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General Chair’s Preface

Welcome to EMNLP 2011, Conference on Empirical Methods in Natural Language Processing, a
conference organised annually by SIGDAT, the Association for Computational Linguistics’ special
interest group on linguistic data and corpus-based approaches to NLP. This year the conference is held
from July 27th to 29th at the John McIntyre Conference Centre, Edinburgh, UK.

This year EMNLP is, for the first time, not only a stand alone conference, but also an anchor conference
to several workshops, that are held on July 30th and July 31st at the Informatics Forum, Edinburgh.

This year’s conference continues the successful growing trend of previous years, attracting the largest
number of papers to date for EMNLP and requiring a large organisational effort. I would like to thank
all the people involved.

Regina Barzilay from MIT and Mark Johnson from Macquarie University chaired a large scientific
programme committee and introduced several innovations in the submission, selection and final
scheduling of papers.

Marie Candito, of Paris Diderot University, in collaboration with the ACL workshop chairs, selected
the workshops, seven of which have been affiliated to EMNLP. They have received a large number of
submissions and generated very interesting programmes.

Special thanks go to the publication chair Wanxiang Che, from Harbin Institute of Technology, who
had to deal with EMNLP’s now famous just-in-time schedule.

We are very grateful to Bonnie Webber and Miles Osborne, from the University of Edinburgh, for
accepting the demanding task of organising the largest and most complex EMNLP ever and allowing
us to hold this conference in such a remarkable city. Thanks also go to Francesco Figari the webmaster,
and to all the student volunteers that make the conference possible.

Miles Osborne is also the contact person for an interesting affiliated event sponsored by Google and
the Scottish and Informatics Computer Science Alliance: an Intense Summer School on Hadoop and
Natural Language Processing, that will take place in Edinburgh for two days before the conference.

Thanks also to David Yarowsky and Ken Church from SIGDAT who provided much useful information
from past conferences and Graeme Hirst and Priscilla Rasmussen from ACL for their help and advice.

This year’s EMNLP’s sponsors are Google, Yahoo and Textkernel. We thank them for their very
welcome contributions, which were obtained by the efforts of the local organisers and of Massimilano
Ciaramita (Google) and Stefan Riezler (Heidelberg University), our ACL sponsorship committee
members for Europe.

Finally, and foremost, thank to all the authors and conference attendees that have made and will make
this conference a success and source of inspiration.

Paola Merlo, University of Geneva
EMNLP 2011 General Chair
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Program Chairs’ Preface
Welcome to the EMNLP 2011 conference, hosted this year by the the extremely impressive University
of Edinburgh.

EMNLP 2011 received 628 submissions, a new record for the conference. The program committee,
consisted of 20 area chairs and 545 PC members from Asia, Europe, and North America, was able to
accept 149 papers in total (for an acceptance rate of 23.7%). Among them, 94 (i.e., 63%) of the papers
were accepted for oral presentations, and 54 (i.e., 36%) for poster presentations. Submissions from
PC chairs were handled by the general chair in an off-line procedure that applied considerably stricter
acceptance requirements than for ordinary submissions.

First and foremost, we would like to thank the authors who submitted their work to EMNLP 2011.
The sheer number of submissions reflects how broad and active our field is. We are deeply indebted
to the area chairs and the PC members for their hard work. They enabled us to make a wonderful
program and to provide valuable feedback to the authors. We are extremely pleased that our invited
speaker David McAllester has agreed to talk at EMNLP. Many thanks to local arrangements chairs,
Bonnie Webber and Miles Osborne, who enabled the conference to be held in Edinburgh, one of the
great intellectual cities of the world. We’d also like to thank the publications chair, Wanxiang Che,
who put this volume together. We greatly benefited from advice from Hang Li and Lluı́s Màrquez who
kindly shared with us their experience from EMNLP 2010. Special thanks to the general chair, Paola
Merlo, who provided much valuable advice and assistance in the past months. We are grateful to David
Yarowksy for assistance with a variety of aspects of the conference. Rich Gerber and the START team
responded to our questions quickly, and helped us manage the large number of submissions smoothly;
we would like to thank them as well.

This year’s conference is innovative in several ways. The conference contains three additional plenary
sessions compared to previous EMNLP conferences; these are used to highlight a diverse set of papers
of interest to the entire EMNLP audience. We hope this will help counter the disciplinary fragmentation
that some of us feel the standard multi-track conference structure encourages.

For the first time, submitted papers could be optionally accompanied by up to 10MB of supplementary
material, which could consist of data, code, and text. Papers can reference the supplementary material
in much the same way a paper might refer to software or a tech report available from the authors’ web
site (albeit without revealing the authors’ identities). Reviewers were encouraged but not required to
view the supplementary material.

A major challenge this year concerned undisclosed double submissions and plagiarism (especially self-
plagiarism) involving papers accepted at other international conferences. We believe this is an issue
that must addressed by the broader research community. Our community needs clear, well-publicised,
standards on double and overlapping submissions, and also needs procedures for sharing information
between relevant conferences to discourage double submission and self-plagiarism.

But we don’t want to blow this issue out of proportion. By far the vast majority of EMNLP submissions
described creative, innovative work that taken together substantially advances the field. The success of
a conference is really a result of the great efforts of everybody involved. We hope that you enjoy this
year’s conference in the historic city of Edinburgh!

Regina Barzilay and Mark Johnson
EMNLP 2011 Program Co-Chairs
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baum, Donghui Feng, Yansong Feng, Elena Filatova, Denis Filimonov, Katja Filippova, Jenny
Finkel, Dan Flickinger, Radu Florian, George Foster, Jennifer Foster, Anette Frank, Martin
Franz, Martin Franz, Alex Fraser, Marjorie Freedman, Michel Galley, Michael Gamon, Kuz-
man Ganchev, Kavita Ganesan, Juri Ganitkevitch, Wei Gao, Janfeng Gao, Konstantina Garoufi,
Jan Gasthaus, Eric Gaussier, Dmitriy Genzel, Kallirroi Georgila, Daniel Gildea, Kevin Gimpel,
Roxana Girju, Amir Globerson, Yoav Goldberg, Yoav Goldberg, Dan Goldwasser, Sharon Gold-
water, José González-Brenes, julio gonzalo, Joao Graca, Agustin Gravano, Spence Green, Gre-
gory Grefenstette, Ralph Grishman, Iryna Gurevych, Ben Hachey, Barry Haddow, Gholamreza
Haffari, Aria Haghighi, Udo Hahn, Dilek Hakkani-Tur, Keith Hall, Ben Han, Sanda Harabagiu,
Sasa Hasan, Xiadong He, Xiaodong He, John Hendernson, James Henderson, James Hender-
son, Iris Hendrickx, Aurelie Herbelot, Hugo Hernault, Graeme Hirst, Hieu Hoang, Julia Hock-
enmaier, Raphael Hoffmann, Kristy Hollingshead, Yunhua Hu, Yunfeng Huang, Liang Huang,
Minlie Huang, Zhongqiang Huang, Nancy Ide, Gonzalo Iglesias, Ryu Iida, Piotr Indyk, Diana
Inkpen, Kentaro Inui, Abe Ittycheriah, Tommi Jaakkola, Alpa Jain, Martin Jansche, Heng Ji,
Kim Jin-Dong, Richard Johansson, Howard Johnson, Mark Johnson, Rie Johnson, Kristiina Joki-
nen, Rosie Jones, Dan Jurafsky, Min-Yen Kan, Pallika Kanani, Hiroshi Kanayama, Rohit Kate,
Simon Keizer, Frank Keller, Chloé Kiddon, Su Nam Kim, Irwin King, Tracy Holloway King,
Katrin Kirchhoff, Dietrich Klakow, Dan Klein, Alex Klementiev, Kevin Knight, Philipp Koehn,
Ioannis Konstas, Terry Koo, Moshe Koppel, Zornitsa Kozareva, Marco Kuhlmann, Roland Kuhn,
Jonas Kuhn, Seth Kulick, Ravi Kumar, Mirella Lapata, Alex Lascarides, Alon Lavie, Claudia
Leacock, Matt Lease, Lillian Lee, Yoong Keok Lee, Gregor Leusch, Abby Levenberg, Effi Levi,
Gina-Anne Levow, Roger Levy, Xiao Li, Wenjie Li, Fangtao Li, Hang Li, Linlin Li, Mu Li,
Shoushan Li, Yunyao Li, Zhifei Li, Percy Liang, Marc Light, Chin-Yew Lin, DeKang Lin,
Christina Lioma, Qiaoling Liu, Feifan Liu, Yan Liu, Ting Liu, Yang Liu, Ed Loper, Adam Lopez,
John Lowe, Yue Lu, Xiaoqiang Luo, Bill MacCartney, Klaus Macherey, Wolfgang Macherey,
Nitin Madnani, Bernardo Magnini, Francois Mairesse, Andreas Maletti, Suresh Manandhar,
Gideon Mann, Chris Manning, Daniel Marcu, Montserrat Marimon, Lluı́s Màrquez, James Mar-
tin, Andre Martins, Sameer Maskey, Fabio Massimo Zanzotto, Yuji Matsumoto, Irina Matveeva,
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Enrique Amigó, Julio Gonzalo, Jesus Gimenez and Felisa Verdejo

12:15–12:40 Ranking Human and Machine Summarization Systems
Peter Rankel, John Conroy, Eric Slud and Dianne O’Leary

12:40–14:10 Lunch

Session 6A: Machine Translation
Chair: Stefan Riezler

14:10–14:35 Quasi-Synchronous Phrase Dependency Grammars for Machine Translation
Kevin Gimpel and Noah A. Smith

14:35–15:00 A Word Reordering Model for Improved Machine Translation
Karthik Visweswariah, Rajakrishnan Rajkumar, Ankur Gandhe, Ananthakrishnan Ra-
manathan and Jiri Navratil

15:00–15:25 Feature-Rich Language-Independent Syntax-Based Alignment for Statistical Machine
Translation
Jason Riesa, Ann Irvine and Daniel Marcu

15:25–15:50 Efficient retrieval of tree translation examples for Syntax-Based Machine Translation
Fabien Cromieres and Sadao Kurohashi

xxiv



Thursday, July 28, 2011 (continued)

Session 6B: Semantics
Chair: Hwee Tou Ng

14:10–14:35 A generative model for unsupervised discovery of relations and argument classes from
clinical texts
Bryan Rink and Sanda Harabagiu

14:35–15:00 Random Walk Inference and Learning in A Large Scale Knowledge Base
Ni Lao, Tom Mitchell and William W. Cohen

15:00–15:25 Exploring Supervised LDA Models for Assigning Attributes to Adjective-Noun Phrases
Matthias Hartung and Anette Frank

15:25–15:50 Semantic Topic Models: Combining Word Distributional Statistics and Dictionary Defini-
tions
Weiwei Guo and Mona Diab

Session 6C: Sentiment Analysis and Opinion Mining
Chair: Benjamin Snyder

14:10–14:35 Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! Using Word Lengthening to Detect Sentiment
in Microblogs
Samuel Brody and Nicholas Diakopoulos

14:35–15:00 Personalized Recommendation of User Comments via Factor Models
Deepak Agarwal, Bee-Chung Chen and Bo Pang

15:00–15:25 Data-Driven Response Generation in Social Media
Alan Ritter, Colin Cherry and William B. Dolan

15:25–15:50 Predicting a Scientific Community’s Response to an Article
Dani Yogatama, Michael Heilman, Brendan O’Connor, Chris Dyer, Bryan R. Routledge
and Noah A. Smith

15:50–16:20 Coffee break

xxv



Thursday, July 28, 2011 (continued)

Session 7A: Phonology Morphology Tagging Chunking and Segmentation
Chair: Noah Smith

16:20–16:45 Non-parametric Bayesian Segmentation of Japanese Noun Phrases
Yugo Murawaki and Sadao Kurohashi

16:45–17:10 Discovering Morphological Paradigms from Plain Text Using a Dirichlet Process Mixture
Model
Markus Dreyer and Jason Eisner

17:10–17:35 Multilayer Sequence Labeling
Ai Azuma and Yuji Matsumoto

17:35–18:00 A Bayesian Mixture Model for PoS Induction Using Multiple Features
Christos Christodoulopoulos, Sharon Goldwater and Mark Steedman

Session 7B: Semantics
Chair: Mark Stevenson

16:20–16:45 Large-Scale Noun Compound Interpretation Using Bootstrapping and the Web as a Cor-
pus
Su Nam Kim and Preslav Nakov

16:45–17:10 Linguistic Redundancy in Twitter
Fabio Massimo Zanzotto, Marco Pennaccchiotti and Kostas Tsioutsiouliklis

17:10–17:35 Divide and Conquer: Crowdsourcing the Creation of Cross-Lingual Textual Entailment
Corpora
Matteo Negri, Luisa Bentivogli, Yashar Mehdad, Danilo Giampiccolo and Alessandro
Marchetti

17:35–18:00 Literal and Metaphorical Sense Identification through Concrete and Abstract Context
Peter Turney, Yair Neuman, Dan Assaf and Yohai Cohen

xxvi



Thursday, July 28, 2011 (continued)

Session 7C: Spoken Language + IR
Chair: Steve Renals

16:20–16:45 Syntactic Decision Tree LMs: Random Selection or Intelligent Design?
Denis Filimonov and Mary Harper

16:45–17:10 The Imagination of Crowds: Conversational AAC Language Modeling using Crowdsourc-
ing and Large Data Sources
Keith Vertanen and Per Ola Kristensson

17:10–17:35 Using Syntactic and Semantic Structural Kernels for Classifying Definition Questions in
Jeopardy!
Alessandro Moschitti, Jennifer Chu-carroll, Siddharth Patwardhan, James Fan and
Giuseppe Riccardi

17:35–18:00 Multiword Expression Identification with Tree Substitution Grammars: A Parsing tour de
force with French
Spence Green, Marie-Catherine de Marneffe, John Bauer and Christopher D. Manning

18:30–21:30 Poster session and Reception

Modelling Discourse Relations for Arabic
Amal Al-Saif and Katja Markert

Classifying Sentences as Speech Acts in Message Board Posts
Ashequl Qadir and Ellen Riloff

Learning Local Content Shift Detectors from Document-level Information
Richard Farkas

Collaborative Ranking: A Case Study on Entity Linking
Zheng Chen and Heng Ji

Robust Disambiguation of Named Entities in Text
Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred
Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater and Gerhard Weikum

A Cascaded Classification Approach to Semantic Head Recognition
Lukas Michelbacher, Alok Kothari, Martin Forst, Christina Lioma and Hinrich Schütze

Linking Entities to a Knowledge Base with Query Expansion
Swapna Gottipati and Jing Jiang

xxvii



Thursday, July 28, 2011 (continued)

Unsupervised Information Extraction with Distributional Prior Knowledge
Cane Wing-ki Leung, Jing Jiang, Kian Ming A. Chai, Hai Leong Chieu and Loo-Nin Teow

Relation Acquisition using Word Classes and Partial Patterns
Stijn De Saeger, Kentaro Torisawa, Masaaki Tsuchida, Jun’ichi Kazama, Chikara
Hashimoto, Ichiro Yamada, Jong Hoon Oh, Istvan Varga and Yulan Yan

Identification of Multi-word Expressions by Combining Multiple Linguistic Information
Sources
Yulia Tsvetkov and Shuly Wintner

Analyzing Methods for Improving Precision of Pivot Based Bilingual Dictionaries
Xabier Saralegi, Iker Manterola and Iñaki San Vicente
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Abstract

Extracting biomedical events from literature
has attracted much recent attention. The best-
performing systems so far have been pipelines
of simple subtask-specific local classifiers. A
natural drawback of such approaches are cas-
cading errors introduced in early stages of the
pipeline. We present three joint models of
increasing complexity designed to overcome
this problem. The first model performs joint
trigger and argument extraction, and lends it-
self to a simple, efficient and exact infer-
ence algorithm. The second model captures
correlations between events, while the third
model ensures consistency between arguments
of the same event. Inference in these models
is kept tractable through dual decomposition.
The first two models outperform the previous
best joint approaches and are very competi-
tive with respect to the current state-of-the-
art. The third model yields the best results re-
ported so far on the BioNLP 2009 shared task,
the BioNLP 2011 Genia task and the BioNLP
2011 Infectious Diseases task.

1 Introduction

Whenever we advance our scientific understanding
of the world, we seek to publish our findings. The
result is a vast and ever-expanding body of natural
language text that is becoming increasingly difficult
to leverage. This is particularly true in the context
of life sciences, where large quantities of biomedi-
cal articles are published on a daily basis. To sup-
port tasks such data mining, search and visualiza-
tion, there is a clear need for structured representa-
tions of the knowledge these articles convey. This is

indicated by a large number of public databases with
content ranging from simple protein-protein interac-
tions to complex pathways. To increase coverage of
such databases, and to keep up with the rate of pub-
lishing, we need to automatically extract structured
representations from biomedical text—a process of-
ten referred to as biomedical text mining.

One major focus of biomedical text mining has
been the extraction of named entities, such genes
or gene products, and of flat binary relations be-
tween such entities, such as protein-protein interac-
tions. However, in recent years there has also been
an increasing interest in the extraction of biomedi-
cal events and their causal relations. This gave rise
to the BioNLP 2009 and 2011 shared tasks which
challenged participants to gather such events from
biomedical text (Kim et al., 2009; Kim et al., 2011).
Notably, these events can be complex and recursive:
they may have several arguments, and some of the
arguments may be events themselves.

Current state-of-the-art event extractors fol-
low the same architectural blueprint and divide
the extraction process into a pipeline of three
stages (Björne et al., 2009; Miwa et al., 2010c). First
they predict a set of candidate event trigger words
(say, tokens 2, 5 and 6 in figure 1), then argument
mentions are attached to these triggers (say, token
4 for trigger 2). The final stage decides how ar-
guments are shared between events—compare how
one event subsumes all arguments of trigger 6 in fig-
ure 1, while two events share the three arguments
of trigger 4 in figure 2. This architecture is prone
to cascading errors: If we miss a trigger in the first
stage, we will never be able to extract the full event
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Same Binding

1 2 3 4 5 6 7 8 9 10 11

b4,9

e2,Phos.
a6,9,Theme

(a)

(b)

Figure 1: (a) sentence with target event structure to extract; (b) projection to a set of labelled graph over tokens.

it concerns. Current systems attempt to tackle this
problem by passing several candidates to the next
stage. However, this tends to increase the false pos-
itive rate. In fact, Miwa et al. (2010c) observe that
30% of their errors stem from this type of ad-hoc
module communication.

Joint models have been proposed to overcome this
problem (Poon and Vanderwende, 2010; Riedel et
al., 2009). However, besides not being as accurate
as their pipelined competitors, mostly because they
do not yet exploit the rich set of features used by
Miwa et al. (2010b) and Björne et al. (2009), they
also suffer from the complexity of inference. For
example, to remain tractable, the best joint system
so far (Poon and Vanderwende, 2010) works with
a simplified representation of the problem in which
certain features are harder to capture, employs local
search without certificates of optimality, and further-
more requires a 32-core cluster for quick train-test
cycles. Existing joint models also rely on heuristics
when it comes to deciding which arguments share
the same event. Contrast this with the best current
pipeline (Miwa et al., 2010c; Miwa et al., 2010b)
which uses a classifier for this task.

We present a family of event extraction mod-
els that address the aforementioned problems. The
first model jointly predicts triggers and arguments.
Notably, the highest scoring event structure under
this model can be found efficiently in O (mn) time
where m is the number of trigger candidates, and
n the number of argument candidates. This is
only slightly slower than the O (m′n) runtime of a
pipeline, where m′ is the number of trigger candi-
dates as filtered by the first stage. We achieve these
guarantees through a novel algorithm that jointly
picks best trigger label and arguments on a per-token
basis. Remarkably, it takes roughly as much time to

train this model on one core as the model of Poon
and Vanderwende (2010) on 32 cores, and leads to
better results.

The second model enforces additional constraints
that ensure consistency between events in hierarchi-
cal regulation structures. While inference in this
model is more complicated, we show how dual de-
composition (Komodakis et al., 2007; Rush et al.,
2010) can be used to efficiently find exact solutions
for a large fraction of problems.

Our third model includes the first two, and explic-
itly captures which arguments are part in the same
event—the third stage of existing pipelines. Due to
a complex coupling between this model and the first
two, inference here requires a projected version of
the sub-gradient technique demonstrated by Rush et
al. (2010).

When evaluated on the BioNLP 2009 shared task,
the first two models outperform the previous best
joint approaches and are competitive when com-
pared to current state-of-the-art. With 57.4 F1 on
the test set, the third model yields the best results
reported so far with a 1.1 F1 margin to the results
of Miwa et al. (2010b). For the BioNLP 2011 Ge-
nia task 1 and the BioNLP 2011 Infectious Diseases
task, Model 3 yields the second-best and best results
reported so far. The second-best results are achieved
with Model 3 as is (Riedel and McCallum, 2011),
the best results when using Stanford event predic-
tions as input features (Riedel et al., 2011). The
margins between Model 3 and the best runner-ups
range from 1.9 F1 to 2.8 F1.

In the following we will first introduce biomedical
event extraction and our notation. Then we go on to
present our models and their inference routines. We
present related work, show our empirical evaluation,
and conclude.
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Grb2 can be coimmunoprecipitated with Sos1 and Sos2

Binding Binding
Theme ThemeTheme Theme

Theme
ThemeTheme

1 2 3 4 5 6 7 8

Figure 2: Two binding events with identical trigger. The
projection graph does not change even if both events are
merged.

2 Biomedical Event Extraction

By bio-molecular event we mean a change of state
of one or more bio-molecules. Our task is to extract
structured information about such events from nat-
ural language text. More concretely, let us consider
part (a) of figure 1. We see a snippet of text from a
biomedical abstract, and the three events that can be
extracted from it. We will use these to characterize
the types of events we ought to extract, as defined
by the 2009 BioNLP shared task. Note that for the
shared task, protein mentions are given by the task
organizers and hence do not need to be extracted.

The event E1 in the figure refers to a Phosphory-
lation of the TRAF2 protein. It is an instance of a
set of simple events that describe changes to a sin-
gle gene or gene product. Other members of this
set are: Expression, Transcription, Localization, and
Catabolism. Each of these events has to have exactly
one theme, the protein of which a state change is de-
scribed. A labelled edge in figure 1a) shows that
TRAF2 is the theme of E1.

Event E3 is a Binding of TRAF2 and CD40.
Binding events are particular in that they may have
more than one theme, as there can be several bio-
molecules associated in a binding structure. This is
in fact the case for E3.

In the top-center of figure 1a) we see the Regu-
lation event E2. Such events describe regulatory or
causal relations between events. Other instances of
this type of events are: Positive Regulation and Neg-
ative Regulation. Regulations have to have exactly
one theme; this theme can a be protein or, as in our
case, another event. Regulations may also have zero
or one cause arguments that denote events or pro-
teins which trigger the regulation.

In the BioNLP shared task, we are also asked to
find a trigger (or clue) token for each event. This
token grounds the event in text and allows users to

quickly validate extracted events. For example, the
trigger for event E2 is “inhibit”, as indicated by a
dashed line.

2.1 Event Projection

To formulate the search for event structures of the
form shown in figure 1a) as an optimization prob-
lem, it will be convenient to represent them through
a set of binary variables. We introduce such a rep-
resentation, inspired by previous work (Riedel et al.,
2009; Björne et al., 2009) and based on a projection
of events to a graph structure over tokens, as seen
figure 1b).

Consider sentence x and a set of candidate trig-
ger tokens, denoted by Trig (x). We label each can-
didate i with the event type it is a trigger for, or
None if it is not a trigger. This decision is rep-
resented through a set of binary variables ei,t, one
for each possible event type t. In our example we
have e6,Binding = 1. The set of possible event types
will be denoted as T , the regulation event types as
TReg

def= {PosReg, NegReg, Reg} and its complement
as T¬reg

def= T \ TReg.
For each candidate trigger i we consider the argu-

ments of all events that have i as trigger. Each ar-
gument a will either be an event itself, or a protein.
For events we add a labelled edge between i and the
trigger j of a. For proteins we add an edge between
i and the syntactic head j of the protein mention. In
both cases we label the edge i → j with the role
of the argument a. The edge is represented through
a binary variable ai,j,r, where r ∈ R is the argu-
ment role and R def= {Theme, Cause, None}. The
role None is active whenever no Theme or Cause

role is present. In our example we get, among oth-
ers, a2,4,Theme = 1.

So far our representation is equivalent to map-
pings in previous work (Riedel et al., 2009; Björne et
al., 2009) and hence shares their main shortcoming:
we cannot differentiate between two (or more) bind-
ing events with the same trigger but different argu-
ments, or one binding event with several arguments.
Consider, for example, the arguments of trigger 6 in
figure 1b) that are all subsumed in a single event. By
contrast, the arguments of trigger 4 shown in figure
2 are split between two events.

Previous work has resolved this ambiguity
3



through ad-hoc rules (Björne et al., 2009) or with
a post-processing classifier (Miwa et al., 2010c).
We propose to augment the graph representation
through edges between pairs of proteins that are
themes in the same binding event. For two protein
tokens p and q we represent this edge through the
binary variable bp,q. Hence, in figure 1b) we have
b4,9 = 1, whereas for figure 2 we get b1,6 = b1,8 = 1
but b6,8 = 0. By explicitly modeling such “sib-
ling” edges we not only minimize the need for post-
processing. We can also improve attachment deci-
sions akin to second order models in dependency
parsing (McDonald and Pereira, 2006). Note that
while merely introducing such variables is easy, en-
forcing consistency between them and the ei,t and
ai,j,r variables is not. We address this in section
3.3.1.

Reconstruction of events from solutions (e,a,b)
can be done almost exactly as described by Björne
et al. (2009). However, while they group binding
arguments according to ad-hoc rules based on de-
pendency paths from trigger to argument, we simply
query the variables bp,q.

To simplify our exposition we introduce addi-
tional notation. We denote the set of protein head
tokens with Prot (x); the set of a possible targets
for outgoing edges from a trigger is Cand(x) def=
Trig (x) ∪ Prot (x). We will often omit the do-
mains of indices and instead assign them a fixed do-
main in advance: i, l ∈ Trig (x), j, k ∈ Cand (x),
p, q ∈ Prot (x), r ∈ R and t ∈ T . Bold face
letters are used to denote composite vectors e, a
and b of variables ei,t, ai,j,r and bp,q. The vector
y is the joint vector of e,a and b. The short-form
ei ← t will mean ∀t′ : ei,t′ ← δt,t′ where δt,t′ is
the Kronecker Delta. Likewise, ai,j ← r means
∀r′ : ai,j,r′ ← δr,r′ .

3 Models

In this section we will present three structured pre-
diction models of increasing complexity and expres-
siveness, as well as their corresponding MAP infer-
ence algorithms. Each model m can be represented
by a mapping from sentence x to a set of legal struc-
tures Ym (x), and a linear scoring function

sm (y;x,w) = 〈w, f (y,x)〉 . (1)

Here f is a feature function on structures y and input
x, and w is a weight vector for these features.

We can use the scoring function sm and the set of
legal structures Ym (x) to predict the event hm (x)
for a given sentence x according to

hm (x) def= arg max
y∈Ym(x)

sm (y;x,w) . (2)

For brevity we will from now on omit observations x
and weights w when they are clear from the context.

3.1 Model 1
Model 1 performs a simple version of joint trigger
and argument extraction. It independently scores
trigger labels and argument roles:

s1 (e,a) def=
∑

ei,t=1

sT (i, t) +
∑

ai,j,r=1

sR (i, j, r) . (3)

Here sT (i, t) = 〈wT, fT (i, t)〉 is a per-trigger scor-
ing function that measures how well the event la-
bel t fits to token i. Likewise, sR (i, j, r) =
〈wR, fR (i, j, r)〉 measures the compatibility of role
r as label for the edge i→ j.

The jointness of Model 1 stems from enforcing
consistency between the trigger label of i and its out-
going edges. By consistency we mean that: (a) there
is at least one Theme whenever there is an event at i;
(b) only regulation events are allowed to have Cause
arguments; (c) all arguments of a None trigger must
have the None role. We will denote the set assign-
ments that fulfill these constraints by O and hence
have Y1 def= O.

Enforcing (e,a) ∈ O guarantees that we never
predict triggers i for which no sensible, high-
scoring, argument j can be found. It also ensures
that when we see an “obvious” argument edge i r→ j
with high score sR (i, j, r) there is pressure to extract
a trigger at i, even if the fact that i is a trigger may
not be as obvious.

3.1.1 Inference
As it turns out, the maximizer of equation 2 can be

found very efficiently in O (mn) time where m =
|Trig (x)| and n = |Cand (x)|. The corresponding
procedure, bestOut(·), is shown in algorithm 1. It
takes as input a vector of trigger and edge penalties
c that are added to the local scores of the sT and
sR functions. For Model 2 and 3 we will use these
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penalties to enforce agreement with predictions of
other inference subroutines. When using Model 1
by itself we set them to 0. We point out that the
scoring function s1 is multiplied with 1

2 throughout
the algorithm. For doing inference in Model 1 and
2 this has no effect, but when we use bestOut(·) for
Model 3 inference, it is required.

The bestOut (c) routine exploits the fact that the
constraints of Model 1 only act on the label for
trigger i and its outgoing edges. In particular, en-
forcing consistency between ei,t and outgoing edges
ai,j,r has no effect on consistency between el,t and
ai′,j′,r′ for any other trigger i′ 6= i. Moreover,
for a given trigger the constraints only differenti-
ate between three cases: (a) regulation event, (b)
non-regulation event and (c) no event. This means
that we can extract events on a per-trigger basis,
and find the best per-trigger structure by compar-
ing cases (a), (b) and (c). Note that bestOut (c)
uses the shorthand emptyOut (i) to denote the par-
tial assignment ei ← None and ∀j : ai,j ← None.
The function sc1 (i,y) def=

∑
t ei,t

(
ci,t + 1

2sT (i, t)
)
+∑

j,r ai,j,r
(
ci,j,r + 1

2sR (i, j, r)
)

is a per-trigger
frame score with penalties c.

3.2 Model 2
Model 1 may still predict structures that cannot be
mapped to events. For example, in figure 1b) we
may label token 5 as Regulation, add the edge
5

Cause→ 2 but fail to label token 2 as an event. While
consistent with (e,a) ∈ O, this violates the con-
straint that every active edge must either end at a
protein, or at an active event trigger. This is a re-
quirement on the label of a trigger and the assign-
ment of roles for its incoming edges.

Model 2 enforces the above constraint in addition
to (e,a) ∈ O, while inheriting the scoring function
from Model 1. Hence, using I to denote the set of as-
signments with consistent trigger labels and incom-
ing edges, we get Y2 def= Y1 ∩ I and s2 (y) def= s1 (y).

3.2.1 Inference
Inference in Model 2 amounts to optimizing

s2 (e,a) over O ∩ I. This is more involved, as we
now have to ensure that when predicting an outgoing
edge from trigger i to trigger l there is a high-scoring
event at l. We follow Rush et al. (2010) and solve
this problem in the framework of dual decomposi-

Algorithm 1 Sub-procedures for inference in Model
1, 2 and 3.

best label and outgoing edges for all triggers under penalties c

bestOut (c) :
∀i y0 ← emptyOut (i)

y1 ← out
(
i, c, Treg,R

)

y2 ← out
(
i, c, T¬reg,R \ {Cause}

)

yi ← arg maxy∈{y0,y1,y2} s
c
1(i,y)

return (yi)i

best label and incoming edges for all triggers under penalties c

bestIn (c) :
∀l y0 ← emptyIn (l)

y1 ← in (l, c, T ,R \ {None})
yl ← arg maxy∈{y0,y1} s

c
2 (l,y)

return (yl)l

pick best binding pairs p, q and trigger i for each using penalties c

bestBind (c) :
∀p, q bp,q ← [sB (p, q) + maxi ci,p,q > 0]

Ip,q ←
{
i|ci,p,q = maxi′ ci′,p,q

}

if bp,q = 1 or maxi′ ci′,p,q > 0

∀i : ti,p,q ← [i ∈ Ip,q] |Ip,q|−1
else
∀i : ti,p,q ← 0

return (b, t)

best label in T and outgoing edge roles in R for i, using penalties c

out (i, c, T,R) :
ei ← arg maxt∈T 1

2sT (i, t) + ci,t
ai,bestTheme(i,c) ← Theme

∀j ai,j ← arg maxr∈R 1
2sR (i, j, r) + ci,j,r

return (ei,ai)

best label in T , incoming edge roles in R

and outgoing protein roles, using costs c

in (l, c, T,R) :
el ← arg maxt∈T 1

2sT (l, t) + cl,t
∀i ai,l ← arg maxr∈R 1

2sR (i, l, r) + ci,l,r
∀p al,p ← arg maxr∈R 1

2sR (l, p, r) + cl,p,r
return (ei,ai)

best Theme argument for i

bestTheme (i, c) :

s (j) def= maxj,r
1
2sR (i, j, r) + ci,j,r

∆ (j) def= 1
2sR (i, j, Theme) + ci,j,Theme − s (j)

return arg maxj ∆ (j)
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tion. To this end we write our optimization problem
as

maximize
e,a,ē,ā

1

2
s2 (e,a) +

1

2
s2 (ē, ā)

subject to (e,a) ∈ O ∧ (ē, ā) ∈ I∧
e = ē ∧ a = ā

(M2)

and note that this problem could be solved separately
for e,a and ē, ā if the coupling constraints e = ē
and a = ā were removed.

M2 is an Integer Linear Program, as variables are
binary and both objective and constraints can be rep-
resented through linear constraints.1 Dual decompo-
sition solves a Linear Programming (LP) relaxation
of M2 (that allows fractional values for all binary
variables) through subgradient descent on a particu-
lar dual of M2. This dual can be derived by intro-
ducing Lagrange multipliers for the coupling con-
straints. Its attractiveness stems from the fact that
calculating the subgradient amounts to solving the
decoupled problems in isolation. If, by design, these
decoupled problems can be solved efficiently, we
can often quickly find the optimal solution to an LP
relaxation of our original problem.

Dual decomposition applied to Model 2 is shown
in algorithm 2. It maintains the dual variables λ
that will appear as local penalties in the subprob-
lems to be solved. The algorithm will try to tune
these variables such that at convergence the coupling
constraints will be fulfilled. This is done by first op-
timizing s2 (e,a) over O and s2 (ē, ā) over I. Now,
whenever there is disagreement between two vari-
ables to be coupled, the corresponding dual param-
eter is shifted, increasing the chance that next time
both models will agree. For example, if in the first
iteration we predict e6,Bind = 1 but ē6,Bind = 0, we
set λ6,Bind = −α where α is some stepsize (chosen
according to Koo et al. (2010)). This will decrease
the coefficient for e6,Bind, and increase the coeffi-
cient for ē6,Bind. Hence, we have a higher chance of
agreement for this variable in the next iteration.

The algorithm repeats the process described
above until all variables agree, or some predefined
numberR of iterations is reached. In the former case
we in fact have the exact solution to the original ILP.

1The ILP representation could be taken from the MLNs of
Riedel et al. (2009) and the mapping to ILPs of Riedel (2008).

Algorithm 2 Subgradient descent for Model 2, and
projected subgradient descent for Model 3.

require:
R: max. iteration, αt: stepsizes

t← 0 [model 2,3] λ← 0 [model 2,3] µ← 0 [model 3]

repeat
model

2 (e,a)← bestOut (λ)
2,3 (ē, ā)← bestIn (−λ)
3 (e,a)← bestOut (cout (λ,µ))
3 (b, t)← bestBind

(
cbind (µ)

)

2,3 λi,t ← λi,t − αt (ei,t − ēi,t)
2,3 λi,j,r ← λi,j,r − αt (ai,j,r − āi,j,r)
3 µ

trig
i,p,q ←

[
µ

trig
i,p,q − αt (ei,Bind − ti,p,q)

]
+

3 µ
arg1
i,j,k ←

[
µ

arg1
i,p,q − αt (ai,p,Theme − ti,p,q)

]
+

3 µ
arg2
i,p,q ←

[
µ

arg2
i,p,q − αt (ai,q,Theme − ti,p,q)

]
+

2,3 t ← t+ 1
until no λ, µ changed or t > R
return (e,a)[model 2] or (e,a,b) [model 3]

In the later case we have no such guarantee, but find
that in practice the solutions are still of high qual-
ity. Notice that we could still assess the quality of
this approximation by measuring the duality gap be-
tween primal score and the final dual score.

Algorithm 2 for Model 2 requires us to opti-
mize s2 (e,a) over O and s2 (ē, ā) over I. The
former, with added penalties, can be done with
bestOut(c). As the constraint set for I again
decomposes on a per-token basis, solving the
latter problem requires a very similar procedure,
and again O (mn) time. Algorithm 1 shows this
procedure under bestIn(c). It chooses, for each
trigger candidate, the best label and incoming
set of arguments together with the best outgoing
edges to proteins. Adding edges to proteins is
not strictly required, but simplifies our exposition.
Algorithm bestIn(c) requires a per-trigger incoming
score: sc2 (l,yl)

def=
∑

t el,t
(
cl,t + 1

2sT (l, t)
)

+∑
i,r ai,l,r

(
ci,l,r + 1

2sR (i, l, r)
)

+∑
p,r al,p,r

(
cl,p,r + 1

2sR (l, p, r)
)
. Finally, note

that emptyIn (i) not only assigns None as trigger la-
bel of i and to all incoming edges, but also greedily
picks outgoing protein edges (as done within in(·)).

6



3.3 Model 3
Model 2 does not predict the bp,q variables that rep-
resent protein pairs p, q in bindings. Model 3 fixes
this by (a) adding binding variables bp,q into the ob-
jective, and (b) enforcing that the binding assign-
ment b is consistent with the trigger and argument
assignments e and a. We will also enforce that the
same pair of entities p, q cannot be arguments in
more than one event together.

The scoring function for Model 3 is simply

s3 (e,a,b) def= s2 (e,a,b) +
∑

bp,q=1

sB (p, q) . (4)

Here sB (p, q) = 〈wB, fB (p, q)〉 is a per-protein-pair
score based on a feature representation of the lexical
and syntactic relation between both protein heads.

Our strategy will be based on enforcing consis-
tency partly through linear constraints which we du-
alize, and partly within our search algorithm. To
this end we first introduce a set of auxiliary binary
variables ti,p,q . When a ti,p,q is active, we enforce
that there is a binding trigger at i with proteins p
and q as Theme arguments. A set of linear con-
straints can be used for this: ei,Bind − ti,p,q ≥ 0,
ai,p,Theme − ti,p,q ≥ 0 and ai,q,Theme − ti,p,q ≥ 0 for
all suitable i, p and q. We denote the set of assign-
ments (e,a, t) that fulfill these constraints by T.

Consistency between e, a and b can now be en-
forced by making sure that t is consistent with e and
a, and that b is consistent with this t. The latter
means that an active bp,q requires a trigger i to point
to p and q. Or in other words, ti,p,q = 1 for exactly
one trigger i.

With the set of consistent assignments (b, t) re-
ferred to as B, and a slight abuse of notation, this
gives us Y3 def= Y2∩T∩B. Note that it is (e,a, t) ∈ T
that will be enforced by dualizing constraints, and
(b, t) ∈ B that will be enforced within search.

3.3.1 Inference
We note that inference in Model 3 can be per-

formed by solving the following problem:

maximize
e,a,ē,ā,b,t

1

2
s1 (e,a) +

1

2
s2 (ē, ā) +

∑

bp,q=1

sB (p, q)

subject to (e,a) ∈ O ∧ (ē, ā) ∈ I ∧ (b, t) ∈ B∧
e = ē ∧ a = ā ∧ (e,a, t) ∈ T.

(M3)

Again, without the final row, M3 would be separa-
ble. We exploit this by performing dual decompo-
sition with a dual objective that has multipliers λ
for the coupling constraints and multipliersµ for the
constraints which enforce (e,a, t) ∈ T. The result-
ing subgradient descent method is also shown in al-
gorithm 2. Notably, since the constraints for T are
inequalities, we require a projected version of the
descent algorithm which enforces µ ≥ 0. This man-
ifests itself when µ is updated using the [·]+ projec-
tion.

We have already described how to find the best
e,a and ē, ā assignments. What changes for Model
3 is the derivation of the penalties for e and a
that now come from both λ and µ. We set
cout
i,t (λ,µ) def= λi,t + δt,Bind

∑
p,q µ

trig
i,p,q. For j /∈

Prot (x) we set cout
i,j,r (λ,µ) def= λi,j,r; otherwise we

use cout
i,j,r (λ,µ) def= λi,j,r +

∑
p µ

arg1
i,j,p +

∑
q µ

arg2
i,q,j .

For finding a (b, t) ∈ B that maximizes∑
bp,q=1 sB (p, q) we use bestBind (c), as shown in

algorithm 1. It groups together two proteins p, q if
their score plus the penalty of the best possible trig-
ger i exceeds 0. In this case, or if there is at least one
trigger with positive penalty ci,p,q > 0 , we activate
the set of triggers I (p, q) with maximal score.

Note that when several triggers i maximize the
score, we assign them all the same fractional value
|I (p, q)|−1. This enforces the constraint that at most
one binding event can point to both p and q and also
means that we are solving an LP relaxation. We
could enforce integer solutions and pick arbitrary
triggers at a tie, but this would lower the chances
of matching against predictions of other routines.

The penalties for bestBind (c) are derived from
the dual µ by setting cbind

i,p,q (µ) = −µtrig
i,p,q − µ

arg1
i,p,q −

µ
arg2
i,,p,q.

3.4 Training

We choose prediction-based passive-aggressive (PA)
online learning (Crammer and Singer, 2003) with
averaging to estimate the weights w for each of our
models. PA is an error-driven learner that shifts
weights towards features of the gold solution, and
away from features of the current guess, whenever
the current model makes a mistake.

PA learning takes into account a user-defined
loss function for which we use a weighted sum
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of false positives and false negatives: l (y,y′) def=
FP (y,y′) + αFN (y,y′). We set α = 3.8 by op-
timizing on the BioNLP 2009 development set.

4 Related Work

Riedel et al. (2009) use Integer Linear Programming
and cutting planes (Riedel, 2008) for inference in
a model similar to Model 2. By using dual de-
composition instead, we can exploit tractable sub-
structure and achieve quadratic (Model 2) and cu-
bic (Model 3) runtime guarantees. An advantage of
ILP inference are guaranteed certificates of optimal-
ity. However, in practice we also gain certificates
of optimality for a large fraction of the instances
we process. Poon and Vanderwende (2010) use lo-
cal search and hence provide no such certificates.
Their problem formulation also makes n-gram de-
pendency path features harder to incorporate. Mc-
Closky et al. (2011b) cast event extraction as depen-
dency parsing task. Their model assumes that event
structures are trees, an assumption that is frequently
violated in practice. Finally, all previous joint ap-
proaches use heuristics to decide whether binding
arguments are part of the same event, while we cap-
ture these decisions in the joint model.

We follow a long line of research in NLP that ad-
dresses search problems using (Integer) Linear Pro-
grams (Germann et al., 2001; Roth and Yih, 2004;
Riedel and Clarke, 2006). However, instead of us-
ing off-the-shelf solvers, we work in the framework
of dual decomposition. Here we extend the approach
of Rush et al. (2010) in that in addition to equality
constraints we dualize more complex coupling con-
straints between models. This requires us to work
with a projected version of subgradient descent.

While tailored towards (biomedical) event extrac-
tion, we believe that our models can also be ef-
fective in a more general Semantic Role Label-
ing (SRL) context. Using variants of Model 1,
we can enforce many of the SRL constraints—such
as “unique agent” constraints (Punyakanok et al.,
2004)—without having to call out to ILP optimiz-
ers. Meza-Ruiz and Riedel (2009) showed that in-
ducing pressure on arguments to be attached to at
least one predicate is helpful; this is a soft incoming
edge constraint. Finally, Model 3 can be used to effi-
ciently capture compatibilities between semantic ar-

guments; such compatibilities have also been shown
to be helpful in SRL (Toutanova et al., 2005).

5 Experiments

We evaluate our models on several tracks of the 2009
and 2011 BioNLP shared tasks, using the official
“Approximate Span Matching/Approximate Recur-
sive Matching” F1 metric for each. We also investi-
gate the runtime behavior of our algorithms.

5.1 Preprocessing

Each document is first processed by the Stanford
CoreNLP2 tokenizer and sentence splitter. Parse
trees come from the Charniak-Johnson parser (Char-
niak and Johnson, 2005) with a self-trained biomed-
ical parsing model (McClosky and Charniak, 2008),
and are converted to dependency structures again us-
ing Stanford CoreNLP. Based on trigger words col-
lected from the training set, a set of candidate trigger
tokens Trig (x) is generated for each sentence x.

5.2 Features

The feature function fT (i, t) extracts a per-trigger
feature vector for trigger i and type t ∈ T .
It creates one active feature for each element in{
t, t ∈ TReg

}
× feats (i). Here feats (i) denotes a

collection of representations for the token i: word-
form, lemma, POS tag, syntactic heads, syntactic
children, and membership in two dictionaries taken
from Riedel et al. (2009).

For fR (i, j, r) we create active features for each
element of {r} × feats (i, j). Here feats (i, j) is
a collection of representations of the token pair
(i, j) taken from Miwa et al. (2010c) and contains:
labelled and unlabeled n-gram dependency paths;
edge and vertex walk features, argument and trigger
modifiers and heads, words in between.

For fB (p, q) we re-use the token pair representa-
tions from fR. In particular, we create one active
feature for each element in feats (p, q).

5.3 Shared Task 2009

We first evaluate our models on the Bionlp 2009 task
1. The training, development and test sets for this

2http://nlp.stanford.edu/software/
corenlp.shtml
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SVT BIND REG TOT
McClosky 75.4 48.4 40.4 53.5
Poon 77.5 47.9 44.1 55.5
Bjoerne 77.9 42.2 45.5 55.7
Miwa 78.6 46.9 47.7 57.8
M1 77.2 43.0 45.8 56.2
M2 77.9 42.4 47.6 57.2
M3 78.4 48.0 49.1 58.7

Table 1: F1 scores for the development set of Task 1 of
the BioNLP 2009 shared task.

task consist of 797, 150 and 250 documents, respec-
tively.

Table 1 shows our results for the development set.
We compare our three models (M1, M2 and M3) and
previous state-of-the-art systems: McClosky (Mc-
Closky et al., 2011a), Poon (Poon and Vander-
wende, 2010), Bjoerne (Björne et al., 2009) and
Miwa (Miwa et al., 2010b; Miwa et al., 2010a). Pre-
sented is F1 score for all events (TOT), regulation
events (REG), binding events (BIND) and simple
events (SVT).

Model 1 is outperforming the previous best joint
models of Poon and Vanderwende (2010), as well as
the best entry of the 2009 task (Björne et al., 2009).
This is achieved without careful tuning of thresh-
olds that control flow of information between trigger
and argument extraction. Notably, training Model 1
takes approximately 20 minutes using a single core
implementation. Contrast this with 20 minutes on 32
cores reported by Poon and Vanderwende (2010).

Model 2 focuses on regulation structures and re-
sults demonstrate this: F1 for regulations goes up by
nearly 2 points. While the impact of joint modeling
relative to weaker local baselines has been shown
shown by Poon and Vanderwende (2010) and Riedel
et al. (2009), our findings here provide evidence that
it remains effective even when the baseline system
is very competitive.

With Model 3 our focus is extended to binding
events, improving F1 for such events by at least 5 F1.
This also has a positive effect on regulation events,
as regulations of binding events can now be more
accurately extracted. In total we see a 1.1 F1 in-
crease over the best results reported so far (Miwa et
al., 2010b). Crucially, this is achieved using only a
single parse tree per sentence, as opposed to three

SVT BIND REG TOT
McClosky 68.3 46.9 33.3 48.6
Poon 69.5 42.5 37.5 50.0
Bjoerne 70.2 44.4 40.1 52.0
Miwa 72.1 50.6 45.3 56.3
M1 71.0 42.1 41.9 53.4
M2 70.5 41.3 43.6 53.7
M3 71.1 52.9 45.2 55.8
M3+enju 72.6 52.6 46.9 57.4

Table 2: F1 scores for the test set of Task 1 of the BioNLP
2009 shared task.

used by Miwa et al. (2010a).
Table 2 shows results for the test set. Here with

Model 1 we again already outperform all but the re-
sults of Miwa et al. (2010a). Model 2 improves F1
for regulations, while Model 3 again increases F1
for both regulations and binding events. This yields
the best binding event results reported so far. No-
tably, not only are we able to resolve binding am-
biguity better. Binding attachments themselves also
improve, as we increase attachment F1 from 61.4 to
62.7 when going from Model 2 to Model 3.

Miwa et al. (2010b) use two parsers to generate
their input features. For fairer comparison we aug-
ment Model 3 with syntactic features based on the
enju parser (Miyao et al., 2009). With these features
(M3+enju) we achieve the best results on this dataset
reported so far, and outperform Miwa et al. (2010b)
by 1.1 F1 in total, 1.6 F1 on regulation events and
2.0 F1 on binding events.

We also apply Model 3, with slight modifications,
to the BioNLP 2009 task 2 which requires cellu-
lar locations to be extracted as well. With 53.0 F1
we fall 2 points short of the results of Miwa et al.
(2010b) but still substantially outperform any other
reported results on the dataset. More parse trees may
again substantially improve results, as well as task-
specific constraint and feature sets.

5.4 Shared Task 2011

We entered the Shared Task 2011 with Model 3,
primarily focusing on Genia track (task 1), and the
Infectious Diseases track. The Genia track differs
from the 2009 task by including both abstracts and
full text articles. In total 908 training, 259 develop-
ment and 347 test documents are provided.
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Genia Task 1 Infectious Diseases
System TOT System TOT
M3+Stanford 56.0 M3+Stanford 55.6
M3 55.2 M3 53.4
UTurku 53.3 Stanford 50.6
MSR-NLP 51.5 UTurku 44.2
ConcordU 50.3 PNNL 42.6

Table 3: F1 scores for the test sets of two tracks in the
BioNLP 2011 Shared Task.

The top five entries are shown in table 3. Model
3 is the best-performing system that does not use
model combination, only outperformed by a version
of Model 3 that includes Stanford predictions (Mc-
Closky et al., 2011b) as input features (Riedel et al.,
2011). Not shown in the table are results for full pa-
pers only. Here M3 ranks first with 53.1 F1, while
M3+Stanford comes in second with 52.7 F1.

The Infectious Diseases (ID) track of the 2011
task has 152 train, 46 development and 118 test
documents. Relative to Genia it provides less data
and introduces more types of entities as well as
the biological process event type. Incorporating
these changes into our models is straightforward,
and hence we omit details for brevity.

Table 3 shows the top five entries for the Infec-
tious Diseases track. Again Model 3 is the best-
performing system that does not use model combi-
nation, outperformed only by Model 3 with Stanford
predictions as features. We should point out that
the feature sets and learning parameters were kept
constant when moving from Genia to ID data. The
strong results we observe without any tuning to the
domain indicate the robustness of joint modeling.

5.5 Runtime Behavior

Table 4 shows the asymptotic complexity of our
three models with respect to m = |Trig (x)|, n =
|Cand (x)| and p = |Prot (x)|. We also show the
number of iterations needed on average, the average
time in milliseconds per sentence,3 and the fraction
of sentences we get certificates of optimality for.

As expected, Model 1 is most efficient, both
asymptotically and on average. Given that its ac-
curacy is already good, it can serve as a basis for

3Measured without preprocessing and feature extraction.

Complexity Iter. Time Exact
M1 O (nm) 1.0 60ms 100%
M2 O (Rnm) 10.4 183ms 96%
M3 O

(
Rnm+Rp2m

)
11.7 297ms 94%

Table 4: Complexity and Runtime Behavior.

large-scale extraction tasks. Models 2 and 3 re-
quire several iterations and more time, while pro-
viding slightly less certificates. However, given the
improvement in F1 they deliver, and the fact prepro-
cessing steps such as parsing would still dominate
the average time, this seems like a reasonable price
to pay.

6 Conclusion

We presented three joint models for biomedical
event extraction. Model 1 reaches near-state-of-the-
art results, outperforms all previous joint models
and has quadratic runtime guarantees. By explicitly
capturing regulation events (Model 2), and binding
events (Model 3) we achieve the best results reported
so far on several event extraction tasks. The runtime
penalty we pay is kept minimal by using dual de-
composition. We also show how dual decomposition
can be used for constraints that go beyond coupling
equalities.

We use joint models, a decomposition technique
and supervised online learning. This recipe can be
successful in many settings, but requires expensive
manual annotation. In the future we want to inte-
grate weak supervision techniques to train extractors
with existing biomedical databases, such as KEGG,
and only minimal amounts of annotated text.
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Abstract

Online discussion forums are a valuable
means for users to resolve specific information
needs, both interactively for the participants
and statically for users who search/browse
over historical thread data. However, the com-
plex structure of forum threads can make it
difficult for users to extract relevant informa-
tion. The discourse structure of web forum
threads, in the form of labelled dependency re-
lationships between posts, has the potential to
greatly improve information access over web
forum archives. In this paper, we present the
task of parsing user forum threads to deter-
mine the labelled dependencies between posts.
Three methods, including a dependency pars-
ing approach, are proposed to jointly clas-
sify the links (relationships) between posts
and the dialogue act (type) of each link. The
proposed methods significantly surpass an in-
formed baseline. We also experiment with “in
situ” classification of evolving threads, and es-
tablish that our best methods are able to per-
form equivalently well over partial threads as
complete threads.

1 Introduction

Web user forums (or simply “forums”) are online
platforms for people to discuss information and ob-
tain information via a text-based threaded discourse,
generally in a pre-determined domain (e.g. IT sup-
port or DSLR cameras). With the advent of Web
2.0, there has been an explosion of web authorship in
this area, and forums are now widely used in various
areas such as customer support, community devel-
opment, interactive reporting and online eduction.

In addition to providing the means to interactively
participate in discussions or obtain/provide answers
to questions, the vast volumes of data contained in
forums make them a valuable resource for “support
sharing”, i.e. looking over records of past user inter-
actions to potentially find an immediately applica-
ble solution to a current problem. On the one hand,
more and more answers to questions over a wide
range of domains are becoming available on forums;
on the other hand, it is becoming harder and harder
to extract and access relevant information due to the
sheer scale and diversity of the data.

This research aims at enhancing information ac-
cess and support sharing, by mining the discourse
structure of troubleshooting-oriented web user fo-
rum threads. Previous research has shown that sim-
ple thread structure information (e.g. reply-to struc-
ture) can enhance tasks such as forum information
retrieval (Seo et al., 2009) and post quality assess-
ment (Lui and Baldwin, 2009). We aim to move be-
yond simple threading, to predict not only the links
between posts, but also show the manner of each
link, in the form of the discourse structure of the
thread. In doing so, we hope to be able to perform
richer visualisation of thread structure (e.g. high-
lighting the key posts which appear to have led to
a successful resolution to a problem), and more fine-
grained weighting of posts in threads for search pur-
poses.

To illustrate the task, we use an example thread,
made up of 5 posts from 4 distinct participants, from
the CNET forum dataset of Kim et al. (2010b), as
shown in Figure 1. The discourse structure of the
thread is modelled as a rooted directed acyclic graph
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HTML Input Code
...Please can someone tell me how to create an input 
box that asks the user to enter their ID, and then allows 
them to press go. It will then redirect to the page ...

User A
Post 1

User B
Post 2

User C
Post 3

Re: html input code
Part 1: create a form with a text field. See ... Part 
2: give it a Javascript action

asp.net c\# video
I’ve prepared for you video.link click ...

Thank You!
Thanks a lot for that ... I have Microsoft Visual 
Studio 6, what program should I do this in? Lastly, 
how do I actually include this in my site? ...

A little more help
... You would simply do it this way: ... You could 
also just ... An example of this is ...

User A
Post 4

User D
Post 5

0+Question-Question

2+Answer-Answer

4+Answer-Answer

1+Answer-Answer

1+Answer-Confirmation

3+Question-Add

Ø

Figure 1: A snippeted and annotated CNET thread

(DAG) with a dialogue act label associated with each
edge of the graph. In this example, UserA initiates
the thread with a question (dialogue act = Question-
Question) in the first post, by asking how to create
an interactive input box on a webpage. In response,
UserB and UserC provide independent answers (di-
alogue act = Answer-Answer). UserA responds to
UserC to confirm the details of the solution (dia-
logue act = Answer-Confirmation), and at the same
time, adds extra information to his/her original ques-
tion (dialogue act = Question-Add); i.e., this one
post has two distinct dependency links associated
with it. Finally, UserD proposes a different solution
again to the original question.

To predict thread discourse structure of this type,
we jointly classify the links and dialogue acts be-
tween posts, experimenting with a variety of su-
pervised classification methods, namely dependency
parsing and linear-chain conditional random fields.
In this, we build on the earlier work of Kim et al.
(2010b) who first proposed the task of thread dis-
course analysis, but only carried out experiments on
post linking and post dialogue act classification as
separate tasks. In addition to achieving state-of-the-
art accuracy over the task, we carry out in-depth
analysis of classification effectiveness at different
thread depths, and establish that the accuracy of our
method over partial threads is equivalent to that over

full threads, indicating that the method is applica-
ble to in-situ thread classification. Finally, we in-
vestigate the role of user-level features in discourse
structure analysis.

2 Related Work

This work builds directly on earlier work of a subset
of the authors (Kim et al., 2010b), whereby a novel
post-level dialogue act set was proposed, and used
as the basis for annotation of a set of threads taken
from CNET. In the original work, we proposed a set
of novel features, which we applied to the separate
tasks of post link classification and dialogue act clas-
sification. We later applied the same basic method-
ology to dialogue act classification over one-on-one
live chat data with provided message dependencies
(Kim et al., 2010a), demonstrating the generalisabil-
ity of the original method. In both cases, however,
we tackled only a single task, either link classifica-
tion (optionally given dialogue act tags) or dialogue
act classification, but never the two together. In this
paper, we take the obvious step of exploring joint
classification of post link and dialogue act tags, to
generate full thread discourse structures.

Discourse disentanglement (i.e. link classifica-
tion) and dialogue act tagging have been studied
largely as independent tasks. Discourse disentangle-
ment is the task of dividing a conversation thread
(Elsner and Charniak, 2008; Lemon et al., 2002)
or document thread (Wolf and Gibson, 2005) into
a set of distinct sub-discourses. The disentangled
discourse is sometimes assumed to take the form of
a tree structure (Grosz and Sidner, 1986; Lemon et
al., 2002; Seo et al., 2009), an acyclic graph struc-
ture (Rosé et al., 1995; Schuth et al., 2007; Elsner
and Charniak, 2008; Wang et al., 2008; Lin et al.,
2009), or a more general cyclic chain graph struc-
ture (Wolf and Gibson, 2005). Dialogue acts are
used to describe the function or role of an utterance
in a discourse, and have been applied to the anal-
ysis of mediums of communication including con-
versational speech (Stolcke et al., 2000; Shriberg et
al., 2004; Murray et al., 2006), email (Cohen et al.,
2004; Carvalho and Cohen, 2005; Lampert et al.,
2008), instant messaging (Ivanovic, 2008; Kim et
al., 2010a), edited documents (Soricut and Marcu,
2003; Sagae, 2009) and online forums (Xi et al.,
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2004; Weinberger and Fischer, 2006; Wang et al.,
2007; Fortuna et al., 2007; Kim et al., 2010b). For a
more complete review of models for discourse dis-
entanglement and dialogue act tagging, see Kim et
al. (2010b).

Joint classification has been applied in a number
of different contexts, based on the intuition that it
should be possible to harness interactions between
different sub-tasks to the mutual benefit of both.
Warnke et al. (1997) jointly performed segmenta-
tion and dialogue act classification over a German
spontaneous speech corpus. In their approach, the
predictions of a multi-layer perceptron classifier on
dialogue act boundaries were fed into an n-gram
language model, which was used for the joint seg-
mentation and classification of dialogue acts. Sut-
ton and McCallum (2005) performed joint parsing
and semantic role labelling (SRL), using the results
of a probabilistic SRL system to improve the accu-
racy of a probabilistic parser. Finkel and Manning
(2009) built a joint, discriminative model for pars-
ing and named entity recognition (NER), address-
ing the problem of inconsistent annotations across
the two tasks, and demonstrating that NER bene-
fited considerably from the interaction with parsing.
Dahlmeier et al. (2009) proposed a joint probabilis-
tic model for word sense disambiguation (WSD) of
prepositions and SRL of prepositional phrases (PPs),
and achieved state-of-the-art results over both tasks.

There has been a recent growth in user-level
research over forums. Lui and Baldwin (2009)
explored a range of user-level features, including
replies-to and co-participation graph analysis, for
post quality classification. Lui and Baldwin (2010)
introduced a novel user classification task where
each user is classified against four attributes: clar-
ity, proficiency, positivity and effort. User commu-
nication roles in web forums have also been studied
(Chan and Hayes, 2010; Chan et al., 2010).

Threading information has been shown to en-
hance retrieval effectiveness for post-level retrieval
(Xi et al., 2004; Seo et al., 2009), thread-level
retrieval (Seo et al., 2009; Elsas and Carbonell,
2009), sentence-level shallow information extrac-
tion (Sondhi et al., 2010), and near-duplicate thread
detection (Muthmann et al., 2009). These results
suggest that the thread structural representation used
in this research, which includes both linking struc-

ture and the dialogue act associated with each link,
could potentially provide even greater leverage in
these retrieval tasks.

Another related research area is post-level classi-
fication, such as general post quality classification
(Weimer et al., 2007; Weimer and Gurevych, 2007;
Wanas et al., 2008; Lui and Baldwin, 2009), and
post descriptiveness in particular domains (e.g. med-
ical forums: Leaman et al. (2010)). It has been
demonstrated (Wanas et al., 2008; Lui and Bald-
win, 2009) that thread discourse structure can signif-
icantly improve the classification accuracy for post-
level tasks.

Initiation–response pairs (e.g. question–answer,
assessment–agreement, and blame–denial) from on-
line forums have the potential to enhance thread
summarisation or automatically generate knowledge
bases for Community Question Answering (cQA)
services such as Yahoo! Answers. While initiation–
response pair identification has been explored as a
pairwise ranking problem (Wang and Rosé, 2010),
question–answer pair identification has been ap-
proached via the two separate sub-tasks of ques-
tion classification and answer detection (Cong et al.,
2008; Ding et al., 2008; Cao et al., 2009). Our
thread discourse structure prediction task includes
joint classification of post roles (i.e. dialogue acts)
and links, and could potentially be performed at the
sub-post sentence level to extract initiation–response
pairs.

3 Task Description and Data Set

The main task performed in this research is joint
classification of inter-post links (Link) and dialogue
acts (DA) within forum threads. In this, we assume
that a post can only link to an earlier post (or a vir-
tual root node), and that dialogue acts are labels on
edges. It is possible for there to be multiple edges
from a given post, e.g. if a post both confirms the va-
lidity of an answer and adds extra information to the
original question (as happens in Post4 in Figure 1).

We experiment with two different approaches to
joint classification: (1) a linear-chain CRF over
combined Link/DA post labels; and (2) a depen-
dency parser. The joint classification task is a nat-
ural fit for dependency parsing, in that the task is
intrinsically one of inferring labelled dependencies
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between posts, but it has a number of special prop-
erties that distinguish it from standard dependency
parsing:

strict reverse-chronological directionality: the
head always precedes the dependent, in terms
of the chronological sequencing of posts.

non-projective dependencies: threads can contain
non-projective dependencies, e.g. in a 4-post
thread, posts 2 and 3 may be dependent on
post 1, and post 4 dependent on post 2; around
2% of the threads in our dataset contain non-
projective dependencies.

multi-headedness: it is possible for a given post to
have multiple heads, including the possibility
of multiple dependency links to the same post
(e.g. adding extra information to a question
[Question-Add] as well as retracting infor-
mation from the original question [Question-
Correction]); around 6% of the threads in our
dataset contain multi-headed dependencies.

disconnected sub-graphs: it is possible for there to
be disconnected sub-graphs, e.g. in instances
where a user hijacks a thread to ask their
own unrelated question, or submit an unrelated
spam post; around 2% of the threads in our
dataset contain disconnected sub-graphs.

The first constraint potentially simplifies depen-
dency parsing, and non-projective dependencies are
relatively well understood in the dependency parsing
community (Tapanainen and Jarvinen, 1997; Mc-
Donald et al., 2005). Multi-headedness and dis-
connected sub-graphs pose greater challenges to de-
pendency parsing, although there has been research
done on both (McDonald and Pereira, 2006; Sagae
and Tsujii, 2008; Eisner and Smith, 2005). The
combination of non-projectivity, multi-headedness
and disconnected sub-graphs in a single dataset,
however, poses a challenge for dependency parsing.

In addition to performing evaluation in batch
mode over complete threads, we consider the task of
“in situ thread classification”, whereby we predict
the discourse structure of a thread after each post.
This is intended to simulate the more realistic set-
ting of incrementally crawling/updating thread data,
but needing to predict discourse structure for partial

threads. We are interested in determining the rela-
tive degradation in accuracy for in situ classification
vs. batch classification.

As our dataset, we use the CNET forum dataset
of Kim et al. (2010b),1 which contains 1332 an-
notated posts spanning 315 threads, collected from
the Operating System, Software, Hardware and Web
Development sub-forums of cnet.2 Each post is la-
belled with one or more links (including the possi-
bility of null-links, where the post doesn’t link to
any other post), and each link is labelled with a di-
alogue act. The dialogue act set is made up of 5
super-categories: Question, Answer, Resolution
(confirmation of the question being resolved), Re-
production (external confirmation of a proposed so-
lution working) and Other. The Question category
contains 4 sub-classes: Question, Add, Confirma-
tion and Correction. Similarly, the Answer cate-
gory contains 5 sub-classes: Answer, Add, Confir-
mation, Correction and Objection. For example,
the label Question-Add signifies the Question su-
perclass and Add subclass, i.e. addition of extra in-
formation to a question. For full details of the dia-
logue act tagset, see Kim et al. (2010b).

Dependency links are represented by their relative
position in the chronologically-sorted list of posts,
e.g. 1 indicates a link back to the preceding post,
and 2 indicates a link back two posts.

Unless otherwise noted, evaluation is over the
combined link and dialogue act tag, including the
combination of superclass and subclass for the
Question and Answer dialogue acts. For ex-
ample, 1+Answer-Answer indicates a dependency
link back one post, which is an answer to a question.
The most common label in the dataset is 1+Answer-
answer (28.4%).

4 Learners and Features

4.1 Learners

To predict thread discourse structure, we use a struc-
tured classification approach — based on the find-
ings of Kim et al. (2010b) and Kim et al. (2010a)
— and a dependency parser. The structured clas-
sification approach we experiment with is a linear-

1Available from http://www.csse.unimelb.edu.
au/research/lt/resources/conll2010-thread/

2http://forums.cnet.com/
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chain conditional random field learner (CRF: Laf-
ferty et al. (2001)), within which we explore two
simple approaches to joint classification, as is ex-
plained in Section 5.1. Dependency parsing (Kübler
et al., 2009) is the task of automatically predicting
the dependency structure of a token sequence, in
the form of binary asymmetric dependency relations
with dependency types.

Standardly, CRFs have been applied to tasks such
as part-of-speech tagging, named entity recognition,
semantic role labelling and supertagging, where the
individual tokens are single words. Similarly, de-
pendency parsing is conventionally applied to sen-
tences, with single-word tokens. In our case, our
tokens are thread posts, with much greater scope for
feature engineering than single words, and techni-
cal challenges in scaling the underlying implemen-
tations to handle potentially much larger feature sets.

As our learners, we deployed CRFSGD (Bot-
tou, 2011) to learn the CRF, and MaltParser (Nivre
et al., 2007) as our dependency parser. CRFSGD
uses stochastic gradient descent to efficiently solve
the convex optimisation problem, and scales well to
large feature sets. We used the default parameter set-
tings for CRFSGD, with feature templates includ-
ing all unigram features of the current token as well
as bigram features combining the previous output to-
ken with the current token.

MaltParser implements transition-based parsing,
where no formal grammar is considered, and a tran-
sition system, or state machine, is learned to map a
sentence onto its dependency graph. One feature of
MaltParser that makes it well suited to our task is
that it is possible to define feature models of arbi-
trary complexity for each token. In presenting the
thread data to MaltParser, we represent the null-
link from the initial post of each thread, as well as
any disconnected posts, as the root.

To the best of our knowledge, there is no past
work on using dependency parsing to learn thread
discourse structure. Based on extensive experimen-
tation, we determined that the MaltParser configu-
ration that obtains the best results for our task is the
Nivre algorithm in arc-standard mode (Nivre, 2003;
Nivre, 2004), using LIBSVM (Chang and Lin, 2011)
with a linear kernel as the learner, and a feature
model with exhaustive combinations of features re-
lating to the features and predictions of the first/top

three tokens from both “Input” and “Stack”.3 As
such, MaltParser is actually unable to predict any
non-projective structures, as experiments with algo-
rithms supporting non-projective structures invari-
ably led to lower results. In our choice of parsing al-
gorithm, we are also unable to detect posts with mul-
tiple heads, but can potentially detect disconnected
sub-graphs.

4.2 Features

The features used in our classifiers are as follows:

Structural Features:

Initiator a binary feature indicating whether the
current post’s author is the thread initiator.

Position the relative position of the current post,
as a ratio over the total number of posts in the
thread.

Semantic Features:

TitSim the relative location of the post which has
the most similar title (based on unweighted co-
sine similarity) to the current post.

PostSim the relative location of the post which
has the most similar content (based on un-
weighted cosine similarity) to the current post.

Punct the number of question marks (QuCount),
exclamation marks (ExCount) and URLs
(UrlCount) in the current post.

UserProf the class distribution (in the training
thread) of the author of the current post.

These features are drawn largely from the work
of Kim et al. (2010b), with two major differences:
(1) we do not use post context features because our
learners (i.e. CRFSGD and MaltParser) inherently
capture Markov chains; and (2) our UserProf fea-
tures are customised to the class set associated with
the task at hand, e.g. the UserProf features for the
standalone linking task take the form of the link la-
bels (and not dialogue act labels) of the posts by the
relevant author in the training data. Table 1 shows
the feature representation of the third post in a thread
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Feature Value Explanation
Initiator 1.0 post from the initiator
ExCount 4.0 4 exclamation marks
QuCount 0.0 0 question marks
UrlCount 0.0 0 URLs
Position 0.25 i−1

n = 3−1
8

PostSim 2.0 most similar to post 1
TitSim 2.0 most similar to post 1
UserProf ~x counts for posts of each

class from the same author
in the training data

Table 1: The feature presentation of the third post in a
thread of length 8

of length 8. The values of each feature are scaled to
the range [0, 1] before being fed into the learners.

We also experimented with other features,
including raw bag-of-words lexical features,
dimensionality-reduced lexical features (using
principal components analysis), and different post
similarity measures such as longest common subse-
quence (LCS) match. While we were able to obtain
gains in isolation, when combined with the other
features, these features had no impact, and are thus
not included in the results presented in this paper.

5 Classification Methodology

All our experiments were carried out based on strati-
fied 10-fold cross-validation, stratifying at the thread
level to ensure that all posts from a given thread
occur in a single fold. The results are primarily
evaluated using post-level micro-averaged F-score
(Fµ: β = 1), and additionally with thread-level F-
score/classification accuracy (i.e. the proportion of
threads where all posts have been correctly classi-
fied4), where space allows. Statistical significance
is tested using randomised estimation (Yeh, 2000)
with p < 0.05. Initial experiments showed it is
hard for learners to discover which posts have multi-
ple links, largely due to the sparsity of multi-headed
posts (which account for less than 5% of the total
posts). Therefore, only the the most recent link for

3http://maltparser.org/userguide.html#
parsingalg

4Classification accuracy = F-score at the thread-level, as
each thread is assigned a single label of correct or incorrect.

each multi-headed post was included in training, but
evaluation still considers all links.

5.1 Joint classification
In our experiments, we test two basic approaches to
joint classification for the CRF: (1) classifying the
Link and DA separately, and composing the predic-
tions to form the joint classification (Composition);
and (2) combining the Link and DA labels into a sin-
gle class, and applying the learner over the posts
with the combined class (Combine). Note that
Composition has the potential for mismatches in
the number of Link and DA predictions it gener-
ates, causing complications in the class composition.
Even if the same number of labels is predicted for
both Link and DA, if multiple tags are predicted in
both cases, we are left with the problem of determin-
ing which link label to combine with which dialogue
act label. As such, we have our reservations about
Composition, but as the CRF performs strict 1-of-
n labelling, these are not issues in the experiments
reported herein.

MaltParser natively handles the combination of
Link and DA in its dependency parsing formulation.

5.2 In Situ Thread Classification
One of the biggest challenges in classifying the dis-
course structure of a forum thread is that threads
evolve over time, as new posts are posted. In or-
der to capture this phenomenon, and compare the
accuracy of different models when applied to partial
thread data (artificially cutting off a thread at post
N ) vs. complete threads.5 This is done in the fol-
lowing way: classification over the first two posts
only ([1, 2]), the first four posts ([1, 4]), the first six
posts ([1, 6]), the first eight posts ([1, 8]), and all
posts ([all]). In each case, we limit the test data
only, meaning that the only variable in play is the
extent of thread context used to learn the thread dis-
course structure for the given set of posts. We break
down the results in each case into the indicated sub-
threads, e.g. we take the predictions for [all], and
break them down into the results for [1, 2], [1, 4],
[1, 6], [1, 8] and [all], for direct comparison with the
predictions over the respective sub-thread data.

5In practice, completeness is defined at a given point in time,
when the crawl was done, and it is highly likely that some of the
“complete” threads had extra posts after the crawl.
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Method Link DA
Kim et al. (2010b) .863 / .676 .751 / .543
CRFSGD .891 / .727 .795 / .609

Table 2: Post/thread-level component-wise classification
F-scores for Link and DA classes

6 Experiments and Analysis

6.1 Joint classification

As our baseline for the task, we first use a sim-
ple majority class classifier in the form of the sin-
gle joint class of 1+Answer-Answer for all posts,
which has a post-level F-score of 0.284. A stronger
baseline is to classify all first posts as 0+Question-
Question and all subsequent posts as 1+Answer-
answer, which achieves a post-level F-score of
0.515 (labelled as Heuristic).

As described in Section 5.1, one approach to joint
classification with CRFSGD is to firstly conduct
component-wise classification over Link and DA
separately, and compose the predictions. The results
for the separate Link and DA classification tasks are
presented in Table 2, along with the best results for
Link and DA classification from Kim et al. (2010b).
At the component-wise tasks, our method is superior
to Kim et al. (2010b), based on a different learner
and slightly different feature set.

Next, we compose the component-wise clas-
sifications for the CRF into joint classifications
(Composition). We contrast this with the com-
bined class approach for CRFSGD and MaltParser
(jointly presented as Joint in Table 3). With the
combined class results, we additionally ablate each
of the feature types from Section 4.2, and also
present results for a dummy model, where no fea-
tures are provided and the prediction is based simply
on sequential priors (Dummy). The results are pre-
sented in Table 3, along with the Heuristic baseline
result.

Several interesting things can be observed from
the post-level F-score results in Table 3. First, with
no features (Dummy), while CRFSGD performs
slightly worse than the Heuristic baseline, Malt-
Parser significantly surpasses the baseline. This is
due to the richer sequential context model of Malt-
Parser. Second, the single feature with the greatest
impact on results is UserProf, i.e. user profile fea-

Method CRFSGD MaltParser
Heuristic .515∗/ .311∗

Dummy .508∗/ .394∗ .533∗/ .356∗

Composition .728∗/ .553∗ —
Joint +ALL .756 / .578 .738 / .578
−Initiator .745 / .569 .708∗/ .534∗

−Position .750 / .565 .736 / .568
−PostSim .753 / .578 .737 / .568
−TitSim .760 / .587 .734 / .571
−Punct .745 / .571 .735 / .578
−UserProf .672∗/ .527∗ .701∗/ .536∗

Table 3: Post/thread-level Link-DA joint classification F-
scores (“∗” signifies a significantly worse result than that
for the same learner with ALL features)

tures extracted from the training data; CRFSGD in
particular benefits from this feature. We return to ex-
plore this effect in Section 6.4. Third, although the
Initiator feature does not have much effect on CRF-
SGD, it affects the performance of MaltParser sig-
nificantly. Further experiments shown that the com-
bination of Initiator and UserProf is sufficient to
achieve a competitive result (i.e. 0.731). It therefore
seems that MaltParser is more robust than CRF-
SGD, whose performance relies crucially on user-
level features which must be learned from the train-
ing data (i.e. UserProf).

Looking to the thread-level F-scores, we observe
some interesting divergences from the post-level F-
score results. First, with no features (Dummy),
CRFSGD significantly outperforms both the base-
line and MaltParser. This appears to be because
CRFSGD performs particularly well over short
threads (e.g. of length 3 and 4), but worse over
longer threads. Second, the best thread-level F-
scores from CRFSGD (i.e. 0.587) and MaltParser
(i.e. 0.578) are not significantly different, despite the
discrepancy in post-level F-score (where CRFSGD
is markedly superior in this case). With the extra
features, the performance of MaltParser on short
threads appears to pick up noticeably, and the differ-
ence in post-level predictions is over longer threads.

If we evaluate the two models over DA super-
classes only (ignoring mismatches at the subclass
level for Question and Answer), the post-level F-
scores for joint classification with ALL features for
CRFSGD and MaltParser are 0.803 and 0.787, re-
spectively.
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Approaches Link DA
Component-wise .891 / .727∗ .795 / .609
CRFSGD decomp .893 / .749 .785 / .603
MaltParser decomp .870∗/ .730∗ .766∗/ .571∗

Table 4: Post/thread-level Link and DA F-scores from
component-wise classification, and from Link-DA clas-
sification decomposition (“∗” signifies a significantly
worse result than the best result in that column)

Looking at the performance of CRFSGD (in
Combine mode) and MaltParser on disconnected
sub-graphs, while both models did predict a small
number of non-initial posts with null-links (includ-
ing MaltParser predicting 5 out of 6 posts in a sin-
gle thread as having null-links), none were correct,
and neither model was able to correctly predict any
of the 6 actual non-initial instances of null-links in
the dataset.

Finally, we took the joint classification results
from CRFSGD and MaltParser using ALL fea-
tures, and decomposed the predictions into Link and
DA. The results are presented in Table 4, along with
the results for component-wise classification from
Table 2. Somewhat surprisingly, the decomposed
predictions are mostly slightly worse than the re-
sults for the component-wise classification, despite
achieving higher F-score for the joint classification
task. This is simply due to the combined method
tending to get both labels correct or both labels
wrong, for a given post.

6.2 Post Position-based Result Breakdown

One question in thread discourse structure classifica-
tion is how accurate the predictions are at different
depths in a thread (e.g. the first two posts vs. the sec-
ond two posts). A breakdown of results across posts
at different positions is presented in Figure 2.

The overall trend for both CRFSGD and Malt-
Parser is that it becomes increasingly hard to clas-
sify posts as we continue through a thread, due to
greater variability in discourse structure and greater
sparsity in the data. However, it is interesting to note
that the results for CRFSGD actually improve from
posts 7 and 8 ([7, 8]) to posts 9 and onwards ([9, ]).
To further investigate this effect, we performed class
decomposition over the joint classification predic-
tions, and performed a similar breakdown of posts
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Figure 2: Breakdown of post-level Link-DA results for
CRFSGD and MaltParser based on post position
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Figure 3: Breakdown of post-level Link and DA F-score
based on the decomposition of CRFSGD and Malt-
Parser classifications

for Link and DA; the results are presented in Fig-
ure 3. It is clear that the anomaly for CRFSGD
comes from the DA component, due to there being
greater predictability in the dialogue for final posts
in a thread (users tend to confirm a successful reso-
lution of the problem, or report on successful exter-
nal reproduction of the solution). MaltParser seems
less adept at identifying that a post is at the end
of a thread, and predicting the dialogue act accord-
ingly. This observation is congruous with the find-
ings of McDonald and Nivre (2007) that errors prop-
agate, due to MaltParser’s greedy inference strat-
egy. The higher results for Link are to be expected,
as throughout the thread, most posts tend to link lo-
cally.
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XXXXXXXXXTest
B/down

[1, 2] [1, 4] [1, 6] [1, 8] [All]

[1, 2] .947/.947 — — — —
[1, 4] .946/.947 .836/.841 — —
[1, 6] .946/.947 .840/.841 .800/.794 — —
[1, 8] .946/.947 .840/.841 .800/.794 .780/.769 —
[All] .946/.946 .840/.838 .800/.791 .776/.767 .756/.738

Table 5: Post-level Link-DA F-score for CRFSGD/MaltParser, based on in situ classification over sub-threads of
different lengths (indicated in the rows), broken down over different post extents (indicated in the columns)

6.3 In Situ Structure Prediction

As described in Section 5.2, we simulate in situ
thread discourse structure prediction by removing
differing numbers of posts from the tail of the thread,
and applying the trained model over the resultant
sub-threads. The results for in situ classification are
presented in Table 5, with the rows indicating the
size of the test sub-thread, and the columns being a
breakdown of results over different portions of the
classified thread. The reason that we do not pro-
vide numbers for all cells in the table is that the size
of the test sub-thread determines the post extents we
can breakdown the results into, e.g. we cannot return
results for posts 1–4 ([1, 4]) when the size of the test
thread was only two posts ([1, 2]).

From the results, we can see that both CRFSGD
and MaltParser are very robust when applied to par-
tial threads, to the extent that we actually achieve
higher results over shortened versions of the thread
than over the complete thread in some instances, al-
though the only difference that is statistically signif-
icant is over [1, 8] for CRFSGD, where the predic-
tion over the partial thread is actually superior to that
over the complete thread. From this, we can con-
clude that it is possible to apply our method to partial
threads without any reduction in effectiveness rela-
tive to classification over complete threads. As such,
our method is shown to be robust when applied to
real-time analysis of dynamically evolving threads.

6.4 User profile feature analysis

In our experiments, we noticed that the user profile
feature (UserProf) is the most effective feature for
both CRFSGD and MaltParser. To gain a deeper
insight into the behaviour of the feature, we binned
the posts according to the number of times the author
had posted in the training data, evaluated based on a

Bin uscore
Posts Total Total

per user users posts
High 224.6 251 1 251
Medium 1∼41.7 4∼48 45 395
Low 0 2∼4 157 377
Very Low 0 1 309 309

Table 6: Statistics for the 4 groups of users

user score (uscore) for each user:

uscorei =

∑ni
j=1 spi,j

ni

where ni is the number of posts by user i, and spi,j is
the number of posts by user i that occur as training
instances for other posts by the same author. uscore
reflects the average training–test post ratio per user
in cross-validation. Note that as we include all posts
from a given thread in a single partition during cross-
validation, it is possible for an author to have posted
4 times, but have a uscore of 0 due to those posts all
occurring in the same thread.

We ranked the users in the dataset in descending
order of uscore, sub-ranking on ni in cases of a tie
in uscore. The users were binned into 4 groups
of roughly equal post size. The detailed statistics
are shown in Table 6, noting that the high-frequency
bin (“High”) contains posts from a single user. We
present the post-level micro-averaged F-score for
posts in each bin based on CRFSGD, with and with-
out user profile features, in Figure 4.

Contrary to expectation, the UserProf features
have the greatest impact for users with fewer posts.
In fact, a statistically significant difference was ob-
served only for users with no posts in the training
data (uscore = 0), where the F-score jumped over
10% in absolute terms for both the Low and Very
Low bins. Our explanation for this effect is that the
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Figure 4: Post-level joint classification results for users
binned by uscore, based on CRFSGD with and without
UserProf features)

lack of user profile information is predictive of the
sort of posts we can expect from a user (i.e. they
tend to be newbie users, asking questions).

7 Conclusions and Future Work

In this research, we explored the joint classification
of web user forum thread discourse structure, in the
form of a rooted directed acyclic graph over posts,
with edges labelled with dialogue acts. Three classi-
fication approaches were proposed: separately pre-
dicting Link and DA labels, and composing them
into a joint class; predicting a combined Link-DA
class using a structured classifier; and applying de-
pendency parsing to the problem. We found the
combined approach based on CRFSGD to perform
best over the task, closely followed by dependency
parsing with MaltParser.

We also examined the task of in situ classification
of dialogue structure, in the form of predicting the
discourse structure of partial threads, as contrasted
with classifying only complete threads. We found
that there was no drop in F-score over different sub-
extents of the thread in classifying partial threads,
despite the relative lack of thread context.

In future work, we plan to delve further into de-
pendency parsing, looking specifically at the impli-
cations of multi-headedness and disconnected sub-
graphs on dependency parsing. We also intend to
carry out meta-classification, combining the predic-
tions of CRFSGD and MaltParser.

Our user profile features were found to be the
pick of our features, but counter-intuitively, to bene-

fit users with no posts in the training data, rather than
prolific users. We wish to explore this effect further,
including incorporating unsupervised user-level fea-
tures into our classifiers.
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2007. Automatically assessing the post quality in on-
line discussions on software. In Proceedings of the
45th Annual Meeting of the ACL: Interactive Poster
and Demonstration Sessions, pages 125–128, Prague,
Czech Republic.

