised baselines. We were in-
terested in testing whether the coefficients which are
learned actually reflect similarities between the lan-
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guages. To do that, we projected the learned vectors
B for each tested language using principal compo-
nent analysis and plotted the result in Figure 2. It
is interesting to note that languages which are closer
phylogenetically tend to appear closer to each other
in the plot.

Our experiments also show that multilingual
learning performs better for dependency grammar
induction than part-of-speech tagging. We believe
that this happens because of the nature of the mod-
els and data we use. The transition matrix in part-
of-speech tagging largely depends on word order in
the various helper languages, which differs greatly.
This means that a mixture of transition matrices will
not necessarily yield a meaningful transition matrix.
However, for dependency grammar, there are certain
universal dependencies which appear in all helper
languages, and therefore, a mixture between multi-
nomials for these dependencies still yields a useful
multinomial.

6.5 Inducing Dependencies from Words

Finally, we combine the models for POS tagging and
grammar induction to perform grammar induction
directly from words, instead of gold-standard POS
tags. Our approach is as follows:

1. With a tag dictionary, learn a fine-grained POS
tagging model unsupervised, using either DG or
Mixture+DG as described in §6.3 and shown in
Table 2b.



Method Tags Pt Tr Bg Ip El Sv Es SI NI Da | Avg
Joint DG 684 | 524 | 624 | 61.4 | 63.5 | 582 | 67.7 | 47.2 | 48.3 | 504 || 57.9
Joint Mixture+DG || 62.2 | 474 | 67.0 | 69.5 | 52.2 | 49.1 | 69.3 | 36.8 | 52.2 | 50.1 || 55.6
Pipeline DG 60.0 | 50.8 | 57.7 | 64.2 | 68.2 | 579 | 65.8 | 45.8 | 49.9 | 489 || 56.9
Pipeline | Mixture+DG | 59.8 | 47.1 | 62.9 | 68.6 | 50.0 | 47.6 | 68.1 | 36.4 | 51.2 | 48.3 || 54.0

Gold-standard tags 79.8 | 453 | 75.6 | 63.9 | 73.0 | 74.0 | 76.7 | 46.1 | 50.7 | 59.9 || 64.5

Table 4: Results for dependency grammar induction over words. “Joint”/“Pipeline” refers to joint/pipeline decoding
of tags and dependencies as described in the text. See §6.3 for a description of DG and Mixture+DG. For the induction
of dependencies we use the Mixture+EM setting as described in §6.4. All tag induction uses a dictionary as specified
in §6.3. The last row in this table indicates the best results using multilingual guidance taken from our methods in
Table 3. “Avg” denotes macro-average across the ten languages.

2. Apply the fine-grained tagger to the words in the
training data for the dependency parser. We con-
sider two variants: the most probable assignment
of tags to words (denoted “Pipeline”), and the pos-
terior distribution over tags for each word, repre-
sented as a weighted “sausage” lattice (denoted
“Joint”). This idea was explored for joint infer-
ence by Cohen and Smith (2007).

3. We apply the Mixture+EM unsupervised parser
learning method from §6.4 to the automatically
tagged sentences, or the lattices.

4. Given the two models, we infer POS tags on the
test data using DG or Mixture+DG to get a lattice
(Joint) or a sequence (Pipeline) and then parse us-
ing the model from the previous step.'® The re-
sulting dependency trees are evaluated against the
gold standard.

Results are reported in Table 4. In almost all cases,
joint decoding of tags and trees performs better than
the pipeline. Even though our part-of-speech tagger
with multilingual guidance outperforms the com-
pletely unsupervised baseline, there is not always an
advantage of using this multilingually guided part-
of-speech tagger for dependency grammar induc-
tion. For Turkish, Japanese, Slovene and Dutch, our
unsupervised learner from words outperforms unsu-
pervised parsing using gold-standard part-of-speech
tags.

We note that some recent work gives a treatment
to unsupervised parsing (but not of dependencies)

0The decoding method on test data (Joint or Pipeline) was
matched to the training method, though they are orthogonal in
principle.
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directly from words (Seginer, 2007). Earlier work
that induced part-of-speech tags and then performed
unsupervised parsing in a pipeline includes Klein
and Manning (2004) and Smith (2006). Headden
et al. (2009) described the use of a lexicalized vari-
ant of the DMV model, with the use of gold part-of-
speech tags.

7 Conclusion

We presented an approach to exploiting annotated
data in helper languages to infer part-of-speech tag-
ging and dependency parsing models in a different,
target language, without parallel data. Our approach
performs well in many cases. We also described a
way to do joint decoding of part-of-speech tags and
dependencies which performs better than a pipeline.
Future work might consider exploiting a larger num-
ber of treebanks, and more powerful techniques for
combining models than simple local mixtures.
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Abstract

We present a simple method for transferring
dependency parsers from source languages
with labeled training data to target languages
without labeled training data. We first demon-
strate that delexicalized parsers can be di-
rectly transferred between languages, produc-
ing significantly higher accuracies than unsu-
pervised parsers. We then use a constraint
driven learning algorithm where constraints
are drawn from parallel corpora to project the
final parser. Unlike previous work on project-
ing syntactic resources, we show that simple
methods for introducing multiple source lan-
guages can significantly improve the overall
quality of the resulting parsers. The projected
parsers from our system result in state-of-the-
art performance when compared to previously
studied unsupervised and projected parsing
systems across eight different languages.

1 Introduction

Statistical parsing has been one of the most active ar-
eas of research in the computational linguistics com-
munity since the construction of the Penn Treebank
(Marcus et al., 1993). This includes work on phrase-
structure parsing (Collins, 1997; Charniak, 2000;
Petrov et al., 2006), dependency parsing (McDonald
et al., 2005; Nivre et al., 2006) as well as a num-
ber of other formalisms (Clark and Curran, 2004;
Wang and Harper, 2004; Shen and Joshi, 2008).
As underlying modeling techniques have improved,
these parsers have begun to converge to high lev-
els of accuracy for English newswire text. Subse-
quently, researchers have begun to look at both port-
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ing these parsers to new domains (Gildea, 2001; Mc-
Closky et al., 2006; Petrov et al., 2010) and con-
structing parsers for new languages (Collins et al.,
1999; Buchholz and Marsi, 2006; Nivre et al., 2007).
One major obstacle in building statistical parsers
for new languages is that they often lack the manu-
ally annotated resources available for English. This
observation has led to a vast amount of research
on unsupervised grammar induction (Carroll and
Charniak, 1992; Klein and Manning, 2004; Smith
and Eisner, 2005; Cohen and Smith, 2009; Berg-
Kirkpatrick and Klein, 2010; Naseem et al., 2010;
Spitkovsky et al., 2010; Blunsom and Cohn, 2010).
Grammar induction systems have seen large ad-
vances in quality, but parsing accuracies still signif-
icantly lag behind those of supervised systems. Fur-
thermore, they are often trained and evaluated under
idealized conditions, e.g., only on short sentences
or assuming the existence of gold-standard part-of-
speech (POS) tags.! The reason for these assump-
tions is clear. Unsupervised grammar induction is
difficult given the complexity of the analysis space.
These assumptions help to give the model traction.
The study of unsupervised grammar induction has
many merits. Most notably, it increases our under-
standing of how computers (and possibly humans)
learn in the absence of any explicit feedback. How-
ever, the gold POS tag assumption weakens any con-
clusions that can be drawn, as part-of-speech are
also a form of syntactic analysis, only shallower.
Furthermore, from a practical standpoint, it is rarely
the case that we are completely devoid of resources
for most languages. This point has been made by

' A notable exception is the work of Seginer (2007).
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studies that transfer parsers to new languages by
projecting syntax across word alignments extracted
from parallel corpora (Hwa et al., 2005; Ganchev et
al., 2009; Smith and Eisner, 2009). Although again,
most of these studies also assume the existence of
POS tags.

In this work we present a method for creating de-
pendency parsers for languages for which no labeled
training data is available. First, we train a source
side English parser that, crucially, is delexicalized so
that its predictions rely soley on the part-of-speech
tags of the input sentence, in the same vein as Ze-
man and Resnik (2008). We empirically show that
directly transferring delexicalized models (i.e. pars-
ing a foreign language POS sequence with an En-
glish parser) already outperforms state-of-the-art un-
supervised parsers by a significant margin. This re-
sult holds in the presence of both gold POS tags as
well as automatic tags projected from English. This
emphasizes that even for languages with no syntac-
tic resources — or possibly even parallel data — sim-
ple transfer methods can already be more powerful
than grammar induction systems.

Next, we use this delexicalized English parser to
seed a perceptron learner for the target language.
The model is trained to update towards parses that
are in high agreement with a source side English
parse based on constraints drawn from alignments in
the parallel data. We use the augmented-loss learn-
ing procedure (Hall et al., 2011) which is closely
related to constraint driven learning (Chang et al.,
2007; Chang et al., 2010). The resulting parser con-
sistently improves on the directly transferred delex-
icalized parser, reducing relative errors by 8% on
average, and as much as 18% on some languages.
Finally, we show that by transferring parsers from
multiple source languages we can further reduce er-
rors by 16% over the directly transferred English
baseline. This is consistent with previous work on
multilingual part-of-speech (Snyder et al., 2009) and
grammar (Berg-Kirkpatrick and Klein, 2010; Cohen
and Smith, 2009) induction, that shows that adding
languages leads to improvements.

We present a comprehensive set of experiments
on eight Indo-European languages for which a sig-
nificant amount of parallel data exists. We make
no language specific enhancements in our experi-
ments. We report results for sentences of all lengths,
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ROOT A hearing is scheduled on the issue today

Figure 1: An example (unlabeled) dependency tree.

as well as with gold and automatically induced
part-of-speech tags. We also report results on sen-
tences of length 10 or less with gold part-of-speech
tags to compare with previous work. Our results
consistently outperform the previous state-of-the-art
across all languages and training configurations.

2 Preliminaries

In this paper we focus on transferring dependency
parsers between languages. A dependency parser
takes a tokenized input sentence (optionally part-of-
speech tagged) and produces a connected tree where
directed arcs represent a syntactic head-modifier re-
lationship. An example of such a tree is given in
Figure 1. Dependency tree arcs are often labeled
with the role of the syntactic relationship, e.g., is to
hearing might be labeled as SUBJECT. However, we
focus on unlabeled parsing in order to reduce prob-
lems that arise due to different treebank annotation
schemes. Of course, even for unlabeled dependen-
cies, significant variations in the annotation schemes
remain. For example, in the Danish treebank deter-
miners govern adjectives and nouns in noun phrases,
while in most other treebanks the noun is the head of
the noun phrase. Unlike previous work (Zeman and
Resnik, 2008; Smith and Eisner, 2009), we do not
apply any transformations to the treebanks, which
makes our results easier to reproduce, but systemat-
ically underestimates accuracy.

2.1 Data Sets

The treebank data in our experiments are from the
CoNLL shared-tasks on dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007). We use
English (en) only as a source language throughout
the paper. Additionally, we use the following eight
languages as both source and target languages: Dan-
ish (da), Dutch (nl), German (de), Greek (el), Italian
(it), Portuguese (pt), Spanish (es) and Swedish (sv).
For languages that were included in both the 2006
and 2007 tasks, we used the treebank from the lat-



ter. We focused on this subset of languages because
they are Indo-European and a significant amount of
parallel data exists for each language. By present-
ing results on eight languages our study is already
more comprehensive than most previous work in this
area. However, the restriction to Indo-European lan-
guages does make the results less conclusive when
one wishes to transfer a parser from English to Chi-
nese, for example. To account for this, we report
additional results in the discussion for non-Indo-
European languages. For all data sets we used the
predefined training and testing splits.

Our approach relies on a consistent set of part-
of-speech tags across languages and treebanks. For
this we used the universal tagset from Petrov et
al. (2011), which includes: NOUN (nouns), VERB
(verbs), ADJ (adjectives), ADV (adverbs), PRON
(pronouns), DET (determiners), ADP (prepositions
or postpositions), NUM (numerals), CONJ (conjunc-
tions), PRT (particles), PUNC (punctuation marks)
and X (a catch-all tag). Similar tagsets are used by
other studies on grammar induction and projection
(Naseem et al., 2010; Zeman and Resnik, 2008). For
all our experiments we replaced the language spe-
cific part-of-speech tags in the treebanks with these
universal tags.

Like all treebank projection studies we require a
corpus of parallel text for each pair of languages we
study. For this we used the Europarl corpus version
5 (Koehn, 2005). The corpus was preprocessed in
standard ways and word aligned by running six it-
erations of IBM Model 1 (Brown et al., 1993), fol-
lowed by six iterations of the HMM model (Vogel et
al., 1996) in both directions. We then intersect word
alignments to generate one-to-one alignments.

2.2 Parsing Model

All of our parsing models are based on the
transition-based dependency parsing paradigm
(Nivre, 2008). Specifically, all models use an
arc-eager transition strategy and are trained using
the averaged perceptron algorithm as in Zhang and
Clark (2008) with a beam size of 8. The features
used by all models are: the part-of-speech tags of
the first four words on the buffer and of the top two
words on the stack; the word identities of the first
two words on the buffer and of the top word on the
stack; the word identity of the syntactic head of
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the top word on the stack (if available). All feature
conjunctions are included. For treebanks with
non-projective trees we use the pseudo-projective
parsing technique to transform the treebank into
projective structures (Nivre and Nilsson, 2005).
We focus on using this parsing system for two
reasons. First, the parser is near state-of-the-art on
English parsing benchmarks and second, and more
importantly, the parser is extremely fast to train and
run, making it easy to run a large number of exper-
iments. Preliminary experiments using a different
dependency parser — MSTParser (McDonald et al.,
2005) — resulted in similar empirical observations.

2.3 Evaluation

All systems are evaluated using unlabeled attach-
ment score (UAS), which is the percentage of words
(ignoring punctuation tokens) in a corpus that mod-
ify the correct head (Buchholz and Marsi, 2006).
Furthermore, we evaluate with both gold-standard
part-of-speech tags, as well as predicted part-of-
speech tags from the projected part-of-speech tagger
of Das and Petrov (2011).% This tagger relies only on
labeled training data for English, and achieves accu-
racies around 85% on the languages that we con-
sider. We evaluate in the former setting to compare
to previous studies that make this assumption. We
evaluate in the latter setting to measure performance
in a more realistic scenario — when no target lan-
guage resources are available.

3 Transferring from English

To simplify discussion, we first focus on the most
common instantiation of parser transfer in the liter-
ature: transferring from English to other languages.
In the next section we expand our system to allow
for the inclusion of multiple source languages.

3.1 Direct Transfer

We start with the observation that discriminatively
trained dependency parsers rely heavily on part-of-
speech tagging features. For example, when train-
ing and testing a parser on our English data, a parser
with all features obtains an UAS of 89.3%> whereas

2 Available at http://code.google.com/p/pos-projection/
3The best system at CONLL 2007 achieved 90.1% and used
a richer part-of-speech tagset (Nivre et al., 2007).



a delexicalized parser — a parser that only has non-
lexical features — obtains an UAS of 82.5%. The
key observation is that part-of-speech tags contain a
significant amount of information for unlabeled de-
pendency parsing.

This observation combined with our universal
part-of-speech tagset, leads to the idea of direct
transfer, i.e., directly parsing the target language
with the source language parser without relying on
parallel corpora. This idea has been previously ex-
plored by Zeman and Resnik (2008) and recently by
Sggaard (2011). Because we use a mapping of the
treebank specific part-of-speech tags to a common
tagset, the performance of a such a system is easy to
measure — simply parse the target language data set
with a delexicalized parser trained on the source lan-
guage data. We conducted two experiments. In the
first, we assumed that the test set for each target lan-
guage had gold part-of-speech tags, and in the sec-
ond we used predicted part-of-speech tags from the
projection tagger of Das and Petrov (2011), which
also uses English as the source language.

UAS for all sentence lengths without punctuation
are given in Table 1. We report results for both the
English direct transfer parser (en-dir.) as well as a
baseline unsupervised grammar induction system —
the dependency model with valence (DMV) of Klein
and Manning (2004), as obtained by the implemen-
tation of Ganchev et al. (2010). We trained on sen-
tences of length 10 or less and evaluated on all sen-
tences from the test set.* For DMV, we reversed the
direction of all dependencies if this led to higher per-
formance. From this table we can see that direct
transfer is a very strong baseline and is over 20%
absolute better than the DMV model for both gold
and predicted POS tags. Table 4, which we will dis-
cuss in more detail later, further shows that the direct
transfer parser also significantly outperforms state-
of-the-art unsupervised grammar induction models,
but in a more limited setting of sentences of length
less than 10.

Direct transfer works for a couple of reasons.
First, part-of-speech tags contain a significant
amount of information for parsing unlabeled depen-
dencies. Second, this information can be transferred,

*Training on all sentences results in slightly lower accura-
cies on average.
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to some degree, across languages and treebank stan-
dards. This is because, at least for Indo-European
languages, there is some regularity in how syntax
is expressed, e.g., primarily SVO, prepositional, etc.
Even though there are some differences with respect
to relative location of certain word classes, strong
head-modifier POS tag preferences can still help re-
solve these, especially when no other viable alter-
natives are available. Consider for example an arti-
ficial sentence with a tag sequence: ‘VERB NOUN
ADJ DET PUNC’. The English parser still predicts
that the NOUN and PUNC modify the VERB and the
ADJ and DET modify the NOUN, even though in the
English data such noun phrases are unlikely.’

3.2 Projected Transfer

Unlike most language transfer systems for parsers,
the direct transfer approach does not rely on project-
ing syntax across aligned parallel corpora (modulo
the fact that non-gold tags come from a system that
uses parallel corpora). In this section we describe
a simple mechanism for projecting from the direct
transfer system using large amounts of parallel data
in a similar vein to Hwa et al. (2005), Ganchev et
al. (2009), Smith and Eisner (2009) inter alia. The
algorithm is based on the work of Hall et al. (2011)
for training extrinsic parser objective functions and
borrows heavily from ideas in learning with weak
supervision including work on learning with con-
straints (Chang et al., 2007) and posterior regular-
ization (Ganchev et al., 2010). In our case, the
weak signals come from aligned source and target
sentences, and the agreement in their corresponding
parses, which is similar to posterior regularization
or the bilingual view of Smith and Smith (2004) and
Burkett et al. (2010).

The algorithm is given in Figure 2. It starts by
labeling a set of target language sentences with a
parser, which in our case is the direct transfer parser
from the previous section (line 1). Next, it uses
these parsed target sentences to ‘seed’ a new parser
by training a parameter vector using the predicted
parses as a gold standard via standard perceptron
updates for J rounds (lines 3-6). This generates a
parser that emulates the direct transfer parser, but

3This requires a transition-based parser with a beam greater
than 1 to allow for ambiguity to be resolved at later stages.



Notation:
x: input sentence
y: dependency tree
a: alignment

w: parameter vector

Y)

P

¢(z,y): feature vector
: dependency parser, i.e., DP : x — y
Input:
X = {xz;}j=,: target language sentences
P = {(zf, 2!, a;)}i%;: aligned source-target sentences
D Pjelex: delexicalized source parser
DPiex: lexicalized source parser
Algorithm:
1. Let X' = {(wi,v:) iz, where y; = D Paelex(T:)
2. w=0
§0 3. forj:1...J
< 4. forz; :x1...2n
"9';3 5 Lety = argmax, w - ¢(xi,y)
% 6 w = w+ (21, yi) — d(4,y)

o 1. for (x5, 2k, ai) : (25,28, a1) ... (x5, 25, am)
& 8 Let ys = D Piex(x5)

Lo Let V: = {vi,...,yr}, where:

~§ yk = Argmax, 1 k-1 W- d(xt,y)
z 10.  Lety: = argmax,, .y, ALIGI\i(yS7 Yt, Qs)

g8 1. w=w+¢(zi,y) — o(xi,yi)

return D P* such that DP* () = argmax, w - ¢(x,y)

Figure 2: Perceptron-based learning algorithm for train-
ing a parser by seeding the model with a direct transfer
parser and projecting constraints across parallel corpora.

has now been lexicalized and is working in the space
of target language sentences. Next, the algorithm it-
erates over the sentences in the parallel corpus. It
parses the English sentence with an English parser
(line 8, again a lexicalized parser). It then uses the
current target language parameter vector to create
a k-best parse list for the target sentence (line 9).
From this list, it selects the parse whose dependen-
cies align most closely with the English parse via the
pre-specified alignment (line 10, also see below for
the definition of the ALIGN function). It then uses
this selected parse as a proxy to the gold standard
parse to update the parameters (line 11).

The intuition is simple. The parser starts with
non-random accuracies by emulating the direct
transfer model and slowly tries to induce better pa-
rameters by selecting parses from its k-best list

66

that are considered ‘good’ by some external met-
ric. The algorithm then updates towards that out-
put. In this case ‘goodness’ is determined through
the pre-specified sentence alignment and how well
the target language parse aligns with the English
parse. As a result, the model will, ideally, converge
to a state where it predicts target parses that align as
closely as possible with the corresponding English
parses. However, since we seed the learner with the
direct transfer parser, we bias the parameters to se-
lect parses that both align well and also have high
scores under the direct transfer model. This helps
to not only constrain the search space at the start
of learning, but also helps to bias dependencies be-
tween words that are not part of the alignment.

So far we have not defined the ALIGN function
that is used to score potential parses. Let a =
{(51),t(1))s -+ -+ (S(m)» t(n)) } be an alignment where
S(;) 1s a word in the source sentence x5 (not nec-
essarily the i word) and t(;) 1s similarly a word
in the target sentence x; (again, not necessarily the
ith word). The notation (5(5),t(s)) € a indicates
two words are the i*" aligned pair in a. We define
the ALIGN function to encode the Direct Correspon-
dence Assumption (DCA) from Hwa et al. (2005):

ALIGN(yS7 Yt, CL)

= 2

(s(i)t(i))€a
(s()-t(5))€a

SCORE(Ys, ¥z, (5(5), $())» (tay» t(5)))

SCORE(Ys, Yt, (8(1), 5(5))» (i) s 1))
+1 if (S(i), S(j)) € Ys and (t(i), t(j)) € Yt
—1 if (S(i), S(j)) € Ys and (t(i), t(j>) §é Yt

=1 if (s(i),s()) ¢ ys and (L), L5)) € v
0 otherwise

The notation (4, j) € y indicates that a dependency
from head ¢ to modifier j is in tree y. The ALIGN
function rewards aligned head-modifier pairs and
penalizes unaligned pairs when a possible alignment
exists. For all other cases it is agnostic, i.e., when
one or both of the modifier or head are not aligned.
Figure 3 shows an example of aligned English-
Greek sentences, the English parse and a potential
Greek parse. In this case the ALIGN function re-
turns a value of 2. This is because there are three
aligned dependencies: took—book, book—sthe and
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Figure 3: A Greek and English sentence pair. Word
alignments are shown as dashed lines, dependency arcs
as solid lines.

from—John. These add 3 to the score. There is
one incorrectly aligned dependency: the preposi-
tion mistakenly modifies the noun on the Greek side.
This subtracts 1. Finally, there are two dependencies
that do not align: the subject on the English side
and a determiner to a proper noun on the Greek side.
These do not effect the result.

The learning algorithm in Figure 2 is an instance
of augmented-loss training (Hall et al., 2011) which
is closely related to the constraint driven learning al-
gorithms of Chang et al. (2007). In that work, ex-
ternal constraints on output structures are used to
help guide the learner to good parameter regions.
In our model, we use constraints drawn from paral-
lel data exactly in the same manner. Since posterior
regularization is closely related to constraint driven
learning, this makes our algorithm also similar to the
parser projection approach of Ganchev et al. (2009).
There are a couple of differences. First, we bias our
model towards the direct transfer model, which is
already quite powerful. Second, our alignment con-
straints are used to select parses from a k-best list,
whereas in posterior regularization they are used as
soft constraints on full model expectations during
training. The latter is beneficial as the use of k-best
lists does not limit the class of parsers to those whose
parameters and search space decompose neatly with
the DCA loss function. An empirical comparison to
Ganchev et al. (2009) is given in Section 5.

Results are given in Table 1 under the column en-
proj. For all experiments we train the seed-stage
perceptron for 5 iterations (J = 5) and we use one
hundred times as much parallel data as seed stage
non-parallel data (m = 100n). The seed-stage non-
parallel data is the training portion of each treebank,
stripped of all dependency annotations. After train-
ing the projected parser we average the parameters
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gold-POS pred-POS
DMV en-dir. en-proj. || DMV en-dir. en-proj.
da 334 459 48.2 18.4 44.0 455
de 18.0 472 50.9 30.3 44.7 474
el 39.9 63.9 66.8 21.2 63.0 65.2
es 28.5 533 55.8 19.9 50.2 524
it 43.1 577 60.8 37.7 53.7 56.3
nl 38.5 60.8 67.8 19.9 62.1 66.5
pt 20.1 69.2 71.3 21.0 66.2 67.7
SV 44.0 58.3 61.3 33.8 56.5 59.7
avg || 33.2 57.0 60.4 25.3 55.0 57.6

Table 1: UAS for the unsupervised DMV model (DMV),
a delexicalized English direct transfer parser (en-dir.)
and a English projected parser (en-proj.). Measured on
all sentence lengths for both gold and predicted part-of-
speech tags as input.

of the model (Collins, 2002). The parsers evaluated
using predicted part-of-speech tags use the predicted
tags at both training and testing time and are thus
free of any target language specific resources.
When compared with the direct transfer model
(en-dir. in Table 1), we can see that there is an im-
provement for every single language, reducing rela-
tive error by 8% on average (57.0% to 60.4%) and
up to 18% for Dutch (60.8 to 67.8%). One could
wonder whether the true power of the projection
model comes from the re-lexicalization step — lines
3-6 of the algorithm. However, if just this step is run,
then the average UAS only increases from 57.0%
to 57.4%, showing that most of the improvement
comes from the projection stage. Note that the re-
sults in Table 1 indicate that parsers using predicted
part-of-speech tags are only slightly worse than the
parsers using gold tags (about 2-3% absolute), show-
ing that these methods are robust to tagging errors.

4 Multi-Source Transfer

The previous section focused on transferring an En-
glish parser to a new target language. However,
there are over 20 treebanks available for a variety
of language groups including Indo-European, Altaic
(including Japanese), Semitic, and Sino-Tibetan.
Many of these are even in standardized formats
(Buchholz and Marsi, 2006; Nivre et al., 2007). Past
studies have shown that for both part-of-speech tag-
ging and grammar induction, learning with multiple
comparable languages leads to improvements (Co-
hen and Smith, 2009; Snyder et al., 2009; Berg-
Kirkpatrick and Klein, 2010). In this section we ex-



Source Training Language
da de el en es it nl pt sV

° da 79.2 45.2 44.0 459 45.0 48.6 46.1 48.1 47.8
% de 343 83.9 53.2 472 45.8 53.4 55.8 55.5 46.2
En el 333 52.5 71.5 63.9 41.6 59.3 57.3 58.6 47.5
] en 34.4 37.9 457 82.5 28.5 38.6 43.7 423 43.7
z es 38.1 494 57.3 53.3 79.7 68.4 51.2 66.7 414
= it 44.8 56.7 66.8 57.7 64.7 79.3 57.6 69.1 50.9
% nl 38.7 43.7 62.1 60.8 40.9 50.4 73.6 58.5 442
= pt 425 52.0 66.6 69.2 68.5 74.7 67.1 84.6 52.1

Y 445 57.0 57.8 58.3 46.3 534 54.5 66.8 84.8

Table 2: UAS for all source-target language pairs. Each column represents which source language was used to train a
delexicalized parser and each row represents which target language test data was used. Bold numbers are when source
equals target and underlined numbers are the single best UAS for a target language. Results are for all sentence lengths

without punctuation.

amine whether this is also true for parser transfer.

Table 2 shows the matrix of source-target lan-
guage UAS for all nine languages we consider (the
original eight target languages plus English). We
can see that there is a wide range from 33.3% to
74.7%. There is also a wide range of values depend-
ing on the source training data and/or target testing
data, e.g., Portuguese as a source tends to parse tar-
get languages much better than Danish, and is also
more amenable as a target testing language. Some
of these variations are expected, e.g., the Romance
languages (Spanish, Italian and Portuguese) tend to
transfer well to one another. However, some are
unexpected, e.g., Greek being the best source lan-
guage for Dutch, as well as German being one of the
worst. This is almost certainly due to different an-
notation schemes across treebanks. Overall, Table 2
does indicate that there are possible gains in accu-
racy through the inclusion of additional languages.

In order to take advantage of treebanks in multi-
ple languages, our multi-source system simply con-
catenates the training data from all non-target lan-
guages. In other words, the multi-source direct
transfer parser for Danish will be trained by first
concatenating the training corpora of the remain-
ing eight languages, training a delexicalized parser
on this data and then directly using this parser to
analyze the Danish test data. For the multi-source
projected parser, the procedure is identical to that
in Section 3.2 except that we use the multi-source
direct transfer model to seed the algorithm instead
of the English-only direct transfer model. For these
experiments we still only use English-target parallel
data because that is the format of the readily avail-
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able data in the Europarl corpus.

Table 3 presents four sets of results. The first
(best-source) is the direct transfer results for the ora-
cle single-best source language per target language.
The second (avg-source) is the mean UAS over all
source languages per target language. The third
(multi-dir.) is the multi-source direct transfer sys-
tem. The fourth and final result set (multi-proj.)
is the multi-source projected system. The resulting
parsers are typically much more accurate than the
English direct transfer system (Table 1). On aver-
age, the multi-source direct transfer system reduces
errors by 10% relative over the English-only direct
transfer system. These improvements are not consis-
tent. For Greek and Dutch we see significant losses
relative to the English-only system. An inspection of
Table 2 shows that for these two languages English
is a particularly good source training language.

For the multi-source projected system the results
are mixed. Some languages see basically no change
relative the multi-source direct transfer model, while
some languages see modest to significant increases.
But again, there is an overall trend to better mod-
els. In particular, starting with an English-only di-
rect transfer parser with 57.0% UAS on average,
by adding parallel corpora and multiple source lan-
guages we finish with parser having 63.8% UAS
on average, which is a relative reduction in error
of roughly 16% and more than doubles the perfor-
mance of a DMV model (Table 1).

Interestingly, the multi-source systems provide,
on average, accuracies near that of the single-best
source language and significantly better than the av-
erage source UAS. Thus, even this simple method of



best-source avg-source gold-POS pred-POS
source gold-POS gold-POS multi-dir. multi-proj. multi-dir. multi-proj.
da it 48.6 46.3 48.9 49.5 46.2 475
de nl 55.8 48.9 56.7 56.6 51.7 52.0
el en 63.9 51.7 60.1 65.1 58.5 63.0
es it 68.4 532 64.2 64.5 55.6 56.5
it pt 69.1 58.5 64.1 65.0 56.8 58.9
nl el 62.1 49.9 55.8 65.7 543 64.4
pt it 74.8 61.6 74.0 75.6 67.7 70.3
SV pt 66.8 54.8 65.3 68.0 58.3 62.1
avg 63.7 51.6 61.1 63.8 56.1 59.3

Table 3: UAS for multi-source direct (multi-dir.) and projected (multi-proj.) transfer systems. best-source is the best
source model from the languages in Table 2 (excluding the target language). avg-source is the mean UAS over the

source models for the target (excluding target language).

multi-source transfer already provides strong perfor-
mance gains. We expect that more principled tech-
niques will lead to further improvements. For exam-
ple, recent work by S@gaard (2011) explores data set
sub-sampling methods. Unlike our work, Sggaard
found that simply concatenating all the data led to
degradation in performance. Cohen et al. (2011) ex-
plores the idea learning language specific mixture
coefficients for models trained independently on the
target language treebanks. However, their results
show that this method often did not significantly out-
perform uniform mixing.

5 Comparison

Comparing unsupervised and parser projection sys-
tems is difficult as many publications use non-
overlapping sets of languages or different evaluation
criteria. We compare to the following three systems
that do not augment the treebanks and report results
for some of the languages that we considered:

e USR: The weakly supervised system of
Naseem et al. (2010), in which manually de-
fined universal syntactic rules (USR) are used
to constrain a probabilistic Bayesian model. In
addition to their original results, we also report
results using the same part-of-speech tagset as
the systems described in this paper (USRY).
This is useful for two reasons. First, it makes
the comparison more direct. Second, we can
generate USR results for all eight languages
and not just for the languages that they report.

e PGI: The phylogenetic grammar induction
(PGI) model of Berg-Kirkpatrick and Klein
(2010), in which the parameters of completely
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unsupervised DMV models for multiple lan-
guages are coupled via a phylogenetic prior.

e PR: The posterior regularization (PR) approach
of Ganchev et al. (2009), in which a supervised
English parser is used to generate constraints
that are projected using a parallel corpus and
used to regularize a target language parser. We
report results without treebank specific rules.

Table 4 gives results comparing the models pre-
sented in this work to those three systems. For this
comparison we use sentences of length 10 or less
after punctuation has been removed in order to be
consistent with reported results. The overall trends
carry over from the full treebank setting to this re-
duced sentence length setup: the projected mod-
els outperform the direct transfer models and multi-
source transfer gives higher accuracy than transfer-
ring only from English. Most previous work has as-
sumed gold part-of-speech tags, but as the code for
USR is publicly available we were able to train it
using the same projected part-of-speech tags used
in our models. These results are also given in Ta-
ble 4 under USRT. Again, we can see that the multi-
source systems (both direct and projected) signifi-
cantly outperform the unsupervised models.

It is not surprising that a parser transferred from
annotated resources does significantly better than
unsupervised systems since it has much more in-
formation from which to learn. The PR system of
Ganchev et al. (2009) is similar to ours as it also
projects syntax across parallel corpora. For Span-
ish we can see that the multi-source direct trans-
fer parser is better (75.1% versus 70.6%), and this
is also true for the multi-source projected parser



<— gold-POS — < pred-POS —

en-dir.  en-proj. | multi-dir.  multi-proj. | USRf USR PGI PR multi-dir.  multi-proj. | USRf}

da 53.2 57.4 58.4 58.8 55.1 519 416 54.9 54.6 41.7
de 65.9 67.0 74.9 72.0 60.0 63.7 63.4 55.1
el 73.9 73.9 73.5 78.7 60.3 65.2 74.3 534

es 58.0 62.3 75.1 73.2 68.3 672 584 170.6 59.1 56.8 433
it 65.5 69.9 755 75.5 47.9 65.5 70.2 414

nl 67.6 72.2 58.8 70.7 44.0 45.1 56.3 67.2 38.8
pt 77.9 80.6 81.1 86.2 70.9 715  63.0 74.0 79.2 66.4
SV 70.4 71.3 76.0 77.6 52.6 58.3 72.0 73.9 59.4
avg 66.6 69.4 71.7 74.1 57.4 63.9 67.5 49.9

Table 4: UAS on sentences of length 10 or less without punctuation, comparing the systems presented in this work
to three representative systems from related work. en-dir./en-proj. are the direct/projected English parsers and multi-
dir./multi-proj. are the multi-source direct/projected parsers. Section 5 contains a description of the baseline systems.

(73.2%). Ganchev et al. also report results for
Bulgarian. We trained a multi-source direct trans-
fer parser for Bulgarian which obtained a score of
72.8% versus 67.8% for the PR system. If we only
use English as a source language, as in Ganchev et
al., the English direct transfer model achieves 66.1%
on Bulgarian and 69.3% on Spanish versus 67.8%
and 70.6% for PR. In this setting the English pro-
jected model gets 72.0% on Spanish. Thus, under
identical conditions the direct transfer model obtains
accuracies comparable to PR.°

Another projection based system is that of Smith
and Eisner (2009), who report results for German
(68.5%) and Spanish (64.8%) on sentences of length
15 and less inclusive of punctuation. Smith and Eis-
ner use custom splits of the data and modify a sub-
set of the dependencies. The multi-source projected
parser obtains 71.9% for German and 67.8% for
Spanish on this setup.” If we cherry-pick the source
language the results can improve, e.g., for Spanish
we can obtain 71.7% and 70.8% by directly transfer-
ring parsers form Italian or Portuguese respectively.

6 Discussion

One fundamental point the above experiments il-
lustrate is that even for languages for which no
resources exist, simple methods for transferring
parsers work remarkably well. In particular, if

SNote that the last set of results was obtained by using the
same English training data as Ganchev et al. Using the CoONLL
2007 English data set for training, the English direct transfer
model is 63.2% for Bulgarian and 58.0% for Spanish versus
67.8% and 70.6% for PR, highlighting the large impact that dif-
ference treebank annotation standards can have.

"Data sets and evaluation criteria obtained via communica-
tions with David Smith and Jason Eisner.
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one can transfer part-of-speech tags, then a large
part of transferring unlabeled dependencies has been
solved. This observation should lead to a new base-
line in unsupervised and projected grammar induc-
tion — the UAS of a delexicalized English parser.
Of course, our experiments focus strictly on Indo-
European languages. Preliminary experiments for
Arabic (ar), Chinese (zh), and Japanese (ja) suggest
similar direct transfer methods are applicable. For
example, on the CoNLL test sets, a DMV model
obtains UAS of 28.7/41.8/34.6% for ar/zh/ja re-
spectively, whereas an English direct transfer parser
obtains 32.1/53.8/32.2% and a multi-source direct
transfer parser obtains 39.9/41.7/43.3%. In this
setting only Indo-European languages are used as
source data. Thus, even across language groups di-
rect transfer is a reasonable baseline. However, this
is not necessary as treebanks are available for a num-
ber of language groups, e.g., Indo-European, Altaic,
Semitic, and Sino-Tibetan.

The second fundamental observation is that when
available, multiple sources should be used. Even
through naive multi-source methods (concatenating
data), it is possible to build a system that has compa-
rable accuracy to the single-best source for all lan-
guages. This advantage does not come simply from
having more data. In fact, if we randomly sam-
pled from the multi-source data until the training set
size was equivalent to the size of the English data,
then the results still hold (and in fact go up slightly
for some languages). This suggests that even bet-
ter transfer models can be produced by separately
weighting each of the sources depending on the tar-
get language — either weighting by hand, if we know
the language group of the target language, or auto-



matically, if we do not. As previously mentioned,
the latter has been explored in both Sggaard (2011)
and Cohen et al. (2011).

7 Conclusions

We presented a simple, yet effective approach
for projecting parsers from languages with labeled
training data to languages without any labeled train-
ing data. Central to our approach is the idea of
delexicalizing the models, which combined with a
standardized part-of-speech tagset allows us to di-
rectly transfer models between languages. We then
use a constraint driven learning algorithm to adapt
the transferred parsers to the respective target lan-
guage, obtaining an additional 16% error reduc-
tion on average in a multi-source setting. Our final
parsers achieve state-of-the-art accuracies on eight
Indo-European languages, significantly outperform-
ing previous unsupervised and projected systems.

Acknowledgements: We would like to thank Kuz-
man Ganchev, Valentin Spitkovsky and Dipanjan
Das for numerous discussions on this topic and com-
ments on earlier drafts of this paper. We would
also like to thank Shay Cohen, Dipanjan Das, Noah
Smith and Anders Sggaard for sharing early drafts
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Abstract

We propose a method to improve the accuracy
of parsing bilingual texts (bitexts) with the
help of statistical machine translation (SMT)
systems. Previous bitext parsing methods use
human-annotated bilingual treebanks that are
hard to obtain. Instead, our approach uses an
auto-generated bilingual treebank to produce
bilingual constraints. However, because the
auto-generated bilingual treebank contains er-
rors, the bilingual constraints are noisy. To
overcome this problem, we use large-scale
unannotated data to verify the constraints and
design a set of effective bilingual features for
parsing models based on the verified results.
The experimental results show that our new
parsers significantly outperform state-of-the-
art baselines. Moreover, our approach is still
able to provide improvement when we use a
larger monolingual treebank that results in a
much stronger baseline. Especially notable
is that our approach can be used in a purely
monolingual setting with the help of SMT.

1 Introduction

Recently there have been several studies aiming to
improve the performance of parsing bilingual texts
(bitexts) (Smith and Smith, 2004; Burkett and Klein,
2008; Huang et al., 2009; Zhao et al., 2009; Chen
et al., 2010). In bitext parsing, we can use the in-
formation based on “bilingual constraints” (Burkett
and Klein, 2008), which do not exist in monolingual
sentences. More accurate bitext parsing results can
be effectively used in the training of syntax-based
machine translation systems (Liu and Huang, 2010).

Most previous studies rely on bilingual treebanks
to provide bilingual constraints for bitext parsing.

73

Burkett and Klein (2008) proposed joint models on
bitexts to improve the performance on either or both
sides. Their method uses bilingual treebanks that
have human-annotated tree structures on both sides.
Huang et al. (2009) presented a method to train a
source-language parser by using the reordering in-
formation on words between the sentences on two
sides. It uses another type of bilingual treebanks
that have tree structures on the source sentences and
their human-translated sentences. Chen et al. (2010)
also used bilingual treebanks and made use of tree
structures on the target side. However, the bilingual
treebanks are hard to obtain, partly because of the
high cost of human translation. Thus, in their experi-
ments, they applied their methods to a small data set,
the manually translated portion of the Chinese Tree-
bank (CTB) which contains only about 3,000 sen-
tences. On the other hand, many large-scale mono-
lingual treebanks exist, such as the Penn English
Treebank (PTB) (Marcus et al., 1993) (about 40,000
sentences in Version 3) and the latest version of CTB
(over 50,000 sentences in Version 7).

In this paper, we propose a bitext parsing ap-
proach in which we produce the bilingual constraints
on existing monolingual treebanks with the help of
SMT systems. In other words, we aim to improve
source-language parsing with the help of automatic
translations.

In our approach, we first use an SMT system
to translate the sentences of a source monolingual
treebank into the target language. Then, the target
sentences are parsed by a parser trained on a tar-
get monolingual treebank. We then obtain a bilin-
gual treebank that has human annotated trees on the
source side and auto-generated trees on the target
side. Although the sentences and parse trees on the
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target side are not perfect, we expect that we can
improve bitext parsing performance by using this
newly auto-generated bilingual treebank. We build
word alignment links automatically using a word
alignment tool. Then we can produce a set of bilin-
gual constraints between the two sides.

Because the translation, parsing, and word align-
ment are done automatically, the constraints are not
reliable. To overcome this problem, we verify the
constraints by using large-scale unannotated mono-
lingual sentences and bilingual sentence pairs. Fi-
nally, we design a set of bilingual features based on
the verified results for parsing models.

Our approach uses existing resources including
monolingual treebanks to train monolingual parsers
on both sides, bilingual unannotated data to train
SMT systems and to extract bilingual subtrees,
and target monolingual unannotated data to extract
monolingual subtrees. In summary, we make the fol-
lowing contributions:

e We propose an approach that uses an auto-
generated bilingual treebank rather than
human-annotated bilingual treebanks used in
previous studies (Burkett and Klein, 2008;
Huang et al., 2009; Chen et al., 2010). The
auto-generated bilingual treebank is built with
the help of SMT systems.

e We verify the unreliable constraints by using
the existing large-scale unannotated data and
design a set of effective bilingual features over
the verified results. Compared to Chen et al.
(2010) that also used tree structures on the tar-
get side, our approach defines the features on
the auto-translated sentences and auto-parsed
trees, while theirs generates the features by
some rules on the human-translated sentences.

e QOur parser significantly outperforms state-of-
the-art baseline systems on the standard test
data of CTB containing about 3,000 sentences.
Moreover, our approach continues to achieve
improvement when we build our system us-
ing the latest version of CTB (over 50,000 sen-
tences) that results in a much stronger baseline.

e We show the possibility that we can improve
the performance even if the test set has no hu-
man translation. This means that our proposed

74

approach can be used in a purely monolingual
setting with the help of SMT. To our knowl-
edge, this paper is the first one that demon-
strates this widened applicability, unlike the
previous studies that assumed that the parser is
applied only on the bitexts made by humans.

Throughout this paper, we use Chinese as the
source language and English as the target language.
The rest of this paper is organized as follows. Sec-
tion 2 introduces the motivation of this work. Sec-
tion 3 briefly introduces the parsing model used in
the experiments. Section 4 describes a set of bilin-
gual features based on the bilingual constraints and
Section 5 describes how to use large-scale unanno-
tated data to verify the bilingual constraints and de-
fine another set of bilingual features based on the
verified results. Section 6 explains the experimental
results. Finally, in Section 7 we draw conclusions.

2 Motivation

Here, bitext parsing is the task of parsing source sen-
tences with the help of their corresponding transla-
tions. Figure 1-(a) shows an example of the input
of bitext parsing, where ROOT is an artificial root
token inserted at the beginning and does not depend
on any other token in the sentence, the dashed undi-
rected links are word alignment links, and the di-
rected links between words indicate that they have
a dependency relation. Given such inputs, we build
dependency trees for the source sentences. Figure
1-(b) shows the output of bitext parsing for the ex-
ample in 1-(a).

ROOT Al ®fE W T 5 %M L3 1 2%k 4%
ta gaodu pingjia le yu lipeng zongli de huitan jieguo
7 . Sy _
" ] II \‘~\:‘~~:\:A‘~::\
b II ,I B ‘,<~7,~:~\\~\ -

ROOT He highly commended the results of the conference “With F3eng Li
X S~—~7

(a)

é&@/\x

ROOT Al /% W T 5 FM L3 1) 2, 4%
ta gaodu pingjia le yu lipeng zongli de huitan jieguo

(b)

Figure 1: Input and output of our approach

In bitext parsing, some ambiguities exist on the
source side, but they may be unambiguous on the



target side. These differences are expected to help
improve source-side parsing.

Suppose we have a Chinese sentence shown in
Figure 2-(a). In this sentence, there is a nomi-
nalization case (Li and Thompson, 1997) in which
the particle “#9(de)/nominalizer” is placed after the
verb compound “¥ F (peiyu)AZ & (qilai)/cultivate”
to modify “# ¥5(jigiao)/skill”. This nominaliza-
tion is a relative clause, but does not have a clue
about its boundary. That is, it is very hard to deter-
mine which word is the head of “4X *7 (jigiao)/skill”.
The head may be ““ X #%(fahui)/demonstrate” or “3&
A (peiyu)/cultivate”, as shown in Figure 2-(b) and
-(c), where (b) is correct.

fit WY &k EZ35R RO ORI TR HE Rk 0 R M 5
ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qgilai de liliang he jigiao
PN W DT NN AD VW AD VV VV DEC NN CC NN
(a) /\
fir AE &k EFR RO ORI PR HE Rk K 1R MBS

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qgilai de liliang he jigiao
(b)

. A -
fib HE Ak ZEHR FROy RAE P REE R B Jrd A
ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qgilai de liliang he jigiao

(c)

Figure 2: Example of an ambiguity on the Chinese side

In its English translation (Figure 3), word “that” is
a clue indicating the relative clause which shows the
relation between “skill” and “cultivate”, as shown in
Figure 3. The figure shows that the translation can
provide useful bilingual constraints. From the de-
pendency tree on the target side, we find that the
word “skill” corresponding to “# #7(jigiao)/skill”
depends on the word “demonstrate” corresponding
to “& 4% (fahui)/demonstrate”, while the word “cul-
tivate” corresponding to “}% % (peiyu)/cultivate” is a
grandchild of “skill”. This is a positive evidence for
supporting & 4% (fahui)/demonstrate” as being the
head of “3% 77 (jigiao)/skill”.

The above case uses the human translation on
the target side. However, there are few human-
annotated bilingual treebanks and the existing bilin-
gual treebanks are usually small. In contrast, there
are large-scale monolingual treebanks, e.g., the PTB
and the latest version of CTB. So we want to use
existing resources to generate a bilingual treebank
with the help of SMT systems. We hope to improve
source side parsing by using this newly built bilin-
gual treebank.
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fir AE Ak B Ry R TR if’?"ﬁ' Ak 1) i A

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu gilai de liliang he jigiao
, ~ A
. -

. - BT
He hoped that all the athletes would fully demonstrate the strength and skill that they cultivate daily

Figure 3: Example of human translation

-7 ~
fir A &k @R ROy ORIE P BEE Rk M 0E A3
ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu gilai de liliang he jigiao
\ 1

\ ]
\ 1
\ 1

he expressed the hope that all athletes used to give full pl}iy to the country 's strength and skills

Figure 4: Example of Moses translation

Figure 4 shows an example of a translation us-
ing a Moses-based system, where the target sen-
tence is parsed by a monolingual target parser. The
translation contains some errors, but it does contain
some correct parts that can be used for disambigua-
tion. In the figure, the word “skills” corresponding
to “# 77 (jigiao)/skill” is a grandchild of the word
“play” corresponding to “ & #%(fahui)/demonstrate”.
This is a positive evidence for supporting “&
1% (fahui)/demonstrate” as being the head of “#
7 (jiqiao)/skill”.

From this example, although the sentences and
parse trees on the target side are not perfect, we
still can explore useful information to improve bitext
parsing. In this paper, we focus on how to design
a method to verify such unreliable bilingual con-
straints.

3 Parsing model

In this paper, we implement our approach based
on graph-based parsing models (McDonald and
Pereira, 2006; Carreras, 2007). Note that our ap-
proach can also be applied to transition-based pars-
ing models (Nivre, 2003; Yamada and Matsumoto,
2003).

The graph-based parsing model is to search for
the maximum spanning tree (MST) in a graph (Mc-
Donald and Pereira, 2006). The formulation defines
the score of a dependency tree to be the sum of edge
scores,



s(z,y) = Zscore(w,a:,g) = Zw'f(a:,g) (1)

gey gey

where z is an input sentence, y is a dependency
tree for x, and g is a spanning subgraph of y. f(x, g)
can be based on arbitrary features of the subgraph
and the input sequence = and the feature weight
vector w are the parameters to be learned by using
MIRA (Crammer and Singer, 2003) during training.

In our approach, we use two types of features
for the parsing model. One is monolingual fea-
tures based on the source sentences. The mono-
lingual features include the first- and second- order
features presented in McDonald and Pereira (2006)
and the parent-child-grandchild features used in Car-
reras (2007). The other one is bilingual features (de-
scribed in Sections 4 and 5) that consider the bilin-
gual constraints.

We call the parser with the monolingual features
on the source side Parser®, and the parser with the
monolingual features on the target side Parser’.

4 Original bilingual features

In this paper, we generate two types of bilingual fea-
tures, original and verified bilingual features. The
original bilingual features (described in this section)
are based on the bilingual constraints without being
verified by large-scale unannotated data. And the
verified bilingual features (described in Section 5)
are based on the bilingual constraints verified by us-
ing large-scale unannotated data.

4.1 Auto-generated bilingual treebank

Assuming that we have monolingual treebanks on
the source side, an SMT system that can translate
the source sentences into the target language, and a
Parser’ trained on the target monolingual treebank.

We first translate the sentences of the source
monolingual treebank into the target language using
the SMT system. Usually, SMT systems can output
the word alignment links directly. If they can not, we
perform word alignment using some publicly avail-
able tools, such as Giza++ (Och and Ney, 2003) or
Berkeley Aligner (Liang et al., 2006; DeNero and
Klein, 2007). The translated sentences are parsed by
the Parser’. Then, we have a newly auto-generated
bilingual treebank.
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4.2 Bilingual constraint functions

In this paper, we focus on the first- and second-
order graph models (McDonald and Pereira, 2006;
Carreras, 2007). Thus we produce the constraints
for bigram (a single edge) and trigram (adjacent
edges) dependencies in the graph model. For the tri-
gram dependencies, we consider the parent-sibling
and parent-child-grandchild structures described in
McDonald and Pereira (2006) and Carreras (2007).
We leave the third-order models (Koo and Collins,
2010) for a future study.

Suppose that we have a (candidate) dependency
relation rs; that can be a bigram or trigram de-
pendency. We examine whether the corresponding
words of the source words of r; have a dependency
relation r; in the target trees. We also consider the
direction of the dependency relation. The corre-
sponding word of the head should also be the head
in r;. We define a binary function for this bilingual
constraint: Fy,(7s, : ), Where n and k refers to
the types of the dependencies (2 for bigram and 3 for
trigram). For example, in r5 : 13, 752 1S a bigram
dependency on the source side and 743 is a trigram
dependency on the target side.

4.2.1 Bigram constraint function: Fj,

For 52, we consider two types of bilingual con-
straints. The first constraint function, denoted as
Fyo(rse @ m42), checks if the corresponding words
also have a direct dependency relation r;5. Figure
5 shows an example, where the source word “&
#&(quanti)” depends on “iZ %) B (yundongyuan)”
and word “all” corresponding to “£4&(quanti)” de-
pends on word “athletes” corresponding to “iZ 3
i (yundongyuan)”. In this case, Fyo(rs2 : T42) =
+. However, when the source words are “f&(ta)”
and “# % (xiwang)”, this time their corresponding
words “He” and “hope” do not have a direct depen-
dency relation. In this case, Fpo(rso: 12) =—.

The second constraint function, denoted as
Fyo(rse @ m3), checks if the corresponding words
form a parent-child-grandchild relation that often
occurs in translation (Koehn et al., 2003). Figure 6
shows an example. The source word “4% *7 (jigiao)”
depends on “X& #%(fahui)” while its corresponding
word “skills” indirectly depends on “play” which
corresponds to “& #%(fahui)” via “to”. In this case,
Fio(rsa : 143) =+



ft HE &k EHR Ry ORIE PR OB AR I R A
ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu gilai de liliang he jigiao
! > N \
~ \

| N
N ~

1 N
~

1 N ~ \
he expressed the hope that aIWtes used to give full play to the country 's strength and skills

~ \

Figure 5: Example of bilingual constraints (2to2)

ft AHE &k ZBER Oy ORIE PR BEE K M i A By
ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu gilai de liliang he jigiao
\ 1

\ 1
v 1
\ 1

he expressed the hope that all athletes used to give full pléy to the country 's strength and skills
Figure 6: Example of bilingual constraints (2to3)

4.2.2 Trigram constraint function: Fj3

For a second-order relation on the source side,
we consider one type of constraint. We have three
source words that form a second-order relation and
all of them have the corresponding words. We
define function Fjy3(rss3 : r¢3) for this constraint.
The function checks if the corresponding words
form a trigram dependencies structure. An exam-
ple is shown in Figure 7. The source words “7)
% (liliang)”, “#=(he)”, and “# *7(jigiao)” form a
parent-sibling structure, while their corresponding
words “strength”, “and”, and “skills” also form a
parent-sibling structure on the target side. In this

case, function Fy3(rs3: 743) =+.
/A

e WmE Ak E3R Fiv KA P EE R 10 A A T
ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu gilai de Iilifmg h?jiqiao
1
1 1

1

1 [

1 1 )

he expressed the hope that all athletes used to give full play to the country 's stren’ th an‘d skills
\ Y

Figure 7: Example of bilingual constraints (3to3)

4.3 Bilingual reordering function: F;.,

Huang et al. (2009) proposed features based on
reordering between languages for a shift-reduce
parser. They define the features based on word-
alignment information to verify whether the corre-
sponding words form a contiguous span to resolve
shift-reduce conflicts. We also implement similar
features in our system. For example, in Figure 1-
(a) the source span is [4 3% (huitan), 2& X (jieguo)],
which maps onto [results, conference]. Because no

77

word within this target span is aligned to a source
word outside of the source span, this span is a con-
tiguous span. In this case, function F;, =+, other-
wise Fi.,=—

4.4 Original bilingual features

We define original bilingual features based on the
bilingual constraint functions and the bilingual re-
ordering function.

Table 1 lists the original features, where Dir
refers to the directions! of the source-side dependen-
cies, Fpo can be Fyo(rso @ 142) and Fpa(rse : 743),
and Fpg is Fp3(rss : 7¢3). Each line of the table
defines a feature template that is a combination of
functions.

First-order features | Second-order features

<FT'0>
<Fb2, D’LT>
<Fb27 DiT‘, Fr0>

(Fy3, Dir)
<Fb37 DiT‘, Fr0>

Table 1: Original bilingual features

We use an example to show how to generate the
original bilingual features in practice. In Figure 4,
we want to define the bilingual features for the bi-
gram dependency (rs) between “& 4% (fahui)” and
“3 77 (jigiao)”. The corresponding words form a tri-
gram relation r3 in the target dependency tree. The
direction of the bigram dependency is right. Then
we have feature “(Fyo(rs2: 143) =+, RIGHT)” for
the second first-order feature template in Table 1.

5 Verified bilingual features

However, because the bilingual treebank is gener-
ated automatically, using the bilingual constraints
alone is not reliable. Therefore, in this section we
verify the constraints by using large-scale unanno-
tated data to overcome this problem. More specifi-
cally, ry, of the constraint is verified by checking a
list of target monolingual subtrees and rg, : 74 is
verified by checking a list of bilingual subtrees. The
subtrees are extracted from the large-scale unanno-
tated data. The basic idea is as follows: if the de-
pendency structures of a bilingual constraint can be
found in the list of the target monolingual subtrees

"For the second order features, Dir is the combination of
the directions of two dependencies.



or bilingual subtrees, this constraint will probably be
reliable.

We first parse the large-scale unannotated mono-
lingual and bilingual data. Subsequently, we ex-
tract the monolingual and bilingual subtrees from
the parsed data. We then verify the bilingual con-
straints using the extracted subtrees. Finally, we
generate the bilingual features based on the verified
results for the parsing models.

5.1 Verified constraint functions

5.1.1 Monolingual target subtrees

Chen et al. (2009) proposed a simple method to
extract subtrees from large-scale monolingual data
and used them as features to improve monolingual
parsing. Following their method, we parse large
unannotated data with the Parser’ and obtain the sub-
tree list (S773) on the target side. We extract two
types of subtrees: bigram (two words) subtree and
trigram (three words) subtree.

A He bought bought book
ROOT He bought a book /\
a book  poucht @ book
(a) (b)

Figure 8: Example of monolingual subtree extraction

From the dependency tree in Figure 8-(a), we ob-
tain the subtrees shown in Figure 8-(b) where the
first three are bigram subtrees and the last one is
a trigram subtree. After extraction, we obtain the
subtree list ST; that includes two sets, one for bi-
gram subtrees, and the other one for trigram sub-
trees. We remove the subtrees occurring only once
in the data. For each set, we assign labels to the
extracted subtrees according to their frequencies by
using the same method as that of Chen et al. (2009).
If the frequency of a subtree is in the top 10% in the
corresponding set, it is labeled HF. If the frequency
is between the top 20% and 30%, it is labeled MF.
We assign the label LF to the remaining subtrees.
We use T'ype(st;) to refer to the label of a subtree,
Stt.

78

5.1.2 Verified target constraint function:
F vt (rtk )

We use the extracted target subtrees to verify the
ry, of the bilingual constraints. In fact, 4 is a can-
didate subtree. If the ry, is included in ST}, func-
tion Fy(ry) = Type(ry), otherwise Fy(ry) =
ZERO. For example, in Figure 5 the bigram struc-
ture of “all” and “athletes” can form a bigram sub-
tree that is included ST; and its label is HF. In this
case, Fyyi(ri9)= HF.

5.1.3 Bilingual subtrees

We extract bilingual subtrees from a bilingual
corpus, which is parsed by the Parser® and Parser?
on both sides. We extract three types of bilingual
subtrees: bigram-bigram (stp;22), bigram-trigram
(stpio3), and trigram-trigram (stp;33) subtrees. For
example, stp;00 consists of a bigram subtree on the
source side and a bigram subtree on the target side.

(NS | A O

ROOT fit, J& A il s
ta shi yi ming xuesheng
1 1 /

ol

1
1
\ I 1
1 1 ’
\ / 1
o ' / He

ROOT He is a student \/

@

1
1
1
1 1
s student

(a) (b)

Figure 9: Example of bilingual subtree extraction

From the dependency tree in Figure 9-(a), we
obtain the bilingual subtrees shown in Figure 9-
(b). Figure 9-(b) shows the extracted bigram-bigram
bilingual subtrees. After extraction, we obtain the
bilingual subtrees S7};. We remove the subtrees oc-
curring only once in the data.