Armin Weinberger and Frank Fischer. 2006. A
framework to analyze argumentative knowledge con-
struction in computer-supported collaborative learn-
ing. Computers & Education, 46:71–95, January.

Florian Wolf and Edward Gibson. 2005. Representing
discourse coherence: A corpus-based study. Compu-
tational Linguistics, 31(2):249–287.

Wensi Xi, Jesper Lind, and Eric Brill. 2004. Learning
effective ranking functions for newsgroup search. In
Proceedings of 27th International ACM-SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval (SIGIR 2004), pages 394–401. Sheffield,
UK.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Proceed-
ings of the 18th International Conference on Compu-
tational Linguistics (COLING 2000), pages 947–953,
Saarbrücken, Germany.

25



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 26–37,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Exact Decoding of Phrase-Based Translation Models
through Lagrangian Relaxation

Yin-Wen Chang
MIT CSAIL

Cambridge, MA 02139, USA
yinwen@csail.mit.edu

Michael Collins
Department of Computer Science,

Columbia University,
New York, NY 10027, USA

mcollins@cs.columbia.edu

Abstract
This paper describes an algorithm for exact
decoding of phrase-based translation models,
based on Lagrangian relaxation. The method
recovers exact solutions, with certificates of
optimality, on over 99% of test examples.
The method is much more efficient than ap-
proaches based on linear programming (LP)
or integer linear programming (ILP) solvers:
these methods are not feasible for anything
other than short sentences. We compare our
method to MOSES (Koehn et al., 2007), and
give precise estimates of the number and mag-
nitude of search errors that MOSES makes.

1 Introduction
Phrase-based models (Och et al., 1999; Koehn et
al., 2003; Koehn et al., 2007) are a widely-used
approach for statistical machine translation. The
decoding problem for phrase-based models is NP-
hard1; because of this, previous work has generally
focused on approximate search methods, for exam-
ple variants of beam search, for decoding.

This paper describes an algorithm for exact
decoding of phrase-based models, based on La-
grangian relaxation (Lemaréchal, 2001). The core
of the algorithm is a dynamic program for phrase-
based translation which is efficient, but which allows
some ill-formed translations. More specifically, the
dynamic program searches over the space of transla-
tions where exactly N words are translated (N is
the number of words in the source-language sen-
tence), but where some source-language words may
be translated zero times, or some source-language
words may be translated more than once. La-
grangian relaxation is used to enforce the constraint

1We refer here to the phrase-based models of (Koehn et al.,
2003; Koehn et al., 2007), considered in this paper. Other vari-
ants of phrase-based models, which allow polynomial time de-
coding, have been proposed, see the related work section.

that each source-language word should be translated
exactly once. A subgradient algorithm is used to op-
timize the dual problem arising from the relaxation.

The first technical contribution of this paper is the
basic Lagrangian relaxation algorithm. By the usual
guarantees for Lagrangian relaxation, if this algo-
rithm converges to a solution where all constraints
are satisfied (i.e., where each word is translated ex-
actly once), then the solution is guaranteed to be
optimal. For some source-language sentences how-
ever, the underlying relaxation is loose, and the algo-
rithm will not converge. The second technical con-
tribution of this paper is a method that incrementally
adds constraints to the underlying dynamic program,
thereby tightening the relaxation until an exact solu-
tion is recovered.

We describe experiments on translation from Ger-
man to English, using phrase-based models trained
by MOSES (Koehn et al., 2007). The method
recovers exact solutions, with certificates of opti-
mality, on over 99% of test examples. On over
78% of examples, the method converges with zero
added constraints (i.e., using the basic algorithm);
99.67% of all examples converge with 9 or fewer
constraints. We compare to a linear programming
(LP)/integer linear programming (ILP) based de-
coder. Our method is much more efficient: LP or
ILP decoding is not feasible for anything other than
short sentences,2 whereas the average decoding time
for our method (for sentences of length 1-50 words)
is 121 seconds per sentence. We also compare our
method to MOSES, and give precise estimates of the
number and magnitude of search errors that MOSES
makes. Even with large beam sizes, MOSES makes
a significant number of search errors. As far as we
are aware, previous work has not successfully re-

2For example ILP decoding for sentences of lengths 11-15
words takes on average 2707.8 seconds.
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covered exact solutions for the type of phrase-based
models used in MOSES.

2 Related Work
Lagrangian relaxation is a classical technique for
solving combinatorial optimization problems (Korte
and Vygen, 2008; Lemaréchal, 2001). Dual decom-
position, a special case of Lagrangian relaxation, has
been applied to inference problems in NLP (Koo et
al., 2010; Rush et al., 2010), and also to Markov ran-
dom fields (Wainwright et al., 2005; Komodakis et
al., 2007; Sontag et al., 2008). Earlier work on be-
lief propagation (Smith and Eisner, 2008) is closely
related to dual decomposition. Recently, Rush and
Collins (2011) describe a Lagrangian relaxation al-
gorithm for decoding for syntactic translation; the
algorithmic construction described in the current pa-
per is, however, very different in nature to this work.

Beam search stack decoders (Koehn et al., 2003)
are the most commonly used decoding algorithm
for phrase-based models. Dynamic-programming-
based beam search algorithms are discussed for both
word-based and phrase-based models by Tillmann
and Ney (2003) and Tillmann (2006).

Several works attempt exact decoding, but effi-
ciency remains an issue. Exact decoding via integer
linear programming (ILP) for IBM model 4 (Brown
et al., 1993) has been studied by Germann et al.
(2001), with experiments using a bigram language
model for sentences up to eight words in length.
Riedel and Clarke (2009) have improved the effi-
ciency of this work by using a cutting-plane algo-
rithm, and experimented with sentence lengths up
to 30 words (again with a bigram LM). Zaslavskiy
et al. (2009) formulate the phrase-based decoding
problem as a traveling salesman problem (TSP), and
take advantage of existing exact and approximate
approaches designed for TSP. Their translation ex-
periment uses a bigram language model and applies
an approximate algorithm for TSP. Och et al. (2001)
propose an A* search algorithm for IBM model 4,
and test on sentence lengths up to 14 words. Other
work (Kumar and Byrne, 2005; Blackwood et al.,
2009) has considered variants of phrase-based mod-
els with restrictions on reordering that allow exact,
polynomial time decoding, using finite-state trans-
ducers.

The idea of incrementally adding constraints to

tighten a relaxation until it is exact is a core idea in
combinatorial optimization. Previous work on this
topic in NLP or machine learning includes work on
inference in Markov random fields (Sontag et al.,
2008); work that encodes constraints using finite-
state machines (Tromble and Eisner, 2006); and
work on non-projective dependency parsing (Riedel
and Clarke, 2006).

3 The Phrase-based Translation Model

This section establishes notation for phrase-based
translation models, and gives a definition of the de-
coding problem. The phrase-based model we use is
the same as that described by Koehn et al. (2003), as
implemented in MOSES (Koehn et al., 2007).

The input to a phrase-based translation sys-
tem is a source-language sentence with N words,
x1x2 . . . xN . A phrase table is used to define the
set of possible phrases for the sentence: each phrase
is a tuple p = (s, t, e), where (s, t) are indices rep-
resenting a contiguous span in the source-language
sentence (we have s ≤ t), and e is a target-language
string consisting of a sequence of target-language
words. For example, the phrase p = (2, 5, the dog)
would specify that words x2 . . . x5 have a translation
in the phrase table as “the dog”. Each phrase p has
a score g(p) = g(s, t, e): this score will typically
be calculated as a log-linear combination of features
(e.g., see Koehn et al. (2003)).

We use s(p), t(p) and e(p) to refer to the three
components (s, t, e) of a phrase p.

The output from a phrase-based model is a
sequence of phrases y = 〈p1p2 . . . pL〉. We
will often refer to an output y as a derivation.
The derivation y defines a target-language transla-
tion e(y), which is formed by concatenating the
strings e(p1), e(p2), . . . , e(pL). For two consecutive
phrases pk = (s, t, e) and pk+1 = (s′, t′, e′), the dis-
tortion distance is defined as δ(t, s′) = |t+ 1− s′|.
The score for a translation is then defined as

f(y) = h(e(y))+

L∑

k=1

g(pk)+

L−1∑

k=1

η×δ(t(pk), s(pk+1))

where η ∈ R is often referred to as the distortion
penalty, and typically takes a negative value. The
function h(e(y)) is the score of the string e(y) under
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a language model.3

The decoding problem is to find

arg max
y∈Y

f(y)

where Y is the set of valid derivations. The set Y can
be defined as follows. First, for any derivation y =
〈p1p2 . . . pL〉, define y(i) to be the number of times
that the source-language word xi has been translated
in y: that is, y(i) =

∑L
k=1[[s(pk) ≤ i ≤ t(pk)]],

where [[π]] = 1 if π is true, and 0 otherwise. Then
Y is defined as the set of finite length sequences
〈p1p2 . . . pL〉 such that:

1. Each word in the input is translated exactly
once: that is, y(i) = 1 for i = 1 . . . N .

2. For each pair of consecutive phrases
pk, pk+1 for k = 1 . . . L − 1, we have
δ(t(pk), s(pk+1)) ≤ d, where d is the
distortion limit.

An exact dynamic programming algorithm for
this problem uses states (w1, w2, b, r), where
(w1, w2) is a target-language bigram that the par-
tial translation ended with, b is a bit-string denoting
which source-language words have been translated,
and r is the end position of the previous phrase (e.g.,
see Koehn et al. (2003)). The bigram (w1, w2) is
needed for calculation of trigram language model
scores; r is needed to enforce the distortion limit,
and to calculate distortion costs. The bit-string b
is needed to ensure that each word is translated ex-
actly once. Since the number of possible bit-strings
is exponential in the length of sentence, exhaustive
dynamic programming is in general intractable. In-
stead, people commonly use heuristic search meth-
ods such as beam search for decoding. However,
these methods have no guarantee of returning the
highest scoring translation.

4 A Decoding Algorithm based on
Lagrangian Relaxation

We now describe a decoding algorithm for phrase-
based translation, based on Lagrangian relaxation.

3The language model score usually includes a word inser-
tion score that controls the length of translations. The relative
weights of the g(p) and h(e(y)) terms, and the value for η, are
typically chosen using MERT training (Och, 2003).

We first describe a dynamic program for decoding
which is efficient, but which relaxes the y(i) = 1
constraints described in the previous section. We
then describe the Lagrangian relaxation algorithm,
which introduces Lagrange multipliers for each con-
straint of the form y(i) = 1, and uses a subgradient
algorithm to minimize the dual arising from the re-
laxation. We conclude with theorems describing for-
mal properties of the algorithm, and with an example
run of the algorithm.

4.1 An Efficient Dynamic Program
As described in the previous section, our goal is to
find the optimal translation y∗ = arg maxy∈Y f(y).
We will approach this problem by defining a set Y ′
such that Y ⊂ Y ′, and such that

arg max
y∈Y ′

f(y)

can be found efficiently using dynamic program-
ming. The set Y ′ omits some constraints—
specifically, the constraints that each source-
language word is translated once, i.e., that y(i) = 1
for i = 1 . . . N—that are enforced for members
of Y . In the next section we describe how to re-
introduce these constraints using Lagrangian relax-
ation. The set Y ′ does, however, include a looser
constraint, namely that

∑N
i=1 y(i) = N , which re-

quires that exactly N words are translated.
We now give the dynamic program that defines
Y ′. The main idea will be to replace bit-strings (as
described in the previous section) by a much smaller
number of dynamic programming states. Specifi-
cally, the states of the new dynamic program will
be tuples (w1, w2, n, l,m, r). The pair (w1, w2) is
again a target-language bigram corresponding to the
last two words in the partial translation, and the inte-
ger r is again the end position of the previous phrase.
The integer n is the number of words that have been
translated thus far in the dynamic programming al-
gorithm. The integers l and m specify a contiguous
span xl . . . xm in the source-language sentence; this
span is the last contiguous span of words that have
been translated thus far.

The dynamic program can be viewed as a
shortest-path problem in a directed graph, with
nodes in the graph corresponding to states
(w1, w2, n, l,m, r). The transitions in the
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graph are defined as follows. For each state
(w1, w2, n, l,m, r), we consider any phrase
p = (s, t, e) with e = (e0 . . . eM−1eM ) such that:
1) δ(r, s) ≤ d; and 2) t < l or s > m. The former
condition states that the phrase should satisfy the
distortion limit. The latter condition requires that
there is no overlap of the new phrase’s span (s, t)
with the span (l,m). For any such phrase, we create
a transition

(w1, w2, n, l,m, r)
p=(s,t,e)−−−−−→ (w′1, w

′
2, n
′, l′,m′, r′)

where

• (w′1, w
′
2) =

{
(eM−1, eM ) if M ≥ 2
(w2, e1) if M = 1

• n′ = n+ t− s+ 1

• (l′,m′) =





(l, t ) if s = m+ 1
(s,m) if t = l − 1
(s, t ) otherwise

• r′ = t
The new target-language bigram (w′1, w

′
2) is the last

two words of the partial translation after including
phrase p. It comes from either the last two words
of e, or, if e consists of a single word, the last word
of the previous bigram, w2, and the first and only
word, e1, in e. (l′,m′) is expanded from (l,m) if
the spans (l,m) and (s, t) are adjacent. Otherwise,
(l′,m′) will be the same as (s, t).

The score of the transition is given by a sum
of the phrase translation score g(p), the language
model score, and the distortion cost η× δ(r, s). The
trigram language model score is h(e1|w1, w2) +
h(e2|w2, e1) +

∑M−2
i=1 h(ei+2|ei, ei+1), where

h(w3|w1, w2) is a trigram score (typically a log
probability plus a word insertion score).

We also include start and end states in the directed
graph. The start state is (<s>,<s>, 0, 0, 0, 0) where
<s> is the start symbol in the language model. For
each state (w1, w2, n, l,m, r), such that n = N , we
create a transition to the end state. This transition
takes the form

(w1, w2, N, l,m, r)
(N,N+1,</s>)−−−−−−−−−−−→ END

For this transition, we define the score as score =
h(</s>|w1, w2); thus this transition incorporates
the end symbol </s> in the language model.

The states and transitions we have described form
a directed graph, where each path from the start state

to the end state corresponds to a sequence of phrases
p1p2 . . . pL. We define Y ′ to be the full set of such
sequences. We can use the Viterbi algorithm to solve
arg maxy∈Y ′ f(y) by simply searching for the high-
est scoring path from the start state to the end state.

The set Y ′ clearly includes derivations that are ill-
formed, in that they may include words that have
been translated 0 times, or more than 1 time. The
first line of Figure 2 shows one such derivation (cor-
responding to the translation the quality and also the
and the quality and also .). For each phrase we show
the English string (e.g., the quality) together with the
span of the phrase (e.g., 3, 6). The values for y(i) are
also shown. It can be verified that this derivation is a
valid member of Y ′. However, y(i) 6= 1 for several
values of i: for example, words 1 and 2 are trans-
lated 0 times, while word 3 is translated twice.

Other dynamic programs, and definitions of Y ′,
are possible: for example an alternative would be
to use a dynamic program with states (w1, w2, n, r).
However, including the previous contiguous span
(l,m) makes the set Y ′ a closer approximation to
Y . In experiments we have found that including the
previous span (l,m) in the dynamic program leads
to faster convergence of the subgradient algorithm
described in the next section, and in general to more
stable results. This is in spite of the dynamic pro-
gram being larger; it is no doubt due to Y ′ being a
better approximation of Y .

4.2 The Lagrangian Relaxation Algorithm
We now describe the Lagrangian relaxation decod-
ing algorithm for the phrase-based model. Recall
that in the previous section, we defined a set Y ′ that
allowed efficient dynamic programming, and such
that Y ⊂ Y ′. It is easy to see that Y = {y : y ∈
Y ′, and ∀i, y(i) = 1}. The original decoding
problem can therefore be stated as:

arg max
y∈Y ′

f(y) such that ∀i, y(i) = 1

We use Lagrangian relaxation (Korte and Vygen,
2008) to deal with the y(i) = 1 constraints. We
introduce Lagrange multipliers u(i) for each such
constraint. The Lagrange multipliers u(i) can take
any positive or negative value. The Lagrangian is

L(u, y) = f(y) +
∑

i

u(i)(y(i)− 1)
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Initialization: u0(i)← 0 for i = 1 . . . N

for t = 1 . . . T

yt = arg maxy∈Y′ L(ut−1, y)

if yt(i) = 1 for i = 1 . . . N

return yt

else
for i = 1 . . . N

ut(i) = ut−1(i)− αt (yt(i)− 1)

Figure 1: The decoding algorithm. αt > 0 is the step size
at the t’th iteration.

The dual objective is then

L(u) = max
y∈Y ′

L(u, y).

and the dual problem is to solve

min
u
L(u).

The next section gives a number of formal results de-
scribing how solving the dual problem will be useful
in solving the original optimization problem.

We now describe an algorithm that solves the dual
problem. By standard results for Lagrangian re-
laxation (Korte and Vygen, 2008), L(u) is a con-
vex function; it can be minimized by a subgradient
method. If we define

yu = arg max
y∈Y ′

L(u, y)

and γu(i) = yu(i) − 1 for i = 1 . . . N , then γu is
a subgradient of L(u) at u. A subgradient method
is an iterative method for minimizing L(u), which
perfoms updates ut ← ut−1−αtγut−1 where αt > 0
is the step size for the t’th subgradient step.

Figure 1 depicts the resulting algorithm. At each
iteration, we solve

arg max
y∈Y ′

(
f(y) +

∑

i

u(i)(y(i)− 1)

)

= arg max
y∈Y ′

(
f(y) +

∑

i

u(i)y(i)

)

by the dynamic program described in the previous
section. Incorporating the

∑
i u(i)y(i) terms in the

dynamic program is straightforward: we simply re-
define the phrase scores as

g′(s, t, e) = g(s, t, e) +
t∑

i=s

u(i)

Intuitively, each Lagrange multiplier u(i) penal-
izes or rewards phrases that translate word i; the al-
gorithm attempts to adjust the Lagrange multipliers
in such a way that each word is translated exactly
once. The updates ut(i) = ut−1(i) − αt(yt(i) − 1)
will decrease the value for u(i) if yt(i) > 1, in-
crease the value for u(i) if yt(i) = 0, and leave u(i)
unchanged if yt(i) = 1.

4.3 Properties
We now give some theorems stating formal proper-
ties of the Lagrangian relaxation algorithm. These
results for Lagrangian relaxation are well known:
for completeness, we state them here. First, define
y∗ to be the optimal solution for our original prob-
lem:

Definition 1. y∗ = arg maxy∈Y f(y)

Our first theorem states that the dual function pro-
vides an upper bound on the score for the optimal
translation, f(y∗):

Theorem 1. For any value of u ∈ RN , L(u) ≥
f(y∗).

Proof.

L(u) = max
y∈Y ′

f(y) +
∑

i

u(i)(y(i)− 1)

≥ max
y∈Y

f(y) +
∑

i

u(i)(y(i)− 1)

= max
y∈Y

f(y)

The first inequality follows because Y ⊂ Y ′. The
final equality is true since any y ∈ Y has y(i) =
1 for all i, implying that

∑
i u(i)(y(i)−1) = 0.

The second theorem states that under an appropri-
ate choice of the step sizes αt, the method converges
to the minimum ofL(u). Hence we will successfully
find the tightest possible upper bound defined by the
dual L(u).

Theorem 2. For any sequence α1, α2, . . . If 1)
limt→∞ αt → 0; 2)

∑∞
t=1 α

t = ∞, then
limt→∞ L(ut) = minu L(u)

Proof. See Korte and Vygen (2008).
30



Input German: dadurch können die qualität und die regelmäßige postzustellung auch weiterhin sichergestellt werden .

t L(ut−1) yt(i) derivation yt

1 -10.0988 0 0 2 2 3 3 0 0 2 0 0 0 1
˛̨̨̨

3, 6
the quality and

˛̨̨̨
9, 9
also

˛̨̨̨
6, 6
the

˛̨̨̨
5, 5
and

˛̨̨̨
3, 3
the

˛̨̨̨
4, 6

quality and

˛̨̨̨
9, 9
also

˛̨̨̨
13, 13

.

˛̨̨̨
2 -11.1597 0 0 1 0 0 0 1 0 0 4 1 5 1

˛̨̨̨
3, 3
the

˛̨̨̨
7, 7

regular

˛̨̨̨
12, 12

will

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
12, 12

be

˛̨̨̨
10, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨
3 -12.3742 3 3 1 2 2 0 0 0 1 0 0 0 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
5, 5
and

˛̨̨̨
2, 2
can

˛̨̨̨
1, 1
thus

˛̨̨̨
4, 4

quality

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 5

the quality and

˛̨̨̨
9, 9
also

˛̨̨̨
13, 13

.

˛̨̨̨
4 -11.8623 0 1 0 0 0 1 1 3 3 0 3 0 1

˛̨̨̨
2, 2
can

˛̨̨̨
6, 7

the regular

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 9
also

˛̨̨̨
11, 11
ensure

˛̨̨̨
13, 13

.

˛̨̨̨
5 -13.9916 0 0 1 1 3 2 4 0 0 0 1 0 1

˛̨̨̨
3, 3
the

˛̨̨̨
7, 7

regular

˛̨̨̨
5, 5
and

˛̨̨̨
7, 7

regular

˛̨̨̨
5, 5
and

˛̨̨̨
7, 7

regular

˛̨̨̨
6, 6
the

˛̨̨̨
4, 4

quality

˛̨̨̨
5, 7

and the regular

˛̨̨̨
11, 11

ensured

˛̨̨̨
13, 13

.

˛̨̨̨
6 -15.6558 1 1 1 2 0 2 0 1 1 1 1 1 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 4

the quality of

˛̨̨̨
6, 6
the

˛̨̨̨
4, 4

quality of

˛̨̨̨
6, 6
the

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨
7 -16.1022 1 1 1 1 1 1 1 1 1 1 1 1 1

˛̨̨̨
1, 2

in that way ,

˛̨̨̨
3, 4

the quality

˛̨̨̨
5, 7

and the regular

˛̨̨̨
8, 8

distribution should

˛̨̨̨
9, 10

continue to

˛̨̨̨
11, 13

be guaranteed .

˛̨̨̨

Figure 2: An example run of the algorithm in Figure 1. For each value of t we show the dual value L(ut−1), the
derivation yt, and the number of times each word is translated, yt(i) for i = 1 . . . N . For each phrase in a derivation
we show the English string e, together with the span (s, t): for example, the first phrase in the first derivation has
English string the quality and, and span (3, 6). At iteration 7 we have yt(i) = 1 for i = 1 . . . N , and the translation is
returned, with a guarantee that it is optimal.

Our final theorem states that if at any iteration the
algorithm finds a solution yt such that yt(i) = 1 for
i = 1 . . . N , then this is guaranteed to be the optimal
solution to our original problem. First, define

Definition 2. yu = arg maxy∈Y ′ L(u, y).

We then have the theorem

Theorem 3. If ∃ u, s.t. yu(i) = 1 for i = 1 . . . N ,
then f(yu) = f(y∗), i.e. yu is optimal.

Proof. We have

L(u) = max
y∈Y ′

f(y) +
∑

i

u(i)(y(i)− 1)

= f(yu) +
∑

i

u(i)(yu(i)− 1)

= f(yu)

The second equality is true because of the defini-
tion of yu. The third equality follows because by
assumption yu(i) = 1 for i = 1 . . . N . Because
L(u) = f(yu) and L(u) ≥ f(y∗) for all u, we have
f(yu) ≥ f(y∗). But y∗ = arg maxy∈Y f(y), and
yu ∈ Y , hence we must also have f(yu) ≤ f(y∗). It
follows that f(yu) = f(y∗).

In some cases, however, the algorithm in Figure 1
may not return a solution yt such that yt(i) = 1
for all i. There could be two reasons for this. In
the first case, we may not have run the algorithm
for enough iterations T to see convergence. In the
second case, the underlying relaxation may not be

tight, in that there may not be any settings u for the
Lagrange multipliers such that yu(i) = 1 for all i.

Section 5 describes a method for tightening
the underlying relaxation by introducing hard con-
straints (of the form y(i) = 1 for selected values of
i). We will see that this method is highly effective
in tightening the relaxation until the algorithm con-
verges to an optimal solution.

4.4 An Example of the Algorithm

Figure 2 shows an example of how the algorithm
works when translating a German sentence into an
English sentence. After the first iteration, there are
words that have been translated two or three times,
and words that have not been translated. At each
iteration, the Lagrangian multipliers are updated to
encourage each word to be translated once. On
this example, the algorithm converges to a solution
where all words are translated exactly once, and the
solution is guaranteed to be optimal.

5 Tightening the Relaxation
In some cases the algorithm in Figure 1 will not
converge to y(i) = 1 for i = 1 . . . N because
the underlying relaxation is not tight. We now de-
scribe a method that incrementally tightens the La-
grangian relaxation algorithm until it provides an ex-
act answer. In cases that do not converge, we in-
troduce hard constraints to force certain words to be
translated exactly once in the dynamic programming
solver. In experiments we show that typically only a
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Optimize(C, u)

while (dual value still improving)
y∗ = arg maxy∈Y′C L(u, y)

if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N

u(i) = u(i)− α (y∗(i)− 1)

count(i) = 0 for i = 1 . . . N

for k = 1 . . .K

y∗ = arg maxy∈Y′C L(u, y)

if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N

u(i) = u(i)− α (y∗(i)− 1)

count(i) = count(i) + [[y∗(i) 6= 1]]

Let C′ = set of G i’s that have the largest value for
count(i), that are not in C, and that are not adjacent to
each other
return Optimize(C ∪ C′, u)

Figure 3: A decoding algorithm with incremental addi-
tion of constraints. The function Optimize(C, u) is a re-
cursive function, which takes as input a set of constraints
C, and a vector of Lagrange multipliers, u. The initial
call to the algorithm is with C = ∅, and u = 0. α > 0 is
the step size. In our experiments, the step size decreases
each time the dual value increases from one iteration to
the next; see Appendix A.

few constraints are necessary.
Given a set C ⊆ {1, 2, . . . , N}, we define

Y ′C = {y : y ∈ Y ′, and ∀ i ∈ C, y(i) = 1}

Thus Y ′C is a subset of Y ′, formed by adding hard
constraints of the form y(i) = 1 to Y ′. Note that Y ′C
remains as a superset of Y , which enforces y(i) =
1 for all i. Finding arg maxy∈Y ′C f(y) can again
be achieved using dynamic programming, with the
number of dynamic programming states increased
by a factor of 2|C|: dynamic programming states of
the form (w1, w2, n, l,m, r) are replaced by states
(w1, w2, n, l,m, r, bC) where bC is a bit-string of
length |C|, which records which words in the set C
have or haven’t been translated in a hypothesis (par-
tial derivation). Note that if C = {1 . . . N}, we have
Y ′C = Y , and the dynamic program will correspond
to exhaustive dynamic programming.

We can again run a Lagrangian relaxation algo-
rithm, using the set Y ′C in place of Y ′. We will use
Lagrange multipliers u(i) to enforce the constraints
y(i) = 1 for i /∈ C. Our goal will be to find a
small set of constraints C, such that Lagrangian re-

laxation will successfully recover an optimal solu-
tion. We will do this by incrementally adding el-
ements to C; that is, by incrementally adding con-
straints that tighten the relaxation.

The intuition behind our approach is as follows.
Say we run the original algorithm, with the set Y ′,
for several iterations, so that L(u) is close to con-
vergence (i.e., L(u) is close to its minimal value).
However, assume that we have not yet generated a
solution yt such that yt(i) = 1 for all i. In this case
we have some evidence that the relaxation may not
be tight, and that we need to add some constraints.
The question is, which constraints to add? To an-
swer this question, we run the subgradient algorithm
for K more iterations (e.g., K = 10), and at each it-
eration track which constraints of the form y(i) = 1
are violated. We then choose C to be the G con-
straints (e.g., G = 3) that are violated most often
during the K additional iterations, and are not ad-
jacent to each other. We recursively call the algo-
rithm, replacing Y ′ by Y ′C ; the recursive call may
then return an exact solution, or alternatively again
add more constraints and make a recursive call.4

Figure 3 depicts the resulting algorithm. We ini-
tially make a call to the algorithm Optimize(C, u)
with C equal to the empty set (i.e., no hard con-
straints), and with u(i) = 0 for all i. In an initial
phase the algorithm runs subgradient steps, while
the dual is still improving. In a second step, if a so-
lution has not been found, the algorithm runs for K
more iterations, thereby choosing G additional con-
straints, then recursing.

If at any stage the algorithm finds a solution y∗

such that y∗(i) = 1 for all i, then this is the so-
lution to our original problem, arg maxy∈Y f(y).
This follows because for any C ⊆ {1 . . . N} we
have Y ⊆ Y ′C ; hence the theorems in section 4.3 go
through for Y ′C in place of Y ′, with trivial modifica-
tions. Note also that the algorithm is guaranteed to
eventually find the optimal solution, because even-
tually C = {1 . . . N}, and Y = Y ′C .

4Formal justification for the method comes from the rela-
tionship between Lagrangian relaxation and linear program-
ming relaxations. In cases where the relaxation is not tight,
the subgradient method will essentially move between solu-
tions whose convex combination form a fractional solution to
an underlying LP relaxation (Nedić and Ozdaglar, 2009). Our
method eliminates the fractional solution through the introduc-
tion of hard constraints.

32



# iter. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-7 166 (89.7 %) 219 (39.2 %) 34 ( 6.0 %) 2 ( 0.6 %) 0 ( 0.0 %) 421 (23.1 %) 23.1 %
8-15 17 ( 9.2 %) 187 (33.5 %) 161 (28.4 %) 30 ( 8.6 %) 3 ( 1.8 %) 398 (21.8 %) 44.9 %
16-30 1 ( 0.5 %) 93 (16.7 %) 208 (36.7 %) 112 (32.3 %) 22 ( 13.1 %) 436 (23.9 %) 68.8 %
31-60 1 ( 0.5 %) 52 ( 9.3 %) 105 (18.6 %) 99 (28.5 %) 62 ( 36.9 %) 319 (17.5 %) 86.3 %
61-120 0 ( 0.0 %) 7 ( 1.3 %) 54 ( 9.5 %) 89 (25.6 %) 45 ( 26.8 %) 195 (10.7 %) 97.0 %
121-250 0 ( 0.0 %) 0 ( 0.0 %) 4 ( 0.7 %) 14 ( 4.0 %) 31 ( 18.5 %) 49 ( 2.7 %) 99.7 %
x 0 ( 0.0 %) 0 ( 0.0 %) 0 ( 0.0 %) 1 ( 0.3 %) 5 ( 3.0 %) 6 ( 0.3 %) 100.0 %

Table 1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences that fail to
converge after 250 iterations. 97% of the examples converge within 120 iterations.

# cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-0 183 (98.9 %) 511 (91.6 %) 438 (77.4 %) 222 (64.0 %) 82 ( 48.8 %) 1,436 (78.7 %) 78.7 %
1-3 2 ( 1.1 %) 45 ( 8.1 %) 94 (16.6 %) 87 (25.1 %) 50 ( 29.8 %) 278 (15.2 %) 94.0 %
4-6 0 ( 0.0 %) 2 ( 0.4 %) 27 ( 4.8 %) 24 ( 6.9 %) 19 ( 11.3 %) 72 ( 3.9 %) 97.9 %
7-9 0 ( 0.0 %) 0 ( 0.0 %) 7 ( 1.2 %) 13 ( 3.7 %) 12 ( 7.1 %) 32 ( 1.8 %) 99.7 %
x 0 ( 0.0 %) 0 ( 0.0 %) 0 ( 0.0 %) 1 ( 0.3 %) 5 ( 3.0 %) 6 ( 0.3 %) 100.0 %

Table 2: Table showing the number of constraints added before convergence of the algorithm in Figure 3, broken down by sentence
length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3 constraints are added in cases
where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the
examples converge without adding any constraints.

The remaining question concerns the “dual still
improving” condition; i.e., how to determine that the
first phase of the algorithm should terminate. We do
this by recording the first and second best dual val-
ues L(u′) and L(u′′) in the sequence of Lagrange
multipliers u1, u2, . . . generated by the algorithm.
Suppose that L(u′′) first occurs at iteration t′′. If
L(u′)−L(u′′)

t−t′′ < ε, we say that the dual value does not
decrease enough. The value for ε is a parameter of
the approach: in experiments we used ε = 0.002.

See the supplementary material for this submis-
sion for an example run of the algorithm.

When C 6= ∅, A* search can be used for de-
coding, with the dynamic program for Y ′ provid-
ing admissible estimates for the dynamic program
for Y ′C . Experiments show that A* gives significant
improvements in efficiency. The supplementary ma-
terial contains a full description of the A* algorithm.

6 Experiments
In this section, we present experimental results to
demonstrate the efficiency of the decoding algo-
rithm. We compare to MOSES (Koehn et al., 2007),
a phrase-based decoder using beam search, and to
a general purpose integer linear programming (ILP)
solver, which solves the problem exactly.

The experiments focus on translation from Ger-
man to English, using the Europarl data (Koehn,
2005). We tested on 1,824 sentences of length at

most 50 words. The experiments use the algorithm
shown in Figure 3. We limit the algorithm to a max-
imum of 250 iterations and a maximum of 9 hard
constraints. The distortion limit d is set to be four,
and we prune the phrase translation table to have 10
English phrases per German phrase.

Our method finds exact solutions on 1,818 out
of 1,824 sentences (99.67%). (6 examples do not
converge within 250 iterations.) Table 1 shows the
number of iterations required for convergence, and
Table 2 shows the number of constraints required
for convergence, broken down by sentence length.
In 1,436/1,818 (78.7%) sentences, the method con-
verges without adding hard constraints to tighten the
relaxation. For sentences with 1-10 words, the vast
majority (183 out of 185 examples) converge with
0 constraints added. As sentences get longer, more
constraints are often required. However most exam-
ples converge with 9 or fewer constraints.

Table 3 shows the average times for decoding,
broken down by sentence length, and by the number
of constraints that are added. As expected, decod-
ing times increase as the length of sentences, and
the number of constraints required, increase. The
average run time across all sentences is 120.9 sec-
onds. Table 3 also shows the run time of the method
without the A* algorithm for decoding. The A* al-
gorithm gives significant reductions in runtime.
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# cons.
1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
A* w/o A* w/o A* w/o A* w/o A* w/o A* w/o

0-0 0.8 0.8 9.7 10.7 47.0 53.7 153.6 178.6 402.6 492.4 64.6 76.1
1-3 2.4 2.9 23.2 28.0 80.9 102.3 277.4 360.8 686.0 877.7 241.3 309.7
4-6 0.0 0.0 28.2 38.8 111.7 163.7 309.5 575.2 1,552.8 1,709.2 555.6 699.5
7-9 0.0 0.0 0.0 0.0 166.1 500.4 361.0 1,467.6 1,167.2 3,222.4 620.7 1,914.1
mean 0.8 0.9 10.9 12.3 57.2 72.6 203.4 299.2 679.9 953.4 120.9 168.9
median 0.7 0.7 8.9 9.9 48.3 54.6 169.7 202.6 484.0 606.5 35.2 40.0

Table 3: The average time (in seconds) for decoding using the algorithm in Figure 3, with and without A* algorithm, broken down
by sentence length and the number of constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*.

method ILP LP
set length mean median mean median % frac.

Y ′′ 1-10 275.2 132.9 10.9 4.4 12.4 %
11-15 2,707.8 1,138.5 177.4 66.1 40.8 %
16-20 20,583.1 3,692.6 1,374.6 637.0 59.7 %

Y ′ 1-10 257.2 157.7 18.4 8.9 1.1 %
11-15 3607.3 1838.7 476.8 161.1 3.0 %

Table 4: Average and median time of the LP/ILP solver (in
seconds). % frac. indicates how often the LP gives a fractional
answer. Y ′ indicates the dynamic program using set Y ′ as de-
fined in Section 4.1, and Y ′′ indicates the dynamic program us-
ing states (w1, w2, n, r). The statistics for ILP for length 16-20
are based on 50 sentences.

6.1 Comparison to an LP/ILP solver

To compare to a linear programming (LP) or inte-
ger linear programming (ILP) solver, we can im-
plement the dynamic program (search over the set
Y ′) through linear constraints, with a linear ob-
jective. The y(i) = 1 constraints are also lin-
ear. Hence we can encode our relaxation within an
LP or ILP. Having done this, we tested the result-
ing LP or ILP using Gurobi, a high-performance
commercial grade solver. We also compare to
an LP or ILP where the dynamic program makes
use of states (w1, w2, n, r)—i.e., the span (l,m) is
dropped, making the dynamic program smaller. Ta-
ble 4 shows the average time taken by the LP/ILP
solver. Both the LP and the ILP require very long
running times on these shorter sentences, and run-
ning times on longer sentences are prohibitive. Our
algorithm is more efficient because it leverages the
structure of the problem, by directly using a combi-
natorial algorithm (dynamic programming).

6.2 Comparison to MOSES

We now describe comparisons to the phrase-based
decoder implemented in MOSES. MOSES uses

beam search to find approximate solutions.
The distortion limit described in section 3 is the

same as that in Koehn et al. (2003), and is the same
as that described in the user manual for MOSES
(Koehn et al., 2007). However, a complicating fac-
tor for our comparisons is that MOSES uses an ad-
ditional distortion constraint, not documented in the
manual, which we describe here.5 We call this con-
straint the gap constraint. We will show in experi-
ments that without the gap constraint, MOSES fails
to produce translations on many examples. In our
experiments we will compare to MOSES both with
and without the gap constraint (in the latter case, we
discard examples where MOSES fails).

We now describe the gap constraint. For a se-
quence of phrases p1, . . . , pk define θ(p1 . . . pk) to
be the index of the left-most source-language word
not translated in this sequence. For example, if
the bit-string for p1 . . . pk is 111001101000, then
θ(p1 . . . pk) = 4. A sequence of phrases p1 . . . pL
satisfies the gap constraint if and only if for k =
2 . . . L, |t(pk) + 1 − θ(p1 . . . pk)| ≤ d, where d is
the distortion limit. We will call MOSES without
this restriction MOSES-nogc, and MOSES with this
restriction MOSES-gc.

Results for MOSES-nogc Table 5 shows the
number of examples where MOSES-nogc fails to
give a translation, and the number of search errors
for those cases where it does give a translation, for
a range of beam sizes. A search error is defined as a
case where our algorithm produces an exact solution
that has higher score than the output from MOSES-
nogc. The number of search errors is significant,
even for large beam sizes.

5Personal communication from Philipp Koehn; see also the
software for MOSES.
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Beam size Fails # search errors percentage
100 650/1,818 214/1,168 18.32 %
200 531/1,818 207/1,287 16.08 %

1000 342/1,818 115/1,476 7.79 %
10000 169/1,818 68/1,649 4.12 %

Table 5: Table showing the number of examples where
MOSES-nogc fails to give a translation, and the num-
ber/percentage of search errors for cases where it does give a
translation.

Diff. MOSES-gc MOSES-gc MOSES-nogc
s =100 s =200 s=1000

0.000 – 0.125 66 (24.26%) 65 (24.07%) 32 ( 27.83%)
0.125 – 0.250 59 (21.69%) 58 (21.48%) 25 ( 21.74%)
0.250 – 0.500 65 (23.90%) 65 (24.07%) 25 ( 21.74%)
0.500 – 1.000 49 (18.01%) 49 (18.15%) 23 ( 20.00%)
1.000 – 2.000 31 (11.40%) 31 (11.48%) 5 ( 4.35%)
2.000 – 4.000 2 ( 0.74%) 2 ( 0.74%) 3 ( 2.61%)
4.000 –13.000 0 ( 0.00%) 0 ( 0.00%) 2 ( 1.74%)

Table 6: Table showing statistics for the difference between the
translation score from MOSES, and from the optimal deriva-
tion, for those sentences where a search error is made. For
MOSES-gc we include cases where the translation produced by
our system is not reachable by MOSES-gc. The average score
of the optimal derivations is -23.4.

Results for MOSES-gc MOSES-gc uses the gap
constraint, and thus in some cases our decoder will
produce derivations which MOSES-gc cannot reach.
Among the 1,818 sentences where we produce a so-
lution, there are 270 such derivations. For the re-
maining 1,548 sentences, MOSES-gc makes search
errors on 2 sentences (0.13%) when the beam size is
100, and no search errors when the beam size is 200,
1,000, or 10,000.

Table 6 shows statistics for the magnitude of
the search errors that MOSES-gc and MOSES-nogc
make.

BLEU Scores Finally, table 7 gives BLEU scores
(Papineni et al., 2002) for decoding using MOSES
and our method. The BLEU scores under the two
decoders are almost identical; hence while MOSES
makes a significant proportion of search errors, these
search errors appear to be benign in terms of their
impact on BLEU scores, at least for this particular
translation model. Future work should investigate
why this is the case, and whether this applies to other
models and language pairs.

7 Conclusions
We have described an exact decoding algorithm for
phrase-based translation models, using Lagrangian

type of Moses beam size # sents Moses our method

MOSES-gc

100 1,818 24.4773 24.5395
200 1,818 24.4765 24.5395

1,000 1,818 24.4765 24.5395
10,000 1,818 24.4765 24.5395

MOSES-nogc

100 1,168 27.3546 27.3249
200 1,287 27.0591 26.9907

1,000 1,476 26.5734 26.6128
10,000 1,649 25.6531 25.6620

Table 7: BLEU score comparisons. We consider only
those sentences where both decoders produce a transla-
tion.

relaxation. The algorithmic construction we have
described may also be useful in other areas of NLP,
for example natural language generation. Possi-
ble extensions to the approach include methods that
incorporate the Lagrangian relaxation formulation
within learning algorithms for statistical MT: we see
this as an interesting avenue for future research.

A Step Size

Similar to Koo et al. (2010), we set the step size at
the t’th iteration to be αt = 1/(1 + λt), where λt is
the number of times that L(u(t

′)) > L(u(t
′−1)) for

all t′ ≤ t. Thus the step size decreases each time the
dual value increases from one iteration to the next.
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Abstract

Minimum error rate training is a crucial compo-
nent to many state-of-the-art NLP applications,
such as machine translation and speech recog-
nition. However, common evaluation functions
such as BLEU or word error rate are generally
highly non-convex and thus prone to search
errors. In this paper, we present LP-MERT, an
exact search algorithm for minimum error rate
training that reaches the global optimum using
a series of reductions to linear programming.
Given a set of N -best lists produced from S
input sentences, this algorithm finds a linear
model that is globally optimal with respect to
this set. We find that this algorithm is poly-
nomial in N and in the size of the model, but
exponential in S. We present extensions of this
work that let us scale to reasonably large tuning
sets (e.g., one thousand sentences), by either
searching only promising regions of the param-
eter space, or by using a variant of LP-MERT
that relies on a beam-search approximation.
Experimental results show improvements over
the standard Och algorithm.

1 Introduction

Minimum error rate training (MERT)—also known
as direct loss minimization in machine learning—is a
crucial component in many complex natural language
applications such as speech recognition (Chou et al.,
1993; Stolcke et al., 1997; Juang et al., 1997), statisti-
cal machine translation (Och, 2003; Smith and Eisner,
2006; Duh and Kirchhoff, 2008; Chiang et al., 2008),
dependency parsing (McDonald et al., 2005), summa-
rization (McDonald, 2006), and phonetic alignment
(McAllester et al., 2010). MERT directly optimizes
the evaluation metric under which systems are being
evaluated, yielding superior performance (Och, 2003)
when compared to a likelihood-based discriminative

method (Och and Ney, 2002). In complex text gener-
ation tasks like SMT, the ability to optimize BLEU
(Papineni et al., 2001), TER (Snover et al., 2006), and
other evaluation metrics is critical, since these met-
rics measure qualities (such as fluency and adequacy)
that often do not correlate well with task-agnostic
loss functions such as log-loss.

While competitive in practice, MERT faces several
challenges, the most significant of which is search.
The unsmoothed error count is a highly non-convex
objective function and therefore difficult to optimize
directly; prior work offers no algorithm with a good
approximation guarantee. While much of the ear-
lier work in MERT (Chou et al., 1993; Juang et al.,
1997) relies on standard convex optimization tech-
niques applied to non-convex problems, the Och al-
gorithm (Och, 2003) represents a significant advance
for MERT since it applies a series of special line min-
imizations that happen to be exhaustive and efficient.
Since this algorithm remains inexact in the multidi-
mensional case, much of the recent work on MERT
has focused on extending Och’s algorithm to find
better search directions and starting points (Cer et al.,
2008; Moore and Quirk, 2008), and on experiment-
ing with other derivative-free methods such as the
Nelder-Mead simplex algorithm (Nelder and Mead,
1965; Zens et al., 2007; Zhao and Chen, 2009).

In this paper, we present LP-MERT, an exact
search algorithm for N -best optimization that ex-
ploits general assumptions commonly made with
MERT, e.g., that the error metric is decomposable
by sentence.1 While there is no known optimal algo-

1Note that MERT makes two types of approximations. First,
the set of all possible outputs is represented only approximately,
by N -best lists, lattices, or hypergraphs. Second, error func-
tions on such representations are non-convex and previous work
only offers approximate techniques to optimize them. Our work
avoids the second approximation, while the first one is unavoid-
able when optimization and decoding occur in distinct steps.
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rithm to optimize general non-convex functions, the
unsmoothed error surface has a special property that
enables exact search: the set of translations produced
by an SMT system for a given input is finite, so the
piecewise-constant error surface contains only a fi-
nite number of constant regions. As in Och (2003),
one could imagine exhaustively enumerating all con-
stant regions and finally return the best scoring one—
Och does this efficiently with each one-dimensional
search—but the idea doesn’t quite scale when search-
ing all dimensions at once. Instead, LP-MERT ex-
ploits algorithmic devices such as lazy enumeration,
divide-and-conquer, and linear programming to effi-
ciently discard partial solutions that cannot be max-
imized by any linear model. Our experiments with
thousands of searches show that LP-MERT is never
worse than the Och algorithm, which provides strong
evidence that our algorithm is indeed exact. In the
appendix, we formally prove that this search algo-
rithm is optimal. We show that this algorithm is
polynomial in N and in the size of the model, but
exponential in the number of tuning sentences. To
handle reasonably large tuning sets, we present two
modifications of LP-MERT that either search only
promising regions of the parameter space, or that rely
on a beam-search approximation. The latter modifica-
tion copes with tuning sets of one thousand sentences
or more, and outperforms the Och algorithm on a
WMT 2010 evaluation task.

This paper makes the following contributions. To
our knowledge, it is the first known exact search
algorithm for optimizing task loss on N -best lists in
general dimensions. We also present an approximate
version of LP-MERT that offers a natural means of
trading speed for accuracy, as we are guaranteed to
eventually find the global optimum as we gradually
increase beam size. This trade-off may be beneficial
in commercial settings and in large-scale evaluations
like the NIST evaluation, i.e., when one has a stable
system and is willing to let MERT run for days or
weeks to get the best possible accuracy. We think this
work would also be useful as we turn to more human
involvement in training (Zaidan and Callison-Burch,
2009), as MERT in this case is intrinsically slow.

2 Unidimensional MERT

Let fS1 = f1 . . . fS denote the S input sentences
of our tuning set. For each sentence fs, let Cs =

es,1 . . . es,N denote a set of N candidate translations.
For simplicity and without loss of generality, we
assume that N is constant for each index s. Each
input and output sentence pair (fs, es,n) is weighted
by a linear model that combines model parameters
w = w1 . . . wD ∈ RD with D feature functions
h1(f , e,∼) . . . hD(f , e,∼), where ∼ is the hidden
state associated with the derivation from f to e, such
as phrase segmentation and alignment. Furthermore,
let hs,n ∈ RD denote the feature vector representing
the translation pair (fs, es,n).

In MERT, the goal is to minimize an error count
E(r, e) by scoring translation hypotheses against a
set of reference translations rS1 = r1 . . . rS . As-
suming as in Och (2003) that error count is addi-
tively decomposable by sentence—i.e., E(rS1 , e

S
1 ) =∑

sE(rs, es)—this results in the following optimiza-
tion problem:2

ŵ = arg min
w

{ S∑

s=1

E(rs, ê(fs; w))

}

= arg min
w

{ S∑

s=1

N∑

n=1

E(rs, es,n)δ(es,n, ê(fs; w))

}

(1)
where

ê(fs; w) = arg max
n∈{1...N}

{
wᵀhs,n

}

The quality of this approximation is dependent on
how accurately the N -best lists represent the search
space of the system. Therefore, the hypothesis list is
iteratively grown: decoding with an initial parameter
vector seeds the N -best lists; next, parameter esti-
mation and N -best list gathering alternate until the
search space is deemed representative.

The crucial observation of Och (2003) is that the
error count along any line is a piecewise constant
function. Furthermore, this function for a single sen-
tence may be computed efficiently by first finding the
hypotheses that form the upper envelope of the model
score function, then gathering the error count for each
hypothesis along the range for which it is optimal. Er-
ror counts for the whole corpus are simply the sums
of these piecewise constant functions, leading to an

2A metric such as TER is decomposable by sentence. BLEU
is not, but its sufficient statistics are, and the literature offers
several sentence-level approximations of BLEU (Lin and Och,
2004; Liang et al., 2006).
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efficient algorithm for finding the global optimum of
the error count along any single direction.

Such a hill-climbing algorithm in a non-convex
space has no optimality guarantee: without a perfect
direction finder, even a globally-exact line search may
never encounter the global optimum. Coordinate as-
cent is often effective, though conjugate direction set
finding algorithms, such as Powell’s method (Powell,
1964; Press et al., 2007), or even random directions
may produce better results (Cer et al., 2008). Ran-
dom restarts, based on either uniform sampling or a
random walk (Moore and Quirk, 2008), increase the
likelihood of finding a good solution. Since random
restarts and random walks lead to better solutions
and faster convergence, we incorporate them into our
baseline system, which we refer to as 1D-MERT.

3 Multidimensional MERT

Finding the global optimum of Eq. 1 is a difficult
task, so we proceed in steps and first analyze the
case where the tuning set contains only one sentence.
This gives insight on how to solve the general case.
With only one sentence, one of the two summations
in Eq. 1 vanishes and one can exhaustively enumer-
ate the N translations e1,n (or en for short) to find
the one that yields the minimal task loss. The only
difficulty with S = 1 is to know for each translation
en whether its feature vector h1,n (or hn for short)
can be maximized using any linear model. As we
can see in Fig. 1(a), some hypotheses can be maxi-
mized (e.g., h1, h2, and h4), while others (e.g., h3

and h5) cannot. In geometric terminology, the former
points are commonly called extreme points, and the
latter are interior points.3 The problem of exactly
optimizing a single N -best list is closely related to
the convex hull problem in computational geometry,
for which generic solvers such as the QuickHull al-
gorithm exist (Eddy, 1977; Bykat, 1978; Barber et
al., 1996). A first approach would be to construct the
convex hull conv(h1 . . .hN ) of the N -best list, then
identify the point on the hull with lowest loss (h1 in
Fig. 1) and finally compute an optimal weight vector
using hull points that share common facets with the

3Specifically, a point h is extreme with respect to a convex
set C (e.g., the convex hull shown in Fig. 1(a)) if it does not lie
in an open line segment joining any two points of C. In a minor
abuse of terminology, we sometimes simply state that a given
point h is extreme when the nature of C is clear from context.

w 
h1 

h3: 0.41 

h1: 0.43 
h4: 0.48 

h5: 0.46 h2: 0.51 

LM 

CM 

(a) (b) 

Figure 1: N -best list (h1 . . .hN ) with associated losses
(here, TER scores) for a single input sentence, whose
convex hull is displayed with dotted lines in (a). For effec-
tive visualization, our plots use only two features (D = 2).
While we can find a weight vector that maximizes h1 (e.g.,
the w in (b)), no linear model can possibly maximize any
of the points strictly inside the convex hull.

optimal feature vector (h2 and h4). Unfortunately,
this doesn’t quite scale even with a single N -best list,
since the best known convex hull algorithm runs in
O(N bD/2c+1) time (Barber et al., 1996).4

Algorithms presented in this paper assume that D
is unrestricted, therefore we cannot afford to build
any convex hull explicitly. Thus, we turn to linear
programming (LP), for which we know algorithms
(Karmarkar, 1984) that are polynomial in the number
of dimensions and linear in the number of points, i.e.,
O(NT ), where T = D3.5. To check if point hi is
extreme, we really only need to know whether we can
define a half-space containing all points h1 . . .hN ,
with hi lying on the hyperplane delimiting that half-
space, as shown in Fig. 1(b) for h1. Formally, a
vertex hi is optimal with respect to arg maxi{wᵀhi}
if and only if the following constraints hold:5

wᵀhi = y (2)
wᵀhj ≤ y, for each j 6= i (3)

w is orthogonal to the hyperplane defining the half-
space, and the intercept y defines its position. The

4A convex hull algorithm polynomial in D is very unlikely.
Indeed, the expected number of facets of high-dimensional con-
vex hulls grows dramatically, and—assuming a uniform distribu-
tion of points, D = 10, and a sufficiently largeN—the expected
number of facets is approximately 106N (Buchta et al., 1985).
In the worst case, the maximum number of facets of a convex
hull is O(NbD/2c/bD/2c!) (Klee, 1966).

5A similar approach for checking whether a given point is
extreme is presented in http://www.ifor.math.ethz.
ch/˜fukuda/polyfaq/node22.html, but our method
generates slightly smaller LPs.

40



above equations represent a linear program (LP),
which can be turned into canonical form

maximize cᵀ w
subject to Aw ≤ b

by substituting y with wᵀhi in Eq. 3, by defining
A = {an,d}1≤n≤N ;1≤d≤D with an,d = hj,d − hi,d
(where hj,d is the d-th element of hj), and by setting
b = (0, . . . , 0)ᵀ = 0. The vertex hi is extreme if
and only if the LP solver finds a non-zero vector w
satisfying the canonical system. To ensure that w is
zero only when hi is interior, we set c = hi − hµ,
where hµ is a point known to be inside the hull (e.g.,
the centroid of the N -best list).6 In the remaining
of this section, we use this LP formulation in func-
tion LINOPTIMIZER(hi;h1 . . .hN ), which returns
the weight vector ŵ maximizing hi, or which returns
0 if hi is interior to conv(h1 . . .hN ). We also use
conv(hi;h1 . . .hN ) to denote whether hi is extreme
with respect to this hull.

Algorithm 1: LP-MERT (for S = 1).
input : sent.-level feature vectors H = {h1 . . .hN}
input : sent.-level task losses E1 . . . EN , where

En := E(r1, e1,n)
output :optimal weight vector ŵ

1 begin
. sort N -best list by increasing losses:

2 (i1 . . . iN )← INDEXSORT(E1 . . . EN )
3 for n← 1 to N do

. find ŵ maximizing in-th element:
4 ŵ← LINOPTIMIZER(hin ;H)
5 if ŵ 6= 0 then
6 return ŵ
7 return 0

An exact search algorithm for optimizing a single
N -best list is shown above. It lazily enumerates fea-
ture vectors in increasing order of task loss, keeping
only the extreme ones. Such a vertex hj is known to
be on the convex hull, and the returned vector ŵ max-
imizes it. In Fig. 1, it would first run LINOPTIMIZER

on h3, discard it since it is interior, and finally accept
the extreme point h1. Each execution of LINOPTI-
MIZER requires O(NT ) time with the interior point

6We assume that h1 . . .hN are not degenerate, i.e., that they
collectively span RD . Otherwise, all points are necessarily on
the hull, yet some of them may not be uniquely maximized.

0.001

0.01

0.1

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

QuickHull

LP

Dimensions 

Se
co

n
d

s 

Figure 2: Running times to exactly optimize N -best lists
with an increasing number of dimensions. To determine
which feature vectors were on the hull, we use either linear
programming (Karmarkar, 1984) or one of the most effi-
cient convex hull computation tools (Barber et al., 1996).

method of (Karmarkar, 1984), and since the main
loop may run O(N) times in the worst case, time
complexity is O(N2T ). Finally, Fig. 2 empirically
demonstrates the effectiveness of a linear program-
ming approach, which in practice is seldom affected
by D.

3.1 Exact search: general case
We now extend LP-MERT to the general case, in
which we are optimizing multiple sentences at once.
This creates an intricate optimization problem, since
the inner summations over n = 1 . . . N in Eq. 1
can’t be optimized independently. For instance,
the optimal weight vector for sentence s = 1 may
be suboptimal with respect to sentence s = 2.
So we need some means to determine whether a
selection m = m(1) . . .m(S) ∈ M = [1, N ]S of
feature vectors h1,m(1) . . .hS,m(S) is extreme, that is,
whether we can find a weight vector that maximizes
each hs,m(s). Here is a reformulation of Eq. 1 that
makes this condition on extremity more explicit:

m̂ = arg min
conv(h[m];H)

m∈M

{ S∑

s=1

E(rs, es,m(n))

}
(4)

where
h[m] =

S∑

s=1

hs,m(s)

H =
⋃

m′∈M
h[m′]
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One naı̈ve approach to address this optimization
problem is to enumerate all possible combinations
among the S distinct N -best lists, determine for each
combination m whether h[m] is extreme, and return
the extreme combination with lowest total loss. It is
evident that this approach is optimal (since it follows
directly from Eq. 4), but it is prohibitively slow since
it processes O(NS) vertices to determine whether
they are extreme, which thus requires O(NST ) time
per LP optimization and O(N2ST ) time in total. We
now present several improvements to make this ap-
proach more practical.

3.1.1 Sparse hypothesis combination
In the naı̈ve approach presented above, each LP

computation to evaluate conv(h[m];H) requires
O(NST ) time since H contains NS vertices, but
we show here how to reduce it to O(NST ) time.
This improvement exploits the fact that we can elimi-
nate the majority of the NS points of H , since only
S(N −1)+1 are really needed to determine whether
h[m] is extreme. This is best illustrated using an ex-
ample, as shown in Fig. 3. Both h1,1 and h2,1 in (a)
and (b) are extreme with respect to their own N -best
list, and we ask whether we can find a weight vector
that maximizes both h1,1 and h2,1. The algorith-
mic trick is to geometrically translate one of the two
N -best lists so that h1,1 = h′2,1, where h′2,1 is the
translation of h′2,1. Then we use linear programming
with the new set of 2N − 1 points, as shown in (c), to
determine whether h1,1 is on the hull, in which case
the answer to the original question is yes. In the case
of the combination of h1,1 and h2,2, we see in (d) that
the combined set of points prevents the maximization
h1,1, since this point is clearly no longer on the hull.
Hence, the combination (h1,1,h2,2) cannot be maxi-
mized using any linear model. This trick generalizes
to S ≥ 2. In both (c) and (d), we used S(N − 1) + 1
points instead of NS to determine whether a given
point is extreme. We show in the appendix that this
simplification does not sacrifice optimality.

3.1.2 Lazy enumeration, divide-and-conquer
Now that we can determine whether a given combi-

nation is extreme, we must next enumerate candidate
combinations to find the combination that has low-
est task loss among all of those that are extreme.
Since the number of feature vector combinations is
O(NS), exhaustive enumeration is not a reasonable

h1,1 

h2,2 
h2,1 

(a) (b) 

h1,1 h’2,2 

(c) (d) 

h1,1 h’2,1 

Figure 3: Given two N -best lists, (a) and (b), we use
linear programming to determine which hypothesis com-
binations are extreme. For instance, the combination h1,1

and h2,1 is extreme (c), while h1,1 and h2,2 is not (d).

option. Instead, we use lazy enumeration to pro-
cess combinations in increasing order of task loss,
which ensures that the first extreme combination for
s = 1 . . . S that we encounter is the optimal one. An
S-ary lazy enumeration would not be particularly ef-
ficient, since the runtime is still O(NS) in the worst
case. LP-MERT instead uses divide-and-conquer
and binary lazy enumeration, which enables us to
discard early on combinations that are not extreme.
For instance, if we find that (h1,1,h2,2) is interior for
sentences s = 1, 2, the divide-and-conquer branch
for s = 1 . . . 4 never actually receives this bad com-
bination from its left child, thus avoiding the cost
of enumerating combinations that are known to be
interior, e.g., (h1,1,h2,2,h3,1,h4,1).

The LP-MERT algorithm for the general case is
shown as Algorithm 2. It basically only calls a re-
cursive divide-and-conquer function (GETNEXTBEST)
for sentence range 1 . . . S. The latter function uses bi-
nary lazy enumeration in a manner similar to (Huang
and Chiang, 2005), and relies on two global variables:
I and L. The first of these, I , is used to memoize the
results of calls to GETNEXTBEST; given a range of
sentences and a rank n, it stores the nth best combina-
tion for that range of sentences. The global variable
L stores hypotheses combination matrices, one ma-
trix for each range of sentences (s, t) as shown in
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h11 

h12 

h21 h22 h23 

69.1 69.2 

69.3 

69.2 

69.4 

h31 

h32 

h33 

h41 h42 

56.8 57.1 

57.3 57.6 

h23 

57.9 

{h11, h23} 

{h31, h41} 

126.0 126.5 

126.1 

{h32, h41} 

{h12, h21} 

Combinations checked:  

{h11, h23, h31, h41} 

{h12, h21, h31, h41} 

Combinations discarded:  

{h11, h21, h31, h41} 

{h12, h22, h31, h41} 

{h12, h12, h31, h42} 

(and 7 others) h13 

h24 

69.9 

70.0 

L[3,4] L[1,2] 

Figure 4: LP-MERT minimizes loss (TER) on four sen-
tences. O(N4) translation combinations are possible,
but the LP-MERT algorithm only tests two full combi-
nations. Without divide-and-conquer—i.e., using 4-ary
lazy enumeration—ten full combinations would have been
checked unnecessarily.

Algorithm 2: LP-MERT
input : feature vectors H = {hs,n}1≤s≤S;1≤n≤N
input : task losses E = {Es,n}1≤s≤S;1≤n≤N ,

where sent.-level costs Es,n := E(rs, es,n)
output :optimal weight vector ŵ and its loss L

1 begin
. sort N -best lists by increasing losses:

2 for s← 1 to S do
3 (is,1..is,N )← INDEXSORT(Es,1..Es,N )

. find best hypothesis combination for 1 . . . S:
4 (h∗, H∗, L)← GETNEXTBEST(H,E, 1, S)
5 ŵ← LINOPTIMIZER(h∗;H∗)
6 return (ŵ, L)

Fig. 4, to determine which combination to try next.
The function EXPANDFRONTIER returns the indices
of unvisited cells that are adjacent (right or down) to
visited cells and that might correspond to the next
best hypothesis. Once no more cells need to be added
to the frontier, LP-MERT identifies the lowest loss
combination on the frontier (BESTINFRONTIER), and
uses LP to determine whether it is extreme. To do so,
it first generates an LP using COMBINE, a function
that implements the method described in Fig. 3. If
the LP offers no solution, this combination is ignored.
LP-MERT iterates until it finds a cell entry whose
combination is extreme. Regarding ranges of length
one (s = t), lines 3-10 are similar to Algorithm 1 for
S = 1, but with one difference: GETNEXTBEST may
be called multiple times with the same argument s,
since the first output of GETNEXTBEST might not be
extreme when combined with other feature vectors.
Lines 3-10 of GETNEXTBEST handle this case effi-
ciently, since the algorithm resumes at the (n+ 1)-th

Function GetNextBest(H,E,s,t)
input : sentence range (s, t)
output :h∗: current best extreme vertex
output :H∗: constraint vertices
output :L: task loss of h∗
. Losses of partial hypotheses:

1 L← L[s, t]
2 if s = t then

. n is the index where we left off last time:
3 n← NBROWS(L)
4 Hs ← {hs,1 . . .hs,N}
5 repeat
6 n← n+ 1
7 ŵ← LINOPTIMIZER(hs,in ;Hs)
8 L[n, 1]← Es,in

9 until ŵ 6= 0
10 return (hs,in , Hs,L[n, 1])

11 else
12 u← b(s+ t)/2c, v ← u+ 1
13 repeat
14 while HASINCOMPLETEFRONTIER(L) do
15 (m,n)← EXPANDFRONTIER(L)
16 x← NBROWS(L)
17 y ← NBCOLUMNS(L)
18 for m′ ← x+ 1 to m do
19 I[s, u,m′]← GETNEXTBEST(H,E, s, u)
20 for n′ ← y + 1 to n do
21 I[v, t, n′]← GETNEXTBEST(H,E, v, t)
22 L[m,n]← LOSS(I[s, u,m])+LOSS(I[v, t, n])

23 (m,n)← BESTINFRONTIER(L)
24 (hm, Hm, Lm)← I[s, u,m]
25 (hn, Hn, Ln)← I[v, t, n]
26 (h∗, H∗)← COMBINE(hm, Hm,hn, Hn)
27 ŵ← LINOPTIMIZER(h∗;H∗)
28 until ŵ 6= 0
29 return (h∗, H∗,L[m,n])

element of the N -best list (where n is the position
where the previous execution left off).7 We can see
that a strength of this algorithm is that inconsistent
combinations are deleted as soon as possible, which
allows us to discard fruitless candidates en masse.

3.2 Approximate Search

We will see in Section 5 that our exact algorithm
is often too computationally expensive in practice
to be used with either a large number of sentences
or a large number of features. We now present two

7EachN -best list is augmented with a placeholder hypothesis
with loss +∞. This ensures n never runs out of bounds at line 7.
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Function Combine(h, H,h′, H ′)
input :H,H ′: constraint vertices
input :h,h′: extreme vertices, wrt. H and H ′

output :h∗, H∗: combination as in Sec. 3.1.1
1 for i← 1 to size(H) do
2 Hi ← Hi + h′

3 for i← 1 to size(H ′) do
4 H ′i ← H ′i + h

5 return (h + h′, H ∪H ′)

approaches to make LP-MERT more scalable, with
the downside that we may allow search errors.

In the first case, we make the assumption that we
have an initial weight vector w0 that is a reasonable
approximation of ŵ, where w0 may be obtained ei-
ther by using a fast MERT algorithm like 1D-MERT,
or by reusing the weight vector that is optimal with
respect to the previous iteration of MERT. The idea
then is to search only the set of weight vectors that
satisfy cos(ŵ,w0) ≥ t, where t is a threshold on
cosine similarity provided by the user. The larger the
t, the faster the search, but at the expense of more
search errors. This is implemented with two simple
changes in our algorithm. First, LINOPTIMIZER sets
the objective vector c = w0. Second, if the output
ŵ originally returned by LINOPTIMIZER does not
satisfy cos(ŵ,w0) ≥ t, then it returns 0. While this
modification of our algorithm may lead to search
errors, it nevertheless provides some theoretical guar-
antee: our algorithm finds the global optimum if it
lies within the region defined by cos(ŵ,w0) ≥ t.

The second method is a beam approximation of LP-
MERT, which normally deals with linear programs
that are increasingly large in the upper branches of
GETNEXTBEST’s recursive calls. The main idea is
to prune the output of COMBINE (line 26) by model
score with respect to wbest, where wbest is our cur-
rent best model on the entire tuning set. Note that
beam pruning can discard h∗ (the current best ex-
treme vertex), in which case LINOPTIMIZER returns
0. wbest is updated as follows: each time we pro-
duce a new non-zero ŵ, run wbest ← ŵ if ŵ has a
lower loss than wbest on the entire tuning set. The
idea of using a beam here is similar to using cosine
similarity (since wbest constrains the search towards
a promising region), but beam pruning also helps
reduce LP optimization time and thus enables us to

explore a wider space. Since wbest often improves
during search, it is useful to run multiple iterations of
LP-MERT until wbest doesn’t change. Two or three
iterations suffice in our experience. In our experi-
ments, we use a beam size of 1000.

4 Experimental Setup

Our experiments in this paper focus on only the ap-
plication of machine translation, though we believe
that the current approach is agnostic to the particular
system used to generate hypotheses. Both phrase-
based systems (e.g., Koehn et al. (2007)) and syntax-
based systems (e.g., Li et al. (2009), Quirk et al.
(2005)) commonly use MERT to train free param-
eters. Our experiments use a syntax-directed trans-
lation approach (Quirk et al., 2005): it first applies
a dependency parser to the source language data at
both training and test time. Multi-word translation
mappings constrained to be connected subgraphs of
the source tree are extracted from the training data;
these provide most lexical translations. Partially lexi-
calized templates capturing reordering and function
word insertion and deletion are also extracted. At
runtime, these mappings and templates are used to
construct transduction rules to convert the source tree
into a target string. The best transduction is sought
using approximate search techniques (Chiang, 2007).

Each hypothesis is scored by a relatively standard
set of features. The mappings contain five features:
maximum-likelihood estimates of source given target
and vice versa, lexical weighting estimates of source
given target and vice versa, and a constant value that,
when summed across a whole hypothesis, indicates
the number of mappings used. For each template,
we include a maximum-likelihood estimate of the
target reordering given the source structure. The
system may fall back to templates that mimic the
source word order; the count of such templates is a
feature. Likewise we include a feature to count the
number of source words deleted by templates, and a
feature to count the number of target words inserted
by templates. The log probability of the target string
according to a language models is also a feature; we
add one such feature for each language model. We
include the number of target words as features to
balance hypothesis length.

For the present system, we use the training data of
WMT 2010 to construct and evaluate an English-to-
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Figure 5: Line graph of sorted differences in
BLEUn4r1[%] scores between LP-MERT and 1D-MERT
on 1000 tuning sets of size S = 2, 4, 8. The highest differ-
ences for S = 2, 4, 8 are respectively 23.3, 19.7, 13.1.

German translation system. This consists of approx-
imately 1.6 million parallel sentences, along with a
much larger monolingual set of monolingual data.
We train two language models, one on the target side
of the training data (primarily parliamentary data),
and the other on the provided monolingual data (pri-
marily news). The 2009 test set is used as develop-
ment data for MERT, and the 2010 one is used as test
data. The resulting system has 13 distinct features.

5 Results

The section evaluates both the exact and beam ver-
sion of LP-MERT. Unless mentioned otherwise, the
number of features isD = 13 and theN -best list size
is 100. Translation performance is measured with
a sentence-level version of BLEU-4 (Lin and Och,
2004), using one reference translation. To enable
legitimate comparisons, LP-MERT and 1D-MERT
are evaluated on the same combined N -best lists,
even though running multiple iterations of MERT
with either LP-MERT or 1D-MERT would normally
produce different combined N -best lists. We use
WMT09 as tuning set, and WMT10 as test set. Be-
fore turning to large tuning sets, we first evaluate
exact LP-MERT on data sizes that it can easily han-
dle. Fig. 5 offers a comparison with 1D-MERT, for
which we split the tuning set into 1,000 overlapping
subsets for S = 2, 4, 8 on a combined N -best after
five iterations of MERT with an average of 374 trans-
lation per sentence. The figure shows that LP-MERT
never underperforms 1D-MERT in any of the 3,000
experiments, and this almost certainly confirms that

length tested comb. total comb. order
8 639,960 1.33× 1020 O(N8)
4 134,454 2.31× 1010 O(2N4)
2 49,969 430,336 O(4N2)
1 1,059 2,624 O(8N)

Table 1: Number of tested combinations for the experi-
ments of Fig. 5. LP-MERT with S = 8 checks only 600K
full combinations on average, much less than the total
number of combinations (which is more than 1020).
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Figure 6: Effect of the number of features (runtime on
1 CPU of a modern computer). Each curve represents a
different number of tuning sentences.

LP-MERT systematically finds the global optimum.
In the case S = 1, Powell rarely makes search er-
rors (about 15%), but the situation gets worse as S
increases. For S = 4, it makes search errors in 90%
of the cases, despite using 20 random starting points.

Some combination statistics for S up to 8 are
shown in Tab. 1. The table shows the speedup pro-
vided by LP-MERT is very substantial when com-
pared to exhaustive enumeration. Note that this is
using D = 13, and that pruning is much more ef-
fective with less features, a fact that is confirmed in
Fig. 6. D = 13 makes it hard to use a large tuning
set, but the situation improves with D = 2 . . . 5.

Fig. 7 displays execution times when LP-MERT
constrains the output ŵ to satisfy cos(w0, ŵ) ≥ t,
where t is on the x-axis of the figure. The figure
shows that we can scale to 1000 sentences when
(exactly) searching within the region defined by
cos(w0, ŵ) ≥ .84. All these running times would
improve using parallel computing, since divide-and-
conquer algorithms are generally easy to parallelize.

We also evaluate the beam version of LP-MERT,
which allows us to exploit tuning sets of reasonable
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Figure 7: Effect of a constraint on w (runtime on 1 CPU).

32 64 128 256 512 1024
1D-MERT 22.93 20.70 18.57 16.07 15.00 15.44
our work 25.25 22.28 19.86 17.05 15.56 15.67

+2.32 +1.59 +1.29 +0.98 +0.56 +0.23

Table 2: BLEUn4r1[%] scores for English-German on
WMT09 for tuning sets ranging from 32 to 1024 sentences.

size. Results are displayed in Table 2. The gains
are fairly substantial, with gains of 0.5 BLEU point
or more in all cases where S ≤ 512.8 Finally, we
perform an end-to-end MERT comparison, where
both our algorithm and 1D-MERT are iteratively used
to generate weights that in turn yield newN -best lists.
Tuning on 1024 sentences of WMT10, LP-MERT
converges after seven iterations, with a BLEU score
of 16.21%; 1D-MERT converges after nine iterations,
with a BLEU score of 15.97%. Test set performance
on the full WMT10 test set for LP-MERT and 1D-
MERT are respectively 17.08% and 16.91%.

6 Related Work

One-dimensional MERT has been very influential. It
is now used in a broad range of systems, and has been
improved in a number of ways. For instance, lattices
or hypergraphs may be used in place of N -best lists
to form a more comprehensive view of the search
space with fewer decoding runs (Macherey et al.,
2008; Kumar et al., 2009; Chatterjee and Cancedda,
2010). This particular refinement is orthogonal to our
approach, though. We expect to extend LP-MERT

8One interesting observation is that the performance of 1D-
MERT degrades as S grows from 2 to 8 (Fig. 5), which contrasts
with the results shown in Tab. 2. This may have to do with the
fact that N -best lists with S = 2 have much fewer local maxima
than with S = 4, 8, in which case 20 restarts is generally enough.

to hypergraphs in future work. Exact search may be
challenging due to the computational complexity of
the search space (Leusch et al., 2008), but approxi-
mate search should be feasible.

Other research has explored alternate methods
of gradient-free optimization, such as the downhill-
simplex algorithm (Nelder and Mead, 1965; Zens
et al., 2007; Zhao and Chen, 2009). Although the
search space is different than that of Och’s algorithm,
it still relies on one-dimensional line searches to re-
flect, expand, or contract the simplex. Therefore, it
suffers the same problems of one-dimensional MERT:
feature sets with complex non-linear interactions are
difficult to optimize. LP-MERT improves on these
methods by searching over a larger subspace of pa-
rameter combinations, not just those on a single line.

We can also change the objective function in a
number of ways to make it more amenable to op-
timization, leveraging knowledge from elsewhere
in the machine learning community. Instance re-
weighting as in boosting may lead to better param-
eter inference (Duh and Kirchhoff, 2008). Smooth-
ing the objective function may allow differentiation
and standard ML learning techniques (Och and Ney,
2002). Smith and Eisner (2006) use a smoothed ob-
jective along with deterministic annealing in hopes
of finding good directions and climbing past locally
optimal points. Other papers use margin methods
such as MIRA (Watanabe et al., 2007; Chiang et al.,
2008), updated somewhat to match the MT domain,
to perform incremental training of potentially large
numbers of features. However, in each of these cases
the objective function used for training no longer
matches the final evaluation metric.

7 Conclusions

Our primary contribution is the first known exact
search algorithm for direct loss minimization on N -
best lists in multiple dimensions. Additionally, we
present approximations that consistently outperform
standard one-dimensional MERT on a competitive
machine translation system. While Och’s method of
MERT is generally quite successful, there are cases
where it does quite poorly. A more global search
such as LP-MERT lowers the expected risk of such
poor solutions. This is especially important for cur-
rent machine translation systems that rely heavily on
MERT, but may also be valuable for other textual ap-
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plications. Recent speech recognition systems have
also explored combinations of more acoustic and lan-
guage models, with discriminative training of 5-10
features rather than one million (Lööf et al., 2010);
LP-MERT could be valuable here as well.

The one-dimensional algorithm of Och (2003)
has been subject to study and refinement for nearly
a decade, while this is the first study of multi-
dimensional approaches. We demonstrate the poten-
tial of multi-dimensional approaches, but we believe
there is much room for improvement in both scalabil-
ity and speed. Furthermore, a natural line of research
would be to extend LP-MERT to compact representa-
tions of the search space, such as hypergraphs.

There are a number of broader implications from
this research. For instance, LP-MERT can aid in the
evaluation of research on MERT. This approach sup-
plies a truly optimal vector as ground truth, albeit
under limited conditions such as a constrained direc-
tion set, a reduced number of features, or a smaller
set of sentences. Methods can be evaluated based on
not only improvements over prior approaches, but
also based on progress toward a global optimum.
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Appendix A: Proof of optimality

In this appendix, we prove that LP-MERT (Algorithm 2)
is exact. As noted before, the naı̈ve approach of solving
Eq. 4 is to enumerate allO(NS) hypotheses combinations
inM, discard the ones that are not extreme, and return
the best scoring one. LP-MERT relies on algorithmic
improvements to speed up this approach, and we now show
that none of them affect the optimality of the solution.

Divide-and-conquer. Divide-and-conquer in Algo-
rithm 2 discards any partial hypothesis combination
h[m(j) . . .m(k)] if it is not extreme, even before consid-
ering any extension h[m(i) . . .m(j) . . .m(k) . . .m(l)].
This does not sacrifice optimality, since if conv(h;H)
is false, then conv(h;H ∪G) is false for any set G.
Proof: Assume conv(h;H) is false, so h is interior to
H . By definition, any interior point h can be written as
a linear combination of other points: h =

∑
i λihi, with

∀i(hi ∈ H , hi 6= h, λi ≥ 0) and
∑

i λi = 1. This same
combination of points also demonstrates that h is interior
to H ∪G, thus conv(h;H ∪G) is false as well.

Sparse hypothesis combination. We show here
that the simplification of linear programs in Section 3.1.1
from size O(NS) to size O(NS) does not change the
value of conv(h;H). More specifically, this means that
linear optimization of the output of the COMBINE method
at lines 26-27 of function GETNEXTBEST does not
introduce any error. Let (g1 . . .gU ) and (h1 . . .hV ) be
two N -best lists to be combined, then:

conv

(
gu + hv;

U⋃

i=1

(gi + hv) ∪
V⋃

j=1

(gu + hj)

)

= conv

(
gu + hv;

U⋃

i=1

V⋃

j=1

(gi + hj)

)

Proof: To prove this equality, it suffices to show that: (1)
if gu+hv is interior wrt. the first conv binary predicate
in the above equation, then it is interior wrt. the second
conv, and (2) if gu+hv is interior wrt. the second conv,
then it is interior wrt. the first conv. Claim (1) is evident,
since the set of points in the first conv is a subset of the
other set of points. Thus, we only need to prove (2). We
first geometrically translate all points by −gu−hv . Since
gu+hv is interior wrt. the second conv, we can write:

0 =

U∑

i=1

V∑

j=1

λi,j(gi + hj − gu − hv)

=

U∑

i=1

V∑

j=1

λi,j(gi − gu) +

U∑

i=1

V∑

j=1

λi,j(hj − hv)

=

U∑

i=1

(gi − gu)

V∑

j=1

λi,j +

V∑

j=1

(hj − hv)

U∑

i=1

λi,j

=

U∑

i=1

λ′i(gi − gu) +

V∑

j=1

λ′U+j(hj − hv)

where {λ′i}1≤i≤U+V values are computed from
{λi,j}1≤i≤U,1≤j≤V as follows: λ′i =

∑
j λi,j , i ∈ [1, U ]

and λ′U+j =
∑

i λi,j , j ∈ [1, V ]. Since the interior
point is 0, λ′i values can be scaled so that they sum to 1
(necessary condition in the definition of interior points),
which proves that the following predicate is false:

conv

(
0;

U⋃

i=1

(gi − gu) ∪
V⋃

j=1

(hj − hv)

)

which is equivalent to stating that the following is false:

conv

(
gu + hv;

U⋃

i=1

(gi + hv) ∪
V⋃

j=1

(gu + hj)

)
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Abstract

We describe a method for prediction of lin-
guistic structure in a language for which only
unlabeled data is available, using annotated
data from a set of one or more helper lan-
guages. Our approach is based on a model
that locally mixes between supervised mod-
els from the helper languages. Parallel data
is not used, allowing the technique to be ap-
plied even in domains where human-translated
texts are unavailable. We obtain state-of-the-
art performance for two tasks of structure pre-
diction: unsupervised part-of-speech tagging
and unsupervised dependency parsing.

1 Introduction

A major focus of recent NLP research has involved
unsupervised learning of structure such as POS
tag sequences and parse trees (Klein and Manning,
2004; Johnson et al., 2007; Berg-Kirkpatrick et al.,
2010; Cohen and Smith, 2010, inter alia). In its
purest form, such research has improved our un-
derstanding of unsupervised learning practically and
formally, and has led to a wide range of new algo-
rithmic ideas. Another strain of research has sought
to exploit resources and tools in some languages (es-
pecially English) to construct similar resources and
tools for other languages, through heuristic “projec-
tion” (Yarowsky and Ngai, 2001; Xi and Hwa, 2005)
or constraints in learning (Burkett and Klein, 2008;
Smith and Eisner, 2009; Das and Petrov, 2011; Mc-
Donald et al., 2011) or inference (Smith and Smith,
2004). Joint unsupervised learning (Snyder and
Barzilay, 2008; Naseem et al., 2009; Snyder et al.,

2009) is yet another research direction that seeks to
learn models for many languages at once, exploiting
linguistic universals and language similarity. The
driving force behind all of this work has been the
hope of building NLP tools for languages that lack
annotated resources.1

In this paper, we present an approach to using
annotated data from one or more languages (helper
languages) to learn models for another language that
lacks annotated data (the target language). Unlike
the previous work mentioned above, our framework
does not rely on parallel data in any form. This is
advantageous because parallel text exists only in a
few text domains (e.g., religious texts, parliamentary
proceedings, and news).

We focus on generative probabilistic models pa-
rameterized by multinomial distributions. We be-
gin with supervised maximum likelihood estimates
for models of the helper languages. In the second
stage, we learn a model for the target language using
unannotated data, maximizing likelihood over inter-
polations of the helper language models’ distribu-
tions. The tying is performed at the parameter level,
through coarse, nearly-universal syntactic categories
(POS tags). The resulting model is then used to ini-
tialize learning of the target language’s model using
standard unsupervised parameter estimation.

Some previous multilingual research, such as
Bayesian parameter tying across languages (Co-
hen and Smith, 2009) or models of parameter

1Although the stated objective is often to build systems for
resource-poor languages and domains, for evaluation purposes,
annotated treebank test data figure prominently in this research
(including in this paper).
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drift down phylogenetic trees (Berg-Kirkpatrick and
Klein, 2010) is comparable, but the practical as-
sumption of supervised helper languages is new to
this work. Naseem et al. (2010) used universal
syntactic categories and rules to improve grammar
induction, but their model required expert hand-
written rules as constraints.

Herein, we specifically focus on two problems
in linguistic structure prediction: unsupervised POS
tagging and unsupervised dependency grammar in-
duction. Our experiments demonstrate that the pre-
sented method outperforms strong state-of-the-art
unsupervised baselines for both tasks. Our approach
can be applied to other problems in which a sub-
set of the model parameters can be linked across
languages. We also experiment with unsupervised
learning of dependency structures from words, by
combining our tagger and parser. Our results show
that combining our tagger and parser with joint
inference outperforms pipeline inference, and, in
several cases, even outperforms models built using
gold-standard part-of-speech tags.

2 Overview

For each language `, we assume the presence of a
set of fine-grained POS tags F`, used to annotate the
language’s treebank. Furthermore, we assume that
there is a set of universal, coarse-grained POS tags
C such that, for every language `, there is a determin-
istic mapping from fine-grained to coarse-grained
tags, λ` : F` → C. Our approach can be summa-
rized using the following steps for a given task:

1. Select a set of L helper languages for which there
exists annotated data 〈D1, . . . ,DL〉. Here, we use
treebanks in these languages.

2. For all ` ∈ {1, . . . , L}, convert the examples in
D` by applying λ` to every POS tag in the data,
resulting in D̃`. Estimate the parameters of a
probabilistic model using D̃`. In this work, such
models are generative probabilistic models based
on multinomial distributions,2 including an HMM
and the dependency model with valence (DMV)
of Klein and Manning (2004). Denote the subset
of parameters that are unlexicalized by θ(`). (Lex-
icalized parameters will be denoted η(`).)
2In §4 we also consider a feature-based parametrization.

3. For the target language, define the set of valid un-
lexicalized parameters

Θ =

{
θ

∣∣∣∣∣θk =

L∑

`=1

β`,kθ
(`)
k ,

L∑

`=1

β`,k = 1,β ≥ 0

}
,

(1)
for each group of parameters k, and maximize
likelihood over that set, using the target-language
unannotated data U . Because the syntactic cate-
gories referenced by each θ(`) and all models in Θ
are in C, the models will be in the same parametric
family. (Figure 1 gives a graphical interpretation
of Θ.) Let the resulting model be θ.

4. Transform θ by expanding the coarse-grained
syntactic categories into the target language’s
fine-grained categories. Use the resulting model
to initialize parameter estimation, this time over
fine-grained tags, again using the unannotated
target-language data U . Initialize lexicalized pa-
rameters η for the target language using standard
methods (e.g., uniform initialization with random
symmetry breaking).

The main idea in the approach is to estimate a
certain model family for one language, while using
supervised models from other languages. The link
between the languages is achieved through coarse-
grained categories, which are now now common-
place (and arguably central to any theory of natural
language syntax). A key novel contribution is the
use of helper languages for initialization, and of un-
supervised learning to learn the contribution of each
helper language to that initialization (step 3). Addi-
tional treatment is required in expanding the coarse-
grained model to the fine-grained one (step 4).

3 Interpolated Multilingual Probabilistic
Context-Free Grammars

Our focus in this paper is on models that consist
of multinomial distributions that have relationships
between them through a generative process such as
a probabilistic context-free grammar (PCFG). More
specifically, we assume that we have a model defin-
ing a probability distribution over observed surface
forms x and derivations y parametrized by θ:
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(0,0,1) (1,0,0)

English

Czech

German

Italian

Figure 1: A simple case of interpolation within the 3-
event probability simplex. The shaded area corresponds
to a convex hull inside the probability simplex, indicating
a mixture of the parameters of the four languages shown
in the figure.

p(x,y | θ) =

K∏

k=1

Nk∏

i=1

θ
fk,i(x,y)
k,i (2)

= exp
K∑

k=1

Nk∑

i=1

fk,i(x,y) log θk,i (3)

where fk,i is a function that “counts” the number
of times the kth distribution’s ith event occurs in
the derivation. The parameters θ are a collection
of K multinomials 〈θ1, . . . ,θK〉, the kth of which
includes Nk events. Letting θk = 〈θk,1, . . . , θk,Nk〉,
each θk,i is a probability, such that ∀k,∀i, θk,i ≥ 0

and ∀k,∑Nk
i=1 θk,i = 1.

3.1 Multilingual Interpolation

Our framework places additional, temporary con-
straints on the parameters θ. More specifically, we
assume that we have L existing, parameter estimates
for the multinomial families from Eq. 3. Each such
estimate θ(`), for 1 ≤ ` ≤ L, corresponds to a the
maximum likelihood estimate based on annotated
data for the `th helper language. Then, to create a
model for new language, we define a new set of pa-
rameters θ as:

θk,i =
L∑

`=1

β`,kθ
(`)
k,i , (4)

where β is the set of coefficients that we will now
be interested in estimating (instead of directly esti-
mating θ). Note that for each k,

∑L
`=1 β`,k = 1 and

β`,k ≥ 0.

3.2 Grammatical Interpretation

We now give an interpretation of our approach relat-
ing it to PCFGs. We assume familiarity with PCFGs.
For a PCFG 〈G,θ〉 we denote the set of nontermi-
nal symbols by N , the set of terminal symbols by
Σ, and the set of rewrite rules for each nonterminal
A ∈ N by R(A). Each r ∈ R(A) has the form
A → α where α ∈ (N ∪ Σ)∗. In addition, there is
a probability attached to each rule θA→α such that
∀A ∈ N ,∑α:(A→α)∈R(A) θA→α = 1. A PCFG can
be framed as a model using Eq. 3, where θ corre-
spond to K = |N | multinomial distributions, where
each distribution attaches probabilities to rules with
a specific left hand symbol.

We assume that the model we are trying to
estimate (over coarse part-of-speech tags) can be
framed as a PCFG 〈G,θ〉. This is indeed the case
for part-of-speech tagging and dependency grammar
induction we experiment with in §6. In that case,
our approach can be framed for PCFGs as follow-
ing. We assume that there exists L set of parameters
for this PCFG θ(1), . . . ,θ(L), each corresponding to
a helper language. We then create a new PCFG G′

with parameters θ′ and β as follows:

1. G′ contains all nonterminal and terminal symbols
inG, and none of the rules inG.

2. For each nonterminal A in G, we create a new
nonterminal aA,` for ` ∈ {1, . . . , L}.

3. For each nonterminal A in G, we create rules
A → aA,` for ` ∈ {1, . . . , L} which have proba-
bilities βA→aA,` .

4. For each rule A→ α inG, we add toG′ the rule
aA,` → α with

θ′aA,`→α = θ
(`)
A→α. (5)

where θ
(`)
A→α is the probability associated with

rule A→ α in the `th helper language.

At each point, the derivational process of this
PCFG uses the nonterminal’s specific β coefficients
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to choose one of the helper languages. It then se-
lects a rule according to the multinomial from that
language. This step is repeated until a whole deriva-
tion is generated.

This PCFG representation of the approach in §3
points to a possible generalization. Instead of using
an identical CFG backbone for each language, we
can use a set of PCFGs, 〈G(`),θ(`)〉 with an iden-
tical nonterminal set and alphabet, and repeat the
same construction as above, replacing step 4 with
the addition of rules of the form aA,` → α for each
rule A → α in G(`). Such a construction allows
more syntactic variability in the language we are try-
ing to estimate, originating in the syntax of the var-
ious helper languages. In this paper, we do not use
this generalization, and always use the same PCFG
backbone for all languages.

Note that the interpolated model can still be un-
derstood in terms of the exponential model of Eq. 3.
For a given collection of multinomials and base
models of the form of Eq. 3, we can analogously
define a new log-linear model over a set of ex-
tended derivations. These derivations will now in-
clude L × K features of the form g`,k(x,y), cor-
responding to a count of the event of choosing the
`th mixture component for multinomial k. In addi-
tion, the feature set fk,i(x,y) will be extended to
a feature set of the form f`,k,i(x,y), analogous to
step 4 in constructed PCFG above. The model pa-
rameterized according to Eq. 4 can be recovered by
marginalizing out the “g” features. We will refer to
the model with these new set of features as “the ex-
tended model.”

4 Inference and Parameter Estimation

The main building block commonly required for un-
supervised learning in NLP is that of computing fea-
ture expectations for a given model. These feature
expectations can be used with an algorithm such as
expectation-maximization (where the expectations
are normalized to obtain a new set of multinomial
weights) or with other gradient based log-likelihood
optimization algorithms such as L-BFGS (Liu and
Nocedal, 1989) for feature-rich models.
Estimating Multinomial Distributions Given a
surface form x, a multinomial k and an event i in the
multinomial, “feature expectation” refers to the cal-

culation of the following quantities (in the extended
model):

E[f`,k,i(x,y)] =
∑

y p(x,y | θ)f`,k,i(x,y) (6)

E[g`,k(x,y)] =
∑

y p(x,y | θ)g`,k(x,y) (7)

These feature expectations can usually be computed
using algorithms such as the forward-backward al-
gorithm for hidden Markov models, or more gener-
ally, the inside-outside algorithm for PCFGs. In this
paper, however, the task of estimation is different
than the traditional task. As mentioned in §2, we are
interested in estimating β from Eq. 4, while fixing
θ(`). Therefore, we are only interested in computing
expectations of the form of Eq. 7.

As explained in §3.2, any model interpolating
with the β parameters can be reduced to a new log-
linear model with additional features representing
the mixture coefficients of β. We can then use the
inside-outside algorithm to obtain the necessary fea-
ture expectations for features of the form g`,k(x,y),
expectations which assist in the estimation of the β
parameters.

These feature expectations can readily be used
in estimation algorithms such as expectation-
maximization (EM). With EM, the update at itera-
tion t would be:

β
(t)
`,k =

E[g`,k(x,y)]∑
` E[g`,k(x,y)]

, (8)

where the expectations are taken with respect to
β(t−1) and the fixed θ(l) for ` = 1, . . . , L.
Estimating Feature-Rich Directed Models Re-
cently Berg-Kirkpatrick et al. (2010) found that
replacing traditional multinomial parameterizations
with locally normalized, feature-based log-linear
models was advantageous. This can be understood
as parameterizing θ:

θk,i =
expψ>h(k, i)∑

i′
expψ>h(k, i′)

(9)

where h(k, i) are a set of features looking at event i
in context k. For such a feature-rich model, our mul-
tilingual modeling framework still substitutes θ with
a mixture of supervised multinomials for L helper
languages as in Eq. 4. However, for computational
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convenience, we also reparametrize the mixture co-
efficients β:

β`,k =
exp γ`,k∑L
`′=1 exp γ`′,k

(10)

Here, each γ`,k is an unconstrained parameter, and
the above “softmax” transformation ensures that β
lies within the probability simplex for context k.
This is done so that a gradient-based optimization
method like L-BFGS (Liu and Nocedal, 1989) can
be used to estimate γ without having to worry about
additional simplex constraints. For optimization,
derivatives of the data log-likelihood with respect to
γ need to be computed. We calculate the derivatives
following Berg-Kirkpatrick et al. (2010, §3.1), mak-
ing use of feature expectations, calculated exactly as
before.

In addition to these estimation techniques, which
are based on the optimization of the log-likelihood,
we also consider a trivially simple technique for es-
timating β: setting βl,k to the uniform weight L−1,
where L is the number of helper languages.

5 Coarse-to-Fine Multinomial Expansion

To expand these multinomials involving coarse-
grained categories into multinomials over fine-
grained categories specific to the target language t,
we do the following:

• Whenever a multinomial conditions on a coarse
category c ∈ C, we make copies of it for each fine-
grained category in λ−1t (c) ⊂ Ft.3 If the multino-
mial does not condition on coarse categories, it is
simply copied.

• Whenever a probability θi within a multinomial
distribution involves a coarse-grained category c
as an event (i.e., it is on the left side of the condi-
tional bar), we expand the event into |λ−1t (c)| new
events, one per corresponding fine-grained cate-
gory, each assigned the value θi

|λ−1
t (c)| .

4

3We note that in the models we experiment with, we always
condition on at most one fine-grained category.

4During this expansion process for a coarse event, we tried
adding random noise to θi

|λ−1
t (c)| and renormalizing, to break

symmetry between the fine events, but that was found to be
harmful in preliminary experiments.

The result of this expansion is a model in the
desired family; we use it to initialize conventional
unsupervised parameter estimation. Lexical param-
eters, if any, do not undergo this expansion pro-
cess, and they are estimated anew in the fine grained
model during unsupervised learning, and are initial-
ized using standard methods.

6 Experiments and Results

In this section, we describe the experiments under-
taken and the results achieved. We first note the
characteristics of the datasets and the universal POS
tags used in multilingual modeling.

6.1 Data
For our experiments, we fixed a set of four helper
languages with relatively large amounts of data,
displaying nontrivial linguistic diversity: Czech
(Slavic), English (West-Germanic), German (West-
Germanic), and Italian (Romance). The datasets are
the CoNLL-X shared task data for Czech and Ger-
man (Buchholz and Marsi, 2006),5 the Penn Tree-
bank for English (Marcus et al., 1993), and the
CoNLL 2007 shared task data for Italian (Monte-
magni et al., 2003). This was the only set of helper
languages we tested; improvements are likely pos-
sible. We leave an exploration of helper language
choice (a subset selection problem) to future re-
search, instead demonstrating that the concept has
merit.

We considered ten target languages: Bulgarian
(Bg), Danish (Da), Dutch (Nl), Greek (El), Japanese
(Jp), Portuguese (Pt), Slovene (Sl), Spanish (Es),
Swedish (Sv), and Turkish (Tr). The data come
from the CoNLL-X and CoNLL 2007 shared tasks
(Buchholz and Marsi, 2006; Nivre et al., 2007). For
all the experiments conducted, we trained models
on the training section of a language’s treebank and
tested on the test set. Table 1 shows the number of
sentences in the treebanks and the size of fine POS
tagsets for each language.

Following standard practice, in unsupervised
grammar induction experiments we remove punctu-
ation and then eliminate sentences from the data of
length greater than 10.

5These are based on the Prague Dependency Treebank
(Hajič, 1998) and the Tiger treebank (Brants et al., 2002) re-
spectively.
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Pt Tr Bg Jp El Sv Es Sl Nl Da
Training sentences 9,071 4,997 12,823 17,044 2,705 11,042 3,306 1,534 13,349 5,190
Test sentences 288 623 398 709 197 389 206 402 386 322
Size of POS tagset 22 31 54 80 38 41 47 29 12 25

Table 1: The first two rows show the sizes of the training and test datasets for each language. The third row shows the
number of fine POS tags in each language including punctuations.

6.2 Universal POS Tags

Our coarse-grained, universal POS tag set consists
of the following 12 tags: NOUN, VERB, ADJ

(adjective), ADV (adverb), PRON (pronoun), DET

(determiner), ADP (preposition or postposition),
NUM (numeral), CONJ (conjunction), PRT (parti-
cle), PUNC (punctuation mark) and X (a catch-all
for other categories such as abbreviations or foreign
words). These follow recent work by Das and Petrov
(2011) on unsupervised POS tagging in a multilin-
gual setting with parallel data, and have been de-
scribed in detail by Petrov et al. (2011).

While there might be some controversy about
what an appropriate universal tag set should include,
these 12 categories (or a subset) cover the most fre-
quent parts of speech and exist in one form or an-
other in all of the languages that we studied. For
each language in our data, a mapping from the
fine-grained treebank POS tags to these universal
POS tags was constructed manually by Petrov et al.
(2011).

6.3 Part-of-Speech Tagging

Our first experimental task is POS tagging, and here
we describe the specific details of the model, train-
ing and inference and the results attained.

6.3.1 Model
The model is a hidden Markov model (HMM),

which has been popular for unsupervised tagging
tasks (Merialdo, 1994; Elworthy, 1994; Smith and
Eisner, 2005; Berg-Kirkpatrick et al., 2010).6 We
use a bigram model and a locally normalized log-
linear parameterization, like Berg-Kirkpatrick et al.
(2010). These locally normalized log-linear mod-
els can look at various aspects of the observation x
given a tag y, or the pair of tags in a transition, in-
corporating overlapping features. In basic monolin-

6HMMs can be understood as a special case of PCFGs.

gual experiments, we used the same set of features
as Berg-Kirkpatrick et al. (2010). For the transi-
tion log-linear model, Berg-Kirkpatrick et al. (2010)
used only a single indicator feature of a tag pair, es-
sentially equating to a traditional multinomial dis-
tribution. For the emission log-linear model, sev-
eral features were used: an indicator feature con-
joining the state y and the word x, a feature checking
whether x contains a digit conjoined with the state y,
another feature indicating whether x contains a hy-
phen conjoined with y, whether the first letter of x is
upper case along with the state y, and finally indica-
tor features corresponding to suffixes up to length 3
present in x conjoined with the state y.

Since only the unlexicalized transition distribu-
tions are common across multiple languages, assum-
ing that they all use a set of universal POS tags, akin
to Eq. 4, we can have a multilingual version of the
transition distributions, by incorporating supervised
helper transition probabilities. Thus, we can write:

θy→y′ =
L∑

`=1

β`,yθ
(`)
y→y′ (11)

We use the above expression to replace the transi-
tion distributions, obtaining a multilingual mixture
version of the model. Here, the transition probabili-
ties θ(`)y→y′ for the `th helper language are fixed after
being estimated using maximum likelihood estima-
tion on the helper language’s treebank.

6.3.2 Training and Inference
We trained both the basic feature-based HMM

model as well as the multilingual mixture model by
optimizing the following objective function:7

L(ψ) =

N∑

i=1

log
∑

y

p(x(i),y | ψ)− C‖ψ‖22

7Note that in the objective function, for brevity, we abuse
notation by using ψ for both models – monolingual and multi-
lingual; the latter model is also parameterized by γ.
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Method Pt Tr Bg Jp El Sv Es Sl Nl Da Avg
Uniform+DG 45.7 43.6 38.0 60.4 36.7 37.7 31.8 35.9 43.7 36.2 41.0
Mixture+DG 51.5 38.6 35.8 61.7 38.9 39.9 40.5 36.0 50.2 39.9 43.3
DG (B-K et al., 2010) 53.5 27.9 34.7 52.3 35.3 34.4 40.0 33.4 45.4 48.8 40.6

(a)

Method Pt Tr Bg Jp El Sv Es Sl Nl Da Avg
Uniform+DG 83.8 50.4 81.3 77.9 80.3 69.0 82.3 82.8 79.3 82.0 76.9
Mixture+DG 84.7 50.0 82.6 79.9 80.3 67.0 83.3 82.8 80.0 82.0 77.3
DG (B-K et al., 2010) 75.4 50.4 80.7 83.4 88.0 61.5 82.3 75.6 79.2 82.3 75.9

(b)

Table 2: Results for unsupervised POS induction (a) without a tagging dictionary and (b) with a tag dictionary con-
structed from the training section of the corresponding treebank. DG (at the bottom) stands for the direct gradient
method of Berg-Kirkpatrick et al. (2010) using a monolingual feature-based HMM. “Mixture+DG” is the model where
multilingual mixture coefficients β of helper languages are estimated using coarse tags (§4), followed by expansion
(§5), and then initializing DG with the expanded transition parameters. “Uniform+DG” is the case where β are set
to 1/4, transitions of helper languages are mixed, expanded, and then DG is initialized with the result. For (a), eval-
uation is performed using one-to-one mapping accuracy. In case of (b), the tag dictionary solves the problem of tag
identification and performance is measured using per word POS accuracy. “Avg” denotes macro-average across the
ten languages.

Note that this involves marginalizing out all possible
state configurations y for a sentence x, resulting in
a non-convex objective. As described in §4, we opti-
mized this function using L-BFGS. For the mono-
lingual model, derivatives of the feature weights
took the exact same form as Berg-Kirkpatrick et al.
(2010), while for the mixture case, we computed
gradients with respect to γ, the unconstrained pa-
rameters used to express the mixture coefficients β
(see Eq. 10). The regularization constant C was set
to 1.0 for all experiments, and L-BFGS was run till
convergence.

During training, for the basic monolingual
feature-based HMM model, we initialized all param-
eters using small random real values, sampled from
N (0, 0.01). For estimation of the mixture parame-
ters γ for our multilingual model (step 3 in §2), we
similarly sampled real values fromN (0, 0.01) as an
initialization point. Moreover, during this stage, the
emission parameters also go through parameter es-
timation, but they are monolingual, and are initial-
ized with real values sampled from N (0, 0.01); as
explained in §2, coarse universal tags are used both
in the transitions and emissions during multilingual
estimation.

After the mixture parameters γ are estimated, we
compute the mixture probabilities β using Eq. 10.

Next, for each tag pair y, y′, we compute θy→y′ ,
which are the coarse transition probabilities inter-
polated using β, given the helper languages. We
then expand these transition probabilities (see §5) to
result in transition probabilities based on fine tags.
Finally, we train a feature-HMM by initializing its
transition parameters with natural logarithms of the
expanded θ parameters, and the emission parame-
ters using small random real values sampled from
N (0, 0.01). This implies that the lexicalized emis-
sion parameters η that were previously estimated in
the coarse multilingual model are thrown away and
not used for initialization; instead standard initial-
ization is used.

For inference at the testing stage, we use min-
imum Bayes-risk decoding (or “posterior decod-
ing”), by choosing the most probable tag for each
word position, given the entire observation x. We
chose this strategy because it usually performs
slightly better than Viterbi decoding (Cohen and
Smith, 2009; Ganchev et al., 2010).

6.3.3 Experimental Setup
For experiments, we considered three configura-

tions, and for each, we implemented two variants of
POS induction, one without any kind of supervision,
and the other with a tag dictionary. Our baseline is
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the direct gradient approach of Berg-Kirkpatrick et
al. (2010), which is the current state of the art for this
task, outperforming classical HMMs. Because this
model achieves strong performance using straight-
forward MLE, it also serves as the core model within
our approach. This model has also been applied in
a multilingual setting with parallel data (Das and
Petrov, 2011). In this baseline, we set the number
of HMM states to the number of fine-grained tree-
bank tags for the given language.

We test two versions of our model. The first ini-
tializes training of the target language’s POS model
using a uniform mixture of the helper language mod-
els (i.e., each β`,y = 1

L = 1
4 ), and expansion from

coarse-grained to fine-grained POS tags as described
in §5. We call this model “Uniform+DG.”

The second version estimates the mixture coeffi-
cients to maximize likelihood, then expands the POS
tags (§5), using the result to initialize training of the
final model. We call this model “Mixture+DG.”

No Tag Dictionary For each of the above configura-
tions, we ran purely unsupervised training without a
tag dictionary, and evaluated using one-to-one map-
ping accuracy constraining at most one HMM state
to map to a unique treebank tag in the test data, us-
ing maximum bipartite matching. This is a variant of
the greedy one-to-one mapping scheme of Haghighi
and Klein (2006).8

With a Tag Dictionary We also ran a second ver-
sion of each experimental configuration, where we
used a tag dictionary to restrict the possible path se-
quences of the HMM during both learning and infer-
ence. This tag dictionary was constructed only from
the training section of a given language’s treebank.
It is widely known that such knowledge improves
the quality of the model, though it is an open debate
whether such knowledge is realistic to assume. For
this experiment we removed punctuation from the
training and test data, enabling direct use within the
dependency grammar induction experiments.

8We also evaluated our approach using the greedy version of
this evaluation metric, and results followed the same trends with
only minor differences. We did not choose the other variant,
many-to-one mapping accuracy, because quite often the metric
mapped several HMM states to one treebank tag, leaving many
treebank tags unaccounted for.

6.3.4 Results
All results for POS induction are shown in Ta-

ble 2. Without a tag dictionary, in eight out of ten
cases, either Uniform+DG or Mixture+DG outper-
forms the monolingual baseline (Table 2a). For six
of these eight languages, the latter model where the
mixture coefficients are learned automatically fares
better than uniform weighting. With a tag dictionary,
the multilingual variants outperform the baseline in
seven out of ten cases, and the learned mixture out-
performs or matches the uniform mixture in five of
those seven (Table 2b).

6.4 Dependency Grammar Induction

We next describe experiments for dependency gram-
mar induction. As the basic grammatical model,
we adopt the dependency model with valence (Klein
and Manning, 2004), which forms the basis for state-
of-the-art results for dependency grammar induc-
tion in various settings (Cohen and Smith, 2009;
Spitkovsky et al., 2010; Gillenwater et al., 2010;
Berg-Kirkpatrick and Klein, 2010). As shown in Ta-
ble 3, DMV obtains much higher accuracy in the su-
pervised setting than the unsupervised setting, sug-
gesting that more can be achieved with this model
family.9 For this reason, and because DMV is eas-
ily interpreted as a PCFG, it is our starting point and
baseline.

We consider four conditions. The independent
variables are (1) whether we use uniformβ (all set to
1
4 ) or estimate them using EM (as described in §4),
and (2) whether we simply use the mixture model to
decode the test data, or to initialize EM for the DMV.
The four settings are denoted “Uniform,” “Mixture,”
“Uniform+EM,” and “Mixture+EM.”

The results are given in Table 3. In general, the
use of data from other languages improves perfor-
mance considerably; all of our methods outperform
the Klein and Manning (2004) initializer, and we
achieve state-of-the-art performance for eight out of
ten languages. Uniform and Mixture behave simi-
larly, with a slight advantage to the trained mixture
setting. Using EM to train the mixture coefficients
more often hurts than helps (six languages out of
ten). It is well known that likelihood does not cor-

9Its supervised performance is still far from the supervised
state of the art in dependency parsing.
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Method Pt Tr Bg Jp El Sv Es Sl Nl Da Avg
Uniform 78.6 45.0 75.6 56.3 57.0 74.0 73.2 46.1 50.7 59.2 61.6
Mixture 76.8 45.3 75.5 58.3 59.5 73.2 75.9 46.0 51.1 59.9 62.2
Uniform+EM 78.7 43.9 74.7 59.8 73.0 70.5 75.5 41.3 45.9 51.3 61.5
Mixture+EM 79.8 44.1 72.8 63.9 72.3 68.7 76.7 41.0 46.0 55.2 62.1
EM (K & M, 2004) 42.5 36.3 54.3 43.0 41.0 42.3 38.1 37.0 38.6 41.4 41.4
PR (G et al., ’10) 47.8 53.4 54.0 60.2 - 42.2 62.4 50.3 37.9 44.0 -
Phylo. (B-K & K, ’10) 63.1 - - - - 58.3 63.8 49.6 45.1 41.6 -
Supervised (MLE) 81.7 75.7 83.0 89.2 81.8 83.2 79.0 74.5 64.8 80.8 79.3

Table 3: Results for dependency grammar induction given gold-standard POS tags, reported as attachment accuracy
(fraction of parents which are correct). The three existing methods are: our replication of EM with the initializer from
Klein and Manning (2004), denoted “EM”; reported results from Gillenwater et al. (2010) for posterior regularization
(“PR”); and reported results from Berg-Kirkpatrick and Klein (2010), denoted “Phylo.” “Supervised (MLE)” are oracle
results of estimating parameters from gold-standard annotated data using maximum likelihood estimation. “Avg”
denotes macro-average across the ten languages.

Figure 2: Projection of the learned mixture coefficients
through PCA. In green, Japanese. In red, Dutch, Danish
and Swedish. In blue, Bulgarian and Slovene. In ma-
genta, Portuguese and Spanish. In black, Greek. In cyan,
Turkish.

relate with the true accuracy measurement, and so
it is unsurprising that this holds in the constrained
mixture family as well. In future work, a different
parametrization of the mixture coefficients, through
features, or perhaps a Bayesian prior on the weights,
might lead to an objective that better simulates ac-
curacy.

Table 3 shows that even uniform mixture coef-
ficients are sufficient to obtain accuracy which su-
percedes most unsupervised baselines. We were in-
terested in testing whether the coefficients which are
learned actually reflect similarities between the lan-

guages. To do that, we projected the learned vectors
β for each tested language using principal compo-
nent analysis and plotted the result in Figure 2. It
is interesting to note that languages which are closer
phylogenetically tend to appear closer to each other
in the plot.

Our experiments also show that multilingual
learning performs better for dependency grammar
induction than part-of-speech tagging. We believe
that this happens because of the nature of the mod-
els and data we use. The transition matrix in part-
of-speech tagging largely depends on word order in
the various helper languages, which differs greatly.
This means that a mixture of transition matrices will
not necessarily yield a meaningful transition matrix.
However, for dependency grammar, there are certain
universal dependencies which appear in all helper
languages, and therefore, a mixture between multi-
nomials for these dependencies still yields a useful
multinomial.

6.5 Inducing Dependencies from Words

Finally, we combine the models for POS tagging and
grammar induction to perform grammar induction
directly from words, instead of gold-standard POS
tags. Our approach is as follows:

1. With a tag dictionary, learn a fine-grained POS
tagging model unsupervised, using either DG or
Mixture+DG as described in §6.3 and shown in
Table 2b.
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Method Tags Pt Tr Bg Jp El Sv Es Sl Nl Da Avg
Joint DG 68.4 52.4 62.4 61.4 63.5 58.2 67.7 47.2 48.3 50.4 57.9
Joint Mixture+DG 62.2 47.4 67.0 69.5 52.2 49.1 69.3 36.8 52.2 50.1 55.6
Pipeline DG 60.0 50.8 57.7 64.2 68.2 57.9 65.8 45.8 49.9 48.9 56.9
Pipeline Mixture+DG 59.8 47.1 62.9 68.6 50.0 47.6 68.1 36.4 51.2 48.3 54.0

Gold-standard tags 79.8 45.3 75.6 63.9 73.0 74.0 76.7 46.1 50.7 59.9 64.5

Table 4: Results for dependency grammar induction over words. “Joint”/“Pipeline” refers to joint/pipeline decoding
of tags and dependencies as described in the text. See §6.3 for a description of DG and Mixture+DG. For the induction
of dependencies we use the Mixture+EM setting as described in §6.4. All tag induction uses a dictionary as specified
in §6.3. The last row in this table indicates the best results using multilingual guidance taken from our methods in
Table 3. “Avg” denotes macro-average across the ten languages.

2. Apply the fine-grained tagger to the words in the
training data for the dependency parser. We con-
sider two variants: the most probable assignment
of tags to words (denoted “Pipeline”), and the pos-
terior distribution over tags for each word, repre-
sented as a weighted “sausage” lattice (denoted
“Joint”). This idea was explored for joint infer-
ence by Cohen and Smith (2007).

3. We apply the Mixture+EM unsupervised parser
learning method from §6.4 to the automatically
tagged sentences, or the lattices.

4. Given the two models, we infer POS tags on the
test data using DG or Mixture+DG to get a lattice
(Joint) or a sequence (Pipeline) and then parse us-
ing the model from the previous step.10 The re-
sulting dependency trees are evaluated against the
gold standard.

Results are reported in Table 4. In almost all cases,
joint decoding of tags and trees performs better than
the pipeline. Even though our part-of-speech tagger
with multilingual guidance outperforms the com-
pletely unsupervised baseline, there is not always an
advantage of using this multilingually guided part-
of-speech tagger for dependency grammar induc-
tion. For Turkish, Japanese, Slovene and Dutch, our
unsupervised learner from words outperforms unsu-
pervised parsing using gold-standard part-of-speech
tags.

We note that some recent work gives a treatment
to unsupervised parsing (but not of dependencies)

10The decoding method on test data (Joint or Pipeline) was
matched to the training method, though they are orthogonal in
principle.

directly from words (Seginer, 2007). Earlier work
that induced part-of-speech tags and then performed
unsupervised parsing in a pipeline includes Klein
and Manning (2004) and Smith (2006). Headden
et al. (2009) described the use of a lexicalized vari-
ant of the DMV model, with the use of gold part-of-
speech tags.

7 Conclusion

We presented an approach to exploiting annotated
data in helper languages to infer part-of-speech tag-
ging and dependency parsing models in a different,
target language, without parallel data. Our approach
performs well in many cases. We also described a
way to do joint decoding of part-of-speech tags and
dependencies which performs better than a pipeline.
Future work might consider exploiting a larger num-
ber of treebanks, and more powerful techniques for
combining models than simple local mixtures.
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Abstract

We present a simple method for transferring
dependency parsers from source languages
with labeled training data to target languages
without labeled training data. We first demon-
strate that delexicalized parsers can be di-
rectly transferred between languages, produc-
ing significantly higher accuracies than unsu-
pervised parsers. We then use a constraint
driven learning algorithm where constraints
are drawn from parallel corpora to project the
final parser. Unlike previous work on project-
ing syntactic resources, we show that simple
methods for introducing multiple source lan-
guages can significantly improve the overall
quality of the resulting parsers. The projected
parsers from our system result in state-of-the-
art performance when compared to previously
studied unsupervised and projected parsing
systems across eight different languages.

1 Introduction

Statistical parsing has been one of the most active ar-
eas of research in the computational linguistics com-
munity since the construction of the Penn Treebank
(Marcus et al., 1993). This includes work on phrase-
structure parsing (Collins, 1997; Charniak, 2000;
Petrov et al., 2006), dependency parsing (McDonald
et al., 2005; Nivre et al., 2006) as well as a num-
ber of other formalisms (Clark and Curran, 2004;
Wang and Harper, 2004; Shen and Joshi, 2008).
As underlying modeling techniques have improved,
these parsers have begun to converge to high lev-
els of accuracy for English newswire text. Subse-
quently, researchers have begun to look at both port-

ing these parsers to new domains (Gildea, 2001; Mc-
Closky et al., 2006; Petrov et al., 2010) and con-
structing parsers for new languages (Collins et al.,
1999; Buchholz and Marsi, 2006; Nivre et al., 2007).

One major obstacle in building statistical parsers
for new languages is that they often lack the manu-
ally annotated resources available for English. This
observation has led to a vast amount of research
on unsupervised grammar induction (Carroll and
Charniak, 1992; Klein and Manning, 2004; Smith
and Eisner, 2005; Cohen and Smith, 2009; Berg-
Kirkpatrick and Klein, 2010; Naseem et al., 2010;
Spitkovsky et al., 2010; Blunsom and Cohn, 2010).
Grammar induction systems have seen large ad-
vances in quality, but parsing accuracies still signif-
icantly lag behind those of supervised systems. Fur-
thermore, they are often trained and evaluated under
idealized conditions, e.g., only on short sentences
or assuming the existence of gold-standard part-of-
speech (POS) tags.1 The reason for these assump-
tions is clear. Unsupervised grammar induction is
difficult given the complexity of the analysis space.
These assumptions help to give the model traction.

The study of unsupervised grammar induction has
many merits. Most notably, it increases our under-
standing of how computers (and possibly humans)
learn in the absence of any explicit feedback. How-
ever, the gold POS tag assumption weakens any con-
clusions that can be drawn, as part-of-speech are
also a form of syntactic analysis, only shallower.
Furthermore, from a practical standpoint, it is rarely
the case that we are completely devoid of resources
for most languages. This point has been made by

1A notable exception is the work of Seginer (2007).
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studies that transfer parsers to new languages by
projecting syntax across word alignments extracted
from parallel corpora (Hwa et al., 2005; Ganchev et
al., 2009; Smith and Eisner, 2009). Although again,
most of these studies also assume the existence of
POS tags.

In this work we present a method for creating de-
pendency parsers for languages for which no labeled
training data is available. First, we train a source
side English parser that, crucially, is delexicalized so
that its predictions rely soley on the part-of-speech
tags of the input sentence, in the same vein as Ze-
man and Resnik (2008). We empirically show that
directly transferring delexicalized models (i.e. pars-
ing a foreign language POS sequence with an En-
glish parser) already outperforms state-of-the-art un-
supervised parsers by a significant margin. This re-
sult holds in the presence of both gold POS tags as
well as automatic tags projected from English. This
emphasizes that even for languages with no syntac-
tic resources – or possibly even parallel data – sim-
ple transfer methods can already be more powerful
than grammar induction systems.

Next, we use this delexicalized English parser to
seed a perceptron learner for the target language.
The model is trained to update towards parses that
are in high agreement with a source side English
parse based on constraints drawn from alignments in
the parallel data. We use the augmented-loss learn-
ing procedure (Hall et al., 2011) which is closely
related to constraint driven learning (Chang et al.,
2007; Chang et al., 2010). The resulting parser con-
sistently improves on the directly transferred delex-
icalized parser, reducing relative errors by 8% on
average, and as much as 18% on some languages.
Finally, we show that by transferring parsers from
multiple source languages we can further reduce er-
rors by 16% over the directly transferred English
baseline. This is consistent with previous work on
multilingual part-of-speech (Snyder et al., 2009) and
grammar (Berg-Kirkpatrick and Klein, 2010; Cohen
and Smith, 2009) induction, that shows that adding
languages leads to improvements.

We present a comprehensive set of experiments
on eight Indo-European languages for which a sig-
nificant amount of parallel data exists. We make
no language specific enhancements in our experi-
ments. We report results for sentences of all lengths,

Figure 1: An example (unlabeled) dependency tree.

as well as with gold and automatically induced
part-of-speech tags. We also report results on sen-
tences of length 10 or less with gold part-of-speech
tags to compare with previous work. Our results
consistently outperform the previous state-of-the-art
across all languages and training configurations.

2 Preliminaries

In this paper we focus on transferring dependency
parsers between languages. A dependency parser
takes a tokenized input sentence (optionally part-of-
speech tagged) and produces a connected tree where
directed arcs represent a syntactic head-modifier re-
lationship. An example of such a tree is given in
Figure 1. Dependency tree arcs are often labeled
with the role of the syntactic relationship, e.g., is to
hearing might be labeled as SUBJECT. However, we
focus on unlabeled parsing in order to reduce prob-
lems that arise due to different treebank annotation
schemes. Of course, even for unlabeled dependen-
cies, significant variations in the annotation schemes
remain. For example, in the Danish treebank deter-
miners govern adjectives and nouns in noun phrases,
while in most other treebanks the noun is the head of
the noun phrase. Unlike previous work (Zeman and
Resnik, 2008; Smith and Eisner, 2009), we do not
apply any transformations to the treebanks, which
makes our results easier to reproduce, but systemat-
ically underestimates accuracy.

2.1 Data Sets

The treebank data in our experiments are from the
CoNLL shared-tasks on dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007). We use
English (en) only as a source language throughout
the paper. Additionally, we use the following eight
languages as both source and target languages: Dan-
ish (da), Dutch (nl), German (de), Greek (el), Italian
(it), Portuguese (pt), Spanish (es) and Swedish (sv).
For languages that were included in both the 2006
and 2007 tasks, we used the treebank from the lat-
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ter. We focused on this subset of languages because
they are Indo-European and a significant amount of
parallel data exists for each language. By present-
ing results on eight languages our study is already
more comprehensive than most previous work in this
area. However, the restriction to Indo-European lan-
guages does make the results less conclusive when
one wishes to transfer a parser from English to Chi-
nese, for example. To account for this, we report
additional results in the discussion for non-Indo-
European languages. For all data sets we used the
predefined training and testing splits.

Our approach relies on a consistent set of part-
of-speech tags across languages and treebanks. For
this we used the universal tagset from Petrov et
al. (2011), which includes: NOUN (nouns), VERB

(verbs), ADJ (adjectives), ADV (adverbs), PRON

(pronouns), DET (determiners), ADP (prepositions
or postpositions), NUM (numerals), CONJ (conjunc-
tions), PRT (particles), PUNC (punctuation marks)
and X (a catch-all tag). Similar tagsets are used by
other studies on grammar induction and projection
(Naseem et al., 2010; Zeman and Resnik, 2008). For
all our experiments we replaced the language spe-
cific part-of-speech tags in the treebanks with these
universal tags.

Like all treebank projection studies we require a
corpus of parallel text for each pair of languages we
study. For this we used the Europarl corpus version
5 (Koehn, 2005). The corpus was preprocessed in
standard ways and word aligned by running six it-
erations of IBM Model 1 (Brown et al., 1993), fol-
lowed by six iterations of the HMM model (Vogel et
al., 1996) in both directions. We then intersect word
alignments to generate one-to-one alignments.

2.2 Parsing Model

All of our parsing models are based on the
transition-based dependency parsing paradigm
(Nivre, 2008). Specifically, all models use an
arc-eager transition strategy and are trained using
the averaged perceptron algorithm as in Zhang and
Clark (2008) with a beam size of 8. The features
used by all models are: the part-of-speech tags of
the first four words on the buffer and of the top two
words on the stack; the word identities of the first
two words on the buffer and of the top word on the
stack; the word identity of the syntactic head of

the top word on the stack (if available). All feature
conjunctions are included. For treebanks with
non-projective trees we use the pseudo-projective
parsing technique to transform the treebank into
projective structures (Nivre and Nilsson, 2005).
We focus on using this parsing system for two
reasons. First, the parser is near state-of-the-art on
English parsing benchmarks and second, and more
importantly, the parser is extremely fast to train and
run, making it easy to run a large number of exper-
iments. Preliminary experiments using a different
dependency parser – MSTParser (McDonald et al.,
2005) – resulted in similar empirical observations.

2.3 Evaluation

All systems are evaluated using unlabeled attach-
ment score (UAS), which is the percentage of words
(ignoring punctuation tokens) in a corpus that mod-
ify the correct head (Buchholz and Marsi, 2006).
Furthermore, we evaluate with both gold-standard
part-of-speech tags, as well as predicted part-of-
speech tags from the projected part-of-speech tagger
of Das and Petrov (2011).2 This tagger relies only on
labeled training data for English, and achieves accu-
racies around 85% on the languages that we con-
sider. We evaluate in the former setting to compare
to previous studies that make this assumption. We
evaluate in the latter setting to measure performance
in a more realistic scenario – when no target lan-
guage resources are available.

3 Transferring from English

To simplify discussion, we first focus on the most
common instantiation of parser transfer in the liter-
ature: transferring from English to other languages.
In the next section we expand our system to allow
for the inclusion of multiple source languages.

3.1 Direct Transfer

We start with the observation that discriminatively
trained dependency parsers rely heavily on part-of-
speech tagging features. For example, when train-
ing and testing a parser on our English data, a parser
with all features obtains an UAS of 89.3%3 whereas

2Available at http://code.google.com/p/pos-projection/
3The best system at CoNLL 2007 achieved 90.1% and used

a richer part-of-speech tagset (Nivre et al., 2007).
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a delexicalized parser – a parser that only has non-
lexical features – obtains an UAS of 82.5%. The
key observation is that part-of-speech tags contain a
significant amount of information for unlabeled de-
pendency parsing.

This observation combined with our universal
part-of-speech tagset, leads to the idea of direct
transfer, i.e., directly parsing the target language
with the source language parser without relying on
parallel corpora. This idea has been previously ex-
plored by Zeman and Resnik (2008) and recently by
Søgaard (2011). Because we use a mapping of the
treebank specific part-of-speech tags to a common
tagset, the performance of a such a system is easy to
measure – simply parse the target language data set
with a delexicalized parser trained on the source lan-
guage data. We conducted two experiments. In the
first, we assumed that the test set for each target lan-
guage had gold part-of-speech tags, and in the sec-
ond we used predicted part-of-speech tags from the
projection tagger of Das and Petrov (2011), which
also uses English as the source language.

UAS for all sentence lengths without punctuation
are given in Table 1. We report results for both the
English direct transfer parser (en-dir.) as well as a
baseline unsupervised grammar induction system –
the dependency model with valence (DMV) of Klein
and Manning (2004), as obtained by the implemen-
tation of Ganchev et al. (2010). We trained on sen-
tences of length 10 or less and evaluated on all sen-
tences from the test set.4 For DMV, we reversed the
direction of all dependencies if this led to higher per-
formance. From this table we can see that direct
transfer is a very strong baseline and is over 20%
absolute better than the DMV model for both gold
and predicted POS tags. Table 4, which we will dis-
cuss in more detail later, further shows that the direct
transfer parser also significantly outperforms state-
of-the-art unsupervised grammar induction models,
but in a more limited setting of sentences of length
less than 10.

Direct transfer works for a couple of reasons.
First, part-of-speech tags contain a significant
amount of information for parsing unlabeled depen-
dencies. Second, this information can be transferred,

4Training on all sentences results in slightly lower accura-
cies on average.

to some degree, across languages and treebank stan-
dards. This is because, at least for Indo-European
languages, there is some regularity in how syntax
is expressed, e.g., primarily SVO, prepositional, etc.
Even though there are some differences with respect
to relative location of certain word classes, strong
head-modifier POS tag preferences can still help re-
solve these, especially when no other viable alter-
natives are available. Consider for example an arti-
ficial sentence with a tag sequence: ‘VERB NOUN

ADJ DET PUNC’. The English parser still predicts
that the NOUN and PUNC modify the VERB and the
ADJ and DET modify the NOUN, even though in the
English data such noun phrases are unlikely.5

3.2 Projected Transfer

Unlike most language transfer systems for parsers,
the direct transfer approach does not rely on project-
ing syntax across aligned parallel corpora (modulo
the fact that non-gold tags come from a system that
uses parallel corpora). In this section we describe
a simple mechanism for projecting from the direct
transfer system using large amounts of parallel data
in a similar vein to Hwa et al. (2005), Ganchev et
al. (2009), Smith and Eisner (2009) inter alia. The
algorithm is based on the work of Hall et al. (2011)
for training extrinsic parser objective functions and
borrows heavily from ideas in learning with weak
supervision including work on learning with con-
straints (Chang et al., 2007) and posterior regular-
ization (Ganchev et al., 2010). In our case, the
weak signals come from aligned source and target
sentences, and the agreement in their corresponding
parses, which is similar to posterior regularization
or the bilingual view of Smith and Smith (2004) and
Burkett et al. (2010).

The algorithm is given in Figure 2. It starts by
labeling a set of target language sentences with a
parser, which in our case is the direct transfer parser
from the previous section (line 1). Next, it uses
these parsed target sentences to ‘seed’ a new parser
by training a parameter vector using the predicted
parses as a gold standard via standard perceptron
updates for J rounds (lines 3-6). This generates a
parser that emulates the direct transfer parser, but

5This requires a transition-based parser with a beam greater
than 1 to allow for ambiguity to be resolved at later stages.
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Notation:
x: input sentence
y: dependency tree
a: alignment
w: parameter vector

φ(x, y): feature vector
DP : dependency parser, i.e., DP : x→ y

Input:
X = {xi}ni=1: target language sentences

P = {(xsi , xti, ai)}mi=1: aligned source-target sentences
DPdelex: delexicalized source parser
DPlex: lexicalized source parser

Algorithm:
1. Let X ′ = {(xi, yi)}ni=1 where yi = DPdelex(xi)
2. w = 0

se
ed

-s
ta

ge 3. for j : 1 . . . J
4. for xi : x1 . . . xn
5. Let y = argmaxy w · φ(xi, y)
6. w = w + φ(xt, yi)− φ(xi, y)

pr
oj

ec
tio

n-
st

ag
e 7. for (xsi , x

t
i, ai) : (x

s
1, x

t
1, a1) . . . (x

s
m, x

s
m, am)

8. Let ys = DPlex(x
s
i )

9. Let Yt = {y1i , . . . , yki }, where:
yki = argmax

y/∈{y1
i ,...,y

k−1
i } w · φ(x

t
i, y)

10. Let yt = argmaxyt∈Yt ALIGN(ys, yt, ai)
11. w = w + φ(xi, yt)− φ(xi, y1i )

return DP ∗ such that DP ∗(x) = argmaxy w · φ(x, y)

Figure 2: Perceptron-based learning algorithm for train-
ing a parser by seeding the model with a direct transfer
parser and projecting constraints across parallel corpora.

has now been lexicalized and is working in the space
of target language sentences. Next, the algorithm it-
erates over the sentences in the parallel corpus. It
parses the English sentence with an English parser
(line 8, again a lexicalized parser). It then uses the
current target language parameter vector to create
a k-best parse list for the target sentence (line 9).
From this list, it selects the parse whose dependen-
cies align most closely with the English parse via the
pre-specified alignment (line 10, also see below for
the definition of the ALIGN function). It then uses
this selected parse as a proxy to the gold standard
parse to update the parameters (line 11).

The intuition is simple. The parser starts with
non-random accuracies by emulating the direct
transfer model and slowly tries to induce better pa-
rameters by selecting parses from its k-best list

that are considered ‘good’ by some external met-
ric. The algorithm then updates towards that out-
put. In this case ‘goodness’ is determined through
the pre-specified sentence alignment and how well
the target language parse aligns with the English
parse. As a result, the model will, ideally, converge
to a state where it predicts target parses that align as
closely as possible with the corresponding English
parses. However, since we seed the learner with the
direct transfer parser, we bias the parameters to se-
lect parses that both align well and also have high
scores under the direct transfer model. This helps
to not only constrain the search space at the start
of learning, but also helps to bias dependencies be-
tween words that are not part of the alignment.

So far we have not defined the ALIGN function
that is used to score potential parses. Let a =
{(s(1), t(1)), . . . , (s(n), t(n))} be an alignment where
s(i) is a word in the source sentence xs (not nec-
essarily the ith word) and t(i) is similarly a word
in the target sentence xt (again, not necessarily the
ith word). The notation (s(i), t(i)) ∈ a indicates
two words are the ith aligned pair in a. We define
the ALIGN function to encode the Direct Correspon-
dence Assumption (DCA) from Hwa et al. (2005):

ALIGN(ys, yt, a)

=
∑

(s(i),t(i))∈a
(s(j),t(j))∈a

SCORE(ys, yt, (s(i), s(j)), (t(i), t(j)))

SCORE(ys, yt, (s(i), s(j)), (t(i), t(j)))

=





+1 if (s(i), s(j)) ∈ ys and (t(i), t(j)) ∈ yt
−1 if (s(i), s(j)) ∈ ys and (t(i), t(j)) /∈ yt
−1 if (s(i), s(j)) /∈ ys and (t(i), t(j)) ∈ yt
0 otherwise

The notation (i, j) ∈ y indicates that a dependency
from head i to modifier j is in tree y. The ALIGN

function rewards aligned head-modifier pairs and
penalizes unaligned pairs when a possible alignment
exists. For all other cases it is agnostic, i.e., when
one or both of the modifier or head are not aligned.

Figure 3 shows an example of aligned English-
Greek sentences, the English parse and a potential
Greek parse. In this case the ALIGN function re-
turns a value of 2. This is because there are three
aligned dependencies: took→book, book→the and
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Figure 3: A Greek and English sentence pair. Word
alignments are shown as dashed lines, dependency arcs
as solid lines.

from→John. These add 3 to the score. There is
one incorrectly aligned dependency: the preposi-
tion mistakenly modifies the noun on the Greek side.
This subtracts 1. Finally, there are two dependencies
that do not align: the subject on the English side
and a determiner to a proper noun on the Greek side.
These do not effect the result.

The learning algorithm in Figure 2 is an instance
of augmented-loss training (Hall et al., 2011) which
is closely related to the constraint driven learning al-
gorithms of Chang et al. (2007). In that work, ex-
ternal constraints on output structures are used to
help guide the learner to good parameter regions.
In our model, we use constraints drawn from paral-
lel data exactly in the same manner. Since posterior
regularization is closely related to constraint driven
learning, this makes our algorithm also similar to the
parser projection approach of Ganchev et al. (2009).
There are a couple of differences. First, we bias our
model towards the direct transfer model, which is
already quite powerful. Second, our alignment con-
straints are used to select parses from a k-best list,
whereas in posterior regularization they are used as
soft constraints on full model expectations during
training. The latter is beneficial as the use of k-best
lists does not limit the class of parsers to those whose
parameters and search space decompose neatly with
the DCA loss function. An empirical comparison to
Ganchev et al. (2009) is given in Section 5.

Results are given in Table 1 under the column en-
proj. For all experiments we train the seed-stage
perceptron for 5 iterations (J = 5) and we use one
hundred times as much parallel data as seed stage
non-parallel data (m = 100n). The seed-stage non-
parallel data is the training portion of each treebank,
stripped of all dependency annotations. After train-
ing the projected parser we average the parameters

gold-POS pred-POS
DMV en-dir. en-proj. DMV en-dir. en-proj.

da 33.4 45.9 48.2 18.4 44.0 45.5
de 18.0 47.2 50.9 30.3 44.7 47.4
el 39.9 63.9 66.8 21.2 63.0 65.2
es 28.5 53.3 55.8 19.9 50.2 52.4
it 43.1 57.7 60.8 37.7 53.7 56.3
nl 38.5 60.8 67.8 19.9 62.1 66.5
pt 20.1 69.2 71.3 21.0 66.2 67.7
sv 44.0 58.3 61.3 33.8 56.5 59.7

avg 33.2 57.0 60.4 25.3 55.0 57.6

Table 1: UAS for the unsupervised DMV model (DMV),
a delexicalized English direct transfer parser (en-dir.)
and a English projected parser (en-proj.). Measured on
all sentence lengths for both gold and predicted part-of-
speech tags as input.

of the model (Collins, 2002). The parsers evaluated
using predicted part-of-speech tags use the predicted
tags at both training and testing time and are thus
free of any target language specific resources.

When compared with the direct transfer model
(en-dir. in Table 1), we can see that there is an im-
provement for every single language, reducing rela-
tive error by 8% on average (57.0% to 60.4%) and
up to 18% for Dutch (60.8 to 67.8%). One could
wonder whether the true power of the projection
model comes from the re-lexicalization step – lines
3-6 of the algorithm. However, if just this step is run,
then the average UAS only increases from 57.0%
to 57.4%, showing that most of the improvement
comes from the projection stage. Note that the re-
sults in Table 1 indicate that parsers using predicted
part-of-speech tags are only slightly worse than the
parsers using gold tags (about 2-3% absolute), show-
ing that these methods are robust to tagging errors.

4 Multi-Source Transfer

The previous section focused on transferring an En-
glish parser to a new target language. However,
there are over 20 treebanks available for a variety
of language groups including Indo-European, Altaic
(including Japanese), Semitic, and Sino-Tibetan.
Many of these are even in standardized formats
(Buchholz and Marsi, 2006; Nivre et al., 2007). Past
studies have shown that for both part-of-speech tag-
ging and grammar induction, learning with multiple
comparable languages leads to improvements (Co-
hen and Smith, 2009; Snyder et al., 2009; Berg-
Kirkpatrick and Klein, 2010). In this section we ex-
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Source Training Language
da de el en es it nl pt sv

Ta
rg

et
Te

st
L

an
gu

ag
e da 79.2 45.2 44.0 45.9 45.0 48.6 46.1 48.1 47.8

de 34.3 83.9 53.2 47.2 45.8 53.4 55.8 55.5 46.2
el 33.3 52.5 77.5 63.9 41.6 59.3 57.3 58.6 47.5
en 34.4 37.9 45.7 82.5 28.5 38.6 43.7 42.3 43.7
es 38.1 49.4 57.3 53.3 79.7 68.4 51.2 66.7 41.4
it 44.8 56.7 66.8 57.7 64.7 79.3 57.6 69.1 50.9
nl 38.7 43.7 62.1 60.8 40.9 50.4 73.6 58.5 44.2
pt 42.5 52.0 66.6 69.2 68.5 74.7 67.1 84.6 52.1
sv 44.5 57.0 57.8 58.3 46.3 53.4 54.5 66.8 84.8

Table 2: UAS for all source-target language pairs. Each column represents which source language was used to train a
delexicalized parser and each row represents which target language test data was used. Bold numbers are when source
equals target and underlined numbers are the single best UAS for a target language. Results are for all sentence lengths
without punctuation.

amine whether this is also true for parser transfer.

Table 2 shows the matrix of source-target lan-
guage UAS for all nine languages we consider (the
original eight target languages plus English). We
can see that there is a wide range from 33.3% to
74.7%. There is also a wide range of values depend-
ing on the source training data and/or target testing
data, e.g., Portuguese as a source tends to parse tar-
get languages much better than Danish, and is also
more amenable as a target testing language. Some
of these variations are expected, e.g., the Romance
languages (Spanish, Italian and Portuguese) tend to
transfer well to one another. However, some are
unexpected, e.g., Greek being the best source lan-
guage for Dutch, as well as German being one of the
worst. This is almost certainly due to different an-
notation schemes across treebanks. Overall, Table 2
does indicate that there are possible gains in accu-
racy through the inclusion of additional languages.

In order to take advantage of treebanks in multi-
ple languages, our multi-source system simply con-
catenates the training data from all non-target lan-
guages. In other words, the multi-source direct
transfer parser for Danish will be trained by first
concatenating the training corpora of the remain-
ing eight languages, training a delexicalized parser
on this data and then directly using this parser to
analyze the Danish test data. For the multi-source
projected parser, the procedure is identical to that
in Section 3.2 except that we use the multi-source
direct transfer model to seed the algorithm instead
of the English-only direct transfer model. For these
experiments we still only use English-target parallel
data because that is the format of the readily avail-

able data in the Europarl corpus.

Table 3 presents four sets of results. The first
(best-source) is the direct transfer results for the ora-
cle single-best source language per target language.
The second (avg-source) is the mean UAS over all
source languages per target language. The third
(multi-dir.) is the multi-source direct transfer sys-
tem. The fourth and final result set (multi-proj.)
is the multi-source projected system. The resulting
parsers are typically much more accurate than the
English direct transfer system (Table 1). On aver-
age, the multi-source direct transfer system reduces
errors by 10% relative over the English-only direct
transfer system. These improvements are not consis-
tent. For Greek and Dutch we see significant losses
relative to the English-only system. An inspection of
Table 2 shows that for these two languages English
is a particularly good source training language.

For the multi-source projected system the results
are mixed. Some languages see basically no change
relative the multi-source direct transfer model, while
some languages see modest to significant increases.
But again, there is an overall trend to better mod-
els. In particular, starting with an English-only di-
rect transfer parser with 57.0% UAS on average,
by adding parallel corpora and multiple source lan-
guages we finish with parser having 63.8% UAS
on average, which is a relative reduction in error
of roughly 16% and more than doubles the perfor-
mance of a DMV model (Table 1).

Interestingly, the multi-source systems provide,
on average, accuracies near that of the single-best
source language and significantly better than the av-
erage source UAS. Thus, even this simple method of
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best-source avg-source gold-POS pred-POS
source gold-POS gold-POS multi-dir. multi-proj. multi-dir. multi-proj.

da it 48.6 46.3 48.9 49.5 46.2 47.5
de nl 55.8 48.9 56.7 56.6 51.7 52.0
el en 63.9 51.7 60.1 65.1 58.5 63.0
es it 68.4 53.2 64.2 64.5 55.6 56.5
it pt 69.1 58.5 64.1 65.0 56.8 58.9
nl el 62.1 49.9 55.8 65.7 54.3 64.4
pt it 74.8 61.6 74.0 75.6 67.7 70.3
sv pt 66.8 54.8 65.3 68.0 58.3 62.1

avg 63.7 51.6 61.1 63.8 56.1 59.3

Table 3: UAS for multi-source direct (multi-dir.) and projected (multi-proj.) transfer systems. best-source is the best
source model from the languages in Table 2 (excluding the target language). avg-source is the mean UAS over the
source models for the target (excluding target language).

multi-source transfer already provides strong perfor-
mance gains. We expect that more principled tech-
niques will lead to further improvements. For exam-
ple, recent work by Søgaard (2011) explores data set
sub-sampling methods. Unlike our work, Søgaard
found that simply concatenating all the data led to
degradation in performance. Cohen et al. (2011) ex-
plores the idea learning language specific mixture
coefficients for models trained independently on the
target language treebanks. However, their results
show that this method often did not significantly out-
perform uniform mixing.

5 Comparison

Comparing unsupervised and parser projection sys-
tems is difficult as many publications use non-
overlapping sets of languages or different evaluation
criteria. We compare to the following three systems
that do not augment the treebanks and report results
for some of the languages that we considered:

• USR: The weakly supervised system of
Naseem et al. (2010), in which manually de-
fined universal syntactic rules (USR) are used
to constrain a probabilistic Bayesian model. In
addition to their original results, we also report
results using the same part-of-speech tagset as
the systems described in this paper (USR†).
This is useful for two reasons. First, it makes
the comparison more direct. Second, we can
generate USR results for all eight languages
and not just for the languages that they report.

• PGI: The phylogenetic grammar induction
(PGI) model of Berg-Kirkpatrick and Klein
(2010), in which the parameters of completely

unsupervised DMV models for multiple lan-
guages are coupled via a phylogenetic prior.

• PR: The posterior regularization (PR) approach
of Ganchev et al. (2009), in which a supervised
English parser is used to generate constraints
that are projected using a parallel corpus and
used to regularize a target language parser. We
report results without treebank specific rules.

Table 4 gives results comparing the models pre-
sented in this work to those three systems. For this
comparison we use sentences of length 10 or less
after punctuation has been removed in order to be
consistent with reported results. The overall trends
carry over from the full treebank setting to this re-
duced sentence length setup: the projected mod-
els outperform the direct transfer models and multi-
source transfer gives higher accuracy than transfer-
ring only from English. Most previous work has as-
sumed gold part-of-speech tags, but as the code for
USR is publicly available we were able to train it
using the same projected part-of-speech tags used
in our models. These results are also given in Ta-
ble 4 under USR†. Again, we can see that the multi-
source systems (both direct and projected) signifi-
cantly outperform the unsupervised models.

It is not surprising that a parser transferred from
annotated resources does significantly better than
unsupervised systems since it has much more in-
formation from which to learn. The PR system of
Ganchev et al. (2009) is similar to ours as it also
projects syntax across parallel corpora. For Span-
ish we can see that the multi-source direct trans-
fer parser is better (75.1% versus 70.6%), and this
is also true for the multi-source projected parser
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←− gold-POS −→ ← pred-POS→
en-dir. en-proj. multi-dir. multi-proj. USR† USR PGI PR multi-dir. multi-proj. USR†

da 53.2 57.4 58.4 58.8 55.1 51.9 41.6 54.9 54.6 41.7
de 65.9 67.0 74.9 72.0 60.0 63.7 63.4 55.1
el 73.9 73.9 73.5 78.7 60.3 65.2 74.3 53.4
es 58.0 62.3 75.1 73.2 68.3 67.2 58.4 70.6 59.1 56.8 43.3
it 65.5 69.9 75.5 75.5 47.9 65.5 70.2 41.4
nl 67.6 72.2 58.8 70.7 44.0 45.1 56.3 67.2 38.8
pt 77.9 80.6 81.1 86.2 70.9 71.5 63.0 74.0 79.2 66.4
sv 70.4 71.3 76.0 77.6 52.6 58.3 72.0 73.9 59.4

avg 66.6 69.4 71.7 74.1 57.4 63.9 67.5 49.9

Table 4: UAS on sentences of length 10 or less without punctuation, comparing the systems presented in this work
to three representative systems from related work. en-dir./en-proj. are the direct/projected English parsers and multi-
dir./multi-proj. are the multi-source direct/projected parsers. Section 5 contains a description of the baseline systems.

(73.2%). Ganchev et al. also report results for
Bulgarian. We trained a multi-source direct trans-
fer parser for Bulgarian which obtained a score of
72.8% versus 67.8% for the PR system. If we only
use English as a source language, as in Ganchev et
al., the English direct transfer model achieves 66.1%
on Bulgarian and 69.3% on Spanish versus 67.8%
and 70.6% for PR. In this setting the English pro-
jected model gets 72.0% on Spanish. Thus, under
identical conditions the direct transfer model obtains
accuracies comparable to PR.6

Another projection based system is that of Smith
and Eisner (2009), who report results for German
(68.5%) and Spanish (64.8%) on sentences of length
15 and less inclusive of punctuation. Smith and Eis-
ner use custom splits of the data and modify a sub-
set of the dependencies. The multi-source projected
parser obtains 71.9% for German and 67.8% for
Spanish on this setup.7 If we cherry-pick the source
language the results can improve, e.g., for Spanish
we can obtain 71.7% and 70.8% by directly transfer-
ring parsers form Italian or Portuguese respectively.

6 Discussion

One fundamental point the above experiments il-
lustrate is that even for languages for which no
resources exist, simple methods for transferring
parsers work remarkably well. In particular, if

6Note that the last set of results was obtained by using the
same English training data as Ganchev et al. Using the CoNLL
2007 English data set for training, the English direct transfer
model is 63.2% for Bulgarian and 58.0% for Spanish versus
67.8% and 70.6% for PR, highlighting the large impact that dif-
ference treebank annotation standards can have.

7Data sets and evaluation criteria obtained via communica-
tions with David Smith and Jason Eisner.

one can transfer part-of-speech tags, then a large
part of transferring unlabeled dependencies has been
solved. This observation should lead to a new base-
line in unsupervised and projected grammar induc-
tion – the UAS of a delexicalized English parser.
Of course, our experiments focus strictly on Indo-
European languages. Preliminary experiments for
Arabic (ar), Chinese (zh), and Japanese (ja) suggest
similar direct transfer methods are applicable. For
example, on the CoNLL test sets, a DMV model
obtains UAS of 28.7/41.8/34.6% for ar/zh/ja re-
spectively, whereas an English direct transfer parser
obtains 32.1/53.8/32.2% and a multi-source direct
transfer parser obtains 39.9/41.7/43.3%. In this
setting only Indo-European languages are used as
source data. Thus, even across language groups di-
rect transfer is a reasonable baseline. However, this
is not necessary as treebanks are available for a num-
ber of language groups, e.g., Indo-European, Altaic,
Semitic, and Sino-Tibetan.

The second fundamental observation is that when
available, multiple sources should be used. Even
through naive multi-source methods (concatenating
data), it is possible to build a system that has compa-
rable accuracy to the single-best source for all lan-
guages. This advantage does not come simply from
having more data. In fact, if we randomly sam-
pled from the multi-source data until the training set
size was equivalent to the size of the English data,
then the results still hold (and in fact go up slightly
for some languages). This suggests that even bet-
ter transfer models can be produced by separately
weighting each of the sources depending on the tar-
get language – either weighting by hand, if we know
the language group of the target language, or auto-
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matically, if we do not. As previously mentioned,
the latter has been explored in both Søgaard (2011)
and Cohen et al. (2011).

7 Conclusions

We presented a simple, yet effective approach
for projecting parsers from languages with labeled
training data to languages without any labeled train-
ing data. Central to our approach is the idea of
delexicalizing the models, which combined with a
standardized part-of-speech tagset allows us to di-
rectly transfer models between languages. We then
use a constraint driven learning algorithm to adapt
the transferred parsers to the respective target lan-
guage, obtaining an additional 16% error reduc-
tion on average in a multi-source setting. Our final
parsers achieve state-of-the-art accuracies on eight
Indo-European languages, significantly outperform-
ing previous unsupervised and projected systems.
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Abstract

We propose a method to improve the accuracy
of parsing bilingual texts (bitexts) with the
help of statistical machine translation (SMT)
systems. Previous bitext parsing methods use
human-annotated bilingual treebanks that are
hard to obtain. Instead, our approach uses an
auto-generated bilingual treebank to produce
bilingual constraints. However, because the
auto-generated bilingual treebank contains er-
rors, the bilingual constraints are noisy. To
overcome this problem, we use large-scale
unannotated data to verify the constraints and
design a set of effective bilingual features for
parsing models based on the verified results.
The experimental results show that our new
parsers significantly outperform state-of-the-
art baselines. Moreover, our approach is still
able to provide improvement when we use a
larger monolingual treebank that results in a
much stronger baseline. Especially notable
is that our approach can be used in a purely
monolingual setting with the help of SMT.

1 Introduction

Recently there have been several studies aiming to
improve the performance of parsing bilingual texts
(bitexts) (Smith and Smith, 2004; Burkett and Klein,
2008; Huang et al., 2009; Zhao et al., 2009; Chen
et al., 2010). In bitext parsing, we can use the in-
formation based on “bilingual constraints” (Burkett
and Klein, 2008), which do not exist in monolingual
sentences. More accurate bitext parsing results can
be effectively used in the training of syntax-based
machine translation systems (Liu and Huang, 2010).

Most previous studies rely on bilingual treebanks
to provide bilingual constraints for bitext parsing.

Burkett and Klein (2008) proposed joint models on
bitexts to improve the performance on either or both
sides. Their method uses bilingual treebanks that
have human-annotated tree structures on both sides.
Huang et al. (2009) presented a method to train a
source-language parser by using the reordering in-
formation on words between the sentences on two
sides. It uses another type of bilingual treebanks
that have tree structures on the source sentences and
their human-translated sentences. Chen et al. (2010)
also used bilingual treebanks and made use of tree
structures on the target side. However, the bilingual
treebanks are hard to obtain, partly because of the
high cost of human translation. Thus, in their experi-
ments, they applied their methods to a small data set,
the manually translated portion of the Chinese Tree-
bank (CTB) which contains only about 3,000 sen-
tences. On the other hand, many large-scale mono-
lingual treebanks exist, such as the Penn English
Treebank (PTB) (Marcus et al., 1993) (about 40,000
sentences in Version 3) and the latest version of CTB
(over 50,000 sentences in Version 7).

In this paper, we propose a bitext parsing ap-
proach in which we produce the bilingual constraints
on existing monolingual treebanks with the help of
SMT systems. In other words, we aim to improve
source-language parsing with the help of automatic
translations.

In our approach, we first use an SMT system
to translate the sentences of a source monolingual
treebank into the target language. Then, the target
sentences are parsed by a parser trained on a tar-
get monolingual treebank. We then obtain a bilin-
gual treebank that has human annotated trees on the
source side and auto-generated trees on the target
side. Although the sentences and parse trees on the
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target side are not perfect, we expect that we can
improve bitext parsing performance by using this
newly auto-generated bilingual treebank. We build
word alignment links automatically using a word
alignment tool. Then we can produce a set of bilin-
gual constraints between the two sides.

Because the translation, parsing, and word align-
ment are done automatically, the constraints are not
reliable. To overcome this problem, we verify the
constraints by using large-scale unannotated mono-
lingual sentences and bilingual sentence pairs. Fi-
nally, we design a set of bilingual features based on
the verified results for parsing models.

Our approach uses existing resources including
monolingual treebanks to train monolingual parsers
on both sides, bilingual unannotated data to train
SMT systems and to extract bilingual subtrees,
and target monolingual unannotated data to extract
monolingual subtrees. In summary, we make the fol-
lowing contributions:

• We propose an approach that uses an auto-
generated bilingual treebank rather than
human-annotated bilingual treebanks used in
previous studies (Burkett and Klein, 2008;
Huang et al., 2009; Chen et al., 2010). The
auto-generated bilingual treebank is built with
the help of SMT systems.

• We verify the unreliable constraints by using
the existing large-scale unannotated data and
design a set of effective bilingual features over
the verified results. Compared to Chen et al.
(2010) that also used tree structures on the tar-
get side, our approach defines the features on
the auto-translated sentences and auto-parsed
trees, while theirs generates the features by
some rules on the human-translated sentences.

• Our parser significantly outperforms state-of-
the-art baseline systems on the standard test
data of CTB containing about 3,000 sentences.
Moreover, our approach continues to achieve
improvement when we build our system us-
ing the latest version of CTB (over 50,000 sen-
tences) that results in a much stronger baseline.

• We show the possibility that we can improve
the performance even if the test set has no hu-
man translation. This means that our proposed

approach can be used in a purely monolingual
setting with the help of SMT. To our knowl-
edge, this paper is the first one that demon-
strates this widened applicability, unlike the
previous studies that assumed that the parser is
applied only on the bitexts made by humans.

Throughout this paper, we use Chinese as the
source language and English as the target language.
The rest of this paper is organized as follows. Sec-
tion 2 introduces the motivation of this work. Sec-
tion 3 briefly introduces the parsing model used in
the experiments. Section 4 describes a set of bilin-
gual features based on the bilingual constraints and
Section 5 describes how to use large-scale unanno-
tated data to verify the bilingual constraints and de-
fine another set of bilingual features based on the
verified results. Section 6 explains the experimental
results. Finally, in Section 7 we draw conclusions.

2 Motivation

Here, bitext parsing is the task of parsing source sen-
tences with the help of their corresponding transla-
tions. Figure 1-(a) shows an example of the input
of bitext parsing, where ROOT is an artificial root
token inserted at the beginning and does not depend
on any other token in the sentence, the dashed undi-
rected links are word alignment links, and the di-
rected links between words indicate that they have
a dependency relation. Given such inputs, we build
dependency trees for the source sentences. Figure
1-(b) shows the output of bitext parsing for the ex-
ample in 1-(a).

ROOT!

ta gaodu pingjia le yu lipeng zongli de huitan jieguota gaodu pingjia le!!yu lipeng zongli de!!!huitan jieguo

ROOT H hi hl d d h l f h f i h P LiROOT!!He!highly!commended!the!results!!of!!!the!conference!!!!with!!Peng Li

(a)(a)

ROOT!

ta gaodu pingjia le yu lipeng zongli de huitan jieguota gaodu pingjia le!!yu lipeng zongli de!!huitan jieguo

(b)

Figure 1: Input and output of our approach

In bitext parsing, some ambiguities exist on the
source side, but they may be unambiguous on the
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target side. These differences are expected to help
improve source-side parsing.

Suppose we have a Chinese sentence shown in
Figure 2-(a). In this sentence, there is a nomi-
nalization case (Li and Thompson, 1997) in which
the particle “的(de)/nominalizer” is placed after the
verb compound “培育(peiyu)起来(qilai)/cultivate”
to modify “技巧(jiqiao)/skill”. This nominaliza-
tion is a relative clause, but does not have a clue
about its boundary. That is, it is very hard to deter-
mine which word is the head of “技巧(jiqiao)/skill”.
The head may be “发挥(fahui)/demonstrate” or “培
育(peiyu)/cultivate”, as shown in Figure 2-(b) and
-(c), where (b) is correct.

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

PN!!!!!!!VV!!!!!!!!!DT!!!!!!!!!!!!!!!NN!!!!!!!!!!!!!!!AD!!!!!!!!!!!!!!VV!!!!!!AD!!!!!!!VV!!!!VV DEC NN!!!!CC!!!NN
(a)

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

(b)

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

(c)

Figure 2: Example of an ambiguity on the Chinese side

In its English translation (Figure 3), word “that” is
a clue indicating the relative clause which shows the
relation between “skill” and “cultivate”, as shown in
Figure 3. The figure shows that the translation can
provide useful bilingual constraints. From the de-
pendency tree on the target side, we find that the
word “skill” corresponding to “技巧(jiqiao)/skill”
depends on the word “demonstrate” corresponding
to “发挥(fahui)/demonstrate”, while the word “cul-
tivate” corresponding to “培育(peiyu)/cultivate” is a
grandchild of “skill”. This is a positive evidence for
supporting “发挥(fahui)/demonstrate” as being the
head of “技巧(jiqiao)/skill”.

The above case uses the human translation on
the target side. However, there are few human-
annotated bilingual treebanks and the existing bilin-
gual treebanks are usually small. In contrast, there
are large-scale monolingual treebanks, e.g., the PTB
and the latest version of CTB. So we want to use
existing resources to generate a bilingual treebank
with the help of SMT systems. We hope to improve
source side parsing by using this newly built bilin-
gual treebank.

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

He!hoped!that!all!the!athletes!would!!fully!demonstrate!the!strength!and!skill!that!they!cultivate!daily

Figure 3: Example of human translation

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

he!expressed!the!hope!that!all!athletes!used!to!give!full!play!to!the!country!'s!strength!and!skills!

Figure 4: Example of Moses translation

Figure 4 shows an example of a translation us-
ing a Moses-based system, where the target sen-
tence is parsed by a monolingual target parser. The
translation contains some errors, but it does contain
some correct parts that can be used for disambigua-
tion. In the figure, the word “skills” corresponding
to “技巧(jiqiao)/skill” is a grandchild of the word
“play” corresponding to “发挥(fahui)/demonstrate”.
This is a positive evidence for supporting “发
挥(fahui)/demonstrate” as being the head of “技
巧(jiqiao)/skill”.

From this example, although the sentences and
parse trees on the target side are not perfect, we
still can explore useful information to improve bitext
parsing. In this paper, we focus on how to design
a method to verify such unreliable bilingual con-
straints.

3 Parsing model

In this paper, we implement our approach based
on graph-based parsing models (McDonald and
Pereira, 2006; Carreras, 2007). Note that our ap-
proach can also be applied to transition-based pars-
ing models (Nivre, 2003; Yamada and Matsumoto,
2003).

The graph-based parsing model is to search for
the maximum spanning tree (MST) in a graph (Mc-
Donald and Pereira, 2006). The formulation defines
the score of a dependency tree to be the sum of edge
scores,
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s(x, y) =
∑

g∈y
score(w, x, g) =

∑

g∈y
w ·f(x, g) (1)

where x is an input sentence, y is a dependency
tree for x, and g is a spanning subgraph of y. f(x, g)
can be based on arbitrary features of the subgraph
and the input sequence x and the feature weight
vector w are the parameters to be learned by using
MIRA (Crammer and Singer, 2003) during training.

In our approach, we use two types of features
for the parsing model. One is monolingual fea-
tures based on the source sentences. The mono-
lingual features include the first- and second- order
features presented in McDonald and Pereira (2006)
and the parent-child-grandchild features used in Car-
reras (2007). The other one is bilingual features (de-
scribed in Sections 4 and 5) that consider the bilin-
gual constraints.

We call the parser with the monolingual features
on the source side Parsers, and the parser with the
monolingual features on the target side Parsert.

4 Original bilingual features

In this paper, we generate two types of bilingual fea-
tures, original and verified bilingual features. The
original bilingual features (described in this section)
are based on the bilingual constraints without being
verified by large-scale unannotated data. And the
verified bilingual features (described in Section 5)
are based on the bilingual constraints verified by us-
ing large-scale unannotated data.

4.1 Auto-generated bilingual treebank
Assuming that we have monolingual treebanks on
the source side, an SMT system that can translate
the source sentences into the target language, and a
Parsert trained on the target monolingual treebank.

We first translate the sentences of the source
monolingual treebank into the target language using
the SMT system. Usually, SMT systems can output
the word alignment links directly. If they can not, we
perform word alignment using some publicly avail-
able tools, such as Giza++ (Och and Ney, 2003) or
Berkeley Aligner (Liang et al., 2006; DeNero and
Klein, 2007). The translated sentences are parsed by
the Parsert. Then, we have a newly auto-generated
bilingual treebank.　

4.2 Bilingual constraint functions
In this paper, we focus on the first- and second-
order graph models (McDonald and Pereira, 2006;
Carreras, 2007). Thus we produce the constraints
for bigram (a single edge) and trigram (adjacent
edges) dependencies in the graph model. For the tri-
gram dependencies, we consider the parent-sibling
and parent-child-grandchild structures described in
McDonald and Pereira (2006) and Carreras (2007).
We leave the third-order models (Koo and Collins,
2010) for a future study.

Suppose that we have a (candidate) dependency
relation rs that can be a bigram or trigram de-
pendency. We examine whether the corresponding
words of the source words of rs have a dependency
relation rt in the target trees. We also consider the
direction of the dependency relation. The corre-
sponding word of the head should also be the head
in rt. We define a binary function for this bilingual
constraint: Fbn(rsn : rtk), where n and k refers to
the types of the dependencies (2 for bigram and 3 for
trigram). For example, in rs2 : rt3, rs2 is a bigram
dependency on the source side and rt3 is a trigram
dependency on the target side.

4.2.1 Bigram constraint function: Fb2
For rs2, we consider two types of bilingual con-

straints. The first constraint function, denoted as
Fb2(rs2 : rt2), checks if the corresponding words
also have a direct dependency relation rt2. Figure
5 shows an example, where the source word “全
体(quanti)” depends on “运动员(yundongyuan)”
and word “all” corresponding to “全体(quanti)” de-
pends on word “athletes” corresponding to “运动
员(yundongyuan)”. In this case, Fb2(rs2 : rt2) =
+. However, when the source words are “他(ta)”
and “希望(xiwang)”, this time their corresponding
words “He” and “hope” do not have a direct depen-
dency relation. In this case, Fb2(rs2 : rt2)=−.

The second constraint function, denoted as
Fb2(rs2 : rt3), checks if the corresponding words
form a parent-child-grandchild relation that often
occurs in translation (Koehn et al., 2003). Figure 6
shows an example. The source word “技巧(jiqiao)”
depends on “发挥(fahui)” while its corresponding
word “skills” indirectly depends on “play” which
corresponds to “发挥(fahui)” via “to”. In this case,
Fb2(rs2 : rt3)=+.
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ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

he!expressed!the!hope!that!all!athletes!used!to!give!full!play!to!the!country!'s!strength!and!skills!

Figure 5: Example of bilingual constraints (2to2)

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

he!expressed!the!hope!that!all!athletes!used!to!give!full!play!to!the!country!'s!strength!and!skills!

Figure 6: Example of bilingual constraints (2to3)

4.2.2 Trigram constraint function: Fb3
For a second-order relation on the source side,

we consider one type of constraint. We have three
source words that form a second-order relation and
all of them have the corresponding words. We
define function Fb3(rs3 : rt3) for this constraint.
The function checks if the corresponding words
form a trigram dependencies structure. An exam-
ple is shown in Figure 7. The source words “力
量(liliang)”, “和(he)”, and “技巧(jiqiao)” form a
parent-sibling structure, while their corresponding
words “strength”, “and”, and “skills” also form a
parent-sibling structure on the target side. In this
case, function Fb3(rs3 : rt3)=+.

ta xiwang quanti yundongyuan chongfeng fahui pingshi peiyu qilai de!!liliang he!jiqiao

he!expressed!the!hope!that!all!athletes!used!to!give!full!play!to!the!country!'s!strength!and!skills!

Figure 7: Example of bilingual constraints (3to3)

4.3 Bilingual reordering function: Fro
Huang et al. (2009) proposed features based on
reordering between languages for a shift-reduce
parser. They define the features based on word-
alignment information to verify whether the corre-
sponding words form a contiguous span to resolve
shift-reduce conflicts. We also implement similar
features in our system. For example, in Figure 1-
(a) the source span is [会谈(huitan), 结果(jieguo)],
which maps onto [results, conference]. Because no

word within this target span is aligned to a source
word outside of the source span, this span is a con-
tiguous span. In this case, function Fro = +, other-
wise Fro=−.

4.4 Original bilingual features

We define original bilingual features based on the
bilingual constraint functions and the bilingual re-
ordering function.

Table 1 lists the original features, where Dir
refers to the directions1 of the source-side dependen-
cies, Fb2 can be Fb2(rs2 : rt2) and Fb2(rs2 : rt3),
and Fb3 is Fb3(rs3 : rt3). Each line of the table
defines a feature template that is a combination of
functions.

First-order features Second-order features
〈Fro〉
〈Fb2, Dir〉 〈Fb3, Dir〉
〈Fb2, Dir, Fro〉 〈Fb3, Dir, Fro〉

Table 1: Original bilingual features

We use an example to show how to generate the
original bilingual features in practice. In Figure 4,
we want to define the bilingual features for the bi-
gram dependency (rs2) between “发挥(fahui)” and
“技巧(jiqiao)”. The corresponding words form a tri-
gram relation rt3 in the target dependency tree. The
direction of the bigram dependency is right. Then
we have feature “〈Fb2(rs2 : rt3)=+, RIGHT 〉” for
the second first-order feature template in Table 1.

5 Verified bilingual features

However, because the bilingual treebank is gener-
ated automatically, using the bilingual constraints
alone is not reliable. Therefore, in this section we
verify the constraints by using large-scale unanno-
tated data to overcome this problem. More specifi-
cally, rtk of the constraint is verified by checking a
list of target monolingual subtrees and rsn : rtk is
verified by checking a list of bilingual subtrees. The
subtrees are extracted from the large-scale unanno-
tated data. The basic idea is as follows: if the de-
pendency structures of a bilingual constraint can be
found in the list of the target monolingual subtrees

1For the second order features, Dir is the combination of
the directions of two dependencies.
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or bilingual subtrees, this constraint will probably be
reliable.

We first parse the large-scale unannotated mono-
lingual and bilingual data. Subsequently, we ex-
tract the monolingual and bilingual subtrees from
the parsed data. We then verify the bilingual con-
straints using the extracted subtrees. Finally, we
generate the bilingual features based on the verified
results for the parsing models.

5.1 Verified constraint functions

5.1.1 Monolingual target subtrees

Chen et al. (2009) proposed a simple method to
extract subtrees from large-scale monolingual data
and used them as features to improve monolingual
parsing. Following their method, we parse large
unannotated data with the Parsert and obtain the sub-
tree list (STt) on the target side. We extract two
types of subtrees: bigram (two words) subtree and
trigram (three words) subtree.

H b ht b h b k

ROOT!!He!!!!!bought!!!!!a!!!!book

He!!!!!bought bought!!book!

a book b ht b ka!!!!!book

(a) (b)

bought!!!a!!!!!book!

Figure 8: Example of monolingual subtree extraction

From the dependency tree in Figure 8-(a), we ob-
tain the subtrees shown in Figure 8-(b) where the
first three are bigram subtrees and the last one is
a trigram subtree. After extraction, we obtain the
subtree list STt that includes two sets, one for bi-
gram subtrees, and the other one for trigram sub-
trees. We remove the subtrees occurring only once
in the data. For each set, we assign labels to the
extracted subtrees according to their frequencies by
using the same method as that of Chen et al. (2009).
If the frequency of a subtree is in the top 10% in the
corresponding set, it is labeled HF. If the frequency
is between the top 20% and 30%, it is labeled MF.
We assign the label LF to the remaining subtrees.
We use Type(stt) to refer to the label of a subtree,
stt.

5.1.2 Verified target constraint function:
Fvt(rtk)

We use the extracted target subtrees to verify the
rtk of the bilingual constraints. In fact, rtk is a can-
didate subtree. If the rtk is included in STt, func-
tion Fvt(rtk) = Type(rtk), otherwise Fvt(rtk) =
ZERO. For example, in Figure 5 the bigram struc-
ture of “all” and “athletes” can form a bigram sub-
tree that is included STt and its label is HF. In this
case, Fvt(rt2)= HF .

5.1.3 Bilingual subtrees
We extract bilingual subtrees from a bilingual

corpus, which is parsed by the Parsers and Parsert

on both sides. We extract three types of bilingual
subtrees: bigram-bigram (stbi22), bigram-trigram
(stbi23), and trigram-trigram (stbi33) subtrees. For
example, stbi22 consists of a bigram subtree on the
source side and a bigram subtree on the target side.

ROOT!

ta shi yi ming xuesheng

ROOT!!He!!!!!is!!!!!a!!!!!student

He!!!!!is is!!!!!student

(a) (b)

Figure 9: Example of bilingual subtree extraction

From the dependency tree in Figure 9-(a), we
obtain the bilingual subtrees shown in Figure 9-
(b). Figure 9-(b) shows the extracted bigram-bigram
bilingual subtrees. After extraction, we obtain the
bilingual subtrees STbi. We remove the subtrees oc-
curring only once in the data.

5.1.4 Verified bilingual constraint function:
Fvb(rbink)

We use the extracted bilingual subtrees to verify
the rsn : rtk (rbink in short) of the bilingual con-
straints. rsn and rtk form a candidate bilingual sub-
tree stbink. If the stbink is included in STbi, function
Fvb(rbink)=+, otherwise Fvb(rbink)=−.