5.1.4 Verified bilingual constraint function:
F, vb (rbz‘nk)

We use the extracted bilingual subtrees to verify
the rg, @ 74 (rping in short) of the bilingual con-
straints. rg, and ry form a candidate bilingual sub-
tree Stpink. 1f the sty is included in ST},;, function
Fob(roink) =+, otherwise Fp(Tpink) = —.

5.2 Verified bilingual features

Then, we define another set of bilingual features by
combining the verified constraint functions. We call
these bilingual features ‘verified bilingual features’.



Table 2 lists the verified bilingual features used in
our experiments, where each line defines a feature
template that is a combination of functions.

We use an example to show how to generate the
verified bilingual features in practice. In Figure 4,
we want to define the verified features for the bi-
gram dependency (7o) between X % (fahui)” and
“# 77 (jiqiao)”. The corresponding words form a
trigram relation r;3. The direction of the bigram
dependency is right. Suppose we can find 743 in
ST; with label MF and can not find the candidate
bilingual subtree in ST;;. Then we have feature
“<Fb2(7452 : 7’153) = —i—,th(?“tg) = MF, R[GHT>”
for the third first-order feature template and feature
“<Fb2(7"32 : Ttg) =+, Fvb(Tbigg) =—, RIGHT)” for
the fifth in Table 2.

First-order features Second-order features

(Fro)

(Fya, Fut(ren)) (Fy3, Fu(re1))
<Fb2,th(7“tk),Di7"> <Fb37th(Ttk)>Dir>
(Fy2, Fup(Tbink)) (Fv3, Fub(Tvink))
EFw, Fop(rvink), Dir) | (Fy3, Fob(Toink), Dir)

Fya, Fro, Fup(Think))

Table 2: Verified bilingual features

6 Experiments

We evaluated the proposed method on the translated
portion of the Chinese Treebank V2 (referred to as
CTB2;;,) (Bies et al., 2007), articles 1-325 of CTB,
which have English translations with gold-standard
parse trees. The tool “Penn2Malt”? was used to con-
vert the data into dependency structures. Following
the studies of Burkett and Klein (2008), Huang et
al. (2009) and Chen et al. (2010), we used the ex-
act same data split: 1-270 for training, 301-325 for
development, and 271-300 for testing. Note that we
did not use human translation on the English side
of this bilingual treebank to train our new parsers.
For testing, we used two settings: a test with hu-
man translation and another with auto-translation.
To process unannotated data, we trained a first-order
Parser® on the training data.

To prove that the proposed method can work on
larger monolingual treebanks, we also tested our

2http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
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methods on the CTB7 (LDC2010T07) that includes
much more sentences than CTB2;,. We used arti-
cles 301-325 for development, 271-300 for testing,
and the other articles for training. That is, we eval-
uated the systems on the same test data as CTB2;,.
Table 3 shows the statistical information on the data
sets.

Train | Dev | Test
CTB2y, 2,745 | 273 | 290
CTB7 50,747 | 273 | 290

Table 3: Number of sentences of data sets used

We built Chinese-to-English SMT systems based
on Moses®>. Minimum error rate training (MERT)
with respect to BLEU score was used to tune the de-
coder’s parameters. The translation model was cre-
ated from the FBIS corpus (LDC2003E14). We used
SRILM* to train a 5-gram language model. The lan-
guage model was trained on the target side of the
FBIS corpus and the Xinhua news in English Gi-
gaword corpus (LDC2009T13). The development
and test sets were from NIST MTO08 evaluation cam-
paign®. We then used the SMT systems to translate
the training data of CTB2, and CTB7.

To directly compare with the results of Huang
et al. (2009) and Chen et al. (2010), we also used
the same word alignment tool, Berkeley Aligner
(Liang et al., 2006; DeNero and Klein, 2007), to
perform word alignment for CTB2;, and CTB7.
We trained a Berkeley Aligner on the FBIS corpus
(LDC2003E14). We removed notoriously bad links
in {a, an, the} x{#J(de), T (le)} following the work
of Huang et al. (2009).

To train an English parser, we used the PTB
(Marcus et al., 1993) in our experiments and the
tool “Penn2Malt” to convert the data. We split the
data into a training set (sections 2-21), a develop-
ment set (section 22), and a test set (section 23).
We trained first-order and second-order Parser! on
the training data. The unlabeled attachment score
(UAS) of the second-order Parser’ was 91.92, in-
dicating state-of-the-art accuracy on the test data.
We used the second-order Parser’ to parse the auto-
translated/human-made target sentences in the CTB

3http://www.statmt.org/moses/

*http://www.speech.sri.com/projects/srilm/download.html
Shttp://www.itl.nist.gov/iad/mig//tests/mt/2008/



data.

To extract English subtrees, we used the BLLIP
corpus (Charniak et al., 2000) that contains about
43 million words of WSJ texts. We used the MX-
POST tagger (Ratnaparkhi, 1996) trained on train-
ing data to assign POS tags and used the first-order
Parser’ to process the sentences of the BLLIP cor-
pus. To extract bilingual subtrees, we used the FBIS
corpus and an additional bilingual corpus contain-
ing 800,000 sentence pairs from the training data of
NIST MTO08 evaluation campaign. On the Chinese
side, we used the morphological analyzer described
in (Kruengkrai et al., 2009) trained on the training
data of CTBy, to perform word segmentation and
POS tagging and used the first-order Parser® to parse
all the sentences in the data. On the English side, we
used the same procedure as we did for the BLLIP
corpus. Word alignment was performed using the
Berkeley Aligner.

We reported the parser quality by the UAS, i.e.,
the percentage of tokens (excluding all punctuation
tokens) with correct HEADs.

6.1 Experimental settings

For baseline systems, we used the monolingual fea-
tures mentioned in Section 3. We called these fea-
tures basic features. To compare the results of (Bur-
kett and Klein, 2008; Huang et al., 2009; Chen et
al., 2010), we used the test data with human trans-
lation in the following three experiments. The tar-
get sentences were parsed by using the second-order
Parser’. We used PAG to refer to our parsers trained
on the auto-generated bilingual treebank.

6.2 Training with CTB2;,

Order-1 Order-2
Baseline | 84.35 87.20
PAG, 84.71(+0.36) | 87.85(+0.65)
PAG 85.37(+1.02) | 88.49(+1.29)
ORACLE | 85.79(+1.44) | 88.87(+1.67)

Table 4: Results of training with CTB2;,

First, we conducted the experiments on the stan-
dard data set of CTB2;,, which was also used in
other studies (Burkett and Klein, 2008; Huang et al.,
2009; Chen et al., 2010). The results are given in
Table 4, where Baseline refers to the system with
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the basic features, PAG, refers to that after adding
the original bilingual features of Table 1 to Baseline,
PAG refers to that after adding the verified bilingual
features of Table 2 to Baseline, and ORACLES refers
to using human-translation for training data with
adding the features of Table 1. We obtained an ab-
solute improvement of 1.02 points for the first-order
model and 1.29 points for the second-order model by
adding the verified bilingual features. The improve-
ments of the final systems (PAG) over the Baselines
were significant in McNemar’s Test (p < 0.001 for
the first-order model and p < 0.0001 for the second-
order model). If we used the original bilingual fea-
tures (PAG,), the system dropped 0.66 points for the
first-order and 0.64 points for the second-order com-
pared with system PAG. This indicated that the ver-
ified bilingual constraints did provide useful infor-
mation for the parsing models.

We also found that PAG was about 0.3 points
lower than ORACLE. The reason is mainly due
to the imperfect translations, although we used
the large-scale subtree lists to help verify the con-
straints. We tried adding the features of Table 2 to
the ORACLE system, but the results were worse.
These facts indicated that our approach obtained the
benefits from the verified constraints, while using
the bilingual constraints alone was enough for OR-
ACLE.

6.3 Training with CTB7

0.92 : . . | |
e
0.91 |- ) e g
P
09+ T ]
089 .- - ‘ .
n 088 - -
<
S 087
0.86
085 | Baselinel —+—
PAGIL <
0.84 Baseline2 ---x---
7 PAG2 &
0.83 ! . . :
5 10 20 30 20 "

Amount of training data (K)
Figure 10: Results of using different sizes of training data
Here, we demonstrate that our approach is still
able to provide improvement, even if we use larger

Note that we also used the tool to perform the word align-
ment automatically.



Baseline | D10 D20 D50 | D100 | GTran
BLEU n/a 14.71 | 15.84 | 16.92 | 17.95 n/a
UAS 87.20 87.63 | 87.67 | 88.20 | 88.49 | 88.58

Table 5: Results of using different translations

training data that result in strong baseline systems.
We incrementally increased the training sentences
from the CTB7. Figure 10 shows the results of us-
ing different sizes of CTB7 training data, where the
numbers of the x-axis refer to the sentence numbers
of training data used, Baselinel and Baseline2 re-
fer to the first- and second-order baseline systems,
and PAG1 and PAG?2 refer to our first- and second-
order systems. The figure indicated that our sys-
tem always outperformed the baseline systems. For
small data sizes, our system performed much better
than the baselines. For example, when using 5,000
sentences, our second-order system provided a 1.26
points improvement over the second-order baseline.
Finally, when we used all of the CTB7 training
data, our system achieved 91.66 for the second-order
model, while the baseline achieved 91.10.

6.4 With different settings of SMT systems

We investigated the effects of different settings of
SMT systems. We randomly selected 10%, 20%,
and 50% of FBIS to train the Moses systems and
used them to translate CTB2;,. The results are in
Table 5, where D10, D20, D50, and D100 refer to
the system with 10%, 20%, 50%, and 100% data re-
spectively. For reference, we also used the Google-
translate online system’, indicated as GTran in the
table, to translate the CTB2y,.

From the table, we found that our system outper-
formed the Baseline even if we used only 10% of the
FBIS corpus. The BLEU and UAS scores became
higher, when we used more data of the FBIS corpus.
And the gaps among the results of D50, D100, and
GTran were small. This indicated that our approach
was very robust to the noise produced by the SMT
systems.

6.5 Testing with auto-translation

We also translated the test data into English using
the Moses system and tested the parsers on the new

"http://translate.google.com/
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test data. Table 6 shows the results.

The results

showed that PAG outperformed the baseline systems
for both the first- and second-order models. This
indicated that our approach can provide improve-
ment in a purely monolingual setting with the help
of SMT.

Order-1 Order-2
Baseline | 84.35 87.20
PAG 84.88(+0.53) | 87.89(+0.69)

Table 6: Results of testing with auto-translation (training
with CTB2,,)

6.6 Comparison results

With CTB2y, With CTB7
Type | System UAS System | UAS
M Baseline 87.20 Baseline | 91.10
Huang2009 86.3 n/a
HA | Chen2010p; 88.56
Chen201047 | 90.13
AG PAG 88.49 PAG 91.66
PAG+ST; 89.75

Table 7: Comparison of our results with other pre-
vious reported systems. Type M denotes training on
monolingual treebank. Types HA and AG denote training
on human-annotated and auto-generated bilingual tree-
banks respectively. B

We compared our results with the results reported
previously for the same data. Table 7 lists the re-
sults, where Huang2009 refers to the result of Huang
et al. (2009), Chen2010p; refers to the result of
using bilingual features in Chen et al. (2010), and
Chen2010 411 refers to the result of using all of
the features in Chen et al. (2010). The results
showed that our new parser achieved better accuracy
than Huang2009 and comparable to Chen2010p;.
To achieve higher performance, we also added the
source subtree features (Chen et al., 2009) to our
system: PAG+ST;. The new result is close to
Chen201047r. Compared with the approaches of



Huang et al. (2009) and Chen et al. (2010), our
approach used an auto-generated bilingual treebank
while theirs used a human-annotated bilingual tree-
bank. By using all of the training data of CTB7, we
obtained a more powerful baseline that performed
much better than the previous reported results. Our
parser achieved 91.66, much higher accuracy than
the others.

7 Conclusion

We have presented a simple yet effective approach
to improve bitext parsing with the help of SMT sys-
tems. Although we trained our parser on an auto-
generated bilingual treebank, we achieved an accu-
racy comparable to the systems trained on human-
annotated bilingual treebanks on the standard test
data. Moreover, our approach continued to pro-
vide improvement over the baseline systems when
we used a much larger monolingual treebank (over
50,000 sentences) where target human translations
are not available and very hard to construct. We also
demonstrated that the proposed approach can be ef-
fective in a purely monolingual setting with the help
of SMT.
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Abstract

We present a novel approach to Data-Oriented
Parsing (DOP). Like other DOP models, our
parser utilizes syntactic fragments of arbitrary
size from a treebank to analyze new sentences,
but, crucially, it uses only those which are
encountered at least twice. This criterion al-
lows us to work with a relatively small but
representative set of fragments, which can be
employed as the symbolic backbone of sev-
eral probabilistic generative models. For pars-
ing we define a transform-backtransform ap-
proach that allows us to use standard PCFG
technology, making our results easily replica-
ble. According to standard Parseval metrics,
our best model is on par with many state-of-
the-art parsers, while offering some comple-
mentary benefits: a simple generative proba-
bility model, and an explicit representation of
the larger units of grammar.

1 Introduction

Data-oriented Parsing (DOP) is an approach to
wide-coverage parsing based on assigning structures
to new sentences using fragments of variable size
extracted from a treebank. It was first proposed by
Scha in 1990 and formalized by Bod (1992), and
preceded many developments in statistical parsing
(e.g., the “treebank grammars” of Charniak 1997)
and linguistic theory (e.g., the current popularity
of “constructions”, Jackendoff 2002). A rich lit-
erature on DOP has emerged since, yielding state-
of-the-art results on the Penn treebank benchmark
test (Bod, 2001; Bansal and Klein, 2010) and in-
spiring developments in related frameworks includ-
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ing tree kernels (Collins and Duffy, 2002), reranking
(Charniak and Johnson, 2005) and Bayesian adaptor
and fragment grammars (e.g., Johnson et al., 2007;
O’Donnell et al., 2009; Cohn et al., 2010). By for-
malizing the idea of using large fragments of earlier
language experience to analyze new sentences, DOP
captures an important property of language cogni-
tion that has shaped natural language. It therefore
complements approaches that have focused on prop-
erties like lexicalization or incrementality, and might
bring supplementary strengths in other NLP tasks.

Early versions of DOP (e.g., Bod et al., 2003)
aimed at extracting all subtrees of all trees in the
treebank. The total number of constructions, how-
ever, is prohibitively large for non-trivial treebanks:
it grows exponentially with the length of the sen-
tences, yielding the astronomically large number of
approximately 10%® for section 2-21 of the Penn
WSJ corpus. These models thus rely on a big sample
of fragments, which inevitably includes a substan-
tial portion of overspecialized constructions. Later
DOP models have used the Goodman transforma-
tion (Goodman, 1996, 2003) to obtain a compact
representation of all fragments in the treebank (Bod,
2003; Bansal and Klein, 2010). In this case the
grammatical constructions are no longer explicitly
represented, and substantial engineering effort is
needed to optimally tune the models and make them
efficient.

In this paper we present a novel DOP model
(Double-DOP) in which we extract a restricted yet
representative subset of fragments: those recurring
at least twice in the treebank. The explicit represen-
tation of the fragments allows us to derive simple

Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 84-95,
Edinburgh, Scotland, UK, July 27-31, 2011. (©2011 Association for Computational Linguistics



ways of estimating probabilistic models on top of the
symbolic grammar. This and other implementation
choices aim at making the methodology transparent
and easily replicable. The accuracy of Double-DOP
is well within the range of state-of-the-art parsers
currently used in other NLP-tasks, while offering the
additional benefits of a simple generative probability
model and an explicit representation of grammatical
constructions.

The contributions of this paper are summarized as
follows: (i) we describe an efficient tree-kernel algo-
rithm which allows us to extract all recurring frag-
ments, reducing the set of potential elementary units
from the astronomical 10%® to around 10°. (ii) We
implement and compare different DOP estimation
techniques to induce a probability model (PTSG)
on top of the extracted symbolic grammar. (iii)
We present a simple transformation of the extracted
fragments into CFG-rules that allows us to use off-
the-shelf PCFG parsing and inference. (iv) We in-
tegrate Double-DOP with recent state-splitting ap-
proaches (Petrov et al., 2006), yielding an even more
accurate parser and a better understanding of the re-
lation between DOP and state-splitting.

The rest of the paper is structured as follows. In
section 2 we describe the symbolic backbone of the
grammar formalism that we will use for parsing.
In section 3 we illustrate the probabilistic exten-
sion of the grammar, including our transformation
of PTSGs to PCFGs that allows us to use a standard
PCFG parser, and a different transform that allows
us to use a standard implementation of the inside-
outside algorithm. In section 4 we present the ex-
perimental setup and the results.

2 The symbolic backbone

The basic idea behind DOP is to allow arbitrarily
large fragments from a treebank to be the elemen-
tary units of production of the grammar. Fragments
can be combined through substitution to obtain the
phrase-structure tree of a new sentence. Figure 1
shows an example of a complete syntactic tree ob-
tained by combining three elementary fragments. As
in previous work, two fragments f; and f; can be
combined (f; o f;) only if the leftmost substitution
site X | in f; has the same label as the root node of
fj: in this case the resulting tree will correspond to
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fi with f; replacing X. The DOP formalism is dis-
cussed in detail in e.g., Bod et al. (2003).

S

NP
— NP o
NP| VP !—F‘—\ I
o DT NNP NNP o | ‘ |
VBD NPJ | ‘ ‘
‘ The Free French black arm  bands
wore
S
A S
NP VP
‘ \
[ T ] T |
DT NNP NNP VBD NP

N O B e s

The Free French wore JJ NN NNS

black arm bands

Figure 1: An example of a derivation of a complete syn-
tactic structure (below) obtained combining three ele-
mentary fragments (above) by means of the substitution
operation o. Substitution sites are marked with |.

2.1 Finding Recurring Fragments

The first step to build a DOP model is to define its
symbolic grammar, i.e. the set of elementary frag-
ments in the model. In the current work we explic-
itly extract a subset of fragments from the training
treebank. To limit the fragment set size, we use a
simple but heretofore unexplored constraint: we ex-
tract only those fragments that occur two or more
times in the treebank'. Extracting this particular
set of fragments is not trivial, though: a naive ap-
proach that filters a complete table of fragments to-
gether with their frequencies fails because that set, in
a reasonably sized treebank, is astronomically large.
Instead, we use a dynamic programming algorithm
based on tree-kernel techniques (Collins and Dufty,
2001; Moschitti, 2006; Sangati et al., 2010).

The algorithm iterates over every pair of trees in

"More precisely we extract only the largest shared fragments
for all pairs of trees in the treebank. All subtrees of these ex-
tracted fragments necessarily also occur at least twice, but they
are only explicitly represented in our extracted set if they hap-
pen to form a largest shared fragment from another pair of trees.
Hence, if a large tree occurs twice in the treebank the algorithm
will extract from this pair only the full tree as a fragment and
not all its (exponentially many) subtrees.
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Figure 2: Left: example of two trees sharing a single maximum fragment, circled in the two trees. Right: the chart
M which is used in the dynamic algorithm to extract all maximum fragments shared between the two trees. The
highlighted cells in the chart are the ones which contribute to extract the shared fragment. The marked cells are those
for which the corresponding nodes in the two tree have equivalent labels but differ in their lists of child nodes.

the treebank to look for common fragments. Fig-
ure 2 shows an example of a pair of trees («, 3) be-
ing compared. The algorithm builds a chart M with
one column for every indexed non-terminal node «;
in «, and one row for every indexed non-terminal
node 3; in 5. Each cell M (3, j) identifies a set of in-
dices corresponding to the largest fragment in com-
mon between the two trees starting from «a; and f3;.
This set is empty if o; and 3; differ in their labels,
or they don’t have the same list of child nodes. Oth-
erwise (if both the labels and the lists of children
match) the set is computed recursively as follows:

M(i, j) = {ai} U

U

ce={1,2,...,|ch(a)|}

Mch(aa,e),ch(Bs,e)) | P

where ch(«) returns the indices of ’s children, and
ch(a, c) the index of its ¢! child.

After filling the chart, the algorithm extracts the
set of recurring fragments, and stores them in a ta-
ble to keep track of their counts. This is done by
converting back each fragment implicitly defined in
every cell-set?, and filtering out those that are prop-
erly contained in others.

In a second pass over the treebank, exact counts
are obtained for each fragment in the extracted set.

2A cell-set containing a single index corresponds to the frag-
ment including the node with that index together with all its
children.
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Parse trees in the training corpus are not necessarily
covered entirely by recurring fragments; to ensure
coverage, we also include in the symbolic backbone
of our Double-DOP model all PCFG-productions
not included in the set of extracted fragments.

2.2 Comparison with previous DOP work

Explicit grammars The number of recurring frag-
ments in our symbolic grammar, extracted from
the training sections of the Penn WSJ treebank?, is
around 1 million, and thus is significantly lower than
previous work extracting explicit fragments (e.g.,
Bod, 2001, used more than 5 million fragments up
to depth 14).

When looking at the extracted fragments we ask
if we could have predicted which fragments occur
twice or more. Figure 3 attempts to tackle this ques-
tion by reporting some statistics on the extracted
fragments. The majority of fragments are rather
small with a limited number of words or substitution
sites in the frontier. Yet, there is a significant por-
tion of fragments, in the tail of the distribution, with
more than 10 words or substitution sites. Since the
space of all fragments with such characteristics is
enormously large, selecting big recurring fragments
using random sampling technique is like finding a
needle in a haystack. Hence, random sampling pro-
cesses (like Bod, 2001), will tend to represent fre-

3This is after the treebank has been preprocessed. See also
section 4.



quent recurring constructions such as from NP to
NP or whether S or not, together with infrequent
overspecialized fragments like from Houston to NP,
while missing large generic constructions such as
everything you always wanted to know about NP but
were afraid to ask. These large constructions are
excluded completely by models that only allow ele-
mentary trees up to a certain depth (typically 4 or 5)
into the symbolic grammar (Zollmann and Sima’an,
2005; Zuidema, 2007; Borensztajn et al., 2009), or
only elementary trees with exactly one lexical an-
chor (Sangati and Zuidema, 2009).

6
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Figure 3: Distribution of the recurring fragments types
according to several features: depth, number of words,
and number of substitution sites. Their corresponding
curves peak at 4 (depth), 1 (words), and 4 (substitution
sites).

Implicit grammars Goodman (1996, 2003) de-
fined a transformation for some versions of DOP to
an equivalent PCFG-based model, with the number
of rules extracted from each parse tree linear in the
size of the trees. This transform, representing larger
fragments only implicitly, is used in most recent
DOP parsers (e.g., Bod, 2003; Bansal and Klein,
2010). Bod has promoted the Goodman transform as
the solution to the computational challenges of DOP
(e.g., Bod, 2003); it’s important to realize, how-
ever, that the resulting grammars are still very large:
WSJ sections 2-21 yield about 2.5 million rules in
the basic version of Goodman’s transform. More-
over, the transformed grammars differ from untrans-
formed DOP grammars in that larger fragments are
no longer explicitly represented. Rather, informa-
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tion about their frequency is distributed over many
CFG-rules: if a construction occurs n times and con-
tains m context-free productions, Goodman’s trans-
form uses the weights of 7nm + m rules to encode
this fact. Thus, the information that the idiomatic
fragment (PP (IN “out”) (PP (IN “of”) (NP (NN
“town”))))) occurs 3 times in WSJ sections 2-21, is
distributed over 132 rules. This way, an attractive
feature of DOP, viz. the explicit representation of
the ‘productive units’ of language, is lost*.

In addition, grammars that implicitly encode all
fragments found in a treebank are strongly biased to
over-represent big constructions: the great majority
of the entire set of fragments belongs in fact to the
largest tree in the treebank>. DOP models relying on
Goodman’s transform, need therefore to counteract
this tendency. Bansal and Klein (2010), for instance,
rely on a sophisticated tuning technique to correctly
adjust the weights of the rules in the grammar. In
our Double-DOP approach, instead, the number of
fragments extracted from each tree varies much less
(it ranges between 4 and 1,759). This comparison is
shown in figure 4.

3 The probabilistic model

Like CFG grammars, our symbolic model produces
extremely many parse trees for a given test sentence.
We therefore need to disambiguate between the pos-
sible parses by means of a probability model that as-
signs probabilities to fragments, and defines a proper
distribution over the set of possible full parse trees.
For every nonterminal X in the treebank we have:

>oo(f)=1 )

feFx

where Fx is the set of fragments in our sym-
bolic grammar rooted in X. A derivation d =
f1, fo, ..., fn of tisasequence of the fragments that
through left-most substitution produces ¢. The prob-
ability of a derivation is computed as the product of

“Bansal and Klein (2010) address this issue for contigu-
ous constructions by extending the Goodman transform with
a ‘Packed Graph Encoding’ for fragments that “bottom out in
terminals”. However, constructions with variable slots, such as
whether S or not, are left unchanged.

>In fact, the number of extracted fragments increase expo-
nentially with the size of the tree.
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Figure 4: Number of fragments extracted from each tree
in sections 2-21 of the WSIJ treebank, when considering
all-fragments (dotted line) and recurring-fragments (solid
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number of fragments. Note the double logarithmic scale
on the y-axis.

the probability of each of its fragments.

P(d) = [ p(f)

fed

3)

In section 3.2 we describe ways of obtaining dif-
ferent probability distributions over the fragments in
our grammar. In the following section we assume a
given probabilistic model, and illustrate how to use
standard PCFG parsing.

3.1 Parsing

It is possible to define a simple transform of our
probabilistic fragment grammar, such that off-the-
shelf parsers can be used. In order to perform
the PTSG/PCFG conversion, every fragment in our
grammar must be mapped to a CFG rule which will
keep the same probability as the original fragment.
The corresponding rule will have as the left hand
side the root of the fragment and as the right hand
side its yield, i.e., a sequence of terminals and non-
terminals (substitution sites).

It might occur that several fragments are mapped
to the same CFG rule®. These are interesting cases
of syntactic ambiguity as shown in figure 5. In order
to resolve this problem we need to map each am-
biguous fragment to two unique CFG rules chained

%In our binarized treebank we have 31,465 fragments types
that are ambiguous in this sense.
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by a unique artificial node, as shown at the bottom
of the same figure. To the first CFG rule in the chain
we assign the probability of the fragment, while the
second will receive probability 1, so the product
gives back the original probability. The ambiguous
and unambiguous PTSG/PCFG mappings need to be
stored in a table, in order to convert back the com-
pressed CFG derivations to the original PTSG model
after parsing.

Such a transformed PCFG will generate the same
derivations as the original PTSG grammar with iden-
tical probabilities. In our experiment we use a stan-
dard PCFG parser to produce a list of k-best Viterbi
derivations. These, in turn, will be used to maximize
possible objectives as described in section 3.3.

VP
—— VP
VBD NP e
—— VBD NP PP
NP PP — —
e — DT NN IN NP
DT NN IN NP |
| “with”
“with”
VP VP
NODE@7276 NODE@7277
NODE@7276 NODE@7277

|
f T T T ! f T T T !
VBD DT NN “with” NP VBD DT NN “with” NP

Figure 5: Above: example of 2 ambiguous fragments
mapping to the same CFG rule VP — VBD DT NN
“with” NP. The first fragment occurs 5 times in the train-
ing treebank, (e.g. in the sentence was an executive with
a manufacturing concern) while the second fragment oc-
curs 4 times (e.g. in the sentence began this campaign
with such high hopes). Below: the two pairs of CFG rules
that are used to map the two fragments to separate CFG
derivations.

3.2 Inducing probability distributions

Relative Frequency Estimate (RFE) The sim-
plest way to assign probabilities to fragments is to
make them proportional to their counts’ in the train-
ing set. When enforcing equation 2, that gives the

"We refer to the counts of each fragment as returned by our
extraction algorithm in section 2.1.



Relative Frequency Estimate (RFE):

count(f)

pRFE(f) = Zf/EFroot(f) count(f’)

“

Unlike RFE for PCFGs, however, the RFE for
PTSGs has no clear probabilistic interpretation. In
particular, it does not yield the maximum likelihood
solution, and when used as an estimator for an all-
fragments grammar, it is strongly biased since it as-
signs the great majority of the probability mass to
big fragments (Johnson, 2002). As illustrated in fig-
ure 4 this bias is much weaker when restricting the
set of fragments with our approach. Although this
does not solve all theoretical issues, it makes RFE a
reasonable first choice again.

Equal Weights Estimate (EWE) Various other
ways of choosing the weights of a DOP grammar
have been worked out. The best empirical results
have been reported by Bod (2003) with the EWE
proposed by Goodman (2003). Goodman defined it
for grammars in the Goodman transform, but for ex-
plicit grammars it becomes:

ewe(f) = M &)
v ET:B {Fet)]
pEWE(f) = wEWE(f) (6)

Zf’eFmot(f) Wewe(f')

where the first sum is over all parse trees ¢ in the tree-
bank (TB), count(f,t) gives the number of times
fragment f occurs in ¢, and |{f’ € t}| is the total
number of subtrees of ¢ that were included in the
symbolic grammar.

Maximum Likelihood (ML) For reestimation,
we can aim at maximizing the likelihood (ML) of
the treebank. For this, it turns out that we can de-
fine another transformation of our PTSG, such that
we can apply standard Inside-Outside algorithm for
PCFGs (Lari and Young, 1990). The original ver-
sion of 10 is defined over string rewriting PCFGs,
and maximizes the likelihood of the training set con-
sisting of plain sentences. Reestimation shifts prob-
ability mass between alternative parse trees for a
sentence. In contrast, our grammars consist of frag-
ments of various size, and our training set consists
of parse trees. Reestimation here shifts probability
mass between alternative derivations for a parse tree.