5.2 Verified bilingual features
Then, we define another set of bilingual features by
combining the verified constraint functions. We call
these bilingual features ‘verified bilingual features’.
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Table 2 lists the verified bilingual features used in
our experiments, where each line defines a feature
template that is a combination of functions.

We use an example to show how to generate the
verified bilingual features in practice. In Figure 4,
we want to define the verified features for the bi-
gram dependency (rs2) between “发挥(fahui)” and
“技巧(jiqiao)”. The corresponding words form a
trigram relation rt3. The direction of the bigram
dependency is right. Suppose we can find rt3 in
STt with label MF and can not find the candidate
bilingual subtree in STbi. Then we have feature
“〈Fb2(rs2 : rt3) = +, Fvt(rt3) = MF,RIGHT 〉”
for the third first-order feature template and feature
“〈Fb2(rs2 : rt3) = +, Fvb(rbi23) =−, RIGHT 〉” for
the fifth in Table 2.

First-order features Second-order features
〈Fro〉
〈Fb2, Fvt(rtk)〉 〈Fb3, Fvt(rtk)〉
〈Fb2, Fvt(rtk), Dir〉 〈Fb3, Fvt(rtk), Dir〉
〈Fb2, Fvb(rbink)〉 〈Fb3, Fvb(rbink)〉
〈Fb2, Fvb(rbink), Dir〉 〈Fb3, Fvb(rbink), Dir〉
〈Fb2, Fro, Fvb(rbink)〉

Table 2: Verified bilingual features

6 Experiments

We evaluated the proposed method on the translated
portion of the Chinese Treebank V2 (referred to as
CTB2tp) (Bies et al., 2007), articles 1-325 of CTB,
which have English translations with gold-standard
parse trees. The tool “Penn2Malt”2 was used to con-
vert the data into dependency structures. Following
the studies of Burkett and Klein (2008), Huang et
al. (2009) and Chen et al. (2010), we used the ex-
act same data split: 1-270 for training, 301-325 for
development, and 271-300 for testing. Note that we
did not use human translation on the English side
of this bilingual treebank to train our new parsers.
For testing, we used two settings: a test with hu-
man translation and another with auto-translation.
To process unannotated data, we trained a first-order
Parsers on the training data.

To prove that the proposed method can work on
larger monolingual treebanks, we also tested our

2http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html

methods on the CTB7 (LDC2010T07) that includes
much more sentences than CTB2tp. We used arti-
cles 301-325 for development, 271-300 for testing,
and the other articles for training. That is, we eval-
uated the systems on the same test data as CTB2tp.
Table 3 shows the statistical information on the data
sets.

Train Dev Test
CTB2tp 2,745 273 290
CTB7 50,747 273 290

Table 3: Number of sentences of data sets used

We built Chinese-to-English SMT systems based
on Moses3. Minimum error rate training (MERT)
with respect to BLEU score was used to tune the de-
coder’s parameters. The translation model was cre-
ated from the FBIS corpus (LDC2003E14). We used
SRILM4 to train a 5-gram language model. The lan-
guage model was trained on the target side of the
FBIS corpus and the Xinhua news in English Gi-
gaword corpus (LDC2009T13). The development
and test sets were from NIST MT08 evaluation cam-
paign5. We then used the SMT systems to translate
the training data of CTB2tp and CTB7.

To directly compare with the results of Huang
et al. (2009) and Chen et al. (2010), we also used
the same word alignment tool, Berkeley Aligner
(Liang et al., 2006; DeNero and Klein, 2007), to
perform word alignment for CTB2tp and CTB7.
We trained a Berkeley Aligner on the FBIS corpus
(LDC2003E14). We removed notoriously bad links
in {a, an, the}×{的(de),了(le)} following the work
of Huang et al. (2009).

To train an English parser, we used the PTB
(Marcus et al., 1993) in our experiments and the
tool “Penn2Malt” to convert the data. We split the
data into a training set (sections 2-21), a develop-
ment set (section 22), and a test set (section 23).
We trained first-order and second-order Parsert on
the training data. The unlabeled attachment score
(UAS) of the second-order Parsert was 91.92, in-
dicating state-of-the-art accuracy on the test data.
We used the second-order Parsert to parse the auto-
translated/human-made target sentences in the CTB

3http://www.statmt.org/moses/
4http://www.speech.sri.com/projects/srilm/download.html
5http://www.itl.nist.gov/iad/mig//tests/mt/2008/
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data.
To extract English subtrees, we used the BLLIP

corpus (Charniak et al., 2000) that contains about
43 million words of WSJ texts. We used the MX-
POST tagger (Ratnaparkhi, 1996) trained on train-
ing data to assign POS tags and used the first-order
Parsert to process the sentences of the BLLIP cor-
pus. To extract bilingual subtrees, we used the FBIS
corpus and an additional bilingual corpus contain-
ing 800,000 sentence pairs from the training data of
NIST MT08 evaluation campaign. On the Chinese
side, we used the morphological analyzer described
in (Kruengkrai et al., 2009) trained on the training
data of CTBtp to perform word segmentation and
POS tagging and used the first-order Parsers to parse
all the sentences in the data. On the English side, we
used the same procedure as we did for the BLLIP
corpus. Word alignment was performed using the
Berkeley Aligner.

We reported the parser quality by the UAS, i.e.,
the percentage of tokens (excluding all punctuation
tokens) with correct HEADs.

6.1 Experimental settings
For baseline systems, we used the monolingual fea-
tures mentioned in Section 3. We called these fea-
tures basic features. To compare the results of (Bur-
kett and Klein, 2008; Huang et al., 2009; Chen et
al., 2010), we used the test data with human trans-
lation in the following three experiments. The tar-
get sentences were parsed by using the second-order
Parsert. We used PAG to refer to our parsers trained
on the auto-generated bilingual treebank.

6.2 Training with CTB2tp

Order-1 Order-2
Baseline 84.35 87.20
PAGo 84.71(+0.36) 87.85(+0.65)
PAG 85.37(+1.02) 88.49(+1.29)
ORACLE 85.79(+1.44) 88.87(+1.67)

Table 4: Results of training with CTB2tp

First, we conducted the experiments on the stan-
dard data set of CTB2tp, which was also used in
other studies (Burkett and Klein, 2008; Huang et al.,
2009; Chen et al., 2010). The results are given in
Table 4, where Baseline refers to the system with

the basic features, PAGo refers to that after adding
the original bilingual features of Table 1 to Baseline,
PAG refers to that after adding the verified bilingual
features of Table 2 to Baseline, and ORACLE6 refers
to using human-translation for training data with
adding the features of Table 1. We obtained an ab-
solute improvement of 1.02 points for the first-order
model and 1.29 points for the second-order model by
adding the verified bilingual features. The improve-
ments of the final systems (PAG) over the Baselines
were significant in McNemar’s Test (p < 0.001 for
the first-order model and p < 0.0001 for the second-
order model). If we used the original bilingual fea-
tures (PAGo), the system dropped 0.66 points for the
first-order and 0.64 points for the second-order com-
pared with system PAG. This indicated that the ver-
ified bilingual constraints did provide useful infor-
mation for the parsing models.

We also found that PAG was about 0.3 points
lower than ORACLE. The reason is mainly due
to the imperfect translations, although we used
the large-scale subtree lists to help verify the con-
straints. We tried adding the features of Table 2 to
the ORACLE system, but the results were worse.
These facts indicated that our approach obtained the
benefits from the verified constraints, while using
the bilingual constraints alone was enough for OR-
ACLE.

6.3 Training with CTB7
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Figure 10: Results of using different sizes of training data

Here, we demonstrate that our approach is still
able to provide improvement, even if we use larger

6Note that we also used the tool to perform the word align-
ment automatically.
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Baseline D10 D20 D50 D100 GTran
BLEU n/a 14.71 15.84 16.92 17.95 n/a
UAS 87.20 87.63 87.67 88.20 88.49 88.58

Table 5: Results of using different translations

training data that result in strong baseline systems.
We incrementally increased the training sentences
from the CTB7. Figure 10 shows the results of us-
ing different sizes of CTB7 training data, where the
numbers of the x-axis refer to the sentence numbers
of training data used, Baseline1 and Baseline2 re-
fer to the first- and second-order baseline systems,
and PAG1 and PAG2 refer to our first- and second-
order systems. The figure indicated that our sys-
tem always outperformed the baseline systems. For
small data sizes, our system performed much better
than the baselines. For example, when using 5,000
sentences, our second-order system provided a 1.26
points improvement over the second-order baseline.
Finally, when we used all of the CTB7 training
data, our system achieved 91.66 for the second-order
model, while the baseline achieved 91.10.

6.4 With different settings of SMT systems

We investigated the effects of different settings of
SMT systems. We randomly selected 10%, 20%,
and 50% of FBIS to train the Moses systems and
used them to translate CTB2tp. The results are in
Table 5, where D10, D20, D50, and D100 refer to
the system with 10%, 20%, 50%, and 100% data re-
spectively. For reference, we also used the Google-
translate online system7, indicated as GTran in the
table, to translate the CTB2tp.

From the table, we found that our system outper-
formed the Baseline even if we used only 10% of the
FBIS corpus. The BLEU and UAS scores became
higher, when we used more data of the FBIS corpus.
And the gaps among the results of D50, D100, and
GTran were small. This indicated that our approach
was very robust to the noise produced by the SMT
systems.

6.5 Testing with auto-translation

We also translated the test data into English using
the Moses system and tested the parsers on the new

7http://translate.google.com/

test data. Table 6 shows the results. The results
showed that PAG outperformed the baseline systems
for both the first- and second-order models. This
indicated that our approach can provide improve-
ment in a purely monolingual setting with the help
of SMT.

Order-1 Order-2
Baseline 84.35 87.20
PAG 84.88(+0.53) 87.89(+0.69)

Table 6: Results of testing with auto-translation (training
with CTB2tp)

6.6 Comparison results

With CTB2tp With CTB7
Type System UAS System UAS
M Baseline 87.20 Baseline 91.10

HA
Huang2009 86.3 n/a
Chen2010BI 88.56
Chen2010ALL 90.13

AG PAG 88.49 PAG 91.66
PAG+STs 89.75

Table 7: Comparison of our results with other pre-
vious reported systems. Type M denotes training on
monolingual treebank. Types HA and AG denote training
on human-annotated and auto-generated bilingual tree-
banks respectively.

We compared our results with the results reported
previously for the same data. Table 7 lists the re-
sults, where Huang2009 refers to the result of Huang
et al. (2009), Chen2010BI refers to the result of
using bilingual features in Chen et al. (2010), and
Chen2010ALL refers to the result of using all of
the features in Chen et al. (2010). The results
showed that our new parser achieved better accuracy
than Huang2009 and comparable to Chen2010BI .
To achieve higher performance, we also added the
source subtree features (Chen et al., 2009) to our
system: PAG+STs. The new result is close to
Chen2010ALL. Compared with the approaches of
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Huang et al. (2009) and Chen et al. (2010), our
approach used an auto-generated bilingual treebank
while theirs used a human-annotated bilingual tree-
bank. By using all of the training data of CTB7, we
obtained a more powerful baseline that performed
much better than the previous reported results. Our
parser achieved 91.66, much higher accuracy than
the others.

7 Conclusion

We have presented a simple yet effective approach
to improve bitext parsing with the help of SMT sys-
tems. Although we trained our parser on an auto-
generated bilingual treebank, we achieved an accu-
racy comparable to the systems trained on human-
annotated bilingual treebanks on the standard test
data. Moreover, our approach continued to pro-
vide improvement over the baseline systems when
we used a much larger monolingual treebank (over
50,000 sentences) where target human translations
are not available and very hard to construct. We also
demonstrated that the proposed approach can be ef-
fective in a purely monolingual setting with the help
of SMT.
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Abstract

We present a novel approach to Data-Oriented
Parsing (DOP). Like other DOP models, our
parser utilizes syntactic fragments of arbitrary
size from a treebank to analyze new sentences,
but, crucially, it uses only those which are
encountered at least twice. This criterion al-
lows us to work with a relatively small but
representative set of fragments, which can be
employed as the symbolic backbone of sev-
eral probabilistic generative models. For pars-
ing we define a transform-backtransform ap-
proach that allows us to use standard PCFG
technology, making our results easily replica-
ble. According to standard Parseval metrics,
our best model is on par with many state-of-
the-art parsers, while offering some comple-
mentary benefits: a simple generative proba-
bility model, and an explicit representation of
the larger units of grammar.

1 Introduction

Data-oriented Parsing (DOP) is an approach to
wide-coverage parsing based on assigning structures
to new sentences using fragments of variable size
extracted from a treebank. It was first proposed by
Scha in 1990 and formalized by Bod (1992), and
preceded many developments in statistical parsing
(e.g., the “treebank grammars” of Charniak 1997)
and linguistic theory (e.g., the current popularity
of “constructions”, Jackendoff 2002). A rich lit-
erature on DOP has emerged since, yielding state-
of-the-art results on the Penn treebank benchmark
test (Bod, 2001; Bansal and Klein, 2010) and in-
spiring developments in related frameworks includ-

ing tree kernels (Collins and Duffy, 2002), reranking
(Charniak and Johnson, 2005) and Bayesian adaptor
and fragment grammars (e.g., Johnson et al., 2007;
O’Donnell et al., 2009; Cohn et al., 2010). By for-
malizing the idea of using large fragments of earlier
language experience to analyze new sentences, DOP
captures an important property of language cogni-
tion that has shaped natural language. It therefore
complements approaches that have focused on prop-
erties like lexicalization or incrementality, and might
bring supplementary strengths in other NLP tasks.

Early versions of DOP (e.g., Bod et al., 2003)
aimed at extracting all subtrees of all trees in the
treebank. The total number of constructions, how-
ever, is prohibitively large for non-trivial treebanks:
it grows exponentially with the length of the sen-
tences, yielding the astronomically large number of
approximately 1048 for section 2-21 of the Penn
WSJ corpus. These models thus rely on a big sample
of fragments, which inevitably includes a substan-
tial portion of overspecialized constructions. Later
DOP models have used the Goodman transforma-
tion (Goodman, 1996, 2003) to obtain a compact
representation of all fragments in the treebank (Bod,
2003; Bansal and Klein, 2010). In this case the
grammatical constructions are no longer explicitly
represented, and substantial engineering effort is
needed to optimally tune the models and make them
efficient.

In this paper we present a novel DOP model
(Double-DOP) in which we extract a restricted yet
representative subset of fragments: those recurring
at least twice in the treebank. The explicit represen-
tation of the fragments allows us to derive simple
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ways of estimating probabilistic models on top of the
symbolic grammar. This and other implementation
choices aim at making the methodology transparent
and easily replicable. The accuracy of Double-DOP
is well within the range of state-of-the-art parsers
currently used in other NLP-tasks, while offering the
additional benefits of a simple generative probability
model and an explicit representation of grammatical
constructions.

The contributions of this paper are summarized as
follows: (i) we describe an efficient tree-kernel algo-
rithm which allows us to extract all recurring frag-
ments, reducing the set of potential elementary units
from the astronomical 1048 to around 106. (ii) We
implement and compare different DOP estimation
techniques to induce a probability model (PTSG)
on top of the extracted symbolic grammar. (iii)
We present a simple transformation of the extracted
fragments into CFG-rules that allows us to use off-
the-shelf PCFG parsing and inference. (iv) We in-
tegrate Double-DOP with recent state-splitting ap-
proaches (Petrov et al., 2006), yielding an even more
accurate parser and a better understanding of the re-
lation between DOP and state-splitting.

The rest of the paper is structured as follows. In
section 2 we describe the symbolic backbone of the
grammar formalism that we will use for parsing.
In section 3 we illustrate the probabilistic exten-
sion of the grammar, including our transformation
of PTSGs to PCFGs that allows us to use a standard
PCFG parser, and a different transform that allows
us to use a standard implementation of the inside-
outside algorithm. In section 4 we present the ex-
perimental setup and the results.

2 The symbolic backbone

The basic idea behind DOP is to allow arbitrarily
large fragments from a treebank to be the elemen-
tary units of production of the grammar. Fragments
can be combined through substitution to obtain the
phrase-structure tree of a new sentence. Figure 1
shows an example of a complete syntactic tree ob-
tained by combining three elementary fragments. As
in previous work, two fragments fi and fj can be
combined (fi ◦ fj) only if the leftmost substitution
site X↓ in fi has the same label as the root node of
fj ; in this case the resulting tree will correspond to

fi with fj replacing X . The DOP formalism is dis-
cussed in detail in e.g., Bod et al. (2003).
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Figure 1: An example of a derivation of a complete syn-
tactic structure (below) obtained combining three ele-
mentary fragments (above) by means of the substitution
operation ◦. Substitution sites are marked with ↓.

2.1 Finding Recurring Fragments

The first step to build a DOP model is to define its
symbolic grammar, i.e. the set of elementary frag-
ments in the model. In the current work we explic-
itly extract a subset of fragments from the training
treebank. To limit the fragment set size, we use a
simple but heretofore unexplored constraint: we ex-
tract only those fragments that occur two or more
times in the treebank1. Extracting this particular
set of fragments is not trivial, though: a naive ap-
proach that filters a complete table of fragments to-
gether with their frequencies fails because that set, in
a reasonably sized treebank, is astronomically large.
Instead, we use a dynamic programming algorithm
based on tree-kernel techniques (Collins and Duffy,
2001; Moschitti, 2006; Sangati et al., 2010).

The algorithm iterates over every pair of trees in

1More precisely we extract only the largest shared fragments
for all pairs of trees in the treebank. All subtrees of these ex-
tracted fragments necessarily also occur at least twice, but they
are only explicitly represented in our extracted set if they hap-
pen to form a largest shared fragment from another pair of trees.
Hence, if a large tree occurs twice in the treebank the algorithm
will extract from this pair only the full tree as a fragment and
not all its (exponentially many) subtrees.
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highlighted cells in the chart are the ones which contribute to extract the shared fragment. The marked cells are those
for which the corresponding nodes in the two tree have equivalent labels but differ in their lists of child nodes.

the treebank to look for common fragments. Fig-
ure 2 shows an example of a pair of trees �α, β� be-
ing compared. The algorithm builds a chart M with
one column for every indexed non-terminal node αi

in α, and one row for every indexed non-terminal
node βj in β. Each cell M�i, j� identifies a set of in-
dices corresponding to the largest fragment in com-
mon between the two trees starting from αi and βj .
This set is empty if αi and βj differ in their labels,
or they don’t have the same list of child nodes. Oth-
erwise (if both the labels and the lists of children
match) the set is computed recursively as follows:

M�i, j� = {αi} ∪
 �

c={1,2,...,|ch(α)|}
M�ch(αi, c), ch(βj , c)�


 (1)

where ch(α) returns the indices of α’s children, and
ch(α, c) the index of its cth child.

After filling the chart, the algorithm extracts the
set of recurring fragments, and stores them in a ta-
ble to keep track of their counts. This is done by
converting back each fragment implicitly defined in
every cell-set2, and filtering out those that are prop-
erly contained in others.

In a second pass over the treebank, exact counts
are obtained for each fragment in the extracted set.

2A cell-set containing a single index corresponds to the frag-
ment including the node with that index together with all its
children.

Parse trees in the training corpus are not necessarily
covered entirely by recurring fragments; to ensure
coverage, we also include in the symbolic backbone
of our Double-DOP model all PCFG-productions
not included in the set of extracted fragments.

2.2 Comparison with previous DOP work

Explicit grammars The number of recurring frag-
ments in our symbolic grammar, extracted from
the training sections of the Penn WSJ treebank3, is
around 1 million, and thus is significantly lower than
previous work extracting explicit fragments (e.g.,
Bod, 2001, used more than 5 million fragments up
to depth 14).

When looking at the extracted fragments we ask
if we could have predicted which fragments occur
twice or more. Figure 3 attempts to tackle this ques-
tion by reporting some statistics on the extracted
fragments. The majority of fragments are rather
small with a limited number of words or substitution
sites in the frontier. Yet, there is a significant por-
tion of fragments, in the tail of the distribution, with
more than 10 words or substitution sites. Since the
space of all fragments with such characteristics is
enormously large, selecting big recurring fragments
using random sampling technique is like finding a
needle in a haystack. Hence, random sampling pro-
cesses (like Bod, 2001), will tend to represent fre-

3This is after the treebank has been preprocessed. See also
section 4.
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the treebank to look for common fragments. Fig-
ure 2 shows an example of a pair of trees �α, β� be-
ing compared. The algorithm builds a chart M with
one column for every indexed non-terminal node αi

in α, and one row for every indexed non-terminal
node βj in β. Each cell M�i, j� identifies a set of in-
dices corresponding to the largest fragment in com-
mon between the two trees starting from αi and βj .
This set is empty if αi and βj differ in their labels,
or they don’t have the same list of child nodes. Oth-
erwise (if both the labels and the lists of children
match) the set is computed recursively as follows:

M�i, j� = {αi} ∪
 �

c={1,2,...,|ch(α)|}
M�ch(αi, c), ch(βj , c)�


 (1)

where ch(α) returns the indices of α’s children, and
ch(α, c) the index of its cth child.

After filling the chart, the algorithm extracts the
set of recurring fragments, and stores them in a ta-
ble to keep track of their counts. This is done by
converting back each fragment implicitly defined in
every cell-set2, and filtering out those that are prop-
erly contained in others.

In a second pass over the treebank, exact counts
are obtained for each fragment in the extracted set.

2A cell-set containing a single index corresponds to the frag-
ment including the node with that index together with all its
children.

Parse trees in the training corpus are not necessarily
covered entirely by recurring fragments; to ensure
coverage, we also include in the symbolic backbone
of our Double-DOP model all PCFG-productions
not included in the set of extracted fragments.

2.2 Comparison with previous DOP work

Explicit grammars The number of recurring frag-
ments in our symbolic grammar, extracted from
the training sections of the Penn WSJ treebank3, is
around 1 million, and thus is significantly lower than
previous work extracting explicit fragments (e.g.,
Bod, 2001, used more than 5 million fragments up
to depth 14).

When looking at the extracted fragments we ask
if we could have predicted which fragments occur
twice or more. Figure 3 attempts to tackle this ques-
tion by reporting some statistics on the extracted
fragments. The majority of fragments are rather
small with a limited number of words or substitution
sites in the frontier. Yet, there is a significant por-
tion of fragments, in the tail of the distribution, with
more than 10 words or substitution sites. Since the
space of all fragments with such characteristics is
enormously large, selecting big recurring fragments
using random sampling technique is like finding a
needle in a haystack. Hence, random sampling pro-
cesses (like Bod, 2001), will tend to represent fre-

3This is after the treebank has been preprocessed. See also
section 4.
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the treebank to look for common fragments. Fig-
ure 2 shows an example of a pair of trees 〈α, β〉 be-
ing compared. The algorithm builds a chartM with
one column for every indexed non-terminal node αi
in α, and one row for every indexed non-terminal
node βj in β. Each cellM〈i, j〉 identifies a set of in-
dices corresponding to the largest fragment in com-
mon between the two trees starting from αi and βj .
This set is empty if αi and βj differ in their labels,
or they don’t have the same list of child nodes. Oth-
erwise (if both the labels and the lists of children
match) the set is computed recursively as follows:

M〈i, j〉 = {αi} ∪
 ⋃

c={1,2,...,|ch(α)|}
M〈ch(αi, c), ch(βj , c)〉


 (1)

where ch(α) returns the indices of α’s children, and
ch(α, c) the index of its cth child.

After filling the chart, the algorithm extracts the
set of recurring fragments, and stores them in a ta-
ble to keep track of their counts. This is done by
converting back each fragment implicitly defined in
every cell-set2, and filtering out those that are prop-
erly contained in others.

In a second pass over the treebank, exact counts
are obtained for each fragment in the extracted set.

2A cell-set containing a single index corresponds to the frag-
ment including the node with that index together with all its
children.

Parse trees in the training corpus are not necessarily
covered entirely by recurring fragments; to ensure
coverage, we also include in the symbolic backbone
of our Double-DOP model all PCFG-productions
not included in the set of extracted fragments.

2.2 Comparison with previous DOP work

Explicit grammars The number of recurring frag-
ments in our symbolic grammar, extracted from
the training sections of the Penn WSJ treebank3, is
around 1 million, and thus is significantly lower than
previous work extracting explicit fragments (e.g.,
Bod, 2001, used more than 5 million fragments up
to depth 14).

When looking at the extracted fragments we ask
if we could have predicted which fragments occur
twice or more. Figure 3 attempts to tackle this ques-
tion by reporting some statistics on the extracted
fragments. The majority of fragments are rather
small with a limited number of words or substitution
sites in the frontier. Yet, there is a significant por-
tion of fragments, in the tail of the distribution, with
more than 10 words or substitution sites. Since the
space of all fragments with such characteristics is
enormously large, selecting big recurring fragments
using random sampling technique is like finding a
needle in a haystack. Hence, random sampling pro-
cesses (like Bod, 2001), will tend to represent fre-

3This is after the treebank has been preprocessed. See also
section 4.
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quent recurring constructions such as from NP to
NP or whether S or not, together with infrequent
overspecialized fragments like from Houston to NP,
while missing large generic constructions such as
everything you always wanted to know about NP but
were afraid to ask. These large constructions are
excluded completely by models that only allow ele-
mentary trees up to a certain depth (typically 4 or 5)
into the symbolic grammar (Zollmann and Sima’an,
2005; Zuidema, 2007; Borensztajn et al., 2009), or
only elementary trees with exactly one lexical an-
chor (Sangati and Zuidema, 2009).
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Figure 3: Distribution of the recurring fragments types
according to several features: depth, number of words,
and number of substitution sites. Their corresponding
curves peak at 4 (depth), 1 (words), and 4 (substitution
sites).

Implicit grammars Goodman (1996, 2003) de-
fined a transformation for some versions of DOP to
an equivalent PCFG-based model, with the number
of rules extracted from each parse tree linear in the
size of the trees. This transform, representing larger
fragments only implicitly, is used in most recent
DOP parsers (e.g., Bod, 2003; Bansal and Klein,
2010). Bod has promoted the Goodman transform as
the solution to the computational challenges of DOP
(e.g., Bod, 2003); it’s important to realize, how-
ever, that the resulting grammars are still very large:
WSJ sections 2-21 yield about 2.5 million rules in
the basic version of Goodman’s transform. More-
over, the transformed grammars differ from untrans-
formed DOP grammars in that larger fragments are
no longer explicitly represented. Rather, informa-

tion about their frequency is distributed over many
CFG-rules: if a construction occurs n times and con-
tains m context-free productions, Goodman’s trans-
form uses the weights of 7nm + m rules to encode
this fact. Thus, the information that the idiomatic
fragment (PP (IN “out”) (PP (IN “of”) (NP (NN
“town”))))) occurs 3 times in WSJ sections 2-21, is
distributed over 132 rules. This way, an attractive
feature of DOP, viz. the explicit representation of
the ‘productive units’ of language, is lost4.

In addition, grammars that implicitly encode all
fragments found in a treebank are strongly biased to
over-represent big constructions: the great majority
of the entire set of fragments belongs in fact to the
largest tree in the treebank5. DOP models relying on
Goodman’s transform, need therefore to counteract
this tendency. Bansal and Klein (2010), for instance,
rely on a sophisticated tuning technique to correctly
adjust the weights of the rules in the grammar. In
our Double-DOP approach, instead, the number of
fragments extracted from each tree varies much less
(it ranges between 4 and 1,759). This comparison is
shown in figure 4.

3 The probabilistic model

Like CFG grammars, our symbolic model produces
extremely many parse trees for a given test sentence.
We therefore need to disambiguate between the pos-
sible parses by means of a probability model that as-
signs probabilities to fragments, and defines a proper
distribution over the set of possible full parse trees.
For every nonterminal X in the treebank we have:

∑

f∈FX

p(f) = 1 (2)

where FX is the set of fragments in our sym-
bolic grammar rooted in X . A derivation d =
f1, f2, . . . , fn of t is a sequence of the fragments that
through left-most substitution produces t. The prob-
ability of a derivation is computed as the product of

4Bansal and Klein (2010) address this issue for contigu-
ous constructions by extending the Goodman transform with
a ‘Packed Graph Encoding’ for fragments that “bottom out in
terminals”. However, constructions with variable slots, such as
whether S or not, are left unchanged.

5In fact, the number of extracted fragments increase expo-
nentially with the size of the tree.
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the probability of each of its fragments.

P (d) =
∏

f∈d
p(f) (3)

In section 3.2 we describe ways of obtaining dif-
ferent probability distributions over the fragments in
our grammar. In the following section we assume a
given probabilistic model, and illustrate how to use
standard PCFG parsing.

3.1 Parsing
It is possible to define a simple transform of our
probabilistic fragment grammar, such that off-the-
shelf parsers can be used. In order to perform
the PTSG/PCFG conversion, every fragment in our
grammar must be mapped to a CFG rule which will
keep the same probability as the original fragment.
The corresponding rule will have as the left hand
side the root of the fragment and as the right hand
side its yield, i.e., a sequence of terminals and non-
terminals (substitution sites).

It might occur that several fragments are mapped
to the same CFG rule6. These are interesting cases
of syntactic ambiguity as shown in figure 5. In order
to resolve this problem we need to map each am-
biguous fragment to two unique CFG rules chained

6In our binarized treebank we have 31,465 fragments types
that are ambiguous in this sense.

by a unique artificial node, as shown at the bottom
of the same figure. To the first CFG rule in the chain
we assign the probability of the fragment, while the
second will receive probability 1, so the product
gives back the original probability. The ambiguous
and unambiguous PTSG/PCFG mappings need to be
stored in a table, in order to convert back the com-
pressed CFG derivations to the original PTSG model
after parsing.

Such a transformed PCFG will generate the same
derivations as the original PTSG grammar with iden-
tical probabilities. In our experiment we use a stan-
dard PCFG parser to produce a list of k-best Viterbi
derivations. These, in turn, will be used to maximize
possible objectives as described in section 3.3.
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Figure 5: Above: example of 2 ambiguous fragments
mapping to the same CFG rule VP → VBD DT NN
“with” NP. The first fragment occurs 5 times in the train-
ing treebank, (e.g. in the sentence was an executive with
a manufacturing concern) while the second fragment oc-
curs 4 times (e.g. in the sentence began this campaign
with such high hopes). Below: the two pairs of CFG rules
that are used to map the two fragments to separate CFG
derivations.

3.2 Inducing probability distributions
Relative Frequency Estimate (RFE) The sim-
plest way to assign probabilities to fragments is to
make them proportional to their counts7 in the train-
ing set. When enforcing equation 2, that gives the

7We refer to the counts of each fragment as returned by our
extraction algorithm in section 2.1.
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Relative Frequency Estimate (RFE):

pRFE(f) =
count(f)∑

f ′∈Froot(f)
count(f ′)

(4)

Unlike RFE for PCFGs, however, the RFE for
PTSGs has no clear probabilistic interpretation. In
particular, it does not yield the maximum likelihood
solution, and when used as an estimator for an all-
fragments grammar, it is strongly biased since it as-
signs the great majority of the probability mass to
big fragments (Johnson, 2002). As illustrated in fig-
ure 4 this bias is much weaker when restricting the
set of fragments with our approach. Although this
does not solve all theoretical issues, it makes RFE a
reasonable first choice again.

Equal Weights Estimate (EWE) Various other
ways of choosing the weights of a DOP grammar
have been worked out. The best empirical results
have been reported by Bod (2003) with the EWE
proposed by Goodman (2003). Goodman defined it
for grammars in the Goodman transform, but for ex-
plicit grammars it becomes:

wEWE(f) =
∑

t∈TB

count(f, t)

|{f ′ ∈ t}| (5)

pEWE(f) =
wEWE(f)∑

f ′∈Froot(f)
wEWE(f ′)

(6)

where the first sum is over all parse trees t in the tree-
bank (TB), count(f, t) gives the number of times
fragment f occurs in t, and |{f ′ ∈ t}| is the total
number of subtrees of t that were included in the
symbolic grammar.

Maximum Likelihood (ML) For reestimation,
we can aim at maximizing the likelihood (ML) of
the treebank. For this, it turns out that we can de-
fine another transformation of our PTSG, such that
we can apply standard Inside-Outside algorithm for
PCFGs (Lari and Young, 1990). The original ver-
sion of IO is defined over string rewriting PCFGs,
and maximizes the likelihood of the training set con-
sisting of plain sentences. Reestimation shifts prob-
ability mass between alternative parse trees for a
sentence. In contrast, our grammars consist of frag-
ments of various size, and our training set consists
of parse trees. Reestimation here shifts probability
mass between alternative derivations for a parse tree.

Our transformation approach is illustrated with an
example in figure 6. In step (b) the fragments in
the grammar as well as the original parse trees in
the treebank are “flattened” into bracket notation. In
step (c) each fragment is transformed into a CFG
rule in the transformed meta-grammar, whose right-
hand side is constituted by the bracket notation of
the fragment. Each substitution site X↓ is raised to
a meta-nonterminal X ′, and all other symbols, in-
cluding parentheses, become meta-terminals. The
left-hand side of the rule is constituted by the origi-
nal root symbol R of the fragment raised to a meta-
nonterminal R′.

The resulting PCFG generates trees in bracket no-
tation, and we can run an of-the-shelf inside-outside
algorithm by presenting it parse trees from the train
corpus in bracket notation8. In the experiments that
we report below we used the RFE from section 3, to
generate the initial weights for the grammar.

(a)

S

A↓ B

y

◦
A

x
=

S

A

x

B

y

(b) ( S A↓ ( B y ) ) ◦ ( A x ) = ( S ( A x ) ( B y ) )

(c) S’→ ( S A’ ( B y ) ) ◦ A’→ ( A x ) =

S’

( S A’

( A x )

( B y ) )

(d) ( S ( A x ) ( B y ) )

Figure 6: Rule and tree transforms that turn PTSG rees-
timation into PCFG reestimation; (a) a derivation of the
sentence x y through successive substitutions of elemen-
tary trees from a PTSG; (b) the same elementary trees
and resulting parse tree in bracket notation; (c) an equiva-
lent derivation with the meta-grammar, where the original
substitution sites reappear as meta-nonterminals (marked
with a prime) and all other symbols as meta-terminals;
(d) the yield of the derivation in c.

8However, the results with inside-outside reported in this pa-
per were obtained with an earlier version of our code that uses
an equivalent but special-purpose implementation.
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3.3 Maximizing Objectives

MPD The easiest objective in parsing, is to se-
lect the most probable derivation (MPD), obtained
by maximizing equation 3.

MPP A DOP grammar can often generate the
same parse tree t through different derivations
D(t) = d1, d2, . . . dm. The probability of t is there-
fore obtained by summing the probabilities of all its
possible derivations.

P (t) =
∑

d∈D(t)

p(d) =
∑

d∈D(t)

∏

f∈d
p(f) (7)

An intuitive objective for a parser is to select, for
a given sentence, the parse tree with highest proba-
bility according to equation 7, i.e., the most probable
parse (MPP): unfortunately, identifying the MPP is
computationally intractable (Sima’an, 1996). How-
ever, we can approximate the MPP by deriving a list
of k-best derivations, summing up the probabilities
of those resulting in the same parse tree, and select
the tree with maximum probability.

MCP, MRS Following Goodman (1998), Sima’an
(1999, 2003), and others, we also consider other
objectives, in particular, the max constituent parse
(MCP), and the max rule sum (MRS).

MCP maximizes a weighted average of the ex-
pected labeled recall L/NC and (approximated) la-
beled precision L/NG under the given posterior dis-
tribution, where L is the number of correctly labeled
constituents, NC the number of constituents in the
correct tree, and NG the number of constituents in
the guessed tree. Recall is easy to maximize since
the estimated NC is constant. L/NC can be in fact
maximized in:

t̂ = arg max
t

∑

lc∈t
P (lc) (8)

where lc ranges over all labeled constituents in t
and P (lc) is the marginalized probability of all the
derivation trees in the grammar yielding the sentence
under consideration which contains lc.

Precision, instead, is harder because the denom-
inator NG depends on the chosen guessed tree.
Goodman (1998) proposes to look at another metric
which is strongly correlated with precision, which is

the mistake rate (NG−L)/NC that we want to min-
imize. We combine recall with mistake rate through
linear interpolation:

t̂ = arg max
t

E(
L

NC
− λNG − L

NC
) (9)

= arg max
t

∑

lc∈t
P (lc)− λ(1− P (lc)) (10)

where 10 is obtained from 9 assuming NC constant,
and the optimal level for λ has to be evaluated em-
pirically.

Unlike MPP, the MCP can be calculated effi-
ciently using dynamic programming techniques over
the parse forest. However, in line with the aims of
this paper to produce an easily reproducible imple-
mentation of DOP, we developed an accurate ap-
proximation of the MCP using a list of k-best deriva-
tions, such as those that can be obtained with an off-
the-shelf PCFG parser.

We do so by building a standard CYK chart,
where every cell corresponds to a specific span in
the test sentence. We store in each cell the proba-
bility of seeing every label in the grammar yielding
the corresponding span, by marginalizing the prob-
abilities of all the parse trees in the obtained k-best
derivations that contains that label covering the same
span. We then compute the Viterbi-best parse maxi-
mizing equation 10.

We implement max rule sum (MRS) in a similar
way, but do not only keep track of labels in every
cell, but of each CFG rule that span the specific yield
(see also Sima’an, 1999, 2003). We haven’t im-
plemented the max rule product (MRP) where pos-
teriors are multiplied instead of added (Petrov and
Klein, 2007; Bansal and Klein, 2010).

4 Experimental Setup

In order to build and test our Double-DOP model9,
we employ the Penn WSJ Treebank (Marcus et al.,
1993). We use sections 2-21 for training, section 24
for development and section 23 for testing.

Treebank binarization We start with some pre-
processing of the treebank, following standard prac-

9The software produced for running our model is publicly
available and included in the supplementary material to this pa-
per. To the best of our knowledge this is the first DOP software
released that can be used to parse the WSJ PTB.
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Figure 7: The binarized version of the tree in figure 1,
with H=1 and P=1.

tice in WSJ parsing. We remove traces and func-
tional tags. We apply a left binarization of the train-
ing treebank as in Matsuzaki et al. (2005) and Klein
and Manning (2003), setting the horizontal history
H=1 and the parent labeling P=1. This means that
when a node has more than 2 children, the ith child
(for i ≥ 3) is conditioned on child i − 1. Moreover
the labels of all non-lexical nodes are enriched with
the labels of their parent node. Figure 7 shows the
binarized version of the tree structure in figure 1.

Unknown words We replace words appearing less
than 5 times in the training data by one of 50 un-
known word categories based on the presence of lex-
ical features as implemented in Petrov (2009). In
some of the experiments we also perform a smooth-
ing over the lexical elements assigning low counts
(ε = 0.01) to open-class 〈words, PoS-tags〉 pairs not
encountered in the training corpus10.

Fragment extraction We extract the symbolic
grammar and fragment frequencies from this prepro-
cessed treebank as explained in section 2. This is
the the most time-consuming step (around 160 CPU
hours11).

In the extracted grammar we have in total
1,029,342 recurring fragments and 17,768 unseen
CFG rules. We test several probability distributions
over the fragments (section 3.2) and various maxi-
mization objectives (section 3.3).

10A PoS-tag is an open class if it rewrites to at least 50 differ-
ent words in the training corpus. A word is an open class word
if it has been seen only with open-class PoS-tags.

11Although our code could still be optimized further, it does
already allow for running the job on M CPUs in parallel, reduc-
ing the time required by a factor M (10 hours with 16-CPUs).
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Figure 8: Double-DOP results on the development sec-
tion (≤ 40) with different maximizing objectives.

Parsing We convert our PTSG into a PCFG (sec-
tion 3.1) and use Bitpar12 for parsing. For approx-
imating MPP and other objectives we marginalize
probabilities from the 1,000 best derivations.

4.1 Results
We start by presenting in figure 8 the results we ob-
tain on the development set (section 24). Here we
compare the maximizing objectives presented in sec-
tion 3.3, using RFE to obtain the probability distri-
bution over the fragments. We conclude that, em-
pirically, MCP for λ = 1.15, is the best choice to
maximize F1, followed by MRS, MPP, and MPD.

We also compare the various estimators presented
in section 3.2, on the same development set, keep-
ing MCP with λ = 1.15 as the maximizing objec-
tive. We find that RFE is the best estimator (87.2
F113) followed by EWE (86.8) and ML (86.6). Our
best results with ML are obtained when removing
fragments occurring less than 6 times (apart from
CFG-rules) and when stopping at the second iter-
ation. This filtering is done in order to limit the
number of big fragments in the grammar. It is well
known that IO for DOP tends to assign most of the
probability mass to big fragments, quickly overfit-
ting the training data. It is surprising that EWE and
ML perform worse than RFE, in contrast to earlier
findings (Bod, 2003).

12http://www.ims.uni-stuttgart.de/tcl/
SOFTWARE/BitPar.html

13We computed F1 scores with EvalB (http://nlp.cs.
nyu.edu/evalb/) using parameter file new.prm.
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Figure 9: Performance (on the development set) and size
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are included in the grammars. For instance, at the right-
hand side of the plot a grammar is evaluated which in-
cluded only 6754 fragments with a frequency > 100 as
well as 39227 PCFG rules.

We also investigate how a further restriction on
the set of extracted fragments influences the perfor-
mance of our model. In figure 9 we illustrate the
performance of Double-DOP when restricting the
grammar to fragments having frequencies greater
than 1, 2, . . . , 100. We can notice a rather sharp
decrease in performance as the grammar becomes
more and more compact.

Next, we present some results on various Double-
DOP grammars extracted from the same training
treebank after refining it using the Berkeley state-
splitting model14 (Petrov et al., 2006; Petrov and
Klein, 2007). In total we have 6 increasingly refined
versions of the treebank, corresponding to the 6 cy-
cles of the Berkeley model. We observe in figure 10
that our grammar is able to benefit from the state
splits for the first four levels of refinement, reaching
the maximum score at cycle 4, where we improve
over our base model. For the last two data points, the
treebank gets too refined, and using Double-DOP
model on top of it, no longer improves accuracy.

We have also compared our best Double-DOP

14We use the Berkeley grammar labeler following the base
settings for the WSJ: trees are right-binarized, H=0, and
P=0. Berkeley parser package is available at http://code.
google.com/p/berkeleyparser/
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Figure 10: Comparison on section 24 between the per-
formance of Double-DOP (using RFE and MCP with
λ = 1.15, H=0, P=0) and Berkeley parser on different
stages of refinement of the treebank/grammar.

base model and the Berkeley parser on per-category
performance. Here we observe an interesting trend:
the Berkeley parser outperforms Double-DOP on
very frequent categories, while Double-DOP per-
forms better on infrequent ones. A detailed com-
parison is included in table 1.

Finally, in table 2 we present our results on the
test set (section 23). Our best model (according to
the best settings on the development set) performs
slightly worse than the one by Bansal and Klein
(2010) when trained on the original corpus, but out-
performs it (and the version of their model with
additional refinements) when trained on the refined
version, in particular for the exact match score.

5 Conclusions

We have described Double-DOP, a novel DOP ap-
proach for parsing, which uses all constructions re-
curring at least twice in a treebank. This method-
ology is driven by the linguistic intuition that con-
structions included in the grammar should prove to
be reusable in a representative corpus.

The extracted set of fragments is significantly
smaller than in previous approaches. Moreover con-
structions are explicitly represented, which makes
them potentially good candidates as semantic or
translation units to be used in other applications.

Despite earlier reported excellent results with
DOP parsers, they are almost never used in other
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Category % F1 F1
label in gold Berkeley Double-DOP

NP 41.42 91.4 89.5
VP 20.46 90.6 88.6
S 13.38 90.7 87.6
PP 12.82 85.5 84.1
SBAR 3.47 86.0 82.1
ADVP 3.36 82.4 81.0
ADJP 2.32 68.0 67.3
QP 0.98 82.8 84.6
WHNP 0.88 94.5 92.0
WHADVP 0.33 92.8 91.9
PRN 0.32 83.0 77.9
NX 0.29 9.50 7.70
SINV 0.28 90.3 88.1
SQ 0.14 82.1 79.3
FRAG 0.10 26.4 34.3
SBARQ 0.09 84.2 88.2
X 0.06 72.0 83.3
NAC 0.06 54.6 88.0
WHPP 0.06 91.7 44.4
CONJP 0.04 55.6 66.7
LST 0.03 61.5 33.3
UCP 0.03 30.8 50.0
INTJ 0.02 44.4 57.1

Table 1: Comparison of the performance (per-category
F1 score) on the development set between the Berkeley
parser and the best Double-DOP model.

NLP tasks: where other successful parsers often fea-
ture as components of machine translation, semantic
role labeling, question-answering or speech recogni-
tion systems, DOP is conspicuously absent in these
neighboring fields (but for a possible application of
closely related formalisms see, e.g., Yamangil and
Shieber, 2010). The reasons for this are many, but
most important are probably the computational inef-
ficiency of many instances of the approach, the lack
of downloadable software and the difficulties with
replicating some of the key results.

In this paper we have addressed all three obsta-
cles: our efficient algorithm for identifying the re-
current fragments in a treebank runs in polynomial
time. The transformation to PCFGs that we define
allows us to use a standard PCFG parser, while re-
taining the benefit of explicitly representing larger
fragments. A different transform also allows us to
run the popular inside-outside algorithm. Although
IO results are slightly worse than with the naive
relative frequency estimate, it is important to es-
tablish that the standard method for dealing with
latent information (i.e., the derivations of a given
parse) is not the best choice in this case. We expect
that other re-estimation methods, for instance Vari-

test (≤ 40) test (all)
Parsing Model F1 EX F1 EX

PCFG Baseline
PCFG (H=1, P=1) 77.6 17.2 76.5 15.9
PCFG (H=1, P=1) Lex smooth. 78.5 17.2 77.4 16.0

FRAGMENT-BASED PARSERS
Zuidema (2007)* 83.8 26.9 - -
Cohn et al. (2010) MRS 85.4 27.2 84.7 25.8
Post and Gildea (2009) 82.6 - - -
Bansal and Klein (2010) MCP 88.5 33.0 87.6 30.8
Bansal and Klein (2010) MCP 88.7 33.8 88.1 31.7
+ Additional Refinement

THIS PAPER
Double-DOP 87.7 33.1 86.8 31.0
Double-DOP Lex smooth. 87.9 33.7 87.0 31.5
Double-DOP-Sp 88.8 35.9 88.2 33.8
Double-DOP-Sp Lex smooth. 89.7 38.3 89.1 36.1

REFINEMENT-BASED PARSERS
Collins (1999) 88.6 - 88.2 -
Petrov and Klein (2007) 90.6 39.1 90.1 37.1

Table 2: Summary of the results of different parsers
on the test set (sec 23). Double-DOP experiments use
RFE, MCP with λ = 1.15, H=1, P=1; those on state-
splitting (Double-DOP-Sp) use Berkeley cycle 4, H=0,
P=0. Results from Petrov and Klein (2007) already in-
clude smoothing which is performed similarly to our
smoothing technique (see section 4). (* Results on a de-
velopment set, with sentences up to length 20.)

ational Bayesian techniques, could be formulated in
the same manner.

Finally, the availability of our programs, as well
as the third party software that we use, also ad-
dresses the replicability issue. Where some re-
searchers in the field have been skeptical of the DOP
approach to parsing, we believe that our independent
development of a DOP parser adds credibility to the
idea that an approach that uses very many large sub-
trees, can lead to very accurate parsers.
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Abstract

We present a method that paraphrases a given
sentence by first generating candidate para-
phrases and then ranking (or classifying)
them. The candidates are generated by ap-
plying existing paraphrasing rules extracted
from parallel corpora. The ranking compo-
nent considers not only the overall quality of
the rules that produced each candidate, but
also the extent to which they preserve gram-
maticality and meaning in the particular con-
text of the input sentence, as well as the de-
gree to which the candidate differs from the
input. We experimented with both a Max-
imum Entropy classifier and an SVR ranker.
Experimental results show that incorporating
features from an existing paraphrase recog-
nizer in the ranking component improves per-
formance, and that our overall method com-
pares well against a state of the art paraphrase
generator, when paraphrasing rules apply to
the input sentences. We also propose a new
methodology to evaluate the ranking compo-
nents of generate-and-rank paraphrase gener-
ators, which evaluates them across different
combinations of weights for grammaticality,
meaning preservation, and diversity. The pa-
per is accompanied by a paraphrasing dataset
we constructed for evaluations of this kind.

1 Introduction

In recent years, significant effort has been devoted
to research on paraphrasing (Androutsopoulos and
Malakasiotis, 2010; Madnani and Dorr, 2010). The
methods that have been proposed can be roughly
classified into three categories: (i) recognition meth-
ods, i.e., methods that detect whether or not two in-

put sentences or other texts are paraphrases; (ii) gen-
eration methods, where the aim is to produce para-
phrases of a given input sentence; and (iii) extraction
methods, which aim to extract paraphrasing rules
(e.g., “X wrote Y ” “↔ Y was authored by X”) or
similar patterns from corpora. Most of the methods
that have been proposed belong in the first category,
possibly because of the thrust provided by related
research on textual entailment recognition (Dagan et
al., 2009), where the goal is to decide whether or not
the information of a given text is entailed by that of
another. Significant progress has also been made in
paraphrase extraction, where most recent methods
produce large numbers of paraphrasing rules from
multilingual parallel corpora (Bannard and Callison-
Burch, 2005; Callison-Burch, 2008; Zhao et al.,
2008; Zhao et al., 2009a; Zhao et al., 2009b; Kok
and Brockett, 2010). In this paper, we are concerned
with paraphrase generation, which has received less
attention than the other two categories.

There are currently two main approaches to para-
phrase generation. The first one treats paraphrase
generation as a machine translation problem, with
the peculiarity that the target language is the same as
the source one. To bypass the lack of large monolin-
gual parallel corpora, which are needed to train sta-
tistical machine translation (SMT) systems for para-
phrasing, monolingual clusters of news articles re-
ferring to the same event (Quirk et al., 2004) or
other similar monolingual comparable corpora can
be used, though sentence alignment methods for par-
allel corpora may perform poorly on comparable
corpora (Nelken and Shieber, 2006); alternatively,
large collections of paraphrasing rules obtained via
paraphrase extraction from multilingual parallel cor-
pora can be used as monolingual phrase tables in a
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phrase-based SMT systems (Zhao et al., 2008; Zhao
et al., 2009a); in both cases, paraphrases can then
be generated by invoking an SMT system’s decoder
(Koehn, 2009). A second paraphrase generation ap-
proach is to treat existing machine translation en-
gines as black boxes, and translate each input sen-
tence to a pivot language and then back to the orig-
inal language (Duboue and Chu-Carroll, 2006). An
extension of this approach uses multiple translation
engines and pivot languages (Zhao et al., 2010).

In this paper, we investigate a different paraphrase
generation approach, which does not produce para-
phrases by invoking machine translation system(s).
We use an existing collection of monolingual para-
phrasing rules extracted from multilingual parallel
corpora (Zhao et al., 2009b); each rule is accompa-
nied by one or more scores, intended to indicate the
rule’s overall quality without considering particular
contexts where the rule may be applied. Instead of
using the rules as a monolingual phrase table and in-
voking an SMT system’s decoder, we follow a gen-
erate and rank approach, which is increasingly com-
mon in several language processing tasks.1 Given
an input sentence, we use the paraphrasing rules to
generate a large number of candidate paraphrases.
The candidates are then represented as feature vec-
tors, and a ranker (or classifier) selects the best ones;
we experimented with a Maximum Entropy classi-
fier and a Support Vector Regression (SVR) ranker.

The vector of each candidate paraphrase includes
features indicating the overall quality of the rules
that produced the candidate, the extent to which the
rules preserve grammaticality and meaning in the
particular context of the input sentence, and the de-
gree to which the candidate’s surface form differs
from that of the input; we call the latter factor di-
versity. The intuition is that a good paraphrase is
grammatical, preserves the meaning of the original
sentence, while also being as different as possible.

Experimental results show that including in the
ranking (or classification) component features from
an existing paraphrase recognizer leads to improved
results. We also propose a new methodology to eval-
uate the ranking components of generate-and-rank
paraphrase generators, which evaluates them across
different combinations of weights for grammatical-

1See, for example, Collins and Koo (2005).

ity, meaning preservation, and diversity. The paper
is accompanied by a new publicly available para-
phrasing dataset we constructed for evaluations of
this kind. Further experiments indicate that when
paraphrasing rules apply to the input sentences, our
paraphrasing method is competitive to a state of the
art paraphrase generator that uses multiple transla-
tion engines and pivot languages (Zhao et al., 2010).

We note that paraphrase generation is useful in
several language processing tasks. In question an-
swering, for example, paraphrase generators can be
used to paraphrase the user’s queries (Duboue and
Chu-Carroll, 2006; Riezler and Liu, 2010); and
in machine translation, paraphrase generation can
help improve the translations (Callison-Burch et al.,
2006; Marton et al., 2009; Mirkin et al., 2009; Mad-
nani et al., 2007), or it can be used when evaluat-
ing machine translation systems (Lepage and De-
noual, 2005; Zhou et al., 2006; Kauchak and Barzi-
lay, 2006; Padó et al., 2009).

The remainder of this paper is structured as fol-
lows: Section 2 explains how our method gener-
ates candidate paraphrases; Section 3 introduces the
dataset we constructed, which is also used in sub-
sequent sections; Section 4 discusses how candi-
date paraphrases are ranked; Section 5 compares our
overall method to a state of the art paraphrase gen-
erator; and Section 6 concludes.

2 Generating candidate paraphrases

We use the approximately one million English para-
phrasing rules of Zhao et al. (2009b). Roughly
speaking, the rules were extracted from a parallel
English-Chinese corpus, based on the assumption
that two English phrases e1 and e2 that are often
aligned to the same Chinese phrase c are likely to
be paraphrases and, hence, they can be treated as a
paraphrasing rule e1 ↔ e2.2 Zhao et al.’s method ac-
tually operates on slotted English phrases, obtained
from parse trees, where slots correspond to part of
speech (POS) tags. Hence, rules like the following
three may be obtained, where NNi indicates a noun
slot and NNPi a proper name slot.

2This pivot-based paraphrase extraction approach was first
proposed by Bannard and Callison-Burch (2005). It under-
lies several other paraphrase extraction methods (Riezler et al.,
2007; Callison-Burch, 2008; Kok and Brockett, 2010).
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(1) a lot of NN1↔ plenty of NN1

(2) NNP1 area↔ NNP1 region
(3) NNP1 wrote NNP2↔ NNP2 was written by NNP1

In the basic form of their method, called Model
1, Zhao et al. (2009b) use a log-linear ranker to as-
sign scores to candidate English paraphrase pairs
〈e1, e2〉; the ranker uses the alignment probabilities
P (c|e1) and P (e2|c) as features, along with features
that assess the quality of the corresponding align-
ments. In an extension of their method, Model 2,
Zhao et al. consider two English phrases e1 and e2 as
paraphrases, if they are often aligned to two Chinese
phrases c1 and c2, which are themselves paraphrases
according to Model 1 (with English used as the pivot
language). Again, a log-linear ranker assigns a score
to each 〈e1, e2〉 pair, now with P (c1|e1), P (c2|c1),
and P (e2|c1) as features, along with similar features
for alignment quality. In a further extension, Model
3, all the candidate phrase pairs 〈e1, e2〉 are collec-
tively treated as a monolingual parallel corpus. The
phrases of the corpus are aligned, as when aligning
a bilingual parallel corpus, and additional features,
based on the alignment, are added to the log-linear
ranker, which again assigns a score to each 〈e1, e2〉.

The resulting paraphrasing rules e1 ↔ e2 typi-
cally contain short phrases (up to four or five words
excluding slots) on each side; hence, they can be
used to rewrite only parts of longer sentences. Given
an input (source) sentence S, we generate candidate
paraphrases by applying rules whose left or right
hand side matches any part of S. For example, rule
(1) matches the source sentence (4); hence, (4) can
be rewritten as the candidate paraphrase (5).3

(4) S: He had a lot of [NN 1admiration] for his job.
(5) C: He had plenty of [NN 1

admiration] for his job.

Several rules may apply to S; for example, they may
rewrite different parts of S, or they may replace the
same parts of S by different phrases. We allow all
possible combinations of applicable rules to apply to
S, excluding combinations that include rules rewrit-
ing overlapping parts of S.4 To avoid generating too
many candidates (C), we use only the 20 rules (that

3We use Stanford’s POS tagger, MaxEnt classifier, and de-
pendency parser; see http://nlp.stanford.edu/.

4A possible extension, which we have not explored, would
be to recursively apply the same process to the resulting Cs.

apply to S) with the highest scores. Zhao et al. actu-
ally associate each rule with three scores. The first
one, hereafter called r1, is the Model 1 score, and the
other two, r2 and r3, are the forward and backward
alignment probabilities of Model 3; see Zhao et al.
(2009b) for details. We use the average of the three
scores, hereafter r4, when generating candidates.

Unfortunately, Zhao et al.’s scores reflect the over-
all quality of each rule, without considering the con-
text of the particular S where the rule is applied.
Szpektor et al. (2008) point out that, for example,
a rule like “X acquire Y ”↔ “X buy Y ” may work
well in many contexts, but not in “Children acquire
language quickly”. Similarly, “X charged Y with”
↔ “X accused Y of” should not be applied to sen-
tences about charging batteries. Szpektor et al. pro-
pose, roughly speaking, to associate each rule with
a model of the contexts where the rule is applicable,
as well as models of the expressions that typically
fill its slots, in order to be able to assess the applica-
bility of each rule in specific contexts. The rules that
we use do not have associated models of this kind,
but we follow Szpektor et al.’s idea of assessing the
applicability of each rule in each particular context,
when ranking candidates, as discussed below.

3 A dataset of candidate paraphrases

Our generate and rank method relies on existing
large collections of paraphrasing rules to generate
candidate paraphrases. Our main contribution is in
the ranking of the candidates. To be able to evalu-
ate the performance of different rankers in the task
we are concerned with, we first constructed an eval-
uation dataset that contains pairs 〈S,C〉 of source
(input) sentences and candidate paraphrases, and we
asked human judges to assess the degree to which
the C of each pair was a good paraphrase of S.

We selected randomly 75 source (S) sentences
from the AQUAINT corpus, such that at least one
of the paraphrasing rules applied to each S.5 For
each S, we generated candidate Cs using Zhao et
al.’s rules, as discussed in Section 2. This led to
1,935 〈S,C〉 pairs, approx. 26 pairs for each S. The
pairs were given to 13 judges other than the authors.6

Each judge evaluated approx. 148 (different) 〈S,C〉
5The corpus is available from the LDC (LDC2002T31).
6The judges were fluent, but not native English speakers.
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Figure 1: Distribution of overall quality scores in the
evaluation dataset (1 = totally unacceptable, 4 = perfect).

pairs; each of the 1,935 pairs was evaluated by one
judge. The judges were asked to provide grammati-
cality, meaning preservation, and overall paraphrase
quality scores for each 〈S,C〉 pair, each score on a
1–4 scale (1 for totally unacceptable, 4 for perfect);
guidelines and examples were also provided.

Figure 1 shows the distribution of the overall qual-
ity scores in the 1,935 〈S,C〉 pairs of the evalua-
tion dataset; the distributions of the grammaticality
and meaning preservation scores are similar. No-
tice that although we used only the 20 applicable
paraphrasing rules with the highest scores to gen-
erate the 〈S,C〉 pairs, less than half of the candidate
paraphrases (C) were considered good, and approx-
imately only 20% perfect. In other words, apply-
ing paraphrasing rules (even only those with the 20
best scores) to each input sentence S and randomly
picking one of the resulting candidate paraphrases
C, without any further filtering (or ranking) of the
candidates, would on average produce unacceptable
paraphrases more frequently than acceptable ones.
Hence, the role of the ranking component is crucial.

We also measured inter-annotator agreement by
constructing, in the same way, 100 additional 〈S,C〉
pairs (other than the 1,935) and asking 3 of the 13
judges to evaluate all of them. We measured the
mean absolute error, i.e., the mean absolute differ-
ence in the judges’ scores (averaged over all pairs
of judges) and the mean (over all pairs of judges)
K statistic (Carletta, 1996). In the overall scores,
K was 0.64, which is in the range often taken to
indicate substantial agreement (0.61–0.80).7 Agree-
ment was higher for grammaticality (K = 0.81),

7It is also close to 0.67, which is sometimes taken to be a
cutoff for substantial agreement in computational linguistics.

mean abs. diff. K-statistic
grammaticality 0.20 0.81
meaning preserv. 0.26 0.59
overall quality 0.22 0.64

Table 1: Inter-annotator agreement when manually eval-
uating candidate paraphrases.

and lower (K = 0.59) for meaning preservation. Ta-
ble 1 shows that the mean absolute difference in the
annotators’ scores was 1

5 to 1
4 of a point.

Several judges commented that they had trouble
deciding to what extent the overall quality score
should reflect grammaticality or meaning preserva-
tion. They also wondered if it was fair to consider as
perfect candidate paraphrases that differed in only
one or two words from the source sentences, i.e.,
candidates with low diversity. These comments led
us to ignore the judges’ overall quality scores in
some experiments, and to use a weighted average
of grammaticality, meaning preservation, and (auto-
matically measured) diversity instead, with different
weight combinations corresponding to different ap-
plication requirements, as discussed further below.

In the same way, 1,500 more 〈S,C〉 pairs (other
than the 1,935 and the 100, not involving previously
seen Ss) were constructed, and they were evaluated
by the first author. The 1,500 pairs were used as
a training dataset in experiments discussed below.
Both the 1,500 training and the 1,935 evaluation
(test) pairs are publicly available.8 We occasionally
refer to the training and evaluation datasets as a sin-
gle dataset, but they are clearly separated.

4 Ranking candidate paraphrases

We now discuss the ranking component of our
method, which assesses the candidate paraphrases.

4.1 Features of the ranking component

Each 〈S,C〉 pair is represented as a feature vector.
To allow the ranking component to assess the degree
to which a candidate C is grammatical, or at least
as grammatical as the source S, we include in the
feature vectors the language model scores of S, C,
and the difference between the two scores. We use
a 3-gram language model trained on approximately

8See the paper’s supplementary material.
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6.5 million sentences of the AQUAINT corpus.9 To
allow the ranker to consider the (context-insensitive)
quality scores of the rules that generated C from S,
we also include as features the highest, lowest, and
average r1, r2, r3, and r4 scores (Section 2) of these
rules, 12 features in total.

The features discussed so far are similar to those
employed by Zhao et al. (2009a) in the only compa-
rable paraphrase generation method we are aware of
that uses paraphrasing rules. That method, hereafter
called ZHAO-RUL, uses the language model score
of C and scores similar to r1, r2, r3 in a log-linear
model.10 The log-linear model of ZHAO-RUL is used
by an SMT-like decoder to identify the transforma-
tions (applications of rules) that produce the (hope-
fully) best paraphrase. By contrast, we first gen-
erate a large number of candidates using the para-
phrasing rules, and we then rank them. Unfortu-
nately, we did not have access to an implementa-
tion of ZHAO-RUL to compare against, but below
we compare against another paraphraser proposed
by Zhao et al. (2010), hereafter called ZHAO-ENG,
which uses multiple machine translation engines and
pivot languages, instead of paraphrasing rules, and
which Zhao et al. found to outperform ZHAO-RUL.

To further help the ranking component assess the
degree to which C preserves the meaning of S, we
also optionally include in the vectors of the 〈S,C〉
pairs the features of an existing paraphrase recog-
nizer (Malakasiotis, 2009) that obtained the best
published results (Androutsopoulos and Malakasio-
tis, 2010) on the widely used MSR paraphrasing cor-
pus.11 Most of the recognizer’s features are com-
puted by using nine similarity measures: Leven-
shtein, Jaro-Winkler, Manhattan, Euclidean, and n-
gram (n = 3) distance, cosine similarity, Dice, Jac-
card, and matching coefficients, all computed on to-
kens; consult Malakasiotis (2009) for details. For
each 〈S,C〉 pair, the nine similarity measures are ap-

9We use SRILM; see http://www-speech.sri.com/.
10Application-specific features are also included, which can

be used, for example, to favor paraphrases that are shorter than
the input in sentence compression (Knight and Marcu, 2002;
Clarke and Lapata, 2008). Similar features could also be added
to application-specific versions of our method.

11The MSR corpus contains pairs that are paraphrases or not.
It is a benchmark for paraphrase recognizers, not generators. It
provides only one paraphrase (true or false) of each source, and
few of the true paraphrases can be obtained by the rules we use.

plied to ten different forms 〈s1, c1〉 , . . . , 〈s10, c10〉
of 〈S,C〉, described below, leading to 90 features.

〈s1, c1〉 : The original forms of S and C.

〈s2, c2〉 : S and C with tokens replaced by stems.

〈s3, c3〉 : S and C, with tokens replaced by POS tags.

〈s4, c4〉 : S and C, tokens replaced by soundex codes.12

〈s5, c5〉 : S and C, but having removed non-nouns.

〈s6, c6〉 : As previously, but nouns replaced by stems.

〈s7, c7〉 : As previously, nouns replaced by soundex.

〈s8, c8〉 : S and C, but having removed non-verbs.

〈s9, c9〉 : As previously, but verbs replaced by stems.

〈s10, c10〉 : As previously, verbs replaced by soundex.

When constructing all ten forms 〈si, ci〉 of 〈S,C〉,
synonyms (in any WordNet synset) are treated as
identical words. Additional variants of some of the
90 features compare a sliding window of some of
the si forms to the corresponding ci forms (or vice
versa), adding 40 more features; see Malakasiotis
(2009). Two more Boolean features indicate the ex-
istence or absence of negation in S or C, respec-
tively; and another feature computes the ratio of the
lengths of S and C, measured in tokens. Finally,
three additional features compare the dependency
trees of S and C:

RS =
|common dependencies of S,C|

|dependencies of S|

RC =
|common dependencies of S,C|

|dependencies of C|

Fβ=1 =
2 ·RS ·RC
RS +RC

The recognizer’s features are 136 in total.13

Hence, the full feature set of our paraphraser’s rank-
ing component comprises 151 features.

12The Soundex algorithm maps English words to alphanu-
meric codes, so that words with the same pronunciations
receive the same codes, despite spelling differences; see
http://en.wikipedia.org/wiki/Soundex.

13Malakasiotis (2009) shows that although there is a lot of re-
dundancy in the recognizer’s feature set, the full feature set still
leads to better paraphrase recognition results, compared to sub-
sets constructed via feature selection with hill-climbing or beam
search. The same paper reports that the recognizer performs al-
most as well without the last three features, which may not be
available in languages with no reliable dependency parsers. No-
tice, also, that the recognizer does not use paraphrasing rules.
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4.2 Learning rate with a MaxEnt classifier

To obtain a first indication of whether or not a rank-
ing component equipped with the features discussed
above could learn to distinguish good from bad can-
didate paraphrases, and to investigate if our train-
ing dataset is sufficiently large, we initially experi-
mented with a Maximum Entropy classifier (with the
151 features) as the ranking component. This initial
version of the ranking component, called ME-REC,
was trained on increasingly larger parts of the train-
ing dataset of Section 3, and it was always evaluated
on the entire test dataset of that section. For simplic-
ity, we used only the judges’ overall quality scores
in these experiments, and we treated the problem as
one of binary classification; overall quality scores of
1 and 2 where conflated to a negative category, and
scores of 3 and 4 to a positive category.

Figure 2 plots the error rate of ME-REC, com-
puted both on the test set and the encountered train-
ing subset. The error rate on the training instances
a learner has encountered is typically lower than the
error rate on the test set (unseen instances); hence,
the former error rate can be seen as a lower bound
of the latter. ME-REC shows signs of having reached
its lower bound when the entire training dataset is
used, suggesting that the training dataset is suffi-
ciently large. The baseline (BASE) of Figure 2 uses
only a threshold on the average r4 (Section 2) of the
rules that turned S into C. If the average r4 is higher
than the threshold, the 〈S,C〉 pair is classified in the
positive class, otherwise in the negative one. The
threshold was tuned by experimenting on a sepa-
rate tuning dataset. Clearly, ME-REC outperforms
the baseline, which uses only the average (context-
insensitive) scores of the applied paraphrasing rules.

4.3 Experiments with an SVR ranker

As already noted, when our dataset were constructed
the judges felt it was not always clear to what ex-
tent the overall quality scores should reflect meaning
preservation or grammaticality; and they also won-
dered if the overall quality scores should have also
taken into consideration diversity. To address these
concerns, in the experiments described in this sec-
tion (and the remainder of the paper) we ignored the
judges’ overall scores, and we used a weighted av-
erage of the grammaticality, meaning preservation,
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Figure 2: Learning curves of a Maximum Entropy classi-
fier used as the ranking component of our method.

and diversity scores instead; the grammaticality and
meaning preservation scores were those provided by
the judges, while diversity was automatically com-
puted as the edit distance (Levenshtein, computed
on tokens) between S and C. Stated otherwise, the
correct score y(xi) of each training or test instance
xi (i.e., of each feature vector of an 〈S,C〉 pair) was
taken to be a linear combination of the grammati-
cality score g(xi), the meaning preservation score
m(xi), and the diversity d(xi), as in Equation (6),
where λ3 = 1− λ1 − λ2.

y(xi) = λ1 · g(xi) + λ2 ·m(xi) + λ3 · d(xi) (6)

We believe that the λi weights should in prac-
tice be application-dependent. For example, when
paraphrasing user queries to a search engine that
turns them into bags of words, diversity and meaning
preservation may be more important than grammati-
cality; by contrast, when paraphrasing the sentences
of a generated text to avoid repeating the same ex-
pressions, grammaticality is very important. Hence,
generic paraphrase generators, like ours, intended to
be useful in many different applications, should be
evaluated for many different combinations of the λi
weights. Consequently, in the experiments of this
section we trained and evaluated the ranking com-
ponent of our method (on the training and evalua-
tion part, respectively, of the dataset of Section 3)
several times, each time with a different combina-
tion of λ1, λ2, λ3 values, with the values of each λi
ranging from 0 to 1 with a step of 0.2.

We employed a Support Vector Regression (SVR)
model in the experiments of this section, instead of
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Figure 3: Performance of our method’s SVR ranking com-
ponent with (SVR-REC) and without (SVR-BASE) the ad-
ditional features of the paraphrase recognizer.

a classifier, given that the y(xi) scores that we want
to predict are real values.14 An SVR is very similar
to a Support Vector Machine (Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2000; Joachims, 2002),
but it is trained on examples of the form 〈xi, y(xi)〉,
where xi ∈ Rn and y(xi) ∈ R, and it learns a rank-
ing function f : Rn → R that is intended to return
f(xi) values as close as possible to the correct ones
y(xi), given feature vectors xi. In our case, the cor-
rect y(xi) values were those of Equation (6). We call
SVR-REC the SVR ranker with all the 151 features of
Section 4.2, and SVR-BASE the SVR ranker without
the 136 features of the paraphrase recognizer.

We used the squared correlation coefficient ρ2 to
evaluate SVR-REC against SVR-BASE.15 The ρ2 co-
efficient shows how well the scores returned by the
SVR are correlated with the desired scores y(xi); the
higher the ρ2 the higher the agreement. Figure 3

14Additional experiments confirmed that the SVR per-
forms better than ME-REC as the ranking component. We
use the SVR implementation of LIBSVM, available from
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/,
with an RBF kernel and default settings. All the features are
normalized in [−1, 1], when using SVR or ME-REC.

15If n is the number of test pairs, f(xi) the score returned by
the SVR for the i-th pair, and y(xi) the correct score, then ρ2 is:

(n
∑n

i=1 f(xi)yi − ∑n
i=1 f(xi)

∑n
i=1 y(xi))

2

(n
∑n

i=1 f(xi)2 − (
∑n

i=1 f(xi))2)(n
∑n

i=1 y2
i − (

∑n
i=1 y(xi))2)

shows the experimental results. Each line from the
diagram’s center represents a different experimental
setting, i.e., a different combination of λ1 and λ2;
recall that λ3 = 1 − λ1 − λ2. The distance of a
method’s curve from the center is the method’s ρ2

for that setting. The farther a point is from the center
the higher ρ2 is; hence, methods whose curves are
closer to the diagram’s outmost perimeter are better.
Clearly, SVR-REC (which includes the recognizer’s
features) outperforms SVR-BASE (which relies only
on the language model and the scores of the rules).

The two peaks of SVR-REC’s curve are when λ3
is very high (1 or 0.8), i.e., when y(xi) is dominated
by the diversity score; in these cases, SVR-REC is
at a clear advantage, since it includes features for
surface string similarity (e.g., Levenshtein distance
measured on 〈s1, c1〉), which in effect measure di-
versity, unlike SVR-BASE. Even when λ1 is very
high (1 or 0.8), i.e., when all or most of the weight
is placed on grammaticality, SVR-REC outperforms
SVR-BASE, indicating that the extra features in SVR-
REC also contribute towards assessing grammatical-
ity; by contrast SVR-BASE relies exclusively on the
language model for grammaticality. Unfortunately,
when λ2 is very high (1 or 0.8), i.e., when all or
most of the weight is placed on meaning preserva-
tion, there is no or very small difference between
SVR-REC and SVR-BASE, suggesting that the extra
features of the paraphrase recognizer are not as use-
ful to the SVR, when assessing meaning preserva-
tion, as we would have hoped. Nevertheless, SVR-
REC is overall better than SVR-BASE.

We believe that the dataset of Section 3 and the
evaluation methodology summarized by Figure 3
will prove useful to other researchers, who may wish
to evaluate other ranking components of generate-
and-rank paraphrasing methods against ours, for ex-
ample with different ranking algorithms or features.
Similar datasets of candidate paraphrases can also
be created using different collections of paraphras-
ing rules.16 The same methodology can then be used
to evaluate ranking components on those datasets.

5 Comparison to the state of the art

Having established that SVR-REC is a better config-
uration of our method’s ranker than SVR-BASE, we

16See Androutsopoulos and Malakasiotis (2010) for pointers.
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proceed to investigate how well our overall generate-
and-rank method (with SVR-REC) compares against
a state of the art paraphrase generator.

As already mentioned, Zhao et al. (2010) recently
presented a method (we call it ZHAO-ENG) that out-
performs their previous method (Zhao et al., 2009a),
which used paraphrasing rules and an SMT-like de-
coder (we call that previous method ZHAO-RUL).
Given an input sentence S, ZHAO-ENG produces
candidate paraphrases by translating S to 6 pivot
languages via 3 different commercial machine trans-
lation engines (treated as black boxes) and then back
to the original language, again via 3 machine transla-
tion engines (54 combinations). Roughly speaking,
ZHAO-ENG then ranks the candidate paraphrases by
their average distance from all the other candidates,
selecting the candidate(s) with the smallest distance;
distance is measured as BLEU score (Papineni et
al., 2002).17 Hence, ZHAO-ENG is also, in effect,
a generate-and-rank paraphraser, but the candidates
are generated by invoking multiple machine transla-
tion engines instead of applying paraphrasing rules,
and they are ranked by the average distance measure
rather than using an SVR.

An obvious practical advantage of ZHAO-ENG is
that it exploits the vast resources of existing com-
mercial machine translation engines when generat-
ing candidate paraphrases, which allows it to always
obtain large numbers of candidate paraphrases. By
contrast, the collection of paraphrasing rules that we
currently use does not manage to produce any can-
didate paraphrases in 40% of the sentences of the
New York Times part of AQUAINT, because no rule
applies. Hence, in terms of ability to always para-
phrase the input, ZHAO-ENG is clearly better, though
it should be possible to improve our methods’s per-
formance in that respect by using larger collections
of paraphrasing rules.18 A further interesting ques-
tion, however, is how good the paraphrases of the
two methods are, when both methods manage to
paraphrase the input, i.e., when at least one para-

17We use the version of ZHAO-ENG that Zhao et al. (2010)
call “selection-based”, since they reported it performs overall
better than an alternative decoding-based version.

18Recall that the paraphrasing rules we use were extracted
from an English-Chinese parallel corpus. Additional rules
could be extracted from other parallel corpora, like Europarl
(http://www.statmt.org/europarl/).

phrasing rule applies to S. This scenario can be seen
as an emulation of the case where the collection of
paraphrasing rules is sufficiently large to guarantee
that at least one rule applies to any source sentence.

To answer the latter question, we re-implemented
ZHAO-ENG, with the same machine translation en-
gines and languages used by Zhao et al. (2010).
We also trained our paraphraser (with SVR-REC) on
the training part of the dataset of Section 3. We
then selected 300 random source sentences S from
AQUAINT that matched at least one of the paraphras-
ing rules, excluding sentences that had been used be-
fore. Then, for each one of the 300 S sentences, we
kept the single best candidate paraphraseC1 andC2,
respectively, returned by our paraphraser and ZHAO-
ENG. The resulting 〈S,C1〉 and 〈S,C2〉 pairs were
given to 10 human judges. This time the judges
assigned only grammaticality and meaning preser-
vation scores (on a 1–4 scale); diversity was again
computed as edit distance. Each pair was evaluated
by one judge, who was given an equal number of
pairs from the two methods, without knowing which
method each pair came from. The same judge never
rated two pairs with the same S. Since we had no
way to make ZHAO-ENG sensitive to λ1, λ2, λ3, we
trained SVR-REC with λ1 = λ2 = 1/3, as the most
neutral combination of weights.

Table 2 lists the average grammaticality, meaning
preservation, and diversity scores of the two meth-
ods. All scores were normalized in [0, 1], but the
reader should keep in mind that diversity was com-
puted as edit distance, whereas the other two scores
were provided by human judges on a 1–4 scale. The
grammaticality score of our method was better than
ZHAO-ENG’s, and the difference was statistically
significant.19 In meaning preservation, ZHAO-ENG

was slightly better, but the difference was not statis-
tically significant. The difference in diversity was
larger and statistically significant, with the diversity
scores indicating that it takes approximately twice as
many edit operations (insert, delete, replace) to turn
each source sentence to ZHAO-ENG’s paraphrase,
compared to the paraphrase of our method.

We note that our method can be tuned, by ad-
justing the λi weights, to produce paraphrases with

19We used Analysis of Variance (ANOVA) (Fisher, 1925), fol-
lowed by post-hoc Tukey tests to check whether the scores of
the two methods differ significantly (p < 0.05).
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score (%) our method ZHAO-ENG

grammaticality 90.89 85.33
meaning preserv. 76.67 78.56
diversity 6.50 14.58

Table 2: Evaluation of our paraphrasing method (with
SVR-REC) against ZHAO-ENG, using human judges. Re-
sults in bold indicate statistically significant differences.

higher grammaticality, meaning preservation, or di-
versity scores; for example, we could increase λ3
and decrease λ1 to obtain higher diversity at the cost
of lower grammaticality in the results of Table 2.20 It
is unclear how ZHAO-ENG could be tuned that way.

Overall, our method seems to perform well
against ZHAO-ENG, despite the vastly larger re-
sources of ZHAO-ENG, provided of course that we
limit ourselves to source sentences to which para-
phrasing rules apply. It would be interesting to in-
vestigate in future work if our method’s coverage
(sentences it can paraphrase) can increase to ZHAO-
ENG’s level by using larger collections of paraphras-
ing rules. It would also be interesting to combine the
two methods, perhaps by using SVR-REC (without
features for the quality scores of the rules) to rank
candidate paraphrases generated by ZHAO-ENG.

6 Conclusions and future work

We presented a generate-and-rank method to para-
phrase sentences. The method first produces can-
didate paraphrases by applying existing paraphras-
ing rules extracted from parallel corpora, and it then
ranks (or classifies) the candidates to keep the best
ones. The ranking component considers not only the
context-insensitive quality scores of the paraphras-
ing rules that produced each candidate, but also fea-
tures intended to measure the extent to which the
rule applications preserve grammaticality and mean-
ing in the particular context of the input sentence, as
well as the degree to which the resulting candidate
differs from the input sentence (diversity).

Initial experiments with a Maximum Entropy
classifier confirmed that the features we use can help
a ranking component select better candidate para-
phrases than a baseline ranker that considers only

20Additional application-specific experiments confirm that
this tuning is possible (Malakasiotis, 2011).

the average context-insensitive quality scores of the
applied rules. Further experiments with an SVR

ranker indicated that our full feature set, which in-
cludes features from an existing paraphrase recog-
nizer, leads to improved performance, compared to
a smaller feature set that includes only the context-
insensitive scores of the rules and language model-
ing scores. We also propose a new methodology to
evaluate the ranking components of generate-and-
rank paraphrase generators, which evaluates them
across different combinations of weights for gram-
maticality, meaning preservation, and diversity. The
paper is accompanied by a paraphrasing dataset we
constructed for evaluations of this kind.

Finally, we evaluated our overall method against
a state of the art sentence paraphraser, which
generates candidates by using several commercial
machine translation systems and pivot languages.
Overall, our method performed well, despite the vast
resources of the machine translation systems em-
ployed by the system we compared against. Our
method performed better in terms of grammaticality,
equally well in meaning preservation, and worse in
diversity, but it could be tuned to obtain higher diver-
sity at the cost of lower grammaticality, whereas it
is unclear how the system we compare against could
be tuned this way. On the other hand, an advantage
of the paraphraser we compared against is that it al-
ways produces paraphrases; by contast, our system
does not produce paraphrases when no paraphrasing
rule applies to the source sentence. Larger collec-
tions of paraphrasing rules would be needed to im-
prove our method in that respect.

Apart from obtaining and experimenting with
larger collections of paraphrasing rules, it would be
interesting to evaluate our method in vivo, for ex-
ample by embedding it in question answering sys-
tems (to paraphrase the questions), in information
extraction systems (to paraphrase extraction tem-
plates), or in natural language generators (to para-
phrase template-like sentence plans). We also plan
to investigate the possibility of embedding our SVR

ranker in the sentence paraphraser we compared
against, i.e., to rank candidates produced by using
several machine translation systems and pivot lan-
guages, as in ZHAO-ENG.
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S. Padó, M. Galley, D. Jurafsky, and C. D. Manning.
2009. Robust machine translation evaluation with en-
tailment features. In Proc. of ACL-AFNLP, pages 297–
305, Singapore.

K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proc. of the 40th ACL, pages 311–318,
Philadelphia, PA.

C. Quirk, C. Brockett, and W. B. Dolan. 2004. Mono-
lingual machine translation for paraphrase generation.
In Proc. of the Conf. on EMNLP, pages 142–149,
Barcelona, Spain.

105



S. Riezler and Y. Liu. 2010. Query rewriting using
monolingual statistical machine translation. Compu-
tational Linguistics, 36(3):569–582.

S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal, and
Y. Liu. 2007. Statistical machine translation for query
expansion in answer retrieval. In Proc. of the 45th
ACL, pages 464–471, Prague, Czech Republic.

I. Szpektor, I. Dagan, R. Bar-Haim, and J. Goldberger.
2008. Contextual preferences. In Proc. of ACL-HLT,
pages 683–691, Columbus, OH.

V. Vapnik. 1998. Statistical learning theory. John Wiley.
S. Zhao, H. Wang, T. Liu, and S. Li. 2008. Pivot ap-

proach for extracting paraphrase patterns from bilin-
gual corpora. In Proc. of ACL-HLT, pages 780–788,
Columbus, OH.

S. Zhao, X. Lan, T. Liu, and S. Li. 2009a. Application-
driven statistical paraphrase generation. In Proc. of
ACL-AFNLP, pages 834–842, Singapore.

S. Zhao, H. Wang, T. Liu, and Li. S. 2009b. Extract-
ing paraphrase patterns from bilingual parallel cor-
pora. Natural Language Engineering, 15(4):503–526.

S. Zhao, H. Wang, X. Lan, and T. Liu. 2010. Leverag-
ing multiple MT engines for paraphrase generation. In
Proceedings of the 23rd COLING, pages 1326–1334,
Beijing, China.

L. Zhou, C.-Y. Lin, and Eduard Hovy. 2006. Re-
evaluating machine translation results with paraphrase
support. In Proc. of the Conf. on EMNLP, pages 77–84.

106



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 107–117,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Correcting Semantic Collocation Errors with L1-induced Paraphrases

Daniel Dahlmeier1 and Hwee Tou Ng1,2

1NUS Graduate School for Integrative Sciences and Engineering
2Department of Computer Science, National University of Singapore

{danielhe,nght}@comp.nus.edu.sg

Abstract

We present a novel approach for automatic
collocation error correction in learner English
which is based on paraphrases extracted from
parallel corpora. Our key assumption is that
collocation errors are often caused by se-
mantic similarity in the first language (L1-
language) of the writer. An analysis of a
large corpus of annotated learner English con-
firms this assumption. We evaluate our ap-
proach on real-world learner data and show
that L1-induced paraphrases outperform tradi-
tional approaches based on edit distance, ho-
mophones, and WordNet synonyms.

1 Introduction
Grammatical error correction (GEC) is emerging as
a commercially attractive application of natural lan-
guage processing (NLP) for the booming market of
English as foreign or second language (EFL/ESL1).