&9

Our transformation approach is illustrated with an
example in figure 6. In step (b) the fragments in
the grammar as well as the original parse trees in
the treebank are “flattened” into bracket notation. In
step (c) each fragment is transformed into a CFG
rule in the transformed meta-grammar, whose right-
hand side is constituted by the bracket notation of
the fragment. Each substitution site X is raised to
a meta-nonterminal X', and all other symbols, in-
cluding parentheses, become meta-terminals. The
left-hand side of the rule is constituted by the origi-
nal root symbol R of the fragment raised to a meta-
nonterminal R’'.

The resulting PCFG generates trees in bracket no-
tation, and we can run an of-the-shelf inside-outside
algorithm by presenting it parse trees from the train
corpus in bracket notation®. In the experiments that
we report below we used the RFE from section 3, to
generate the initial weights for the grammar.

S S
.l ! .
(a) Al B ° - A B
| x ||
y Xy
(b) (SAL(By)) ° (AXx) = (S(Ax)(By))
) SS—=(SA(By)) o A—=(Ax) =
s
[
[T T T T T
S A (B y))
(A Xx)

(@ (S(Ax)(By))

Figure 6: Rule and tree transforms that turn PTSG rees-
timation into PCFG reestimation; (a) a derivation of the
sentence x y through successive substitutions of elemen-
tary trees from a PTSG; (b) the same elementary trees
and resulting parse tree in bracket notation; (c) an equiva-
lent derivation with the meta-grammar, where the original
substitution sites reappear as meta-nonterminals (marked
with a prime) and all other symbols as meta-terminals;
(d) the yield of the derivation in c.

$However, the results with inside-outside reported in this pa-
per were obtained with an earlier version of our code that uses
an equivalent but special-purpose implementation.



3.3 Maximizing Objectives

MPD The easiest objective in parsing, is to se-
lect the most probable derivation (MPD), obtained
by maximizing equation 3.

MPP A DOP grammar can often generate the
same parse tree t through different derivations
D(t) = di,da,...dy,. The probability of ¢ is there-
fore obtained by summing the probabilities of all its
possible derivations.

opd=> 1IrH

deD(t) deD(t) fed

P(t) =

An intuitive objective for a parser is to select, for
a given sentence, the parse tree with highest proba-
bility according to equation 7, i.e., the most probable
parse (MPP): unfortunately, identifying the MPP is
computationally intractable (Sima’an, 1996). How-
ever, we can approximate the MPP by deriving a list
of k-best derivations, summing up the probabilities
of those resulting in the same parse tree, and select
the tree with maximum probability.

MCP, MRS Following Goodman (1998), Sima’an
(1999, 2003), and others, we also consider other
objectives, in particular, the max constituent parse
(MCP), and the max rule sum (MRS).

MCP maximizes a weighted average of the ex-
pected labeled recall L/N¢ and (approximated) la-
beled precision L/N¢ under the given posterior dis-
tribution, where L is the number of correctly labeled
constituents, N the number of constituents in the
correct tree, and N the number of constituents in
the guessed tree. Recall is easy to maximize since
the estimated N¢ is constant. L/N¢ can be in fact
maximized in:

t = argmaXZP(lc) (8)

¢ lcet

where [c ranges over all labeled constituents in ¢
and P(lc) is the marginalized probability of all the
derivation trees in the grammar yielding the sentence
under consideration which contains [c.

Precision, instead, is harder because the denom-
inator Ng depends on the chosen guessed tree.
Goodman (1998) proposes to look at another metric
which is strongly correlated with precision, which is
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the mistake rate (Ng — L) /N that we want to min-
imize. We combine recall with mistake rate through
linear interpolation:

R L Ng— L
t = E(— —A\—— 9
arg;nax (NC No ) 9)
= argmax g P(le) = M1 = P(le)) (10)

t lcet

where 10 is obtained from 9 assuming N¢ constant,
and the optimal level for A has to be evaluated em-
pirically.

Unlike MPP, the MCP can be calculated effi-
ciently using dynamic programming techniques over
the parse forest. However, in line with the aims of
this paper to produce an easily reproducible imple-
mentation of DOP, we developed an accurate ap-
proximation of the MCP using a list of k-best deriva-
tions, such as those that can be obtained with an off-
the-shelf PCFG parser.

We do so by building a standard CYK chart,
where every cell corresponds to a specific span in
the test sentence. We store in each cell the proba-
bility of seeing every label in the grammar yielding
the corresponding span, by marginalizing the prob-
abilities of all the parse trees in the obtained k-best
derivations that contains that label covering the same
span. We then compute the Viterbi-best parse maxi-
mizing equation 10.

We implement max rule sum (MRS) in a similar
way, but do not only keep track of labels in every
cell, but of each CFG rule that span the specific yield
(see also Sima’an, 1999, 2003). We haven’t im-
plemented the max rule product (MRP) where pos-
teriors are multiplied instead of added (Petrov and
Klein, 2007; Bansal and Klein, 2010).

4 Experimental Setup

In order to build and test our Double-DOP model®,
we employ the Penn WSJ Treebank (Marcus et al.,
1993). We use sections 2-21 for training, section 24
for development and section 23 for testing.

Treebank binarization We start with some pre-
processing of the treebank, following standard prac-

The software produced for running our model is publicly
available and included in the supplementary material to this pa-
per. To the best of our knowledge this is the first DOP software
released that can be used to parse the WSJ PTB.
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Figure 7: The binarized version of the tree in figure 1,
with H=1 and P=1.

tice in WSJ parsing. We remove traces and func-
tional tags. We apply a left binarization of the train-
ing treebank as in Matsuzaki et al. (2005) and Klein
and Manning (2003), setting the horizontal history
H=1 and the parent labeling P=1. This means that
when a node has more than 2 children, the i child
(for ¢ > 3) is conditioned on child ¢ — 1. Moreover
the labels of all non-lexical nodes are enriched with
the labels of their parent node. Figure 7 shows the
binarized version of the tree structure in figure 1.

Unknown words We replace words appearing less
than 5 times in the training data by one of 50 un-
known word categories based on the presence of lex-
ical features as implemented in Petrov (2009). In
some of the experiments we also perform a smooth-
ing over the lexical elements assigning low counts
(e = 0.01) to open-class (words, PoS-tags) pairs not
encountered in the training corpus'®.

Fragment extraction We extract the symbolic
grammar and fragment frequencies from this prepro-
cessed treebank as explained in section 2. This is
the the most time-consuming step (around 160 CPU
hours'!).

In the extracted grammar we have in total
1,029,342 recurring fragments and 17,768 unseen
CFG rules. We test several probability distributions
over the fragments (section 3.2) and various maxi-
mization objectives (section 3.3).

10A PoS-tag is an open class if it rewrites to at least 50 differ-
ent words in the training corpus. A word is an open class word
if it has been seen only with open-class PoS-tags.

T Although our code could still be optimized further, it does
already allow for running the job on M CPUs in parallel, reduc-
ing the time required by a factor M (10 hours with 16-CPUs).
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Figure 8: Double-DOP results on the development sec-
tion (< 40) with different maximizing objectives.

Parsing We convert our PTSG into a PCFG (sec-
tion 3.1) and use Bitpar!'? for parsing. For approx-
imating MPP and other objectives we marginalize
probabilities from the 1,000 best derivations.

4.1 Results

We start by presenting in figure 8 the results we ob-
tain on the development set (section 24). Here we
compare the maximizing objectives presented in sec-
tion 3.3, using RFE to obtain the probability distri-
bution over the fragments. We conclude that, em-
pirically, MCP for A = 1.15, is the best choice to
maximize F1, followed by MRS, MPP, and MPD.

We also compare the various estimators presented
in section 3.2, on the same development set, keep-
ing MCP with A = 1.15 as the maximizing objec-
tive. We find that RFE is the best estimator (87.2
F1'3) followed by EWE (86.8) and ML (86.6). Our
best results with ML are obtained when removing
fragments occurring less than 6 times (apart from
CFG-rules) and when stopping at the second iter-
ation. This filtering is done in order to limit the
number of big fragments in the grammar. It is well
known that IO for DOP tends to assign most of the
probability mass to big fragments, quickly overfit-
ting the training data. It is surprising that EWE and
ML perform worse than RFE, in contrast to earlier
findings (Bod, 2003).

lzhttp: //www.ims.uni-stuttgart.de/tcl/
SOFTWARE/BitPar.html

Bwe computed F1 scores with EvalB (http://nlp.cs.
nyu.edu/evalb/) using parameter file new.prm.
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Figure 9: Performance (on the development set) and size
of Double-DOP when considering only fragments whose
occurring frequency in the training treebank is above a
specific threshold (x-axis). In all cases, all PCFG-rules
are included in the grammars. For instance, at the right-
hand side of the plot a grammar is evaluated which in-
cluded only 6754 fragments with a frequency > 100 as
well as 39227 PCFG rules.

We also investigate how a further restriction on
the set of extracted fragments influences the perfor-
mance of our model. In figure 9 we illustrate the
performance of Double-DOP when restricting the
grammar to fragments having frequencies greater
than 1,2,...,100. We can notice a rather sharp
decrease in performance as the grammar becomes
more and more compact.

Next, we present some results on various Double-
DOP grammars extracted from the same training
treebank after refining it using the Berkeley state-
splitting model'* (Petrov et al., 2006; Petrov and
Klein, 2007). In total we have 6 increasingly refined
versions of the treebank, corresponding to the 6 cy-
cles of the Berkeley model. We observe in figure 10
that our grammar is able to benefit from the state
splits for the first four levels of refinement, reaching
the maximum score at cycle 4, where we improve
over our base model. For the last two data points, the
treebank gets too refined, and using Double-DOP
model on top of it, no longer improves accuracy.

We have also compared our best Double-DOP

14We use the Berkeley grammar labeler following the base
settings for the WSJ: trees are right-binarized, H=0, and
P=0. Berkeley parser package is available at http://code.
google.com/p/berkeleyparser/
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Figure 10: Comparison on section 24 between the per-
formance of Double-DOP (using RFE and MCP with
A = 1.15, H=0, P=0) and Berkeley parser on different
stages of refinement of the treebank/grammar.

base model and the Berkeley parser on per-category
performance. Here we observe an interesting trend:
the Berkeley parser outperforms Double-DOP on
very frequent categories, while Double-DOP per-
forms better on infrequent ones. A detailed com-
parison is included in table 1.

Finally, in table 2 we present our results on the
test set (section 23). Our best model (according to
the best settings on the development set) performs
slightly worse than the one by Bansal and Klein
(2010) when trained on the original corpus, but out-
performs it (and the version of their model with
additional refinements) when trained on the refined
version, in particular for the exact match score.

5 Conclusions

We have described Double-DOP, a novel DOP ap-
proach for parsing, which uses all constructions re-
curring at least twice in a treebank. This method-
ology is driven by the linguistic intuition that con-
structions included in the grammar should prove to
be reusable in a representative corpus.

The extracted set of fragments is significantly
smaller than in previous approaches. Moreover con-
structions are explicitly represented, which makes
them potentially good candidates as semantic or
translation units to be used in other applications.

Despite earlier reported excellent results with
DOP parsers, they are almost never used in other



Category % Fl1 Fl1

label in gold | Berkeley | Double-DOP
NP 41.42 91.4 89.5
VP 20.46 90.6 88.6
S 13.38 90.7 87.6
PP 12.82 85.5 84.1
SBAR 3.47 86.0 82.1
ADVP 3.36 82.4 81.0
ADJP 2.32 68.0 67.3
QP 0.98 82.8 84.6
WHNP 0.88 94.5 92.0
WHADVP 0.33 92.8 91.9
PRN 0.32 83.0 779
NX 0.29 9.50 7.70
SINV 0.28 90.3 88.1
SQ 0.14 82.1 79.3
FRAG 0.10 26.4 34.3
SBARQ 0.09 84.2 88.2
X 0.06 72.0 83.3
NAC 0.06 54.6 88.0
WHPP 0.06 91.7 44.4
CONJP 0.04 55.6 66.7
LST 0.03 61.5 333
ucCp 0.03 30.8 50.0
INTJ 0.02 44.4 571

Table 1: Comparison of the performance (per-category
F1 score) on the development set between the Berkeley
parser and the best Double-DOP model.

NLP tasks: where other successful parsers often fea-
ture as components of machine translation, semantic
role labeling, question-answering or speech recogni-
tion systems, DOP is conspicuously absent in these
neighboring fields (but for a possible application of
closely related formalisms see, e.g., Yamangil and
Shieber, 2010). The reasons for this are many, but
most important are probably the computational inef-
ficiency of many instances of the approach, the lack
of downloadable software and the difficulties with
replicating some of the key results.

In this paper we have addressed all three obsta-
cles: our efficient algorithm for identifying the re-
current fragments in a treebank runs in polynomial
time. The transformation to PCFGs that we define
allows us to use a standard PCFG parser, while re-
taining the benefit of explicitly representing larger
fragments. A different transform also allows us to
run the popular inside-outside algorithm. Although
IO results are slightly worse than with the naive
relative frequency estimate, it is important to es-
tablish that the standard method for dealing with
latent information (i.e., the derivations of a given
parse) is not the best choice in this case. We expect
that other re-estimation methods, for instance Vari-
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test (< 40) test (all)

‘ Parsing Model F1 EX | F1 EX

‘ PCFG Baseline ‘
PCFG (H=1, P=1) 776 172|765 159
PCFG (H=1, P=1) Lex smooth. | 78.5 17.2 | 77.4 16.0

\ FRAGMENT-BASED PARSERS \
Zuidema (2007)* 83.8 269 - -
Cohn et al. (2010) MRS 854 272|847 258
Post and Gildea (2009) 82.6 - - -
Bansal and Klein (2010) MCP | 88.5 33.0 | 87.6 30.8
Bansal and Klein (2010) MCP | 88.7 33.8 | 88.1 31.7
+ Additional Refinement

THIS PAPER

Double-DOP 87.7 33.1 | 86.8 31.0
Double-DOP Lex smooth. 879 33.7 | 87.0 315
Double-DOP-Sp 88.8 359 | 88.2 338
Double-DOP-Sp Lex smooth. 89.7 383 | 89.1 36.1

‘ REFINEMENT-BASED PARSERS
Collins (1999) 88.6 - 88.2 -
Petrov and Klein (2007) 90.6 39.1 | 90.1 37.1

Table 2: Summary of the results of different parsers
on the test set (sec 23). Double-DOP experiments use
RFE, MCP with A\ = 1.15, H=1, P=1; those on state-
splitting (Double-DOP-Sp) use Berkeley cycle 4, H=0,
P=0. Results from Petrov and Klein (2007) already in-
clude smoothing which is performed similarly to our
smoothing technique (see section 4). (* Results on a de-
velopment set, with sentences up to length 20.)

ational Bayesian techniques, could be formulated in
the same manner.

Finally, the availability of our programs, as well
as the third party software that we use, also ad-
dresses the replicability issue. Where some re-
searchers in the field have been skeptical of the DOP
approach to parsing, we believe that our independent
development of a DOP parser adds credibility to the
idea that an approach that uses very many large sub-
trees, can lead to very accurate parsers.
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Abstract

We present a method that paraphrases a given
sentence by first generating candidate para-
phrases and then ranking (or classifying)
them. The candidates are generated by ap-
plying existing paraphrasing rules extracted
from parallel corpora. The ranking compo-
nent considers not only the overall quality of
the rules that produced each candidate, but
also the extent to which they preserve gram-
maticality and meaning in the particular con-
text of the input sentence, as well as the de-
gree to which the candidate differs from the
input. We experimented with both a Max-
imum Entropy classifier and an SVR ranker.
Experimental results show that incorporating
features from an existing paraphrase recog-
nizer in the ranking component improves per-
formance, and that our overall method com-
pares well against a state of the art paraphrase
generator, when paraphrasing rules apply to
the input sentences. We also propose a new
methodology to evaluate the ranking compo-
nents of generate-and-rank paraphrase gener-
ators, which evaluates them across different
combinations of weights for grammaticality,
meaning preservation, and diversity. The pa-
per is accompanied by a paraphrasing dataset
we constructed for evaluations of this kind.

1 Introduction

In recent years, significant effort has been devoted
to research on paraphrasing (Androutsopoulos and
Malakasiotis, 2010; Madnani and Dorr, 2010). The
methods that have been proposed can be roughly
classified into three categories: (i) recognition meth-
ods, i.e., methods that detect whether or not two in-
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put sentences or other texts are paraphrases; (ii) gen-
eration methods, where the aim is to produce para-
phrases of a given input sentence; and (iii) extraction
methods, which aim to extract paraphrasing rules
(e.g., “X wrote Y” “4» Y was authored by X”) or
similar patterns from corpora. Most of the methods
that have been proposed belong in the first category,
possibly because of the thrust provided by related
research on textual entailment recognition (Dagan et
al., 2009), where the goal is to decide whether or not
the information of a given text is entailed by that of
another. Significant progress has also been made in
paraphrase extraction, where most recent methods
produce large numbers of paraphrasing rules from
multilingual parallel corpora (Bannard and Callison-
Burch, 2005; Callison-Burch, 2008; Zhao et al.,
2008; Zhao et al., 2009a; Zhao et al., 2009b; Kok
and Brockett, 2010). In this paper, we are concerned
with paraphrase generation, which has received less
attention than the other two categories.

There are currently two main approaches to para-
phrase generation. The first one treats paraphrase
generation as a machine translation problem, with
the peculiarity that the target language is the same as
the source one. To bypass the lack of large monolin-
gual parallel corpora, which are needed to train sta-
tistical machine translation (SMT) systems for para-
phrasing, monolingual clusters of news articles re-
ferring to the same event (Quirk et al., 2004) or
other similar monolingual comparable corpora can
be used, though sentence alignment methods for par-
allel corpora may perform poorly on comparable
corpora (Nelken and Shieber, 2006); alternatively,
large collections of paraphrasing rules obtained via
paraphrase extraction from multilingual parallel cor-
pora can be used as monolingual phrase tables in a
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phrase-based SMT systems (Zhao et al., 2008; Zhao
et al., 2009a); in both cases, paraphrases can then
be generated by invoking an SMT system’s decoder
(Koehn, 2009). A second paraphrase generation ap-
proach is to treat existing machine translation en-
gines as black boxes, and translate each input sen-
tence to a pivot language and then back to the orig-
inal language (Duboue and Chu-Carroll, 2006). An
extension of this approach uses multiple translation
engines and pivot languages (Zhao et al., 2010).

In this paper, we investigate a different paraphrase
generation approach, which does not produce para-
phrases by invoking machine translation system(s).
We use an existing collection of monolingual para-
phrasing rules extracted from multilingual parallel
corpora (Zhao et al., 2009b); each rule is accompa-
nied by one or more scores, intended to indicate the
rule’s overall quality without considering particular
contexts where the rule may be applied. Instead of
using the rules as a monolingual phrase table and in-
voking an SMT system’s decoder, we follow a gen-
erate and rank approach, which is increasingly com-
mon in several language processing tasks.! Given
an input sentence, we use the paraphrasing rules to
generate a large number of candidate paraphrases.
The candidates are then represented as feature vec-
tors, and a ranker (or classifier) selects the best ones;
we experimented with a Maximum Entropy classi-
fier and a Support Vector Regression (SVR) ranker.

The vector of each candidate paraphrase includes
features indicating the overall quality of the rules
that produced the candidate, the extent to which the
rules preserve grammaticality and meaning in the
particular context of the input sentence, and the de-
gree to which the candidate’s surface form differs
from that of the input; we call the latter factor di-
versity. The intuition is that a good paraphrase is
grammatical, preserves the meaning of the original
sentence, while also being as different as possible.

Experimental results show that including in the
ranking (or classification) component features from
an existing paraphrase recognizer leads to improved
results. We also propose a new methodology to eval-
uate the ranking components of generate-and-rank
paraphrase generators, which evaluates them across
different combinations of weights for grammatical-

ISee, for example, Collins and Koo (2005).
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ity, meaning preservation, and diversity. The paper
is accompanied by a new publicly available para-
phrasing dataset we constructed for evaluations of
this kind. Further experiments indicate that when
paraphrasing rules apply to the input sentences, our
paraphrasing method is competitive to a state of the
art paraphrase generator that uses multiple transla-
tion engines and pivot languages (Zhao et al., 2010).

We note that paraphrase generation is useful in
several language processing tasks. In question an-
swering, for example, paraphrase generators can be
used to paraphrase the user’s queries (Duboue and
Chu-Carroll, 2006; Riezler and Liu, 2010); and
in machine translation, paraphrase generation can
help improve the translations (Callison-Burch et al.,
2006; Marton et al., 2009; Mirkin et al., 2009; Mad-
nani et al., 2007), or it can be used when evaluat-
ing machine translation systems (Lepage and De-
noual, 2005; Zhou et al., 2006; Kauchak and Barzi-
lay, 2006; Pad¢ et al., 2009).

The remainder of this paper is structured as fol-
lows: Section 2 explains how our method gener-
ates candidate paraphrases; Section 3 introduces the
dataset we constructed, which is also used in sub-
sequent sections; Section 4 discusses how candi-
date paraphrases are ranked; Section 5 compares our
overall method to a state of the art paraphrase gen-
erator; and Section 6 concludes.

2 Generating candidate paraphrases

We use the approximately one million English para-
phrasing rules of Zhao et al. (2009b). Roughly
speaking, the rules were extracted from a parallel
English-Chinese corpus, based on the assumption
that two English phrases e; and ey that are often
aligned to the same Chinese phrase c are likely to
be paraphrases and, hence, they can be treated as a
paraphrasing rule e; <+ eo.> Zhao et al.’s method ac-
tually operates on slotted English phrases, obtained
from parse trees, where slots correspond to part of
speech (POS) tags. Hence, rules like the following
three may be obtained, where NN; indicates a noun
slot and NNP; a proper name slot.

2This pivot-based paraphrase extraction approach was first
proposed by Bannard and Callison-Burch (2005). It under-
lies several other paraphrase extraction methods (Riezler et al.,
2007; Callison-Burch, 2008; Kok and Brockett, 2010).



(1) alotof NN; < plenty of NNy
(2) NNP; area <> NNP; region
(3) NNP; wrote NNPy <+ NNP; was written by NNP;

In the basic form of their method, called Model
1, Zhao et al. (2009b) use a log-linear ranker to as-
sign scores to candidate English paraphrase pairs
(e1,€2); the ranker uses the alignment probabilities
P(c|e1) and P(ez|c) as features, along with features
that assess the quality of the corresponding align-
ments. In an extension of their method, Model 2,
Zhao et al. consider two English phrases e; and e5 as
paraphrases, if they are often aligned to two Chinese
phrases ¢; and co, which are themselves paraphrases
according to Model 1 (with English used as the pivot
language). Again, a log-linear ranker assigns a score
to each (e, ea) pair, now with P(cqley), P(ca|er),
and P(ez|cy) as features, along with similar features
for alignment quality. In a further extension, Model
3, all the candidate phrase pairs (ej, ea) are collec-
tively treated as a monolingual parallel corpus. The
phrases of the corpus are aligned, as when aligning
a bilingual parallel corpus, and additional features,
based on the alignment, are added to the log-linear
ranker, which again assigns a score to each (e, es).

The resulting paraphrasing rules e; <> es typi-
cally contain short phrases (up to four or five words
excluding slots) on each side; hence, they can be
used to rewrite only parts of longer sentences. Given
an input (source) sentence .S, we generate candidate
paraphrases by applying rules whose left or right
hand side matches any part of S. For example, rule
(1) matches the source sentence (4); hence, (4) can
be rewritten as the candidate paraphrase (5).

(4) S: He had a lot of [ 5, admiration] for his job.
(5) C': He had plenty of [ yy, admiration] for his job.

Several rules may apply to .S; for example, they may
rewrite different parts of .S, or they may replace the
same parts of S by different phrases. We allow all
possible combinations of applicable rules to apply to
S, excluding combinations that include rules rewrit-
ing overlapping parts of S.* To avoid generating too
many candidates (C'), we use only the 20 rules (that

3We use Stanford’s POS tagger, MaxEnt classifier, and de-
pendency parser; see http://nlp.stanford.edu/.

*A possible extension, which we have not explored, would
be to recursively apply the same process to the resulting C's.
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apply to S) with the highest scores. Zhao et al. actu-
ally associate each rule with three scores. The first
one, hereafter called r1, is the Model 1 score, and the
other two, ro and r3, are the forward and backward
alignment probabilities of Model 3; see Zhao et al.
(2009b) for details. We use the average of the three
scores, hereafter r4, when generating candidates.

Unfortunately, Zhao et al.’s scores reflect the over-
all quality of each rule, without considering the con-
text of the particular .S where the rule is applied.
Szpektor et al. (2008) point out that, for example,
a rule like “X acquire Y <+ “X buy Y may work
well in many contexts, but not in “Children acquire
language quickly”. Similarly, “X charged Y with”
+ “X accused Y of” should not be applied to sen-
tences about charging batteries. Szpektor et al. pro-
pose, roughly speaking, to associate each rule with
a model of the contexts where the rule is applicable,
as well as models of the expressions that typically
fill its slots, in order to be able to assess the applica-
bility of each rule in specific contexts. The rules that
we use do not have associated models of this kind,
but we follow Szpektor et al.’s idea of assessing the
applicability of each rule in each particular context,
when ranking candidates, as discussed below.

3 A dataset of candidate paraphrases

Our generate and rank method relies on existing
large collections of paraphrasing rules to generate
candidate paraphrases. Our main contribution is in
the ranking of the candidates. To be able to evalu-
ate the performance of different rankers in the task
we are concerned with, we first constructed an eval-
uation dataset that contains pairs (S, C) of source
(input) sentences and candidate paraphrases, and we
asked human judges to assess the degree to which
the C of each pair was a good paraphrase of S.

We selected randomly 75 source (.S) sentences
from the AQUAINT corpus, such that at least one
of the paraphrasing rules applied to each S.> For
each S, we generated candidate C's using Zhao et
al.’s rules, as discussed in Section 2. This led to
1,935 (S, C) pairs, approx. 26 pairs for each S. The
pairs were given to 13 judges other than the authors.®
Each judge evaluated approx. 148 (different) (S, C')

5The corpus is available from the LDC (LDC2002T131).
®The judges were fluent, but not native English speakers.
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Figure 1: Distribution of overall quality scores in the
evaluation dataset (1 = totally unacceptable, 4 = perfect).

pairs; each of the 1,935 pairs was evaluated by one
judge. The judges were asked to provide grammati-
cality, meaning preservation, and overall paraphrase
quality scores for each (S, C') pair, each score on a
1-4 scale (1 for totally unacceptable, 4 for perfect);
guidelines and examples were also provided.

Figure 1 shows the distribution of the overall qual-
ity scores in the 1,935 (S, C) pairs of the evalua-
tion dataset; the distributions of the grammaticality
and meaning preservation scores are similar. No-
tice that although we used only the 20 applicable
paraphrasing rules with the highest scores to gen-
erate the (.S, C) pairs, less than half of the candidate
paraphrases (C') were considered good, and approx-
imately only 20% perfect. In other words, apply-
ing paraphrasing rules (even only those with the 20
best scores) to each input sentence .S and randomly
picking one of the resulting candidate paraphrases
C, without any further filtering (or ranking) of the
candidates, would on average produce unacceptable
paraphrases more frequently than acceptable ones.
Hence, the role of the ranking component is crucial.

We also measured inter-annotator agreement by
constructing, in the same way, 100 additional (S, C')
pairs (other than the 1,935) and asking 3 of the 13
judges to evaluate all of them. We measured the
mean absolute error, i.e., the mean absolute differ-
ence in the judges’ scores (averaged over all pairs
of judges) and the mean (over all pairs of judges)
K statistic (Carletta, 1996). In the overall scores,
K was 0.64, which is in the range often taken to
indicate substantial agreement (0.61-0.80).” Agree-
ment was higher for grammaticality (K = 0.81),

"t is also close to 0.67, which is sometimes taken to be a
cutoff for substantial agreement in computational linguistics.
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mean abs. diff. | K-statistic
grammaticality 0.20 0.81
meaning preserv. 0.26 0.59
overall quality 0.22 0.64

Table 1: Inter-annotator agreement when manually eval-
uating candidate paraphrases.

and lower (K = 0.59) for meaning preservation. Ta-
ble 1 shows that the mean absolute difference in the
annotators’ scores was % to i of a point.

Several judges commented that they had trouble
deciding to what extent the overall quality score
should reflect grammaticality or meaning preserva-
tion. They also wondered if it was fair to consider as
perfect candidate paraphrases that differed in only
one or two words from the source sentences, i.e.,
candidates with low diversity. These comments led
us to ignore the judges’ overall quality scores in
some experiments, and to use a weighted average
of grammaticality, meaning preservation, and (auto-
matically measured) diversity instead, with different
weight combinations corresponding to different ap-
plication requirements, as discussed further below.

In the same way, 1,500 more (S, C) pairs (other
than the 1,935 and the 100, not involving previously
seen Ss) were constructed, and they were evaluated
by the first author. The 1,500 pairs were used as
a training dataset in experiments discussed below.
Both the 1,500 training and the 1,935 evaluation
(test) pairs are publicly available.® We occasionally
refer to the training and evaluation datasets as a sin-
gle dataset, but they are clearly separated.

4 Ranking candidate paraphrases

We now discuss the ranking component of our
method, which assesses the candidate paraphrases.

4.1 Features of the ranking component

Each (S, C) pair is represented as a feature vector.
To allow the ranking component to assess the degree
to which a candidate C' is grammatical, or at least
as grammatical as the source S, we include in the
feature vectors the language model scores of S, C,
and the difference between the two scores. We use
a 3-gram language model trained on approximately

8See the paper’s supplementary material.



6.5 million sentences of the AQUAINT corpus.’ To
allow the ranker to consider the (context-insensitive)
quality scores of the rules that generated C' from S,
we also include as features the highest, lowest, and
average 11, 12, 3, and 74 scores (Section 2) of these
rules, 12 features in total.

The features discussed so far are similar to those
employed by Zhao et al. (2009a) in the only compa-
rable paraphrase generation method we are aware of
that uses paraphrasing rules. That method, hereafter
called ZHAO-RUL, uses the language model score
of C and scores similar to 71, 72, r3 in a log-linear
model.'® The log-linear model of ZHAO-RUL is used
by an SMT-like decoder to identify the transforma-
tions (applications of rules) that produce the (hope-
fully) best paraphrase. By contrast, we first gen-
erate a large number of candidates using the para-
phrasing rules, and we then rank them. Unfortu-
nately, we did not have access to an implementa-
tion of ZHAO-RUL to compare against, but below
we compare against another paraphraser proposed
by Zhao et al. (2010), hereafter called ZHAO-ENG,
which uses multiple machine translation engines and
pivot languages, instead of paraphrasing rules, and
which Zhao et al. found to outperform ZHAO-RUL.

To further help the ranking component assess the
degree to which C' preserves the meaning of S, we
also optionally include in the vectors of the (S, C)
pairs the features of an existing paraphrase recog-
nizer (Malakasiotis, 2009) that obtained the best
published results (Androutsopoulos and Malakasio-
tis, 2010) on the widely used MSR paraphrasing cor-
pus.!! Most of the recognizer’s features are com-
puted by using nine similarity measures: Leven-
shtein, Jaro-Winkler, Manhattan, Euclidean, and n-
gram (n = 3) distance, cosine similarity, Dice, Jac-
card, and matching coefficients, all computed on to-
kens; consult Malakasiotis (2009) for details. For
each (S, C') pair, the nine similarity measures are ap-

“We use SRILM; see http://www-speech.sri.com/.

10 Application-specific features are also included, which can
be used, for example, to favor paraphrases that are shorter than
the input in sentence compression (Knight and Marcu, 2002;
Clarke and Lapata, 2008). Similar features could also be added
to application-specific versions of our method.

""The MSR corpus contains pairs that are paraphrases or not.
It is a benchmark for paraphrase recognizers, not generators. It
provides only one paraphrase (true or false) of each source, and
few of the true paraphrases can be obtained by the rules we use.
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plied to ten different forms (sj,c1), ..., (s10,C10)
of (S, C), described below, leading to 90 features.

: The original forms of S and C.

(s1,c1)

<52, ¢2) : S and C with tokens replaced by stems.
(s3,c3) : S and C, with tokens replaced by POS tags.
(s4,c4) : S and C, tokens replaced by soundex codes.!?
(s5,c¢5) : S and C, but having removed non-nouns.
(se,cq) : As previously, but nouns replaced by stems.
(s7,c7) + As previously, nouns replaced by soundex.
(sg,cs) : S and C, but having removed non-verbs.
(sg,c9) : As previously, but verbs replaced by stems.
(s10,c10) : As previously, verbs replaced by soundex.

When constructing all ten forms (s;, ¢;) of (S, C),
synonyms (in any WordNet synset) are treated as
identical words. Additional variants of some of the
90 features compare a sliding window of some of
the s; forms to the corresponding c¢; forms (or vice
versa), adding 40 more features; see Malakasiotis
(2009). Two more Boolean features indicate the ex-
istence or absence of negation in S or C, respec-
tively; and another feature computes the ratio of the
lengths of S and C, measured in tokens. Finally,
three additional features compare the dependency
trees of S and C":

|common dependencies of .S, C|

Rs = |dependencies of S|
Re = |common dependencies of .S, C|
|dependencies of C|
I 2 Rs - Rc
P=t" 7 "Rs+ Rc

The recognizer’s features are 136 in total.!?

Hence, the full feature set of our paraphraser’s rank-
ing component comprises 151 features.

2The Soundex algorithm maps English words to alphanu-
meric codes, so that words with the same pronunciations
receive the same codes, despite spelling differences; see
http://en.wikipedia.org/wiki/Soundex.

3Malakasiotis (2009) shows that although there is a lot of re-
dundancy in the recognizer’s feature set, the full feature set still
leads to better paraphrase recognition results, compared to sub-
sets constructed via feature selection with hill-climbing or beam
search. The same paper reports that the recognizer performs al-
most as well without the last three features, which may not be
available in languages with no reliable dependency parsers. No-
tice, also, that the recognizer does not use paraphrasing rules.



4.2 Learning rate with a MaxEnt classifier

To obtain a first indication of whether or not a rank-
ing component equipped with the features discussed
above could learn to distinguish good from bad can-
didate paraphrases, and to investigate if our train-
ing dataset is sufficiently large, we initially experi-
mented with a Maximum Entropy classifier (with the
151 features) as the ranking component. This initial
version of the ranking component, called ME-REC,
was trained on increasingly larger parts of the train-
ing dataset of Section 3, and it was always evaluated
on the entire test dataset of that section. For simplic-
ity, we used only the judges’ overall quality scores
in these experiments, and we treated the problem as
one of binary classification; overall quality scores of
1 and 2 where conflated to a negative category, and
scores of 3 and 4 to a positive category.

Figure 2 plots the error rate of ME-REC, com-
puted both on the test set and the encountered train-
ing subset. The error rate on the training instances
a learner has encountered is typically lower than the
error rate on the test set (unseen instances); hence,
the former error rate can be seen as a lower bound
of the latter. ME-REC shows signs of having reached
its lower bound when the entire training dataset is
used, suggesting that the training dataset is suffi-
ciently large. The baseline (BASE) of Figure 2 uses
only a threshold on the average 4 (Section 2) of the
rules that turned S into C. If the average r4 is higher
than the threshold, the (S, C') pair is classified in the
positive class, otherwise in the negative one. The
threshold was tuned by experimenting on a sepa-
rate tuning dataset. Clearly, ME-REC outperforms
the baseline, which uses only the average (context-
insensitive) scores of the applied paraphrasing rules.

4.3 Experiments with an SVR ranker

As already noted, when our dataset were constructed
the judges felt it was not always clear to what ex-
tent the overall quality scores should reflect meaning
preservation or grammaticality; and they also won-
dered if the overall quality scores should have also
taken into consideration diversity. To address these
concerns, in the experiments described in this sec-
tion (and the remainder of the paper) we ignored the
judges’ overall scores, and we used a weighted av-
erage of the grammaticality, meaning preservation,
101
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Figure 2: Learning curves of a Maximum Entropy classi-
fier used as the ranking component of our method.

and diversity scores instead; the grammaticality and
meaning preservation scores were those provided by
the judges, while diversity was automatically com-
puted as the edit distance (Levenshtein, computed
on tokens) between S and C'. Stated otherwise, the
correct score y(x;) of each training or test instance
x; (i.e., of each feature vector of an (S, C) pair) was
taken to be a linear combination of the grammati-
cality score g(x;), the meaning preservation score
m(x;), and the diversity d(z;), as in Equation (6),
where A3 =1 — \; — Xo.

y(zi) = A - g(xi) + Ao -m(x;) + Ag - d(x;) (6)

We believe that the \; weights should in prac-
tice be application-dependent. For example, when
paraphrasing user queries to a search engine that
turns them into bags of words, diversity and meaning
preservation may be more important than grammati-
cality; by contrast, when paraphrasing the sentences
of a generated text to avoid repeating the same ex-
pressions, grammaticality is very important. Hence,
generic paraphrase generators, like ours, intended to
be useful in many different applications, should be
evaluated for many different combinations of the \;
weights. Consequently, in the experiments of this
section we trained and evaluated the ranking com-
ponent of our method (on the training and evalua-
tion part, respectively, of the dataset of Section 3)
several times, each time with a different combina-
tion of A\{, Ao, A3 values, with the values of each \;
ranging from 0 to 1 with a step of 0.2.

We employed a Support Vector Regression (SVR)
model in the experiments of this section, instead of
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Figure 3: Performance of our method’s SVR ranking com-
ponent with (SVR-REC) and without (SVR-BASE) the ad-
ditional features of the paraphrase recognizer.

a classifier, given that the y(z;) scores that we want
to predict are real values.!* An SVR is very similar
to a Support Vector Machine (Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2000; Joachims, 2002),
but it is trained on examples of the form (x;, y(z;)),
where z; € R" and y(z;) € R, and it learns a rank-
ing function f : R™ — R that is intended to return
f(x;) values as close as possible to the correct ones
y(z;), given feature vectors z;. In our case, the cor-
rect y(x;) values were those of Equation (6). We call
SVR-REC the SVR ranker with all the 151 features of
Section 4.2, and SVR-BASE the SVR ranker without
the 136 features of the paraphrase recognizer.

We used the squared correlation coefficient p? to
evaluate SVR-REC against SVR-BASE."> The p? co-
efficient shows how well the scores returned by the
SVR are correlated with the desired scores y(x;); the
higher the p? the higher the agreement. Figure 3

!4 Additional experiments confirmed that the SVR per-
forms better than ME-REC as the ranking component. We
use the SVR implementation of LIBSVM, available from
http://www.csie.ntu.edu.tw/~cjlin/libsvm/,
with an RBF kernel and default settings. All the features are
normalized in [—1, 1], when using SVR or ME-REC.

'Tf n is the number of test pairs, f(x;) the score returned by
the SVR for the i-th pair, and y(z;) the correct score, then p? is:

(07 Flm)ys — S0y Flas) iy y(@q))?
(N f(@)? = (S0 F@i)))(n iy v? — (T y(24))?)
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shows the experimental results. Each line from the
diagram’s center represents a different experimental
setting, i.e., a different combination of A; and As;
recall that A3 = 1 — A\; — Xo. The distance of a
method’s curve from the center is the method’s p?
for that setting. The farther a point is from the center
the higher p? is; hence, methods whose curves are
closer to the diagram’s outmost perimeter are better.
Clearly, SVR-REC (which includes the recognizer’s
features) outperforms SVR-BASE (which relies only
on the language model and the scores of the rules).

The two peaks of SVR-REC’s curve are when s
is very high (1 or 0.8), i.e., when y(x;) is dominated
by the diversity score; in these cases, SVR-REC is
at a clear advantage, since it includes features for
surface string similarity (e.g., Levenshtein distance
measured on (si,c1)), which in effect measure di-
versity, unlike SVR-BASE. Even when A is very
high (1 or 0.8), i.e., when all or most of the weight
is placed on grammaticality, SVR-REC outperforms
SVR-BASE, indicating that the extra features in SVR-
REC also contribute towards assessing grammatical-
ity; by contrast SVR-BASE relies exclusively on the
language model for grammaticality. Unfortunately,
when )y is very high (1 or 0.8), i.e., when all or
most of the weight is placed on meaning preserva-
tion, there is no or very small difference between
SVR-REC and SVR-BASE, suggesting that the extra
features of the paraphrase recognizer are not as use-
ful to the SVR, when assessing meaning preserva-
tion, as we would have hoped. Nevertheless, SVR-
REC is overall better than SVR-BASE.

We believe that the dataset of Section 3 and the
evaluation methodology summarized by Figure 3
will prove useful to other researchers, who may wish
to evaluate other ranking components of generate-
and-rank paraphrasing methods against ours, for ex-
ample with different ranking algorithms or features.
Similar datasets of candidate paraphrases can also
be created using different collections of paraphras-
ing rules.'® The same methodology can then be used
to evaluate ranking components on those datasets.

5 Comparison to the state of the art

Having established that SVR-REC is a better config-
uration of our method’s ranker than SVR-BASE, we

1®See Androutsopoulos and Malakasiotis (2010) for pointers.



proceed to investigate how well our overall generate-
and-rank method (with SVR-REC) compares against
a state of the art paraphrase generator.

As already mentioned, Zhao et al. (2010) recently
presented a method (we call it ZHAO-ENG) that out-
performs their previous method (Zhao et al., 2009a),
which used paraphrasing rules and an SMT-like de-
coder (we call that previous method ZHAO-RUL).
Given an input sentence S, ZHAO-ENG produces
candidate paraphrases by translating S to 6 pivot
languages via 3 different commercial machine trans-
lation engines (treated as black boxes) and then back
to the original language, again via 3 machine transla-
tion engines (54 combinations). Roughly speaking,
ZHAO-ENG then ranks the candidate paraphrases by
their average distance from all the other candidates,
selecting the candidate(s) with the smallest distance;
distance is measured as BLEU score (Papineni et
al., 2002).'7 Hence, ZHAO-ENG is also, in effect,
a generate-and-rank paraphraser, but the candidates
are generated by invoking multiple machine transla-
tion engines instead of applying paraphrasing rules,
and they are ranked by the average distance measure
rather than using an SVR.

An obvious practical advantage of ZHAO-ENG is
that it exploits the vast resources of existing com-
mercial machine translation engines when generat-
ing candidate paraphrases, which allows it to always
obtain large numbers of candidate paraphrases. By
contrast, the collection of paraphrasing rules that we
currently use does not manage to produce any can-
didate paraphrases in 40% of the sentences of the
New York Times part of AQUAINT, because no rule
applies. Hence, in terms of ability to always para-
phrase the input, ZHAO-ENG is clearly better, though
it should be possible to improve our methods’s per-
formance in that respect by using larger collections
of paraphrasing rules.!® A further interesting ques-
tion, however, is how good the paraphrases of the
two methods are, when both methods manage to
paraphrase the input, i.e., when at least one para-

7We use the version of ZHAO-ENG that Zhao et al. (2010)
call “selection-based”, since they reported it performs overall
better than an alternative decoding-based version.

18Recall that the paraphrasing rules we use were extracted
from an English-Chinese parallel corpus. Additional rules
could be extracted from other parallel corpora, like Europarl
(http://www.statmt.org/europarl/).
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phrasing rule applies to .S. This scenario can be seen
as an emulation of the case where the collection of
paraphrasing rules is sufficiently large to guarantee
that at least one rule applies to any source sentence.

To answer the latter question, we re-implemented
ZHAO-ENG, with the same machine translation en-
gines and languages used by Zhao et al. (2010).
We also trained our paraphraser (with SVR-REC) on
the training part of the dataset of Section 3. We
then selected 300 random source sentences S from
AQUAINT that matched at least one of the paraphras-
ing rules, excluding sentences that had been used be-
fore. Then, for each one of the 300 S sentences, we
kept the single best candidate paraphrase C; and Co,
respectively, returned by our paraphraser and ZHAO-
ENG. The resulting (S, C1) and (S, C3) pairs were
given to 10 human judges. This time the judges
assigned only grammaticality and meaning preser-
vation scores (on a 1-4 scale); diversity was again
computed as edit distance. Each pair was evaluated
by one judge, who was given an equal number of
pairs from the two methods, without knowing which
method each pair came from. The same judge never
rated two pairs with the same S. Since we had no
way to make ZHAO-ENG sensitive to Aj, A2, A3, we
trained SVR-REC with A\; = A\ = 1/3, as the most
neutral combination of weights.

Table 2 lists the average grammaticality, meaning
preservation, and diversity scores of the two meth-
ods. All scores were normalized in [0, 1], but the
reader should keep in mind that diversity was com-
puted as edit distance, whereas the other two scores
were provided by human judges on a 1-4 scale. The
grammaticality score of our method was better than
ZHAO-ENG’s, and the difference was statistically
significant.!” In meaning preservation, ZHAO-ENG
was slightly better, but the difference was not statis-
tically significant. The difference in diversity was
larger and statistically significant, with the diversity
scores indicating that it takes approximately twice as
many edit operations (insert, delete, replace) to turn
each source sentence to ZHAO-ENG’s paraphrase,
compared to the paraphrase of our method.

We note that our method can be tuned, by ad-
justing the \; weights, to produce paraphrases with

We used Analysis of Variance (ANOVA) (Fisher, 1925), fol-
lowed by post-hoc Tukey tests to check whether the scores of
the two methods differ significantly (p < 0.05).



score (%) our method | ZHAO-ENG
grammaticality 90.89 85.33
meaning preserv. 76.67 78.56
diversity 6.50 14.58

Table 2: Evaluation of our paraphrasing method (with
SVR-REC) against ZHAO-ENG, using human judges. Re-
sults in bold indicate statistically significant differences.

higher grammaticality, meaning preservation, or di-
versity scores; for example, we could increase As
and decrease \; to obtain higher diversity at the cost
of lower grammaticality in the results of Table 2.2° Tt
is unclear how ZHAO-ENG could be tuned that way.
Overall, our method seems to perform well
against ZHAO-ENG, despite the vastly larger re-
sources of ZHAO-ENG, provided of course that we
limit ourselves to source sentences to which para-
phrasing rules apply. It would be interesting to in-
vestigate in future work if our method’s coverage
(sentences it can paraphrase) can increase to ZHAO-
ENG’s level by using larger collections of paraphras-
ing rules. It would also be interesting to combine the
two methods, perhaps by using SVR-REC (without
features for the quality scores of the rules) to rank
candidate paraphrases generated by ZHAO-ENG.

6 Conclusions and future work

We presented a generate-and-rank method to para-
phrase sentences. The method first produces can-
didate paraphrases by applying existing paraphras-
ing rules extracted from parallel corpora, and it then
ranks (or classifies) the candidates to keep the best
ones. The ranking component considers not only the
context-insensitive quality scores of the paraphras-
ing rules that produced each candidate, but also fea-
tures intended to measure the extent to which the
rule applications preserve grammaticality and mean-
ing in the particular context of the input sentence, as
well as the degree to which the resulting candidate
differs from the input sentence (diversity).

Initial experiments with a Maximum Entropy
classifier confirmed that the features we use can help
a ranking component select better candidate para-
phrases than a baseline ranker that considers only

2 Additional application-specific experiments confirm that
this tuning is possible (Malakasiotis, 2011).
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the average context-insensitive quality scores of the
applied rules. Further experiments with an SVR
ranker indicated that our full feature set, which in-
cludes features from an existing paraphrase recog-
nizer, leads to improved performance, compared to
a smaller feature set that includes only the context-
insensitive scores of the rules and language model-
ing scores. We also propose a new methodology to
evaluate the ranking components of generate-and-
rank paraphrase generators, which evaluates them
across different combinations of weights for gram-
maticality, meaning preservation, and diversity. The
paper is accompanied by a paraphrasing dataset we
constructed for evaluations of this kind.

Finally, we evaluated our overall method against
a state of the art sentence paraphraser, which
generates candidates by using several commercial
machine translation systems and pivot languages.
Overall, our method performed well, despite the vast
resources of the machine translation systems em-
ployed by the system we compared against. Our
method performed better in terms of grammaticality,
equally well in meaning preservation, and worse in
diversity, but it could be tuned to obtain higher diver-
sity at the cost of lower grammaticality, whereas it
is unclear how the system we compare against could
be tuned this way. On the other hand, an advantage
of the paraphraser we compared against is that it al-
ways produces paraphrases; by contast, our system
does not produce paraphrases when no paraphrasing
rule applies to the source sentence. Larger collec-
tions of paraphrasing rules would be needed to im-
prove our method in that respect.

Apart from obtaining and experimenting with
larger collections of paraphrasing rules, it would be
interesting to evaluate our method in vivo, for ex-
ample by embedding it in question answering sys-
tems (to paraphrase the questions), in information
extraction systems (to paraphrase extraction tem-
plates), or in natural language generators (to para-
phrase template-like sentence plans). We also plan
to investigate the possibility of embedding our SVR
ranker in the sentence paraphraser we compared
against, i.e., to rank candidates produced by using
several machine translation systems and pivot lan-
guages, as in ZHAO-ENG.
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Abstract

We present a novel approach for automatic
collocation error correction in learner English
which is based on paraphrases extracted from
parallel corpora. Our key assumption is that
collocation errors are often caused by se-
mantic similarity in the first language (L1-
language) of the writer. An analysis of a
large corpus of annotated learner English con-
firms this assumption. We evaluate our ap-
proach on real-world learner data and show
that L1-induced paraphrases outperform tradi-
tional approaches based on edit distance, ho-
mophones, and WordNet synonyms.

1 Introduction

Grammatical error correction (GEC) is emerging as
a commercially attractive application of natural lan-
guage processing (NLP) for the booming market of
English as foreign or second language (EFL/ESL').

The de facto standard approach to GEC is to build
a statistical model that can choose the most likely
correction from a confusion set of possible correc-
tion choices. The way the confusion set is defined
depends on the type of error. Work in context-
sensitive spelling error correction (Golding and
Roth, 1999) has traditionally focused on confusion
sets with similar spelling (e.g., {dessert, desert}) or
similar pronunciation (e.g., {there, their}). In other
words, the words in a confusion set are deemed con-
fusable because of orthographic or phonetic simi-
larity. Other work in GEC has defined the confu-

"For simplicity, we will collectively refer to both terms as
English as a foreign language (EFL)
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sion sets based on syntactic similarity, for exam-
ple all English articles or the most frequent English
prepositions form a confusion set (see for example
(Tetreault et al., 2010; Rozovskaya and Roth, 2010;
Gamon, 2010; Dahlmeier and Ng, 2011) among oth-
ers).

In contrast, we investigate in this paper a class of
grammatical errors where the source of confusion is
the similar semantics of the words, rather than or-
thography, phonetics, or syntax. In particular, we
focus on collocation errors in EFL writing. The
term collocation (Firth, 1957) describes a sequence
of words that is conventionally used together in a
particular way by native speakers and appears more
often together than one would expect by chance. The
correct use of collocations is a major difficulty for
EFL students (Farghal and Obiedat, 1995).

In this work, we present a novel approach for au-
tomatic correction of collocation errors in EFL writ-
ing. Our key observation is that words are poten-
tially confusable for an EFL student if they have
similar translations in the writer’s first language (L1-
language), or in other words if they have the same
semantics in the L1-language of the writer. The
Chinese word & (kan), for example, has over a
dozen translations in English, including the words
see, look, read, and watch. A Chinese speaker who
still “thinks” in Chinese has to choose from all these
possible translations when he wants to express a sen-
tence like I like to watch movies and might instead
produce a sentence like */ like to look movies. Al-
though the meanings of watch and look are simi-
lar, the former is clearly the more fluent choice in
this context. While these types of LI-transfer er-
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rors have been known in the EFL teaching litera-
ture (Swan and Smith, 2001; Meng, 2008), research
in GEC has mostly ignored this fact.

We first analyze collocation errors in the NUS
Corpus of Learner English (NUCLE), a fully an-
notated one-million-word corpus of learner English
which we will make available to the community for
research purposes (see Section 3 for details about
the corpus). Our analysis confirms that many col-
location errors can be traced to similar translations
in the writer’s L1-language. Based on this result,
we propose a novel approach for automatic collo-
cation error correction. The key component in our
approach generates LI-induced paraphrases which
we automatically extract from an L1-English par-
allel corpus. Our proposed approach outperforms
traditional approaches based on edit distance, ho-
mophones, and WordNet synonyms on a test set of
real-world learner data in an automatic and a human
evaluation. Finally, we present a detailed analysis of
unsolved instances in our data set to highlight direc-
tions for future work.

Our work adds to a growing body of research that
leverages parallel corpora for semantic NLP tasks,
for example in word sense disambiguation (Ng et
al., 2003; Chan and Ng, 2005; Ng and Chan, 2007;
Zhong and Ng, 2009), paraphrasing (Bannard and
Callison-Burch, 2005; Liu et al., 2010a), and ma-
chine translation evaluation (Snover et al., 2009; Liu
et al., 2010b).

The remainder of this paper is organized as fol-
lows. The next section reviews related work. Sec-
tion 3 presents our analysis of collocation errors.
Section 4 describes our approach for automatic col-
location error correction. The experimental setup
and the results are described in Sections 5 and 6, re-
spectively. Section 7 provides further analysis. Sec-
tion 8 concludes the paper.

2 Related Work

In this section, we give an overview of related work
on collocation error correction. We also highlight
differences between collocation error correction and
related NLP tasks like context-sensitive spelling er-
ror correction, synonym extraction, lexical substitu-
tion, and paraphrasing.

Most work in collocation error correction has re-
lied on dictionaries or manually created databases
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to generate collocation candidates (Shei and Pain,
2000; Wible et al., 2003; Futagi et al., 2008). Other
work has focused on finding candidates that collo-
cate with similar words, e.g., verbs that appear with
the same noun objects form a confusion set (Liu et
al., 2009; Wu et al., 2010). The work most similar
to ours is probably the one presented by Chang et
al. (2008), as they also use translation information to
generate collocation candidates. However, they do
not use automatically derived paraphrases from par-
allel corpora but bilingual dictionaries. Dictionaries
usually have lower coverage, do not contain longer
phrases or inflected forms, and do not provide any
translation probability estimates. Also, their work
focuses solely on verb-noun collocations, while we
target collocations of arbitrary syntactic type.

Context-sensitive spelling error correction is the
task of correcting spelling mistakes that result in
another valid word, see for example (Golding and
Roth, 1999). It has traditionally focused on a small
number of pre-defined confusion sets, like homo-
phones or frequent spelling errors. Even when the
confusion sets are formed automatically, the simi-
larity of words in a confusion set has been based
on edit distance or phonetic similarity (Carlson et
al., 2001). In contrast, we focus on words that are
confusable due to their similar semantics instead of
similar spelling or pronunciation. Also, we do not
assume that the set of confusion sets is already given
to us. Instead, we automatically extract confusable
candidates from a parallel corpus.

Synonym extraction (Wu and Zhou, 2003), lexi-
cal substitution (McCarthy and Navigli, 2007) and
paraphrasing (Madnani and Dorr, 2010) are related
to collocation correction in the sense that they try to
find semantically equivalent words or phrases. How-
ever, there is a subtle but important difference be-
tween these tasks and collocation correction. In the
former, the main criterion is whether the original
phrase and the synonym/paraphrase candidate are
substitutable, i.e., both form a grammatical sentence
when substituted for each other in a particular con-
text. In contrast, in collocation correction, we are
primarily interested in finding candidates which are
not substitutable in their English context but appear
to be substitutable in the L1-language of the writer,
i.e., one forms a grammatical English sentence but
the other does not.



Sentences 52,149
Words 1,149,100
Distinct words 27,593
Avg. sentence length (words) 22.04
Collocation errors 2,747
Avg. collocation error length (words) 1.17
Avg. correction length (words) 1.13

Table 1: Statistics of the NUS Corpus of Learner En-
glish NUCLE)

3 Analysis of EFL collocation errors

While the fact that collocation errors can be caused
by Ll-transfer has been ascertained by EFL re-
searchers (Meng, 2008), we need to quantify how
frequent collocation errors can be traced to these
types of transfer errors in order to estimate how
many errors in EFL writing we can potentially hope
to correct with information about the writer’s L1-
language.

We base our analysis on the NUS Corpus of
Learner English (NUCLE). The corpus consists of
about 1,400 essays written by EFL university stu-
dents on a wide range of topics, like environmen-
tal pollution or healthcare. Most of the students are
native Chinese speakers. The corpus contains over
one million words which are completely annotated
with error tags and corrections. All annotations have
been performed by professional English instructors.
The statistics of the corpus are summarized in Ta-
ble 1. The annotation is stored in a stand-off fashion.
Each error tag consists of the start and end offset of
the annotation, the type of the error, and the appro-
priate gold correction as deemed by the annotator.
The annotators were asked to provide a correction
that would result in a grammatical sentence if the
selected word or phrase would be replaced by the
correction.

In this work, we focus on errors which have
been marked with the error tag wrong colloca-
tion/idiom/preposition. As preposition errors are not
the focus of this work, we automatically filter out
all instances which represent simple substitutions of
prepositions, using a fixed list of frequent English
prepositions. In a similar way, we filter out a small
number of article errors which were marked as collo-
cation errors. Finally, we filter out instances where

109

the annotated phrase or the suggested correction is
longer than 3 words, as we observe that they contain
highly context-specific corrections and are unlikely
to generalize well (e.g., “for the simple reasons that
these can help them” — “simply to”).

After filtering, we end up with 2,747 collocation
errors and their respective corrections, which ac-
count for about 6% of all errors in NUCLE. This
makes collocation errors the 7th largest class of er-
rors in the corpus after article errors, redundancies,
prepositions, noun number, verb tense, and mechan-
ics. Not counting duplicates, there are 2,412 distinct
collocation errors and corrections. Although there
are other error types which are more frequent, collo-
cation errors represent a particular challenge as the
possible corrections are not restricted to a closed set
of choices and they are directly related to seman-
tics rather than syntax. We analyzed the collocation
errors and found that they can be attributed to the
following sources of confusion:

Spelling: We suspect that an error is caused by simi-
lar orthography if the edit distance between the erro-
neous phrase and its correction is less than a certain
threshold.

Homophones: We suspect that an error is caused by
similar pronunciation if the erroneous word and its
correction have the same pronunciation. We use the
CuVPlus English dictionary (Mitton, 1992) to map
words to their phonetic representations.

Synonyms: We suspect that an error is caused by
synonymy if the erroneous word and its correction
are synonyms in WordNet (Fellbaum, 1998). We use
WordNet 3.0.

L1-transfer: We suspect that an error is caused by
L1-transfer if the erroneous phrase and its correction
share a common translation in a Chinese-English
phrase table. The details of the phrase table con-
struction are described in Section 4. We note that
although we focus on Chinese-English translation,
our method is applicable to any language pair where
parallel corpora are available.

As CuVPlus and WordNet are defined for indi-
vidual words, we extend the matching process to
phrases in the following way: two phrases A and B
are deemed homophones/synonyms if they have the
same length and the i-th word in phrase A is a ho-
mophone/synonym of the corresponding i-th word
in phrase B.



Spelling

... itreceived critics (criticism) as much as complaints . . .

. budget for the aged to improvise (improve) other areas.

Homophones . diverse spending can aide (aid) our country.
. insure (ensure) the safety of civilians . . .
Synonyms . rapid increment (increase) of the seniors . ..

. energy that we can apply (use) in the future . . .

L1-transfer

. and give (provide, %571 ) reasonable fares to the public . ..

. and concerns (attention, F{E ) that the nation put on technology and engineering . . .

Table 3: Examples of collocation errors with different sources of confusion. The correction is shown in parenthesis.
For L1-transfer, we also show the shared Chinese translation. The L1-transfer examples shown here do not belong to

any of the other categories.