The de facto standard approach to GEC is to build
a statistical model that can choose the most likely
correction from a confusion set of possible correc-
tion choices. The way the confusion set is defined
depends on the type of error. Work in context-
sensitive spelling error correction (Golding and
Roth, 1999) has traditionally focused on confusion
sets with similar spelling (e.g., {dessert, desert}) or
similar pronunciation (e.g., {there, their}). In other
words, the words in a confusion set are deemed con-
fusable because of orthographic or phonetic simi-
larity. Other work in GEC has defined the confu-

1For simplicity, we will collectively refer to both terms as
English as a foreign language (EFL)

sion sets based on syntactic similarity, for exam-
ple all English articles or the most frequent English
prepositions form a confusion set (see for example
(Tetreault et al., 2010; Rozovskaya and Roth, 2010;
Gamon, 2010; Dahlmeier and Ng, 2011) among oth-
ers).

In contrast, we investigate in this paper a class of
grammatical errors where the source of confusion is
the similar semantics of the words, rather than or-
thography, phonetics, or syntax. In particular, we
focus on collocation errors in EFL writing. The
term collocation (Firth, 1957) describes a sequence
of words that is conventionally used together in a
particular way by native speakers and appears more
often together than one would expect by chance. The
correct use of collocations is a major difficulty for
EFL students (Farghal and Obiedat, 1995).

In this work, we present a novel approach for au-
tomatic correction of collocation errors in EFL writ-
ing. Our key observation is that words are poten-
tially confusable for an EFL student if they have
similar translations in the writer’s first language (L1-
language), or in other words if they have the same
semantics in the L1-language of the writer. The
Chinese word 看 (kàn), for example, has over a
dozen translations in English, including the words
see, look, read, and watch. A Chinese speaker who
still “thinks” in Chinese has to choose from all these
possible translations when he wants to express a sen-
tence like I like to watch movies and might instead
produce a sentence like *I like to look movies. Al-
though the meanings of watch and look are simi-
lar, the former is clearly the more fluent choice in
this context. While these types of L1-transfer er-
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rors have been known in the EFL teaching litera-
ture (Swan and Smith, 2001; Meng, 2008), research
in GEC has mostly ignored this fact.

We first analyze collocation errors in the NUS
Corpus of Learner English (NUCLE), a fully an-
notated one-million-word corpus of learner English
which we will make available to the community for
research purposes (see Section 3 for details about
the corpus). Our analysis confirms that many col-
location errors can be traced to similar translations
in the writer’s L1-language. Based on this result,
we propose a novel approach for automatic collo-
cation error correction. The key component in our
approach generates L1-induced paraphrases which
we automatically extract from an L1-English par-
allel corpus. Our proposed approach outperforms
traditional approaches based on edit distance, ho-
mophones, and WordNet synonyms on a test set of
real-world learner data in an automatic and a human
evaluation. Finally, we present a detailed analysis of
unsolved instances in our data set to highlight direc-
tions for future work.

Our work adds to a growing body of research that
leverages parallel corpora for semantic NLP tasks,
for example in word sense disambiguation (Ng et
al., 2003; Chan and Ng, 2005; Ng and Chan, 2007;
Zhong and Ng, 2009), paraphrasing (Bannard and
Callison-Burch, 2005; Liu et al., 2010a), and ma-
chine translation evaluation (Snover et al., 2009; Liu
et al., 2010b).

The remainder of this paper is organized as fol-
lows. The next section reviews related work. Sec-
tion 3 presents our analysis of collocation errors.
Section 4 describes our approach for automatic col-
location error correction. The experimental setup
and the results are described in Sections 5 and 6, re-
spectively. Section 7 provides further analysis. Sec-
tion 8 concludes the paper.

2 Related Work
In this section, we give an overview of related work
on collocation error correction. We also highlight
differences between collocation error correction and
related NLP tasks like context-sensitive spelling er-
ror correction, synonym extraction, lexical substitu-
tion, and paraphrasing.

Most work in collocation error correction has re-
lied on dictionaries or manually created databases

to generate collocation candidates (Shei and Pain,
2000; Wible et al., 2003; Futagi et al., 2008). Other
work has focused on finding candidates that collo-
cate with similar words, e.g., verbs that appear with
the same noun objects form a confusion set (Liu et
al., 2009; Wu et al., 2010). The work most similar
to ours is probably the one presented by Chang et
al. (2008), as they also use translation information to
generate collocation candidates. However, they do
not use automatically derived paraphrases from par-
allel corpora but bilingual dictionaries. Dictionaries
usually have lower coverage, do not contain longer
phrases or inflected forms, and do not provide any
translation probability estimates. Also, their work
focuses solely on verb-noun collocations, while we
target collocations of arbitrary syntactic type.

Context-sensitive spelling error correction is the
task of correcting spelling mistakes that result in
another valid word, see for example (Golding and
Roth, 1999). It has traditionally focused on a small
number of pre-defined confusion sets, like homo-
phones or frequent spelling errors. Even when the
confusion sets are formed automatically, the simi-
larity of words in a confusion set has been based
on edit distance or phonetic similarity (Carlson et
al., 2001). In contrast, we focus on words that are
confusable due to their similar semantics instead of
similar spelling or pronunciation. Also, we do not
assume that the set of confusion sets is already given
to us. Instead, we automatically extract confusable
candidates from a parallel corpus.

Synonym extraction (Wu and Zhou, 2003), lexi-
cal substitution (McCarthy and Navigli, 2007) and
paraphrasing (Madnani and Dorr, 2010) are related
to collocation correction in the sense that they try to
find semantically equivalent words or phrases. How-
ever, there is a subtle but important difference be-
tween these tasks and collocation correction. In the
former, the main criterion is whether the original
phrase and the synonym/paraphrase candidate are
substitutable, i.e., both form a grammatical sentence
when substituted for each other in a particular con-
text. In contrast, in collocation correction, we are
primarily interested in finding candidates which are
not substitutable in their English context but appear
to be substitutable in the L1-language of the writer,
i.e., one forms a grammatical English sentence but
the other does not.
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Sentences 52,149
Words 1,149,100
Distinct words 27,593
Avg. sentence length (words) 22.04
Collocation errors 2,747
Avg. collocation error length (words) 1.17
Avg. correction length (words) 1.13

Table 1: Statistics of the NUS Corpus of Learner En-
glish (NUCLE)

3 Analysis of EFL collocation errors

While the fact that collocation errors can be caused
by L1-transfer has been ascertained by EFL re-
searchers (Meng, 2008), we need to quantify how
frequent collocation errors can be traced to these
types of transfer errors in order to estimate how
many errors in EFL writing we can potentially hope
to correct with information about the writer’s L1-
language.

We base our analysis on the NUS Corpus of
Learner English (NUCLE). The corpus consists of
about 1,400 essays written by EFL university stu-
dents on a wide range of topics, like environmen-
tal pollution or healthcare. Most of the students are
native Chinese speakers. The corpus contains over
one million words which are completely annotated
with error tags and corrections. All annotations have
been performed by professional English instructors.
The statistics of the corpus are summarized in Ta-
ble 1. The annotation is stored in a stand-off fashion.
Each error tag consists of the start and end offset of
the annotation, the type of the error, and the appro-
priate gold correction as deemed by the annotator.
The annotators were asked to provide a correction
that would result in a grammatical sentence if the
selected word or phrase would be replaced by the
correction.

In this work, we focus on errors which have
been marked with the error tag wrong colloca-
tion/idiom/preposition. As preposition errors are not
the focus of this work, we automatically filter out
all instances which represent simple substitutions of
prepositions, using a fixed list of frequent English
prepositions. In a similar way, we filter out a small
number of article errors which were marked as collo-
cation errors. Finally, we filter out instances where

the annotated phrase or the suggested correction is
longer than 3 words, as we observe that they contain
highly context-specific corrections and are unlikely
to generalize well (e.g., “for the simple reasons that
these can help them”→ “simply to”).

After filtering, we end up with 2,747 collocation
errors and their respective corrections, which ac-
count for about 6% of all errors in NUCLE. This
makes collocation errors the 7th largest class of er-
rors in the corpus after article errors, redundancies,
prepositions, noun number, verb tense, and mechan-
ics. Not counting duplicates, there are 2,412 distinct
collocation errors and corrections. Although there
are other error types which are more frequent, collo-
cation errors represent a particular challenge as the
possible corrections are not restricted to a closed set
of choices and they are directly related to seman-
tics rather than syntax. We analyzed the collocation
errors and found that they can be attributed to the
following sources of confusion:
Spelling: We suspect that an error is caused by simi-
lar orthography if the edit distance between the erro-
neous phrase and its correction is less than a certain
threshold.
Homophones: We suspect that an error is caused by
similar pronunciation if the erroneous word and its
correction have the same pronunciation. We use the
CuVPlus English dictionary (Mitton, 1992) to map
words to their phonetic representations.
Synonyms: We suspect that an error is caused by
synonymy if the erroneous word and its correction
are synonyms in WordNet (Fellbaum, 1998). We use
WordNet 3.0.
L1-transfer: We suspect that an error is caused by
L1-transfer if the erroneous phrase and its correction
share a common translation in a Chinese-English
phrase table. The details of the phrase table con-
struction are described in Section 4. We note that
although we focus on Chinese-English translation,
our method is applicable to any language pair where
parallel corpora are available.

As CuVPlus and WordNet are defined for indi-
vidual words, we extend the matching process to
phrases in the following way: two phrases A and B
are deemed homophones/synonyms if they have the
same length and the i-th word in phrase A is a ho-
mophone/synonym of the corresponding i-th word
in phrase B.
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Spelling . . . it received critics (criticism) as much as complaints . . .
. . . budget for the aged to improvise (improve) other areas.

Homophones . . . diverse spending can aide (aid) our country.
. . . insure (ensure) the safety of civilians . . .

Synonyms . . . rapid increment (increase) of the seniors . . .
. . . energy that we can apply (use) in the future . . .

L1-transfer . . . and give (provide, 给予 ) reasonable fares to the public . . .
. . . and concerns (attention, 关注 ) that the nation put on technology and engineering . . .

Table 3: Examples of collocation errors with different sources of confusion. The correction is shown in parenthesis.
For L1-transfer, we also show the shared Chinese translation. The L1-transfer examples shown here do not belong to
any of the other categories.

Suspected Error Source Tokens Types
Spelling 154 131
Homophones 2 2
Synonyms 74 60
L1-transfer 1016 782
L1-transfer w/o spelling 954 727
L1-transfer w/o homophones 1015 781
L1-transfer w/o synonyms 958 737
L1-transfer w/o spelling,

homophones, 906 692
synonyms

Table 2: Analysis of collocation errors. The threshold for
spelling errors is one for phrases of up to six characters
and two for the remaining phrases.

The results of the analysis are shown in Table 2.
Tokens refer to running erroneous phrase-correction
pairs including duplicates, and types refer to distinct
erroneous phrase-correction pairs. As a collocation
error can be part of more than one category, the rows
in the table do not sum up to the total number of
errors. The number of errors that can be traced to
L1-transfer greatly outnumbers all other categories.
The table also shows the number of collocation er-
rors that can be traced to L1-transfer but not the
other sources. 906 collocation errors with 692 dis-
tinct collocation error types can be attributed only to
L1-transfer but not to spelling, homophones, or syn-
onyms. Table 3 shows some examples of collocation
errors for each category from our corpus. We note
that there are also collocation error types that cannot
be traced to any of the above sources. We will return
to these errors in Section 7.

4 Correcting Collocation Errors
In this section, we propose a novel approach for cor-
recting collocation errors in EFL writing.

4.1 L1-induced Paraphrases

We use the popular technique of paraphrasing
with parallel corpora (Bannard and Callison-Burch,
2005) to automatically find collocation candidates
from a sentence-aligned L1-English parallel corpus.
As most of the essays in our corpus are written by
native Chinese speakers, we use the FBIS Chinese-
English corpus, which consists of about 230,000
Chinese sentences (8.5 million words) from news
articles, each with a single English translation. We
tokenize and lowercase the English half of the cor-
pus in the standard way. We segment the Chinese
half of the corpus using the maximum entropy seg-
menter from (Ng and Low, 2004; Low et al., 2005).
Subsequently, we automatically align the texts at the
word level using the Berkeley aligner (Liang et al.,
2006; Haghighi et al., 2009). We extract English-L1
and L1-English phrases of up to three words from
the aligned texts using the widely used phrase ex-
traction heuristic in (Koehn et al., 2003). The para-
phrase probability of an English phrase e1 given an
English phrase e2 is defined as

p(e1|e2) =
∑

f

p(e1|f)p(f |e2) (1)

where f denotes a foreign phrase in the L1 language.
The phrase translation probabilities p(e1|f) and
p(f |e2) are estimated by maximum likelihood es-
timation and smoothed using Good-Turing smooth-
ing (Foster et al., 2006). Finally, we only keep para-

110



phrases with a probability above a certain threshold
(set to 0.001 in our work).

4.2 Collocation Correction with Phrase-based
SMT

We implement our approach in the framework
of phrase-based statistical machine transla-
tion (SMT) (Koehn et al., 2003). Phrase-based
SMT tries to find the highest scoring translation e
given an input sentence f . The decoding process of
finding the highest scoring translation is guided by a
log-linear model which scores translation candidates
using a set of feature functions hi, i = 1, . . . , n

score(e|f) = exp

(
n∑

i=1

λihi(e, f)

)
. (2)

Typical features include a phrase translation proba-
bility p(e|f), an inverse phrase translation probabil-
ity p(f |e), a language model score p(e), and a con-
stant phrase penalty. The optimization of the feature
weights λi, i = 1, . . . , n can be done using mini-
mum error rate training (MERT) (Och, 2003) on a
development set of input sentences and their refer-
ence translations.

Because of the great flexibility of the log-linear
model, researchers have used the framework for
other tasks outside SMT, including grammatical er-
ror correction (Brockett et al., 2006). We adopt a
similar approach in this work. We modify the phrase
table of the popular phrase-based SMT decoder
MOSES (Koehn et al., 2007) to include collocation
corrections with features derived from spelling, ho-
mophones, synonyms, and L1-induced paraphrases.

• Spelling: For each English word, the phrase ta-
ble contains entries consisting of the word itself
and each word that is within a certain edit dis-
tance from the original word. Each entry has a
constant feature of 1.0.

• Homophones: For each English word, the
phrase table contains entries consisting of the
word itself and each of the word’s homophones.
We determine homophones using the CuVPlus
dictionary. Each entry has a constant feature of
1.0.

• Synonyms: For each English word, the phrase
table contains entries consisting of the word it-
self and each of its synonyms in WordNet. If a
word has more than one sense, we consider all
its senses. Each entry has a constant feature of
1.0.

• L1-paraphrases: For each English phrase, the
phrase table contains entries consisting of the
phrase and each of its L1-derived paraphrases
as described in Section 4.1. Each entry has two
real-valued features: a paraphrase probability
according to Equation 1 and an inverse para-
phrase probability.

• Baseline We combine the phrase tables built
for spelling, homophones, and synonyms. The
combined phrase table contains three binary
features for spelling, homophones, and syn-
onyms, respectively.

• All We combine the phrase tables from
spelling, homophones, synonyms, and L1-
paraphrases. The combined phrase table con-
tains five features: three binary features for
spelling, homophones, and synonyms, and
two real-valued features for the L1-paraphrase
probability and inverse L1-paraphrase proba-
bility.

Additionally, each phrase table contains the standard
constant phrase penalty feature. The first four ta-
bles only contain collocation candidates for individ-
ual words. We leave it to the decoder to construct
corrections for longer phrases during the decoding
process if necessary.

5 Experiments

In this section, we empirically evaluate our approach
on real collocation errors in learner English.

5.1 Data Set

We randomly sample a development set of 770 sen-
tences and a test set of 856 sentences from our cor-
pus. Each sentence contains exactly one collocation
error. The sampling is performed in a way that sen-
tences from the same document cannot end up in
both the development and the test set. In order to
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keep conditions as realistic as possible, we make no
attempt to filter the test set in any way.

We build phrase tables as described in Section 4.2.
For the purpose of the experiments reported in this
paper, we only need to generate phrase table entries
for words and phrases which actually appear in the
development or test set.

5.2 Evaluation Metrics
We conduct an automatic and a human evalua-
tion. Our main evaluation metric is mean recipro-
cal rank (MRR) which is the arithmetic mean of the
inverse ranks of the first correct answer returned by
the system

MRR =
1

N

N∑

i=1

1

rank(i)
(3)

where N is the size of the test set. If the system did
not return a correct answer for a test instance, we set

1
rank(i) to zero.

In the human evaluation, we additionally report
precision at rank k, k = 1, 2, 3, which we calculate
as follows:

P@k =

∑
a∈A score(a)

|A| (4)

where A is the set of returned answers of rank k or
less and score(·) is a real-valued scoring function
between zero and one.

5.3 Collocation Error Experiments
Automatic correction of collocation errors can con-
ceptually be divided into two steps: i) identification
of wrong collocations in the input, and ii) correc-
tion of the identified collocations. In this work, we
focus on the second step and assume that the erro-
neous collocation has already been identified. While
this might seem like a simplification, it has been the
common evaluation setup in collocation error cor-
rection (see for example (Wu et al., 2010)). It also
has a practical application where the user first selects
a word or phrase and the system displays possible
corrections.

In our experiments, we use the start and end offset
of the collocation error provided by the human anno-
tator to identify the location of the collocation error.
We fix the translation of the rest of the sentence to

its identity. We remove phrase table entries where
the phrase and the candidate correction are identi-
cal, thus practically forcing the system to change
the identified phrase. We set the distortion limit of
the decoder to zero to achieve monotone decoding.
We previously observed that word order errors are
virtually absent in our collocation errors. For the
language model, we use a 5-gram language model
trained on the English Gigaword corpus with modi-
fied Kneser-Ney smoothing. All experiments use the
same language model to allow a fair comparison.

We perform MERT training with the popular
BLEU metric (Papineni et al., 2002) on the devel-
opment set of erroneous sentences and their correc-
tions. As the search space is restricted to changing
a single phrase per sentence, training converges rel-
atively quickly after two or three iterations. After
convergence, the model can be used to automatically
correct new collocation errors.

6 Results
We evaluate the performance of the proposed
method on our test set of 856 sentences, each with
one collocation error. We conduct both an automatic
and a human evaluation. In the automatic evalua-
tion, the system’s performance is measured by com-
puting the rank of the gold answer provided by the
human annotator in the n-best list of the system. We
limit the size of the n-best list to the top 100 out-
puts. If the gold answer is not found in the top 100
outputs, the rank is considered to be infinity, or in
other words, the inverse of the rank is zero. We also
report the number of test instances for which the
gold answer was ranked among the top k answers,
k = 1, 2, 3, 10, 100. The results of the automatic
evaluation are shown in Table 4

For collocation errors, there are usually more than
one possible correct answer. Therefore, automatic
evaluation underestimates the actual performance of
the system by only considering the single gold an-
swer as correct and all other answers as wrong. As
such, we carried out a human evaluation for the sys-
tems BASELINE and ALL. We recruited two English
speakers to judge a subset of 500 test sentences. For
each sentence, a judge was shown the original sen-
tence and the 3-best candidates of each of the two
systems. We restricted human evaluation to the 3-
best candidates, as we believe that answers at a rank
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Model Rank = 1 Rank ≤ 2 Rank ≤ 3 Rank ≤ 10 Rank ≤ 100 MRR
Spelling 35 41 42 44 44 4.51
Homophones 1 1 1 1 1 0.11
Synonyms 32 47 52 60 61 4.98
Baseline 49 68 80 93 96 7.61
L1-paraphrases 93 133 154 216 243 15.43
All 112 150 166 216 241 17.21

Table 4: Results of automatic evaluation. Columns two to six show the number of gold answers that are ranked within
the top k answers. The last column shows the mean reciprocal rank in percentage. Bigger values are better.

P(A) 0.8076
Kappa 0.6152

Table 5: Inter-annotator agreement. P (E) = 0.5.

larger than three will not be very useful in a prac-
tical application. The candidates are displayed to-
gether in alphabetical order without any information
about their rank or which system produced them or
the gold answer by the annotator. The difference
between the candidates and the original sentence is
highlighted. The judges were asked to make a bi-
nary judgment for each of the candidates on whether
the proposed candidate is a valid correction of the
original or not. We represent valid corrections with
a score of 1.0 and invalid corrections with a score
of 0.0. Inter-annotator agreement is reported in Ta-
ble 5. The chance of agreement P (A) is the percent-
age of times that the annotators agree, and P (E) is
the expected agreement by chance, which is 0.5 in
our case. The Kappa coefficient is defined as

Kappa =
P(A)− P(E)

1− P(E)

We obtain a Kappa coefficient of 0.6152. A Kappa
coefficient between 0.6 and 0.8 is considered as
showing substantial agreement according to Landis
and Koch (1977). To compute precision at rank k,
we average the judgments. Thus, a system can re-
ceive a score of 0.0 (both judgments negative), 0.5
(judges disagree), or 1.0 (both judgments positive)
for each returned answer. To compute MRR, we
cannot simply average the judgments as MRR re-
quires binary judgments on whether an item is cor-
rect or not. Instead, we report MRR on the union and
the intersection of the judgments. In the first case,
the rank of the first correct item is the minimum

rank of any item judged correct by either judge. In
the second case, the rank of the first correct item
is the minimum rank of any item judged correct by
both judges. The results for the human evaluation
are shown in Table 6. Our best system ALL outper-
forms the BASELINE approach on all measures. It
receives a precision at rank 1 of 38.20% and a MRR
of 33.16% (intersection) and 57.26% (union). Ta-
ble 7 shows some examples from our test set.

Unfortunately, comparison of our results with pre-
vious work is complicated by the fact that there cur-
rently exists no standard data set for collocation er-
ror correction. We will make our corpus available
for research purposes in the hope that it will allow
researchers to more directly compare their results in
future.

7 Analysis

In this section, we analyze and categorize those test
instances for which the ALL system could not pro-
duce an acceptable correction in the top 3 candi-
dates. We manually analyze 100 test sentences for
which neither judge had deemed any candidate an-
swer to be a valid correction. Based on our findings,
we categorize the 100 sentences into eight categories
which are shown below. Table 8 shows examples
from each category.
Out-of-vocabulary (21/100) The most frequent rea-
son why the system does not produce a good correc-
tion is that the erroneous collocation is out of vocab-
ulary. These collocations often involve compound
words, like man-hours or carefully-nurturing, or in-
frequent expressions, like copy phenomena, which
do not appear in the FBIS parallel corpus. We ex-
pect that this problem can be reduced by using larger
parallel corpora for paraphrase extraction.
Near miss (18/100) The second largest category
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Model Rank = 1 Rank ≤ 2 Rank ≤ 3 P@1 P@2 P@3 MRR
Baseline 43 | 141 69 | 201 83 | 237 18.40 16.68 15.36 12.13 | 36.60
All 137 | 245 176 | 303 204 | 340 38.20 32.87 29.30 33.16 | 57.26

Table 6: Results of human evaluation. Rank and MRR results are shown for the intersection (first value) and union
(second value) of human judgments.

Original it must be clear, concise and unambiguous to prevent any off-track
Gold it must be clear, concise and unambiguous to avoid any off-track

All it must be clear, concise and unambiguous to avoid any off-track
it must be clear, concise and unambiguous to stop any off-track
it must be clear, concise and unambiguous to block any off-track

Baseline *it must be clear, concise and unambiguous to present any off-track
it must be clear, concise and unambiguous to forestall any off-track
*it must be clear, concise and unambiguous to lock any off-track

Original although many may agree that public spending on the elderly should be limited . . .
Gold although many may argue that public spending on the elderly should be limited . . .

All although many may believe that public spending on the elderly should be limited . . .
although many may think that public spending on the elderly should be limited . . .
although many may accept that public spending on the elderly should be limited . . .

Baseline *although many may agreed that public spending on the elderly should be limited . . .
*although many may hold that public spending on the elderly should be limited . . .
*although many may agrees that public spending on the elderly should be limited . . .

Table 7: Examples of test sentences with the top 3 answers of the ALL and BASELINE system. An answer judged
incorrect by at least one judge is marked with an asterisk (*).

Out of vocabulary . . . many illegal copy phenomena (copy phenomena, copies) in china.
. . . lead to reduced man-hours (man-hours, productivity) as people fall sick . . .

Near miss . . . smaller groups of people, sometimes even (more, only) individual .
. . . take pre-emptive actions (activities, measures) . . .

Function/auxiliary words . . . entertainment an elderly person can have (be, enjoy) .
. . . and the security issue is solved also (and, too)

Discourse specific . . . make other countries respect and fear you (<question mark>, a country)
. . . will contribute nothing to the accident (explosion, problem) .

Spelling errors this incidence (rate, incident) had also resulted in 4 fatalities . . .
refrigerator did not compromise (yield, comprise) of any moving parts . . .

Word sense . . . refers to the desire or shortage of a good (better, commodity) and . . .
. . . members are always from different majors (major league, specialties)

Preposition constructions . . . can be an area worth investing (investing, investing in)
. . . in spending their resources (resources, resources on)

Others this might redirect (make sound, reduce) foreign investments . . .
. . . a trading hub since british ’s (british ’s, british) rule.

Table 8: Examples of sentences without valid corrections by the ALL model. The top-1 suggestion of the system and
the gold answer (in bold) are shown in parenthesis.
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consists of instances where the system barely misses
the gold standard answer. This includes cases where
the extracted L1-paraphrases do not contain the ex-
act phrase required, e.g., the paraphrase table con-
tains even|||only get when the gold correction was
even → only, or the phrase table actually contains
the gold answer but fails to rank it among the top 3
answers. The first problem could be addressed by
modifying the phrase extraction heuristic to produce
more fine-grained phrase pairs. The second prob-
lem requires a better language model. Although our
language model is trained on the large English Giga-
word corpus, it is not always successful in promot-
ing the correct candidate to the top. The domain mis-
match between the newswire domain of Gigaword
and student essays could be one reason for this.
Function/auxiliary words (14/100) We observe
that collocation errors that involve function words
or auxiliary words are not handled very well by our
model. Function words and auxiliary words in En-
glish lack direct counterparts in Chinese, which is
why the word alignments and therefore the extracted
phrases for these words contain a high amount of
noise. As function words and auxiliaries are essen-
tially a closed set, it might be more promising to
build separate models with fixed confusion sets for
them.
Discourse specific (14/100) Some of the gold an-
swers are highly specific to the particular discourse
that they appear in. As our model corrects colloca-
tion errors at the sentence level, such gold answers
will be very difficult or impossible to determine cor-
rectly. Including more context beyond the sentence
level might help to overcome this problem, although
it is not easy to integrate this larger context informa-
tion.
Spelling errors (9/100) Some of the collocation er-
rors are caused by spelling mistakes, e.g., incidence
instead of incident. Although the ALL model in-
cludes candidates which are created through edit dis-
tance, paraphrase candidates created from the mis-
spelled word can dominate the top 3 ranks, e.g., rate
and frequently are paraphrases of incidence. A pos-
sible solution would be to perform spell-checking as
a separate pre-processing step prior to collocation
correction.
Word sense (7/100) Some of the failures of the
model can be attributed to ambiguous senses of the

collocation phrase. As we do not perform word
sense disambiguation in our current work, candi-
dates from other word senses can end up as the top
candidates. Including word sense disambiguation
into the model might help, although accurate word
sense disambiguation on noisy learner text may not
be easy.
Preposition constructions (6/100) Some of the col-
location errors involve preposition constructions,
e.g., the student wrote attend instead of attend
to. Because prepositions do not have a direct
counterpart in Chinese, the L1-paraphrases do not
model their semantics very well. This category is
closely related to the function/auxiliary word cate-
gory. Again, since prepositions are a closed set, it
might be more promising to build a separate model
for them.
Others (11/100) Other mistakes include collocation
errors where the gold answer slightly changed the
semantics of the target word, e.g., redirect potential
foreign investments → reduce potential foreign in-
vestments, active-passive alternation (enhanced eco-
nomics→ was economical), and noun possessive er-
rors (british ’s rule→ british rule).

8 Conclusion and Future Work

We have presented a novel approach for correcting
collocation errors in written learner text. Our ap-
proach exploits the semantic similarity of words in
the writer’s L1-language based on paraphrases ex-
tracted from an L1-English parallel corpus. Our ex-
periments on real-world learner data show that our
approach outperforms traditional approaches based
on edit distance, homophones, and synonyms by a
large margin.

In future work, we plan to extend our system to
fully automatic collocation correction that involves
both identification and correction of collocation er-
rors.
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Abstract

Class-instance label propagation algorithms
have been successfully used to fuse informa-
tion from multiple sources in order to enrich
a set of unlabeled instances with class labels.
Yet, nobody has explored the relationships be-
tween the instances themselves to enhance an
initial set of class-instance pairs. We pro-
pose two graph-theoretic methods (centrality
and regularization), which start with a small
set of labeled class-instance pairs and use the
instance-instance network to extend the class
labels to all instances in the network. We carry
out a comparative study with state-of-the-art
knowledge harvesting algorithm and show that
our approach can learn additional class labels
while maintaining high accuracy. We conduct
a comparative study between class-instance
and instance-instance graphs used to propa-
gate the class labels and show that the latter
one achieves higher accuracy.

1 Introduction

Many natural language processing applications use
and rely on semantic knowledge resources. Since
manually built lexical repositories such as Word-
Net (Fellbaum, 1998) cover a limited amount of
knowledge and are tedious to maintain over time, re-
searchers have developed algorithms for automatic
knowledge extraction from structured and unstruc-
tured texts. There is a substantial body of work
on extracting is-a relations (Etzioni et al., 2005;
Kozareva et al., 2008), part-of relations (Girju et al.,
2003; Pantel and Pennacchiotti, 2006) and general
facts (Lin and Pantel, 2001; Davidov and Rappoport,

2009; Jain and Pantel, 2010). The usefulness of the
generated resources has been shown to be valuable
to information extraction (Riloff and Jones, 1999),
question answering (Katz et al., 2003) and textual
entailment (Zanzotto et al., 2006) systems.

Among the most common knowledge acquisi-
tion approaches are those based on lexical patterns
(Hearst, 1992; Etzioni et al., 2005; Kozareva et al.,
2008) and clustering (Lin and Pantel, 2002; Davidov
and Rappoport, 2008). While clustering can find in-
stances and classes that are not explicitly expressed
in text, they often may not generate the granularity
needed by the users. In contrast, pattern-based ap-
proaches generate highly accurate lists, but they are
constraint to the information matched by the pattern
and often suffer from recall. (Paşca, 2004; Snow
et al., 2006; Kozareva and Hovy, 2010) have shown
that complete lists of semantic classes and instances
are valuable for the enrichment of existing resources
like WordNet and for taxonomy induction. There-
fore, researchers have focused on the development
of methods that can automatically augment the ini-
tially extracted class-instance pairs.

(Pennacchiotti and Pantel, 2009) fused informa-
tion from pattern-based and distributional systems
using an ensemble method and a rich set of features
derived from query logs, web-crawl and Wikipedia.
(Talukdar et al., 2008) improved class-instance ex-
tractions exploring the relationships between the
classes and the instances to propagate the initial
class-labels to the remaining unlabeled instances.
Later on (Talukdar and Pereira, 2010) showed that
class-instance extraction with label propagation can
be further improved by adding semantic information
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in the form of instance-attribute edges derived from
independently developed knowledge base. Similarly
to (Talukdar et al., 2008) and (Talukdar and Pereira,
2010), we are interested in enriching class-instance
extractions with label propagation. However, un-
like the previous work, we model the relationships
between the instances themselves to propagate the
initial set of class labels to the remaining unlabeled
instances. To our knowledge, this is the first work
to explore the connections between instances for the
task of class-label propagation.

Our work addresses the following question: Is it
possible to effectively explore the structure of the
text-mined instance-instance networks to enhance
an incomplete set of class labels? Our intuition is
that if an instance like bear belongs to a seman-
tic class carnivore, and the instance bear is con-
nected to the instance fox, then it is more likely that
the unlabeled instance fox is also of class carnivore.
To solve this problem, we propose two graph-based
approaches that use the structure of the instance-
instance graph to propagate the class labels. Our
methods are agnostic to the sources of semantic in-
stances and classes. In this work, we carried out ex-
periments with a state-of-the-art instance extraction
system and conducted a comparative study between
the original and the enhanced class-instance pairs.
The results show that this labeling procedure can be-
gin to bridge the gap between the extraction power
of the pattern-based approaches and the desired re-
call by finding class-instance pairs that are not ex-
plicitly mentioned in text. The contributions of the
paper are as follows:

• We use only the relationships between the in-
stances themselves to propagate class labels.

• We observe how often labels are propagated
along the edges of our semantic network, and
propose two ways to extend an initial set of
class labels to all the instance nodes in the net-
work. The first approach uses a linear sys-
tem to compute the network centrality relative
to the initially labeled instances. The second
approach uses a regularization framework with
respect to a random walk on the network.

• We evaluate the proposed approaches and show
that they discover many new class-instance
pairs compared to state-of-the-art knowledge

harvesting algorithm, while still maintaining
high accuracy.

• We conduct a comparative study between class-
instance and instance-instance graphs used
to propagate class labels. The experiments
show that considering relationships between in-
stances achieves higher accuracy.

The rest of the paper is organized as follows. In
Section 2, we review related work. Section 3 de-
scribes the Web-based knowledge harvesting algo-
rithm used to extract the instance network and the
class-instance pairs necessary for our experimen-
tal evaluation. Section 4 describes the two graph-
theoretic methods for class label propagation using
an instance-instance network. Section 5 shows a
comparative study between the proposed graph al-
gorithms and different baselines. We also show
a comparison between class-instance and instance-
instance graphs used in the label propagation. Fi-
nally, we conclude in Section 6.

2 Related Work

In the past decade, we have reached a good under-
standing on the knowledge harvesting technology
from structured (Suchanek et al., 2007) and unstruc-
tured text. Researchers have harvested with vary-
ing success semantic lexicons (Riloff and Shepherd,
1997) and concept lists (Katz et al., 2003). Many
efforts have also focused on the extraction of is-a
relations (Hearst, 1992; Paşca, 2004; Etzioni et al.,
2005; Paşca, 2007; Kozareva et al., 2008), part-of re-
lations (Girju et al., 2003; Pantel and Pennacchiotti,
2006) and general facts (Etzioni et al., 2005; Davi-
dov and Rappoport, 2009; Jain and Pantel, 2010).
Various approaches have been proposed following
the patterns of (Hearst, 1992) and clustering (Lin
and Pantel, 2002; Davidov and Rappoport, 2008). A
substantial body of work has explored issues such as
reranking the harvested knowledge using mutual in-
formation (Etzioni et al., 2005) and graph algorithms
(Hovy et al., 2009), estimating the goodness of text-
mining seeds (Vyas et al., 2009), organizing the
extracted information (Cafarella et al., 2007a; Ca-
farella et al., 2007b) and inducing term taxonomies
with WordNet (Snow et al., 2006) or starting from
scratch (Kozareva and Hovy, 2010).
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Since pattern-based approaches tend to be high-
precision and low-recall in nature, recently of great
interest to the research community is the develop-
ment of approaches that can increment the recall of
the harvested class-instance pairs. (Pennacchiotti
and Pantel, 2009) proposed an ensemble seman-
tic framework that mixes distributional and pattern-
based systems with a large set of features from a
web-crawl, query logs, and Wikipedia. (Talukdar
et al., 2008) combined extractions from free text
and structured sources using graph-based label prop-
agation algorithm. (Talukdar and Pereira, 2010)
conducted a comparative study of graph algorithms
and showed that class-instance extraction can be
improved using additional information that can be
modeled as instance-attribute edges.

Closest to our work is that of (Talukdar et al.,
2008; Talukdar and Pereira, 2010) who model class-
instance relations to propagate class-labels. Al-
though these algorithms can be applied to other rela-
tions (Alfonseca et al., 2010), to our knowledge yet
nobody has modeled the connections between the in-
stances themselves for the task of class-label prop-
agation. We propose regularization and centrality
graph-theoretic methods, which exploit the instance-
instance network and a small set of class-instance
pairs to propagate the class-labels to the remaining
unlabeled instances. While objectives similar to reg-
ularization have been used for class-label propaga-
tion, the application of node centrality for this task is
also novel. The proposed solutions are intuitive and
almost parameter-free (both methods have a single
parameter, which is easy to interpret and does not
require careful tuning).

3 Knowledge Harvesting from the Web

Our proposed class-label enhancement approaches
are agnostic to the sources of semantic instances and
classes. Several methods have been developed to
harvest instances from the Web (Paşca, 2004; Et-
zioni et al., 2005; Paşca, 2007; Kozareva et al.,
2008) and potentially we can use any of them.
In our experiments, we use the doubly-anchored
(DAP) method of (Kozareva et al., 2008), because it
achieves higher precision than (Etzioni et al., 2005;
Paşca, 2007), it is easy to implement and requires
minimum supervision (only one seed instance and a

lexico-syntactic pattern).
For a given semantic class of interest say ani-

mals, the algorithm starts with a seed example of
the class, say whales. The seed instance is fed into
a doubly-anchored pattern “<semantic-class> such
as <seed> and *”, which extracts on the position
of the * new instances of the semantic class. Then,
the newly acquired instances are individually placed
on the position of the seed in the DAP pattern. The
bootstrapping procedure is repeated until no new in-
stances are found. We use the harvested instances to
build the instance-instance graph in which the nodes
are the learned instances and directed edges like
(whales,dolphins) indicate that the instance whales
extracted the instance dolphins. The edges between
the instances are weighted based on the number of
times the DAP pattern extracted the instances to-
gether.

Different strategies can be employed to acquire
semantic classes for each instance. We follow the
fully automated approach of (Hovy et al., 2009),
which takes the learned instance pairs from DAP and
feeds them into the pattern “* such as <instance1>
and <instance2>”. The algorithm extracts on the
position of the * new semantic classes related to
instance1. According to (Hovy et al., 2009), the
usage of two instances acts as a disambiguator and
leads to much more accurate semantic class extrac-
tion compared to (Ritter et al., 2009).

4 Methods

We model the output of the instance harvesting al-
gorithm as a directed weighted graph that is given
by a set of vertices V and a set of edges E. We use
n to denote the number of vertices. A node u corre-
sponds to a learned instance, and an edge (u, v) ∈ E
indicates that the instance v was learned from the in-
stance u using the DAP pattern. The weight of the
edge w(u, v) specifies the number of times the pair
of instances were found by the DAP pattern. We de-
fine the adjacency matrix of the graph as:

A(u, v) =

{
w(u, v) if (u, v) ∈ E
0 otherwise.

We use dout(u) to specify the out-degree of u:
dout(u) =

∑
(u,v)∈E w(u, v), and din(v) to specify

the in-degree of v: din(v) =
∑

(u,v)∈E w(u, v).
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We represent the initial set of instances L that are
believed to belong to class C (the set of labeled in-
stances) by a row vector l ∈ {0, 1}n, where l(u) = 1
if u ∈ L. Our objective is to compute a vector l̂
where l̂(u) is proportional to how likely it is that u
belongs to C. We write all vectors as row vectors,
and use ~c to denote a 1 by n constant vector such
that ~c(u) = c for all u ∈ V .

4.1 Personalized Centrality
Our first approach is based on the intuition that if
u ∈ C and (u, v) ∈ E, then it is more likely that
v ∈ C. Moreover, the larger the weight of the edge
w(u, v), the more likely it is that v ∈ C. When we
extend this intuition to all the in-neighbors, we say
that the score of each node is proportional to the sum
of the scores of its in-neighbors scaled by the edge
weights: l̂(v) = α

∑
(u,v)∈E l̂(u)w(u, v). We can

verify that the vector l̂ must then satisfy l̂ = αl̂A,
so it is an eigenvector of the adjacency matrix of the
graph with an eigenvalue of α.

However, this formulation is insufficient because
even though it captures our intuition that the nodes
get their scores from their in-neighbors, we are still
ignoring the initial scores of the nodes. A way to
take the initial scores into consideration is to com-
pute the following steady-state equation:

l̂ = l + α · l̂A. (1)

Equation 1 specifies that the score l̂(u) of each node
u is the sum of its initial score l(u) and the weighted
sum of the scores of its neighbors, which is scaled
by α. This equation is known as α-centrality, which
was first introduced by (Bonacich and Lloyd, 2001).
The α parameter controls how much the score of
each node depends on the scores of its neighbors.
When α = 0 the score of each node is equivalent to
its initial score, and does not depend on the scores
of its neighbors at all.

Alternately, we can think of the vector l̂ as the
fixed-point of the process in which in each iteration
some node v updates its score l̃(v) by setting l̃(v) =
l(v) + α

∑
(u,v)∈E w(u, v)l̃(u).

Solving Equation 1 we can see that l̂ = l(I −
αA)−1, where I is the identity matrix of size n.
The solution is also closely related to the following
expression, which is known as a Katz score (Katz,
1953):

s

∞∑

t=1

αtAt.

We can verify that At(u, v) gives the number of
paths of length t between u and v. Katz proposed
using the above expression with the starting vector
s = ~1 to measure centrality in a network. Therefore,
the score of node v is given by the number of paths
from u to v for all u ∈ V , with longer paths given
less weight based on the value of α. The method
proposed here measures a similar quantity with a
non-uniform starting vector. To show the relation-
ship between the two measures we use the identity
that

∑∞
t=1 α

tAt = (I −αA)−1− I . It is easy to see
that

l̂ = l(I − αA)−1

= l(
∑∞

t=1 α
tAt + I)

= l
∑∞

t=1 α
tAt + l

= l
∑∞

t=0 α
tAt.

(2)

Equation 2 shows that l̂(v) is given by the number
of paths from u to v for all u ∈ L (the initial labeled
set). Using a larger value of α corresponds to giving
more weight to paths of longer length. The summa-
tion

∑∞
t=0 α

tAt converges as long as |α| < 1/λmax,
where λmax is the largest eigenvalue of A. There-
fore, we can only consider values of α in this range.

4.2 Regularization Using Random Walks
Our second approach constrains l̂ to be as consistent
or smooth as possible with respect to the structure
of the graph. The simplest way to express this is
to require that for each edge (u, v) ∈ E, the scores
of the endpoints l̂(u) and l̂(v) must be as similar as
possible. Moreover, the greater the weight of the
edge w(u, v) the more important it is for the scores
to match. Using this intuition we can define the fol-
lowing optimization problem:

argminl̂∈{0,1}n
∑

(u,v)∈E
(l̂(u)− l̂(v))2.

Setting l̂ = ~0 or l̂ = ~1 clearly optimizes this func-
tion, but does not give a meaningful solution. How-
ever, we can additionally constrain l̂ by requiring
that the initial labels cannot be modified, or more
generally penalizing the discrepancy between l̂(u)
and l(u) for u ∈ L. The methods of (Talukdar and
Pereira, 2010) optimize objective functions of this
type.
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Unlike the work of (Talukdar and Pereira, 2010),
here we use an objective function that considers
smoothness with respect to a random walk on the
graph. Performing a random walk allows us to take
more of the graph structure into account. For exam-
ple, if nodes u and v are part of the same cluster then
it is likely that the edge (u, v) is heavily traversed
during the random walk, and should have a lot of
probability in the stationary distribution of the walk.
Simply considering the weight of the edge w(u, v)
gives us no such information. Therefore if our objec-
tive function requires the scores to be consistent with
respect to the stationary probability of the edges in
the random walk, we can compute scores that are
consistent with the clustering structure of the graph.

Our semantic network is not strongly connected,
so we must make some modifications to the random
walk to ensure that it has a stationary distribution.
Section 4.2.1 describes our random walk and how
we compute the transition probability matrix P and
its stationary probability distribution π. The defini-
tion of our objective function and the description of
how it is optimized is given in Section 4.2.2.

4.2.1 Teleporting Random Walk
Formally, a random walk is a process where at

each step we move from some node to one of its
neighbors. The transition probabilities are given
by edge weights, therefore the transition probability
matrix W is the normalized adjacency matrix where
each row sums to one:

W = D−1A.

Here the D matrix is the degree matrix, which is a
diagonal matrix given by

D(u, v) =

{
dout(u) if u = v
0 otherwise.

In our semantic network some nodes have no out-
neighbors, so in order to compute W we first add a
self-loop to any such node. In addition, we modify
the random walk to reset at each step with nonzero
probability β to ensure that it has a steady-state
probability distribution. When the walk resets it
jumps or teleports to any node in the graph with
equal probability. The transition probability matrix
of this process is given by

P = βK + (1− β)W,

where K is an n by n matrix given by K(u, v) = 1
n

for all u, v ∈ V . The stationary distribution π must
satisfy π = πP . Equivalently π can be viewed as a
solution to the following PageRank equation:

π = βs+ (1− β)πW.

Here the starting vector s = 1
n
~1 gives the prob-

ability distribution for where the walk transitions
when it resets. In our computations we use a jump
probability β = 0.15, which is standard for com-
putations of PageRank. The stationary distribution
π can be computed by either solving the PageRank
equation or computing the eigenvector of P corre-
sponding to the eigenvalue of 1.

4.2.2 Regularization
(Zhou et al., 2005) propose the following function

to measure the smoothness of l̂ with respect to the
stationary distribution of the random walk:

Ω(l̂) =
1

2

∑

(u,v)∈E
π(u)P (u, v)

(
l̂(u)√
π(u)

− l̂(v)√
π(v)

)2

.

Here π(u)P (u, v) gives the steady-state proba-
bility of traversing the edge (u, v), and π(u) and
π(v) specify how much probability u and v have
in the stationary distribution π. Zhou et al. point
out that using this function gives better results than
smoothness with respect to the edge weights, which
can be formulated by replacing π(u)p(u, v) with
w(u, v), and replacing π(u) and π(v) with dout(u)
and din(v), respectively. This observation is con-
sistent with our intuition that considering a random
walk takes more of the graph structure into account.

In addition to minimizing Ω(l̂), we also want l̂ to
be as close as possible to l, which gives the follow-
ing optimization problem:

argminl̂∈Rn{Ω(ŷ) + µ||l̂ − l||2}. (3)

Here the µ > 0 parameter specifies the tradeoff be-
tween the two terms: using a larger µ corresponds to
placing more emphasis on agreement with the initial
labels. (Zhou et al., 2005) show that this objective is
optimized by computing

l̂ = (I − γΘ)−1l, (4)

where Θ = (Π1/2PΠ−1/2 + Π−1/2PΠ1/2)/2, and
γ = 1/(1 + µ). Π is a diagonal matrix given by
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Π(u, v) =

{
π(u) if u = v
0 otherwise.

Zhou et al. propose this approach for semi-
supervised learning of labels on the graph, given an
initial vector l such that l(u) = 1 if vertex u has the
label, l(u) = −1 if u does not have the label, and
l(u) = 0 if the vertex is unlabeled. They propose
taking the sign of l̂(u) to classify u as positive or
negative. Using our labeling procedure we do not
have any negative examples, so our initial vector l
is non-negative, resulting in a non-negative vector l̂.
This is not a problem because we can still interpret
l̂(u) to be proportional to how likely it is that u has
the label. Rather than trying different settings of µ,
we directly vary γ, with a smaller γ placing more
emphasis on agreement with initial labels.

5 Experimental Evaluation

5.1 Data Collection

For our experimental study, we select three widely
used domains in the harvesting community (Et-
zioni et al., 2005; Paşca, 2007; Hovy et al., 2009;
Kozareva and Hovy, 2010): animals and vehicles.
For each domain we randomly selected different se-
mantic classes, which resulted in 20 classes alto-
gether. To generate the instance-instance seman-
tic network, we use the harvesting procedure de-
scribed in Section 3. For example, to learn instances
associated with animals, we instantiate the boot-
strapping algorithm with the semantic class animals,
the seed instance bears and the pattern “animals
such as bears and *”. We submitted the pattern as
queries to Yahoo!Boss and collected new instances.
We ranked the instances following (Kozareva et al.,
2008) which resulted in 397 animal, 4471 plant and
1425 vehicle instances. Table 1 shows the number
of nodes (instances) and directed edges for the con-
structed semantic networks.

class #instances #directed-edges
animals 397 2812
vehicles 1425 3191

Table 1: Nodes & Edges in the Instance Network.

Next, we use the harvested instances to auto-
matically learn the semantic classes associated with
them. For example, bears and wolves are animals
but also mammals, predators, vertebrates among

others. The obtained class harvesting results are
shown in Table 2. We indicate with Inst(Hovy et
al., 2009) the number of instances in the semantic
network that discovered the class during the pattern-
based harvesting, and with InstInWordNet the num-
ber of instances in the semantic network belonging
to the class according to WordNet.

ClassName Inst(Hovy et al., 2009) InstInWordNet

arthropods 12 50
carnivores 24 57
chordates 2 313
eutherians 3 193

insects 5 29
invertebrates 53 84

mammals 114 205
reptile 5 22

ruminants 14 34
ungulates 16 66

crafts 24 68
motor vehicles 27 127

self-propelled vehicles 36 145
vessels 11 36

wheeled vehicles 54 190

Table 2: Learned & Gold Standard Class-Instances.

We can see that the pattern-based approach of
(Hovy et al., 2009) does not recover a lot of the
class-instance relations present in WordNet. Be-
cause of this gap between the actual and the har-
vested class-instance pairs arises the objective of our
work, which is to explore the relationships between
the instances to propagate the initially learned class
labels to the remaining unlabeled instances. To eval-
uate the performance of our approach, we use as a
gold standard the WordNet class-instance mappings.

5.2 Testing Our Approach
Our approach is based on the intuition that given a
labeled instance u of class C, and an instance v in
our network, if there is an edge (u, v) then it is more
likely that v has the label C as well. For example,
if the instance bears is of class vertebrates and there
is an edge between the instances bears and wolves,
then it is likely that wolves are also vertebrates.
Before proceeding with the instance-instance class-
label propagation algorithms, first we study whether
this intuition is correct.

Individually for each class label C, we construct a
set TC that contains all instances in the network be-
longing to C according to WordNet. Then we com-
pute the probability that v belongs to C in WordNet
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given that (u, v) is an edge in the instance network
and u belongs to C in WordNet: Prh = Pr[v ∈
TC | (u, v) ∈ E and u ∈ TC ]. We compare
this to the background probability Prb = Pr[v ∈
TC | u, v ∈ V and u ∈ TC ], which gives the proba-
bility that v belongs to C in WordNet if it is chosen
at random. In other words, if Prh = 1, this means
that whenever u has the label C and (u, v) is an
edge, then v is always labeled with C. If indeed this
is the case, then a good classifier can simply take the
initial set L and extend the labels to all nodes reach-
able from L in the semantic network. The larger the
difference between Prh and Prb, the more informa-
tion the links of the instance network carry for the
task of label propagation. Table 3 shows the Prh
and Prb values for each class.

CLASS Prh Prb

arthropods .46 .12
carnivores .49 .14
chordates .95 .80
eutherians .80 .49

insects .31 .07
invertebrates .74 .21

mammals .82 .52
reptile .27 .05

ruminants .39 .08
ungulates .60 .16

crafts .07 .05
motor vehicles .10 .09

self-propelled vehicles .11 .10
vessels .08 .02

wheeled vehicles .13 .13

Table 3: Learned & Gold Standard Class-Instances.

This study verifies our intuition that using the re-
lationships between the instances to extend a class
label to the remaining unlabeled nodes is an effec-
tive approach to enhancing an incomplete set of ini-
tial labels.

5.3 Comparative Study

The objective of our work is given a set of initially
labeled nodes L, to assign to each node a score
that indicates how likely it is to belong to L. The
simplest way to do this using the edges of the in-
stance network is to say that a node that has more
in-neighbors that have a certain label is more likely
to have this label. We define the in-neighbor score
i(v) of a node v as i(v) = |{u ∈ V |(u, v) ∈
E and u ∈ L}|. We expect that the higher the in-
neighbor score of v, the more likely it is that v has

the label L. The personalized centrality method
that we proposed generalizes this intuition to indi-
rect neighbors (see Methods). Our regularization
using random walks technique further explores the
link structure of the instance network by considering
a random walk on it (see Methods). We compare our
approaches with a method that labels nodes at ran-
dom. The expected accuracy for class C is given by
|TC |
n , where n is the number of nodes in the network,

and TC is the set containing all nodes that belong to
C according to WordNet. In other words, given that
there are 84 nodes in the network that are classified
as invertebrate according to WordNet, and there are
397 nodes in total, if we choose any number of nodes
at random our expected accuracy is 21%.

We evaluate the performance of our approaches
against the WordNet gold standard and show the ob-
tained results in Tables 4 and 5.

Invertebrates
rank centrality regularization in-neighbor random

5 1.0 1.0 .80 .21
10 1.0 1.0 .70 .21
20 .95 1.0 .75 .21
50 .96 .98 .76 .21

100 .69 .73 .67 .21
Mammals

rank centrality regularization in-neighbor random

5 .80 1.0 .80 .52
10 .90 1.0 .90 .52
20 .95 .95 .85 .52
50 .86 .96 .80 .52

100 .92 .92 .76 .52
Carnivores

rank centrality regularization in-neighbor random

5 1.0 1.0 .80 .14
10 .80 .80 .60 .14
20 .80 .85 .55 .14
50 .50 .68 .48 .14

100 .41 .44 .41 .14

Table 4: Accuracy @ Different Ranks.

Table 4 shows the accuracy at rank R calculated
as the number of correctly labeled instances with
class C at rank R divided by the total number of
instances with class C at rank R. Due to space limi-
tation, we show detailed ranking only for three of the
classes. We can see that using the semantic network
significantly enhances our ability to learn class la-
bels. Even the simple in-neighbor method produces
results that are very significant compared to chance.
Our centrality and regularization techniques further
explore the structure of the semantic network to give
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better predictions.
Table 5 shows the accuracy of the class label prop-

agation algorithms for each class. For each class we
consider the top k ranked nodes, where k is the num-
ber of instances that belong to this class according
to WordNet. For example, the accuracy of central-
ity for carnivores is 80% showing that from the top
57 ranked animal instances, 80% belong to carni-
vores. In the final column we also report the per-
formance of a label propagation algorithm that uses
class-instance graph instead of an instance-instance
graph. To build the graph we remove the edges
between the instances and keep the class-instance
mappings discovered by the harvesting algorithm of
(Hovy et al., 2009). We use the modified adsorption
algorithm (MAD) of (Talukdar et al., 2008), which
is freely available from the Junto toolkit1. To rank
the instances for each class label produced by Junto,
we use the computed label scores as a ranking crite-
ria and measure accuracy similarly to centrality and
regularization.

class Centrality Regular. Rand MAD

arthropods .50 .60 .12 .56
carnivores .80 .85 .14 .44
chordates .81 .83 .80 .79
eutherians .54 .60 .49 .60

insects .38 .52 .07 .17
invertebrates .94 .96 .21 .64

mammals .82 .90 .52 .63
reptile .45 .55 .05 .14

ruminants .41 .44 .08 .41
ungulates .44 .61 .16 .32

crafts .47 .56 .05 .35
motor vehicle .45 .48 .09 .24

self-propelled vehicle .49 .47 .10 .27
vessel .33 .39 .02 .31

wheeled vehicle .51 .52 .13 .33

Table 5: Comparative Study.

The obtained results show that for almost all cases
the methods that use the structure of the instance net-
work significantly outperform predictions that use
the class-instance graph. This indicates that we
can indeed learn a lot form the instance-instance
relationships by exploring the structure of the in-
stance network. Among all approaches regulariza-
tion achieves the best results. We believe that reg-
ularization works well because it considers a ran-
dom walk on the semantic graph, and within-cluster

1http://code.google.com/p/junto/

edges are traversed more often in a random walk.
The regularization technique computes scores that
are consistent with the clustering structure of the
graph by requiring that the endpoints of highly tra-
versed edges, which are likely in the same cluster,
have similar scores (see Methods). Overall, regu-
larization enhanced the original output generated by
the pattern-based knowledge harvesting approach of
(Hovy et al., 2009) with 1219 new class-instance
pairs (75% additional information) while maintain-
ing 61.87% accuracy.
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Figure 1: Parameter Tuning For Invertebrates.

5.4 Parameter Tuning

Both of our centrality and regularization methods
have a single tunable parameter. For centrality the
parameter α controls how much the label of each
node depends on the labels of its neighbors in the
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graph. The values range from 0 to 1/λmax, where
λmax is the largest eigenvalue of the adjacency ma-
trix of the semantic network. When α = 0 the label
of each node is equivalent to its initial label, while
higher values of α give more weight to the labels of
nodes that are further away.

For regularization the parameter γ controls how
much emphasis is placed on the agreement between
the initial and learned labels. The values of γ are
between 0 and 1. Smaller values require that the
learned labels be more consistent with the original
labels. When γ = 0 the learned labels will exactly
match the original labels.

For each method we try several parameter settings
and show the results in Figure 1 for the propagation
of the class label invertebrate. We can see that both
methods are quite insensitive to the parameter set-
tings, unless we choose very extreme values that ig-
nore the original labels.

5.5 Effect of number of labeled class-instances

We also study how the quality of the results is af-
fected by the number of initial class-instance pairs
used by our propagation methods. We conduct ex-
periments using only 25%, 50%, 75% and 100% of
the initial class-instance pairs learned by (Hovy et
al., 2009). Figure 2 shows the results for the label
propagation of the class invertebrate.

The performance of our methods significantly im-
proves when we incorporate more labels. Still, if we
are less concerned with recall and want to find small
sets of nodes with very high accuracy, the number
of initial labels is less important. For example, start-
ing with only 13 labeled nodes we can still achieve
100% accuracy for the top 30 nodes using regular-
ization, and 96% accuracy for the top 25 nodes using
centrality.

6 Conclusions

In this paper we proposed a centrality and regular-
ization graph-theoretic methods that explore the re-
lationships between the instances themselves to ef-
fectively extend a small set of class-instance labels
to all instances in a semantic network. The proposed
approaches are intuitive and almost parameter-free.
We conducted a series of experiments in which we
compared the effectiveness of the centrality and reg-
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Figure 2: Effect of Number of Initial Class-Instance
Pairs for Invertebrates.

ularization methods to learn new labels for the un-
labeled instances. We showed that the enhanced
class labels improve the original output generated by
the pattern-based knowledge harvesting approach of
(Hovy et al., 2009). Finally, we have studied the
impact of the class-instance and instance-instance
graphs for the class-label propagation task. The lat-
ter approach has shown to produce much more ac-
curate results. In the future, we want to apply our
approach to Web-based taxonomy induction, which
according to (Kozareva and Hovy, 2010) is stifled
due to the lacking relations between the instances
and the classes, and the classes themselves. The pro-
posed methods can be also applied to enhance fact
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farms (Jain and Pantel, 2010).
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Abstract

This paper presents a model that extends se-
mantic role labeling. Existing approaches in-
dependently analyze relations expressed by
verb predicates or those expressed as nominal-
izations. However, sentences express relations
via other linguistic phenomena as well. Fur-
thermore, these phenomena interact with each
other, thus restricting the structures they artic-
ulate. In this paper, we use this intuition to
define a joint inference model that captures
the inter-dependencies between verb seman-
tic role labeling and relations expressed us-
ing prepositions. The scarcity of jointly la-
beled data presents a crucial technical chal-
lenge for learning a joint model. The key
strength of our model is that we use existing
structure predictors as black boxes. By en-
forcing consistency constraints between their
predictions, we show improvements in the per-
formance of both tasks without retraining the
individual models.

1 Introduction

The identification of semantic relations between
sentence constituents has been an important task in
NLP research. It finds applications in various natural
language understanding tasks that require complex
inference going beyond the surface representation.
In the literature, semantic role extraction has been
studied mostly in the context of verb predicates, us-
ing the Propbank annotation of Palmer et al. (2005),
and also for nominal predicates, using the Nombank
corpus of Meyers et al. (2004).

However, sentences express semantic relations
through other linguistic phenomena. For example,
consider the following sentence:

(1) The field goal by Brien changed the game in the
fourth quarter.

Verb centered semantic role labeling would identify
the arguments of the predicate change as (a) The
field goal by Brien (A0, the causer of the change),
(b) the game (A1, the thing changing), and (c) in
the fourth quarter (temporal modifier). However,
this does not tell us that the scorer of the field goal
was Brien, which is expressed by the preposition by.
Also, note that the in indicates a temporal relation,
which overlaps with the verb’s analysis.

In this paper, we propose an extension of the stan-
dard semantic role labeling task to include relations
expressed by lexical items other than verbs and nom-
inalizations. Further, we argue that there are interac-
tions between the different phenomena which sug-
gest that there is a benefit in studying them together.
However, one key challenge is that large jointly la-
beled corpora do not exist. This motivates the need
for novel learning and inference schemes that ad-
dress the data problem and can still benefit from the
interactions among the phenomena.

This paper has two main contributions.

1. From the machine learning standpoint, we pro-
pose a joint inference scheme to combine exist-
ing structure predictors for multiple linguistic
phenomena. We do so using hard constraints
that involve only the labels of the phenomena.
The strength of our model is that it is easily
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extensible, since adding new phenomena does
not require fully retraining the joint model from
scratch. Furthermore, our approach minimizes
the need for extensive jointly labeled corpora
and, instead, uses existing predictors as black
boxes.

2. From an NLP perspective, we motivate the ex-
tension of semantic role labeling beyond verbs
and nominalizations. We instantiate our joint
model for the case of extracting preposition and
verb relations together. Our model uses exist-
ing systems that identify verb semantic roles
and preposition object roles and jointly pre-
dicts the output of the two systems in the pres-
ence of linguistic constraints that enforce co-
herence between the predictions. We show that
using constraints to combine models improves
the performance on both tasks. Furthermore,
since the constraints depend only on the labels
of the two tasks and not on any specific dataset,
our experiments also demonstrate that enforc-
ing them allows for better domain adaptation.

The rest of the paper is organized as follows: We
motivate the need for extending semantic role label-
ing and the necessity for joint inference in Section 2.
In Section 3, we describe the component verb SRL
and preposition role systems. The global model is
defined in Section 4. Section 5 provides details on
the coherence constraints we use and demonstrates
the effectiveness of the joint model through experi-
ments. Section 6 discusses our approach in compar-
ison to existing work and Section 7 provides con-
cluding remarks.

2 Problem Definition and Motivation

Semantic Role Labeling has been extensively stud-
ied in the context of verbs and nominalizations.
While this analysis is crucial to understanding a
sentence, it is clear that in many natural language
sentences, information is conveyed via other lexi-
cal items. Consider, for example, the following sen-
tences:

(2) Einstein’s theory of relativity changed physics.

(3) The plays of Shakespeare are widely read.

(4) The bus, which was heading for Nairobi
in Kenya, crashed in the Kabale district of
Uganda.

The examples contain information that cannot be
captured by analyzing the verbs and the nominaliza-
tions. In sentence (2), the possessive form tells us
that the theory of relativity was discovered by Ein-
stein. Furthermore, the theory is on the subject of
relativity. The usage of the preposition of is dif-
ferent in sentence (3), where it indicates a creator-
creation relationship. In the last sentence, the same
preposition tells us that the Kabale district is located
in Uganda. Prepositions, compound nouns, posses-
sives, adjectival forms and punctuation marks of-
ten express relations, the identification of which is
crucial for text understanding tasks like recognizing
textual entailment, paraphrasing and question an-
swering.

The relations expressed by different linguistic
phenomena often overlap. For example, consider the
following sentence:

(5) Construction of the library began in 1968.

The relation expressed by the nominalization con-
struction recognizes the library as the argument of
the predicate construct. However, the same analy-
sis can also be obtained by identifying the sense of
the preposition of, which tells us that the subject of
the preposition is a nominalization of the underlying
verb. A similar redundancy can be observed with
analyses of the verb began and the preposition in.
The above example motivates the following key in-
tuition: The correct interpretation of a sentence is
the one that gives a consistent analysis across all
the linguistic phenomena expressed in it.

An inference mechanism that simultaneously pre-
dicts the structure for different phenomena should
account for consistency between the phenomena. A
model designed to address this has the following
desiderata:

1. It should account for the dependencies between
phenomena.

2. It should be extensible to allow easy addition of
new linguistic phenomena.
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3. It should be able to leverage existing state-of-
the-art models with minimal use of jointly la-
beled data, which is expensive to obtain.

Systems that are trained on each task indepen-
dently do not account for the interplay between
them. One approach for tackling this is to define
pipelines, where the predictions for one of the tasks
acts as the input for another. However, a pipeline
does not capture the two-way dependency between
the tasks. Training a fully joint model from scratch
is also unrealistic because it requires text that is an-
notated with all the tasks, thus making joint train-
ing implausible from a learning theoretic perspective
(See Punyakanok et al. (2005) for a discussion about
the learning theoretic requirements of joint training.)

3 Tasks and Individual Systems

Before defining our proposed model that captures
the requirements listed in the previous section, we
introduce the tasks we consider and their indepen-
dently trained systems that we improve using the
joint system. Though the model proposed here is
general and can be extended to several linguistic
phenomena, in this paper, we focus on relations ex-
pressed by verbs and prepositions. This section de-
scribes the tasks, the data sets we used for our exper-
iments and the current state-of-the-art systems for
these tasks.

We use the following sentence as our running ex-
ample to illustrate the phenomena: The company
calculated the price trends on the major stock mar-
kets on Monday.

3.1 Preposition Relations

Prepositions indicate a relation between the attach-
ment point of the preposition and its object. As we
have seen, the same preposition can indicate dif-
ferent types of relations. In the literature, the pol-
ysemy of prepositions is addressed by The Prepo-
sition Project1 of Litkowski and Hargraves (2005),
which is a large lexical resource for English that la-
bels prepositions with their sense. This sense inven-
tory formed the basis of the SemEval-2007 task of
preposition word sense disambiguation of Litkowski
and Hargraves (2007). In our example, the first on

1
http://www.clres.com/prepositions.html

would be labeled with the sense 8(3) which identifies
the object of the preposition as the topic, while the
second instance would be labeled as 17(8), which
indicates that argument is the day of the occurrence.

The preposition sense inventory, while useful to
identify the fine grained distinctions between prepo-
sition usage, defines a unique sense label for each
preposition by indexing the definitions of the prepo-
sitions in the Oxford Dictionary of English. For ex-
ample, in the phrase at noon, the at would be labeled
with the sense 2(2), while the preposition in I will
see you in an hour will be labeled 4(3). Note that
both these (and also the second on in our running ex-
ample) indicate a temporal relation, but are assigned
different labels based on the preposition. To counter
this problem we collapsed preposition senses that
are semantically similar to define a new label space,
which we refer to as Preposition Roles.

We retrained classifiers for preposition sense for
the new label space. Before describing the prepo-
sition role dataset, we briefly describe the datasets
and the features for the sense problem. The best
performing system at the SemEval-2007 shared task
of preposition sense disambiguation (Ye and Bald-
win (2007)) achieves a mean precision of 69.3% for
predicting the fine grained senses. Tratz and Hovy
(2009) and Hovy et al. (2010) attained significant
improvements in performance using features derived
from the preposition’s neighbors in the parse tree.
We extended the feature set defined in the former
for our independent system. Table 1 summarizes the
rules for identifying the syntactically related words
for each preposition. We used dependencies from
the easy-first dependency parser of Goldberg and El-
hadad (2010).

For each word extracted from these rules, the fea-
tures include the word itself, its lemma, the POS
tag, synonyms and hypernyms of the first WordNet
sense and an indicator for capitalization. These fea-
tures improved the accuracy of sense identification
to 75.1% on the SemEval test set. In addition, we
also added the following new features for each word:

1. Indicators for gerunds and nominalizations of
verbs.

2. The named entity tag (Person, Location or Or-
ganization) associated with a word, if any. We
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Id. Feature
1. Head noun/verb that dominates the

preposition along with its modifiers
2. Head noun/verb that is dominated by

the preposition along with its modifiers
3. Subject, negator and object(s) of the

immediately dominating verb
4. Heads of sibling prepositions
5. Words withing a window of 5 centered

at the preposition

Table 1: Features for preposition relation from Tratz and
Hovy (2009). These rules were used to identify syntacti-
cally related words for each preposition.

used the state-of-the-art named entity tagger of
Ratinov and Roth (2009) to label the text.

3. Gazetteer features, which are active if a word is
a part of a phrase that belongs to a gazetteer list.
We used the gazetteer lists which were used
by the NER system. We also used the CBC
word clusters of Pantel and Lin (2002) as ad-
ditional gazetteers and Brown cluster features
as used by Ratinov and Roth (2009) and Koo et
al. (2008).

Dahlmeier et al. (2009) annotated senses for the
prepositions at, for, in, of, on, to and with in the sec-
tions 2-4 and 23 of the Wall Street Journal portion of
the Penn Treebank2. We trained sense classifiers on
both datasets using the Averaged Perceptron algo-
rithm with the one-vs-all scheme using the Learning
Based Java framework of Rizzolo and Roth (2010)3.
Table 2 reports the performance of our sense disam-
biguation systems for the Treebank prepositions.

As mentioned earlier, we collapsed the sense la-
bels onto the newly defined preposition role labels.
Table 3 shows this label set along with frequencies
of the labels in the Treebank dataset. According to
this labeling scheme, the first on in our running ex-
ample will be labeled TOPIC and the second one will

2This dataset does not annotate all prepositions and re-
stricts itself mainly to prepositions that start a Propbank ar-
gument. The data is available at http://nlp.comp.nus.
edu.sg/corpora

3Learning Based Java can be downloaded from http://
cogcomp.cs.illinois.edu.

Test set
Train Treebank Sec. 23 SemEval

Penn Treebank 61.41 38.22
SemEval 47.00 78.25

Table 2: Preposition sense performance. This table re-
ports accuracy of sense prediction on the prepositions that
have been annotated for the Penn Treebank dataset.

Role Train Test
ACTIVITY 57 23
ATTRIBUTE 119 51
BENEFICIARY 78 17
CAUSE 255 116
CONCOMITANT 156 74
ENDCONDITION 88 66
EXPERIENCER 88 42
INSTRUMENT 37 19
LOCATION 1141 414
MEDIUMOFCOMMUNICATION 39 30
NUMERIC/LEVEL 301 174
OBJECTOFVERB 365 112
OTHER 65 49
PARTWHOLE 485 133
PARTICIPANT/ACCOMPANIER 122 58
PHYSICALSUPPORT 32 18
POSSESSOR 195 56
PROFESSIONALASPECT 24 10
RECIPIENT 150 70
SPECIES 240 58
TEMPORAL 582 270
TOPIC 148 54

Table 3: Preposition role data statistics for the Penn Tree-
bank preposition dataset.

be labeled TEMPORAL4. We re-trained the sense
disambiguation system to predict preposition roles.
When trained on the Treebank data, our system at-
tains an accuracy of 67.82% on Section 23 of the
Treebank. We use this system as our independent
baseline for preposition role identification.

3.2 Verb SRL

The goal of verb Semantic Role Labeling (SRL)
is to identify the predicate-argument structure de-
fined by verbs in sentences. The CoNLL Shared
Tasks of 2004 and 2005 (See Carreras and Màrquez

4The mapping from the preposition senses to the roles de-
fines a new dataset and is available for download at http:
//cogcomp.cs.illinois.edu/.
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(2004), Carreras and Màrquez (2005)) studied the
identification of the predicate-argument structure of
verbs using the PropBank corpus of Palmer et al.
(2005). Punyakanok et al. (2008) and Toutanova et
al. (2008) used global inference to ensure that the
predictions across all arguments of the same predi-
cate are coherent. We re-implemented the system of
Punyakanok et al. (2008), which we briefly describe
here, to serve as our baseline verb semantic role la-
beler 5. We refer the reader to the original paper for
further details.

The verb SRL system of Punyakanok et al. (2008)
consists of four stages – candidate generation, argu-
ment identification, argument classification and in-
ference. The candidate generation stage involves us-
ing the heuristic of Xue and Palmer (2004) to gener-
ate an over-complete set of argument candidates for
each predicate. The identification stage uses a clas-
sifier to prune the candidates. In the argument clas-
sification step, the candidates that remain after the
identification step are assigned scores for the SRL
arguments using a multiclass classifier. One of the
labels of the classifier is ∅, which indicates that the
candidate is, in fact, not an argument. The inference
step produces a combined prediction for all argu-
ment candidates of a verb proposition by enforcing
global constraints.

The inference enforces the following structural
and linguistic constraints: (1) Each candidate can
have at most one label. (2) No duplicate core argu-
ments. (3) No overlapping or embedding arguments.
(4) Given the predicate, some argument classes are
illegal. (5) If a candidate is labeled as an R-arg,
then there should be one labeled as arg. (6) If a
candidate is labeled as a C-arg, there should be one
labeled arg that occurs before the C-arg.

Instead of using the identifier to filter candidates
for the classifier, in our SRL system, we added
the identifier to the global inference and enforced
consistency constraints between the identifier and
the argument classifier predictions – the identifier
should predict that a candidate is an argument if,
and only if, the argument classifier does not predict
the label ∅. This change is in keeping with the idea
of using joint inference to combine independently

5The verb SRL system be downloaded from http://
cogcomp.cs.illinois.edu/page/software

learned systems, in this case, the argument identifier
and the role classifier. Furthermore, we do not need
to explicitly tune the identifier for high recall.

We phrase the inference task as an integer lin-
ear program (ILP) following the approach devel-
oped in Roth and Yih (2004). Integer linear pro-
grams were used by Roth and Yih (2005) to add gen-
eral constraints for inference with conditional ran-
dom fields. ILPs have since been used successfully
in many NLP applications involving complex struc-
tures – Punyakanok et al. (2008) for semantic role
labeling, Riedel and Clarke (2006) and Martins et al.
(2009) for dependency parsing and several others6.

Let vCi,a be the Boolean indicator variable that de-
notes that the ith argument candidate for a predicate
is assigned a label a and let ΘC

i,a represent the score
assigned by the argument classifier for this decision.
Similarly, let vIi denote the identifier decision for the
ith argument candidate of the predicate and ΘI

i de-
note its identifier score. Then, the objective of infer-
ence is to maximize the total score of the assignment

max
vC ,vI

∑

i,a

ΘC
i,av

C
i,a +

∑

i

ΘI
i v
I
i (1)

Here, vC and vI denote all the argument classifier
and identifier variables respectively. This maximiza-
tion is subject to the constraints described above,
which can be transformed to linear (in)equalities.
We denote these constraints as CSRL. In addition
to CSRL which were defined by Punyakanok et al.
(2008), we also have the constraints linking the pre-
dictions of the identifier and classifier:

vCv,i,∅ + vIv,i = 1; ∀v, i. (2)

Inference in our baseline SRL system is, thus, the
maximization of the objective defined in (1) sub-
ject to constraints CSRL, the identifier-classifier con-
straints defined in (2) and the restriction of the vari-
ables to take values in {0, 1}.

To train the classifiers, we used parse trees from
the Charniak and Johnson (2005) parser with the

6The primary advantage of using ILP for inference is that
this representation enables us to add arbitrary coherence con-
straints between the phenomena. If the underlying optimization
problem itself is tractable, then so is the corresponding integer
program. However, other approaches to solve the constrained
maximization problem can also be used for inference.
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same feature representation as in the original sys-
tem. We trained the classifiers on the standard
Propbank training set using the one-vs-all extension
of the average Perceptron algorithm. As with the
preposition roles, we implemented our system using
Learning Based Java of Rizzolo and Roth (2010).
We normalized all classifier scores using the soft-
max function. Compared to the 76.29% F1 score
reported by Punyakanok et al. (2008) using single
parse tree predictions from the parser, our system
obtained 76.22% F1 score on section 23 of the Penn
Treebank.

4 A Joint Model for Verbs and
Prepositions

We now introduce our model that captures the needs
identified in Section 2. The approach we develop
in this paper follows the one proposed by Roth and
Yih (2004) of training individual models and com-
bining them at inference time. Our joint model
is a Constrained Conditional Model (See Chang et
al. (2011)), which allows us to build upon existing
learned models using declarative constraints.

We represent our component inference problems
as integer linear program instances. As we saw in
Section 3.2, the inference for SRL is instantiated as
an ILP problem. The problem of predicting prepo-
sition roles can be easily transformed into an ILP
instance. Let vRp,r denote the decision variable that
encodes the prediction that the preposition p is as-
signed a role r and let ΘR

p,r denote its score. Let
vR denote all the role variables for a sentence. Then
role prediction is equivalent to the following maxi-
mization problem:

max
vR

∑
p,r

ΘR
p,r · vRp,r (3)

subj. to
∑
r
vRp,r = 1, ∀p (4)

vRp,r ∈ {0, 1}, ∀p, r. (5)

In general, let p denote a linguistic structure pre-
diction task of interest and let P denote all such
tasks. Let Zp denote the set of labels that the parts
of the structure associated with phenomenon p can
take. For example, for the SRL argument classifica-
tion component, the parts of the structure are all the
candidates that need to be labeled for a given sen-
tence and the set Zp is the set of all argument labels.

For each phenomenon p ∈ P , we use vp to denote
its set of inference variables for a given sentence.
Each inference variable vpZ,y ∈ vp corresponds to
the prediction that the part y has the label Z in the
final structure. Each variable is associated with a
score Θp

Z,y that is obtained from a learned score pre-
dictor. Let Cp denote the structural constraints that
are “local” to the phenomenon. Thus, for verb SRL,
these would be the constraints defined in the previ-
ous section, and for preposition role, the only local
constraint would be the constraint (4) defined above.

The independent inference problem for the phe-
nomenon p is the following integer program:

max
vp

∑
Z∈Zp

∑
vp
vpZ,y ·Θ

p
Z,y, (6)

subj. to Cp(vp), (7)

vpZ,y ∈ {0, 1}, ∀vpZ,y. (8)

As a technical point, this defines one inference
problem per sentence, rather than per predicate
as in the verb SRL system of Punyakanok et al.
(2008). This simple extension enabled Surdeanu et
al. (2007) to study the impact of incorporating cross-
predicate constraints for verb SRL. In this work, this
extension allows us to incorporate cross-phenomena
inference.

4.1 Joint inference
We consider the problem of jointly predicting sev-
eral phenomena incorporating linguistic knowledge
that enforce consistency between the output labels.
Suppose p1 and p2 are two phenomena. If zp11 is a la-
bel associated with the former and zp21 , z

p2
2 , · · · are

labels associated with the latter, we consider con-
straints of the form

zp11 → zp21 ∨ zp22 ∨ · · · ∨ zp2n (9)

We expand this language of constraints by allowing
the specification of pre-conditions for a constraint to
apply. This allows us to enforce constraints of the
form “If an argument that starts with the preposi-
tion ‘at’ is labeled AM-TMP, then the preposition
can be labeled either NUMERIC/LEVEL or TEMPO-
RAL.” This constraint is universally quantified for
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all arguments that satisfy the precondition of start-
ing with the preposition at.

Given a first-order constraint in this form and an
input sentence, suppose the inference variable vp11 is
a grounding of zp11 and vp21 , v

p2
2 , · · · are groundings

of the right hand labels such that the preconditions
are satisfied, then the constraint can be phrased as
the following linear inequality.

−vp11 +
∑

i

vp2i ≥ 0

In the context of the preposition role and verb
SRL, we consider constraints between labels for a
preposition and SRL argument candidates that begin
with that preposition. This restriction forms the pre-
condition for all the joint constraints considered in
this paper. Since the joint constraints involve only
the labels, they can be derived either manually from
the definition of the tasks or using statistical rela-
tion learning techniques. In addition to mining con-
straints of the form (9), we also use manually spec-
ified joint constraints. The constraints used in our
experiments are described further in Section 5.

In general, let J denote a set of pairwise joint
constraints. The joint inference problem can be
phrased as that of maximizing the score of the as-
signment subject to the structural constraints of each
phenomenon (Cp) and the joint linguistic constraints
(J). However, since, the individual tasks were not
trained on the same datasets, the scoring functions
need not be in the same numeric scale. In our model,
each labelZ for a phenomenon p is associated with a
scoring function Θp

Z,y for a part y. To scale the scor-
ing functions, we associate each label with a param-
eter λpZ . This gives us the following integer linear
program for joint inference:

max
v

∑
p∈P

∑
Z∈Zp

λpZ

(
∑
yp
vpZ,y ·Θ

p
Z,y

)
, (10)

subj. to Cp(vp), ∀p ∈ P (11)

J(v), (12)

vpZ,y ∈ {0, 1}, ∀v
p
Z,y. (13)

Here, v is the vector of inference variables which
is obtained by stacking all the inference variables of
each phenomena.

For our experiments, we use a cutting plane solver
to solve the integer linear program as in Riedel

(2009). This allows us to solve the inference prob-
lem without explicitly having to instantiate all the
joint constraints.

4.2 Learning to rescale the individual systems

Given the individual models and the constraints, we
only need to learn the scaling parameters λpZ . Note
that the number of scaling parameters is the total
number of labels. When we jointly predict verb SRL
and preposition role, we have 22 preposition roles
(from table 3), one SRL identifier label and 54 SRL
argument classifier labels. Thus we learn only 77
parameters for our joint model. This means that we
only need a very small dataset that is jointly anno-
tated with all the phenomena.

We use the Structure Perceptron of Collins (2002)
to learn the scaling weights. Note that for learning
the scaling weights, we need each label to be associ-
ated with a real-valued feature. Given an assignment
of the inference variables v, the value of the feature
corresponding to the label Z of task p is given by the
sum of scores of all parts in the structure for p that
have been assigned this label, i.e.

∑
yp
vpZ,y·Θ

p
Z,y. This

feature is computed for the gold and the predicted
structures and is used for updating the weights.

5 Experiments

In this section, we describe our experimental setup
and evaluate the performance of our approach. The
research question addressed by the experiments is
the following: Given independently trained systems
for verb SRL and preposition roles, can their per-
formance be improved using joint inference between
the two tasks? To address this, we report the results
of the following two experiments:

1. First, we compare the joint system against the
baseline systems and with pipelines in both di-
rections. In this setting, both base systems are
trained on the Penn Treebank data.

2. Second, we show that using joint inference can
provide strong a performance gain even when
the underlying systems are trained on different
domains.

In all experiments, we report the F1 measure for
the verb SRL performance using the CoNLL 2005
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evaluation metric and the accuracy for the preposi-
tion role labeling task.

5.1 Data and Constraints
For both the verb SRL and preposition roles, we
used the first 500 sentences of section 2 of the Penn
Treebank corpus to train our scaling parameters. For
the first set of experiments, we trained our underly-
ing systems on the rest of the available Penn Tree-
bank training data for each task. For the adaptation
experiment, we train the role classifier on the Se-
mEval data (restricted to the same Treebank prepo-
sitions). In both cases, we report performance on
section 23 of the Treebank.

We mined consistency constraints from the sec-
tions 2, 3 and 4 of the Treebank data. As mentioned
in Section 4.1, we considered joint constraints re-
lating preposition roles to verb argument candidates
that start with the preposition. We identified the fol-
lowing types of constraints: (1) For each preposi-
tion, the set of invalid verb arguments and prepo-
sition roles. (2) For each preposition role, the set
of allowed verb argument labels if the role occurred
more than ten times in the data, and (3) For each
verb argument, the set of allowed preposition roles,
similarly with a support of ten. Note that, while the
constraints were obtained from jointly labeled data,
the constraints could be written down because they
encode linguistic intuition about the labels.

The following is a constraint extracted from the
data, which applies to the preposition with:

srlarg(A2) → prep-role(ATTRIBUTE)

∨ prep-role(CAUSE)

∨ prep-role(INSTRUMENT)

∨ prep-role(OBJECTOFVERB)

∨ prep-role(PARTWHOLE)

∨ prep-role(PARTICIPANT/ACCOMPAINER)

∨ prep-role(PROFESSIONALASPECT).

This constraint says that if any candidate that starts
with with is labeled as an A2, then the preposition
can be labeled only with one of the roles on the right
hand side.

Some of the mined constraints have negated vari-
ables to enforce that a role or an argument label
should not be allowed. These can be similarly con-
verted to linear inequalities. See Rizzolo and Roth

(2010) for a further discussion about converting log-
ical expressions into linear constraints.

In addition to these constraints that were mined
from data, we also enforce the following hand-
written constraints: (1) If the role of a verb at-
tached preposition is labeled TEMPORAL, then there
should be a verb predicate for which this preposi-
tional phrase is labeled AM-TMP. (2) For verb at-
tached prepositions, if the preposition is labeled with
one of ACTIVITY, ENDCONDITION, INSTRUMENT

or PROFESSIONALASPECT, there should be at least
one predicate for which the corresponding preposi-
tional phrase is not labeled ∅.

The conversion of the first constraint to a linear
inequality is similar to the earlier cases. For each
of the roles in the second constraint, let r denote a
role variable that assigns the label to some prepo-
sition. Suppose there are n SRL candidates across
all verb predicates begin with that preposition, and
let s1, s2, · · · , sn denote the SRL variables that as-
sign these candidates to the label ∅. Then the second
constraint corresponds to the following inequality:

r +

n∑

i=1

si ≤ n

5.2 Results of joint learning
First, we compare our approach to the performance
of the baseline independent systems and to pipelines
in both directions in Table 4. For one pipeline, we
added the prediction of the baseline preposition role
system as an additional feature to both the identifier
and the argument classifier for argument candidates
that start with a preposition. Similarly, for the sec-
ond pipeline, we added the SRL predictions as fea-
tures for prepositions that were the first word of an
SRL argument. In all cases, we performed five-fold
cross validation to train the classifiers.

The results show that both pipelines improve per-
formance. This justifies the need for a joint sys-
tem because the pipeline can improve only one of
the tasks. The last line of the table shows that the
joint inference system improves upon both the base-
lines. We achieve this improvement without retrain-
ing the underlying models, as done in the case of the
pipelines.

On analyzing the output of the systems, we found
that the SRL precision improved by 2.75% but the
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Setting SRL Preposition Role
(F1) (Accuracy)

Baseline SRL 76.22 –
Baseline Prep. – 67.82
Prep. → SRL 76.84 –
SRL→ Prep. – 68.55
Joint inference 77.07 68.39

Table 4: Performance of the joint system, compared to
the individual systems and the pipelines. All performance
measures are reported on Section 23 of the Penn Tree-
bank. The verb SRL systems were trained on sections
2-21, while the preposition role classifiers were trained
on sections 2-4. For the joint inference system, the scal-
ing parameters were trained on the first 500 sentences of
section 2, which were held out. All the improvements in
this table are statistically significant at the 0.05 level.

recall decreased by 0.98%, contributing to the over-
all F1 improvement. The decrease in recall is due to
the joint hard constraints that prohibit certain assign-
ments to the variables which would have otherwise
been possible. Note that, for a given sentence, even
if the joint constraints affect only a few argument
candidates directly, they can alter the labels of the
other candidates via the “local” SRL constraints.

Consider the following example of the system
output which highlights the effect of the constraints.

(6) Weatherford said market conditions led to the
cancellation of the planned exchange.

The independent preposition role system incor-
rectly identifies the to as a LOCATION. The semantic
role labeling component identifies the phrase to the
cancellation of the planned exchange as the A2 of
the verb led. One of the constraints mined from the
data prohibits the label LOCATION for the preposi-
tion to if the argument it starts is labeled A2. This
forces the system to change the preposition label
to the correct one, namely ENDCONDITION. Both
the independent and the joint systems also label the
preposition of as OBJECTOFVERB, which indicates
that the phrase the planned exchange is the object of
the deverbal noun cancellation.

5.3 Effect of constraints on adaptation

Our second experiment compares the performance
of the preposition role classifier that has been trained

on the SemEval dataset with and without joint con-
straints. Note that Table 2 in Section 3, shows
the drop in performance when applying the prepo-
sition sense classifier. We see that the SemEval-
trained preposition role classifier (baseline in the ta-
ble) achieves an accuracy of 53.29% when tested on
the Treebank dataset. Using this classifier jointly
with the verb SRL classifier via joint constraints gets
an improvement of almost 3 percent in accuracy.

Setting Preposition Role
(Accuracy)

Baseline 53.29
Joint inference 56.22

Table 5: Performance of the SemEval-trained preposition
role classifier, when tested on the Treebank dataset with
and without joint inference with the verb SRL system.
The improvement, in this case is statistically significant
at the 0.01 level using the sign test.

The primary reason for this improvement, even
without re-training the classifier, is that the con-
straints are defined using only the labels of the sys-
tems. This avoids the standard adaptation problems
of differing vocabularies and unseen features.

6 Discussion and Related work

Roth and Yih (2004) formulated the problem of ex-
tracting entities and relations as an integer linear
program, allowing them to use global structural con-
straints at inference time even though the component
classifiers were trained independently. In this pa-
per, we use this idea to combine classifiers that were
trained for two different tasks on different datasets
using constraints to encode linguistic knowledge.

In the recent years, we have seen several joint
models that combine two or more NLP tasks . An-
drew et al. (2004) studied verb subcategorization
and sense disambiguation of verbs by treating it as
a problem of learning with partially labeled struc-
tures and proposed to use EM to train the joint
model. Finkel and Manning (2009) modeled the task
of named entity recognition together with parsing.
Meza-Ruiz and Riedel (2009) modeled verb SRL,
predicate identification and predicate sense recogni-
tion jointly using Markov Logic. Henderson et al.
(2008) was designed for jointly learning to predict
syntactic and semantic dependencies. Dahlmeier et
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al. (2009) addressed the problem of jointly learning
verb SRL and preposition sense using the Penn Tree-
bank annotation that was introduced in that work.
The key difference between these and the model
presented in this paper lies in the simplicity of our
model and its easy extensibility because it leverages
existing trained systems. Moreover, our model has
the advantage that the complexity of the joint param-
eters is small, hence does not require a large jointly
labeled dataset to train the scaling parameters.

Our approach is conceptually similar to that of
Rush et al. (2010), which combined separately
trained models by enforcing agreement using global
inference and solving its linear programming relax-
ation. They applied this idea to jointly predict de-
pendency and phrase structure parse trees and on the
task of predicting full parses together with part-of-
speech tags. The main difference in our approach is
that we treat the scaling problem as a separate learn-
ing problem in itself and train a joint model specifi-
cally for re-scaling the output of the trained systems.

The SRL combination system of Surdeanu et al.
(2007) studied the combination of three different
SRL systems using constraints and also by training
secondary scoring functions over the individual sys-
tems. Their approach is similar to the one presented
in this paper in that, unlike standard reranking, as
in Collins (2000), we entertain all possible solutions
during inference, while reranking approaches train
a discriminative scorer for the top-K solutions of
an underlying system. Unlike the SRL combination
system, however, our approach spans multiple phe-
nomena. Moreover, in contrast to their re-scoring
approaches, we do not define joint features drawn
from the predictions of the underlying components
to define our global model.

We consider the tasks verb SRL and preposition
roles and combine their predictions to provide a
richer semantic annotation of text. This approach
can be easily extended to include systems that pre-
dict structures for other linguistic phenomena be-
cause we do not retrain the underlying systems. The
semantic relations can be enriched by incorporating
more linguistic phenomena such as nominal SRL,
defined by the Nombank annotation scheme of Mey-
ers et al. (2004), the preposition function analysis
of O’Hara and Wiebe (2009) and noun compound
analysis as defined by Girju (2007) and Girju et al.

(2009) and others. This presents an exciting direc-
tion for future work.

7 Conclusion

This paper presents a strategy for extending seman-
tic role labeling without the need for extensive re-
training or data annotation. While standard seman-
tic role labeling focuses on verb and nominal re-
lations, sentences can express relations using other
lexical items also. Moreover, the different relations
interact with each other and constrain the possible
structures that they can take. We use this intuition
to define a joint model for inference. We instanti-
ate our model using verb semantic role labeling and
preposition role labeling and show that, using lin-
guistic constraints between the tasks and minimal
joint learning, we can improve the performance of
both tasks. The main advantage of our approach
is that we can use existing trained models without
re-training them, thus making it easy to extend this
work to include other linguistic phenomena.
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Abstract

This paper presents a domain-assisted ap-
proach to organize various aspects of a prod-
uct into a hierarchy by integrating domain
knowledge (e.g., the product specifications),
as well as consumer reviews. Based on the
derived hierarchy, we generate a hierarchical
organization of consumer reviews on various
product aspects and aggregate consumer opin-
ions on these aspects. With such organiza-
tion, user can easily grasp the overview of
consumer reviews. Furthermore, we apply the
hierarchy to the task of implicit aspect identi-
fication which aims to infer implicit aspects of
the reviews that do not explicitly express those
aspects but actually comment on them. The
experimental results on 11 popular products in
four domains demonstrate the effectiveness of
our approach.

1 Introduction

With the rapidly expanding e-commerce, most retail
Web sites encourage consumers to write reviews to
express their opinions on various aspects of prod-
ucts. Huge collections of consumer reviews are
now available on the Web. These reviews have be-
come an important resource for both consumers and
firms. Consumers commonly seek quality informa-
tion from online consumer reviews prior to purchas-
ing a product, while many firms use online reviews
as an important resource in their product develop-
ment, marketing, and consumer relationship man-
agement. However, the reviews are disorganized,
leading to the difficulty in information navigation
and knowledge acquisition. It is impractical for user

to grasp the overview of consumer reviews and opin-
ions on various aspects of a product from such enor-
mous reviews. Among hundreds of product aspects,
it is also inefficient for user to browse consumer re-
views and opinions on a specific aspect. Thus, there
is a compelling need to organize consumer reviews,
so as to transform the reviews into a useful knowl-
edge structure. Since the hierarchy can improve in-
formation representation and accessibility (Cimiano,
2006), we propose to organize the aspects of a prod-
uct into a hierarchy and generate a hierarchical or-
ganization of consumer reviews accordingly.

Towards automatically deriving an aspect hierar-
chy from the reviews, we could refer to traditional
hierarchy generation methods in ontology learning,
which first identify concepts from the text, then
determine the parent-child relations between these
concepts using either pattern-based or clustering-
based methods (Murthy et al., 2010). However,
pattern-based methods usually suffer from inconsis-
tency of parent-child relationships among the con-
cepts, while clustering-based methods often result
in low accuracy. Thus, by directly utilizing these
methods to generate an aspect hierarchy from con-
sumer reviews, the resulting hierarchy is usually in-
accurate, leading to unsatisfactory review organiza-
tion. On the other hand, domain knowledge of prod-
ucts is now available on the Web. For example,
there are more than 248,474 product specifications
in the product selling Web site CNet.com (Beckham,
2005). These product specifications cover some
product aspects and provide coarse-grained parent-
child relations among these aspects. Such domain
knowledge is useful to help organize the product as-

140



Figure 1: Sample hierarchical organization for iPhone 3G

pects into a hierarchy. However, the initial hierarchy
obtained from domain knowledge usually cannot fit
the review data well. For example, the initial hierar-
chy is usually too coarse and may not cover the spe-
cific aspects commented in the reviews, while some
aspects in the hierarchy may not be of interests to
users in the reviews.

Motivated by the above observations, we propose
in this paper to organize the product aspects into a
hierarchy by simultaneously exploiting the domain
knowledge (e.g., the product specification) and con-
sumer reviews. With derived aspect hierarchy, we
generate a hierarchical organization of consumer re-
views on various aspects and aggregate consumer
opinions on these aspects. Figure 1 illustrates a sam-
ple of hierarchical review organization for the prod-
uct “iPhone 3G”. With such organization, users can
easily grasp the overview of product aspects as well
as conveniently navigate the consumer reviews and
opinions on any aspect. For example, users can find
that 623 reviews, out of 9,245 reviews, are about the
aspect “price”, with 241 positive and 382 negative
reviews.

Given a collection of consumer reviews on a spe-
cific product, we first automatically acquire an ini-
tial aspect hierarchy from domain knowledge and
identify the aspects from the reviews. Based on the

initial hierarchy, we develop a multi-criteria opti-
mization approach to construct an aspect hierarchy
to contain all the identified aspects. Our approach
incrementally inserts the aspects into the initial hi-
erarchy based on inter-aspect semantic distance, a
metric used to measure the semantic relation among
aspects. In order to derive reliable semantic dis-
tance, we propose to leverage external hierarchies,
sampled from WordNet and Open Directory Project,
to assist semantic distance learning. With resultant
aspect hierarchy, the consumer reviews are then or-
ganized to their corresponding aspect nodes in the
hierarchy. We then perform sentiment classification
to determine consumer opinions on these aspects.
Furthermore, we apply the hierarchy to the task of
implicit aspect identification. This task aims to infer
implicit aspects of the reviews that do not explic-
itly express those aspects but actually comment on
them. For example, the implicit aspect of the review
“It is so expensive” is “price.” Most existing aspect
identification approaches rely on the appearance of
aspect terms, and thus are not able to handle implicit
aspect problem. Based on our aspect hierarchy, we
can infer the implicit aspects by clustering the re-
views into their corresponding aspect nodes in the
hierarchy. We conduct experiments on 11 popular
products in four domains. More details of the corpus
are discussed in Section 4. The experimental results
demonstrate the effectiveness of our approach.

The main contributions of this work can be sum-
marized as follows:

1) We propose to hierarchically organize con-
sumer reviews according to an aspect hierarchy, so
as to transfer the reviews into a useful knowledge
structure.

2) We develop a domain-assisted approach to
generate an aspect hierarchy by integrating domain
knowledge and consumer reviews. In order to de-
rive reliable semantic distance between aspects, we
propose to leverage external hierarchies to assist se-
mantic distance learning.

3) We apply the aspect hierarchy to the task of im-
plicit aspect identification, and achieve satisfactory
performance.

The rest of this paper is organized as follows. Our
approach is elaborated in Section 2 and applied to
implicit aspect identification in Section 3. Section
4 presents the evaluations, while Section 5 reviews
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related work. Finally, Section 6 concludes this paper
with future works.

2 Approach

Our approach consists of four components, includ-
ing initial hierarchy acquisition, aspect identifica-
tion, semantic distance learning, and aspect hierar-
chy generation. Next, we first define some prelimi-
nary and notations and then elaborate these compo-
nents.

2.1 Preliminary and Notations

Preliminary 1. An aspect hierarchy is defined as a
tree that consists of a set of unique aspects A and
a set of parent-child relations R between these as-
pects.

Given the consumer reviews of a product, let
A = {a1, · · · , ak} denotes the product aspects com-
mented in the reviews. H0(A0, R0) denotes the ini-
tial hierarchy derived from domain knowledge. It
contains a set of aspects A0 and relations R0. Our
task is to construct an aspect hierarchy H(A, R), to
cover all the aspects in A and their parent-child re-
lations R, so that the consumer reviews are hierar-
chically organized. Note that H0 can be empty.

2.2 Initial Hierarchy Acquisition

As aforementioned, product specifications on prod-
uct selling websites cover some product aspects and
coarse-grained parent-child relations among these
aspects. Such domain knowledge is useful to help
organize aspects into a hierarchy. We here employ
the approach proposed by Ye and Chua (2006) to au-
tomatically acquire an initial aspect hierarchy from
the product specifications. The method first identi-
fies the Web page region covering product descrip-
tions and removes the irrelevant contents from the
Web page. It then parses the region containing the
product information to identify the aspects as well as
their structure. Based on the aspects and their struc-
ture, it generates an aspect hierarchy.

2.3 Aspect Identification

To identify aspects in consumer reviews, we first
parse each review using the Stanford parser 1. Since
the aspects in consumer reviews are usually noun

1http://nlp.stanford.edu/software/lex-parser.shtml

Figure 2: Sample Pros and Cons reviews

or noun phrases (Liu, 2009), we extract the noun
phrases (NP) from the parse tree as aspect candi-
dates. While these candidates may contain much
noise, we leverage Pros and Cons reviews (see Fig-
ure 2), which are prevalent in forum Web sites,
to assist identify aspects from the candidates. It
has been shown that simply extracting the frequent
noun terms from the Pros and Cons reviews can get
high accurate aspect terms (Liu el al., 2005). Thus,
we extract the frequent noun terms from Pros and
Cons reviews as features, then train a one-class SVM
(Manevitz et al., 2002) to identify aspects from the
candidates. While the obtained aspects may con-
tain some synonym terms, such as “earphone” and
“headphone”, we further perform synonym cluster-
ing to get unique aspects. Specifically, we first ex-
pand each aspect term with its synonym terms ob-
tained from the synonym terms Web site 2, then clus-
ter them to obtain unique aspects based on unigram
feature.

2.4 Semantic Distance Learning

Our aspect hierarchy generation approach is essen-
tially based on the semantic relations among as-
pects. We here define a metric, Semantic Distance,
d(ax, ay), to quantitatively measure the semantic re-
lation between aspects ax and ay. We formulate
d(ax, ay) as the weighted sum of some underlying
features,

d(ax, ay) =
∑

j
wjfj(ax, ay), (1)

where wj is the weight for j-th feature function
fj(·).

Next, we first introduce the linguistic features
used in our work and then present the semantic dis-
tance learning algorithm that aims to find the opti-
mal weights in Eq.(1).

2http://thesaurus.com
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2.4.1 Linguistic Features
Given two aspects ax and ay, a feature is defined

as a function generating a numeric score f(ax, ay)
or a vector of scores. The features include Contex-
tual, Co-occurrence, Syntactic, Pattern and Lexical
features (Yang and Callan, 2009). These features are
generated based on auxiliary documents collected
from Web.

Specifically, we issue each aspect term and aspect
term pair as queries to Google and Wikipedia, re-
spectively, and collect the top 100 returned docu-
ments of each query. We then split the documents
into sentences. Based on these documents and sen-
tences, the features are generated as follows.

Contextual features. For each aspect, we collect
the documents containing the aspect as context to
build a unigram language model without smoothing.
Given two aspects, the KL-divergence between their
language models is computed as the Global-Context
feature between them. Similarly, we collect the left
two and right two words surrounding each aspect as
context and build a unigram language model. The
KL-divergence between the language models of two
aspects is defined as the Local-Context feature.

Co-occurrence features. We measure the co-
occurrence of two aspects by Pointwise Mutual
Information (PMI): PMI(ax,ay)=log(Count(ax,ay)/
Count(ax) Count(ay)), where Count(·) stands for the
number of documents or sentences containing the
aspect(s), or the number of Google document hits
for the aspect(s). Based on different definitions of
Count(·), we define the features of Document PMI,
Sentence PMI, and Google PMI, respectively.

Syntactic features. We parse the sentences that
contain each aspect pair into syntactic trees via the
Stanford Parser. The Syntactic-path feature is de-
fined as the average length of the shortest syntactic
path between the aspect pair in the tree. In addi-
tion, for each aspect, we collect a set of sentences
containing it, and label the semantic role of the sen-
tences via ASSERT parser 3. Given two aspects,
the number of the Subject terms overlaps between
their sentence sets is computed as the Subject Over-
lap feature. Similarly, for other semantic roles, such
as objects, modifiers, and verbs, we define the fea-
tures of Object Overlap, Modifier Overlap, and Verb

3http://cemantix.org/assert.html

Overlap, respectively.
Pattern features. 46 patterns are used in our

work, including 6 patterns indicating the hypernym
relations of two aspects (Hearst, 1992), and 40 pat-
terns measuring the part-of relations of two aspects
(Girju et al., 2006). These pattern features are
asymmetric, and they take the parent-child relations
among the aspects into consideration. All the pat-
terns are listed in Appendix A (submitted as supple-
mentary material). Based on these patterns, a 46-
dimensional score vector is obtained for each aspect
pair. A score is 1 if two aspects match a pattern, and
0 otherwise.

Lexical features. We take the word length differ-
ence between two aspects, as Length Difference fea-
ture. In addition, we issue the query “define:aspect”
to Google, and collect the definition of each aspect.
We then count the word overlaps between the defini-
tions of two aspects, as Definition Overlap feature.

2.4.2 Semantic Distance Learning
This section elaborates the learning algorithm

that optimizes the semantic distance metric, i.e.,
the weighting parameters in Eq.(1). Typically, we
can utilize the initial hierarchy as training data.
The ground-truth distance between two aspects
dG(ax, ay) is generated by summing up all the edge
distances along the shortest path between ax and ay,
where every edge weight is assumed as 1. The dis-
tance metric is then obtained by solving the follow-
ing optimization problem,

arg min
wj |mj=1

∑

ax,ay∈A0

x<y

(dG(ax, ay) −
m∑

j=1

wjfj(ax, ay))2+η·
m∑

j=1

w2
j ,

(2)

where m is the dimension of linguistic feature, η is
a tradeoff parameter. Eq.(2) can be rewrote to its
matrix form as,

arg min
w

∥∥d − fT w
∥∥2

+ η · ∥w∥2 , (3)

where vector d contains the ground-truth distance of
all the aspect pairs. Each element corresponds to
the distance of certain aspect pair, and f is the corre-
sponding feature vector. The optimal solution of w
is given as

w∗ = (fT f + η · I)−1(fT d) (4)
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where I is the identity metric.
The above learning algorithm can perform well

when sufficient training data (i.e., aspect (term)
pairs) is available. However, the initial hierarchy is
usually too coarse and thus cannot provide sufficient
information. On the other hand, abundant hand-
crafted hierarchies are available on the Web, such
as WordNet and Open Directory Project (ODP). We
here propose to leverage these external hierarchies
to assist semantic distance learning. A distance met-
ric w0 is learned from the external hierarchies us-
ing the above algorithm. Since w0 might be biased
to the characteristics of the external hierarchies, di-
rectly using w0 in our task may not perform well.
Alternatively, we use w0 as prior knowledge to as-
sist learning the optimal distance metric w from the
initial hierarchy. The learning problem is formulated
as follows,

arg min
w

∥∥d − fT w
∥∥2

+ η · ∥w∥2 + γ · ∥w − w0∥2 ,

(5)
where η and γ are tradeoff parameters.

The optimal solution of w can be obtained as

w∗ = (fT f + (η + γ) · I)−1(fT d + γ · w0). (6)

As a result, we can compute the semantic distance
between each two aspects according to Eq.(1).

2.5 Aspect Hierarchy Generation
Given the aspects A = {a1, · · · , ak} identified from
reviews and the initial hierarchy H0(A0, R0) ob-
tained from domain knowledge, our task is to con-
struct an aspect hierarchy to contain all the aspects
in A. Inspired by Yang and Callan (2009), we adopt
a multi-criteria optimization approach to incremen-
tally insert the aspects into appropriate positions in
the hierarchy based on multiple criteria.

Before going to the details, we first introduce an
information function to measure the amount of in-
formation carried in a hierarchy. An information
function Info(H) is defined as the sum of the se-
mantic distances of all the aspect pairs in the hierar-
chy (Yang and Callan, 2009).

Info(H(A, R)) =
∑

x<y;ax,ay∈A
d(ax, ay). (7)

Based on this information function, we then intro-
duce the following three criteria for aspect insertion:

minimum Hierarchy Evolution, minimum Hierarchy
Discrepancy and minimum Semantic Inconsistency.

Hierarchy Evolution is designed to monitor the
structure evolution of a hierarchy. The hierarchy is
incrementally hosting more aspects until all the as-
pects are allocated. The insertion of a new aspect a
into different positions in the current hierarchy H(i)

leads to different new hierarchies. Among these new
hierarchies, we here assume that the optimal one
H(i+1) should introduce the least changes of infor-
mation to H(i).

Ĥ(i+1) = arg min
H(i+1)

∆Info(H(i+1) − H(i)). (8)

By plugging in Eq.(7) and using least square to
measure the information changes, we have,

obj1 = arg min
H(i+1)

(
∑

x<y;ax,ay∈Ai∪{a} d(ax, ay)

− ∑
x<y;ax,ay∈Ai

d(ax, ay))
2,

(9)
Hierarchy Discrepancy is used to measure the

global changes of the structure. We assume a good
hierarchy should bring the least changes to the initial
hierarchy,

Ĥ(i+1) = arg min
H(i+1)

∆Info(H(i+1) − H(0))

i + 1
. (10)

We then get,

obj2 = arg min
H(i+1)

1
i+1(

∑
x<y;ax,ay∈Ai∪{a} d(ax, ay)

− ∑
x<y;ax,ay∈A0

d(ax, ay))
2.

(11)
Semantic Inconsistency is introduced to quantify

the inconsistency between the semantic distance es-
timated via the hierarchy and that computed from
the feature functions. We assume that a good hier-
archy should precisely reflect the semantic distance
between aspects. For two aspects, their semantic
distance reflected by the hierarchy is computed as
the sum of adjacent distances along the shortest path
between them,

dH(ax, ay) =
∑

p<q;(ap,aq)∈SP (ax,ay)
d(ap, aq),

(12)
where SP (ax, ay) is the shortest path between the
aspects (ax, ay), (ap, aq) are the adjacent nodes
along the path.
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We then define the following criteria to find the
hierarchy with minimum semantic inconsistency,

obj3 = arg min
H(i+1)

∑

x<y;ax,ay∈Ai∪{a};

(dH(ax, ay)−d(ax, ay))2,

(13)

where d(ax, ay) is the distance computed based on
the feature functions in Section 2.4.

Through integrating the above criteria, the multi-
criteria optimization framework is formulated as,

obj = arg min
H(i+1)

(λ1 · obj1 + λ2 · obj2 + λ3 · obj3)

λ1 + λ2 + λ3 = 1; 0 ≤ λ1, λ2, λ3 ≤ 1.
(14)

where λ1, λ2, λ3 are the tradeoff parameters.
To summarize, our aspect hierarchy generation

process starts from an initial hierarchy and inserts
the aspects into it one-by-one until all the aspects
are allocated. Each aspect is inserted to the op-
timal position found by Eq.(14). It is worth not-
ing that the insertion order may influence the result.
To avoid such influence, we select the aspect with
the least objective function value in Eq.(14) to in-
sert. Based on resultant hierarchy, the consumer re-
views are then organized to their corresponding as-
pect nodes in the hierarchy. We further prune out the
nodes without reviews from the hierarchy.

Moreover, we perform sentiment classification to
determine consumer opinions on various aspects. In
particular, we train a SVM sentiment classifier based
on the Pros and Cons reviews described in Section
2.3. We collect sentiment terms in the reviews as
features and represent reviews as feature vectors us-
ing Boolean weighting. Note that we define senti-
ment terms as those appear in the sentiment lexicon
provided by MPQA project (Wilson et al., 2005).

3 Implicit Aspect Identification

In this section, we apply the aspect hierarchy to the
task of implicit aspect identification. This task aims
to infer the aspects of reviews that do not explic-
itly express those aspects but actually comment on
them (Liu et al. 2005). Take the review “The phone
is too large” as an example, the task is to infer its
implicit aspect “size.” It has been observed that the
reviews commenting on a same aspect usually use
some same sentiment terms (Su et al., 2008). There-
fore, sentiment term is an effective feature for identi-
fying implicit aspects. We here collect the sentiment

terms as features to represent each review into a fea-
ture vector. For each aspect node in the hierarchy,
we define its centroid as the average of its feature
vectors, i.e., the feature vectors of all the reviews
that are allocated at this node. We then calculate
the cosine similarity of each implicit-aspect review
to the centriods of all the aspect nodes, and allo-
cate the review into the node with maximum sim-
ilarity. As a result, the implicit aspect reviews are
grouped to their related aspect nodes. In other word,
their aspects are identified as the corresponding as-
pect nodes.

4 Evaluations

In this section, we evaluate the effectiveness of our
approach on aspect identification, aspect hierarchy
generation, and implicit aspect identification.

4.1 Data and Experimental Setting

The details of our product review corpus are given
in Table 1. This corpus contains consumer reviews
on 11 popular products in four domains. These
reviews were crawled from several prevalent fo-
rum Web sites, including cnet.com, viewpoints.com,
reevoo.com and gsmarena.com. All of the reviews
were posted between June, 2009 and Sep 2010. The
aspects of the reviews, as well as the opinions on
the aspects were manually annotated. We also in-
vited five annotators to construct the gold-standard
hierarchies for the products by providing them the
initial hierarchies and the aspects in reviews. The
conflicts between annotators were resolved through
their discussions. For semantic distance learning, we
collected 50 hierarchies from WordNet and ODP, re-
spectively. The details are shown in Table 2. We
listed the topics of the hierarchies in Appendix B
(submitted as supplementary material).

Product Name Domain Review# Sentence#
Canon EOS 450D (Canon EOS) camera 440 628
Fujifilm Finepix AX245W (Fujifilm) camera 541 839
Panasonic Lumix DMC-TZ7 (Panasonic) camera 650 1,546
Apple MacBook Pro (MacBook) laptop 552 4,221
Samsung NC10 (Samsung) laptop 2,712 4,946
Apple iPod Touch 2nd (iPod Touch) MP3 4,567 10,846
Sony NWZ-S639 16GB (Sony NWZ) MP3 341 773
BlackBerry Bold 9700 (BlackBerry) phone 4,070 11,008
iPhone 3GS 16GB (iPhone 3GS) phone 12,418 43,527
Nokia 5800 XpressMusic (Nokia 5800) phone 28,129 75,001
Nokia N95 phone 15,939 44,379

Table 1: Statistics of the reviews corpus, # denotes the
size of the reviews/sentences
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Statistic WordNet ODP
Total # hierarchies 50 50
Total # terms 1,964 2,210
Average # depth 5.5 5.9
Total # related topics 12 16

Table 2: Statistics of the External Hierarchies

Figure 3: Evaluations on Aspect Identification. t-test, p-
values<0.05

We employed F1-measure, which is the combina-
tion of precision and recall, as the evaluation metric
for all the evaluations. For the evaluation on aspect
hierarchy, we defined precision as the percentage of
correctly returned parent-child pairs out of the to-
tal returned pairs, and recall as the percentage of
correctly returned parent-child pairs out of the to-
tal pairs in the gold standard. Throughout the ex-
periments, we empirically set λ1 = 0.4, λ2 = 0.3,
λ3 = 0.3, η = 0.4 and γ = 0.6.

4.2 Evaluations on Aspect Identification

We compared our approach against two state-of-the-
art methods: a) the method proposed by Hu and Liu
(2004), which is based on the association rule min-
ing, and b) the method proposed by Wu et al. (2009),
which is based on the dependency parser. The re-
sults are presented in Figure 3. On average, our
approach significantly outperforms Hu’s and Wu’s
method in terms of F1-measure by over 5.87% and
3.27%, respectively.

4.3 Evaluations on Aspect Hierarchy

4.3.1 Comparisons with the State-of-the-Arts
We compared our approach against four tra-

ditional hierarchy generation methods in the re-
searches on ontology learning, including a) pattern-
based method (Hearst, 1992) and b) clustering-based
method by Shi et al. (2008), c) the method proposed

Figure 4: Evaluations on Aspect Hierarchy Generation. t-
test, p-values<0.05. w/ H denotes the methods with ini-
tial hierarchy, accordingly, w/o H refers to the methods
without initial hierarchy.

by Snow et al. (2006) which was based on a proba-
bilistic model, and d) the method proposed by Yang
and Callan (2009). Since our approach and Yang’s
method can utilize initial hierarchy to assist hier-
archy generation, we evaluated their performance
with or without initial hierarchy, respectively. For
the sake of fair comparison, Snow’s, Yang’s and our
methods used the same linguistic features in Section
2.4.1.

Figure 4 shows the performance comparisons
of these five methods. We can see that our ap-
proach without using initial hierarchy outperforms
the pattern-based, clustering-based, Snow’s, and
Yang’s methods by over 17.9%, 19.8%, 2.9% and
6.1% respectively in terms of average F1-measure.
By exploiting initial hierarchy, our approach im-
proves the performance significantly. As compared
to the pattern-based, clustering-based and Snow’s
methods, it improves the average performance by
over 49.4%, 51.2% and 34.3% respectively. Com-
pared to Yang’s method with initial hierarchy, it
achieves 4.7% improvements on the average perfor-
mance.

The results show that pattern-based and
clustering-based methods perform poor. Pattern-
based method may suffer from the problem of low
coverage of patterns, especially when the patterns
are manually pre-defined, while the clustering-
based method (Shi et al., 2008) may sustain to the
bisection clustering mechanism which can only
generate a binary-tree. The results also illustrate
that our approach outperforms Snow’s and Yang’s
methods. By exploiting external hierarchies, our
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Figure 5: Evaluations on the Impact of Initial Hierarchy.
t-test, p-values<0.05.

approach is able to derive reliable semantic distance
between aspects and thus improve the performance.

4.3.2 Evaluations on Effectiveness of Initial
Hierarchy

In this section, we show that even based on a small
part of the initial hierarchy, our approach can still
generate a satisfactory hierarchy. We explored dif-
ferent proportion of initial hierarchy, including 0%,
20%, 40%, 60% and 80% of the aspect pairs which
are collected top-down from the initial hierarchy. As
shown in Figure 5, the performance increases when
larger proportion of the initial hierarchy is used.
Thus, we can speculate that domain knowledge is
valuable in aspect hierarchy generation.

4.3.3 Evaluations on Effectiveness of
Optimization Criteria

We conducted a leave-one-out study to evaluate
the effectiveness of each optimization criterion. In
particular, we set one of the tradeoff parameters (λ1,
λ2, λ3) in Eq.(14) to zero, and distributed its weight
to the rest parameters averagely. From Figure 6, we
find that removing any optimization criterion would
degrade the performance on most products. It is in-
teresting to note that removing the third optimiza-
tion criterion, i.e., minimum semantic inconsistency,
slightly increases the performance on two products
(ipad touch and sony MP3). The reason might be
that the values of the three tradeoff parameters (em-
pirically set in Section 4.1) are not suitable for these
two products.

Figure 6: Evaluations of the Optimization Criteria. % of
change in F1-measure when a single criterion is removed.
t-test, p-values<0.05.

Figure 7: Evaluations on the Impact of Linguistic Fea-
tures. t-test, p-values<0.05.

4.3.4 Evaluations on Semantic Distance
Learning

In this section, we evaluated the impact of the fea-
tures and external hierarchies in semantic distance
learning. We investigated five sets of features as de-
scribed in Section 2.4.1, including contextual, co-
occurrence, syntactic, pattern and lexical features.
From Figure 7, we observe that the co-occurrence
and pattern features perform much better than con-
textual and syntactic features. A possible reason
is that co-occurrence and pattern features are more
likely to indicate parent-child aspect relationships,
while contextual and syntactic features are proba-
ble to measure sibling aspect relationships. Among
these features, the lexical features perform the worst.
The combination of all the features achieves the best
performance.

Next, we evaluated the effectiveness of external
hierarchies in semantic distance learning. We com-
pared the performance of our approach with or with-
out the external hierarchies. From Figure 8, we find
that by exploiting the external hierarchies, our ap-
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Figure 8: Evaluations on the Impact of External Hierar-
chy. t-test, p-values<0.05.

proach improves the performance significantly. The
improvement is over 2.81% in terms of average F1-
measure. This implies that by using external hier-
archies, our approach can obtain effective semantic
distance, and thus improve the performance of as-
pect hierarchy generation.

Additionally, for sentiment classification, our
SVM classifier achieves an average F1-measure of
0.787 in the 11 products.

4.4 Evaluations on Implicit Aspect
Identification

To evaluate the performance of our approach on im-
plicit aspect identification, we collected 29,657 im-
plicit aspect review sentences on the 11 products
from the four forum Web sites introduced in Section
4.1. While most existing approaches for implicit as-
pect identification rely on hand-crafted rules (Liu,
2009), the method proposed in Su et al. (2008) can
identify implicit aspects without hand-crafted rules
based on mutual clustering. Therefore, we adopt
Su’s method as the baseline here. Figure 9 illustrates
the performance comparison between Su’s and our
approach. We can see that our approach outperforms
Su’s method by over 9.18% in terms of average F1-
measure. This shows that our approach can iden-
tify the implicit aspects accurately by exploiting the
underlying associations among the sentiment terms
and each aspect in the hierarchy.

5 Related Work

Some researches treated review organization as a
multi-document summarization problem, and gen-
erated a summary by selecting and ordering sen-
tences taken from multiple reviews (Nishikawa et

Figure 9: Evaluations on Implicit Aspects Identification.
t-test, p-values<0.05

al., 2010). These works did not drill down to the
fine-grained level to explore the opinions on the
product aspects. Other researchers proposed to pro-
duce a summary covering consumer opinions on
each aspect. For example, Hu and Liu (2004) fo-
cused on extracting the aspects and determining
opinions on the aspects. However, their gener-
ated summary was unstructured, where the possible
relationships between aspects were not recognized
(Cadilhac et al., 2010). Subsequently, Carenini et
al. (2006) proposed to map the aspect to a user-
defined taxonomy, but the taxonomy was hand-
crafted which was not scalable.

Different from the previous works, we focus on
automatically generating an aspect hierarchy to hi-
erarchically organize consumer reviews. There are
some related works on ontology learning, which
first identify concepts from text, and then determine
parent-child relations between these concepts us-
ing either pattern-based or clustering-based methods
(Murthy et al., 2010). Pattern-based methods usu-
ally defined some lexical syntactic patterns to extract
the relations, while clustering-based methods mostly
utilized the hierarchical clustering methods to build
a hierarchy (Roy et al., 2006). Some works proposed
to integrate the pattern-based and clustering-based
methods in a general model, such as the probabilistic
model (Snow et al., 2006) and metric-based model
(Yang and Callan, 2009).

The researches on aspect identification are also
related to our work. Various aspect identification
methods have been proposed (Popescu et al., 2005),
including supervised methods (Liu el al., 2005), and
unsupervised methods (Mei et al., 2007). Different
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features have been investigated for this task. For
example, Wu et al. (2009) identified aspects based
on the features explored by dependency parser.
For implicit aspect identification, some works pro-
posed to define rules for identification (Liu el al.,
2005), while others suggested to automatically gen-
erate rules via mutual clustering (Su et al., 2008).
On the other hand, there are some related works
on sentiment classification (Pang and Lee, 2008).
These works can be categorized into four granu-
larities: document-level, sentence-level, aspect-level
and word-level sentiment classification (Liu, 2009).
Existing researches have been studied unsupervised
(Kim et al., 2004), supervised (Pang et al., 2002;
Pang et al., 2005) and semi-supervised classification
approaches (Goldberg et al., 2006; Li et al., 2009)
on these four levels.

6 Conclusions and Future Works

In this paper, we have developed a domain-assisted
approach to generate product aspect hierarchy by in-
tegrating domain knowledge and consumer reviews.
Based on the derived hierarchy, we can generate
a hierarchical organization of consumer reviews as
well as consumer opinions on the aspects. With such
organization, user can easily grasp the overview of
consumer reviews, as well as seek consumer reviews
and opinions on any specific aspect by navigating
through the hierarchy. We have further applied the
hierarchy to the task of implicit aspect identification.
We have conducted evaluations on 11 different prod-
ucts in four domains. The experimental results have
demonstrated the effectiveness of our approach. In
the future, we will explore other linguistic features
to learn the semantic distance between aspects, as
well as apply our approach to other applications.
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Abstract

We introduce a novel machine learning frame-
work based on recursive autoencoders for
sentence-level prediction of sentiment label
distributions. Our method learns vector space
representations for multi-word phrases. In
sentiment prediction tasks these represen-
tations outperform other state-of-the-art ap-
proaches on commonly used datasets, such as
movie reviews, without using any pre-defined
sentiment lexica or polarity shifting rules. We
also evaluate the model’s ability to predict
sentiment distributions on a new dataset based
on confessions from the experience project.
The dataset consists of personal user stories
annotated with multiple labels which, when
aggregated, form a multinomial distribution
that captures emotional reactions. Our al-
gorithm can more accurately predict distri-
butions over such labels compared to several
competitive baselines.

1 Introduction

The ability to identify sentiments about personal ex-
periences, products, movies etc. is crucial to un-
derstand user generated content in social networks,
blogs or product reviews. Detecting sentiment in
these data is a challenging task which has recently
spawned a lot of interest (Pang and Lee, 2008).

Current baseline methods often use bag-of-words
representations which cannot properly capture more
complex linguistic phenomena in sentiment analy-
sis (Pang et al., 2002). For instance, while the two
phrases “white blood cells destroying an infection”
and “an infection destroying white blood cells” have
the same bag-of-words representation, the former is
a positive reaction while the later is very negative.
More advanced methods such as (Nakagawa et al.,

Indices

Words

Semantic 
Representations

Recursive Autoencoder

i         walked      into         a        parked     car

Sorry, Hugs      You Rock       Teehee    I Understand    Wow, Just Wow

Predicted 
Sentiment 
Distribution

Figure 1: Illustration of our recursive autoencoder archi-
tecture which learns semantic vector representations of
phrases. Word indices (orange) are first mapped into a
semantic vector space (blue). Then they are recursively
merged by the same autoencoder network into a fixed
length sentence representation. The vectors at each node
are used as features to predict a distribution over senti-
ment labels.

2010) that can capture such phenomena use many
manually constructed resources (sentiment lexica,
parsers, polarity-shifting rules). This limits the ap-
plicability of these methods to a broader range of
tasks and languages. Lastly, almost all previous
work is based on single, positive/negative categories
or scales such as star ratings. Examples are movie
reviews (Pang and Lee, 2005), opinions (Wiebe et
al., 2005), customer reviews (Ding et al., 2008) or
multiple aspects of restaurants (Snyder and Barzilay,
2007). Such a one-dimensional scale does not accu-
rately reflect the complexity of human emotions and
sentiments.

In this work, we seek to address three issues. (i)
Instead of using a bag-of-words representation, our
model exploits hierarchical structure and uses com-
positional semantics to understand sentiment. (ii)
Our system can be trained both on unlabeled do-
main data and on supervised sentiment data and does
not require any language-specific sentiment lexica,
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parsers, etc. (iii) Rather than limiting sentiment to
a positive/negative scale, we predict a multidimen-
sional distribution over several complex, intercon-
nected sentiments.

We introduce an approach based on semi-
supervised, recursive autoencoders (RAE) which
use as input continuous word vectors. Fig. 1 shows
an illustration of the model which learns vector rep-
resentations of phrases and full sentences as well as
their hierarchical structure from unsupervised text.
We extend our model to also learn a distribution over
sentiment labels at each node of the hierarchy.

We evaluate our approach on several standard
datasets where we achieve state-of-the art perfor-
mance. Furthermore, we show results on the re-
cently introduced experience project (EP) dataset
(Potts, 2010) that captures a broader spectrum of
human sentiments and emotions. The dataset con-
sists of very personal confessions anonymously
made by people on the experience project website
www.experienceproject.com. Confessions are la-
beled with a set of five reactions by other users. Re-
action labels are you rock (expressing approvement),
tehee (amusement), I understand, Sorry, hugs and
Wow, just wow (displaying shock). For evaluation on
this dataset we predict both the label with the most
votes as well as the full distribution over the senti-
ment categories. On both tasks our model outper-
forms competitive baselines. A set of over 31,000
confessions as well as the code of our model are
available at www.socher.org.

After describing the model in detail, we evalu-
ate it qualitatively by analyzing the learned n-gram
vector representations and compare quantitatively
against other methods on standard datasets and the
EP dataset.

2 Semi-Supervised Recursive
Autoencoders

Our model aims to find vector representations for
variable-sized phrases in either unsupervised or
semi-supervised training regimes. These representa-
tions can then be used for subsequent tasks. We first
describe neural word representations and then pro-
ceed to review a related recursive model based on
autoencoders, introduce our recursive autoencoder
(RAE) and describe how it can be modified to jointly

learn phrase representations, phrase structure and
sentiment distributions.

2.1 Neural Word Representations

We represent words as continuous vectors of param-
eters. We explore two settings. In the first setting
we simply initialize each word vector x ∈ Rn by
sampling it from a zero mean Gaussian distribution:
x ∼ N (0, σ2). These word vectors are then stacked
into a word embedding matrix L ∈ Rn×|V |, where
|V | is the size of the vocabulary. This initialization
works well in supervised settings where a network
can subsequently modify these vectors to capture
certain label distributions.

In the second setting, we pre-train the word vec-
tors with an unsupervised neural language model
(Bengio et al., 2003; Collobert and Weston, 2008).
These models jointly learn an embedding of words
into a vector space and use these vectors to predict
how likely a word occurs given its context. After
learning via gradient ascent the word vectors cap-
ture syntactic and semantic information from their
co-occurrence statistics.

In both cases we can use the resulting matrix of
word vectors L for subsequent tasks as follows. As-
sume we are given a sentence as an ordered list of
m words. Each word has an associated vocabulary
index k into the embedding matrix which we use to
retrieve the word’s vector representation. Mathemat-
ically, this look-up operation can be seen as a sim-
ple projection layer where we use a binary vector b
which is zero in all positions except at the kth index,

xi = Lbk ∈ Rn. (1)

In the remainder of this paper, we represent a sen-
tence (or any n-gram) as an ordered list of these
vectors (x1, . . . , xm). This word representation is
better suited to autoencoders than the binary number
representations used in previous related autoencoder
models such as the recursive autoassociative mem-
ory (RAAM) model (Pollack, 1990; Voegtlin and
Dominey, 2005) or recurrent neural networks (El-
man, 1991) since sigmoid units are inherently con-
tinuous. Pollack circumvented this problem by hav-
ing vocabularies with only a handful of words and
by manually defining a threshold to binarize the re-
sulting vectors.
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x1 x3 x4x2

y1=f(W(1)[x3;x4] + b)

y2=f(W(1)[x2;y1] + b)

y3=f(W(1)[x1;y2] + b)

Figure 2: Illustration of an application of a recursive au-
toencoder to a binary tree. The nodes which are not filled
are only used to compute reconstruction errors. A stan-
dard autoencoder (in box) is re-used at each node of the
tree.

2.2 Traditional Recursive Autoencoders

The goal of autoencoders is to learn a representation
of their inputs. In this section we describe how to
obtain a reduced dimensional vector representation
for sentences.

In the past autoencoders have only been used in
setting where the tree structure was given a-priori.
We review this setting before continuing with our
model which does not require a given tree structure.
Fig. 2 shows an instance of a recursive autoencoder
(RAE) applied to a given tree. Assume we are given
a list of word vectors x = (x1, . . . , xm) as described
in the previous section as well as a binary tree struc-
ture for this input in the form of branching triplets
of parents with children: (p → c1c2). Each child
can be either an input word vector xi or a nontermi-
nal node in the tree. For the example in Fig. 2, we
have the following triplets: ((y1 → x3x4), (y2 →
x2y1), (y1 → x1y2)). In order to be able to apply
the same neural network to each pair of children, the
hidden representations yi have to have the same di-
mensionality as the xi’s.

Given this tree structure, we can now compute the
parent representations. The first parent vector y1 is
computed from the children (c1, c2) = (x3, x4):

p = f(W (1)[c1; c2] + b(1)), (2)

where we multiplied a matrix of parameters W (1) ∈
Rn×2n by the concatenation of the two children.
After adding a bias term we applied an element-

wise activation function such as tanh to the result-
ing vector. One way of assessing how well this n-
dimensional vector represents its children is to try to
reconstruct the children in a reconstruction layer:

[
c′1; c

′
2

]
= W (2)p+ b(2). (3)

During training, the goal is to minimize the recon-
struction errors of this input pair. For each pair, we
compute the Euclidean distance between the original
input and its reconstruction:

Erec([c1; c2]) =
1

2

∣∣∣∣[c1; c2]−
[
c′1; c

′
2

]∣∣∣∣2 . (4)

This model of a standard autoencoder is boxed in
Fig. 2. Now that we have defined how an autoen-
coder can be used to compute an n-dimensional vec-
tor representation (p) of two n-dimensional children
(c1, c2), we can describe how such a network can be
used for the rest of the tree.

Essentially, the same steps repeat. Now that y1
is given, we can use Eq. 2 to compute y2 by setting
the children to be (c1, c2) = (x2, y1). Again, after
computing the intermediate parent vector y2, we can
assess how well this vector capture the content of
the children by computing the reconstruction error
as in Eq. 4. The process repeat until the full tree
is constructed and we have a reconstruction error at
each nonterminal node. This model is similar to the
RAAM model (Pollack, 1990) which also requires a
fixed tree structure.

2.3 Unsupervised Recursive Autoencoder for
Structure Prediction

Now, assume there is no tree structure given for
the input vectors in x. The goal of our structure-
prediction RAE is to minimize the reconstruction er-
ror of all vector pairs of children in a tree. We de-
fine A(x) as the set of all possible trees that can be
built from an input sentence x. Further, let T (y) be
a function that returns the triplets of a tree indexed
by s of all the non-terminal nodes in a tree. Using
the reconstruction error of Eq. 4, we compute

RAEθ(x) = arg min
y∈A(x)

∑

s∈T (y)
Erec([c1; c2]s) (5)

We now describe a greedy approximation that con-
structs such a tree.
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Greedy Unsupervised RAE. For a sentence with
m words, we apply the autoencoder recursively. It
takes the first pair of neighboring vectors, defines
them as potential children of a phrase (c1; c2) =
(x1;x2), concatenates them and gives them as in-
put to the autoencoder. For each word pair, we save
the potential parent node p and the resulting recon-
struction error.

After computing the score for the first pair, the
network is shifted by one position and takes as input
vectors (c1, c2) = (x2, x3) and again computes a po-
tential parent node and a score. This process repeats
until it hits the last pair of words in the sentence:
(c1, c2) = (xm−1, xm). Next, it selects the pair
which had the lowest reconstruction error (Erec) and
its parent representation p will represent this phrase
and replace both children in the sentence word list.
For instance, consider the sequence (x1, x2, x3, x4)
and assume the lowestErec was obtained by the pair
(x3, x4). After the first pass, the new sequence then
consists of (x1, x2, p(3,4)). The process repeats and
treats the new vector p(3,4) like any other input vec-
tor. For instance, subsequent states could be either:
(x1, p(2,(3,4))) or (p(1,2), p(3,4)). Both states would
then finish with a deterministic choice of collapsing
the remaining two states into one parent to obtain
(p(1,(2,(3,4)))) or (p((1,2),(3,4))) respectively. The tree
is then recovered by unfolding the collapsing deci-
sions.

The resulting tree structure captures as much of
the single-word information as possible (in order
to allow reconstructing the word vectors) but does
not necessarily follow standard syntactic constraints.
We also experimented with a method that finds bet-
ter solutions to Eq. 5 based on CKY-like beam
search algorithms (Socher et al., 2010; Socher et al.,
2011) but the performance is similar and the greedy
version is much faster.

Weighted Reconstruction. One problem with
simply using the reconstruction error of both chil-
dren equally as describe in Eq. 4 is that each child
could represent a different number of previously
collapsed words and is hence of bigger importance
for the overall meaning reconstruction of the sen-
tence. For instance in the case of (x1, p(2,(3,4)))
one would like to give more importance to recon-
structing p than x1. We capture this desideratum
by adjusting the reconstruction error. Let n1, n2 be

the number of words underneath a current poten-
tial child, we re-define the reconstruction error to be
Erec([c1; c2]; θ) =

n1
n1 + n2

∣∣∣∣c1 − c′1
∣∣∣∣2 +

n2
n1 + n2

∣∣∣∣c2 − c′2
∣∣∣∣2 (6)

Length Normalization. One of the goals of
RAEs is to induce semantic vector representations
that allow us to compare n-grams of different
lengths. The RAE tries to lower reconstruction error
of not only the bigrams but also of nodes higher in
the tree. Unfortunately, since the RAE computes the
hidden representations it then tries to reconstruct, it
can just lower reconstruction error by making the
hidden layer very small in magnitude. To prevent
such undesirable behavior, we modify the hidden
layer such that the resulting parent representation al-
ways has length one, after computing p as in Eq. 2,
we simply set: p = p

||p|| .

2.4 Semi-Supervised Recursive Autoencoders
So far, the RAE was completely unsupervised and
induced general representations that capture the se-
mantics of multi-word phrases.In this section, we
extend RAEs to a semi-supervised setting in order
to predict a sentence- or phrase-level target distribu-
tion t.1

One of the main advantages of the RAE is that
each node of the tree built by the RAE has associ-
ated with it a distributed vector representation (the
parent vector p) which could also be seen as fea-
tures describing that phrase. We can leverage this
representation by adding on top of each parent node
a simple softmax layer to predict class distributions:

d(p; θ) = softmax(W labelp). (7)

Assuming there are K labels, d ∈ RK is
a K-dimensional multinomial distribution and∑

k=1 dk = 1. Fig. 3 shows such a semi-supervised
RAE unit. Let tk be the kth element of the multino-
mial target label distribution t for one entry. The
softmax layer’s outputs are interpreted as condi-
tional probabilities dk = p(k|[c1; c2]), hence the
cross-entropy error is

EcE(p, t; θ) = −
K∑

k=1

tk log dk(p; θ). (8)

1For the binary label classification case, the distribution is
of the form [1, 0] for class 1 and [0, 1] for class 2.
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Reconstruction error           Cross-entropy error

W(1)

W(2)

W(label)

Figure 3: Illustration of an RAE unit at a nonterminal tree
node. Red nodes show the supervised softmax layer for
label distribution prediction.

Using this cross-entropy error for the label and the
reconstruction error from Eq. 6, the final semi-
supervised RAE objective over (sentences,label)
pairs (x, t) in a corpus becomes

J =
1

N

∑

(x,t)

E(x, t; θ) +
λ

2
||θ||2, (9)

where we have an error for each entry in the training
set that is the sum over the error at the nodes of the
tree that is constructed by the greedy RAE:

E(x, t; θ) =
∑

s∈T (RAEθ(x))

E([c1; c2]s, ps, t, θ).

The error at each nonterminal node is the weighted
sum of reconstruction and cross-entropy errors,
E([c1; c2]s, ps, t, θ) =

αErec([c1; c2]s; θ) + (1− α)EcE(ps, t; θ).

The hyperparameter α weighs reconstruction and
cross-entropy error. When minimizing the cross-
entropy error of this softmax layer, the error will
backpropagate and influence both the RAE param-
eters and the word representations. Initially, words
such as good and bad have very similar representa-
tions. This is also the case for Brown clusters and
other methods that use only cooccurrence statistics
in a small window around each word. When learn-
ing with positive/negative sentiment, the word em-
beddings get modified and capture less syntactic and
more sentiment information.

In order to predict the sentiment distribution of a
sentence with this model, we use the learned vector
representation of the top tree node and train a simple
logistic regression classifier.

3 Learning

Let θ = (W (1), b(1),W (2), b(1),W label, L) be the set
of our model parameters, then the gradient becomes:

∂J

∂θ
=

1

N

∑

(x,t)

∂E(x, t; θ)

∂θ
+ λθ. (10)

To compute this gradient, we first greedily construct
all trees and then derivatives for these trees are com-
puted efficiently via backpropagation through struc-
ture (Goller and Küchler, 1996). Because the algo-
rithm is greedy and the derivatives of the supervised
cross-entropy error also modify the matrix W (1),
this objective is not necessarily continuous and a
step in the gradient descent direction may not nec-
essarily decrease the objective. However, we found
that L-BFGS run over the complete training data
(batch mode) to minimize the objective works well
in practice, and that convergence is smooth, with the
algorithm typically finding a good solution quickly.

4 Experiments

We first describe the new experience project (EP)
dataset, results of standard classification tasks on
this dataset and how to predict its sentiment label
distributions. We then show results on other com-
monly used datasets and conclude with an analysis
of the important parameters of the model.

In all experiments involving our model, we repre-
sent words using 100-dimensional word vectors. We
explore the two settings mentioned in Sec. 2.1. We
compare performance on standard datasets when us-
ing randomly initialized word vectors (random word
init.) or word vectors trained by the model of Col-
lobert and Weston (2008) and provided by Turian
et al. (2010).2 These vectors were trained on an
unlabeled corpus of the English Wikipedia. Note
that alternatives such as Brown clusters are not suit-
able since they do not capture sentiment information
(good and bad are usually in the same cluster) and
cannot be modified via backpropagation.

2http://metaoptimize.com/projects/
wordreprs/
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Corpus K Instances Distr.(+/-) Avg|W |
MPQA 2 10,624 0.31/0.69 3
MR 2 10,662 0.5/0.5 22
EP 5 31,675 .2/.2/.1/.4/.1 113
EP≥ 4 5 6,129 .2/.2/.1/.4/.1 129

Table 1: Statistics on the different datasets. K is the num-
ber of classes. Distr. is the distribution of the different
classes (in the case of 2, the positive/negative classes, for
EP the rounded distribution of total votes in each class).
|W | is the average number of words per instance. We use
EP≥ 4, a subset of entries with at least 4 votes.

4.1 EP Dataset: The Experience Project

The confessions section of the experience project
website3 lets people anonymously write short per-
sonal stories or “confessions”. Once a story is on
the site, each user can give a single vote to one of
five label categories (with our interpretation):
1 Sorry, Hugs: User offers condolences to author.
2. You Rock: Indicating approval, congratulations.
3. Teehee: User found the anecdote amusing.
4. I Understand: Show of empathy.
5. Wow, Just Wow: Expression of surprise,shock.
The EP dataset has 31,676 confession entries, a to-
tal number of 74,859 votes for the 5 labels above, the
average number of votes per entry is 2.4 (with a vari-
ance of 33). For the five categories, the numbers of
votes are [14, 816; 13, 325; 10, 073; 30, 844; 5, 801].
Since an entry with less than 4 votes is not very well
identified, we train and test only on entries with at
least 4 total votes. There are 6,129 total such entries.
The distribution over total votes in the 5 classes
is similar: [0.22; 0.2; 0.11; 0.37; 0.1]. The average
length of entries is 129 words. Some entries con-
tain multiple sentences. In these cases, we average
the predicted label distributions from the sentences.
Table 1 shows statistics of this and other commonly
used sentiment datasets (which we compare on in
later experiments). Table 2 shows example entries
as well as gold and predicted label distributions as
described in the next sections.

Compared to other datasets, the EP dataset con-
tains a wider range of human emotions that goes far
beyond positive/negative product or movie reviews.
Each item is labeled with a multinomial distribu-

3http://www.experienceproject.com/
confessions.php

tion over interconnected response categories. This
is in contrast to most other datasets (including multi-
aspect rating) where several distinct aspects are rated
independently but on the same scale. The topics
range from generic happy statements, daily clumsi-
ness reports, love, loneliness, to relationship abuse
and suicidal notes. As is evident from the total num-
ber of label votes, the most common user reaction
is one of empathy and an ability to relate to the au-
thors experience. However, some stories describe
horrible scenarios that are not common and hence
receive more offers of condolence. In the following
sections we show some examples of stories with pre-
dicted and true distributions but refrain from listing
the most horrible experiences.

For all experiments on the EP dataset, we split the
data into train (49%), development (21%) and test
data (30%).

4.2 EP: Predicting the Label with Most Votes
The first task for our evaluation on the EP dataset is
to simply predict the single class that receives the
most votes. In order to compare our novel joint
phrase representation and classifier learning frame-
work to traditional methods, we use the following
baselines:

Random Since there are five classes, this gives 20%
accuracy.

Most Frequent Selecting the class which most fre-
quently has the most votes (the class I under-
stand).

Baseline 1: Binary BoW This baseline uses logis-
tic regression on binary bag-of-word represen-
tations that are 1 if a word is present and 0 oth-
erwise.

Baseline 2: Features This model is similar to tra-
ditional approaches to sentiment classification
in that it uses many hand-engineered resources.
We first used a spell-checker and Wordnet to
map words and their misspellings to synsets to
reduce the total number of words. We then re-
placed sentiment words with a sentiment cat-
egory identifier using the sentiment lexica of
the Harvard Inquirer (Stone, 1966) and LIWC
(Pennebaker et al., 2007). Lastly, we used tf-idf
weighting on the bag-of-word representations
and trained an SVM.
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KL Predicted&Gold V. Entry (Shortened if it ends with ...)
.03

.16 .16 .16 .33 .16

6 I reguarly shoplift. I got caught once and went to jail, but I’ve found that this was not a deterrent. I don’t buy
groceries, I don’t buy school supplies for my kids, I don’t buy gifts for my kids, we don’t pay for movies, and I
dont buy most incidentals for the house (cleaning supplies, toothpaste, etc.)...

.03

.38 .04 .06 .35 .14

165 i am a very succesfull buissnes man.i make good money but i have been addicted to crack for 13 years.i moved 1
hour away from my dealers 10 years ago to stop using now i dont use daily but once a week usally friday nights.
i used to use 1 or 2 hundred a day now i use 4 or 5 hundred on a friday.my problem is i am a funcational addict...

.05

.14 .28 .14 .28 .14

7 Hi there, Im a guy that loves a girl, the same old bloody story... I met her a while ago, while studying, she Is so
perfect, so mature and yet so lonely, I get to know her and she get ahold of me, by opening her life to me and so
did I with her, she has been the first person, male or female that has ever made that bond with me,...

.07

.27 .18 .00 .45 .09

11 be kissing you right now. i should be wrapped in your arms in the dark, but instead i’ve ruined everything. i’ve
piled bricks to make a wall where there never should have been one. i feel an ache that i shouldn’t feel because
i’ve never had you close enough. we’ve never touched, but i still feel as though a part of me is missing. ...

.05 23 Dear Love, I just want to say that I am looking for you. Tonight I felt the urge to write, and I am becoming more
and more frustrated that I have not found you yet. I’m also tired of spending so much heart on an old dream. ...

.05 5 I wish I knew somone to talk to here.

.06 24 I loved her but I screwed it up. Now she’s moved on. I’ll never have her again. I don’t know if I’ll ever stop
thinking about her.

.06 5 i am 13 years old and i hate my father he is alwas geting drunk and do’s not care about how it affects me or my
sisters i want to care but the truthis i dont care if he dies

.13 6 well i think hairy women are attractive

.35 5 As soon as I put clothings on I will go down to DQ and get a thin mint blizzard. I need it. It’ll make my soul
feel a bit better :)

.36 6 I am a 45 year old divoced woman, and I havent been on a date or had any significant relationship in 12
years...yes, 12 yrs. the sad thing is, Im not some dried up old granny who is no longer interested in men, I just
can’t meet men. (before you judge, no Im not terribly picky!) What is wrong with me?

.63 6 When i was in kindergarden i used to lock myself in the closet and eat all the candy. Then the teacher found out
it was one of us and made us go two days without freetime. It might be a little late now, but sorry guys it was
me haha

.92 4 My paper is due in less than 24 hours and I’m still dancing round my room!

Table 2: Example EP confessions from the test data with KL divergence between our predicted distribution (light blue,
left bar on each of the 5 classes) and ground truth distribution (red bar and numbers underneath), number of votes. The
5 classes are [Sorry, Hugs ;You Rock; Teehee;I Understand;Wow, Just Wow]. Even when the KL divergence is higher,
our model makes reasonable alternative label choices. Some entries are shortened.

Baseline 3: Word Vectors We can ignore the RAE
tree structure and only train softmax layers di-
rectly on the pre-trained words in order to influ-
ence the word vectors. This is followed by an
SVM trained on the average of the word vec-
tors.

We also experimented with latent Dirichlet alloca-
tion (Blei et al., 2003) but performance was very
low.

Table 3 shows the results for predicting the class
with the most votes. Even the approach that is based
on sentiment lexica and other resources is outper-
formed by our model by almost 3%, showing that
for tasks involving complex broad-range human sen-
timent, the often used sentiment lexica lack in cover-
age and traditional bag-of-words representations are
not powerful enough.

4.3 EP: Predicting Sentiment Distributions
We now turn to evaluating our distribution-
prediction approach. In both this and the previous

Method Accuracy
Random 20.0
Most Frequent 38.1
Baseline 1: Binary BoW 46.4
Baseline 2: Features 47.0
Baseline 3: Word Vectors 45.5
RAE (our method) 50.1

Table 3: Accuracy of predicting the class with most votes.

maximum label task, we backprop using the gold
multinomial distribution as a target. Since we max-
imize likelihood and because we want to predict a
distribution that is closest to the distribution of labels
that people would assign to a story, we evaluate us-
ing KL divergence: KL(g||p) =

∑
i gi log(gi/pi),

where g is the gold distribution and p is the predicted
one. We report the average KL divergence, where a
smaller value indicates better predictive power. To
get an idea of the values of KL divergence, predict-
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Avg.Distr. BoW Features Word Vec. RAE
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0.83 0.81 0.72 0.73 0.70

Figure 4: Average KL-divergence between gold and pre-
dicted sentiment distributions (lower is better).

ing random distributions gives a an average of 1.2 in
KL divergence, predicting simply the average distri-
bution in the training data give 0.83. Fig. 4 shows
that our RAE-based model outperforms the other
baselines. Table 2 shows EP example entries with
predicted and gold distributions, as well as numbers
of votes.

4.4 Binary Polarity Classification
In order to compare our approach to other meth-
ods we also show results on commonly used sen-
timent datasets: movie reviews4 (MR) (Pang and
Lee, 2005) and opinions5 (MPQA) (Wiebe et al.,
2005).We give statistical information on these and
the EP corpus in Table 1.

We compare to the state-of-the-art system of
(Nakagawa et al., 2010), a dependency tree based
classification method that uses CRFs with hidden
variables. We use the same training and testing regi-
men (10-fold cross validation) as well as their base-
lines: majority phrase voting using sentiment and
reversal lexica; rule-based reversal using a depen-
dency tree; Bag-of-Features and their full Tree-CRF
model. As shown in Table 4, our algorithm outper-
forms their approach on both datasets. For the movie
review (MR) data set, we do not use any hand-
designed lexica. An error analysis on the MPQA
dataset showed several cases of single words which
never occurred in the training set. Correctly classify-
ing these instances can only be the result of having
them in the original sentiment lexicon. Hence, for
the experiment on MPQA we added the same sen-
timent lexicon that (Nakagawa et al., 2010) used in
their system to our training set. This improved ac-
curacy from 86.0 to 86.4.Using the pre-trained word
vectors boosts performance by less than 1% com-

4www.cs.cornell.edu/people/pabo/
movie-review-data/

5www.cs.pitt.edu/mpqa/

Method MR MPQA
Voting with two lexica 63.1 81.7
Rule-based reversal on trees 62.9 82.8
Bag of features with reversal 76.4 84.1
Tree-CRF (Nakagawa et al,’10) 77.3 86.1
RAE (random word init.) 76.8 85.7
RAE (our method) 77.7 86.4

Table 4: Accuracy of sentiment classification on movie
review polarity (MR) and the MPQA dataset.

0 0.2 0.4 0.6 0.8 1
0.83

0.84

0.85

0.86

0.87

Figure 5: Accuracy on the development split of the MR
polarity dataset for different weightings of reconstruction
error and supervised cross-entropy error: err = αErec +
(1− α)EcE .

pared to randomly initialized word vectors (setting:
random word init). This shows that our method can
work well even in settings with little training data.
We visualize the semantic vectors that the recursive
autoencoder learns by listing n-grams that give the
highest probability for each polarity. Table 5 shows
such n-grams for different lengths when the RAE is
trained on the movie review polarity dataset.

On a 4-core machine, training time for the smaller
corpora such as the movie reviews takes around 3
hours and for the larger EP corpus around 12 hours
until convergence. Testing of hundreds of movie re-
views takes only a few seconds.

4.5 Reconstruction vs. Classification Error

In this experiment, we show how the hyperparame-
ter α influences accuracy on the development set of
one of the cross-validation splits of the MR dataset.
This parameter essentially trade-off the supervised
and unsupervised parts of the objective. Fig. 5 shows
that a larger focus on the supervised objective is im-
portant but that a weight of α = 0.2 for the recon-
struction error prevents overfitting and achieves the
highest performance.

158



n Most negative n-grams Most positive n-grams
1 bad; boring; dull; flat; pointless; tv; neither; pretentious; badly;

worst; lame; mediocre; lack; routine; loud; bore; barely; stupid;
tired; poorly; suffers; heavy;nor; choppy; superficial

touching; enjoyable; powerful; warm; moving; culture; flaws;
provides; engrossing; wonderful; beautiful; quiet; socio-political;
thoughtful; portrait; refreshingly; chilling; rich; beautifully; solid;

2 how bad; by bad; dull .; for bad; to bad; boring .; , dull; are bad;
that bad; boring ,; , flat; pointless .; badly by; on tv; so routine; lack
the; mediocre .; a generic; stupid ,; abysmally pathetic

the beautiful; moving,; thoughtful and; , inventive; solid and; a
beautiful; a beautifully; and hilarious; with dazzling; provides the;
provides.; and inventive; as powerful; moving and; a moving; a
powerful

3 . too bad; exactly how bad; and never dull; shot but dull; is more
boring; to the dull; dull, UNK; it is bad; or just plain; by turns
pretentious; manipulative and contrived; bag of stale; is a bad; the
whole mildly; contrived pastiche of; from this choppy; stale mate-
rial.

funny and touching; a small gem; with a moving; cuts, fast; , fine
music; smart and taut; culture into a; romantic , riveting; ... a solid;
beautifully acted .; , gradually reveals; with the chilling; cast of
solid; has a solid; spare yet audacious; ... a polished; both the
beauty;

5 boring than anything else.; a major waste ... generic; nothing i
hadn’t already; ,UNK plotting;superficial; problem ? no laughs.;
,just horribly mediocre .; dull, UNK feel.; there’s nothing exactly
wrong; movie is about a boring; essentially a collection of bits

reminded us that a feel-good; engrossing, seldom UNK,; between
realistic characters showing honest; a solid piece of journalistic;
easily the most thoughtful fictional; cute, funny, heartwarming;
with wry humor and genuine; engrossing and ultimately tragic.;

8 loud, silly, stupid and pointless.; dull, dumb and derivative horror
film.; UNK’s film, a boring, pretentious; this film biggest problem
? no laughs.; film in the series looks and feels tired; do draw easy
chuckles but lead nowhere.; stupid, infantile, redundant, sloppy

shot in rich , shadowy black-and-white , devils an escapist con-
fection that ’s pure entertainment .; , deeply absorbing piece that
works as a; ... one of the most ingenious and entertaining; film is a
riveting , brisk delight .; bringing richer meaning to the story ’s;

Table 5: Examples of n-grams (n = 1, 2, 3, 5, 8) from the test data of the movie polarity dataset for which our model
predicts the most positive and most negative responses.

5 Related Work
5.1 Autoencoders and Deep Learning

Autoencoders are neural networks that learn a re-
duced dimensional representation of fixed-size in-
puts such as image patches or bag-of-word repre-
sentations of text documents. They can be used to
efficiently learn feature encodings which are useful
for classification. Recently, Mirowski et al. (2010)
learn dynamic autoencoders for documents in a bag-
of-words format which, like ours, combine super-
vised and reconstruction objectives.

The idea of applying an autoencoder in a recursive
setting was introduced by Pollack (1990). Pollack’s
recursive auto-associative memories (RAAMs) are
similar to ours in that they are a connectionst, feed-
forward model. However, RAAMs learn vector
representations only for fixed recursive data struc-
tures, whereas our RAE builds this recursive data
structure. More recently, (Voegtlin and Dominey,
2005) introduced a linear modification to RAAMs
that is able to better generalize to novel combina-
tions of previously seen constituents. One of the
major shortcomings of previous applications of re-
cursive autoencoders to natural language sentences
was their binary word representation as discussed in
Sec. 2.1.

Recently, (Socher et al., 2010; Socher et al., 2011)
introduced a max-margin framework based on recur-
sive neural networks (RNNs) for labeled structure
prediction. Their models are applicable to natural
language and computer vision tasks such as parsing

or object detection. The current work is related in
that it uses a recursive deep learning model. How-
ever, RNNs require labeled tree structures and use a
supervised score at each node. Instead, RAEs learn
hierarchical structures that are trying to capture as
much of the the original word vectors as possible.
The learned structures are not necessarily syntacti-
cally plausible but can capture more of the semantic
content of the word vectors. Other recent deep learn-
ing methods for sentiment analysis include (Maas et
al., 2011).

5.2 Sentiment Analysis

Pang et al. (2002) were one of the first to experiment
with sentiment classification. They show that sim-
ple bag-of-words approaches based on Naive Bayes,
MaxEnt models or SVMs are often insufficient for
predicting sentiment of documents even though they
work well for general topic-based document classi-
fication. Even adding specific negation words, bi-
grams or part-of-speech information to these mod-
els did not add significant improvements. Other
document-level sentiment work includes (Turney,
2002; Dave et al., 2003; Beineke et al., 2004; Pang
and Lee, 2004). For further references, see (Pang
and Lee, 2008).

Instead of document level sentiment classifica-
tion, (Wilson et al., 2005) analyze the contextual
polarity of phrases and incorporate many well de-
signed features including dependency trees. They
also show improvements by first distinguishing be-
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tween neutral and polar sentences. Our model natu-
rally incorporates the recursive interaction between
context and polarity words in sentences in a unified
framework while simultaneously learning the neces-
sary features to make accurate predictions. Other ap-
proaches for sentence-level sentiment detection in-
clude (Yu and Hatzivassiloglou, 2003; Grefenstette
et al., 2004; Ikeda et al., 2008).

Most previous work is centered around a given
sentiment lexicon or building one via heuristics
(Kim and Hovy, 2007; Esuli and Sebastiani, 2007),
manual annotation (Das and Chen, 2001) or machine
learning techniques (Turney, 2002). In contrast, we
do not require an initial or constructed sentiment lex-
icon of positive and negative words. In fact, when
training our approach on documents or sentences, it
jointly learns such lexica for both single words and
n-grams (see Table 5). (Mao and Lebanon, 2007)
propose isotonic conditional random fields and dif-
ferentiate between local, sentence-level and global,
document-level sentiment.

The work of (Polanyi and Zaenen, 2006; Choi and
Cardie, 2008) focuses on manually constructing sev-
eral lexica and rules for both polar words and re-
lated content-word negators, such as “prevent can-
cer”, where prevent reverses the negative polarity of
cancer. Like our approach they capture composi-
tional semantics. However, our model does so with-
out manually constructing any rules or lexica.

Recently, (Velikovich et al., 2010) showed how to
use a seed lexicon and a graph propagation frame-
work to learn a larger sentiment lexicon that also in-
cludes polar multi-word phrases such as “once in a
life time”. While our method can also learn multi-
word phrases it does not require a seed set or a large
web graph. (Nakagawa et al., 2010) introduced an
approach based on CRFs with hidden variables with
very good performance. We compare to their state-
of-the-art system. We outperform them on the stan-
dard corpora that we tested on without requiring
external systems such as POS taggers, dependency
parsers and sentiment lexica. Our approach jointly
learns the necessary features and tree structure.

In multi-aspect rating (Snyder and Barzilay, 2007)
one finds several distinct aspects such as food or ser-
vice in a restaurant and then rates them on a fixed
linear scale such as 1-5 stars, where all aspects could
obtain just 1 star or all aspects could obtain 5 stars

independently. In contrast, in our method a single
aspect (a complex reaction to a human experience)
is predicted not in terms of a fixed scale but in terms
of a multinomial distribution over several intercon-
nected, sometimes mutually exclusive emotions. A
single story cannot simultaneously obtain a strong
reaction in different emotional responses (by virtue
of having to sum to one).

6 Conclusion
We presented a novel algorithm that can accurately
predict sentence-level sentiment distributions. With-
out using any hand-engineered resources such as
sentiment lexica, parsers or sentiment shifting rules,
our model achieves state-of-the-art performance on
commonly used sentiment datasets. Furthermore,
we introduce a new dataset that contains distribu-
tions over a broad range of human emotions. Our
evaluation shows that our model can more accu-
rately predict these distributions than other models.
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Abstract

Polarity classification of opinionated sen-
tences with both positive and negative senti-
ments1 is a key challenge in sentiment anal-
ysis. This paper presents a novel unsuper-
vised method for discovering intra-sentence
level discourse relations for eliminating polar-
ity ambiguities. Firstly, a discourse scheme
with discourse constraints on polarity was de-
fined empirically based on Rhetorical Struc-
ture Theory (RST). Then, a small set of cue-
phrase-based patterns were utilized to collect
a large number of discourse instances which
were later converted to semantic sequential
representations (SSRs). Finally, an unsuper-
vised method was adopted to generate, weigh
and filter new SSRs without cue phrases for
recognizing discourse relations. Experimen-
tal results showed that the proposed methods
not only effectively recognized the defined
discourse relations but also achieved signifi-
cant improvement by integrating discourse in-
formation in sentence-level polarity classifica-
tion.

1 Introduction

As an important task of sentiment analysis, polar-
ity classification is critically affected by discourse
structure (Polanyi and Zaenen, 2006). Previous re-
search developed discourse schema (Asher et al.,
2008) (Somasundaran et al., 2008) and proved that
the utilization of discourse relations could improve
the performance of polarity classification on dia-
logues (Somasundaran et al., 2009). However, cur-

1Defined as ambiguous sentences in this paper

rent state-of-the-art methods for sentence-level po-
larity classification are facing difficulties in ascer-
taining the polarity of some sentences. For example:

(a) [Although Fujimori was criticized by the international
community]，[he was loved by the domestic population]，
[because people hated the corrupted ruling class]. (儘管
國際間對藤森口誅筆伐，他在國內一直深受百姓愛
戴，原因是百姓對腐化的統治階級早就深惡痛絕。)

Example (a) is a positive sentence holding a Con-
trast relation between first two segments and a
Cause relation between last two segments. The po-
larity of "criticized", "hated" and "corrupted" are rec-
ognized as negative expressions while "loved" is rec-
ognized as a positive expression. Example (a) is dif-
ficult for existing polarity classification methods for
two reasons: (1) the number of positive expressions
is less than negative expressions; (2) the importance
of each sentiment expression is unknown. However,
consider Figure 1, if we know that the polarity of
the first two segments holding a Contrast relation
is determined by the nucleus (Mann and Thompson,
1988) segment and the polarity of the last two seg-
ments holding aCause relation is also determined by
the nucleus segment, the polarity of the sentence will
be determined by the polarity of "[he...population]".
Thus, the polarity of Example (a) is positive.
Statistics showed that 43% of the opinionated

sentences in NTCIR2 MOAT (Multilingual Opinion
Analysis Task) Chinese corpus3 are ambiguous. Ex-
isting sentence-level polarity classification methods
ignoring discourse structure often give wrong results
for these sentences. We implemented state-of-the-

2http://research.nii.ac.jp/ntcir/
3Including simplified Chinese and traditional Chinese cor-

pus from NTCIR-6 MOAT and NTCIR-7 MOAT
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Figure 1: Discourse relations for Example (a). (n and s
denote nucleus and satellite segment, respectively)

art method (Xu and Kit, 2010) in NTCIR-8 Chinese
MOAT as the baseline polarity classifier (BPC) in
this paper. Error analysis of BPC showed that 49%
errors came from ambiguous sentences.
In this paper, we focused on the automation of

recognizing intra-sentence level discourse relations
for polarity classification. Based on the previous
work of Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988), a discourse scheme with dis-
course constraints on polarity was defined empiri-
cally (see Section 3). The scheme contains 5 rela-
tions: Contrast, Condition, Continuation, Cause and
Purpose. From a raw corpus, a small set of cue-
phrase-based patterns were used to collect discourse
instances. These instances were then converted to
semantic sequential representations (SSRs). Finally,
an unsupervised SSR learner was adopted to gener-
ate, weigh and filter high quality new SSRs with-
out cue phrases. Experimental results showed that
the proposed methods could effectively recognize
the defined discourse relations and achieve signifi-
cant improvement in sentence-level polarity classi-
fication comparing to BPC.
The remainder of this paper is organized as fol-

lows. Section 2 introduces the related work. Sec-
tion 3 presents the discourse scheme with discourse
constraints on polarity. Section 4 gives the detail of
proposed method. Experimental results are reported
and discussed in Section 5 and Section 6 concludes
this paper.

2 Related Work

Research on polarity classification were generally
conducted on 4 levels: document-level (Pang et al.,
2002), sentence-level (Riloff et al., 2003), phrase-
level (Wilson et al., 2009) and feature-level (Hu and
Liu, 2004; Xia et al., 2007).
There was little research focusing on the auto-

matic recognition of intra-sentence level discourse

relations for sentiment analysis in the literature.
Polanyi and Zaenen (2006) argued that valence cal-
culation is critically affected by discourse struc-
ture. Asher et al. (2008) proposed a shallow se-
mantic representation using a feature structure and
use five types of rhetorical relations to build a fine-
grained corpus for deep contextual sentiment anal-
ysis. Nevertheless, they did not propose a com-
putational model for their discourse scheme. Sny-
der and Barzilay (2007) combined an agreement
model based on contrastive RST relations with a lo-
cal aspect model to make a more informed over-
all decision for sentiment classification. Nonethe-
less, contrastive relations were only one type of dis-
course relations which may help polarity classifica-
tion. Sadamitsu et al. (2008) modeled polarity re-
versal using HCRFs integrated with inter-sentence
discourse structures. However, our work is on intra-
sentence level and our purpose is not to find polar-
ity reversals but trying to adapt general discourse
schemes (e.g., RST) to help determine the overall
polarity of ambiguous sentences.
The most closely related works were (Somasun-

daran et al., 2008) and (Somasundaran et al., 2009),
which proposed opinion frames as a representation
of discourse-level associations on dialogue andmod-
eled the scheme to improve opinion polarity clas-
sification. However, opinion frames was difficult
to be implemented because the recognition of opin-
ion target was very challenging in general text. Our
work differs from their approaches in two key as-
pects: (1) we distinguished nucleus and satellite in
discourse but opinion frames did not; (2) our method
for discourse discovery was unsupervised while their
method needed annotated data.
Most research works about discourse classifica-

tion were not related to sentiment analysis. Su-
pervised discourse classification methods (Soricut
and Marcu, 2003; Duverle and Prendinger, 2009)
needed manually annotated data. Marcu and Echi-
habi (2002) presented an unsupervised method to
recognize discourse relations held between arbitrary
spans of text. They showed that lexical pairs ex-
tracted from massive amount of data can have a
major impact on discourse classification. Blair-
Goldensohn et al. (2007) extended Marcu's work by
using parameter opitimization, topic segmentation
and syntactic parsing. However, syntactic parsers
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were usually costly and impractical when dealing
with large scale of text. Thus, in additional to lex-
ical features, we incorporated sequential and seman-
tic information in proposed method for discourse re-
lation classification. Moreover, our method kept the
characteristic of language independent, so it could be
applied to other languages.

3 Discourse Scheme for Eliminating
Polarity Ambiguities

Since not all of the discourse relations in RST
would help eliminate polarity ambiguities, the dis-
course scheme defined in this paper was on a much
coarser level. In order to ascertain which relations
should be included in our scheme, 500 ambigu-
ous sentences were randomly chosen from NTCIR
MOAT Chinese corpus and the most common dis-
course relations for connecting independent clauses
in compound sentences were annotated. We found
that 13 relations from RST occupied about 70% of
the annotated discourse relations which may help
eliminate polarity ambiguities. Inspired by Marcu
and Echihabi (2002), to construct relatively low-
noise discourse instances for unsupervised methods
using cue phrases, we grouped the 13 relations into
the following 5 relations:

Contrast is a union of Antithesis, Concession, Oth-
erwise and Contrast from RST.

Condition is selected from RST.
Continuation is a union of Continuation, Parallel

from RST.
Cause is a union of Evidence, Volitional-Cause,

Nonvolitional-Cause, Volitional-result and
Nonvolitional-result from RST.

Purpose is selected from RST.

The discourse constraints on polarity presented
here were based on the observation of annotated dis-
course instances: (1) discourse instances holding
Contrast relation should contain two segments with
opposite polarities; (2) discourse instances hold-
ing Continuation relation should contain two seg-
ments with the same polarity; (3) the polarity of dis-
course instances holdingContrast,Condition,Cause
or Purpose was determined by the nucleus segment;
(4) the polarity of discourse instances holding Con-
tinuation was determined by either segment.

Relation Cue Phrases
(English Translation)

Contrast although1, but2, however2
Condition if1, (if1，then2)

Continuation and, further more,
(not only, but also)

Cause because1, thus2, accordingly2,
as a result2

Purpose in order to2, in order that2,
so that2

1 means CUE1 and 2 means CUE2

Table 1: Examples of cue phrases

4 Methods

The proposed methods were based on two as-
sumptions: (1) Cue-phrase-based patterns could be
used to find limited number of high quality discourse
instances; (2) discourse relations were determined
by lexical, structural and semantic information be-
tween two segments.
Cue-phrase-based patterns could find only lim-

ited number of discourse instances with high pre-
cision (Marcu and Echihabi, 2002). Therefore, we
could not rely on cue-phrase-based patterns alone.
Moreover, there was no annotated corpus similar to
Penn Discourse TreeBank (Miltsakaki et al., 2004)
in other languages such as Chinese. Thus, we pro-
posed a language independent unsupervised method
to identify discourse relations without cue phrases
while maintaining relatively high precision. For
each discourse relation, we started with several cue-
phrase-based patterns and collected a large number
of discourse instances from raw corpus. Then, dis-
course instances were converted to semantic sequen-
tial representations (SSRs). Finally, an unsupervised
method was adopted to generate, weigh and filter
common SSRswithout cue phrases. Themined com-
mon SSRs could be directly used in our SSR-based
classifier in unsupervised manner or be employed as
effective features for supervised methods.

4.1 Gathering and representing discourse
instances

A discourse instance, denoted by Di, consists of
two successive segments (Di[1], Di[2]) within a sen-
tence. For example:

D1: [Although Boris is very brilliant at math]s, [he
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BOS... ，[CUE2]...EOS
BOS [CUE1]... ，...EOS
BOS... ，[CUE1]...EOS
BOS [CUE1]... ，[CUE2]...EOS

Table 2: Cue-phrase-based patterns. BOS and EOS de-
noted the beginning and end of two segments.

is a horrible teacher]n
D2: [John is good at basketball]s, [but he lacks team
spirit]n
In D1, "although" indicated the satellite section

while inD2, "but" indicated the nucleus section. Ac-
cordingly, different cue phrases may indicate differ-
ent segment type. Table 1 listed some examples of
cue phrases for each discourse relation. Some cue
phrases were singleton (e.g. "although" and "as a re-
sult") and some were used as a pair (e.g. "not only,
but also"). "CUE1" indicated satellite segments and
"CUE2" indicated nucleus segments. Note that we
did not distinguish satellite from nucleus for Con-
tinuation in this paper because the polarity could be
determined by either segment.
Table 2 listed cue-phrase-based patterns for all re-

lations. To simplify the problem of discourse seg-
mentation, we split compound sentences into dis-
course segments using commas and semicolons. Al-
though we collected discourse instances from com-
pound sentences only, the number of instances for
each discourse relation was large enough for the pro-
posed unsupervised method. Note that we only col-
lected instances containing at least one sentiment
word in each segment.
In order to incorporate lexical and semantic infor-

mation in our method, we represented each word in
a discourse instance using a part-of-speech tag, a se-
mantic label and a sentiment tag. Then, all discourse
instances were converted to SSRs. The rules for con-
verting were as follows:
(1) Cue phrases and punctuations were ingored.