Suspected Error Source Tokens | Types
Spelling 154 131
Homophones 2 2
Synonyms 74 60
L1-transfer 1016 782
L1-transfer w/o spelling 954 727
L1-transfer w/o homophones | 1015 781
L1-transfer w/o synonyms 958 737
L1-transfer w/o spelling,

homophones, 906 692

synonyms

Table 2: Analysis of collocation errors. The threshold for
spelling errors is one for phrases of up to six characters
and two for the remaining phrases.

The results of the analysis are shown in Table 2.
Tokens refer to running erroneous phrase-correction
pairs including duplicates, and types refer to distinct
erroneous phrase-correction pairs. As a collocation
error can be part of more than one category, the rows
in the table do not sum up to the total number of
errors. The number of errors that can be traced to
L1-transfer greatly outnumbers all other categories.
The table also shows the number of collocation er-
rors that can be traced to L1-transfer but not the
other sources. 906 collocation errors with 692 dis-
tinct collocation error types can be attributed only to
L1-transfer but not to spelling, homophones, or syn-
onyms. Table 3 shows some examples of collocation
errors for each category from our corpus. We note
that there are also collocation error types that cannot
be traced to any of the above sources. We will return
to these errors in Section 7.

110

4 Correcting Collocation Errors

In this section, we propose a novel approach for cor-
recting collocation errors in EFL writing.

4.1 L1l-induced Paraphrases

We use the popular technique of paraphrasing
with parallel corpora (Bannard and Callison-Burch,
2005) to automatically find collocation candidates
from a sentence-aligned L1-English parallel corpus.
As most of the essays in our corpus are written by
native Chinese speakers, we use the FBIS Chinese-
English corpus, which consists of about 230,000
Chinese sentences (8.5 million words) from news
articles, each with a single English translation. We
tokenize and lowercase the English half of the cor-
pus in the standard way. We segment the Chinese
half of the corpus using the maximum entropy seg-
menter from (Ng and Low, 2004; Low et al., 2005).
Subsequently, we automatically align the texts at the
word level using the Berkeley aligner (Liang et al.,
2006; Haghighi et al., 2009). We extract English-L1
and L1-English phrases of up to three words from
the aligned texts using the widely used phrase ex-
traction heuristic in (Koehn et al., 2003). The para-
phrase probability of an English phrase e; given an
English phrase es is defined as

plerlez) = pler| f)p(flea) (1
f

where f denotes a foreign phrase in the L1 language.
The phrase translation probabilities p(e;|f) and
p(fle2) are estimated by maximum likelihood es-
timation and smoothed using Good-Turing smooth-
ing (Foster et al., 2006). Finally, we only keep para-



phrases with a probability above a certain threshold
(set to 0.001 in our work).

4.2 Collocation Correction with Phrase-based
SMT

We implement our approach in the framework
of phrase-based statistical machine transla-
tion (SMT) (Koehn et al., 2003). Phrase-based
SMT tries to find the highest scoring translation e
given an input sentence f. The decoding process of
finding the highest scoring translation is guided by a
log-linear model which scores translation candidates
using a set of feature functions h;, i =1,...,n

score(e|f) = exp (Z )\ihi(e,f)> N )

=1

Typical features include a phrase translation proba-
bility p(e|f), an inverse phrase translation probabil-
ity p(fle), a language model score p(e), and a con-
stant phrase penalty. The optimization of the feature
weights \;, ¢ = 1,...,n can be done using mini-
mum error rate training (MERT) (Och, 2003) on a
development set of input sentences and their refer-
ence translations.

Because of the great flexibility of the log-linear
model, researchers have used the framework for
other tasks outside SMT, including grammatical er-
ror correction (Brockett et al., 2006). We adopt a
similar approach in this work. We modify the phrase
table of the popular phrase-based SMT decoder
MOSES (Koehn et al., 2007) to include collocation
corrections with features derived from spelling, ho-
mophones, synonyms, and L1-induced paraphrases.

e Spelling: For each English word, the phrase ta-
ble contains entries consisting of the word itself
and each word that is within a certain edit dis-
tance from the original word. Each entry has a
constant feature of 1.0.

e Homophones: For each English word, the
phrase table contains entries consisting of the
word itself and each of the word’s homophones.
We determine homophones using the CuVPlus
dictionary. Each entry has a constant feature of
1.0.
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e Synonyms: For each English word, the phrase
table contains entries consisting of the word it-
self and each of its synonyms in WordNet. If a
word has more than one sense, we consider all
its senses. Each entry has a constant feature of
1.0.

e L1-paraphrases: For each English phrase, the
phrase table contains entries consisting of the
phrase and each of its L1-derived paraphrases
as described in Section 4.1. Each entry has two
real-valued features: a paraphrase probability
according to Equation 1 and an inverse para-
phrase probability.

e Baseline We combine the phrase tables built
for spelling, homophones, and synonyms. The
combined phrase table contains three binary
features for spelling, homophones, and syn-
onyms, respectively.

e All We combine the phrase tables from
spelling, homophones, synonyms, and LI1-
paraphrases. The combined phrase table con-
tains five features: three binary features for
spelling, homophones, and synonyms, and
two real-valued features for the L1-paraphrase
probability and inverse L1-paraphrase proba-
bility.

Additionally, each phrase table contains the standard
constant phrase penalty feature. The first four ta-
bles only contain collocation candidates for individ-
ual words. We leave it to the decoder to construct
corrections for longer phrases during the decoding
process if necessary.

5 Experiments

In this section, we empirically evaluate our approach
on real collocation errors in learner English.

5.1 Data Set

We randomly sample a development set of 770 sen-
tences and a test set of 856 sentences from our cor-
pus. Each sentence contains exactly one collocation
error. The sampling is performed in a way that sen-
tences from the same document cannot end up in
both the development and the test set. In order to



keep conditions as realistic as possible, we make no
attempt to filter the test set in any way.

We build phrase tables as described in Section 4.2.
For the purpose of the experiments reported in this
paper, we only need to generate phrase table entries
for words and phrases which actually appear in the
development or test set.

5.2 Evaluation Metrics

We conduct an automatic and a human evalua-
tion. Our main evaluation metric is mean recipro-
cal rank (MRR) which is the arithmetic mean of the
inverse ranks of the first correct answer returned by
the system

1L 1
MRR = — — 3
N ; rank (i) )
where N is the size of the test set. If the system did
not return a correct answer for a test instance, we set
1
Wk‘(i) to zero. ' N
In the human evaluation, we additionally report
precision at rank k, k = 1,2, 3, which we calculate
as follows:

Y aca score(a)

P@k =
A

“4)
where A is the set of returned answers of rank & or
less and score(-) is a real-valued scoring function
between zero and one.

5.3 Collocation Error Experiments

Automatic correction of collocation errors can con-
ceptually be divided into two steps: i) identification
of wrong collocations in the input, and ii) correc-
tion of the identified collocations. In this work, we
focus on the second step and assume that the erro-
neous collocation has already been identified. While
this might seem like a simplification, it has been the
common evaluation setup in collocation error cor-
rection (see for example (Wu et al., 2010)). It also
has a practical application where the user first selects
a word or phrase and the system displays possible
corrections.

In our experiments, we use the start and end offset
of the collocation error provided by the human anno-
tator to identify the location of the collocation error.
We fix the translation of the rest of the sentence to
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its identity. We remove phrase table entries where
the phrase and the candidate correction are identi-
cal, thus practically forcing the system to change
the identified phrase. We set the distortion limit of
the decoder to zero to achieve monotone decoding.
We previously observed that word order errors are
virtually absent in our collocation errors. For the
language model, we use a 5-gram language model
trained on the English Gigaword corpus with modi-
fied Kneser-Ney smoothing. All experiments use the
same language model to allow a fair comparison.

We perform MERT training with the popular
BLEU metric (Papineni et al., 2002) on the devel-
opment set of erroneous sentences and their correc-
tions. As the search space is restricted to changing
a single phrase per sentence, training converges rel-
atively quickly after two or three iterations. After
convergence, the model can be used to automatically
correct new collocation errors.

6 Results

We evaluate the performance of the proposed
method on our test set of 856 sentences, each with
one collocation error. We conduct both an automatic
and a human evaluation. In the automatic evalua-
tion, the system’s performance is measured by com-
puting the rank of the gold answer provided by the
human annotator in the n-best list of the system. We
limit the size of the n-best list to the top 100 out-
puts. If the gold answer is not found in the top 100
outputs, the rank is considered to be infinity, or in
other words, the inverse of the rank is zero. We also
report the number of test instances for which the
gold answer was ranked among the top k answers,
k = 1,2,3,10,100. The results of the automatic
evaluation are shown in Table 4

For collocation errors, there are usually more than
one possible correct answer. Therefore, automatic
evaluation underestimates the actual performance of
the system by only considering the single gold an-
swer as correct and all other answers as wrong. As
such, we carried out a human evaluation for the sys-
tems BASELINE and ALL. We recruited two English
speakers to judge a subset of 500 test sentences. For
each sentence, a judge was shown the original sen-
tence and the 3-best candidates of each of the two
systems. We restricted human evaluation to the 3-
best candidates, as we believe that answers at a rank



Model Rank =1 | Rank <2 | Rank <3 | Rank <10 | Rank <100 || MRR
Spelling 35 41 42 44 44 4.51
Homophones 1 1 1 1 1 0.11
Synonyms 32 47 52 60 61 4.98
Baseline 49 68 80 93 96 7.61
L1-paraphrases 93 133 154 216 243 15.43
All 112 150 166 216 241 17.21

Table 4: Results of automatic evaluation. Columns two to six show the number of gold answers that are ranked within
the top k answers. The last column shows the mean reciprocal rank in percentage. Bigger values are better.

0.8076
0.6152

P(A)
Kappa

Table 5: Inter-annotator agreement. P(E) = 0.5.

larger than three will not be very useful in a prac-
tical application. The candidates are displayed to-
gether in alphabetical order without any information
about their rank or which system produced them or
the gold answer by the annotator. The difference
between the candidates and the original sentence is
highlighted. The judges were asked to make a bi-
nary judgment for each of the candidates on whether
the proposed candidate is a valid correction of the
original or not. We represent valid corrections with
a score of 1.0 and invalid corrections with a score
of 0.0. Inter-annotator agreement is reported in Ta-
ble 5. The chance of agreement P(A) is the percent-
age of times that the annotators agree, and P(FE) is
the expected agreement by chance, which is 0.5 in
our case. The Kappa coefficient is defined as

P(A) - P(E)

Kappa = I —P(B)

We obtain a Kappa coefficient of 0.6152. A Kappa
coefficient between 0.6 and 0.8 is considered as
showing substantial agreement according to Landis
and Koch (1977). To compute precision at rank k,
we average the judgments. Thus, a system can re-
ceive a score of 0.0 (both judgments negative), 0.5
(judges disagree), or 1.0 (both judgments positive)
for each returned answer. To compute MRR, we
cannot simply average the judgments as MRR re-
quires binary judgments on whether an item is cor-
rect or not. Instead, we report MRR on the union and
the intersection of the judgments. In the first case,
the rank of the first correct item is the minimum
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rank of any item judged correct by either judge. In
the second case, the rank of the first correct item
is the minimum rank of any item judged correct by
both judges. The results for the human evaluation
are shown in Table 6. Our best system ALL outper-
forms the BASELINE approach on all measures. It
receives a precision at rank 1 of 38.20% and a MRR
of 33.16% (intersection) and 57.26% (union). Ta-
ble 7 shows some examples from our test set.

Unfortunately, comparison of our results with pre-
vious work is complicated by the fact that there cur-
rently exists no standard data set for collocation er-
ror correction. We will make our corpus available
for research purposes in the hope that it will allow
researchers to more directly compare their results in
future.

7 Analysis

In this section, we analyze and categorize those test
instances for which the ALL system could not pro-
duce an acceptable correction in the top 3 candi-
dates. We manually analyze 100 test sentences for
which neither judge had deemed any candidate an-
swer to be a valid correction. Based on our findings,
we categorize the 100 sentences into eight categories
which are shown below. Table 8 shows examples
from each category.

Out-of-vocabulary (21/100) The most frequent rea-
son why the system does not produce a good correc-
tion is that the erroneous collocation is out of vocab-
ulary. These collocations often involve compound
words, like man-hours or carefully-nurturing, or in-
frequent expressions, like copy phenomena, which
do not appear in the FBIS parallel corpus. We ex-
pect that this problem can be reduced by using larger
parallel corpora for paraphrase extraction.

Near miss (18/100) The second largest category



Model Rank=1 | Rank <2 | Rank <3 || P@1 | P@2 | P@3 MRR
Baseline || 431141 69 | 201 831237 18.40 | 16.68 | 15.36 || 12.13136.60
All 1371245 | 1761303 | 2041340 || 38.20 | 32.87 | 29.30 || 33.16157.26

Table 6:

Results of human evaluation. Rank and MRR results are shown for the intersection (first value) and union

(second value) of human judgments.

Original it must be clear, concise and unambiguous to prevent any off-track
Gold it must be clear, concise and unambiguous to avoid any off-track
All it must be clear, concise and unambiguous to avoid any off-track
it must be clear, concise and unambiguous to stop any off-track
it must be clear, concise and unambiguous to block any off-track
Baseline *it must be clear, concise and unambiguous to present any off-track
it must be clear, concise and unambiguous to forestall any off-track
*it must be clear, concise and unambiguous to lock any off-track
Original although many may agree that public spending on the elderly should be limited . . .
Gold although many may argue that public spending on the elderly should be limited . . .
All  although many may believe that public spending on the elderly should be limited . . .
although many may think that public spending on the elderly should be limited . . .
although many may accept that public spending on the elderly should be limited . . .
Baseline *although many may agreed that public spending on the elderly should be limited . . .

*although many may hold that public spending on the elderly should be limited . . .
*although many may agrees that public spending on the elderly should be limited . . .

Table 7: Examples of test sentences with the top 3 answers of the ALL and BASELINE system. An answer judged
incorrect by at least one judge is marked with an asterisk (¥).

Out of vocabulary

. many illegal copy phenomena (copy phenomena, copies) in china.

. lead to reduced man-hours (man-hours, productivity) as people fall sick . ..

Near miss . smaller groups of people, sometimes even (more, only) individual .

. take pre-emptive actions (activities, measures) . . .

Function/auxiliary words

. entertainment an elderly person can have (be, enjoy) .
. and the security issue is solved also (and, too)

Discourse specific

. make other countries respect and fear you (<question mark>, a country)
. will contribute nothing to the accident (explosion, problem) .

Spelling errors

thls incidence (rate, incident) had also resulted in 4 fatalities .
refrigerator did not compromise (yield, comprise) of any moving parts e

Word sense

. refers to the desire or shortage of a good (better, commodity) and . . .
. members are always from different majors (major league, specialties)

Preposition constructions

. can be an area worth investing (investing, investing in)
. in spending their resources (resources, resources on)

Others this might redirect (make sound, reduce) foreign investments . . .

. atrading hub since british ’s (british ’s, british) rule.

Table 8: Examples of sentences without valid corrections by the ALL model. The top-1 suggestion of the system and
the gold answer (in bold) are shown in parenthesis.
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consists of instances where the system barely misses
the gold standard answer. This includes cases where
the extracted L1-paraphrases do not contain the ex-
act phrase required, e.g., the paraphrase table con-
tains evenlllonly get when the gold correction was
even — only, or the phrase table actually contains
the gold answer but fails to rank it among the top 3
answers. The first problem could be addressed by
modifying the phrase extraction heuristic to produce
more fine-grained phrase pairs. The second prob-
lem requires a better language model. Although our
language model is trained on the large English Giga-
word corpus, it is not always successful in promot-
ing the correct candidate to the top. The domain mis-
match between the newswire domain of Gigaword
and student essays could be one reason for this.
Function/auxiliary words (14/100) We observe
that collocation errors that involve function words
or auxiliary words are not handled very well by our
model. Function words and auxiliary words in En-
glish lack direct counterparts in Chinese, which is
why the word alignments and therefore the extracted
phrases for these words contain a high amount of
noise. As function words and auxiliaries are essen-
tially a closed set, it might be more promising to
build separate models with fixed confusion sets for
them.
Discourse specific (14/100) Some of the gold an-
swers are highly specific to the particular discourse
that they appear in. As our model corrects colloca-
tion errors at the sentence level, such gold answers
will be very difficult or impossible to determine cor-
rectly. Including more context beyond the sentence
level might help to overcome this problem, although
it is not easy to integrate this larger context informa-
tion.
Spelling errors (9/100) Some of the collocation er-
rors are caused by spelling mistakes, e.g., incidence
instead of incident. Although the ALL model in-
cludes candidates which are created through edit dis-
tance, paraphrase candidates created from the mis-
spelled word can dominate the top 3 ranks, e.g., rate
and frequently are paraphrases of incidence. A pos-
sible solution would be to perform spell-checking as
a separate pre-processing step prior to collocation
correction.
Word sense (7/100) Some of the failures of the
model can be attributed to ambiguous senses of the
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collocation phrase. As we do not perform word
sense disambiguation in our current work, candi-
dates from other word senses can end up as the top
candidates. Including word sense disambiguation
into the model might help, although accurate word
sense disambiguation on noisy learner text may not
be easy.

Preposition constructions (6/100) Some of the col-
location errors involve preposition constructions,
e.g., the student wrote attend instead of attend
to. Because prepositions do not have a direct
counterpart in Chinese, the L1-paraphrases do not
model their semantics very well. This category is
closely related to the function/auxiliary word cate-
gory. Again, since prepositions are a closed set, it
might be more promising to build a separate model
for them.

Others (11/100) Other mistakes include collocation
errors where the gold answer slightly changed the
semantics of the target word, e.g., redirect potential
foreign investments — reduce potential foreign in-
vestments, active-passive alternation (enhanced eco-
nomics — was economical), and noun possessive er-
rors (british ’s rule — british rule).

8 Conclusion and Future Work

We have presented a novel approach for correcting
collocation errors in written learner text. Our ap-
proach exploits the semantic similarity of words in
the writer’s L1-language based on paraphrases ex-
tracted from an L.1-English parallel corpus. Our ex-
periments on real-world learner data show that our
approach outperforms traditional approaches based
on edit distance, homophones, and synonyms by a
large margin.

In future work, we plan to extend our system to
fully automatic collocation correction that involves
both identification and correction of collocation er-
Tors.
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Abstract

Class-instance label propagation algorithms
have been successfully used to fuse informa-
tion from multiple sources in order to enrich
a set of unlabeled instances with class labels.
Yet, nobody has explored the relationships be-
tween the instances themselves to enhance an
initial set of class-instance pairs. We pro-
pose two graph-theoretic methods (centrality
and regularization), which start with a small
set of labeled class-instance pairs and use the
instance-instance network to extend the class
labels to all instances in the network. We carry
out a comparative study with state-of-the-art
knowledge harvesting algorithm and show that
our approach can learn additional class labels
while maintaining high accuracy. We conduct
a comparative study between class-instance
and instance-instance graphs used to propa-
gate the class labels and show that the latter
one achieves higher accuracy.

1 Introduction

Many natural language processing applications use
and rely on semantic knowledge resources. Since
manually built lexical repositories such as Word-
Net (Fellbaum, 1998) cover a limited amount of
knowledge and are tedious to maintain over time, re-
searchers have developed algorithms for automatic
knowledge extraction from structured and unstruc-
tured texts. There is a substantial body of work
on extracting is-a relations (Etzioni et al., 2005;
Kozareva et al., 2008), part-of relations (Girju et al.,
2003; Pantel and Pennacchiotti, 2006) and general
facts (Lin and Pantel, 2001; Davidov and Rappoport,
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2009; Jain and Pantel, 2010). The usefulness of the
generated resources has been shown to be valuable
to information extraction (Riloff and Jones, 1999),
question answering (Katz et al., 2003) and textual
entailment (Zanzotto et al., 2006) systems.

Among the most common knowledge acquisi-
tion approaches are those based on lexical patterns
(Hearst, 1992; Etzioni et al., 2005; Kozareva et al.,
2008) and clustering (Lin and Pantel, 2002; Davidov
and Rappoport, 2008). While clustering can find in-
stances and classes that are not explicitly expressed
in text, they often may not generate the granularity
needed by the users. In contrast, pattern-based ap-
proaches generate highly accurate lists, but they are
constraint to the information matched by the pattern
and often suffer from recall. (Pagca, 2004; Snow
et al., 2006; Kozareva and Hovy, 2010) have shown
that complete lists of semantic classes and instances
are valuable for the enrichment of existing resources
like WordNet and for taxonomy induction. There-
fore, researchers have focused on the development
of methods that can automatically augment the ini-
tially extracted class-instance pairs.

(Pennacchiotti and Pantel, 2009) fused informa-
tion from pattern-based and distributional systems
using an ensemble method and a rich set of features
derived from query logs, web-crawl and Wikipedia.
(Talukdar et al., 2008) improved class-instance ex-
tractions exploring the relationships between the
classes and the instances to propagate the initial
class-labels to the remaining unlabeled instances.
Later on (Talukdar and Pereira, 2010) showed that
class-instance extraction with label propagation can
be further improved by adding semantic information

Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 118-128,
Edinburgh, Scotland, UK, July 27-31, 2011. (©2011 Association for Computational Linguistics



in the form of instance-attribute edges derived from
independently developed knowledge base. Similarly
to (Talukdar et al., 2008) and (Talukdar and Pereira,
2010), we are interested in enriching class-instance
extractions with label propagation. However, un-
like the previous work, we model the relationships
between the instances themselves to propagate the
initial set of class labels to the remaining unlabeled
instances. To our knowledge, this is the first work
to explore the connections between instances for the
task of class-label propagation.

Our work addresses the following question: Is it
possible to effectively explore the structure of the
text-mined instance-instance networks to enhance
an incomplete set of class labels? Our intuition is
that if an instance like bear belongs to a seman-
tic class carnivore, and the instance bear is con-
nected to the instance fox, then it is more likely that
the unlabeled instance fox is also of class carnivore.
To solve this problem, we propose two graph-based
approaches that use the structure of the instance-
instance graph to propagate the class labels. Our
methods are agnostic to the sources of semantic in-
stances and classes. In this work, we carried out ex-
periments with a state-of-the-art instance extraction
system and conducted a comparative study between
the original and the enhanced class-instance pairs.
The results show that this labeling procedure can be-
gin to bridge the gap between the extraction power
of the pattern-based approaches and the desired re-
call by finding class-instance pairs that are not ex-
plicitly mentioned in text. The contributions of the
paper are as follows:

e We use only the relationships between the in-
stances themselves to propagate class labels.

e We observe how often labels are propagated
along the edges of our semantic network, and
propose two ways to extend an initial set of
class labels to all the instance nodes in the net-
work. The first approach uses a linear sys-
tem to compute the network centrality relative
to the initially labeled instances. The second
approach uses a regularization framework with
respect to a random walk on the network.

e We evaluate the proposed approaches and show
that they discover many new class-instance
pairs compared to state-of-the-art knowledge
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harvesting algorithm, while still maintaining
high accuracy.

e We conduct a comparative study between class-
instance and instance-instance graphs used
to propagate class labels. The experiments
show that considering relationships between in-
stances achieves higher accuracy.

The rest of the paper is organized as follows. In
Section 2, we review related work. Section 3 de-
scribes the Web-based knowledge harvesting algo-
rithm used to extract the instance network and the
class-instance pairs necessary for our experimen-
tal evaluation. Section 4 describes the two graph-
theoretic methods for class label propagation using
an instance-instance network. Section 5 shows a
comparative study between the proposed graph al-
gorithms and different baselines. We also show
a comparison between class-instance and instance-
instance graphs used in the label propagation. Fi-
nally, we conclude in Section 6.

2 Related Work

In the past decade, we have reached a good under-
standing on the knowledge harvesting technology
from structured (Suchanek et al., 2007) and unstruc-
tured text. Researchers have harvested with vary-
ing success semantic lexicons (Riloff and Shepherd,
1997) and concept lists (Katz et al., 2003). Many
efforts have also focused on the extraction of is-a
relations (Hearst, 1992; Pasca, 2004; Etzioni et al.,
2005; Pasca, 2007; Kozareva et al., 2008), part-of re-
lations (Girju et al., 2003; Pantel and Pennacchiotti,
2006) and general facts (Etzioni et al., 2005; Davi-
dov and Rappoport, 2009; Jain and Pantel, 2010).
Various approaches have been proposed following
the patterns of (Hearst, 1992) and clustering (Lin
and Pantel, 2002; Davidov and Rappoport, 2008). A
substantial body of work has explored issues such as
reranking the harvested knowledge using mutual in-
formation (Etzioni et al., 2005) and graph algorithms
(Hovy et al., 2009), estimating the goodness of text-
mining seeds (Vyas et al., 2009), organizing the
extracted information (Cafarella et al., 2007a; Ca-
farella et al., 2007b) and inducing term taxonomies
with WordNet (Snow et al., 2006) or starting from
scratch (Kozareva and Hovy, 2010).



Since pattern-based approaches tend to be high-
precision and low-recall in nature, recently of great
interest to the research community is the develop-
ment of approaches that can increment the recall of
the harvested class-instance pairs. (Pennacchiotti
and Pantel, 2009) proposed an ensemble seman-
tic framework that mixes distributional and pattern-
based systems with a large set of features from a
web-crawl, query logs, and Wikipedia. (Talukdar
et al., 2008) combined extractions from free text
and structured sources using graph-based label prop-
agation algorithm. (Talukdar and Pereira, 2010)
conducted a comparative study of graph algorithms
and showed that class-instance extraction can be
improved using additional information that can be
modeled as instance-attribute edges.

Closest to our work is that of (Talukdar et al.,
2008; Talukdar and Pereira, 2010) who model class-
instance relations to propagate class-labels. Al-
though these algorithms can be applied to other rela-
tions (Alfonseca et al., 2010), to our knowledge yet
nobody has modeled the connections between the in-
stances themselves for the task of class-label prop-
agation. We propose regularization and centrality
graph-theoretic methods, which exploit the instance-
instance network and a small set of class-instance
pairs to propagate the class-labels to the remaining
unlabeled instances. While objectives similar to reg-
ularization have been used for class-label propaga-
tion, the application of node centrality for this task is
also novel. The proposed solutions are intuitive and
almost parameter-free (both methods have a single
parameter, which is easy to interpret and does not
require careful tuning).

3 Knowledge Harvesting from the Web

Our proposed class-label enhancement approaches
are agnostic to the sources of semantic instances and
classes. Several methods have been developed to
harvest instances from the Web (Pasca, 2004; Et-
zioni et al., 2005; Pasca, 2007; Kozareva et al.,
2008) and potentially we can use any of them.
In our experiments, we use the doubly-anchored
(DAP) method of (Kozareva et al., 2008), because it
achieves higher precision than (Etzioni et al., 2005;
Pasca, 2007), it is easy to implement and requires
minimum supervision (only one seed instance and a
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lexico-syntactic pattern).

For a given semantic class of interest say ani-
mals, the algorithm starts with a seed example of
the class, say whales. The seed instance is fed into
a doubly-anchored pattern “<semantic-class> such
as <seed> and *”, which extracts on the position
of the * new instances of the semantic class. Then,
the newly acquired instances are individually placed
on the position of the seed in the DAP pattern. The
bootstrapping procedure is repeated until no new in-
stances are found. We use the harvested instances to
build the instance-instance graph in which the nodes
are the learned instances and directed edges like
(whales,dolphins) indicate that the instance whales
extracted the instance dolphins. The edges between
the instances are weighted based on the number of
times the DAP pattern extracted the instances to-
gether.

Different strategies can be employed to acquire
semantic classes for each instance. We follow the
fully automated approach of (Hovy et al., 2009),
which takes the learned instance pairs from DAP and
feeds them into the pattern “* such as <instance;>
and <instance2>". The algorithm extracts on the
position of the * new semantic classes related to
instance,. According to (Hovy et al., 2009), the
usage of two instances acts as a disambiguator and
leads to much more accurate semantic class extrac-
tion compared to (Ritter et al., 2009).

4 Methods

We model the output of the instance harvesting al-
gorithm as a directed weighted graph that is given
by a set of vertices V' and a set of edges /. We use
n to denote the number of vertices. A node w corre-
sponds to a learned instance, and an edge (u,v) € E
indicates that the instance v was learned from the in-
stance u using the DAP pattern. The weight of the
edge w(u,v) specifies the number of times the pair
of instances were found by the DAP pattern. We de-
fine the adjacency matrix of the graph as:

if (u,v) € £
otherwise.

w(u,v)

A(u,v) :{ .

We use doy(u) to specify the out-degree of w:
dout(U) = >y )ep (U, v), and din(v) to specify
the in-degree of v: din(v) = >_(, vyep W(W; ).



We represent the initial set of instances L that are
believed to belong to class C' (the set of labeled in-
stances) by arow vector [ € {0, 1}", where [(u) = 1
if w € L. Our objective is to compute a vector I
where [ (u) is proportional to how likely it is that u
belongs to C. We write all vectors as row vectors,
and use ¢ to denote a 1 by n constant vector such
that ¢(u) = cforallu € V.

4.1 Personalized Centrality

Our first approach is based on the intuition that if
u € C and (u,v) € E, then it is more likely that
v € C. Moreover, the larger the weight of the edge
w(u,v), the more likely it is that v € C. When we
extend this intuition to all the in-neighbors, we say
that the score of each node is proportional to the sum
of the scores of its in-neighbors scaled by the edge
weights: [(v) = « > (up)eE I(uw)w(u,v). We can
verify that the vector [ must then satisfy [ = alA,
so it is an eigenvector of the adjacency matrix of the
graph with an eigenvalue of a.