But the information of nucleus(n) and satellite(s)
was preserved.
(2) Adverbs(RB) appearing in sentiment lexicon,

verbs(V ), adjectives(JJ ) and nouns(NN) were repre-
sented by their part-of-speech (pos) tag with seman-
tic label (semlabel) if available.
(3) Named entities (NE; PER: person name;ORG:

organization), pronouns (PRP), and function words

were represented by their corresponding named en-
tity tags and part-of-speech tags, respectively.
(4) Added sentiment tag (P : Positive; N : Nega-

tive) to all sentiment words.
By applying above rules, the SSRs for D1 and D2

would be:
d1: [PERV|Ja01 RB|Ka01 JJ|Ee14|P IN NN|Dk03]s
, [PRP V|Ja01 DT JJ|Ga16|N NN|Ae13 ]n
d2: [PER V|Ja01 JJ|Ee14|P IN NN|Bp12]s, [PRP
V|He15|N NN|Di10 NN|Dd08 ]n
Refer to d1 and d2, "Boris" could match "John"

in SSRs because they were converted to "PER" and
they all appeared at the beginning of discourse in-
stances. "Ja01", "Ee14" etc. were semantic labels
from Chinese synonym list extended version (Che et
al., 2010). There were similar resources in other lan-
guages such asWordnet(Fellbaum, 1998) in English.
The next problem became how to start from current
SSRs and generate new SSRs for recognizing dis-
course relations without cue phrases.

4.2 Mining common SSRs

Recall assumption (2), in order to incorporate lex-
ical, structural and semantic information for the sim-
ilarity calculation of two SSRs holding the same
discourse relation, three types of matches were de-
fined for {(u, v)|u ∈ di[k], v ∈ dj[k], k = 1, 2}:
(1)Full match: (i) u = v or (ii) u.pos = v.pos and
u.semlabel=v.semlabel or (iii) u.pos=v.pos and
u had a sentiment tag and v had a sentiment tag or
(iv) u.pos and v.pos∈{PRP, PER, ORG} (2) Partial
match: u.pos = v.pos but not Full match; (3) Mis-
match: u.pos ̸= v.pos.

Generating common SSRs
Intuitively, a simple way of estimating the simi-

larity between two SSRs was using the number of
mismatches. Therefore, we utilized match(di, dj)
where i ̸= j, which integrated the three types of
matches defined above to calculate the number of
mismatches and generate common SSRs. Consider
Table 3, in common SSRs, full matches were pre-
served, partial matches were replaced by part of
speech tags and mismatches were replaced by '*'s.
The common SSRs generated during the calculation
of match(di, dj) consisted of two parts. The first
part was generated by di[1] and dj[1] and the second
part was generated by di[2] and dj[2]. We stipulated
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d1 d2 mis conf ssr
PER PER 0 0 PER
V|Ja01 V|Ja01 0 0 V|Ja01
RB|Ka01 +1 −0.298 *
JJ|Ee14|P JJ|Ee14|P 0 0 JJ|Ee14|P

IN IN 0 0 IN
NN|Dk03 NN|Bp12 0 −0.50 NN

conf(ssr[1]) = −0.798

PRP PRP 0 0 PRP
V|Ja01 V|He15|N 0 −0.50 V
DT +1 −0.184 *

JJ|Ga16|N +1 −1.0 *
NN|Ae13 NN|Di10 0 −0.50 NN

NN|Dd08 +1 −1.0 *
conf(ssr[2]) = −3.184

Table 3: Calculation of match(d1, d2). ssr denoted
the common SSR between d1 and d2 , conf(ssr[1]) and
conf(ssr[2]) denoted the confidence of ssr.

that di and dj could generate a common SSR if and
only if the orders of nucleus segment and satellite
segment were the same.
In order to guarantee relatively high quality com-

mon SSRs, we empirically set the upper threshold
of the number of mismatches as 0.5 (i.e., ≤ 1/2 of
the number of words in the generated SSR). It's not
difficult to figure out that the number of mismatches
generated in Table 3 satisfied this requirement. As a
result, for each discourse relation rn, a correspond-
ing common SSR set Sn could be obtained by adopt-
ing match(di, dj) where i ̸= j for all discourse in-
stances. An advantage of match(d1, d2) was that
the generated common SSRs preserved the sequen-
tial structure of original discourse instances. And
common SSRs allows us to build high precision dis-
course classifiers (See Section 5).

Weighing and filtering common SSRs
A problem of match(di, dj) was that it ignored

some important information by treating different
mismatches equally. For example, the adverb "very"
in "very brilliant" of D1 was not important for dis-
course recognition. In other words, the number of
mismatches in match(di, dj) could not precisely re-
flect the confidence of the generated common SSRs.
Therefore, it was needed to weigh different mis-
matches for the confidence calculation of common
SSRs.

Intuitively, if a partial match or a mismatch (de-
noted by um) occurred very frequently in the gener-
ation of common SSRs, the importance of um tends
to diminish. Inspired by the tf-idf model, given
ssri∈Sn, we utilized the following equation to esti-
mate the weight (denoted by wm) of um.

wm = −ufm · log (|Sn|/ssrfm )

where ufm denoted the frequency of um during the
generation of ssri, |Sn| denoted the size of Sn and
ssrfm denoted the number of common SSRs in Sn

containing um . All weights were normalized to
[−1, 0).
Nouns (except for named entities) and verbs were

most representative words in discourse recognition
(Marcu and Echihabi, 2002). In addition, adjectives
and adverbs appearing in sentiment lexicons were
important for polarity classification. Therefore, for
these 4 kinds of words, we utilized −1.0 for a mis-
match and −0.50 for a partial match.
As we had got the weights for all partial matches

and mismatches, the confidence of ssri∈Sn could be
calculated using the cumulation of weights of par-
tial matches and mismatches in ssri[1] and ssri[2].
Recall Table 3, conf(ssr[1]) and conf(ssr[2]) rep-
resented the confidence scores of match(di[1], dj[1])
and match(di[2], dj[2]), respectively. In order to
control the quantity and quality of mined SSRs, a
threshold minconf was introduced. ssri will be
preserved if and only if conf(ssri[1]) ≥ minconf
and conf(ssri[2]) ≥ minconf . The value of
minconf was tuned using the development data.
Finally, we combined adjacent '*'s and preserved

SSRs containing at least one notional word and at
least two words in each segment to meet the de-
mand of maintaining high precision (e.g., "[* DT
*]", "[PER *]" will be dropped). Moreover, since
many of the SSRs were duplicated, we ranked all
the generated SSRs according to their occurrences
and dropped those appearing only once in order to
preserve common SSRs. At last, SSRs appearing in
more than one common SSR set were removed for
maintaining the uniqueness of each set. The com-
mon SSR set Sn for each discourse relation rn could
be directly used in SSR-based unsupervised classi-
fiers or be employed as effective features in super-
vised methods.
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Relation Occurrence
Contrast 86 (8.2%)
Condition 27 (2.6%)

Continuation 445 (42.2%)
Cause 123 (11.7%)
Purpose 55 (5.2%)
Others 318 (30.2%)

Table 4: Distribution of discourse relations on NTC-7.
Others represents discourse relations not included in our
discourse scheme.

5 Experiments

5.1 Annotation work and Data

We extracted all compound sentences which may
contain the defined discourse relations from opinion-
ated sentences (neutral ones were dropped) of NT-
CIR7MOAT simplified Chinese training data. 1,225
discourse instances were extracted and two annota-
tors were trained to annotate discourse relations ac-
cording to the discourse scheme defined in Section 3.
Note that we annotate both explicit and implicit dis-
course relations. The overall inter annotator agree-
ment was 86.05% and the Kappa-value was 0.8031.
Table 4 showed the distribution of annotated dis-
course relations based on the inter-annotator agree-
ment. The proportion of occurrences of each dis-
course relations varied greatly. For example, Con-
tinuation was the most common relation in anno-
tated corpus, but the occurrences of Condition rela-
tion were rare.
The experiments of this paper were performed us-

ing the following data sets:
NTC-7 contained manually annotated discourse

instances (shown in Table 4). The experiments of
discourse identification were performed on this data
set.
NTC-8 contained all opinionated sentences (neu-

tral ones were dropped) extracted from NTCIR8
MOAT simplified Chinese test data. The experi-
ments of polarity ambiguity elimination using the
identified discourse relations were performed on this
data set.
XINHUA contained simplified Chinese raw news

text from Xinhua.com (2002-2005). A word seg-
mentation tool, a part-of-speech tagging tool, a
named entity recognizer and a word sense disam-

biguation tool (Che et al., 2010) were adopted to all
sentences. The common SSRs were mined from this
data set.

5.2 Experimental Settings
Discourse relation identification
In order to systematically justify the effectiveness

of proposed unsupervised method, following exper-
iments were performed on NTC-7:
Baseline used only cue-phrase-based patterns.
M&E proposed by Marcu and Echihabi (2002).

Given a discourse instance Di, the probabilities:
P (rk|(Di[1], Di[2])) for each relation rk were esti-
mated on all text from XINHUA. Then, the most
likely discourse relation was determined by taking
the maximum over argmaxk{P (rk|(Di[1], Di[2])}.
cSSR used both cue-phrase-based patterns to-

gether with common SSRs for recognizing discourse
relations. Common SSRs were mined from dis-
course instances extracted fromXINHUAusing cue-
phrase-based patterns. Development data were ran-
domly selected for tuning minconf .
SVM was trained utilizing cue phrases, probabil-

ities from M&E, topic similarity, structure overlap,
polarity of segments and mined common SSRs (Op-
tional). The parameters of the SVM classifier were
set by a grid search on the training set. We performed
4-fold cross validation on NTC-7 to get an average
performance.
The purposes of introducing SVM in our experi-

ment were: (1) to compare the performance of cSSR
to supervised method; (2) to examine the effective-
ness of integrating common SSRs as features for su-
pervised methods.

Polarity ambiguity elimination
BPC was trained mainly utilizing punctuation,

uni-gram, bi-gram features with confidence score
output. Discourse classifiers such as Baseline, cSSR
or SVM were adopted individually for the post-
processing of BPC. Given an ambiguous sentence
which contained more than one segment, an intuitive
three-step method was adopted to integrated a dis-
course classifier and discourse constraints on polar-
ity for the post-processing of BPC:
(1) Recognize all discourse relations together with

nucleus and satellite information using a discourse
classifier. The nucleus and satellite information is
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Figure 2: Influences of different values of minconf to
the performance of cSSR

acquired by cSSR if a segment pair could match a
cSSR. Otherwise, we use the annotated nucleus and
satellite information.
(2) Apply discourse constraints on polarity to

ascertain the polarity for each discourse instance.
There may be conflicts between polarities acquired
by BPC and discourse constraints on polarity (e.g.,
Two segments with the same polarity holding a Con-
trast relation). To handle this problem, we chose
the segment with higher polarity confidence and ad-
justed the polarity of the other segment using dis-
course constraints on polarity.
(3) If there was more than one discourse instance

in a single sentence, the overall polarity of the sen-
tence was determined by voting of polarities from
each discourse instance under the majority rule.

5.3 Experimental Results
Refer to Figure 2, the performance of cSSR was

significantly affected by minconf . Note that we
performed the tuning process of minconf on differ-
ent development data (1/4 instances randomly se-
lected from NTC-7) and Figure 2 showed the av-
erage performance. cSSR became Baseline when
minconf =0. A significant drop of precision was
observed when minconf was less than −2.5. The
recall remained around 0.495 when minconf ≤
−4.0. The best performance was observed when
minconf=−3.5. As a result, −3.5 was utilized as
the threshold value for cSSR in the following exper-
iments.
Table 5 presented the experimental results for dis-

course relation classification. it showed that:
(1) Cue-phrase-based patterns could find only lim-

ited number of discourse relations (34.1% of average

BPC Baseline cSSR SVM
+SSRs

Precision 0.7661 0.7982 0.8059 0.8113
Recall 0.7634 0.7957 0.8038 0.8091
F-score 0.7648 0.7970 0.8048 0.8102

Table 6: Performance of integrating discourse classifiers
and constraints to polarity classification. Note that the
experiments were performed on NTC-8 which contained
only opinionated sentences.

recall) with a very high precision (96.17% of average
precision). This is a proof of assumption (1) given
in Section 4. On the other side, M&E which only
considered word pairs between two segments of dis-
course instances got a higher recall with a large drop
of precision. The drop of precision may be caused
by the neglect of structural and semantic information
of discourse instances. However, M&E still outper-
formed Baseline in average F -score.
(2) cSSR enhanced Baseline by increasing the av-

erage recall by about 15% with only a small drop of
precision. The performance of cSSR demonstrated
that our method could effectively discover high qual-
ity common SSRs. The most remarkable improve-
ment was observed on Continuation in which the re-
call increased by almost 20% with only a minor drop
of precision. Actually, cSSR outperformed Baseline
in all discourse relations except forContrast. In Dis-
course Tree Bank (Carlson et al., 2001) only 26%
of Contrast relations were indicated by cue phrases
while in NTC-7 about 70% of Contrast were indi-
cated by cue phrases. A possible reason was that
we were dealing with Chinese news text which were
usually well written. Another important observation
was that the performance of cSSR was very close to
the result of SVM.
(3) SVM+SSRs achieved the best F -score on

Continuation and average performance. The integra-
tion of SSRs to the feature set of SVM contributed to
a remarkable increase in average F -score. The re-
sults of cSSR and SVM+SSRs demonstrated the ef-
fectiveness of common SSRs mined by the proposed
unsupervised method.
Table 6 presented the performance of integrat-

ing discourse classifiers to polarity classification.
For Baseline and cSSR, the information of nucleus
and satellite could be obtained directly from cue-
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Relation Baseline M&E cSSR SVM SVM
+SSRs

Contrast
P 0.9375 0.4527 0.7531 0.9375 0.9375
R 0.6977 0.7791 0.7093 0.6977 0.6977
F 0.8000 0.5726 0.7305 0.8000 0.8000

Condition
P 1.0000 0.4444 0.6774 1.0000 0.7083
R 0.5556 0.8889 0.7778 0.5185 0.6296
F 0.7143 0.5926 0.7241 0.6829 0.6667

Continuation
P 0.9831 0.6028 0.9761 0.6507 0.7266
R 0.2607 0.5865 0.4584 0.6697 0.6629
F 0.4120 0.5945 0.6239 0.6600 0.6933

Cause
P 1.0000 0.5542 0.9429 1.0000 0.9412
R 0.2114 0.3740 0.2683 0.2114 0.2602
F 0.3489 0.4466 0.4177 0.3489 0.4076

Purpose
P 0.8947 0.3704 0.8163 0.9167 0.7193
R 0.6182 0.7273 0.7273 0.6000 0.7455
F 0.7312 0.4908 0.7692 0.7253 0.7321

Average
P 0.9617 0.5302 0.8864 0.7207 0.7607
R 0.3410 0.5951 0.4878 0.5856 0.6046
F 0.5035 0.5608 0.6293 0.6461 0.6737

Table 5: Performance of recognizing discourse relations. (The evaluation criteria are Precision, Recall and F-score)

phrase-based patterns and SSRs, respectively. For
SVM+cSSR, the nucleus and satellite information
was acquired by cSSR if a segment pair could match
a cSSR. Otherwise, we used manually annotated nu-
cleus and satellite information. It's clear that the
performance of polarity classification was enhanced
with the improvement of discourse relation recogni-
tion. M&E was not included in this experiment be-
cause the performance of polarity classification was
decreased by the mis-classified discourse relations.
SVM+SSRs achieved significant (p<0.01) improve-
ment in polarity classification compared to BPC.

5.4 Discussion

Effect of weighing and filtering

To assess the contribution of weighing and filter-
ing in mining SSRs using a minimum confidence
threshold, i.e. minconf , we implemented cSSR’
without weighing and filtering on the same data set.
Consider Table 7, cSSR achieved obvious improve-
ment in Precision and F -score than cSSR’. More-
over, the total number of SSRs was greatly reduced
in cSSR with only a minor drop of recall. This was
because cSSR’ was affected by thousands of low
quality common SSRs which would be filtered in
cSSR. The result in Table 7 proved that weighing and

cSSR’ cSSR
Precision 0.6182 0.8864
Recall 0.5014 0.4878
F-score 0.5537 0.6293
NOS > 1 million ≈ 0.12 million

Table 7: Comparison of cSSR’ and cSSR. "NOS" denoted
the number of mined common SSRs.

filtering were essential in our proposed method.
We further analyzed how the improvement was

achieved in cSSR. In our experiment, the most com-
mon mismatches were auxiliary words, named enti-
ties, adjectives or adverbs without sentiments (e.g.,
"green", "very", etc.), prepositions, numbers and
quantifiers. It's straightforward that these words
were insignificant in discourse relation classification
purpose. Moreover, these words did not belong to
the 4 kinds of most representative words. In other
words, the weights of most mismatches were calcu-
lated using the equation presented in Section 4.2 in-
stead of utilizing a unified value, i.e. −1. Recall
Table 3, the weight of "RB|Ka01" (original: "very")
was −0.298 and "DT" (original: 'a') was −0.184.
Comparing to the weights of mismatches for most
representative words (−1.0), the proposed method
successfully down weighed the words which were
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Figure 3: Improvement from individual discourse rela-
tions. N denoted the number of ambiguities eliminated.

not important for discourse identification. There-
fore, weighing and filtering were able to preserve
high quality SSRs while filter out low quality SSRs
by setting the confidence threshold, i.e. minconf .

Contribution of different discourse relations
We also analyzed the contribution of different dis-

course relations in eliminating polarity ambiguities.
Refer to Figure 3, the improvement of polarity classi-
fication mainly came from three discourse relations:
Contrast, Continuation and Cause. It was straight-
forward that Contrast relation could eliminate po-
larity ambiguities because it held between two seg-
ments with opposite polarities. The contribution of
Cause relation also result from two segments holding
different polarities such as example (a) in Section 1.
However, recall Table 4, although Cause occurred
more often than Contrast, only a part of discourse
instances holding Cause relation contained two seg-
ments with the opposite polarities. Another impor-
tant relation in eliminating ambiguity was Continu-
ation. We investigated sentences with polarities cor-
rected by Continuation relation. Most of them fell
into two categories: (1) sentences with mistakenly
classified sentiments by BPC; (2) sentences with im-
plicit sentiments. For example:

(b) [France and Germany have banned human cloning at
present]，[on 20th, U.S. President George W. Bush called
for regulations of the same content to Congress] (目前，
法国和德国都禁止克隆人的胚胎，美国总统布什 20
日向国会提出，要求制定同样内容的法规。)

The first segment of example (b) was negative
("banned" expressed a negative sentiment) and a
Continuation relation held between these two seg-

ments. Consequently, the polarity of the second seg-
ment should be negative.

6 Conclusions and Future work

This paper focused on unsupervised discovery
of intra-sentence discourse relations for sentence
level polarity classification. We firstly presented a
discourse scheme based on empirical observations.
Then, an unsupervised method was proposed start-
ing from a small set of cue-phrase-based patterns to
mine high quality common SSRs for each discourse
relation. The performance of discourse classification
was further improved by employing SSRs as features
in supervisedmethods. Experimental results showed
that our methods not only effectively recognized dis-
course relations but also achieved significant im-
provement (p<0.01) in sentence level polarity clas-
sification. Although we were dealing with Chinese
text, the proposed unsupervised method could be
easily generalized to other languages.
The future work will be focused on (1) integrating

more semantic and syntactic information in proposed
unsupervised method; (2) extending our method to
inter-sentence level and then jointly modeling intra-
sentence level and inter-sentence level discourse
constraints on polarity to reach a global optimal in-
ference for polarity classification.
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Abstract

We present a general learning-based approach
for phrase-level sentiment analysis that adopts
an ordinal sentiment scale and is explicitly
compositional in nature. Thus, we can model
the compositional effects required for accu-
rate assignment of phrase-level sentiment. For
example, combining an adverb (e.g., “very”)
with a positive polar adjective (e.g., “good”)
produces a phrase (“very good”) with in-
creased polarity over the adjective alone. In-
spired by recent work on distributional ap-
proaches to compositionality, we model each
word as a matrix and combine words us-
ing iterated matrix multiplication, which al-
lows for the modeling of both additive and
multiplicative semantic effects. Although the
multiplication-based matrix-space framework
has been shown to be a theoretically ele-
gant way to model composition (Rudolph and
Giesbrecht, 2010), training such models has
to be done carefully: the optimization is non-
convex and requires a good initial starting
point. This paper presents the first such al-
gorithm for learning a matrix-space model for
semantic composition. In the context of the
phrase-level sentiment analysis task, our ex-
perimental results show statistically signifi-
cant improvements in performance over a bag-
of-words model.

1 Introduction

Sentiment analysis has been an active research area
in recent years. Work in the area ranges from iden-
tifying the sentiment of individual words to deter-
mining the sentiment of phrases, sentences and doc-

uments (see Pang and Lee (2008) for a survey). The
bulk of previous research, however, models just pos-
itive vs. negative sentiment, collapsing positive (or
negative) words, phrases and documents of differ-
ing intensities into just one positive (or negative)
class. For word-level sentiment, therefore, these
methods would not recognize a difference in senti-
ment between words like “good” and “great”, which
have the same direction of polarity (i.e., positive)
but different intensities. At the phrase level, the
methods will fail to register compositional effects in
sentiment brought about by intensifiers like “very”,
“absolutely”, “extremely”, etc. “Happy” and “very
happy”, for example, will both be considered sim-
ply “positive” in sentiment. In real-world settings,
on the other hand, sentiment values extend across a
polarity spectrum — from very negative, to neutral,
to very positive. Recent research has shown, in par-
ticular, that modeling intensity at the phrase level is
important for real-world natural language process-
ing tasks including question answering and textual
entailment (de Marneffe et al., 2010).

This paper describes a general approach for
phrase-level sentiment analysis that takes these real-
world requirements into account: we adopt a five-
level ordinal sentiment scale and present a learning-
based method that assigns ordinal sentiment scores
to phrases.

Importantly, our approach will also be explicitly
compositional1 in nature so that it can accurately ac-
count for critical interactions among the words in

1The Principle of Compositionality asserts that the meaning
of a complex expression is a function of the meanings of its
constituent expressions and the rules used to combine them.
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each sentiment-bearing phrase. Consider, for exam-
ple, combining an adverb like “very” with a polar
adjective like “good”. “Good” has an a priori posi-
tive sentiment, so “very good” should be considered
more positive even though “very”, on its own, does
not bear sentiment. Combining “very” with a nega-
tive adjective, like “bad”, produces a phrase (“very
bad”) that should be characterized as more negative
than the original adjective. Thus, it is convenient
to think of the effect of combining an intensifying
adverb with a polar adjective as being multiplica-
tive in nature, if we assume the adjectives (“good”
and “bad”) to have positive and a negative sentiment
scores, respectively.

Next, let us consider adverbial negators like “not”
combined with polar adjectives. When model-
ing only positive and negative labels for sentiment,
negators are generally treated as flipping the polar-
ity of the adjective it modifies (Choi and Cardie,
2008; Nakagawa et al., 2010). However, recent work
(Taboada et al., 2011; Liu and Seneff, 2009) sug-
gests that the effect of the negator when ordinal sen-
timent scores are employed is more akin to damp-
ening the adjective’s polarity rather than flipping it.
For example, if “perfect” has a strong positive sen-
timent, then the phrase “not perfect” is still positive,
though to a lesser degree. And while “not terrible” is
still negative, it is less negative than “terrible”. For
these cases, it is convenient to view “not” as shift-
ing polarity to the opposite side of polarity scale by
some value.

There are, of course, more interesting examples of
compositional semantic effects on sentiment: e.g.,
prevent cancer, ease the burden. Here, the verbs
prevent and ease act as content-word negators (Choi
and Cardie, 2008) in that they modify the negative
sentiment of their direct object arguments so that the
phrase as a whole is perceived as somewhat positive.

Nonetheless, the vast majority of methods for
phrase- and sentence-level sentiment analysis do not
tackle the task compositionally: they, instead, em-
ploy a bag-of-words representation and, at best, in-
corporate additional features to account for nega-
tors, intensifiers, and for contextual valence shifters,
which can change the sentiment over neighboring
words (e.g., Polanyi and Zaenen (2004), Wilson et
al. (2005) , Kennedy and Inkpen (2006), Shaikh et
al. (2007)).

One notable exception is Moilanen and Pulman
(2007), who propose a compositional semantic ap-
proach to assign a positive or negative sentiment to
newspaper article titles. However, their knowledge-
based approach presupposes the existence of a sen-
timent lexicon and a set of symbolic compositional
rules.

But learning-based compositional approaches
for sentiment analyis also exist. Choi and
Cardie (2008), for example, propose an algo-
rithm for phrase-based sentiment analysis that learns
proper assignments of intermediate sentiment anal-
ysis decision variables given the a priori (i.e., out
of context) polarity of the words in the phrase and
the (correct) phrase-level polarity. As in Moilianen
and Pulman (2007), semantic inference is based on
(a small set of) hand-written compositional rules. In
contrast, Nakagawa et. al (2010) use a dependency
parse tree to guide the learning of compositional ef-
fects. Each of the above, however, uses a binary
rather than an ordinal sentiment scale.

In contrast, our proposed method for phrase-
level sentiment analysis is inspired by recent work
on distributional approaches to compositionality.
In particular, Baroni and Zamparelli (2010) tackle
adjective-noun compositions using a vector repre-
sentation for nouns and learning a matrix represen-
tation for each adjective. The adjective matrices are
then applied as functions over the meanings of nouns
— via matrix-vector multiplication — to derive the
meaning of adjective-noun combinations. Rudolph
and Giesbrecht (2010) show theoretically, that mul-
tiplicative matrix-space models are a general case
of vector-space models and furthermore exhibit de-
sirable properties for semantic analysis: they take
into account word order and are algebraically, neuro-
logically and psychologically plausible. This work,
however, does not present an algorithm for learning
such models; nor does it provide empirical evidence
in favor of matrix-space models over vector-space
models.

In the sections below, we propose a learning-
based approach to assign ordinal sentiment scores to
sentiment-bearing phrases using a general composi-
tional matrix-space model of language. In contrast
to previous work, all words are modeled as matri-
ces, independent of their part-of-speech, and com-
positional inference is uniformly modeled as ma-
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trix multiplication. To predict an ordinal scale sen-
timent value, we employ Ordered Logistic Regres-
sion, introducing a novel training algorithm to ac-
commodate our compositional matrix-space repre-
sentations (Section 2). To our knowledge, this is the
first such algorithm for learning matrix-space mod-
els for semantic composition. We evaluate the ap-
proach on a standard sentiment corpus (Wiebe et al.,
2005) (Section 3), making use of its manually anno-
tated phrase-level annotations for polarity and inten-
sity, and compare our approach to the more com-
monly employed bag-of-words model. We show
(Section 4) that our matrix-space model significantly
outperforms a bag-of-words model for the ordinal
scale sentiment prediction task.

2 The Model for Ordinal Scale Sentiment
Prediction

As described above, our task is to predict an ordi-
nal scale sentiment value for a phrase. To this end,
we employ a sentiment scale with five ordinal val-
ues: VERY NEGATIVE, NEGATIVE, NEUTRAL, POS-
ITIVE and VERY POSITIVE. Given a set of phrase-
level training examples with their gold-standard or-
dinal sentiment value, we then use an Ordered Lo-
gistic Regression (OLogReg) model for prediction.
Unfortunately, our matrix-space representation pre-
cludes doing this directly.

We have chosen OLogReg, as opposed to say
PRanking (Crammer and Singer, 2001), because op-
timization of the former is more attractive: the ob-
jective (likelihood) is smooth and the gradients are
continuous. As will become clear shortly, learn-
ing our models is not trivial and it is important to
use sophisticated off-the-shelf optimizers such as L-
BFGS.

For a bag-of-words model, OLogReg learns one
weight for each word and a set of thresholds by max-
imizing the likelihood of the training data. Typically,
this is accomplished by using an optimizer like L-
BFGS whose interface needs the value and gradient
of the likelihood with respect to the parameters at
their current values. In the next subsections, we in-
stantiate OLogReg for our sentiment prediction task
using a matrix-space word model (2.1 and 2.2) and
a bag-of-words model (2.3). The learning formula-
tion of bag-of-words OLogReg is convex therefore

we will get the global optimum; in contrast, the op-
timization problem for matrix-space model is non-
convex, it is important to initialize the model well.
Initialization of the matrix-space model is discussed
in Section 2.4.

2.1 Notation
In the subsequent subsections we will use the
following notation. Let n be the number of phrases
in the training set and let d be the number of words
in the dictionary. Let xi be the i-th phrase and yi

would be the label of xi, where yi takes r different
values yi ∈ {0, . . . , r − 1}. Then |xi| will denote
the length of the phrase xi, and the words in i-th
phrase are: xi = xi1, x

i
2, . . . , x

i
|xi|; x

i
j , 1 ≤ j ≤ |xi|

is the j-th word of i-th phrase; where xij is from the
dictionary: 1 ≤ xij ≤ d.

In the case of the bag-of-words model, Φ(xi) ∈
Rd is the representation of the i-th phrase. Φj(x

i)
counts the number of times the j-th word from the
dictionary appears in the i-th phrase. Given a w ∈
Rd it assigns a score ξi to a phrase xi by

ξi = wTΦ(xi) =

|xi|∑

j=1

wxij
(1)

In the case of the matrix-space model the Φ(xi) ∈
R|xi|×d is the representation of the i-th phrase.
Φjk(x

i) is 1, if xij is the k-th word in the dictionary,
and zero otherwise. Given u, v ∈ Rm and a set of
matrices {Wp ∈ Rm×m}dp=1, one for each word, it
assigns a score ξi to a phrase xi by

ξi = uT



|xi|∏

j=1

d∑

k=1

WkΦjk(x
i)


 v

= uT



|xi|∏

j=1

Wxij


 v (2)

where
∏|xi|
j=1Wxij

= Wxi1
Wxi2
· · ·Wxi|xi|

in exactly
this order. We choose to map matrices to the real
numbers by using vectors u and v from Rm×1; so
that ξ = uTMv, where M ∈ Rm×m, which is sen-
sitive to the order of matrices2 , i.e. uTM1M2v 6=

2Care must be taken in choosing way to map matrix to a real
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uTM2M1v.
Modeling composition. Am×mmatrix, represent-
ing a word, can be considered as a linear function,
mapping from Rm to Rm. Composition of words is
modeled by function composition, in our case com-
position of linear functions, i.e. matrix multipli-
cation. Note, that unlike bag-of-words model, the
matrix-space model takes word order into account,
since matrix multiplication is not commutative op-
eration.

2.2 Ordered Logistic Regression

Now we will describe our objective function for
OLogReg and its derivatives. OLogReg has r −
1 thresholds (κ0, . . . κr−2), so introducing κ−1 =
−∞ and κr−1 = ∞ leads to the unified expression
for posterior probabilities for all values of k:

P (yi = k|x) = P (κk−1 < ξi ≤ κk)
= F (κk − ξi)− F (κk−1 − ξi)

F (x) is an inverse-logit function

F (x) =
ex

1 + ex

this is its derivative:

dF (x)

dx
= F (x)(1− F (x))

Therefore the negative loglikelihood of the training
data will look like the following (Hardin and Hilbe,
2007):

L = −
n∑

i=1

r−1∑

k=0

ln(F (κk − ξi)− F (κk−1 − ξi))I(yi = k)

where r is the number of ordinal classes, ξi is the
score of i-th phrase, I is the indicator function that
is equal to 1 – when yi = k, and zero otherwise. We
need to minimize the objective L with respect to the
following constraints:

κk−1 ≤ κk, 1 ≤ k ≤ r − 2 (3)

number. For example, one other way to map matrices to the
real numbers is to use the determinant of a matrix; however, the
determinant is not sensitive to the word order: det(M1M2) =
det(M1)det(M2) = det(M2M1); which is not desirable for a
model that needs to account for word order.

(The constraints are similar to the ones in PRank al-
gorithm). For ease of optimization we parametrize
our model via κ0, and τj , 1 ≤ j ≤ r − 2:

κ−1 = −∞,
κ0,
κ1 = κ0 + τ1,
κ2 = κ0 +

∑2
j=1 τj ,

. . . ,
κr−2 = κ0 +

∑r−2
j=1 τj

κr−1 =∞,
where τ1, . . ., τr−2 are non-negative values, that rep-
resent how far the corresponding thresholds are from
each other. Then the constraints (3) would be:

τj ≥ 0, 1 ≤ j ≤ r − 2 (4)

To simplify the equations we can rewrite the nega-
tive loglikelihood as follows:

L = −
n∑

i=1

r−1∑

k=0

ln(Aik −Bik)I(yi = k) (5)

where

Aik =

{
F (κ0 +

∑k
j=1 τj − ξi), if k = 0, . . . , r − 2

1, if k = r − 1

Bik =

{
0, if k = 0

F (κ0 +
∑k−1

j=1 τj − ξi), if k = 1, . . . , r − 1

Let’s introduce Lik = − ln(Aik − Bik)I(yi = k)
and then the derivative of Lik with respect to κ0 will
be:

∂Lik

∂κ0
=
−[Aik(1−Aik)−Bik(1−Bik)]

Aik −Bik
I(yi = k)

= (Aik +Bik − 1)I(yi = k)

For j = yi:

∂Lik

∂τj
=
−Aik(1−Aik)

Aik −Bik
I(yi = k)

For all j < yi:

∂Lik

∂τj
= (Aik +Bik − 1)I(yi = k)

For all j > yi: ∂Lik
∂τj

= 0.
The derivative with respect to the score ξi is:

∂Lik
∂ξi

= (−Aik −Bik + 1)I(yi = k) (6)
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2.2.1 Matrix-Space Word Model
Here we show the derivatives with respect to a

word. For the OLogReg model with matrix-space
word representations, we have:

∂L

∂Wxij

=
∂L

∂ξi
· ∂ξi
∂Wxij

The expression for ∂L
∂ξi

is given in (6); we will derive
∂ξi
∂W

xi
j

from (2). In the case of the Matrix-Space word

model each word is represented as an m×m affine
matrix W :

W =

(
A b
0 1

)
(7)

We choose the class of affine matrices since for
affine matrices matrix multiplication represents both
operations: linear transformation and translation.
Linear transformation is important for modeling
changes in sentiment - translation is also useful (we
make use of a translation vector during initialization,
see Section 2.4). In this work we consider m ≥ 3
since we want the matrix A from (7) to represent
rotation and scaling. Applying the affine transfor-
mation W to vector [x, 1]T is equivalent to applying
linear transformation A and translation b to x. 3

Though vectors u and v can be learned together
with word matrices Wj , we choose to fix u and v.
The main intuition behind fixing u and v is to re-
duce the degrees of freedom of the model: differ-
ent assignments of u, v and Wj-s can lead to the
same score ξ, i.e. there exist û v̂ and Ŵj-s dif-
ferent from u, v and Wj-s respectively, such that
ξ(u, v,W ) would be equal to ξ(û, v̂, Ŵ ). 4

3 „
A b
0 1

« „
x
1

«
=

„
Ax+ b

1

«
where A is a linear transformation, b is a translation vector.
Also the product of affine matrices is an affine matrix.

4The specific choice of u and v leads to an equivalent model
for all û and v̂ such that û = MTu, v̂ = M−1v, where M is
any invertible transformation (i.e. û, v̂ are derived from u,v by
applying linear transformations MT , M−1 respectively):

uTW1W2v = (uTM)(M−1W1M)(M−1W2M)(M−1v)

= ûT Ŵ1Ŵ2v̂

The derivative of the phrase ξi with respect to j-th
word Wj would be (for brevity we drop the phrase
index and Wj refers to Wxij

and p refers to |xi|):

∂ξi
∂Wj

=

(
∂uTW1W2 . . .Wpv

∂Wj

)

=
[
(uTW1 . . .Wj−1)T (Wj+1 . . .Wpv)T

]

=
[
(W T

j−1 . . .W
T
1 )(uvT )(W T

p . . .W
T
j+1)

]

(see Peterson and Pederson(2008)).
In case if a certain word appears multiple times in
the phrase, the derivative with respect to that word
would be a sum of derivatives with respect to each
appearance of a word, while all other appearances
are fixed. For example,
(
∂uTWW1Wv

∂W

)
= u(W1Wv)T + (uTWW1)

T vT

where W is a representation of a word that is re-
peated.

So given the expression (6) for ∂L
∂ξi

, the derivative
with respect to each word can be computed. Notice
that the update for the j-th word in a sentence de-
pends on the order words, which is in line with our
desire to account for word order.

2.2.2 Optimization
The goal of training procedure is for the i-th

phrase with p words x1x2 . . . xp to learn word ma-
trices W1, W2, . . . , Wp such that resulting ξi-s will
lead to the lowest negative loglikelihood. The goal
of training procedure is to find word matrices W1,
W2, . . . Wp and thresholds κ0, τ1, . . . τr−2 such
that the negative loglikelihood is minimized. So,
given the negative loglikelihood and the derivatives
with respect κ0 and τj-s and word matrices W , we
optimize objective (5) subject to τj ≥ 0. We use L-
BFGS-B (Large-scale Bound-constrained Optimiza-
tion) by Byrd et al. (1995) as an optimizer.

2.2.3 Regularization in Matrix-Space Model
In order to make sure that the L-BFGS-B updates

do not cause numerical issues we perform the fol-
lowing regularization to the resulting matrices. An
m by m matrix Wj that can be represented as:

Wj =

(
A11 a12
aT21 a22

)
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where A11 ∈ Rm−1×m−1, a12, a21 ∈ Rm−1×1,
a22 ∈ R. First make the matrix affine by updating
the last row, then the updated matrix will look like:

Ŵj =

(
A11 a12
0 1

)

It can be proven that such a projection returns the
closest affine matrix in Frobenius norm.

However, we also want to regularize the model to
avoid ill-conditioned matrices. Ill-conditioned ma-
trices represent transformations whose output is very
sensitive to small changes in the input and therefore
they have a similar effect to having large weights
in a bag-of-words model. To perform such a reg-
ularization we ”shrink” the singular values of A11

towards one. More specifically, we first use the
Singular Value Decomposition (SVD) of the A11:
UΣV T = A11, where U and V are orthogonal ma-
trices, Σ is a matrix with singular values on the diag-
onal. Then we update singular values in the follow-
ing way to get Σ̃: Σ̃ii = Σh

ii, where h is a parameter
between 0 and 1. If h = 1 then Σii remains the
same. In the extreme case h = 0 then Σh

ii = 1. For
intermediate values of h the singular values of A11

would be brought closer to one. Finally, we recom-
pute Ã11: Ã11 = U Σ̃V T . So, Wj would be :

W̃j =

(
Ã11 a12
0 1

)

2.2.4 Learning in the Matrix-Space Model
We use Algorithm 1 to learn the matrix-space

model. What essentially happens is that we iter-
ate two steps: optimizing the W matrices using L-
BFGS-B and the projection step. L-BFGS-B returns
a solution that is not necessarily an affine matrix.
After projecting to the space of affine matrices we
start L-BFGS-B from a better initial point. In prac-
tice, the first few iterations lead to large decrease in
negative loglikelihood.

2.3 Bag-Of-Words Model
In the bag-of-words model the score of the i-th
phrase is given in (1). Therefore, the partial deriva-
tive with respect to j-th word in i-th phrase ∂ξi

∂w
xi
j

is

equal to the number cj of times xji appears in xi, so:

∂L

∂wxij
=
∂L

∂ξi
· cj

Algorithm 1 Training Algorithm for Matrix-Space
OLogReg

1: Input: {(x1, y1), . . . , (xn, yn)} //training data
2: Input: h //projection parameter
3: Input: T //number of iterations
4: Input: W , κ0 and τj //initial values
5: for t = 1, . . . , T do
6: (W , κ0, τj)=minimize L using L-BFGS-B
7: for i = 1, . . . , d do
8: Wi=Project(Wi, h)
9: end for

10: end for
11: Return W , κ0, τj

Optimization. We minimize negative loglikelihood
using L-BFGS-B subject to τj ≥ 0.
Regularization. To prevent overfitting for bag-of-
words model we regularize w. The L2-regularized
negative loglikelihood will consist of the expression
in (5) and an additional term λ

2 ||w||22, where || · ||2
is the L2-norm of a vector. The derivative of the
additional term with respect to w will be:

∂ λ2 ||w||22
∂w

= λw

Hence the partial derivative with respect to wxij will
have an additional term λwxij

.

2.4 Initialization

Initialization of bag-of-words OLogReg. We ini-
tialize the weight for each word with zero and κ0
with a random number and τj-s with non-negative
random numbers. Since the learning problem for
bag-of-words OLogReg is convex, we will get the
global optimum.
Better Initialization of Matrix-Space Model. Pre-
liminary experiments showed that the Matrix-Space
model needs a good initialization. Initializing with
different random matrices reaches different local
minima and the quality of local minima depends on
initialization. Therefore, it is important to initialize
the model with a good initial point. One way to ini-
tialize the Matrix-Space model is to use the weights
learned by the bag-of-words model. We use the
following intuition for initializing the Matrix-Space
model. As noted in Section 2.2.1 applying trans-
formation A of affine matrix W can model a linear
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transformation, while vector b represents a transla-
tion. Since matrix-space model can encode a vector-
space model (Rudolph and Giesbrecht, 2010), we
can initialize the matrices to exactly mimic the bag-
of-words model. In order to do that we place the
weight, learned by the bag-of-words model in the
first component of b. Let’s assume that wx1 and wx2
are the weights learned for two distinct words x1 and
x2 respectively. To compute the polarity score of
a phrase x1, x2 the bag-of-words model sums the
weights of these two words: wx1 and wx2 . Now we
want to have the same effect in matrix-space model.
Here we assume m = 3.

Z =




1 0 wx1
0 1 0
0 0 1






1 0 wx2
0 1 0
0 0 1




=




1 0 wx1 + wx2
0 1 0
0 0 1




Finally, there is a step of mapping matrix Z to a
number using u and v, such that ξ(Z) = wx1 +
wx2 .We also want vector u and v to be such that:

uT




1 0 wx1 + wx2
0 1 0
0 0 1


 v = wx1 + wx2 (8)

The last equation can help us construct u and v.
We also set u and v to be orthogonal: uT v = 0.
So, we arbitrarily choose two orthogonal vectors for
which equation (8) holds: u = [1,

√
2, 1]T and v =

[1,−
√

2, 1]T .5

3 Experimental Methodology

For experimental evaluation of the proposed method
we use the publicly available Multi-Perspective
Question Answering (MPQA)6 corpus (Wiebe et al.,
2005) version 1.2, which contains 535 newswire
documents that are manually annotated with phrase-
level subjectivity and intensity. We use the
expression-level boundary markings in MPQA to
extract phrases. We evaluate on positive, negative
and neutral opinion expressions that have intensities

5If m > 3, u and v can be set using the same intuition.
6http://www.cs.pitt.edu/mpqa/

Polarity Intensity Ordinal
label

negative high, extreme 0
negative medium 1
neutral high, extreme, medium 2
positive medium 3
positive high, extreme 4

Table 1: Mapping of combination of polarities and inten-
sities from MPQA dataset to our ordinal sentiment scale.

“medium”, “high” or “extreme”.7 The schematic
mapping of phrase polarity and intensity values on
ordinal sentimental scale is shown in Table 1.

3.1 Training Details

We perform 10-fold cross-validation on phrases ex-
tracted from the MPQA corpus: eight folds for train-
ing; one as a validation set; and one as test set. In
total there were 8022 phrases. Before training, we
extract lemmas for each word. For evaluation we
use Ranking Loss: 1

n

∑
i |ŷi − yi|, where ŷi is the

prediction.
Choice of dimensionality m. The reported ex-

periments are done by setting m = 3. Preliminary
experiments with higher values of m (5, 20, 50), did
not lead to a better performance and increased the
training time; therefore we did not use those values
in our final experiments.

3.2 Methods

PRank. For each of the folds, we run 500 iterations
of PRank and choose an early stopping iteration us-
ing a model that led to the lowest ranking loss on the
validation set; afterwards report the average perfor-
mance of on a test set.
Bag-of-words OLogReg. To prevent overfitting we
search for the best regularization parameter among
the following values of λ: 10i, from 10−4 to 104.
The lowest negative log-likelihood value on the val-
idation set is attained for8 λ = 0.1. With this value
of λ fixed, the final model is the one with the lowest
negative loglikelihood on the training set.

7We ignored low-intensity phrases similar to (Choi and
Cardie, 2008; Nakagawa et al., 2010).

8We pick single λ that gives best average validation set per-
formance, and then use it to compute the average test set perfor-
mance.
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Method Ranking loss
PRank 0.7808
Bag-of-words OLogReg 0.6665
Matrix-space OLogReg+RandInit 0.7417
Matrix-space OLogReg+BowInit 0.6375†

Table 2: Ranking loss for vector-space Ordered Logistic
Regression and Matrix-Space Logistic Regression.
† Stands for a significant difference w.r.t. the Bag-Of-
Words OLogReg model with p-value less than 0.001
(p < 0.001)

Matrix-space OLogReg+RandInit. First, we ini-
tialized matrices with with random numbers from
normal distribution N(0, 0.1) and set u and v as in
section 2.4, T is set to 25. We run with two different
random seeds and three different values for the pa-
rameter h: [0.1, 0.5, 0.9] and report the performance
of the model that had the lowest likelihood on the
validation set. The setting of h that lead to the best
model was 0.9.
Matrix-space OLogReg+BowInit. For the matrix-
space models we initialize the model with the out-
put of the regularized Bag-of-words OLogReg as de-
scribed in Section 2.4, T is set to 25. Then we use
the training procedure of Algorithm 1. We consider
three different values for the parameter h [0.1, 0.5,
0.9] and choose as the model with the lowest valida-
tion set negative log-likelihood. The best setting of
h was 0.1.

4 Results and Discussion

We report Ranking Loss for the four models in Ta-
ble 2. The worst performance (denoted by the high-
est ranking loss value) is obtained by PRank, fol-
lowed by matrix-space OLogReg with random ini-
tialization. Bag-of-words OLogReg obtains quite
good performance, and matrix-space OLogReg, ini-
tialized using the bag-of-words model performs the
best, showing statistically significant improvements
over the bag-of-words OLogReg model according to
a paired t-test. .

To see what the bag-of-word and matrix-space
models are learning we performed inference on a
few examples. In Table 3 we show the sentiment
scores of the best performing bag-of-words OLo-
gReg model and the best performing model based

Phrase Matrix-space Bag-of-words
OLogReg+BowInit OLogReg

not -0.83 -0.42
very 0.23 0.04
good 2.81 1.51
very good 3.53 1.55
not good -0.16 1.09
not very good 0.66 1.13
bad -1.67 -1.42
very bad -2.01 -1.38
not bad -0.54 -1.85
not very bad -1.36 -1.80

Table 3: Phrase and the sentiment scores of the phrase for
2 models Matrix-space OLogReg+BowInit and Bag-of-
words OLogReg respectively. Notice that relative rank-
ing order what matters

on matrices Matrix-space OLogReg+BowInit. By
sentiment score, we mean equation (1) of Bag-of-
words OLogReg and equation (2) of Matrix-space
OLogReg+BowInit.

Here we choose two popular adjectives like
‘good’ and ‘bad’ that appeared in the training data,
and examine the effect of applying the intensifier
‘very’ on the sentiment score. As we can see,
the matrix-space model learns a matrix that inten-
sifies both ‘bad’ and ‘good’ in the correct sentiment
scale, i.e., ξ(good) < ξ(very good) and ξ(bad) <
ξ(very bad), while the bag-of-words model gets the
sentiment of ‘very bad’ wrong: it is more positive
than ‘bad’. We also looked at the effect of combin-
ing ‘not’ with these adjectives. The matrix-space
model correctly encodes the effect of the negator
for both positive and negative adjectives, such that
ξ(not good) < ξ(good) and ξ(bad) < ξ(not bad).
For the interesting case of applying a negator to a
phrase with an intensifier, ξ(not good) should be
less than ξ(not very good) and ξ(not very bad)
should be less than ξ(not bad).9 As shown in Ta-
ble 3, these are predicted correctly by the matrix-
space model, which the matrix-space model gets
right, but the bag-of-words model misses in the case
of “bad”.

Also notice that since in the matrix-space model

9See the detailed discussion in Taboada et al. (2011) and Liu
and Seneff (2009).
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each word is represented as a function, more specif-
ically a linear operator, and the function composi-
tion defined as matrix multiplication, we can think
of ”not very” being an operator itself, that is a com-
position of operator ”not” and operator ”very”.

5 Related Work

Sentiment Analysis. There has been a lot of
research in determining the sentiment of words
and constructing polarity dictionaries (Hatzivas-
siloglou and McKeown, 1997; Wiebe, 2000; Rao
and Ravichandran, 2009; Mohammad et al., 2009;
Velikovich et al., 2010). Some recent work is try-
ing to identify the degree of sentiment of adjectives
and adverbs from text using co-occurrence statistics.
Work by Taboada et. al (2011) and Liu and Sen-
eff (2009), suggest ways of computing the sentiment
of adjectives from data, and computing the effect
of combining adjective with adverb as multiplica-
tive effect and combining adjective with negation as
additive effect. However these models require the
knowledge of a part of speech of given words and
the list of negators (since the negator is an adjective
as well). In our work we propose a single unified
model for handling all words of any part of speech.

On the other hand, there has been some research
in trying to model compositional effects for senti-
ment at the phrase- and sentence-level. Choi and
Cardie (2008) hand-code compositional rules in or-
der to model compositional effects of combining dif-
ferent words in the phrase. The hand-coded rules
are based on domain knowledge and used to learn
the effects of combining words in the phrase. An-
other recent work that tries to model the compo-
sitional semantics of combining different words is
Nakagawa et. al. (2010), which proposes a model
that learns the effects of combining different words
using phrase/sentence dependency parse trees and an
initial polarity dictionary. They present a learning
method that employs hidden variables for sentiment
classification: given the polarity of a sentence and
the a priori polarities of its words, they learn how
to model the interactions between words with head-
modifier relations in the dependency tree.

Some of the previous work looked at MPQA
phrase-level classification. Wilson et al. (2004) tack-
les the problem of classifying clauses according to

their subjective strength but not polarity; Wilson et
al. (2005) classifies phrases according to their po-
larity/sentiment but not strength. Our task is differ-
ent: we classify phrases according to a single ordinal
scale that combines both polarity and strength.

Task of predicting document-level star ratings was
considered in (Pang and Lee, 2005; Goldberg and
Zhu, 2006). In the current work we look at fine-
grained sentiment analysis, more specifically we
study word representations for use in true compo-
sitional semantic settings.

Distributional Semantics and Compositional-
ity. Research in the area of distributional seman-
tics in NLP and Cognitive Science has looked at
different word representations and different ways of
combining words. Mitchell and Lapata (2010) pro-
pose a framework for vector-based semantic com-
position. They define composition as an additive
or multiplicative function of two vectors and show
that compositional approaches generally outperform
non-compositional approaches that treat the phrase
as the union of single lexical items.

Work by Baroni and Zamparelli (2010) models
nouns as vectors in some semantic space and ad-
jectives as matrices. It shows that modeling adjec-
tives as linear transformations and applying those
linear transformations to nouns results in final vec-
tors for adjective-noun compositions that are close
in semantic space to other similar phrases. The
authors argue that modeling adjectives as a linear
transformation is a better idea than using additive
vector-space models. In this work, a separate ma-
trix for each adjective is learned using the Par-
tial Least Squares method in a completely unsuper-
vised way. The recent paper by Rudolph and Gies-
brecht (2010), described in the introduction, argues
for multiplicative matrix-space models. In contrast
to other work in this area, our work is concerned
with a specific dimension of word meaning — sen-
timent. Our techniques, however, are quite general
and should be applicable to other problems in lexical
semantics.

6 Conclusions and Future work

In the current work we present a novel matrix-space
model for ordinal scale sentiment prediction and an
algorithm for learning such a model. The proposed
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model learns a matrix for each word; the composi-
tion of words is modeled as iterated matrix multi-
plication. The matrix-space framework with iterated
matrix multiplication defines an elegant framework
for modeling composition; it is also quite general.
We use the matrix-space framework in the context
of sentiment prediction, a domain where interesting
compositional effects can be observed. The main fo-
cus of this work was to study word representations
(represent as a single weight vs. as a matrix) for use
in true compositional semantic settings. One of the
benefits of the proposed approach is that by learn-
ing matrices for words, the model can handle unseen
word compositions (e.g. unseen bigrams) when the
unigrams involved have been seen.

However, it is not trivial to learn a matrix-space
model. Since the final optimization problem is non-
convex, the initialization has to be done carefully.
Here the weights learned in bag-of-words model
come to rescue and provide good initial point for op-
timization procedure. The final model outperforms
the bag-of-words based model, which suggests that
this research direction is very promising.

Though in our model the order of composition is
the same as the word order, we believe that a linguis-
tically informed order of composition can give us
further performance gains. For example, one can use
the output of a dependency parser to guide the order
of composition, similar to Nakagawa et al. (2010).
Another possibility for improvement is to use the in-
formation about the scope of negation. In the current
work we assume the scope of negation to be the ex-
pression following the negation; in reality, however,
determining the scope of negation is a complex lin-
guistic phenomenon (Moilanen and Pulman, 2007).
So the proposed model can benefit from identify-
ing the scope of negation, similar to (Councill et al.,
2010).

Also we plan to consider other ways to initialize
the matrix-space model. One interesting direction to
explore might be to use non-negative matrix factor-
ization (Lee and Seung, 2001), co-clustering tech-
niques (Dhillon, 2001) to better initialize words that
share similar contexts. The other possible direction
is to use existing sentiment lexicons and employ-
ing a “curriculum learning” strategy (Bengio et al.,
2009; Kumar et al., 2010) for our learning problem.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. 2009. Curriculum learning. In Pro-
ceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09. ACM.

R. H. Byrd, P. Lu, and J. Nocedal. 1995. A limited
memory algorithm for bound constrained optimiza-
tion. SIAM Journal on Scientific and Statistical Com-
puting, pages 1190–1208.

Yejin Choi and Claire Cardie. 2008. Learning with com-
positional semantics as structural inference for subsen-
tential sentiment analysis. In Empirical Methods in
Natural Language Processing (EMNLP).

Isaac G. Councill, Ryan McDonald, and Leonid Ve-
likovich. 2010. What’s great and what’s not: learn-
ing to classify the scope of negation for improved sen-
timent analysis. In Proceedings of the Workshop on
Negation and Speculation in Natural Language Pro-
cessing, NeSp-NLP ’10, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Koby Crammer and Yoram Singer. 2001. Pranking with
ranking. In Advances in Neural Information Process-
ing Systems 14, pages 641–647. MIT Press.

Marie-Catherine de Marneffe, Christopher D. Manning,
and Christopher Potts. 2010. Was it good? It was
provocative. learning the meaning of scalar adjectives.
In Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, Uppsala, Swe-
den, July 11–16. ACL.

I. S. Dhillon. 2001. Co-clustering documents and words
using bipartite spectral graph partitioning. In KDD.

Andrew B. Goldberg and Jerry Zhu. 2006. Seeing
stars when there aren’t many stars: Graph-based semi-
supervised learning for sentiment categorization. In
HLT-NAACL Workshop on Textgraphs: Graph-based
Algorithms for Natural Language Processing.

181



James W. Hardin and Joseph Hilbe. 2007. Generalized
Linear Models and Extensions. Stata Press.

Vasileios Hatzivassiloglou and Kathleen R. McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In EACL, pages 174–181.

Alistair Kennedy and Diana Inkpen. 2006. Sentiment
classification of movie reviews using contextual va-
lence shifters. Computational Intelligence, 22(2, Spe-
cial Issue on Sentiment Analysis)):110–125.

M. Pawan Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-paced learning for latent variable models.
In Advances in Neural Information Processing Sys-
tems 23. NIPS.

D. Lee and H. Seung. 2001. Algorithms for non-negative
matrix factorization. In NIPS.

Jingjing Liu and Stephanie Seneff. 2009. Review sen-
timent scoring via a parse-and-paraphrase paradigm.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
161–169, Singapore, August. Association for Compu-
tational Linguistics.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive Science,
34(8):1388–1429.

Saif Mohammad, Cody Dunne, and Bonnie Dorr. 2009.
Generating high-coverage semantic orientation lexi-
cons from overtly marked words and a thesaurus.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
599–608, Singapore, August. Association for Compu-
tational Linguistics.

Karo Moilanen and Stephen Pulman. 2007. Sentiment
composition. In Proceedings of Recent Advances in
Natural Language Processing (RANLP 2007), pages
378–382, September 27-29.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classification
using crfs with hidden variables. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL).

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the ACL,
pages 115–124.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1-2):1–135.

K. B. Petersen and M. S. Pedersen. ”2008”. The Matrix
Cookbook. ”Technical University of Denmark”, ”oct”.
”Version 20081110”.

Livia Polanyi and Annie Zaenen. 2004. Contextual
lexical valence shifters. In Proceedings of the AAAI
Spring Symposium on Exploring Attitude and Affect in
Text: Theories and Applications.

Delip Rao and Deepak Ravichandran. 2009. Semi-
supervised polarity lexicon induction. In Proceedings
of the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 675–682, Athens, Greece,
March. Association for Computational Linguistics.

Sebastian Rudolph and Eugenie Giesbrecht. 2010. Com-
positional matrix-space models of language. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL ’10, pages 907–
916, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Mostafa Shaikh, Helmut Prendinger, and Ishizuka Mit-
suru. 2007. Assessing sentiment of text by semantic
dependency and contextual valence analysis.

Maite Taboada, Julian Brooke, Milan Tofiloskiy, and
Kimberly Vollz. 2011). Lexicon-based methods for
sentiment analysis. In Computational Linguistics.

Leonid Velikovich, Sasha Blair-Goldensohn, Kerry Han-
nan, and Ryan McDonald. 2010. The viability of web-
derived polarity lexicons. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 777–785, Los Angeles, Cal-
ifornia, June. Association for Computational Linguis-
tics.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in
language. Language Resources and Evaluation (for-
merly Computers and the Humanities), 39(2/3):164–
210.

Janyce M. Wiebe. 2000. Learning subjective adjectives
from corpora. In In AAAI, pages 735–740.

Theresa Wilson, Janyce Wiebe, and Rebecca Hwa. 2004.
Just how mad are you? In AAAI. AAAI.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Empirical Methods in Natural
Language Processing (EMNLP).

182



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 183–192,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Training a Parser for Machine Translation Reordering

Jason Katz-Brown Slav Petrov Ryan McDonald Franz Och
David Talbot Hiroshi Ichikawa Masakazu Seno Hideto Kazawa

Google
{jasonkb|slav|ryanmcd|och|talbot|ichikawa|seno|kazawa}@google.com

Abstract

We propose a simple training regime that can
improve the extrinsic performance of a parser,
given only a corpus of sentences and a way
to automatically evaluate the extrinsic quality
of a candidate parse. We apply our method
to train parsers that excel when used as part
of a reordering component in a statistical ma-
chine translation system. We use a corpus of
weakly-labeled reference reorderings to guide
parser training. Our best parsers contribute
significant improvements in subjective trans-
lation quality while their intrinsic attachment
scores typically regress.

1 Introduction

The field of syntactic parsing has received a great
deal of attention and progress since the creation of
the Penn Treebank (Marcus et al., 1993; Collins,
1997; Charniak, 2000; McDonald et al., 2005;
Petrov et al., 2006; Nivre, 2008). A common—
and valid—criticism, however, is that parsers typi-
cally get evaluated only on Section 23 of the Wall
Street Journal portion of the Penn Treebank. This
is problematic for many reasons. As previously ob-
served, this test set comes from a very narrow do-
main that does not necessarily reflect parser perfor-
mance on text coming from more varied domains
(Gildea, 2001), especially web text (Foster, 2010).
There is also evidence that after so much repeated
testing, parsers are indirectly over-fitting to this set
(Petrov and Klein, 2007). Furthermore, parsing was
never meant as a stand-alone task, but is rather a

means to an end, towards the goal of building sys-
tems that can process natural language input.

This is not to say that parsers are not used in larger
systems. All to the contrary, as parsing technology
has become more mature, parsers have become ef-
ficient and accurate enough to be useful in many
natural language processing systems, most notably
in machine translation (Yamada and Knight, 2001;
Galley et al., 2004; Xu et al., 2009). While it has
been repeatedly shown that using a parser can bring
net gains on downstream application quality, it is of-
ten unclear how much intrinsic parsing accuracy ac-
tually matters.

In this paper we try to shed some light on this is-
sue by comparing different parsers in the context of
machine translation (MT). We present experiments
on translation from English to three Subject-Object-
Verb (SOV) languages,1 because those require ex-
tensive syntactic reordering to produce grammatical
translations. We evaluate parse quality on a num-
ber of extrinsic metrics, including word reordering
accuracy, BLEU score and a human evaluation of fi-
nal translation quality. We show that while there is
a good correlation between those extrinsic metrics,
parsing quality as measured on the Penn Treebank
is not a good indicator of the final downstream ap-
plication quality. Since the word reordering metric
can be computed efficiently offline (i.e. without the
use of the final MT system), we then propose to tune
parsers specifically for that metric, with the goal of
improving the performance of the overall system.

To this end we propose a simple training regime

1We experiment with Japanese, Korean and Turkish, but
there is nothing language specific in our approach.
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which we refer to as targeted self-training (Sec-
tion 2). Similar to self-training, a baseline model
is used to produce predictions on an unlabeled data
set. However, rather than directly training on the
output of the baseline model, we generate a list of
hypotheses and use an external signal to select the
best candidate. The selected parse trees are added
to the training data and the model is then retrained.
The experiments in Section 5 show that this simple
procedure noticeably improves our parsers for the
task at hand, resulting in significant improvements
in downstream translation quality, as measured in a
human evaluation on web text.

This idea is similar in vein to McClosky. et al.
(2006) and Petrov et al. (2010), except that we use an
extrinsic quality metric instead of a second parsing
model for making the selection. It is also similar to
Burkett and Klein (2008) and Burkett et al. (2010),
but again avoiding the added complexity introduced
by the use of additional (bilingual) models for can-
didate selection.

It should be noted that our extrinsic metric is com-
puted from data that has been manually annotated
with reference word reorderings. Details of the re-
ordering metric and the annotated data we used are
given in Sections 3 and 4. While this annotation re-
quires some effort, such annotations are much easier
to obtain than full parse trees. In our experiments
in Section 6 we show that we can obtain similar
improvements on downstream translation quality by
targeted self-training with weakly labeled data (in
form of word reorderings), as with training on the
fully labeled data (with full syntactic parse trees).

2 Targeted Self-Training

Our technique for retraining a baseline parser is an
extension of self-training. In standard parser self-
training, one uses the baseline parsing model to
parse a corpus of sentences, and then adds the 1-best
output of the baseline parser to the training data. To
target the self-training, we introduce an additional
step, given as Algorithm 1. Instead of taking the 1-
best parse, we produce a ranked n-best list of predic-
tions and select the parser which gives the best score
according to an external evaluation function. That
is, instead of relying on the intrinsic model score,
we use an extrinsic score to select the parse towards

Algorithm 1 Select parse that maximizes an extrin-
sic metric.
Input: baseline parser B
Input: sentence S
Input: function COMPUTEEXTRINSIC(parse P )
Output: a parse for the input sentence
Pn = {P1, . . . , Pn} ← n-best parses of S by B
maxScore = 0
bestParse = ∅
for k = 1 to n do

extrinsicScore = COMPUTEEXTRINSIC(Pk)
if extrinsicScore > maxScore then

maxScore = extrinsicScore
bestParse = Pk

end if
end for
return bestParse

which to update. In the case of a tie, we prefer the
parse ranked most highly in the n-best list.

The motivation of this selection step is that good
performance on the downstream external task, mea-
sured by the extrinsic metric, should be predictive
of an intrinsically good parse. At the very least,
even if the selected parse is not syntactically cor-
rect, or even if it goes against the original treebank-
ing guidelines, it results in a higher extrinsic score
and should therefore be preferred.

One could imagine extending this framework by
repeatedly running self-training on successively im-
proving parsers in an EM-style algorithm. A recent
work by Hall et al. (2011) on training a parser with
multiple objective functions investigates a similar
idea in the context of online learning.

In this paper we focus our attention on machine
translation as the final application, but one could en-
vision applying our techniques to other applications
such as information extraction or question answer-
ing. In particular, we explore one application of
targeted self-training, where computing the extrin-
sic metric involves plugging the parse into an MT
system’s reordering component and computing the
accuracy of the reordering compared to a reference
word order. We now direct our attention to the de-
tails of this application.
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3 The MT Reordering Task

Determining appropriate target language word or-
der for a translation is a fundamental problem in
MT. When translating between languages with sig-
nificantly different word order such as English and
Japanese, it has been shown that metrics which ex-
plicitly account for word-order are much better cor-
related with human judgments of translation qual-
ity than those that give more weight to word choice,
like BLEU (Lavie and Denkowski, 2009; Isozaki et
al., 2010a; Birch and Osborne, 2010). This demon-
strates the importance of getting reordering right.

3.1 Reordering as a separately evaluable
component

One way to break down the problem of translat-
ing between languages with different word order
is to handle reordering and translation separately:
first reorder source-language sentences into target-
language word order in a preprocessing step, and
then translate the reordered sentences. It has been
shown that good results can be achieved by reorder-
ing each input sentence using a series of tree trans-
formations on its parse tree. The rules for tree
transformation can be manually written (Collins et
al., 2005; Wang, 2007; Xu et al., 2009) or auto-
matically learned (Xia and McCord, 2004; Habash,
2007; Genzel, 2010).

Doing reordering as a preprocessing step, sepa-
rately from translation, makes it easy to evaluate re-
ordering performance independently from the MT
system. Accordingly, Talbot et al. (2011) present a
framework for evaluating the quality of reordering
separately from the lexical choice involved in trans-
lation. They propose a simple reordering metric
based on METEOR’s reordering penalty (Lavie and
Denkowski, 2009). This metric is computed solely
on the source language side. To compute it, one
takes the candidate reordering of the input sentence
and partitions it into a set C of contiguous spans
whose content appears contiguously in the same or-
der in the reference. The reordering score is then
computed as

ρ(esys, eref) = 1− |C| − 1

|e| − 1
.

This metric assigns a score between 0 and 1 where 1

indicates that the candidate reordering is identical to
the reference and 0 indicates that no two words that
are contiguous in the candidate reordering are con-
tiguous in the reference. For example, if a reference
reordering is A B C D E, candidate reordering A
B E C Dwould get score 1−(3−1)/(5−1) = 0.5.

Talbot et al. (2011) show that this reordering score
is strongly correlated with human judgment of trans-
lation quality. Furthermore, they propose to evalu-
ate the reordering quality of an MT system by com-
puting its reordering score on a test set consisting
of source language sentences and their reference re-
orderings. In this paper, we take the same approach
for evaluation, and in addition, we use corpora of
source language sentences and their reference re-
orderings for training the system, not just testing
it. We describe in more detail how the reference re-
ordering data was prepared in Section 4.1.

3.2 Reordering quality as predictor of parse
quality

Figure 1 gives concrete examples of good and bad
reorderings of an English sentence into Japanese
word order. It shows that a bad parse leads to a bad
reordering (lacking inversion of verb “wear” and ob-
ject “sunscreen”) and a low reordering score. Could
we flip this causality around, and perhaps try to iden-
tify a good parse tree based on its reordering score?
With the experiments in this paper, we show that in-
deed a high reordering score is predictive of the un-
derlying parse tree that was used to generate the re-
ordering being a good parse (or, at least, being good
enough for our purpose).

In the case of translating English to Japanese or
another SOV language, there is a large amount of
reordering required, but with a relatively small num-
ber of reordering rules one can cover a large pro-
portion of reordering phenomena. Isozaki et al.
(2010b), for instance, were able to get impressive
English→Japanese results with only a single re-
ordering rule, given a suitable definition of a head.
Hence, the reordering task depends crucially on a
correct syntactic analysis and is extremely sensitive
to parser errors.
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4 Experimental Setup

4.1 Treebank data

In our experiments the baseline training corpus is
the Wall Street Journal (WSJ) section of the Penn
Treebank (Marcus et al., 1993) using standard train-
ing/development/testing splits. We converted the
treebank to match the tokenization expected by our
MT system. In particular, we split tokens containing
hyphens into multiple tokens and, somewhat sim-
plistically, gave the original token’s part-of-speech
tag to all newly created tokens. In Section 6 we
make also use of the Question Treebank (QTB)
(Judge et al., 2006), as a source of syntactically an-
notated out-of-domain data. Though we experiment
with both dependency parsers and phrase structure
parsers, our MT system assumes dependency parses
as input. We use the Stanford converter (de Marneffe
et al., 2006) to convert phrase structure parse trees to
dependency parse trees (for both treebank trees and
predicted trees).

4.2 Reference reordering data

We aim to build an MT system that can accurately
translate typical English text that one finds on the
Internet to SOV langauges. To this end, we ran-
domly sampled 13595 English sentences from the
web and created Japanese-word-order reference re-
orderings for them. We split the sentences arbitrarily
into a 6268-sentence Web-Train corpus and a 7327-
sentence Web-Test corpus.

To make the reference alignments we used the
technique suggested by Talbot et al. (2011): ask
annotators to translate each English sentence to
Japanese extremely literally and annotate which En-
glish words align to which Japanese words. Golden
reference reorderings can be made programmati-
cally from these annotations. Creating a large set
of reference reorderings is straightforward because
annotators need little special background or train-
ing, as long as they can speak both the source and
target languages. We chose Japanese as the target
language through which to create the English refer-
ence reorderings because we had access to bilingual
annotators fluent in English and Japanese.

Good parse

Reordered:
15 or greater of an SPF has that sunscreen Wear
Reordering score: 1.0 (matches reference)

Bad parse

Reordered:
15 or greater of an SPF has that Wear sunscreen
Reordering score: 0.78 (“Wear” is out of place)

Figure 1: Examples of good and bad parses and cor-
responding reorderings for translation from English to
Japanese. The good parse correctly identifies “Wear” as
the main verb and moves it to the end of the sentence; the
bad parse analyses “Wear sunscreen” as a noun phrase
and does not reorder it. This example was one of the
wins in the human evaluation of Section 5.2.

4.3 Parsers

The core dependency parser we use is an implemen-
tation of a transition-based dependency parser using
an arc-eager transition strategy (Nivre, 2008). The
parser is trained using the averaged perceptron algo-
rithm with an early update strategy as described in
Zhang and Clark (2008). The parser uses the fol-
lowing features: word identity of the first two words
on the buffer, the top word on the stack and the head
of the top word on the stack (if available); part-of-
speech identities of the first four words on the buffer
and top two words on the stack; dependency arc la-
bel identities for the top word on the stack, the left
and rightmost modifier of the top word on the stack,
and the leftmost modifier of the first word in the
buffer. We also include conjunctions over all non-
lexical features.

We also give results for the latent variable parser
(a.k.a. BerkeleyParser) of Petrov et al. (2006). We
convert the constituency trees output by the Berke-
leyParser to labeled dependency trees using the same
procedure that is applied to the treebanks.

While the BerkeleyParser views part-of-speech
(POS) tagging as an integral part of parsing, our
dependency parser requires the input to be tagged
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with a separate POS tagger. We use the TnT tag-
ger (Brants, 2000) in our experiments, because of
its efficiency and ease of use. Tagger and parser are
always trained on the same data.

For all parsers, we lowercase the input at train and
test time. We found that this improves performance
in parsing web text. In addition to general upper-
case/lowercase noisiness of the web text negatively
impacting scores, we found that the baseline case-
sensitive parsers are especially bad at parsing imper-
ative sentences, as discussed in Section 5.3.2.

4.4 Reordering rules
In this paper we focus on English to Japanese, Ko-
rean, and Turkish translation. We use a superset of
the reordering rules proposed by Xu et al. (2009),
which flatten a dependency tree into SOV word or-
der that is suitable for all three languages. The rules
define a precedence order for the dependents of each
part of speech. For example, a slightly simplified
version of the precedence order of child labels for
a verbal head HEADVERB is: advcl, nsubj, prep,
[other children], dobj, prt, aux, neg, HEADVERB,
mark, ref, compl.

Alternatively, we could have used an automatic
reordering-rule learning framework like that of Gen-
zel (2010). Because the reordering accuracy met-
ric can be computed for any source/target language
pair, this would have made our approach language
completely independent and applicable to any lan-
guage pair. We chose to use manually written rules
to eliminate the variance induced by the automatic
reordering-rule learning framework.

4.5 MT system
We carried out all our translation experiments on a
state-of-the-art phrase-based statistical MT system.
During both training and testing, the system reorders
source-language sentences in a preprocessing step
using the above-mentioned rules. During decoding,
we used an allowed jump width of 4 words. In ad-
dition to the regular distance distortion model, we
incorporate a maximum entropy based lexicalized
phrase reordering model (Zens and Ney, 2006) as
a feature used in decoding.

Overall for decoding, we use between 20 to
30 features, whose weights are optimized using
MERT (Och, 2003). All experiments for a given lan-

guage pair use the same set of MERT weights tuned
on a system using a separate parser (that is neither
the baseline nor the experiment parser). This po-
tentially underestimates the improvements that can
be obtained, but also eliminates MERT as a pos-
sible source of improvement, allowing us to trace
back improvements in translation quality directly to
parser changes.2

For parallel training data, we use a custom collec-
tion of parallel documents. They come from vari-
ous sources with a substantial portion coming from
the web after using simple heuristics to identify po-
tential document pairs. For all language pairs, we
trained on approximately 300 million source words
each.

5 Experiments Reordering Web Text

We experimented with parsers trained in three dif-
ferent ways:

1. Baseline: trained only on WSJ-Train.

2. Standard self-training: trained on WSJ-Train
and 1-best parse of the Web-Train set by base-
line parser.

3. Targeted self-training: trained on WSJ-Train
and, for each sentence in Web-Train, the parse
from the baseline parser’s 512-best list that
when reordered gives the highest reordering
score.3

5.1 Standard self-training vs targeted
self-training

Table 1 shows that targeted self-training on Web-
Train significantly improves Web-Test reordering
score more than standard self-training for both the
shift-reduce parser and for the BerkeleyParser. The
reordering score is generally divorced from the at-
tachment scores measured on the WSJ-Test tree-
bank: for the shift-reduce parser, Web-Test reorder-
ing score and WSJ-Test labeled attachment score

2We also ran MERT on all systems and the pattern of im-
provement is consistent, but sometimes the improvement is big-
ger or smaller after MERT. For instance, the BLEU delta for
Japanese is +0.0030 with MERT on both sides as opposed to
+0.0025 with no MERT.

3We saw consistent but diminishing improvements as we in-
creased the size of the n-best list.
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Parser Web-Test reordering WSJ-Test LAS
Shift-reduce WSJ baseline 0.757 85.31%
+ self-training 1x 0.760 85.26%
+ self-training 10x 0.756 84.14%
+ targeted self-training 1x 0.770 85.19%
+ targeted self-training 10x 0.777 84.48%
Berkeley WSJ baseline 0.780 88.66%
+ self-training 1x 0.785 89.21%
+ targeted self-training 1x 0.790 89.32%

Table 1: English→Japanese reordering scores on Web-Test for standard self-training and targeted self-training on
Web-Train. Label “10x” indicates that the self-training data was weighted 10x relative to the WSJ training data.
Bolded reordering scores are different from WSJ-only baseline with 95% confidence but are not significantly different
from each other within the same group.

English to BLEU Human evaluation (scores range 0 to 6)
WSJ-only Targeted WSJ-only Targeted Sig. difference?

Japanese 0.1777 0.1802 2.56 2.69 yes (at 95% level)
Korean 0.3229 0.3259 2.61 2.70 yes (at 90% level)
Turkish 0.1344 0.1370 2.10 2.20 yes (at 95% level)

Table 2: BLEU scores and human evaluation results for translation between three language pairs, varying only the
parser between systems. “WSJ-only” corresponds to the baseline WSJ-only shift-reduce parser; “Targeted” corre-
sponds to the Web-Train targeted self-training 10x shift-reduce parser.

(LAS) are anti-correlated, but for BerkeleyParser
they are correlated. Interestingly, weighting the self-
training data more seems to have a negative effect on
both metrics.4

One explanation for the drops in LAS is that some
parts of the parse tree are important for downstream
reordering quality while others are not (or only to
a lesser extent). Some distinctions between labels
become less important; for example, arcs labeled
“amod” and “advmod” are transformed identically
by the reordering rules. Some semantic distinctions
also become less important; for example, any sane
interpretation of “red hot car” would be reordered
the same, that is, not at all.

5.2 Translation quality improvement

To put the improvement of the MT system in terms
of BLEU score (Papineni et al., 2002), a widely used
metric for automatic MT evaluation, we took 5000
sentences from Web-Test and had humans gener-
ate reference translations into Japanese, Korean, and

4We did not attempt this experiment for the BerkeleyParser
since training was too slow.

Turkish. We then trained MT systems varying only
the parser used for reordering in training and decod-
ing. Table 2 shows that targeted self-training data
increases BLEU score for translation into all three
languages.

In addition to BLEU increase, a side-by-side hu-
man evaluation on 500 sentences (sampled from
the 5000 used to compute BLEU scores) showed
a statistically significant improvement for all three
languages (see again Table 2). For each sen-
tence, we asked annotators to simultaneously score
both translations from 0 to 6, with guidelines
that 6=“Perfect”, 4=“Most Meaning/Grammar”,
2=“Some Meaning/Grammar”, 0=“Nonsense”. We
computed confidence intervals for the average score
difference using bootstrap resampling; a difference
is significant if the two-sided confidence interval
does not include 0.

5.3 Analysis

As the divergence between the labeled attachment
score on the WSJ-Test data and the reordering score
on the WSJ-Test data indicates, parsing web text
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Parser Click as N Click as V Imperative rate
case-sensitive shift-reduce WSJ-only 74 0 6.3%
case-sensitive shift-reduce + Web-Train targeted self-training 75 0 10.5%
case-insensitive shift-reduce WSJ-only 75 0 10.3%
case-insensitive shift-reduce + Web-Train targeted self-training 75 0 11.6%
Berkeley WSJ-only 35 35 11.9%
Berkeley + Web-Train targeted self-training 13 58 12.5%
(WSJ-Train) 1 0 0.7%

Table 3: Counts on Web-Test of “click” tagged as a noun and verb and percentage of sentences parsed imperatively.

poses very different challenges compared to parsing
newswire. We show how our method improves pars-
ing performance and reordering performance on two
examples: the trendy word “click” and imperative
sentences.

5.3.1 Click

The word “click” appears only once in the train-
ing portion of the WSJ (as a noun), but appears many
times in our Web test data. Table 3 shows the distri-
bution of part-of-speech tags that different parsers
assign to “click”. The WSJ-only parsers tag “click”
as a noun far too frequently. The WSJ-only shift-
reduce parser refuses to tag “click” as a verb even
with targeted self-training, but BerkeleyParser does
learn to tag “click” more often as a verb.

It turns out that the shift-reduce parser’s stub-
bornness is not due to a fundamental problem of
the parser, but due to an artifact in TnT. To in-
crease speed, TnT restricts the choices of tags for
known words to previously-seen tags. This causes
the parser’s n-best lists to never hypothesize “click”
as a verb, and self-training doesn’t click no matter
how targeted it is. This shows that the targeted self-
training approach heavily relies on the diversity of
the baseline parser’s n-best lists.

It should be noted here that it would be easy to
combine our approach with the uptraining approach
of Petrov et al. (2010). The idea would be to use the
BerkeleyParser to generate the n-best lists; perhaps
we could call this targeted uptraining. This way, the
shift-reduce parser could benefit both from the gen-
erally higher quality of the parse trees produced by
the BerkeleyParser, as well as from the information
provided by the extrinsic scoring function.

5.3.2 Imperatives
As Table 3 shows, the WSJ training set contains

only 0.7% imperative sentences.5 In contrast, our
test sentences from the web contain approximately
10% imperatives. As a result, parsers trained exclu-
sively on the WSJ underproduce imperative parses,
especially a case-sensitive version of the baseline.
Targeted self-training helps the parsers to predict im-
perative parses more often.

Targeted self-training works well for generating
training data with correctly-annotated imperative
constructions because the reordering of main sub-
jects and verbs in an SOV language like Japanese
is very distinct: main subjects stay at the begin-
ning of the sentence, and main verbs are reordered
to the end of the sentence. It is thus especially easy
to know whether an imperative parse is correct or
not by looking at the reference reordering. Figure 1
gives an example: the bad (WSJ-only) parse doesn’t
catch on to the imperativeness and gets a low re-
ordering score.

6 Targeted Self-Training vs Training on
Treebanks for Domain Adaptation

If task-specific annotation is cheap, then it is rea-
sonable to consider whether we could use targeted
self-training to adapt a parser to a new domain as
a cheaper alternative to making new treebanks. For
example, if we want to build a parser that can reorder
question sentences better than our baseline WSJ-
only parser, we have these two options:

1. Manually construct PTB-style trees for 2000
5As an approximation, we count every parse that begins with

a root verb as an imperative.
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questions and train on the resulting treebank.

2. Create reference reorderings for 2000 questions
and then do targeted self-training.

To compare these approaches, we created reference
reordering data for our train (2000 sentences) and
test (1000 sentences) splits of the Question Tree-
bank (Judge et al., 2006). Table 4 shows that both
ways of training on QTB-Train sentences give sim-
ilarly large improvements in reordering score on
QTB-Test. Table 5 confirms that this corresponds
to very large increases in English→Japanese BLEU
score and subjective translation quality. In the hu-
man side-by-side comparison, the baseline transla-
tions achieved an average score of 2.12, while the
targeted self-training translations received a score of
2.94, where a score of 2 corresponds to “some mean-
ing/grammar” and “4” corresponds to “most mean-
ing/grammar”.

But which of the two approaches is better? In
the shift-reduce parser, targeted self-training gives
higher reordering scores than training on the tree-
bank, and in BerkeleyParser, the opposite is true.
Thus both approaches produce similarly good re-
sults. From a practical perspective, the advantage of
targeted self-training depends on whether the extrin-
sic metric is cheaper to calculate than treebanking.
For MT reordering, making reference reorderings is
cheap, so targeted self-training is relatively advanta-
geous.

As before, we can examine whether labeled at-
tachment score measured on the test set of the
QTB is predictive of reordering quality. Table 4
shows that targeted self-training raises LAS from
64.78→69.17%. But adding the treebank leads
to much larger increases, resulting in an LAS of
84.75%, without giving higher reordering score. We
can conclude that high LAS is not necessary to
achieve top reordering scores.

Perhaps our reordering rules are somehow defi-
cient when it comes to reordering correctly-parsed
questions, and as a result the targeted self-training
process steers the parser towards producing patho-
logical trees with little intrinsic meaning. To explore
this possibility, we computed reordering scores after
reordering the QTB-Test treebank trees directly. Ta-
ble 4 shows that this gives reordering scores similar
to those of our best parsers. Therefore it is at least

possible that the targeted self-training process could
have resulted in a parser that achieves high reorder-
ing score by producing parses that look like those in
the QuestionBank.

7 Related Work

Our approach to training parsers for reordering is
closely related to self/up-training (McClosky. et al.,
2006; Petrov et al., 2010). However, unlike uptrain-
ing, our method does not use only the 1-best output
of the first-stage parser, but has access to the n-best
list. This makes it similar to the work of McClosky.
et al. (2006), except that we use an extrinsic metric
(MT reordering score) to select a high quality parse
tree, rather than a second, reranking model that has
access to additional features.

Targeted self-training is also similar to the re-
training of Burkett et al. (2010) in which they
jointly parse unannotated bilingual text using a mul-
tiview learning objective, then retrain the monolin-
gual parser models to include each side of the jointly
parsed bitext as monolingual training data. Our ap-
proach is different in that it doesn’t use a second
parser and bitext to guide the creation of new train-
ing data, and instead relies on n-best lists and an
extrinsic metric.

Our method can be considered an instance of
weakly or distantly supervised structured prediction
(Chang et al., 2007; Chang et al., 2010; Clarke et al.,
2010; Ganchev et al., 2010). Those methods attempt
to learn structure models from related external sig-
nals or aggregate data statistics. This work differs
in two respects. First, we use the external signals
not as explicit constraints, but to compute an ora-
cle score used to re-rank a set of parses. As such,
there are no requirements that it factor by the struc-
ture of the parse tree and can in fact be any arbitrary
metric. Second, our final objective is different. In
weakly/distantly supervised learning, the objective
is to use external knowledge to build better struc-
tured predictors. In our case this would mean using
the reordering metric as a means to train better de-
pendency parsers. Our objective, on the other hand,
is to use the extrinsic metric to train parsers that are
specifically better at the reordering task, and, as a re-
sult, better suited for MT. This makes our work more
in the spirit of Liang et al. (2006), who train a per-
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Parser QTB-Test reordering QTB-Test LAS
Shift-reduce WSJ baseline 0.663 64.78%
+ treebank 1x 0.704 77.12%
+ treebank 10x 0.768 84.75%
+ targeted self-training 1x 0.746 67.84%
+ targeted self-training 10x 0.779 69.17%
Berkeley WSJ baseline 0.733 76.50%
+ treebank 1x 0.800 87.79%
+ targeted self-training 1x 0.775 80.64%
(using treebank trees directly) 0.788 100%

Table 4: Reordering and labeled attachment scores on QTB-Test for treebank training and targeted self-training on
QTB-Train.