However, this formulation is insufficient because
even though it captures our intuition that the nodes
get their scores from their in-neighbors, we are still
ignoring the initial scores of the nodes. A way to
take the initial scores into consideration is to com-
pute the following steady-state equation:

[=1+a-lA. (1)

Equation 1 specifies that the score /() of each node
w is the sum of its initial score /() and the weighted
sum of the scores of its neighbors, which is scaled
by a. This equation is known as a-centrality, which
was first introduced by (Bonacich and Lloyd, 2001).
The a parameter controls how much the score of
each node depends on the scores of its neighbors.
When a = 0 the score of each node is equivalent to
its initial score, and does not depend on the scores
of its neighbors at all.

Alternately, we can think of the vector [ as the
fixed-point of the process in which in each iteration
some node v updates its score I(v) by setting [ (v) =
L) + adyves w(u, v)l(u).

Solving Equation 1 we can see that [ = I -
aA)~L, where I is the identity matrix of size n.
The solution is also closely related to the following
expression, which is known as a Katz score (Katz,
1953):
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We can verify that A(u,v) gives the number of
paths of length ¢ between v and v. Katz proposed
using the above expression with the starting vector
s = 1 to measure centrality in a network. Therefore,
the score of node v is given by the number of paths
from u to v for all u € V, with longer paths given
less weight based on the value of . The method
proposed here measures a similar quantity with a
non-uniform starting vector. To show the relation-
ship between the two measures we use the identity
that Y70, ol At = (I —aA)~ — 1. Itis easy to see

that [ = I(I-ad)?
= Z(Z?il alA! + I) ()
= 1Y X atA +1
= 1Yy 2, atAl

Equation 2 shows that /(v) is given by the number
of paths from u to v for all w € L (the initial labeled
set). Using a larger value of « corresponds to giving
more weight to paths of longer length. The summa-
tion y_,°, ' A" converges as long as |a| < 1/Amax,
where Apax is the largest eigenvalue of A. There-
fore, we can only consider values of « in this range.

4.2 Regularization Using Random Walks

Our second approach constrains [ to be as consistent
or smooth as possible with respect to the structure
of the graph. The simplest way to express this is
to require that for each edge (u,v) € E, the scores
of the endpoints /(u) and I(v) must be as similar as
possible. Moreover, the greater the weight of the
edge w(u,v) the more important it is for the scores
to match. Using this intuition we can define the fol-
lowing optimization problem:

argming; 1y Z (I(u) — I(v))2.

(u,w)ER

Setting I=0o0rl=1 clearly optimizes this func-
tion, but does not give a meaningful solution. How-
ever, we can additionally constrain [ by requiring
that the initial labels cannot be modified, or more
generally penalizing the discrepancy between [ (u)
and [(u) for u € L. The methods of (Talukdar and
Pereira, 2010) optimize objective functions of this

type.



Unlike the work of (Talukdar and Pereira, 2010),
here we use an objective function that considers
smoothness with respect to a random walk on the
graph. Performing a random walk allows us to take
more of the graph structure into account. For exam-
ple, if nodes w and v are part of the same cluster then
it is likely that the edge (u,v) is heavily traversed
during the random walk, and should have a lot of
probability in the stationary distribution of the walk.
Simply considering the weight of the edge w(u,v)
gives us no such information. Therefore if our objec-
tive function requires the scores to be consistent with
respect to the stationary probability of the edges in
the random walk, we can compute scores that are
consistent with the clustering structure of the graph.

Our semantic network is not strongly connected,
so we must make some modifications to the random
walk to ensure that it has a stationary distribution.
Section 4.2.1 describes our random walk and how
we compute the transition probability matrix P and
its stationary probability distribution 7. The defini-
tion of our objective function and the description of
how it is optimized is given in Section 4.2.2.

4.2.1 Teleporting Random Walk

Formally, a random walk is a process where at
each step we move from some node to one of its
neighbors. The transition probabilities are given
by edge weights, therefore the transition probability
matrix W is the normalized adjacency matrix where
each row sums to one:

W =D"1A.

Here the D matrix is the degree matrix, which is a
diagonal matrix given by

D(u, v) :{ gout(u)

ifu=wv
otherwise.

In our semantic network some nodes have no out-
neighbors, so in order to compute W we first add a
self-loop to any such node. In addition, we modify
the random walk to reset at each step with nonzero
probability S to ensure that it has a steady-state
probability distribution. When the walk resets it
jumps or teleports to any node in the graph with
equal probability. The transition probability matrix
of this process is given by

P=pK +(1-p)W,
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where K is an n by n matrix given by K (u,v) = %
for all u,v € V. The stationary distribution 7 must
satisfy m = wP. Equivalently 7 can be viewed as a

solution to the following PageRank equation:
m=pFs+(1-p)7W.

Here the starting vector s = %f gives the prob-
ability distribution for where the walk transitions
when it resets. In our computations we use a jump
probability 5 = 0.15, which is standard for com-
putations of PageRank. The stationary distribution
7 can be computed by either solving the PageRank
equation or computing the eigenvector of P corre-
sponding to the eigenvalue of 1.

4.2.2 Regularization

(Zhou et al., 2005) propose the following function
to measure the smoothness of [ with respect to the
stationary distribution of the random walk:

=1 m(uw)P(u, v Z(u) — {v) i

Here m(u)P(u,v) gives the steady-state proba-
bility of traversing the edge (u,v), and 7(u) and
m(v) specify how much probability u and v have
in the stationary distribution . Zhou et al. point
out that using this function gives better results than
smoothness with respect to the edge weights, which
can be formulated by replacing 7(u)p(u,v) with
w(u,v), and replacing m(u) and 7(v) with doyt(u)
and dj,(v), respectively. This observation is con-
sistent with our intuition that considering a random
walk takes more of the graph structure into account.

In addition to minimizing Q(), we also want [ to
be as close as possible to [, which gives the follow-
ing optimization problem:

argmin; . {(§) + ulll — 1]%}.

3)

Here the p > 0 parameter specifies the tradeoff be-
tween the two terms: using a larger p corresponds to
placing more emphasis on agreement with the initial
labels. (Zhou et al., 2005) show that this objective is
optimized by computing
i=(-~0)7"1, @)

where © = (IY/2PIT~1/2 + TI-1/2 PT1/2) /2, and
~v=1/(1+ p). I is a diagonal matrix given by



ifu=v
otherwise.

m(u)

T(u, v) :{ A

Zhou et al. propose this approach for semi-
supervised learning of labels on the graph, given an
initial vector [ such that /(u) = 1 if vertex u has the
label, I[(u) = —1 if u does not have the label, and
[(u) = 0 if the vertex is unlabeled. They propose
taking the sign of f(u) to classify u as positive or
negative. Using our labeling procedure we do not
have any negative examples, so our initial vector [
is non-negative, resulting in a non-negative vector L.
This is not a problem because we can still interpret
I(u) to be proportional to how likely it is that u has
the label. Rather than trying different settings of p,
we directly vary ~, with a smaller v placing more
emphasis on agreement with initial labels.

5 Experimental Evaluation

5.1 Data Collection

For our experimental study, we select three widely
used domains in the harvesting community (Et-
zioni et al., 2005; Pasca, 2007; Hovy et al., 2009;
Kozareva and Hovy, 2010): animals and vehicles.
For each domain we randomly selected different se-
mantic classes, which resulted in 20 classes alto-
gether. To generate the instance-instance seman-
tic network, we use the harvesting procedure de-
scribed in Section 3. For example, to learn instances
associated with animals, we instantiate the boot-
strapping algorithm with the semantic class animals,
the seed instance bears and the pattern “animals
such as bears and *”. We submitted the pattern as
queries to Yahoo!Boss and collected new instances.
We ranked the instances following (Kozareva et al.,
2008) which resulted in 397 animal, 4471 plant and
1425 vehicle instances. Table 1 shows the number
of nodes (instances) and directed edges for the con-
structed semantic networks.

class #instances | #directed-edges
animals 397 2812
vehicles 1425 3191

Table 1: Nodes & Edges in the Instance Network.

Next, we use the harvested instances to auto-
matically learn the semantic classes associated with
them. For example, bears and wolves are animals
but also mammals, predators, vertebrates among
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others. The obtained class harvesting results are
shown in Table 2. We indicate with Inst(Hovy et
al., 2009) the number of instances in the semantic
network that discovered the class during the pattern-
based harvesting, and with InstInWordNet the num-
ber of instances in the semantic network belonging
to the class according to WordNet.

[ ClassName [ Inst(Hovy et al., 2009) [ InstiInWordNet ]
arthropods 12 50
carnivores 24 57
chordates 2 313
eutherians 3 193

insects 5 29
invertebrates 53 84
mammals 114 205
reptile 5 22
ruminants 14 34
ungulates 16 66
crafts 24 68
motor vehicles 27 127
self-propelled vehicles 36 145
vessels 11 36
wheeled vehicles 54 190

Table 2: Learned & Gold Standard Class-Instances.

We can see that the pattern-based approach of
(Hovy et al., 2009) does not recover a lot of the
class-instance relations present in WordNet. Be-
cause of this gap between the actual and the har-
vested class-instance pairs arises the objective of our
work, which is to explore the relationships between
the instances to propagate the initially learned class
labels to the remaining unlabeled instances. To eval-
uate the performance of our approach, we use as a
gold standard the WordNet class-instance mappings.

5.2 Testing Our Approach

Our approach is based on the intuition that given a
labeled instance u of class C, and an instance v in
our network, if there is an edge (u, v) then it is more
likely that v has the label C' as well. For example,
if the instance bears is of class vertebrates and there
is an edge between the instances bears and wolves,
then it is likely that wolves are also vertebrates.
Before proceeding with the instance-instance class-
label propagation algorithms, first we study whether
this intuition is correct.

Individually for each class label C', we construct a
set T that contains all instances in the network be-
longing to C' according to WordNet. Then we com-
pute the probability that v belongs to C' in WordNet



given that (u,v) is an edge in the instance network
and u belongs to C' in WordNet: Prp = Prjv €
Tc | (u,v) € E and u € Tg]. We compare
this to the background probability Pr, = Pr[v €
Tc | u,v € V and u € T¢|, which gives the proba-
bility that v belongs to C' in WordNet if it is chosen
at random. In other words, if Pr; = 1, this means
that whenever u has the label C' and (u,v) is an
edge, then v is always labeled with C. If indeed this
is the case, then a good classifier can simply take the
initial set L and extend the labels to all nodes reach-
able from L in the semantic network. The larger the
difference between Pr;, and Pry, the more informa-
tion the links of the instance network carry for the
task of label propagation. Table 3 shows the Pry,
and Pry, values for each class.

[ CLASS [ Pry, [ Pry ]
arthropods 46 12
carnivores 49 .14
chordates 95 .80
eutherians .80 49

insects 31 .07
invertebrates 74 21
mammals .82 52
reptile 27 .05
ruminants .39 .08
ungulates .60 .16
crafts .07 .05
motor vehicles .10 .09
self-propelled vehicles 1 .10
vessels .08 .02
wheeled vehicles 13 13

Table 3: Learned & Gold Standard Class-Instances.

This study verifies our intuition that using the re-
lationships between the instances to extend a class
label to the remaining unlabeled nodes is an effec-
tive approach to enhancing an incomplete set of ini-
tial labels.

5.3 Comparative Study

The objective of our work is given a set of initially
labeled nodes L, to assign to each node a score
that indicates how likely it is to belong to L. The
simplest way to do this using the edges of the in-
stance network is to say that a node that has more
in-neighbors that have a certain label is more likely
to have this label. We define the in-neighbor score
i(v) of a node v as i(v) = |[{u € V|(u,v) €
Fandu € L}|. We expect that the higher the in-
neighbor score of v, the more likely it is that v has
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the label L. The personalized centrality method
that we proposed generalizes this intuition to indi-
rect neighbors (see Methods). Our regularization
using random walks technique further explores the
link structure of the instance network by considering
arandom walk on it (see Methods). We compare our
approaches with a method that labels nodes at ran-
dom. The expected accuracy for class C' is given by
%, where n is the number of nodes in the network,
and T is the set containing all nodes that belong to
C according to WordNet. In other words, given that
there are 84 nodes in the network that are classified
as invertebrate according to WordNet, and there are
397 nodes in total, if we choose any number of nodes
at random our expected accuracy is 21%.

We evaluate the performance of our approaches
against the WordNet gold standard and show the ob-
tained results in Tables 4 and 5.

Invertebrates
rank [ centrality [ regularization [ in-neighbor [ random
5 1.0 1.0 .80 21
10 1.0 1.0 .70 21
20 95 1.0 75 21
50 .96 98 .76 21
100 .69 73 .67 21

Mammals
rank [ centrality [ regularization [ in-neighbor [ random
5 .80 1.0 .80 .52
10 .90 1.0 .90 52
20 95 95 .85 52
50 .86 .96 .80 52
100 92 92 .76 .52

Carnivores
rank [ centrality [ regularization [ in-neighbor [ random
5 1.0 1.0 .80 .14
10 .80 .80 .60 14
20 .80 .85 .55 14
50 .50 .68 48 .14
100 41 44 41 14

Table 4: Accuracy @ Different Ranks.

Table 4 shows the accuracy at rank R calculated
as the number of correctly labeled instances with
class C at rank R divided by the total number of
instances with class C' at rank R. Due to space limi-
tation, we show detailed ranking only for three of the
classes. We can see that using the semantic network
significantly enhances our ability to learn class la-
bels. Even the simple in-neighbor method produces
results that are very significant compared to chance.
Our centrality and regularization techniques further
explore the structure of the semantic network to give



better predictions.

Table 5 shows the accuracy of the class label prop-
agation algorithms for each class. For each class we
consider the top k ranked nodes, where k is the num-
ber of instances that belong to this class according
to WordNet. For example, the accuracy of central-
ity for carnivores is 80% showing that from the top
57 ranked animal instances, 80% belong to carni-
vores. In the final column we also report the per-
formance of a label propagation algorithm that uses
class-instance graph instead of an instance-instance
graph. To build the graph we remove the edges
between the instances and keep the class-instance
mappings discovered by the harvesting algorithm of
(Hovy et al., 2009). We use the modified adsorption
algorithm (MAD) of (Talukdar et al., 2008), which
is freely available from the Junto toolkit'. To rank
the instances for each class label produced by Junto,
we use the computed label scores as a ranking crite-
ria and measure accuracy similarly to centrality and
regularization.

edges are traversed more often in a random walk.
The regularization technique computes scores that
are consistent with the clustering structure of the
graph by requiring that the endpoints of highly tra-
versed edges, which are likely in the same cluster,
have similar scores (see Methods). Overall, regu-
larization enhanced the original output generated by
the pattern-based knowledge harvesting approach of
(Hovy et al., 2009) with 1219 new class-instance
pairs (75% additional information) while maintain-
ing 61.87% accuracy.
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arthropods .50 .60 12 .56
carnivores .80 .85 .14 44
chordates .81 .83 .80 .79
eutherians 54 .60 49 .60

insects .38 .52 .07 17
invertebrates 94 .96 21 .64
mammals .82 .90 .52 .63
reptile 45 .55 .05 .14
ruminants 41 44 .08 41
ungulates 44 .61 .16 32
crafts 47 .56 .05 35
motor vehicle 45 48 .09 24
self-propelled vehicle .49 A7 .10 27
vessel 33 .39 .02 31
wheeled vehicle S1 .52 13 33

Table 5: Comparative Study.

The obtained results show that for almost all cases
the methods that use the structure of the instance net-
work significantly outperform predictions that use
the class-instance graph. This indicates that we
can indeed learn a lot form the instance-instance
relationships by exploring the structure of the in-
stance network. Among all approaches regulariza-
tion achieves the best results. We believe that reg-
ularization works well because it considers a ran-
dom walk on the semantic graph, and within-cluster

"http://code.google.com/p/junto/
125

01 f :

50 100 150 200 250 300 350
Rank

Regularization

T T T T T

0.9

y=0.50 —-=—
v=0.99 ---o--
Random -- -e-- -

0.8

0.7 -

0.6 -

Accuracy

051 ©
0.4 po‘
o

03 66000069 o ™ i
! 090000000000 o B

kel Sy

o

B 0o 0¥ Rmn
02 lseesseee®®®00cscetossccccscccccoce J

04 | |

0 1 1 1 1 1 1 1
50 100 150 200 250 300 350
Rank

Figure 1: Parameter Tuning For Invertebrates.

5.4 Parameter Tuning

Both of our centrality and regularization methods
have a single tunable parameter. For centrality the
parameter « controls how much the label of each
node depends on the labels of its neighbors in the



graph. The values range from O to 1/\pax, Where
Amax 18 the largest eigenvalue of the adjacency ma-
trix of the semantic network. When o = 0 the label
of each node is equivalent to its initial label, while
higher values of o give more weight to the labels of
nodes that are further away.

For regularization the parameter y controls how
much emphasis is placed on the agreement between
the initial and learned labels. The values of ~ are
between 0 and 1. Smaller values require that the
learned labels be more consistent with the original
labels. When v = 0 the learned labels will exactly
match the original labels.

For each method we try several parameter settings
and show the results in Figure 1 for the propagation
of the class label invertebrate. We can see that both
methods are quite insensitive to the parameter set-
tings, unless we choose very extreme values that ig-
nore the original labels.

5.5 Effect of number of labeled class-instances

We also study how the quality of the results is af-
fected by the number of initial class-instance pairs
used by our propagation methods. We conduct ex-
periments using only 25%, 50%, 75% and 100% of
the initial class-instance pairs learned by (Hovy et
al., 2009). Figure 2 shows the results for the label
propagation of the class invertebrate.

The performance of our methods significantly im-
proves when we incorporate more labels. Still, if we
are less concerned with recall and want to find small
sets of nodes with very high accuracy, the number
of initial labels is less important. For example, start-
ing with only 13 labeled nodes we can still achieve
100% accuracy for the top 30 nodes using regular-
ization, and 96% accuracy for the top 25 nodes using
centrality.

6 Conclusions

In this paper we proposed a centrality and regular-
ization graph-theoretic methods that explore the re-
lationships between the instances themselves to ef-
fectively extend a small set of class-instance labels
to all instances in a semantic network. The proposed
approaches are intuitive and almost parameter-free.
We conducted a series of experiments in which we
compared the effectiveness of the centrality and reg-
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Figure 2: Effect of Number of Initial Class-Instance
Pairs for Invertebrates.

ularization methods to learn new labels for the un-
labeled instances. We showed that the enhanced
class labels improve the original output generated by
the pattern-based knowledge harvesting approach of
(Hovy et al., 2009). Finally, we have studied the
impact of the class-instance and instance-instance
graphs for the class-label propagation task. The lat-
ter approach has shown to produce much more ac-
curate results. In the future, we want to apply our
approach to Web-based taxonomy induction, which
according to (Kozareva and Hovy, 2010) is stifled
due to the lacking relations between the instances
and the classes, and the classes themselves. The pro-
posed methods can be also applied to enhance fact



farms (Jain and Pantel, 2010).
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Abstract

This paper presents a model that extends se-
mantic role labeling. Existing approaches in-
dependently analyze relations expressed by
verb predicates or those expressed as nominal-
izations. However, sentences express relations
via other linguistic phenomena as well. Fur-
thermore, these phenomena interact with each
other, thus restricting the structures they artic-
ulate. In this paper, we use this intuition to
define a joint inference model that captures
the inter-dependencies between verb seman-
tic role labeling and relations expressed us-
ing prepositions. The scarcity of jointly la-
beled data presents a crucial technical chal-
lenge for learning a joint model. The key
strength of our model is that we use existing
structure predictors as black boxes. By en-
forcing consistency constraints between their
predictions, we show improvements in the per-
formance of both tasks without retraining the
individual models.

1 Introduction

The identification of semantic relations between
sentence constituents has been an important task in
NLP research. It finds applications in various natural
language understanding tasks that require complex
inference going beyond the surface representation.
In the literature, semantic role extraction has been
studied mostly in the context of verb predicates, us-
ing the Propbank annotation of Palmer et al. (2005),
and also for nominal predicates, using the Nombank
corpus of Meyers et al. (2004).
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However, sentences express semantic relations
through other linguistic phenomena. For example,
consider the following sentence:

(1) The field goal by Brien changed the game in the
fourth quarter.

Verb centered semantic role labeling would identify
the arguments of the predicate change as (a) The
field goal by Brien (AO, the causer of the change),
(b) the game (Al, the thing changing), and (c) in
the fourth quarter (temporal modifier). However,
this does not tell us that the scorer of the field goal
was Brien, which is expressed by the preposition by.
Also, note that the in indicates a temporal relation,
which overlaps with the verb’s analysis.

In this paper, we propose an extension of the stan-
dard semantic role labeling task to include relations
expressed by lexical items other than verbs and nom-
inalizations. Further, we argue that there are interac-
tions between the different phenomena which sug-
gest that there is a benefit in studying them together.
However, one key challenge is that large jointly la-
beled corpora do not exist. This motivates the need
for novel learning and inference schemes that ad-
dress the data problem and can still benefit from the
interactions among the phenomena.

This paper has two main contributions.

1. From the machine learning standpoint, we pro-
pose a joint inference scheme to combine exist-
ing structure predictors for multiple linguistic
phenomena. We do so using hard constraints
that involve only the labels of the phenomena.
The strength of our model is that it is easily
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extensible, since adding new phenomena does
not require fully retraining the joint model from
scratch. Furthermore, our approach minimizes
the need for extensive jointly labeled corpora
and, instead, uses existing predictors as black
boxes.

2. From an NLP perspective, we motivate the ex-
tension of semantic role labeling beyond verbs
and nominalizations. We instantiate our joint
model for the case of extracting preposition and
verb relations together. Our model uses exist-
ing systems that identify verb semantic roles
and preposition object roles and jointly pre-
dicts the output of the two systems in the pres-
ence of linguistic constraints that enforce co-
herence between the predictions. We show that
using constraints to combine models improves
the performance on both tasks. Furthermore,
since the constraints depend only on the labels
of the two tasks and not on any specific dataset,
our experiments also demonstrate that enforc-
ing them allows for better domain adaptation.

The rest of the paper is organized as follows: We
motivate the need for extending semantic role label-
ing and the necessity for joint inference in Section 2.
In Section 3, we describe the component verb SRL
and preposition role systems. The global model is
defined in Section 4. Section 5 provides details on
the coherence constraints we use and demonstrates
the effectiveness of the joint model through experi-
ments. Section 6 discusses our approach in compar-
ison to existing work and Section 7 provides con-
cluding remarks.

2 Problem Definition and Motivation

Semantic Role Labeling has been extensively stud-
ied in the context of verbs and nominalizations.
While this analysis is crucial to understanding a
sentence, it is clear that in many natural language
sentences, information is conveyed via other lexi-
cal items. Consider, for example, the following sen-
tences:

(2) Einstein’s theory of relativity changed physics.

(3) The plays of Shakespeare are widely read.
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(4) The bus, which was heading for Nairobi
in Kenya, crashed in the Kabale district of
Uganda.

The examples contain information that cannot be
captured by analyzing the verbs and the nominaliza-
tions. In sentence (2), the possessive form tells us
that the theory of relativity was discovered by Ein-
stein. Furthermore, the theory is on the subject of
relativity. The usage of the preposition of is dif-
ferent in sentence (3), where it indicates a creator-
creation relationship. In the last sentence, the same
preposition tells us that the Kabale district is located
in Uganda. Prepositions, compound nouns, posses-
sives, adjectival forms and punctuation marks of-
ten express relations, the identification of which is
crucial for text understanding tasks like recognizing
textual entailment, paraphrasing and question an-
swering.

The relations expressed by different linguistic
phenomena often overlap. For example, consider the
following sentence:

(5) Construction of the library began in 1968.

The relation expressed by the nominalization con-
struction recognizes the library as the argument of
the predicate construct. However, the same analy-
sis can also be obtained by identifying the sense of
the preposition of, which tells us that the subject of
the preposition is a nominalization of the underlying
verb. A similar redundancy can be observed with
analyses of the verb began and the preposition in.
The above example motivates the following key in-
tuition: The correct interpretation of a sentence is
the one that gives a consistent analysis across all
the linguistic phenomena expressed in it.

An inference mechanism that simultaneously pre-
dicts the structure for different phenomena should
account for consistency between the phenomena. A
model designed to address this has the following
desiderata:

1. It should account for the dependencies between
phenomena.

2. It should be extensible to allow easy addition of
new linguistic phenomena.



3. It should be able to leverage existing state-of-
the-art models with minimal use of jointly la-
beled data, which is expensive to obtain.

Systems that are trained on each task indepen-
dently do not account for the interplay between
them. One approach for tackling this is to define
pipelines, where the predictions for one of the tasks
acts as the input for another. However, a pipeline
does not capture the two-way dependency between
the tasks. Training a fully joint model from scratch
is also unrealistic because it requires text that is an-
notated with all the tasks, thus making joint train-
ing implausible from a learning theoretic perspective
(See Punyakanok et al. (2005) for a discussion about
the learning theoretic requirements of joint training.)

3 Tasks and Individual Systems

Before defining our proposed model that captures
the requirements listed in the previous section, we
introduce the tasks we consider and their indepen-
dently trained systems that we improve using the
joint system. Though the model proposed here is
general and can be extended to several linguistic
phenomena, in this paper, we focus on relations ex-
pressed by verbs and prepositions. This section de-
scribes the tasks, the data sets we used for our exper-
iments and the current state-of-the-art systems for
these tasks.

We use the following sentence as our running ex-
ample to illustrate the phenomena: The company
calculated the price trends on the major stock mar-
kets on Monday.

3.1 Preposition Relations

Prepositions indicate a relation between the attach-
ment point of the preposition and its object. As we
have seen, the same preposition can indicate dif-
ferent types of relations. In the literature, the pol-
ysemy of prepositions is addressed by The Prepo-
sition Project! of Litkowski and Hargraves (2005),
which is a large lexical resource for English that la-
bels prepositions with their sense. This sense inven-
tory formed the basis of the SemEval-2007 task of
preposition word sense disambiguation of Litkowski
and Hargraves (2007). In our example, the first on

1
http://www.clres.com/prepositions.html
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would be labeled with the sense 8(3) which identifies
the object of the preposition as the topic, while the
second instance would be labeled as 17(8), which
indicates that argument is the day of the occurrence.

The preposition sense inventory, while useful to
identify the fine grained distinctions between prepo-
sition usage, defines a unique sense label for each
preposition by indexing the definitions of the prepo-
sitions in the Oxford Dictionary of English. For ex-
ample, in the phrase at noon, the at would be labeled
with the sense 2(2), while the preposition in [ will
see you in an hour will be labeled 4(3). Note that
both these (and also the second on in our running ex-
ample) indicate a temporal relation, but are assigned
different labels based on the preposition. To counter
this problem we collapsed preposition senses that
are semantically similar to define a new label space,
which we refer to as Preposition Roles.

We retrained classifiers for preposition sense for
the new label space. Before describing the prepo-
sition role dataset, we briefly describe the datasets
and the features for the sense problem. The best
performing system at the SemEval-2007 shared task
of preposition sense disambiguation (Ye and Bald-
win (2007)) achieves a mean precision of 69.3% for
predicting the fine grained senses. Tratz and Hovy
(2009) and Hovy et al. (2010) attained significant
improvements in performance using features derived
from the preposition’s neighbors in the parse tree.
We extended the feature set defined in the former
for our independent system. Table 1 summarizes the
rules for identifying the syntactically related words
for each preposition. We used dependencies from
the easy-first dependency parser of Goldberg and El-
hadad (2010).

For each word extracted from these rules, the fea-
tures include the word itself, its lemma, the POS
tag, synonyms and hypernyms of the first WordNet
sense and an indicator for capitalization. These fea-
tures improved the accuracy of sense identification
to 75.1% on the SemEval test set. In addition, we
also added the following new features for each word:

1. Indicators for gerunds and nominalizations of
verbs.

2. The named entity tag (Person, Location or Or-
ganization) associated with a word, if any. We



Id. | Feature

1. | Head noun/verb that dominates the
preposition along with its modifiers
2. | Head noun/verb that is dominated by
the preposition along with its modifiers
3. | Subject, negator and object(s) of the
immediately dominating verb
4. | Heads of sibling prepositions
5. | Words withing a window of 5 centered
at the preposition

Table 1: Features for preposition relation from Tratz and
Hovy (2009). These rules were used to identify syntacti-
cally related words for each preposition.

used the state-of-the-art named entity tagger of
Ratinov and Roth (2009) to label the text.

3. Gazetteer features, which are active if a word is
a part of a phrase that belongs to a gazetteer list.
We used the gazetteer lists which were used
by the NER system. We also used the CBC
word clusters of Pantel and Lin (2002) as ad-
ditional gazetteers and Brown cluster features
as used by Ratinov and Roth (2009) and Koo et
al. (2008).

Dahlmeier et al. (2009) annotated senses for the
prepositions at, for, in, of, on, to and with in the sec-
tions 2-4 and 23 of the Wall Street Journal portion of
the Penn Treebank?. We trained sense classifiers on
both datasets using the Averaged Perceptron algo-
rithm with the one-vs-all scheme using the Learning
Based Java framework of Rizzolo and Roth (2010)3.
Table 2 reports the performance of our sense disam-
biguation systems for the Treebank prepositions.
As mentioned earlier, we collapsed the sense la-
bels onto the newly defined preposition role labels.
Table 3 shows this label set along with frequencies
of the labels in the Treebank dataset. According to
this labeling scheme, the first on in our running ex-
ample will be labeled ToOPIC and the second one will

This dataset does not annotate all prepositions and re-
stricts itself mainly to prepositions that start a Propbank ar-
gument. The data is available at http://nlp.comp.nus.
edu.sg/corpora

3Learning Based Java can be downloaded from http://
cogcomp.cs.illinois.edu.
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Test set
Train Treebank Sec. 23 | SemEval
Penn Treebank 61.41 38.22
SemEval 47.00 78.25

Table 2: Preposition sense performance. This table re-
ports accuracy of sense prediction on the prepositions that
have been annotated for the Penn Treebank dataset.

Role Train | Test
ACTIVITY 57 23
ATTRIBUTE 119 51
BENEFICIARY 78 17
CAUSE 255 116
CONCOMITANT 156 74
ENDCONDITION 88 66
EXPERIENCER 88 42
INSTRUMENT 37 19
LOCATION 1141 | 414
MEDIUMOFCOMMUNICATION 39 30
NUMERIC/LEVEL 301 174
OBJECTOFVERB 365 112
OTHER 65 49
PARTWHOLE 485 133
PARTICIPANT/ACCOMPANIER 122 58
PHYSICALSUPPORT 32 18
POSSESSOR 195 56
PROFESSIONALASPECT 24 10
RECIPIENT 150 70
SPECIES 240 58
TEMPORAL 582 270
ToriCc 148 54

Table 3: Preposition role data statistics for the Penn Tree-
bank preposition dataset.

be labeled TEMPORAL*. We re-trained the sense
disambiguation system to predict preposition roles.
When trained on the Treebank data, our system at-
tains an accuracy of 67.82% on Section 23 of the
Treebank. We use this system as our independent
baseline for preposition role identification.

3.2 Verb SRL

The goal of verb Semantic Role Labeling (SRL)
is to identify the predicate-argument structure de-
fined by verbs in sentences. The CoNLL Shared
Tasks of 2004 and 2005 (See Carreras and Marquez

“The mapping from the preposition senses to the roles de-
fines a new dataset and is available for download at http:
//cogcomp.cs.illinois.edu/.



(2004), Carreras and Marquez (2005)) studied the
identification of the predicate-argument structure of
verbs using the PropBank corpus of Palmer et al.
(2005). Punyakanok et al. (2008) and Toutanova et
al. (2008) used global inference to ensure that the
predictions across all arguments of the same predi-
cate are coherent. We re-implemented the system of
Punyakanok et al. (2008), which we briefly describe
here, to serve as our baseline verb semantic role la-
beler °. We refer the reader to the original paper for
further details.

The verb SRL system of Punyakanok et al. (2008)
consists of four stages — candidate generation, argu-
ment identification, argument classification and in-
ference. The candidate generation stage involves us-
ing the heuristic of Xue and Palmer (2004) to gener-
ate an over-complete set of argument candidates for
each predicate. The identification stage uses a clas-
sifier to prune the candidates. In the argument clas-
sification step, the candidates that remain after the
identification step are assigned scores for the SRL
arguments using a multiclass classifier. One of the
labels of the classifier is (), which indicates that the
candidate is, in fact, not an argument. The inference
step produces a combined prediction for all argu-
ment candidates of a verb proposition by enforcing
global constraints.

The inference enforces the following structural
and linguistic constraints: (1) Each candidate can
have at most one label. (2) No duplicate core argu-
ments. (3) No overlapping or embedding arguments.
(4) Given the predicate, some argument classes are
illegal. (5) If a candidate is labeled as an R-arg,
then there should be one labeled as arg. (6) If a
candidate is labeled as a C-arg, there should be one
labeled arg that occurs before the C-arg.

Instead of using the identifier to filter candidates
for the classifier, in our SRL system, we added
the identifier to the global inference and enforced
consistency constraints between the identifier and
the argument classifier predictions — the identifier
should predict that a candidate is an argument if,
and only if, the argument classifier does not predict
the label (). This change is in keeping with the idea
of using joint inference to combine independently

SThe verb SRL system be downloaded from http://
cogcomp.cs.illinois.edu/page/software
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learned systems, in this case, the argument identifier
and the role classifier. Furthermore, we do not need
to explicitly tune the identifier for high recall.

We phrase the inference task as an integer lin-
ear program (ILP) following the approach devel-
oped in Roth and Yih (2004). Integer linear pro-
grams were used by Roth and Yih (2005) to add gen-
eral constraints for inference with conditional ran-
dom fields. ILPs have since been used successfully
in many NLP applications involving complex struc-
tures — Punyakanok et al. (2008) for semantic role
labeling, Riedel and Clarke (2006) and Martins et al.
(2009) for dependency parsing and several others®.

Let vi(f'a be the Boolean indicator variable that de-

notes that the i*" argument candidate for a predicate
is assigned a label a and let @ga represent the score
assigned by the argument classifier for this decision.
Similarly, let vi[ denote the identifier decision for the
it" argument candidate of the predicate and @{ de-
note its identifier score. Then, the objective of infer-
ence is to maximize the total score of the assignment

c C 1,1

max E Oi4Via T E 0, v; (1)
veovi S -
i,a )

Here, v© and v/ denote all the argument classifier
and identifier variables respectively. This maximiza-
tion is subject to the constraints described above,
which can be transformed to linear (in)equalities.
We denote these constraints as C°#L. In addition
to C7L which were defined by Punyakanok et al.
(2008), we also have the constraints linking the pre-
dictions of the identifier and classifier:
vgw + v{,,i =1; Yo,i. 2)
Inference in our baseline SRL system is, thus, the
maximization of the objective defined in (1) sub-
ject to constraints C°FL | the identifier-classifier con-
straints defined in (2) and the restriction of the vari-
ables to take values in {0, 1}.
To train the classifiers, we used parse trees from
the Charniak and Johnson (2005) parser with the

The primary advantage of using ILP for inference is that
this representation enables us to add arbitrary coherence con-
straints between the phenomena. If the underlying optimization
problem itself is tractable, then so is the corresponding integer
program. However, other approaches to solve the constrained
maximization problem can also be used for inference.



same feature representation as in the original sys-
tem. We trained the classifiers on the standard
Propbank training set using the one-vs-all extension
of the average Perceptron algorithm. As with the
preposition roles, we implemented our system using
Learning Based Java of Rizzolo and Roth (2010).
We normalized all classifier scores using the soft-
max function. Compared to the 76.29% F1 score
reported by Punyakanok et al. (2008) using single
parse tree predictions from the parser, our system
obtained 76.22% F1 score on section 23 of the Penn
Treebank.

4 A Joint Model for Verbs and
Prepositions

We now introduce our model that captures the needs
identified in Section 2. The approach we develop
in this paper follows the one proposed by Roth and
Yih (2004) of training individual models and com-
bining them at inference time. Our joint model
is a Constrained Conditional Model (See Chang et
al. (2011)), which allows us to build upon existing
learned models using declarative constraints.

We represent our component inference problems
as integer linear program instances. As we saw in
Section 3.2, the inference for SRL is instantiated as
an ILP problem. The problem of predicting prepo-
sition roles can be easily transformed into an ILP
instance. Let U;fr denote the decision variable that
encodes the prediction that the preposition p is as-
signed a role r and let @fﬂ, denote its score. Let
v1 denote all the role variables for a sentence. Then
role prediction is equivalent to the following maxi-
mization problem:

max Y OF ol 3)
VR p77‘ k) 2
subj. to v]f,, =1, Vp 4)
'
ot €{0,1}, Vp,r. (5)

In general, let p denote a linguistic structure pre-
diction task of interest and let P denote all such
tasks. Let Z? denote the set of labels that the parts
of the structure associated with phenomenon p can
take. For example, for the SRL argument classifica-
tion component, the parts of the structure are all the
candidates that need to be labeled for a given sen-
tence and the set ZP is the set of all argument labels.
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For each phenomenon p € P, we use v” to denote
its set of inference variables for a given sentence.
Each inference variable v%y € vP corresponds to
the prediction that the part y has the label Z in the
final structure. Each variable is associated with a
score @% y that is obtained from a learned score pre-
dictor. Let CP denote the structural constraints that
are “local” to the phenomenon. Thus, for verb SRL,
these would be the constraints defined in the previ-
ous section, and for preposition role, the only local
constraint would be the constraint (4) defined above.
The independent inference problem for the phe-
nomenon p is the following integer program:

W TN, ©
subj. to CP(vP), @)
v%y € {0,1}, Vv%’y. (8)

As a technical point, this defines one inference
problem per sentence, rather than per predicate
as in the verb SRL system of Punyakanok et al.
(2008). This simple extension enabled Surdeanu et
al. (2007) to study the impact of incorporating cross-
predicate constraints for verb SRL. In this work, this
extension allows us to incorporate cross-phenomena
inference.

4.1 Joint inference

We consider the problem of jointly predicting sev-
eral phenomena incorporating linguistic knowledge
that enforce consistency between the output labels.
Suppose p1 and py are two phenomena. If 2} is a la-
bel associated with the former and 27?252, - - are
labels associated with the latter, we consider con-
straints of the form

- Ve CAVERRRVE- 9
We expand this language of constraints by allowing
the specification of pre-conditions for a constraint to
apply. This allows us to enforce constraints of the
form “If an argument that starts with the preposi-
tion ‘at’ is labeled AM-TMP, then the preposition
can be labeled either NUMERIC/LEVEL or TEMPO-
RAL.” This constraint is universally quantified for



all arguments that satisfy the precondition of start-
ing with the preposition at.

Given a first-order constraint in this form and an
input sentence, suppose the inference variable v} is
a grounding of z}" and v}, v?, - - - are groundings
of the right hand labels such that the preconditions
are satisfied, then the constraint can be phrased as

the following linear inequality.
—oft + z ’Uf 2>0
i

In the context of the preposition role and verb
SRL, we consider constraints between labels for a
preposition and SRL argument candidates that begin
with that preposition. This restriction forms the pre-
condition for all the joint constraints considered in
this paper. Since the joint constraints involve only
the labels, they can be derived either manually from
the definition of the tasks or using statistical rela-
tion learning techniques. In addition to mining con-
straints of the form (9), we also use manually spec-
ified joint constraints. The constraints used in our
experiments are described further in Section 5.

In general, let J denote a set of pairwise joint
constraints. The joint inference problem can be
phrased as that of maximizing the score of the as-
signment subject to the structural constraints of each
phenomenon (CP) and the joint linguistic constraints
(J). However, since, the individual tasks were not
trained on the same datasets, the scoring functions
need not be in the same numeric scale. In our model,
each label Z for a phenomenon p is associated with a
scoring function @%’y for a part y. To scale the scor-
ing functions, we associate each label with a param-
eter A\, This gives us the following integer linear
program for joint inference:

max 3 3 A <Zv’§,y-@%y>, (10)
yP

V. peP zezr

subj. to CP(vP), VpeP (11)
J(v), (12)
vy, €01}, Vol . (13)

Here, v is the vector of inference variables which
is obtained by stacking all the inference variables of
each phenomena.

For our experiments, we use a cutting plane solver
to solve the integer linear program as in Riedel
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(2009). This allows us to solve the inference prob-
lem without explicitly having to instantiate all the
joint constraints.

4.2 Learning to rescale the individual systems

Given the individual models and the constraints, we
only need to learn the scaling parameters \},. Note
that the number of scaling parameters is the total
number of labels. When we jointly predict verb SRL
and preposition role, we have 22 preposition roles
(from table 3), one SRL identifier label and 54 SRL
argument classifier labels. Thus we learn only 77
parameters for our joint model. This means that we
only need a very small dataset that is jointly anno-
tated with all the phenomena.

We use the Structure Perceptron of Collins (2002)
to learn the scaling weights. Note that for learning
the scaling weights, we need each label to be associ-
ated with a real-valued feature. Given an assignment
of the inference variables v, the value of the feature
corresponding to the label Z of task p is given by the
sum of scores of all parts in the structure for p that
have been assigned this label, i.e. % vl 0%, This

feature is computed for the gold and the predicted
structures and is used for updating the weights.

5 Experiments

In this section, we describe our experimental setup
and evaluate the performance of our approach. The
research question addressed by the experiments is
the following: Given independently trained systems
for verb SRL and preposition roles, can their per-
formance be improved using joint inference between
the two tasks? To address this, we report the results
of the following two experiments:

1. First, we compare the joint system against the
baseline systems and with pipelines in both di-
rections. In this setting, both base systems are
trained on the Penn Treebank data.

2. Second, we show that using joint inference can
provide strong a performance gain even when
the underlying systems are trained on different
domains.

In all experiments, we report the F1 measure for
the verb SRL performance using the CoNLL 2005



evaluation metric and the accuracy for the preposi-
tion role labeling task.

5.1 Data and Constraints

For both the verb SRL and preposition roles, we
used the first 500 sentences of section 2 of the Penn
Treebank corpus to train our scaling parameters. For
the first set of experiments, we trained our underly-
ing systems on the rest of the available Penn Tree-
bank training data for each task. For the adaptation
experiment, we train the role classifier on the Se-
mkEval data (restricted to the same Treebank prepo-
sitions). In both cases, we report performance on
section 23 of the Treebank.

We mined consistency constraints from the sec-
tions 2, 3 and 4 of the Treebank data. As mentioned
in Section 4.1, we considered joint constraints re-
lating preposition roles to verb argument candidates
that start with the preposition. We identified the fol-
lowing types of constraints: (1) For each preposi-
tion, the set of invalid verb arguments and prepo-
sition roles. (2) For each preposition role, the set
of allowed verb argument labels if the role occurred
more than ten times in the data, and (3) For each
verb argument, the set of allowed preposition roles,
similarly with a support of ten. Note that, while the
constraints were obtained from jointly labeled data,
the constraints could be written down because they
encode linguistic intuition about the labels.

The following is a constraint extracted from the
data, which applies to the preposition with:

srlarg(A2) prep-role(ATTRIBUTE)
prep-role(CAUSE)
prep-role(INSTRUMENT)
prep-role(OBJECTOFVERB)
prep-role(PARTWHOLE)

prep-role(PARTICIPANT/ACCOMPAINER)

< < < < < < |

prep-role(PROFESSIONALASPECT).

This constraint says that if any candidate that starts
with with is labeled as an A2, then the preposition
can be labeled only with one of the roles on the right
hand side.

Some of the mined constraints have negated vari-
ables to enforce that a role or an argument label
should not be allowed. These can be similarly con-
verted to linear inequalities. See Rizzolo and Roth
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(2010) for a further discussion about converting log-
ical expressions into linear constraints.

In addition to these constraints that were mined
from data, we also enforce the following hand-
written constraints: (1) If the role of a verb at-
tached preposition is labeled TEMPORAL, then there
should be a verb predicate for which this preposi-
tional phrase is labeled AM-TMP. (2) For verb at-
tached prepositions, if the preposition is labeled with
one of ACTIVITY, ENDCONDITION, INSTRUMENT
or PROFESSIONALASPECT, there should be at least
one predicate for which the corresponding preposi-
tional phrase is not labeled ().

The conversion of the first constraint to a linear
inequality is similar to the earlier cases. For each
of the roles in the second constraint, let  denote a
role variable that assigns the label to some prepo-
sition. Suppose there are n SRL candidates across
all verb predicates begin with that preposition, and
let s1, 892, , s, denote the SRL variables that as-
sign these candidates to the label (). Then the second
constraint corresponds to the following inequality:

n
T+Zsi§n
i=1

5.2 Results of joint learning

First, we compare our approach to the performance
of the baseline independent systems and to pipelines
in both directions in Table 4. For one pipeline, we
added the prediction of the baseline preposition role
system as an additional feature to both the identifier
and the argument classifier for argument candidates
that start with a preposition. Similarly, for the sec-
ond pipeline, we added the SRL predictions as fea-
tures for prepositions that were the first word of an
SRL argument. In all cases, we performed five-fold
cross validation to train the classifiers.

The results show that both pipelines improve per-
formance. This justifies the need for a joint sys-
tem because the pipeline can improve only one of
the tasks. The last line of the table shows that the
joint inference system improves upon both the base-
lines. We achieve this improvement without retrain-
ing the underlying models, as done in the case of the
pipelines.

On analyzing the output of the systems, we found
that the SRL precision improved by 2.75% but the



Setting SRL | Preposition Role
(F1) (Accuracy)

Baseline SRL | 76.22 -

Baseline Prep. - 67.82

Prep. — SRL | 76.84 -

SRL — Prep. - 68.55

Joint inference | 77.07 68.39

Table 4: Performance of the joint system, compared to
the individual systems and the pipelines. All performance
measures are reported on Section 23 of the Penn Tree-
bank. The verb SRL systems were trained on sections
2-21, while the preposition role classifiers were trained
on sections 2-4. For the joint inference system, the scal-
ing parameters were trained on the first 500 sentences of
section 2, which were held out. All the improvements in
this table are statistically significant at the 0.05 level.

recall decreased by 0.98%, contributing to the over-
all F1 improvement. The decrease in recall is due to
the joint hard constraints that prohibit certain assign-
ments to the variables which would have otherwise
been possible. Note that, for a given sentence, even
if the joint constraints affect only a few argument
candidates directly, they can alter the labels of the
other candidates via the “local” SRL constraints.
Consider the following example of the system
output which highlights the effect of the constraints.

(6) Weatherford said market conditions led to the
cancellation of the planned exchange.

The independent preposition role system incor-
rectly identifies the fo as a LOCATION. The semantic
role labeling component identifies the phrase fo the
cancellation of the planned exchange as the A2 of
the verb led. One of the constraints mined from the
data prohibits the label LOCATION for the preposi-
tion fo if the argument it starts is labeled A2. This
forces the system to change the preposition label
to the correct one, namely ENDCONDITION. Both
the independent and the joint systems also label the
preposition of as OBJECTOFVERB, which indicates
that the phrase the planned exchange is the object of
the deverbal noun cancellation.

5.3 Effect of constraints on adaptation

Our second experiment compares the performance
of the preposition role classifier that has been trained
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on the SemEval dataset with and without joint con-
straints. Note that Table 2 in Section 3, shows
the drop in performance when applying the prepo-
sition sense classifier. We see that the SemEval-
trained preposition role classifier (baseline in the ta-
ble) achieves an accuracy of 53.29% when tested on
the Treebank dataset. Using this classifier jointly
with the verb SRL classifier via joint constraints gets
an improvement of almost 3 percent in accuracy.

Setting Preposition Role
(Accuracy)

Baseline 53.29

Joint inference 56.22

Table 5: Performance of the SemEval-trained preposition
role classifier, when tested on the Treebank dataset with
and without joint inference with the verb SRL system.
The improvement, in this case is statistically significant
at the 0.01 level using the sign test.

The primary reason for this improvement, even
without re-training the classifier, is that the con-
straints are defined using only the labels of the sys-
tems. This avoids the standard adaptation problems
of differing vocabularies and unseen features.

6 Discussion and Related work

Roth and Yih (2004) formulated the problem of ex-
tracting entities and relations as an integer linear
program, allowing them to use global structural con-
straints at inference time even though the component
classifiers were trained independently. In this pa-
per, we use this idea to combine classifiers that were
trained for two different tasks on different datasets
using constraints to encode linguistic knowledge.

In the recent years, we have seen several joint
models that combine two or more NLP tasks . An-
drew et al. (2004) studied verb subcategorization
and sense disambiguation of verbs by treating it as
a problem of learning with partially labeled struc-
tures and proposed to use EM to train the joint
model. Finkel and Manning (2009) modeled the task
of named entity recognition together with parsing.
Meza-Ruiz and Riedel (2009) modeled verb SRL,
predicate identification and predicate sense recogni-
tion jointly using Markov Logic. Henderson et al.
(2008) was designed for jointly learning to predict
syntactic and semantic dependencies. Dahlmeier et



al. (2009) addressed the problem of jointly learning
verb SRL and preposition sense using the Penn Tree-
bank annotation that was introduced in that work.
The key difference between these and the model
presented in this paper lies in the simplicity of our
model and its easy extensibility because it leverages
existing trained systems. Moreover, our model has
the advantage that the complexity of the joint param-
eters is small, hence does not require a large jointly
labeled dataset to train the scaling parameters.

Our approach is conceptually similar to that of
Rush et al. (2010), which combined separately
trained models by enforcing agreement using global
inference and solving its linear programming relax-
ation. They applied this idea to jointly predict de-
pendency and phrase structure parse trees and on the
task of predicting full parses together with part-of-
speech tags. The main difference in our approach is
that we treat the scaling problem as a separate learn-
ing problem in itself and train a joint model specifi-
cally for re-scaling the output of the trained systems.

The SRL combination system of Surdeanu et al.
(2007) studied the combination of three different
SRL systems using constraints and also by training
secondary scoring functions over the individual sys-
tems. Their approach is similar to the one presented
in this paper in that, unlike standard reranking, as
in Collins (2000), we entertain all possible solutions
during inference, while reranking approaches train
a discriminative scorer for the top-K solutions of
an underlying system. Unlike the SRL combination
system, however, our approach spans multiple phe-
nomena. Moreover, in contrast to their re-scoring
approaches, we do not define joint features drawn
from the predictions of the underlying components
to define our global model.

We consider the tasks verb SRL and preposition
roles and combine their predictions to provide a
richer semantic annotation of text. This approach
can be easily extended to include systems that pre-
dict structures for other linguistic phenomena be-
cause we do not retrain the underlying systems. The
semantic relations can be enriched by incorporating
more linguistic phenomena such as nominal SRL,
defined by the Nombank annotation scheme of Mey-
ers et al. (2004), the preposition function analysis
of O’Hara and Wiebe (2009) and noun compound
analysis as defined by Girju (2007) and Girju et al.

138

(2009) and others. This presents an exciting direc-
tion for future work.

7 Conclusion

This paper presents a strategy for extending seman-
tic role labeling without the need for extensive re-
training or data annotation. While standard seman-
tic role labeling focuses on verb and nominal re-
lations, sentences can express relations using other
lexical items also. Moreover, the different relations
interact with each other and constrain the possible
structures that they can take. We use this intuition
to define a joint model for inference. We instanti-
ate our model using verb semantic role labeling and
preposition role labeling and show that, using lin-
guistic constraints between the tasks and minimal
joint learning, we can improve the performance of
both tasks. The main advantage of our approach
is that we can use existing trained models without
re-training them, thus making it easy to extend this
work to include other linguistic phenomena.
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Abstract

This paper presents a domain-assisted ap-
proach to organize various aspects of a prod-
uct into a hierarchy by integrating domain
knowledge (e.g., the product specifications),
as well as consumer reviews. Based on the
derived hierarchy, we generate a hierarchical
organization of consumer reviews on various
product aspects and aggregate consumer opin-
ions on these aspects. With such organiza-
tion, user can easily grasp the overview of
consumer reviews. Furthermore, we apply the
hierarchy to the task of implicit aspect identi-
fication which aims to infer implicit aspects of
the reviews that do not explicitly express those
aspects but actually comment on them. The
experimental results on 11 popular products in
four domains demonstrate the effectiveness of
our approach.

1 Introduction

With the rapidly expanding e-commerce, most retail
Web sites encourage consumers to write reviews to
express their opinions on various aspects of prod-
ucts. Huge collections of consumer reviews are
now available on the Web. These reviews have be-
come an important resource for both consumers and
firms. Consumers commonly seek quality informa-
tion from online consumer reviews prior to purchas-
ing a product, while many firms use online reviews
as an important resource in their product develop-
ment, marketing, and consumer relationship man-
agement. However, the reviews are disorganized,
leading to the difficulty in information navigation
and knowledge acquisition. It is impractical for user
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to grasp the overview of consumer reviews and opin-
ions on various aspects of a product from such enor-
mous reviews. Among hundreds of product aspects,
it is also inefficient for user to browse consumer re-
views and opinions on a specific aspect. Thus, there
is a compelling need to organize consumer reviews,
so as to transform the reviews into a useful knowl-
edge structure. Since the hierarchy can improve in-
formation representation and accessibility (Cimiano,
2006), we propose to organize the aspects of a prod-
uct into a hierarchy and generate a hierarchical or-
ganization of consumer reviews accordingly.

Towards automatically deriving an aspect hierar-
chy from the reviews, we could refer to traditional
hierarchy generation methods in ontology learning,
which first identify concepts from the text, then
determine the parent-child relations between these
concepts using either pattern-based or clustering-
based methods (Murthy et al., 2010). However,
pattern-based methods usually suffer from inconsis-
tency of parent-child relationships among the con-
cepts, while clustering-based methods often result
in low accuracy. Thus, by directly utilizing these
methods to generate an aspect hierarchy from con-
sumer reviews, the resulting hierarchy is usually in-
accurate, leading to unsatisfactory review organiza-
tion. On the other hand, domain knowledge of prod-
ucts is now available on the Web. For example,
there are more than 248,474 product specifications
in the product selling Web site CNet.com (Beckham,
2005). These product specifications cover some
product aspects and provide coarse-grained parent-
child relations among these aspects. Such domain
knowledge is useful to help organize the product as-
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Figure 1: Sample hierarchical organization for iPhone 3G

pects into a hierarchy. However, the initial hierarchy
obtained from domain knowledge usually cannot fit
the review data well. For example, the initial hierar-
chy is usually too coarse and may not cover the spe-
cific aspects commented in the reviews, while some
aspects in the hierarchy may not be of interests to
users in the reviews.

Motivated by the above observations, we propose
in this paper to organize the product aspects into a
hierarchy by simultaneously exploiting the domain
knowledge (e.g., the product specification) and con-
sumer reviews. With derived aspect hierarchy, we
generate a hierarchical organization of consumer re-
views on various aspects and aggregate consumer
opinions on these aspects. Figure 1 illustrates a sam-
ple of hierarchical review organization for the prod-
uct “iPhone 3G”. With such organization, users can
easily grasp the overview of product aspects as well
as conveniently navigate the consumer reviews and
opinions on any aspect. For example, users can find
that 623 reviews, out of 9,245 reviews, are about the
aspect “price”, with 241 positive and 382 negative
reviews.

Given a collection of consumer reviews on a spe-
cific product, we first automatically acquire an ini-
tial aspect hierarchy from domain knowledge and
identify the aspects from the reviews. Based on the
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initial hierarchy, we develop a multi-criteria opti-
mization approach to construct an aspect hierarchy
to contain all the identified aspects. Our approach
incrementally inserts the aspects into the initial hi-
erarchy based on inter-aspect semantic distance, a
metric used to measure the semantic relation among
aspects. In order to derive reliable semantic dis-
tance, we propose to leverage external hierarchies,
sampled from WordNet and Open Directory Project,
to assist semantic distance learning. With resultant
aspect hierarchy, the consumer reviews are then or-
ganized to their corresponding aspect nodes in the
hierarchy. We then perform sentiment classification
to determine consumer opinions on these aspects.
Furthermore, we apply the hierarchy to the task of
implicit aspect identification. This task aims to infer
implicit aspects of the reviews that do not explic-
itly express those aspects but actually comment on
them. For example, the implicit aspect of the review
“It is so expensive” is “price.” Most existing aspect
identification approaches rely on the appearance of
aspect terms, and thus are not able to handle implicit
aspect problem. Based on our aspect hierarchy, we
can infer the implicit aspects by clustering the re-
views into their corresponding aspect nodes in the
hierarchy. We conduct experiments on 11 popular
products in four domains. More details of the corpus
are discussed in Section 4. The experimental results
demonstrate the effectiveness of our approach.

The main contributions of this work can be sum-
marized as follows:

1) We propose to hierarchically organize con-
sumer reviews according to an aspect hierarchy, so
as to transfer the reviews into a useful knowledge
structure.

2) We develop a domain-assisted approach to
generate an aspect hierarchy by integrating domain
knowledge and consumer reviews. In order to de-
rive reliable semantic distance between aspects, we
propose to leverage external hierarchies to assist se-
mantic distance learning.

3) We apply the aspect hierarchy to the task of im-
plicit aspect identification, and achieve satisfactory
performance.

The rest of this paper is organized as follows. Our
approach is elaborated in Section 2 and applied to
implicit aspect identification in Section 3. Section
4 presents the evaluations, while Section 5 reviews



related work. Finally, Section 6 concludes this paper
with future works.

2 Approach

Our approach consists of four components, includ-
ing initial hierarchy acquisition, aspect identifica-
tion, semantic distance learning, and aspect hierar-
chy generation. Next, we first define some prelimi-
nary and notations and then elaborate these compo-
nents.

2.1 Preliminary and Notations

Preliminary 1. An aspect hierarchy is defined as a
tree that consists of a set of unique aspects A and
a set of parent-child relations R between these as-
pects.

Given the consumer reviews of a product, let
A = {aq,- -, ax} denotes the product aspects com-
mented in the reviews. H°(A%, RY) denotes the ini-
tial hierarchy derived from domain knowledge. It
contains a set of aspects A” and relations R?. Our
task is to construct an aspect hierarchy (A, R), to
cover all the aspects in A and their parent-child re-
lations R, so that the consumer reviews are hierar-
chically organized. Note that 4° can be empty.

2.2 Initial Hierarchy Acquisition

As aforementioned, product specifications on prod-
uct selling websites cover some product aspects and
coarse-grained parent-child relations among these
aspects. Such domain knowledge is useful to help
organize aspects into a hierarchy. We here employ
the approach proposed by Ye and Chua (2006) to au-
tomatically acquire an initial aspect hierarchy from
the product specifications. The method first identi-
fies the Web page region covering product descrip-
tions and removes the irrelevant contents from the
Web page. It then parses the region containing the
product information to identify the aspects as well as
their structure. Based on the aspects and their struc-
ture, it generates an aspect hierarchy.

2.3 Aspect Identification

To identify aspects in consumer reviews, we first
parse each review using the Stanford parser . Since
the aspects in consumer reviews are usually noun

"http://nlp.stanford.edu/software/lex-parser.shtml
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or noun phrases (Liu, 2009), we extract the noun
phrases (NP) from the parse tree as aspect candi-
dates. While these candidates may contain much
noise, we leverage Pros and Cons reviews (see Fig-
ure 2), which are prevalent in forum Web sites,
to assist identify aspects from the candidates. It
has been shown that simply extracting the frequent
noun terms from the Pros and Cons reviews can get
high accurate aspect terms (Liu el al., 2005). Thus,
we extract the frequent noun terms from Pros and
Cons reviews as features, then train a one-class SVM
(Manevitz et al., 2002) to identify aspects from the
candidates. While the obtained aspects may con-
tain some synonym terms, such as “earphone” and
“headphone”, we further perform synonym cluster-
ing to get unique aspects. Specifically, we first ex-
pand each aspect term with its synonym terms ob-
tained from the synonym terms Web site 2, then clus-
ter them to obtain unique aspects based on unigram
feature.

2.4 Semantic Distance Learning

Our aspect hierarchy generation approach is essen-
tially based on the semantic relati