English to QTB-Test BLEU Human evaluation (scores range 0 to 6)
WSJ-only Targeted WSJ-only Targeted Sig. difference?

Japanese 0.2379 0.2615 2.12 2.94 yes (at 95% level)

Table 5: BLEU scores and human evaluation results for English→Japanese translation of the QTB-Test corpus, varying
only the parser between systems between the WSJ-only shift-reduce parser and the QTB-Train targeted self-training
10x shift-reduce parser.

ceptron model for an end-to-end MT system where
the alignment parameters are updated based on se-
lecting an alignment from a n-best list that leads to
highest BLEU score. As mentioned earlier, this also
makes our work similar to Hall et al. (2011) who
train a perceptron algorithm on multiple objective
functions with the goal of producing parsers that are
optimized for extrinsic metrics.

It has previously been observed that parsers of-
ten perform differently for downstream applications.
Miyao et al. (2008) compared parser quality in the
biomedical domain using a protein-protein interac-
tion (PPI) identification accuracy metric. This al-
lowed them to compare the utility of extant depen-
dency parsers, phrase structure parsers, and deep
structure parsers for the PPI identification task. One
could apply the targeted self-training technique we
describe to optimize any of these parsers for the PPI
task, similar to how we have optimized our parser
for the MT reordering task.

8 Conclusion

We introduced a variant of self-training that targets
parser training towards an extrinsic evaluation met-
ric. We use this targeted self-training approach to
train parsers that improve the accuracy of the word

reordering component of a machine translation sys-
tem. This significantly improves the subjective qual-
ity of the system’s translations from English into
three SOV languages. While the new parsers give
improvements in these external evaluations, their in-
trinsic attachment scores go down overall compared
to baseline parsers trained only on treebanks. We
conclude that when using a parser as a component
of a larger external system, it can be advantageous
to incorporate an extrinsic metric into parser train-
ing and evaluation, and that targeted self-training is
an effective technique for incorporating an extrinsic
metric into parser training.

References

A. Birch and M. Osborne. 2010. LRscore for evaluating
lexical and reordering quality in MT. In ACL-2010
WMT.

T. Brants. 2000. TnT – a statistical part-of-speech tagger.
In ANLP ’00.

D. Burkett and D. Klein. 2008. Two languages are better
than one (for syntactic parsing). In EMNLP ’08.

D. Burkett, S. Petrov, J. Blitzer, and D. Klein. 2010.
Learning better monolingual models with unannotated
bilingual text. In CoNLL ’10.

191



M. Chang, L. Ratinov, and D. Roth. 2007. Guiding semi-
supervision with constraint-driven learning. In ACL
’07.

M. Chang, D. Goldwasser, D. Roth, and V. Srikumar.
2010. Structured output learning with indirect super-
vision. In ICML ’10.

E. Charniak. 2000. A maximum–entropy–inspired
parser. In NAACL ’00.

J. Clarke, D. Goldwasser, M. Chang, and D. Roth. 2010.
Driving semantic parsing from the world’s response.
In CoNLL ’10.

M. Collins, P. Koehn, and I. Kučerová. 2005. Clause re-
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Abstract

When translating among languages that differ
substantially in word order, machine transla-
tion (MT) systems benefit from syntactic pre-
ordering—an approach that uses features from
a syntactic parse to permute source words
into a target-language-like order. This paper
presents a method for inducing parse trees au-
tomatically from a parallel corpus, instead of
using a supervised parser trained on a tree-
bank. These induced parses are used to pre-
order source sentences. We demonstrate that
our induced parser is effective: it not only
improves a state-of-the-art phrase-based sys-
tem with integrated reordering, but also ap-
proaches the performance of a recent pre-
ordering method based on a supervised parser.
These results show that the syntactic structure
which is relevant to MT pre-ordering can be
learned automatically from parallel text, thus
establishing a new application for unsuper-
vised grammar induction.

1 Introduction

Recent work in statistical machine translation (MT)
has demonstrated the effectiveness of syntactic pre-
ordering: an approach that permutes source sen-
tences into a target-like order as a pre-processing
step, using features of a source-side syntactic parse
(Collins et al., 2005; Xu et al., 2009). Syntac-
tic pre-ordering is particularly effective at apply-
ing structural transformations, such as the order-
ing change from a subject-verb-object (SVO) lan-
guage like English to a subject-object-verb (SOV)
language like Japanese. However, state-of-the-art

pre-ordering methods require a supervised syntac-
tic parser to provide structural information about
each sentence. We propose a method that learns
both a parsing model and a reordering model di-
rectly from a word-aligned parallel corpus. Our ap-
proach, which we call Structure Induction for Re-
ordering (STIR), requires no syntactic annotations
to train, but approaches the performance of a re-
cent syntactic pre-ordering method in a large-scale
English-Japanese MT system.

STIR predicts a pre-ordering via two pipelined
models: (1) parsing and (2) tree reordering. The
first model induces a binary parse, which defines
the space of possible reorderings. In particular, only
trees that properly separate verbs from their object
noun phrases will license an SVO to SOV trans-
formation. The second model locally permutes this
tree. Our approach resembles work with binary syn-
chronous grammars (Wu, 1997), but is distinct in its
emphasis on monolingual parsing as a first phase,
and in selecting reorderings without the aid of a
target-side language model.

The parsing model is trained to maximize the
conditional likelihood of trees that license the re-
orderings implied by observed word alignments in
a parallel corpus. This objective differs from those
of previous grammar induction models, which typ-
ically focus on succinctly explaining the observed
source language corpus via latent hierarchical struc-
ture (Pereira and Schabes, 1992; Klein and Man-
ning, 2002). Our convex objective allows us to train
a feature-rich log-linear parsing model, even without
supervised treebank data.

Focusing on pre-ordering for MT leads to a new
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perspective on the canonical NLP task of grammar
induction—one which marries the wide-spread sci-
entific interest in unsupervised parsing models with
a clear application and extrinsic evaluation method-
ology. To support this perspective, we highlight sev-
eral avenues of future research throughout the paper.

We evaluate STIR in a large-scale English-
Japanese machine translation system. We measure
how closely our predicted reorderings match those
implied by hand-annotated word alignments. STIR
approaches the performance of the state-of-the-art
pre-ordering method described in Genzel (2010),
which learns reordering rules for supervised tree-
bank parses. STIR gives a translation improvement
of 3.84 BLEU over a standard phrase-based system
with an integrated reordering model.

2 Parsing and Reordering Models

STIR consists of two pipelined log-linear models for
parsing and reordering, as well as a third model for
inducing trees from parallel corpora, trees that serve
to train the first two models. This section describes
the domain and structure of each model, while Sec-
tion 3 describes features and learning objectives.

Figure 1 depicts the relationship between the three
models. For each aligned sentence pair in a paral-
lel corpus, the parallel parsing model selects a bi-
nary tree t over the source sentence, such that t li-
censes the reordering pattern implied by the word
alignment (Section 2.2). The monolingual parsing
model is trained to generate t without inspecting the
alignments or target sentences (Section 2.3). The
tree reordering model is trained to locally permute t
to produce the target order (Section 2.4). In the con-
text of an MT system, the monolingual parser and
tree reorderer are applied in sequence to pre-order
source sentences.

2.1 Unlabeled Binary Trees

Unlabeled binary trees are central to the STIR
pipeline. We represent trees via their constituent
spans. Let [k, `) denote a span of indices of a 0-
indexed word sequence e, where i ∈ [k, `) if k ≤
i < `. [0, n) denotes the root span covering the
whole sequence, where n = |e|.

A tree t = (T ,N ) consists of a set of termi-
nal spans T and non-terminal spans N . Each non-

一対 が 目録 に 追加 されました
pair [subj] list to add to was

0 1 2 3 4 5

pair added to the lexicon

[0,2) [4,6) [3,4) [2,3)∅

Target

Alignment
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Parallel
Parse

Source
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Figure 1: The training and reordering pipeline for STIR
contains three models. The inputs and outputs of each
model are indicated by solid arrows, while dashed arrows
indicate the source of training examples. The parallel
parsing model provides tree and reordering examples that
are used to train the other models. In an MT system, the
trained reordering pipeline (shaded) pre-orders a source
sentence without target-side or alignment information.

terminal span [k, `) ∈ N has a split point m, where
k < m < ` splits the span into child spans [k,m)
and [m, `). Formally, a pair (T ,N ) is a well-formed
tree over [0, n) if:

• The root span [0, n) ∈ T ∪ N .

• For each [k, `) ∈ N , there exists exactly one m
such that {[k,m), [m, `)} ⊂ T ∪ N .

• Terminal spans T are disjoint, but cover [0, n).

These trees include multi-word terminal spans. It
is often convenient to refer to a split non-terminal
triple (k,m, `) that include a non-terminal span
[k, `) and its split point m. We denote the set of
these triples as

N+= {(k,m, `) : {[k, `), [k,m), [m, `)}∈ T ∪ N} .

2.2 Parallel Parsing Model

The first step in the STIR pipeline is to select a bi-
nary parse of each source sentence in a parallel cor-
pus, one which licenses the reordering implied by
a word alignment. Let the triple (e, f ,A) be an
aligned sentence pair, where e and f are word se-
quences and A is a set of links (i, j) indicating that
ei aligns to fj .

The set A provides ordering information over e.
To simplify definitions below, we first adjust A to
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ignore all unaligned words in f .

A′ = {(i, c(j)) : (i, j) ∈ A}
c(j) = |{j′ : j′ < j ∧ ∃i such that (i, j′) ∈ A}| .

c(j) is the number of aligned words in f prior to
position j. Next, we define a projection function:

ψ(i) =

[
min
j∈Ji

j,max
j∈Ji

j + 1

)

Ji = {j : (i, j) ∈ A′} ,

and let ψ(i) = ∅ if ei is unaligned. We can extend
this projection function to spans [k, `) of e via union:

ψ(k, `) =
⋃

k≤i<`
ψ(i) .

We say that a span [k, `) aligns contiguously if

∀(i, j) ∈ A′, j ∈ ψ(k, `) implies i ∈ [k, `) ,

which corresponds to the familiar definition that
[k, `) is one side of an extractable phrase pair. Un-
aligned spans do not align contiguously.

Given this notion of projection, we can relate
trees to alignments. A tree (T ,N ) over e respects
an alignment A′ if all [k, `) ∈ T ∪ N align con-
tiguously, and for every (k,m, `), the projections
ψ(k,m) and ψ(m, `) are adjacent. Projections are
adjacent if the left bound of one is the right bound
of the other, or if either is empty.

The parallel parsing model is a linear model over
trees that respect A′, which factors over spans.

s(t) =
∑

[k,`)∈T
wTφT (k, `) +

∑

(k,m,`)∈N+

wNφN (k,m, `)

where the weight vector w = (wT wN ) scores fea-
tures φT on terminal spans and φN on non-terminal
spans and their split points.

Exact inference under this model can be per-
formed via a dynamic program that exploits the fol-
lowing recurrence. Let s(k, `) be the score of the
highest scoring binary tree over the span [k, `) that

respects A′. Then,

sT (k, `) =





wTφT (k, `) if [k, `) aligns
contiguously

−∞ otherwise

f(k,m, `) = s(k,m) + s(m, `) + wNφN (k,m, `)

sN (k, `) = max
m:k<m<`





f(k,m, `) if ψ(k,m) is
adjacent
to ψ(m, `)

−∞ otherwise

s(k, `) = max [sT (k, `), sN (k, `)]

Above, sT scores terminal spans while filtering out
those which are not contiguous. The function f
scores non-terminal spans by the sum of their child
scores and additional features φN of the parent
span. The recursive function sN maximizes over
split points while filtering out non-adjacent children.
The recurrence will assign a score of −∞ to any
tree that does not respect A′. Section 3 describes
the features of this model. s(k, `) can be computed
efficiently using the CKY algorithm.

2.3 Monolingual Parsing Model

The monolingual parsing model is trained to select
the same trees as the parallel model, but without
any features or constraints that reference word align-
ments. Hence, it can be applied to a source sentence
before its translation is known.

This model also scores untyped binary trees ac-
cording to a linear model parameterized by some
w = (wT wN ) that weights features on terminal and
non-terminal spans, respectively. We impose a max-
imum terminal length of L, but otherwise allow any
binary tree. The score s(k, `) of the maximal tree
over a span [k, `) satisfies the familiar recurrence:

sM (k, `) =

{
wTφT (k, `) if `− k ≤ L
−∞ otherwise

s(k, `) = max

[
sL(k, `), max

m:k<m<`
f(k,m, `)

]

Inference under this recurrence can also be per-
formed using the CKY algorithm. Section 3 de-
scribes the feature functions and training method.
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2.4 Tree Reordering Model
Given a binary tree (T ,N ) over a sentence e, we
can reorder e by (a) permuting the children of non-
terminals and (b) permuting the words of terminal
spans. Formally, a reordering r assigns each termi-
nal [k, `) ∈ T a permutation σ(k, `) of its words
and each split non-terminal (k,m, `) a permutation
b(k,m, `) of its subspans, which can be either mono-
tone or inverted, in the case of a binary tree. The per-
mutation σ(k, `) of a non-terminal span [k, `) /∈ T
is defined recursively as:

{
σ(k,m) σ(m, `) if b(k,m, `) is monotone
σ(m, `) σ(k,m) if b(k,m, `) is inverted

In this paper, we use a reordering model that
selects each terminal σ(k, `) and each split non-
terminal b(k,m, `) independently, conditioned on
the sentence e. While the sub-problems of choos-
ing σ(k, `) and b(k,m, `) are formally similar, we
consider and evaluate them separately because the
former deals only with local reordering, while the
latter involves long-distance structural reordering.

Because our trees are binary, selecting b(k,m, `)
is a binary classification problem. Selecting σ(k, `)
for a terminal is a multiclass prediction problem that
chooses among the (` − k)! permutations of ter-
minal [k, `). Development experiments in English-
Japanese yielded the best results with a maximum
terminal span length L = 2. Hence, in experiments,
terminal reordering is also binary classification.

Because each permutation is independent of all
the others, reordering inference via a single pass
through the tree is optimal. However, a more com-
plex search procedure would be necessary to main-
tain optimality if the decision of b(k,m, `) ref-
erenced other permutations, such as σ([k,m)) or
σ([m, `)). Coupling together inference in this way
represents a possible area of future study.

3 Features and Training Objectives

Each of these linear models factors over features
on either terminal spans [k, `) or split non-terminals
(k,m, `). Features vary in concert with the learning
objectives and search spaces of each model.

Figure 2 shows an example sentence from our de-
velopment corpus, including the target (Japanese)

一対 が 目録 に 追加 されました
pair [subj] list to add to was

0 1 2 3 4 5

pair added to the lexicon

[0,2) [4,6) [3,4) [2,3)∅

Target
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Projections

Parallel
Parse

Source

Induced
Parse

Gloss

Reference
Order

Induced
Order pair addedtothe lexicon

pair addedtothe lexicon

[ ] ][ ][ [ ]

Positions

Figure 2: An example from our development corpus, an-
notated with the information flow (left) and annotations
and predictions (right). Alignments inform projections,
which are spans of the target associated with each source
word. The parallel parse may only include contiguous
spans. On the other hand, the induced parse may only
condition on the source sentence. The induced order
is restricted by the induced parse. In this example, the
induced order is incorrect because the subject and verb
form a constituent in the induced parse that cannot be sep-
arated correctly by the reordering model. This example
demonstrates the important role of the induced parser in
the STIR pipeline.

sentence, alignment, projections, parallel parser pre-
diction, monolingual parser prediction, and pre-
dicted permutation. The feature descriptions below
reference this example.

3.1 Tree Reordering Features

The tree reordering model consists of two local clas-
sifiers: the first can invert the two children of a
non-terminal span, while the second can permute the
words of a terminal span. The non-terminal classi-
fier is trained on the trees that are selected by the
parallel parsing model; the weights are chosen to
minimize log loss of the correct permutation of each
span (i.e., a maximum entropy model).

The terminal model is a multi-class maximum en-
tropy model over the n! possible permutations of the
words in a terminal span. To make reordering more
robust to monolingual parsing errors, the terminal
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model is trained on all contiguous spans of each sen-
tence up to length L, not just the terminal spans in-
cluded in the parallel parsing tree.

The feature templates we apply to each span can
be divided into the following five categories. Most
features are shared across the two models.

Statistics. From a large aligned parallel corpus, we
compute two statistics.

• PC(e) = count(e aligns contiguously)
count(e) is the frac-

tion of the time that a phrase e aligns con-
tiguously to some target phrase, for all
phrases up to length 4.
• PD(ei, ej) is the fraction of the time that

two co-occuring source words ei and ej
align to adjacent positions in the target.

The first statistic indicates whether a contigu-
ous phrase in the source should stay contiguous
after reordering. Features based on this statistic
apply to both terminal and short non-terminal
spans. The second statistic indicates when a
possibly discontiguous pair of words should be
adjacent after reordering. This statistic is ap-
plied to pairs of words that would end up ad-
jacent after an inversion: ek and e`−1 for span
[k, `). For instance, PC(added to) = 0.68 and
PD(lexicon, to) = 0.19.

Cluster. All source word types are clustered into
word classes, which together maximize likeli-
hood of the source side of a large parallel cor-
pus under a hidden Markov model, as in Uszko-
reit and Brants (2008). Indicator features based
on clusterings over c classes are defined over
words ek, em−1, em and e`−1, as well as word
sequences for spans up to length 4. Features are
included for a variety of clusterings with sizes
c ∈ {23, 24, . . . , 211}.

POS. A supervised part-of-speech (POS) tagger
provides coarse tags drawn from a 12 tag set
T = {Verb, Noun, Pronoun, Conjunction,
Adjective, Adverb, Adposition, Determiner,
Number, Particle/Function word, Punctuation,
Other} (Petrov et al., 2011). Features based on
these tags are computed identically to the fea-
tures based on word classes.

Lexical. For a list of very common words in the
source language, we include lexical indicator
features for the boundary words ek and e`−1.
For instance, the word “to” triggers a reorder-
ing, as do prepositions in general.

Length. Length computed as `−k, length as a frac-
tion of sentence length, and quantized length
features all contribute structural information.

All features except POS are computed directly
from aligned parallel corpora. The Cluster and POS
features play a similar role of expressing reordering
patterns over collections of similar words. The ab-
lation study in Section 5 compares these two feature
sets directly.

3.2 Monolingual Parsing Features

The monolingual parsing model is also trained dis-
criminatively, but involves structured prediction, as
in a conditional random field (Lafferty et al., 2001).
Conditional likelihood objectives have proven ef-
fective for supervised parsers (Finkel et al., 2008;
Petrov and Klein, 2008). Recall that the score of a
tree t = (T ,N ) factors over spans.

s(t) =
∑

[k,`)∈T
wTφT (k, `) +

∑

[k,`)∈N
wNφN (k,m, `)

P(t|e) =
exp [s(t)]∑

(t′)∈B(e) exp [s(t′)]

where B(e) is the set of well-formed trees over e.
The parallel parsing model (Section 2.2) produces

a tree over the source sentence of each aligned sen-
tence pair; these trees serve as our training exam-
ples. We can maximize their conditional likelihood
according to this model via gradient methods. Each
tree t over sentence e has a cumulative feature vector
of dimension |w| = |wT |+|wN |, formed by stacking
the terminal and non-terminal vectors:

φ(t, e) =


 ∑

[k,`)∈T
φT (k, `)

∑

[k,`)∈N
φN (k,m, `)




The contribution to the gradient objective from a tree
t for a sentence e is the difference between observed
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and expected feature vectors.

L(w) =
∑

(t,e)

log P(t|e)

∇L(w) =
∑

(t,e)


φ(t, e)−

∑

t′∈B(e)
P(t′|e) · φ(t′, e)




The second term in the gradient—the expected
feature vector—can be computed efficiently because
the feature vector φ(t′) decomposes over the spans
of t′. In particular, the inside-outside algorithm pro-
vides the quantities needed to compute the poste-
rior probability of each terminal span [k, `) and each
split non-terminal (k,m, `). Let, α(k, `) and β(k, `)
be the outside and inside scores of a span, respec-
tively, computed using a log-sum semiring. Then,
the log probablility that a terminal span [k, `) ap-
pears in the tree for e under the posterior distribu-
tion P(t|e) is α(k, `) + wTφT (k, `) . Note that this
terminal posterior does not include the inside score
of the span.

The log probability that a non-terminal span [k, `)
appears with split point m is

α(k, `) + β(k,m) + β(m, `) + wNφN (k,m, `)

By the linearity of expectations, the expected feature
vector for e can be computed by averaging the fea-
ture vectors of each terminal and split non-terminal
span, weighted by their posterior probabilities.

In future work, one may consider training this
model to maximize the likelihood of an entire forest
of trees, in order to maintain uncertainty over which
tree licensed a particular alignment.

We are currently using l-BFGS to optimize this
objective over a relatively small training corpus, for
35 iterations. For this reason, we only include lexi-
cal features for very common words. Distributed or
online training algorithms would perhaps allow for
more training data (and therefore more lexicalized
features) to be used in the future.

The features of this parsing model share the same
types as the tree reordering models, but vary in their
definition. The differences stem primarily from the
different purpose of the model: here, features are
not meant to decide how to reorder the sentence, but
instead how to bracket the sentence hierarchically so
that it can be reordered.

In particular, terminal spans have features on the
sequence of POS tags and word clusters they con-
tain, while a split non-terminal (k,m, `) is scored
based on the tags/clusters of the following words and
word pairs: ek, em−1, em, e`−1, (ek, em), (ek, e`−1),
and (em−1, em). The head word of a constituent of-
ten appears at one of its boundary positions, and so
these features provide a proxy for explicitly tracking
constituent heads in a parser.

Context features also appear, inspired by the
constituent-context model of Klein and Manning
(2001). For a span [k, `), we add indicator fea-
tures on the POS tags and word clusters of the words
(ek−1, e`) which directly surround the constituent.

Features based on the statistic PC(e) are also
scored in the parsing model on all spans of length
up to 4.

Length features score various structural aspects of
each non-terminal (k,m, `), such as m−k

`−k , m−kk−m , etc.
One particularly interesting direction for future

work is to train a single parsing model that licenses
the reordering for several different languages. We
might expect that a reasonable syntactic bracket-
ing of English would simultaneously license the
head-final transformations necessary to produce a
Japanese or Korean ordering, and also the verb-
subject-object ordering of formal Arabic.1

3.3 Parallel Parsing Features

The parallel parsing model does not run at transla-
tion time, but instead provides training examples to
the other two models. Hence, defining an appropri-
ate learning objective for this model is more chal-
lenging.

In the end, we are interested in selecting trees that
we can learn to reproduce without an alignment (via
the monolingual parsing model) and which can be
reordered reliably (via the tree reordering model).
Note that by construction, any tree selected by the
parallel parsing model can be reordered perfectly.
However, some of those trees will be easier to re-
produce and reorder than others.

1An astute reviewer pointed out that no binary tree over an
S-V-O sentence can license both S-O-V and V-S-O orderings.
Hence, parse trees that are induced for multilingual reordering
will need n-ary branches.
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3.3.1 Reordering Loss Function
In order to measure the effectiveness of a reorder-

ing pipeline, we would like a metric over permu-
tations. Fortunately, permutation loss for machine
translation is already an established component of
the METEOR metric, called a fragmentation penalty
(Lavie and Agarwal, 2007). We define a slight vari-
ant of METEOR’s fragmentation penalty that ranges
from 0 to 1.

Given a sentence e, a reference permutation σ∗

of (0, · · · , |e| − 1), and a hypothesized permuta-
tion σ̂, let chunks(σ̂, σ∗) be the minimum number
of “chunks” in σ̂: the number of elements in a par-
tition of σ̂ such that each contiguous subsequence is
also contiguous in σ∗.

We can define the reordering score between two
permutations in terms of chunks.

R(σ̂, σ∗) =
|σ∗| − chunks(σ̂, σ∗)

|σ∗| − 1
(1)

If σ̂ = σ∗, then chunks(σ̂, σ∗) = 1. If no
two adjacent elements of σ̂ are adjacent in σ∗, then
chunks(σ̂, σ∗) = |σ|. Hence, the metric defined by
Equation 1 ranges from 0 to 1.

The reference permutation σ∗ of a source sen-
tence e can be defined from an aligned sentence pair
(e, f ,A) by sorting the words ei of e by the left
bound of their projection ψ(i). Null-aligned words
are placed to the left of the next aligned word to their
right in the original order.

The reordering-specific loss functions defined in
Equation 1 has been shown to correlate with human
judgements of translation quality, especially for lan-
guage pairs with substantial reordering like English-
Japanese (Talbot et al., 2011). Other reordering-
specific loss functions also correlate with human
judgements (Birch et al., 2010). Future research
could experiment with alternative reordering-based
loss functions, such as Kendall’s Tau, as suggested
by Birch and Osborne (2011).

3.3.2 Parallel Parsing Objective
We can train our reordering pipeline by dividing

an aligned parallel corpus into two halves, A and B,
where the monolingual parsing and tree reordering
models are trained on A, and their effectiveness is
evaluated on held-out set B. Then, the effectiveness

of the parallel parsing model is best measured on B,
given fully trained parsing and reordering models.

∑

(e,σ∗)∈B
R

(
σ

(
arg max
t∈B(e)

[w · φ(t)]

)
, σ∗
)

(2)

Evaluating this objective involves training the
other two models. Therefore, we can only hope to
optimize this objective directly over a small dimen-
sional space, for instance using a grid search. For
this reason, we currently only include 4 features in
the parallel parsing model for a tree t:

1. The sum of log PC(e) for all terminals e in t
with length greater than 1.

2. The count of length-1 terminal spans in t.

3. The count of terminals of length greater than k.

4. An indicator feature of whether parentheses
and brackets are balanced in each span.

The model weights of features 3 and 4 above are
fixed to large negative constants to prefer terminal
spans of length up to k and spans with balanced
punctuation. The weight of feature 1 is fixed to 1,
and weight 2 was set via line search to 0.3. Ties
among trees were broken randomly.

Of course, the problem of selecting training trees
need not be directly tied to the end task of reorder-
ing, as in Equation 2. Instead, we might consider se-
lecting trees according to a likelihood objective on
the source side of a parallel corpus, similar to how
monolingual grammar induction models often opti-
mize corpus likelihood. In such a case, we could
imagine training models with far more parameters,
but we leave this research direction to future work.

4 Related Work

Our approach to inducing hierarchical structure for
pre-ordering relates to several areas of previous
work, including other pre-ordering methods, re-
ordering models more generally, and models for the
unsupervised induction of syntactic structure.

4.1 Pre-Ordering Models
Our reordering pipeline is intentionally similar to
approaches that use a treebank-trained supervised
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parser to reorder source sentences at training and
translation time (Xia and McCord, 2004; Collins
et al., 2005; Lee et al., 2010). Given a supervised
parser, a rule-based pre-ordering procedure can ei-
ther be specified by hand (Xu et al., 2009) or learned
automatically (Genzel, 2010). We consider our ap-
proach to be a direct extension of these approaches,
but one which induces structure from parallel cor-
pora rather than relying on a treebank.

Tromble (2009) show that some pre-ordering ben-
efits can be realized without a parsing step at all, by
instead casting pre-ordering as a permutation mod-
eling problem. While not splitting the task of pre-
ordering into parsing and tree rordering, that work
shows that pre-ordering models can be learned di-
rectly from parallel corpora.

4.2 Integrated Reordering Models
Distortion models have been primary components
in machine translation models since the advent of
statistical MT (Brown et al., 1993). In modern
systems, reordering models are integrated into de-
coders as additional features in a discriminative log-
linear model, which also includes a language model,
translation features, etc. In these cases, reordering
models interact with the strong signal of a target-
side language model. Because ordering prediciton
is conflated with target-side generation, evaluations
are conducted on the entire generated output, which
cannot isolate reordering errors from other sorts of
errors, like lexical selection.

Despite these differences, certain integrated re-
ordering models are similar in character to syntactic
pre-ordering models. In particular, the tree rotation
model of Yamada and Knight (2001) posited that re-
ordering decisions involve rotations of a source-side
syntax tree. The parameters of such a model can be
trained by treating tree rotations as latent variables
in a factored translation model, which parameterizes
reordering and transfer separately but performs joint
inference (Dyer and Resnik, 2010). Syntactic re-
ordering and transfer can also be modeled jointly,
for instance in a tree-to-string translation system pa-
rameterized by a transducer grammar.

While the success of integrated reordering models
certainly highlights the importance of reordering in
machine translation systems, we see several advan-
tages to a pipelined, pre-ordering approach. First,

the pre-ordering model can be trained and evaluated
directly. Second, pre-ordering models need not fac-
tor according to the same dynamic program as the
translation model. Third, the same reordering can be
applied during training (for word alignment and rule
extraction) and translation time without adding com-
plexity to the extraction and decoding algorithms.
Of course, integrating our model into translation in-
ference represents a potentially fruitful avenue of fu-
ture research.

4.3 Grammar Induction

The language processing community actively works
on the problem of automatically inducing grammat-
ical structure from a corpus of text (Pereira and
Schabes, 1992). Some success in this area has
been demonstrated via generative models (Klein and
Manning, 2002), which often benefit from well-
chosen priors (Cohen and Smith, 2009) or poste-
rior constraints (Ganchev et al., 2009). In princi-
ple, these models must discover the syntactic pat-
terns that govern a language from the sequences of
word tokens alone. These models are often evalu-
ated relative to reference treebank annotations.

Grammar induction in the context of machine
translation reordering offers different properties.
The alignment patterns in a parallel corpus pro-
vide an additional signal to models that is strongly
tied to syntactic properties of the aligned languages.
Also, the evaluation is straightforward—any syntac-
tic structure that supports the prediction of reorder-
ing is rewarded.

Kuhn (2004) applied alignment-based constraints
to the problem of inducing probabilistic context-free
grammars, and showed an improvement with respect
to Penn Treebank annotations over monolingual in-
duction. Their work is distinct from ours because it
focused on projecting distituents across languages,
but mirrors ours in demonstrating that there is a role
for aligned parallel corpora in grammar induction.

Snyder et al. (2009) also demonstrated that paral-
lel corpora can play a role in improving the quality
of grammar induction models. Their work differs
from ours in that it focuses on multilingual lexical
statistics and dependency relationships, rather than
reordering patterns.
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Parsing Tree Reordering Pipeline
Prec Rec F1 accN accT RO R

All features 82.0 87.8 84.8 97.3 93.6 87.7 80.5
Annotated word All but POS 81.3 87.7 84.4 97.0 92.6 86.6 79.4
alignments All but Cluster 81.2 87.9 84.4 95.9 93.2 83.8 77.8

All but POS & Cluster 75.4 82.0 78.5 89.2 89.7 66.8 49.7
Learned alignments All features 72.5 61.0 66.3 91.6 83.3 72.0 49.5
Monotone order 34.9
Inverted order 30.8
Syntactic pre-ordering (Genzel, 2010) 66.0

Table 1: Accuracy of individual monolingual parsing and reordering models, as well as complete pipelines trained on
annotated and learned word alignments.

4.4 Bilingual Grammar Induction

Also related to STIR is previous work on bilingual
grammar induction from parallel corpora using ITG
(Blunsom et al., 2009). These models have focused
on learning phrasal translations — which are the ter-
minal productions of a synchronous ITG — rather
than reordering patterns that occur higher in the tree.
Hence, while this paper shares formal machinery
and data sources with that line of work, the models
themselves target orthogonal aspects of the transla-
tion problem.

5 Experimental Results

As training data for our models we used 14,000 En-
glish sentences that were sampled from the web,
translated into Japanese, and manually annotated
with word alignments. The annotation was carried
out by the original translators to promote consis-
tency of analysis. Talbot et al. (2011) describes this
corpus in further detail. A held-out test set of 396
manually aligned sentence pairs was used to evalu-
ate reordering accuracy. Statistics used for features
were computed from the full, unreordered, automat-
ically word aligned, parallel training corpus used for
the translation experiments described below.

5.1 Individual Model Accuracy

We evaluate the accuracy of the monolingual parsing
models by their span F1, relative to the trees induced
by the parallel parsing model on the held-out set.
The first row of Table 1 shows that the model was
able to reliably replicate the parses induced from
alignments, at 84.8% F1. The following three lines

show that removing either POS or cluster features
degrades performance by only 0.4% F1, indicating
that POS features are largely redundant in the pres-
ence of automatically induced word class features.
Hence, no syntactic annotations are necessary at all
to train the model.

We report two accuracy measures for the tree re-
ordering model, one for non-terminal spans (accN )
and one for terminal spans (accT ). The following
column, labeled RO, is the reordering score of the
tree reordering model applied to the oracle parallel
parser tree. This score is independent of the mono-
lingual parsing model.

The fifth line, labeled learned alignments, shows
the impact of replacing manual alignment anno-
tations with learned Model 1 alignments, trained
in both directions and combined with the refined
heuristic (Brown et al., 1993; Och et al., 1999).

The pipeline column shows the reordering score
of the full STIR pipeline compared to two simple
baselines: Monotone applies no reordering, while
inverted simply inverts the word order. STIR out-
performs all three other systems.

In the final line, we compare to the syntax-based
pre-ordering system described in Genzel (2010).
This approach first parses source sentences with a
supervised parser, then learns reordering rules that
permute those trees.

5.2 Translation Quality

We apply STIR as a pre-ordering step in a state-
of-the-art phrase-based translation system from En-
glish to Japanese (Koehn et al., 2003). At training
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time, pre-ordering is applied to the source side of ev-
ery sentence pair in the training corpus before word
alignment and phrase extraction. Likewise, every in-
put sentence is pre-ordered at translation time.

Our baseline is the same system, but without pre-
ordering. Our implementation’s integrated distor-
tion model is expressed as a negative exponential
function of the distance between the current and pre-
vious source phrase, with a maximum jump width
of four words. Our in-house decoder is based on the
alignment template approach to translation and uses
a small set of standard feature functions during de-
coding (Och and Ney, 2004).

We compare to using an integrated lexicalized re-
ordering model (Koehn and Monz, 2005), a forest-
to-string translation model (Zhang et al., 2011) and
finally the syntactic pre-ordering technique of Gen-
zel (2010) applied to the phrase-based baseline. We
evaluate the impact of the proposed approach on
translation quality as measured by the BLEU score
on the token level (Papineni et al., 2002).

The translation model is trained on 700 million
tokens of parallel text, primarily extracted from the
web using automated parallel document identifica-
tion (Uszkoreit et al., 2010). Alignments were
learned using two iterations of Model 1 and two it-
erations of the HMM alignment model (Vogel et al.,
1996). Our dev and test data sets consist of 3100
and 1000 English sentences, respectively, that were
randomly sampled from the web and translated into
Japanese. The eval set is a larger, heterogenous
set containing 12,784 sentences. In all cases, the
final log-linear models were optimized on the dev
set using lattice-based Minimum Error Rate Train-
ing (Macherey et al., 2008).

Table 2 shows that STIR improves over the base-
line system by a large margin of 3.84% BLEU (test).
These gains are comparable in magnitude to those
reported in Genzel (2010). Our induced parses are
competitive with both systems that use syntactic
parsers and substantially outperform lexicalized re-
ordering.

6 Conclusion

We have demonstrated that induced parses suffice
for pre-ordering. We hope that future work in gram-
mar induction will also consider pre-ordering as an

BLEU %
dev test eval

Baseline 18.65 19.02 13.60
Lexicalized Reordering 19.45 18.92 13.99
Forest-to-String 23.08 22.85 16.60
Syntactic Pre-ordering 22.59 23.28 16.31
STIR: annotated 22.46 22.86 16.39
STIR: learned 20.28 20.66 14.64

Table 2: Translation quality, measured by BLEU, for En-
glish to Japanese. STIR results use both manually anno-
tated and learned alignments.

extrinsic evaluation.
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Abstract 

Due to its explicit modeling of the 
grammaticality of the output via target-side 
syntax, the string-to-tree model has been 
shown to be one of the most successful 
syntax-based translation models. However, 
a major limitation of this model is that it 
does not utilize any useful syntactic 
information on the source side. In this 
paper, we analyze the difficulties of 
incorporating source syntax in a string-to-
tree model. We then propose a new way to 
use the source syntax in a fuzzy manner, 
both in source syntactic annotation and in 
rule matching. We further explore three 
algorithms in rule matching: 0-1 matching, 
likelihood matching, and deep similarity 
matching. Our method not only guarantees 
grammatical output with an explicit target 
tree, but also enables the system to choose 
the proper translation rules via fuzzy use of 
the source syntax. Our extensive 
experiments have shown significant 
improvements over the state-of-the-art 
string-to-tree system. 

1 Introduction 

In recent years, statistical translation models based 
upon linguistic syntax have shown promising 
progress in improving translation quality. It 
appears that encoding syntactic annotations on 
either side or both sides in translation rules can 
increase the expressiveness of rules and can 
produce more accurate translations with improved 
reordering.  

One of the most successful syntax-based models 

is the string-to-tree model (Galley et al., 2006; 
Marcu et al., 2006; Shen et al., 2008; Chiang et al., 
2009). Since it explicitly models the 
grammaticality of the output via target-side syntax, 
the string-to-tree model (Xiao et al., 2010) 
significantly outperforms both the state-of-the-art 
phrase-based system Moses (Koehn et al., 2007) 
and the formal syntax-based system Hiero (Chiang, 
2007). However, there is a major limitation in the 
string-to-tree model: it does not utilize any useful 
source-side syntactic information, and thus to some 
extent lacks the ability to distinguish good 
translation rules from bad ones. 

The source syntax is well-known to be helpful in 
improving translation accuracy, as shown 
especially by tree-to-string systems (Quirk et al., 
2005; Liu et al., 2006; Huang et al., 2006; Mi et al., 
2008; Zhang et al., 2009).  The tree-to-string 
systems are simple and efficient, but they also have 
a major limitation: they cannot guarantee the 
grammaticality of the translation output because 
they lack target-side syntactic constraints.  

Thus a promising solution is to combine the 
advantages of the tree-to-string and string-to-tree 
approaches. A natural idea is the tree-to-tree model 
(Ding and Palmer, 2005; Cowan et al., 2006; Liu et 
al., 2009). However, as discussed by Chiang 
(2010), while tree-to-tree translation is indeed 
promising in theory, in practice it usually ends up 
over-constrained. Alternatively, Mi and Liu (2010) 
proposed to enhance the tree-to-string model with 
target dependency structures (as a language model). 
In this paper, we explore in the other direction: 
based on the strong string-to-tree model which 
builds an explicit target syntactic tree during 
decoding rather than apply only a syntactic 
language model, we aim to find a useful way to 
incorporate the source-side syntax. 
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First, we give a motivating example to show the 
importance of the source syntax for a string-to-tree 
model. Then we discuss the difficulties of 
integrating the source syntax into the string-to-tree 
model. Finally, we propose our solutions. 

Figure 1 depicts a standard process that 
transforms a Chinese string into an English tree 
using several string-to-tree translation rules. The 
tree with solid lines is produced by the baseline 
string-to-tree system. Although the yield is 
grammatical, the translation is not correct since the 
system mistakenly applies rule r2, thus translating 
the Chinese preposition 和 (hé ) in the example 
sentence into the English conjunction and. As a 
result, the Chinese prepositional phrase ‘和 恐怖 
组织  网’ (“with terrorist networks”) is wrongly 
translated as a part of the relevant noun phrase 
(“[Hussein] and terrorists networks”). Why does 
this happen? We find that r2 occurs 103316 times 
in our training data, while r3 occurs only 1021 
times. Thus, without source syntactic clues, the 
Chinese word 和 (h é ) is converted into the 
conjunction and in most cases. In general, this 
conversion is correct when the word 和(hé) is used 
as a conjunction. But 和(hé) is a preposition in the 
source sentence. If we are given this source 
syntactic clue, rule r3 will be preferred. This 
example motivates us to provide a moderate 
amount of source-side syntactic information so as 
to obtain the correct English tree with dotted lines 
(as our proposed system does). 

A natural question may arise that is it easy to 
incorporate source syntax in the string-to-tree 
model? To the best of our knowledge, no one has 
studied this approach before. In fact, it is not a 
trivial question if we look into the string-to-tree 
model. We find that the difficulties lie in at least 
three problems: 1) For a string-to-tree rule such as 
r6 in figure 1, how should we syntactically annotate 
its source string? 2) Given the source-annotated 
string-to-tree rules, how should we match these 
rules according to the test source tree during 
decoding? 3) How should we binarize the source-
annotated string-to-tree rules for efficient decoding? 

For the first problem, one may require the 
source side of a string-to-tree rule to be a 
constituent. However, such excessive constraints 
will exclude many good string-to-tree rules whose 
source strings are not constituents. Inspired by 
Chiang (2010), we adopt a fuzzy way to label 

every source string with the complex syntactic 
categories of SAMT (Zollmann and Venugopal, 
2006). This method leads to a one-to-one 
correspondence between the new rules and the 
string-to-tree rules. We will detail our fuzzy 
labeling method in Section 2. 

For the second problem, it appears simple and 
intuitive to match rules by requiring a rule’s source 
syntactic category to be the same as the category of 
the test string. However, this hard constraint will 
greatly narrow the search space during decoding. 
Continuing to pursue the fuzzy methodology, we 
adopt a fuzzy matching procedure to enable 
matching of all the rules whose source strings 
match the test string, and then determine the 
degree of matching between the test source tree 
and each rule. We will discuss three fuzzy 
matching algorithms, from simple to complex, in 
Section 3. 

The third question is a technical problem, and 
we will give our solution in Section 4. 

Our method not only guarantees the 
grammaticality of the output via the target tree 
structure, but also enables the system to choose 
appropriate translation rules during decoding 
through source syntactic fuzzy labeling and fuzzy 
matching.  

The main contributions of this paper are as 
follows: 

1) We propose a fuzzy method for both source 
syntax annotation and rule matching for 
augmenting string-to-tree models. 

2) We design and investigate three fuzzy rule 
matching algorithms: 0-1 matching, 
likelihood matching, and deep similarity 
matching. 

We hope that this paper will demonstrate how to 
effectively incorporate both source and target 
syntax into a translation model with promising 
results. 

2 Rule Extraction 

Since we annotate the source side of each string-to-
tree rule with source parse tree information in a 
fuzzy way, we will henceforward denote the 
source-syntax-decorated string-to-tree rule as a 
fuzzy-tree to exact-tree rule. We first briefly 
review issues of string-to-tree rule extraction; then 
we discuss how to augment the string-to-tree rules 
to yield fuzzy-tree to exact-tree rules. 
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Figure 1:  Two alternative derivations for a sample string-to-tree translation. The rules used are listed on the right. 

The target yield of the tree with solid lines is hussein and terrorist networks established relations. The target yield 
of the tree with dotted lines is hussein established relations with terrorist networks. 

 

2.1 String-to-Tree Rule Extraction 

Galley et al. (2004) proposed the GHKM algorithm 
for extracting (minimal) string-to-tree translation 
rules from a triple (f, et, a), where f is the source-
language sentence, et is a target-language parse tree 
whose yield e is the translation of f, and a is the set 
of word alignments between e and f. The basic idea 
of GHKM is to obtain the set of minimally-sized 
translation rules which can explain the mappings 
between source string and target parse tree. The 
minimal string-to-tree rules are extracted in three 
steps: (1) frontier set computation; (2) 
fragmentation; and (3) extraction. 
  The frontier set (FS) is the set of potential points 
at which to cut the graph G constructed by the 
triple (f, et, a) into fragments. A node satisfying the 
word alignment is a frontier. Bold italic nodes in 
the English parse tree in Figure 2 are all frontiers. 
   Given the frontier set, a well-formed 
fragmentation of G is generated by restricting each 
fragment to take only nodes in FS as the root and 
leaf nodes. 
   With fragmentation completed, the rules are 
extracted through a depth-first traversal of te : for 
each frontier being visited, a rule is extracted. 
These extracted rules are called minimal rules 
(Galley et al., 2004). For example, rules r ra i in 
Figure 2 are part of the total of 13 minimal rules.  

To improve the rule coverage, SPMT models 
can be employed to obtain phrasal rules (Marcu et 
at., 2006). In addition, the minimal rules which 
share the adjacent tree fragments can be connected 

together to form composed rules (Galley et al., 
2006). In Figure 2, jr  is a rule composed by 

combining cr and gr . 

2.2 Fuzzy-tree to Exact-tree Rule Extraction 

Our fuzzy-tree to exact-tree rule extraction works 
on word-aligned tree-to-tree data (Figure 2 
illustrates a Chinese-English tree pair).  Basically, 
the extraction algorithm includes two parts: 
(1) String-to-tree rule extraction (without 

considering the source parse tree); 
(2) Decoration of the source side of the string-to-

tree rules with syntactic annotations. 
We use the same algorithm introduced in the 

previous section for extracting the base string-to-
tree rules. The source-side syntactic decoration is 
much more complicated. 

The simplest way to decorate, as mentioned in 
the Introduction, is to annotate the source-side of a 
string-to-tree rule with the syntactic tag that 
exactly covers the source string. This is what the 
exact tree-to-tree procedure does (Liu et al., 2009). 
However, many useful string-to-tree rules will 
become invalid if we impose such a tight 
restriction. For example, in Figure 2, the English 
phrase discuss … them is a VP, but its Chinese 
counterpart is not a constituent. Thus we will miss 
the rule rh although it is a useful reordering rule. 
According to the analysis of our training data, the 
rules with rigid source-side syntactic constraints 
account for only about 74.5% of the base string-to-
tree rules. In this paper, we desire more general 
applicability. 
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S
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rb: 乐意 JJ(happy)

String-to-Tree rules:

ra: 我 FW(i)

rm: 和{P} IN(with)

rd: 他们 NP(them)
re: 讨论 VB(discuss)
rf: 此事 NP(DT(the) NN(matter))
rg: x0 x1 PP(x0:IN x1:NP)
rh: x2 x0 x1 VP(x0:VB x1:NP x2:PP)
ri: x0 VP(TO(to) x0:VP)

rj: 和 x0 PP(IN(with) x0:VP)

Fuzzy-tree to exact-tree rules:

rk: 我{PN} FW(i)

rl: 乐意{AD} JJ(happy)

rc: 和 IN(with)

rn: x2 x0 x1{PP*VP} VP(x0:VB x1:NP x2:PP)

ro: x0{PP*VP} VP(TO(to) x0:VP)

...

...

 
Figure 2:  A sample Chinese-English tree pair for rule extraction. The bold italic nodes in the target English tree are 
frontiers. Note that string-to-tree rules are extracted without considering source-side syntax (upper-right). The new 

fuzzy-tree to exact-tree rules are extracted with both-side parse trees (bottom-right). 
 

Inspired by (Zollmann and Venugopal, 2006; 
Chiang, 2010), we resort to SAMT-style syntactic 
categories in the style of categorial grammar (Bar-
Hillel, 1953). The annotation of the source side of 
string-to-tree rules is processed in three steps: (1) 
If the source-side string corresponds to a syntactic 
category C in the source parse tree, we label the 
source string with C. (2) Otherwise, we check if 
there exists an extended category of the forms 
C1*C2, C1/C2 or C2\C1

1, indicating respectively that 
the source string spans two adjacent syntactic 
categories, a partial syntactic category C1 missing a 
C2 on the right, or a partial C1 missing a C2 on the 
left. (3) If the second step fails, we check if there is 
an extended category of the forms C1*C2*C3 or 
C1..C2, showing that the source string spans three 
adjacent syntactic categories or a partial category 
with C1 and C2 on each side. In the worst case, 
C1..C2 can denote every source string, thus all of 
the decorations in our training data can be 
explained within the above three steps. Using the 
SAMT-style grammar, each source string can be 
associated with a syntactic category. Thus our 
fuzzy-tree to exact-tree extraction does not lose 

                                                           
1 The kinds of categories are checked in order. This means that 
if C1*C2, C1/C2 can both describe the same source string, we 
will choose C1*C2. 

any rules as compared with string-to-tree 
extraction. For example, rule ro in Figure 2 uses the 
product category *PP VP  on the source side. 

A problem may arise: How should we handle the 
situation where several rules are observed which 
only differ in their source-side syntactic categories? 
For example, besides the rule rm in Figure 2, we 
encountered rules like    CC IN with和  in the 

training data. Which source tag should we retain? 
We do not make a partial choice in the rule 
extraction phase. Instead, we simply make a union 
of the relevant rules and retain the respective tag 
counts. Applying this strategy, the rule takes the 
form of    : 6, : 4P CC IN with和

2, indicating that 

the source-side preposition tag appears six times 
while the conjunction occurs four times. Note that 
the final rule format used in translation depends on 
the specific fuzzy rule matching algorithm adopted. 

3 Fuzzy Rule Matching Algorithms 

The extracted rules will ultimately be applied to 
derive translations during decoding. One way to 
apply the fuzzy-tree to exact-tree rules is to narrow 
the rule search space. Given a test source sentence 

                                                           
2 6 and 4 are not real counts. They are used for illustration 
only. 
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with its parse tree, we can according to this 
strategy choose only the rules whose source syntax 
matches the test source tree.  However, this 
restriction will rule out many potentially correct 
rules. In this study, we keep the rule search space 
identical to that of the string-to-tree setting, and 
postpone the use of source-side syntax until the 
derivation stage. During derivation, a fuzzy 
matching algorithm will be adopted to compute a 
score to measure the compatibility between the 
rule and the test source syntax. The translation 
model will learn to distinguish good rules from bad 
ones via the compatibility scores. 
   In this section, three fuzzy matching algorithms, 
from simple to complex, are investigated in order. 

3.1 0-1 Matching 

0-1 matching is a straightforward approach that 
rewards rules whose source syntactic category 
exactly matches the syntactic category of the test 
string and punishes mismatches. It has mainly been 
employed in hierarchical phrase-based models for 
integrating source or both-side syntax (Marton and 
Resnik, 2008; Chiang et al., 2009; Chiang, 2010). 
Since it is verified to be very effective in 
hierarchical models, we borrow this idea in our 
source-syntax-augmented string-to-tree translation.  

In 0-1 matching, the rule’s source side must 
contain only one syntactic category, but a rule may 
have been decorated with more than one syntactic 
category on the source side. Thus we have to 
choose the most reliable category and discard the 
others. Here, we select the one with the highest 
frequency. For example, the tag P in the rule 

   : 6, : 4P CC IN with和  appears more frequently, 

so the final rule used in 0-1 matching will be 
   P IN with和 . Accordingly, we design two 

features: 
1. match_count calculates in a derivation the 

number of rules whose source-side syntactic 
category matches the syntactic category of the 
test string. 

2. unmatch_count counts the number of 
mismatches. 

For example, in the derivations of Figure 1, we 
know the Chinese word 和(hé)  is a preposition in 
this sentence (and thus can be written as P(和)), 
therefore, match_count += 1 if the above rule 

   P IN with和 is employed. 

These two features are integrated into the log-
linear translation model and the corresponding 
feature weights will be tuned along with other 
model features to learn which rules are preferred. 

3.2 Likelihood Matching 

It appears intuitively that the 0-1 matching 
algorithm does not make full use of the source-side 
syntax because it keeps only the most-frequent 
syntactic label and discards some potentially useful 
information. Therefore, it runs the risk of treating 
all the discarded source syntactic categories of the 
rule as equally likely. For example, there is an 
extracted rule as follows: 

   :11233, :11073, : 65DEC DEG DEV IN of的  

 0-1 matching converts it into    DEC IN of的 . 

The use of this rule will be penalized if the 
syntactic category of the test string 的(dē) is parsed 
as DEG or DEV. On one hand, the frequency of the 
tag DEG is just slightly less than that of DEC, but 
the 0-1 matching punishes the former while 
rewarding the latter. On the other hand, the 
frequency of DEG is much more than that of DEV, 
but they are penalized equally. It is obvious that 
the syntactic categories are not finely distinguished. 
   Considering this situation, we propose the 
likelihood matching algorithm. First, we compute 
the likelihood of the rule’s source syntactic 
categories. Since we need to deal with the potential 
problem that the rule is hit by the test string but the 
syntactic category of the test string is not in the 
category set of the rule’s source side, we apply the 
m-estimate of probability (Mitchell, 1997) to 
calculate a smoothed likelihood 

c
c

n mp
likelihood

n m




                     (1) 

in which nc is the count of each syntactic category 
c in a specific rule, n denotes the total count of the 
rule, m is a constant called the equivalent sample 
size, and p is the prior probability of the category c. 
In our work, we set the constant m=1 and the prior 
p to 1/12599 where 12599 is the total number of 
source-side syntactic categories in our training data.  
For example, the rule    : 6, : 4P CC IN with和  

becomes    : 0.545, : 0.364, 7.2 -6P CC e IN with和   

after likelihood computation. Then, if we apply 
likelihood matching in the derivations in Figure 1 
where the test string is 和 and its syntax is P(和), 
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the matching score with the above rule will be 
0.545. When the test Chinese word 和 is parsed as 
a category other than P or CC, the matching score 
with the above rule will be 7.2e-6. 
   Similar to 0-1 matching, likelihood matching will 
serve as an additional model feature representing 
the compatibility between categories and rules. 

3.3 Deep Similarity Matching 

Considering the two algorithms above, we can see 
that the purpose of fuzzy matching is in fact to 
calculate a similarity. 0-1 matching assigns 
similarity 1 for exact matches and 0 for mismatch, 
while likelihood matching directly utilizes the 
likelihood to measure the similarity. Going one 
step further, we adopt a measure of deep similarity, 
computed using latent distributions of syntactic 
categories. Huang et al. (2010) proposed this 
method to compute the similarity between two 
syntactic tag sequences, used to impose soft 
syntactic constraints in hierarchical phrase-based 
models. Analogously, we borrow this idea to 
calculate the similarity between two SAMT-style 
syntactic categories, and then apply it to calculate 
the degree of matching between a translation rule 
and the syntactic category of a test source string 
for purposes of fuzzy matching. We call this 
procedure deep similarity matching. 

Instead of directly using the SAMT-style 
syntactic categories, we represent each category by 
a real-valued feature vector. Suppose there is a set 
of n latent syntactic categories  1, , nV v v   (n=16 

in our experiments). For each SAMT-style 
syntactic category, we compute its distribution of 
latent syntactic categories       1 , ,c c c nP V P v P v


 .  

For example,    * 0.4, 0.2, 0.3, 0.1VP NPP V 


 means that 

the latent syntactic categories v1, v2, v3, v4 are 
distributed as p(v1)=0.4, p(v2)=0.2, p(v3)=0.3 and 
p(v4)=0.1 for the SAMT-style syntactic category 
VP*NP. Then we further transform the distribution 
to a normalized feature vector 
     c cF c P V P V
  

 to represent the SAMT-style 

syntactic category c. 
With the real-valued vector representation for 

each SAMT-style syntactic category, the degree of 
similarity between two syntactic categories can be 
simply computed as a dot-product of their feature 
vectors: 

       
1

' 'i i
i n

F c F c f c f c
 

  
 

                  (2) 

This computation yields a similarity score ranging 
from 0 (totally different syntactically) to 1 (totally 
identical syntactically). 

Since we can now compute the similarity of any 
syntactic category pair, we are currently ready to 
compute the matching degree between the 
syntactic category of a test source string and a 
fuzzy-tree to exact-tree rule. To do this, we first 
convert the original fuzzy-tree to exact-tree rule to 
the rule of likelihood format without any 
smoothing. For example, the rule 

   : 6, : 4P CC IN with和  becomes 

   : 0.6, : 0.4P CC IN with和 after conversion. We 

then denote the syntax of a rule’s source-side RS 
by weighting all the SAMT-style categories in RS 

     RS
c RS

F RS P c F c


 
 

                    (3) 

where  RSP c  is the likelihood of the category c. 

Finally, the deep similarity between a SAMT-style 
syntactic category tc of a test source string and a 
fuzzy-tree to exact-tree rule is computed as follows: 

     ,DeepSim tc RS F tc F RS 
 

                  (4) 

This deep similarity score will serve as a useful 
feature in the string-to-tree model which will 
enable the model to learn how to take account of 
the source-side syntax during translation. 

We have ignored the details of latent syntactic 
category induction in this paper. In brief, the set of 
latent syntactic categories is automatically induced 
from a source-side parsed, word-aligned parallel 
corpus. The EM algorithm is employed to induce 
the parameters. We simply follow the algorithm of 
(Huang et al., 2010), except that we replace the tag 
sequence with SAMT-style syntactic categories.  

4 Rule Binarization 

In the baseline string-to-tree model, the rules are 
not in Chomsky Normal Form. There are several 
ways to ensure cubic-time decoding. One way is to 
prune the extracted rules using a scope-3 grammar 
and do SCFG decoding without binarization 
(Hopkins and Lengmead, 2010). The other, and 
most popular way is to binarize the translation 
rules (Zhang et al., 2006). We adopt the latter 
approach for efficient decoding with integrated n-
gram language models since this binarization 
technique has been well studied in string-to-tree 
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translation. However, when the rules’ source string 
is decorated with syntax (fuzzy-tree to exact-tree 
rules), how should we binarize these rules? 
    We use the rule rn in Figure 2 for illustration: 

   2 0 1 0 1 2: * : : :nr x x x PP VP VP x VB x NP x PP . 

Without regarding the source-side syntax, we 
obtain the following two binarized rules: 

 
 

0 1

0 1

2 0*1 0*1 * 2

0 1 * 0 1

1: : :

2 : : :

x x

x x

B x x VP x V x PP

B x x V x VB x NP




 

Since the source-side syntax PP*VP in rule rn 
only accounts for the entire source side, it is 
unclear how to annotate the source side of a partial 
rule such as the second binary rule B2.  

Analyzing the derivation process, we observe 
that a partial rule such as binary rule B2 never 
appears in the final derivation unless the rooted 
binary rule B1 also appears in the derivation. 
Based on this observation, we design a heuristic3 
strategy: we simply attach the syntax PP*VP in the 
rooted binary rule B1, and do not decorate other 
binary rules with source syntax. Thus rule rn will 
be binarized as: 

     
   

0 1

0 1

2 0*1 0*1 * 2

0 1 * 0 1

1 * : :

2 : :

x x

x x

x x PP VP VP x V x PP

x x V x VB x NP




 

5 Translation Model and Decoding 

The proposed translation system is an 
augmentation of the string-to-tree model. In the 
baseline string-to-tree model, the decoder searches 
for the optimal derivation *d  that parses a source 
string f into a target tree et from all possible 
derivations D: 

    

 

*
1 2

3

arg max log

|

LM
d D

d p d d

d R d f

   




 

 
                  (5) 

where the first element is a language model score 
in which  d  is the target yield of derivation d ; 

the second element is the translation length penalty; 
the third element is used to control the derivation 
length; and the last element is a translation score 
that includes six features: 

                                                           
3 We call it heuristic because there may be other syntactic 
annotation strategies for the binarized rules. It should be noted 
that our strategy makes the annotated binarized rules 
equivalent to the original rule. 

     

   
   

4 5

6 7

8 9

| log | ( ) log | ( )

log | ( ) log ( ) | ( )

log ( ) | ( ) _

r d

lex

lex

R d f p r root r p r lhs r

p r rhs r p lhs r rhs r

p rhs r lhs r is comp

 

 

  



 

 

 


(6) 

In equation (6), the first three elements denote the 
conditional probability of the rule given the root, 
the source-hand side, and the target-hand side. The 
next two elements are bidirectional lexical 
translation probabilities. The last element is the 
preferred binary feature for learning: either the 
composed rule or the minimal rule. 
    In our source-syntax-augmented model, the 
decoder also searches for the best derivation. With 
the help of the source syntactic information, the 
derivation rules in our new model are much more 
distinguishable than that in the string-to-tree model: 

    

 

*
1 2

3

arg max log

|

LM
d D

d p d d

d R d f

   




 

 
            (7) 

Here, all elements except the last one are the same 
as in the string-to-tree model. The last item is: 

   
    

    
      

10

11

12 13

| |

log ,

log ,

01

r d

R d f R d f

DeepSim DeepSim tag r

likelihood likelihood tag r

match unmatch

 

 

    









 

      (8) 

The 0-1 matching4 is triggered only when we set 
 01 1  . The other two fuzzy matching algorithms 

are triggered in a similar way. 
During decoding, we use a CKY-style parser 

with beam search and cube-pruning (Huang and 
Chiang, 2007) to decode the new source sentences. 

6 Experiments 

6.1 Experimental Setup 

The experiments are conducted on Chinese-to-
English translation, with training data consisting of 
about 19 million English words and 17 million 
Chinese words5. We performed bidirectional word 
alignment using GIZA++, and employed the grow-
diag-final balancing strategy to generate the final 
                                                           
4  In theory, the features unmatch_count, match_count and 
derivation_length are linearly dependent, so the 
unmatch_count is redundant. In practice, since the derivation 
may include glue rules which are not scored by fuzzy 
matching. Thus, "unmatch_count + match_count + 
glue_rule_number = derivation_length". 
5  LDC catalog number: LDC2002E18, LDC2003E14, 
LDC2003E07, LDC2004T07 and LDC2005T06. 
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symmetric word alignment. We parsed both sides 
of the parallel text with the Berkeley parser (Petrov 
et al., 2006) and trained a 5-gram language model 
with the target part of the bilingual data and the 
Xinhua portion of the English Gigaword corpus. 
    For tuning and testing, we use NIST MT 
evaluation data for Chinese-to-English from 2003 
to 2006 (MT03 to MT06). The development data 
set comes from MT06 in which sentences with 
more than 20 words are removed to speed up 
MERT6 (Och, 2003). The test set includes MT03 
to MT05. 
   We implemented the baseline string-to-tree 
system ourselves according to (Galley et al., 2006; 
Marcu et al., 2006). We extracted minimal GHKM 
rules and the rules of SPMT Model 1 with source 
language phrases up to length L=4. We further 
extracted composed rules by composing two or 
three minimal GHKM rules. We also ran the state-
of-the-art hierarchical phrase-based system Joshua 
(Li et al., 2009) for comparison. In all systems, we 
set the beam size to 200. The final translation 
quality is evaluated in terms of case-insensitive 
BLEU-4 with shortest length penalty. The 
statistical significance test is performed using the 
re-sampling approach (Koehn, 2004). 

6.2 Results 

Table 1 shows the translation results on 
development and test sets. First, we investigate the 
performance of the strong baseline string-to-tree 
model (s2t for short). As the table shows, s2t 
outperforms the hierarchical phrase-based system 
Joshua by more than 1.0 BLEU point in all 
translation tasks. This result verifies the superiority 
of the baseline string-to-tree model. 
   With the s2t system providing a baseline, we 
further study the effectiveness of our source-
syntax-augmented string-to-tree system with 
fuzzy-tree to exact-tree rules (we use FT2ET to 
denote our proposed system). The last three lines 
in Table 1 show that, for each fuzzy matching 
algorithm, our new system TF2ET performs 
significantly better than the baseline s2t system, 
with an improvement of more than 0.5 absolute 
BLEU points in all tasks. This result demonstrates 
the success of our new method of incorporating 
source-side syntax in a string-to-tree model. 

                                                           
6 The average decoding speed is about 50 words per minute in 
the baseline string-to-tree system and our proposed systems. 

System MT06
(dev)

MT03 MT04 MT05

Joshua 29.42 28.62 31.52 31.39 

s2t 30.84 29.75 32.68 32.41 

0-1 31.61** 30.60** 33.45** 33.37**

LH 31.35* 30.34* 33.21* 33.05*

 
FT2ET

DeepSim 31.77** 30.82** 33.69** 33.50**

Table 1: Results (in BLEU scores) of different 
translation models in multiple tasks. LH=likelihood. 
*or**=significantly better than s2t system (p<0.05 or 

0.01 respectively). 
 

 Very similar 

   'F c F c
 

>0.9 

Very dissimilar 

   'F c F c
 

<0.1

ADJP JJ;  AD\ADJP VP;  ADVP\NP 
NP DT*NN;  LCP*P*NP CP;  BA*CP 

Table 2: Example of similar and dissimilar categories. 
 
Specifically, the FT2ET system with deep 

similarity matching obtains the best translation 
quality in all tasks and surpasses the baseline s2t 
system by 0.93 BLEU points in development data 
and by more than 1.0 BLEU point in test sets. The 
0-1 matching algorithm is simple but effective, and 
it yields quite good performance (line 3). The 
contribution of 0-1 matching as reflected in our 
experiments is consistent with the conclusions of 
(Marton and Resnik, 2008; Chiang, 2010). By 
contrast, the system with likelihood matching does 
not perform as well as the other two algorithms, 
although it also significantly improves the baseline 
s2t in all tasks. 

6.3 Analysis and Discussion 

We are a bit surprised at the large improvement 
gained by the 0-1 matching algorithm. This 
algorithm has several advantages: it is simple and 
easy to implement, and enhances the translation 
model by enabling its rules to take account of the 
source-side syntax to some degree. However, a 
major deficiency of this algorithm is that it does 
not make full use of the source side syntax, since it 
retains only the most frequent SAMT-style 
syntactic category to describe the rule’s source 
syntax. Thus this algorithm penalizes all the other 
categories equally, although some may be more 
frequent than others, as in the case of DEG and 
DEV in the rule 

   :11233, :11073, : 65DEC DEG DEV IN of的 .  

To some extent, the likelihood matching 
algorithm solves the main problem of 0-1 matching. 
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Instead of rewarding or penalizing, this algorithm 
uses the likelihood of the syntactic category to 
approximate the degree of matching between the 
test source syntactic category and the rule. For a 
category not in the rule’s source syntactic category 
set, the likelihood algorithm computes a smoothed 
likelihood. However, the likelihood algorithm does 
not in fact lead to very promising improvement. 
We conjecture that this disappointing performance 
is due to the simple smoothing method we 
employed. Future work will investigate more fully. 

Compared with the above two matching 
algorithms, the deep similarity matching algorithm 
based on latent syntactic distribution is much more 
beautiful in theory. This algorithm can successfully 
measure the similarity between any two SAMT-
style syntactic categories (Table 2 gives some 
examples of similar and dissimilar category pairs).  
Then it can accurately compute the degree of 
matching between a test source syntactic category 
and a fuzzy-tree to exact-tree rule. Thus this 
algorithm obtains the best translation quality. 
However, the deep similarity matching algorithm 
has two practical shortcomings. First, it is not easy 
to determine the number of latent categories. We 
have to conduct multiple experiments to arrive at a 
number which can yield a tradeoff between 
translation quality and model complexity. In our 
work, we have tried the numbers n=4, 8, 16, 32, 
and have found n=16 to give the best tradeoff. The 
second shortcoming is that the induction of latent 
syntactic categories has been very time consuming, 
since we have applied the EM algorithm to the 
entire source-parsed parallel corpus. Even with 
n=8, it took more than a week to induce the latent 
syntactic categories on our middle-scale training 
data when using a Xeon four-core computer 
( 2.5 2 16GHz CPU GB  memory). When the training 
data contains tens of millions of sentence pairs, the 
computation time may no longer be tolerable. 

Table 3 shows some translation examples for 
comparison. In the first example, the Chinese 
preposition word 和 is mistakenly translated into 
English conjunction word and in Joshua and 
baseline string-to-tree system s2t, however, our 
source-syntax-augmented system FT2ET-DeepSim 
correctly converts the Chinese word 和  into 
English preposition with and finally yield the right 
translation. In the second example, our proposed 
system moves the prepositional phrase at an early 

date after the sibling verb phrase. It is more 
reasonable compared with the baseline system s2t. 
In the third example, the proposed system FT2ET-
DeepSim successfully recognizes the Chinese long 
prepositional phrase 在 与 中国 总理 温家宝 举行 峰
会 后 发布 的联合 声明 中 and short verb phrase 说, 
and obtains the correct phrase reordering at last. 

7 Related Work 

Several studies have tried to incorporate source or 
target syntax into translation models in a fuzzy 
manner. 

Zollmann and Venugopal (2006) augment the 
hierarchical string-to-string rules (Chiang, 2005) 
with target-side syntax. They annotate the target 
side of each string-to-string rule using SAMT-style 
syntactic categories and aim to generate the output 
more syntactically. Zhang et al. (2010) base their 
approach on tree-to-string models, and generate 
grammatical output more reliably with the help of 
tree-to-tree sequence rules. Neither of them builds 
target syntactic trees using target syntax, however. 
Thus they can be viewed as integrating target 
syntax in a fuzzy manner. By contrast, we base our 
approach on a string-to-tree model which does 
construct target syntactic trees during decoding. 

(Marton and Resnik, 2008; Chiang et al., 2009 
and Huang et al., 2010) apply fuzzy techniques for 
integrating source syntax into hierarchical phrase-
based systems (Chiang, 2005, 2007). The first two 
studies employ 0-1 matching and the last tries deep 
similarity matching between two tag sequences. By 
contrast, we incorporate source syntax into a 
string-to-tree model. Furthermore, we apply fuzzy 
syntactic annotation on each rule’s source string 
and design three fuzzy rule matching algorithms. 

Chiang (2010) proposes a method for learning to 
translate with both source and target syntax in the 
framework of a hierarchical phrase-based system. 
He not only executes 0-1 matching on both sides of 
rules, but also designs numerous features such as 

. 'X Xroot  which counts the number of rules whose 
source-side root label is X  and target-side root 
label is 'X .  This fuzzy use of source and target 
syntax enables the translation system to learn 
which tree labels are similar enough to be 
compatible, which ones are harmful to combine, 
and which ones can be ignored. The differences 
between us are twofold: 1) his work applies fuzzy 
syntax in both sides, while ours bases on the string- 
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Source sentence 海珊 也 [和 恐怖 组织网] 建立 了 联系 

Reference hussein also established ties with terrorist networks 

Joshua hussein also and terrorist networks established relations 

s2t hussein also and terrorist networks established relations 

 
 
1 

FT2ET- DeepSim hussein also established relations with terrorist networks 

Source sentence … [以 期] [早日] [结束] [以 巴 之间 多年 的 流血 冲突] 

Reference .. to end years of bloody conflict between israel and palestine as soon as possible 

.. to end at an early date years of bloody conflict between israel and palestine 

Joshua … in the early period to end years of blood conflict between israel and palestine 

s2t … at an early date to end years of blood conflict between israel and palestine 

 
 
 
2 

FT2ET- DeepSim … to end years of blood conflict between israel and palestine at an early date 

Source sentence 欧盟 [在 与 中国 总理 温家宝 举行 峰会 后 发布 的联合 声明 中] [说] … 

 
Reference 

the europen union said in a joint statement issued after its summit meeting with china ‘s 
premier wen jiabao … 
in a joint statement released after the summit with chinese premier wen jiabao , the 
europen union said … 

Joshua the europen union with chinese premier wen jiabao in a joint statement issued after the 
summit meeting said … 

s2t the europen union in a joint statement issued after the summit meeting with chinese 
premier wen jiabao said … 

 
 
 
 
 
3 

FT2ET- DeepSim the europen union said in a joint statement issued after the summit meeting with chinese 
premier wen jiabao … 

 
Table 3: Some translation examples produced by Joshua, string-to-tree system s2t and source-syntax-augmented 

string-to-tree system FT2ET with deep similarity matching algorithm 
 
to-tree model and applies fuzzy syntax on source 
side; and 2) we not only adopt the 0-1 fuzzy rule 
matching algorithm, but also investigate likelihood 
matching and deep similarity matching algorithms. 

8 Conclusion and Future Work 

In this paper, we have proposed a new method for 
augmenting string-to-tree translation models with 
fuzzy use of the source syntax. We first applied a 
fuzzy annotation method which labels the source 
side of each string-to-tree rule with SAMT-style 
syntactic categories. Then we designed and 
explored three fuzzy rule matching algorithms: 0-1 
matching, likelihood matching, and deep similarity 
matching. The experiments show that our new 
system significantly outperforms the strong 
baseline string-to-tree system. This substantial 
improvement verifies that our fuzzy use of source 
syntax is effective and can enhance the ability to 
choose proper translation rules during decoding 
while guaranteeing grammatical output with 
explicit target trees. We believe that our work may 
demonstrate effective ways of incorporating both-
side syntax in a translation model to yield 
promising results. 

   Next, we plan to further study the likelihood 
fuzzy matching and deep similarity matching 
algorithms in order to fully exploit their potential. 
For example, we will combine the merits of 0-1 
matching and likelihood matching so as to avoid 
the setting of parameter m in likelihood matching. 
We also plan to explore another direction: we will 
annotate the source side of each string-to-tree rule 
with subtrees or subtree sequences. We can then 
apply tree-kernel methods to compute a degree of 
matching between a rule and a test source subtree 
or subtree sequence. 
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Abstract

Dependency structure, as a first step towards
semantics, is believed to be helpful to improve
translation quality. However, previous works
on dependency structure based models typi-
cally resort to insertion operations to complete
translations, which make it difficult to spec-
ify ordering information in translation rules.
In our model of this paper, we handle this
problem by directly specifying the ordering
information in head-dependents rules which
represent the source side as head-dependents
relations and the target side as strings. The
head-dependents rules require only substitu-
tion operation, thus our model requires no
heuristics or separate ordering models of the
previous works to control the word order of
translations. Large-scale experiments show
that our model performs well on long dis-
tance reordering, and outperforms the state-
of-the-art constituency-to-string model (+1.47
BLEU on average) and hierarchical phrase-
based model (+0.46 BLEU on average) on two
Chinese-English NIST test sets without resort
to phrases or parse forest. For the first time,
a source dependency structure based model
catches up with and surpasses the state-of-the-
art translation models.

1 Introduction

Dependency structure represents the grammatical
relations that hold between the words in a sentence.
It encodes semantic relations directly, and has the
best inter-lingual phrasal cohesion properties (Fox,
2002). Those attractive characteristics make it pos-

sible to improve translation quality by using depen-
dency structures.

Some researchers pay more attention to use de-
pendency structure on the target side. (Shen et al.,
2008) presents a string-to-dependency model, which
restricts the target side of each hierarchical rule to be
a well-formed dependency tree fragment, and em-
ploys a dependency language model to make the out-
put more grammatically. This model significantly
outperforms the state-of-the-art hierarchical phrase-
based model (Chiang, 2005). However, those string-
to-tree systems run slowly in cubic time (Huang et
al., 2006).

Using dependency structure on the source side
is also a promising way, as tree-based systems run
much faster (linear time vs. cubic time, see (Huang
et al., 2006)). Conventional dependency structure
based models (Lin, 2004; Quirk et al., 2005; Ding
and Palmer, 2005; Xiong et al., 2007) typically
employ both substitution and insertion operation to
complete translations, which make it difficult to
specify ordering information directly in the transla-
tion rules. As a result, they have to resort to either
heuristics (Lin, 2004; Xiong et al., 2007) or sepa-
rate ordering models (Quirk et al., 2005; Ding and
Palmer, 2005) to control the word order of transla-
tions.

In this paper, we handle this problem by di-
rectly specifying the ordering information in head-
dependents rules that represent the source side as
head-dependents relations and the target side as
string. The head-dependents rules have only one
substitution operation, thus we don’t face the prob-
lems appeared in previous work and get rid of the
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heuristics and ordering model. To alleviate data
sparseness problem, we generalize the lexicalized
words in head-dependents relations with their cor-
responding categories.

In the following parts, we first describe the moti-
vation of using head-dependents relations (Section
2). Then we formalize our grammar (Section 3),
present our rule acquisition algorithm (Section 4),
our model (Section 5) and decoding algorithm (Sec-
tion 6). Finally, large-scale experiments (Section 7)
show that our model exhibits good performance on
long distance reordering, and outperforms the state-
of-the-art tree-to-string model (+1.47 BLEU on av-
erage) and hierarchical phrase-based model (+0.46
BLEU on average) on two Chinese-English NIST
test sets. For the first time, a source dependency tree
based model catches up with and surpasses the state-
of-the-art translation models.

2 Dependency Structure and
Head-Dependents Relation

2.1 Dependency Sturcture
A dependency structure for a sentence is a directed
acyclic graph with words as nodes and modification
relations as edges. Each edge direct from a head to
a dependent. Figure 1 (a) shows an example depen-
dency structure of a Chinese sentence.

2010年 FIFA世界杯在南非成功举行

2010 FIFA [World Cup] in/at [South Africa]
successfully hold

Each node is annotated with the part-of-speech
(POS) of the related word.

For convenience, we use the lexicon dependency
grammar (Hellwig, 2006) which adopts a bracket
representation to express a projective dependency
structure. The dependency structure of Figure 1 (a)
can be expressed as:

((2010年) (FIFA)世界杯) (在(南非)) (成功)举行

where the lexicon in brackets represents the depen-
dents, while the lexicon out the brackets is the head.

To construct the dependency structure of a sen-
tence, the most important thing is to establish de-
pendency relations and distinguish the head from the
dependent. Here are some criteria (Zwicky, 1985;

x2:x2:x1:x1: x3:ADx3:AD

x1 was held x3 x2x1  was held x3 x2

/P/P/NR/NR

/NR/NR

/AD/AD

2010 /NT2010 /NT FIFA/NRFIFA/NR

/VV/VV

/P/P/NR/NR /AD/AD

/VV/VV

(a)

(b)

(c)

successfullysuccessfully(d)

Figure 1: Examples of dependency structure (a), head-
dependents relation (b), head-dependents rule (r1 of Fig-
ure 2) and head rule (d). Where “x1:世界杯” and
“x2:在” indicate substitution sites which can be replaced
by a subtree rooted at “世界杯” and “在” respectively.
“x3:AD”indicates a substitution site that can be replaced
by a subtree whose root has part-of-speech “AD”. The
underline denotes a leaf node.

Hudson, 1990) for identifying a syntactic relation
between a head and a dependent between a head-
dependent pair:

1. head determines the syntactic category of C,
and can often replace C;

2. head determines the semantic category of C;
dependent gives semantic specification.

2.2 Head-Dependents Relation

A head-dependents relation is composed of a head
and all its dependents as shown in Figure 1(b).

Since all the head-dependent pairs satisfy crite-
ria 1 and 2, we can deduce that a head-dependents
relation L holds the property that the head deter-
mines the syntactic and semantic categories of L,
and can often replace L. Therefore, we can recur-
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sively replace the bottom level head-dependent re-
lations of a dependency structure with their heads
until the root. This implies an representation of the
generation of a dependency structure on the basis of
head-dependents relation.

Inspired by this, we represent the translation rules
of our dependency-to-string model on the founda-
tion of head-dependents relations.

3 Dependency-to-String Grammar

Figure 1 (c) and (d) show two examples of the trans-
lation rules used in our dependency-to-string model.
The former is an example of head-dependent rules
that represent the source side as head-dependents re-
lations and act as both translation rules and reorder-
ing rules. The latter is an example of head rules
which are used for translating words.

Formally, a dependency-to-string grammar is de-
fined as a tuple ⟨Σ, N, ∆, R⟩, where Σ is a set of
source language terminals, N is a set of categories
for the terminals in Σ , ∆ is a set of target language
terminals, and R is a set of translation rules. A rule
r in R is a tuple ⟨t, s, ϕ⟩, where:

- t is a node labeled by terminal from Σ; or a
head-dependents relation of the source depen-
dency structures, with each node labeled by a
terminal from Σ or a variable from a set X =
{x1, x2, ...} constrained by a terminal from Σ
or a category from N ;

- s ∈ (X ∪∆)∗ is the target side string;

- ϕ is a one-to-one mapping from nonterminals
in t to variables in s.

For example, the head-dependents rule shown in
Figure 1 (c) can be formalized as:

t = ((x1:世界杯) (x2:在) (x3:AD)举行)
s = x1 was held x3 x2

ϕ = {x1:世界杯↔ x1, x2:在↔ x2, x3:AD↔ x3}

where the underline indicates a leaf node, and
xi:letters indicates a pair of variable and its con-
straint.

A derivation is informally defined as a sequence
of steps converting a source dependency structure
into a target language string, with each step apply-
ing one translation rule. As an example, Figure 2

/P/P/NR/NR

//NNRR/NR

/AADD/AD

2010 /NT2010 /NT FIFA//NNRRFIFA/NR

/VV/VV

20102010 FIFAFIFA

/P/P/NR/NR

/NR/NR

/AD/AD

2010 /NT2010 /NT FIFA/NRFIFA/NR

was heldwas held

/P/P/NR/NR

/NR/NR2010 /NT2010 /NT FIFA/NRRFIFA/NR

was held successfullywas held successfully

/P/P

/NR/NR

2010 FIFA [World Cup] was held successfully2010  FIFA  [World Cup]  was  held  successfully  

2010 FIFA World Cup was held successfully in2010  FIFA  World  Cup  was  held  successfully  in

2010 FIFA World Cup was held successfully in [South Africa]2010 FIFA World Cup was held successfully in [South Africa]

parser

(a)

(b)

(c)

(d)

(e)

(f)

(g)

NRRRRRR

DDD

RRRNNNNNNNN

RR

r3: (2010 ) (FIFA)  

 à2010 FIFA World Cup

r2: àsuccessfully

r1: (x1: )(x2 : )(x3:AD)

  àx1 was held x3 x2

r4:  (x2:NR)àin x2

r5: àSouth Africa

e

Figure 2: An example derivation of dependency-to-string
translation. The dash lines indicate the reordering when
employing a head-dependents rule.

shows the derivation for translating a Chinese (CH)
sentence into an English (EN) string.

CH 2010年 FIFA世界杯在南非成功举行

EN 2010 FIFA World Cup was held successfully in
South Africa
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The Chinese sentence (a) is first parsed into a de-
pendency structure (b), which is converted into an
English string in five steps. First, at the root node,
we apply head-dependents rule r1 shown in Figure
1(c) to translate the top level head-dependents rela-
tion and result in three unfinished substructures and
target string in (c). The rule is particular interesting
since it captures the fact: in Chinese prepositional
phrases and adverbs typically modify verbs on the
left, whereas in English prepositional phrases and
adverbs typically modify verbs on the right. Second,
we use head rule r2 translating “成功” into “success-
fully” and reach situation (d). Third, we apply head-
dependents rule r3 translating the head-dependents
relation rooted at “世界杯” and yield (e). Fourth,
head-dependents rules r5 partially translate the sub-
tree rooted at “在” and arrive situation in (f). Finally,
we apply head rule r5 translating the residual node
“南非” and obtain the final translation in (g).

4 Rule Acquisition

The rule acquisition begins with a word-aligned cor-
pus: a set of triples ⟨T, S, A⟩, where T is a source
dependency structure, S is a target side sentence,
and A is an alignment relation between T and S.
We extract from each triple ⟨T, S, A⟩ head rules that
are consistent with the word alignments and head-
dependents rules that satisfy the intuition that syn-
tactically close items tend to stay close across lan-
guages. We accomplish the rule acquisition through
three steps: tree annotation, head-dependents frag-
ments identification and rule induction.

4.1 Tree Annotation

Given a triple ⟨T, S, A⟩ as shown in Figure 3, we
first annotate each node n of T with two attributes:
head span and dependency span, which are defined
as follows.

Definition 1. Given a node n, its head span hsp(n)
is a set of index of the target words aligned to n.

For example, hsp(2010年)={1, 5}, which corre-
sponds to the target words “2010” and “was”.

Definition 2. A head span hsp(n) is consistent if it
satisfies the following property:

∀n′ ̸=nhsp(n′) ∩ hsp(n) = ∅.

/P

{5,8}{9,10}

/P

{5,8}{9,10}

/NR

{3,4}{2-4}

/NR

{9,10}{9,10}

/AD

{7}{7}

2010 /NT

{1,5}{}

2010 /NT

{1,5}{}

FIFA/NR

{2,2}{2,2}

/VV

{6}{2-10}

2010

1

2010

1

FIFFA

2

FIFA

2
World

3

World

3
held

6

held

6
successfully

7

successfully

7
in

8

in

8
South

9

South

9

1 }}{{9

NNRR

}}

RR

Cup

4

Cup

4
was

5

was

5
Africa

10

Africa

10

Figure 3: An annotated dependency structure. Each node
is annotated with two spans, the former is head span and
the latter dependency span. The nodes in acceptable head
set are displayed in gray, and the nodes in acceptable de-
pendent set are denoted by boxes. The triangle denotes
the only acceptable head-dependents fragment.

For example, hsp(南非) is consistent, while
hsp(2010年) is not consistent since hsp(2010年) ∩
hsp(在) = 5.

Definition 3. Given a head span hsp(n), its closure
cloz(hsp(n)) is the smallest contiguous head span
that is a superset of hsp(n).

For example, cloz(hsp(2010年)) = {1, 2, 3, 4, 5},
which corresponds to the target side word sequence
“2010 FIFA World Cup was”. For simplicity, we use
{1-5} to denotes the contiguous span {1, 2, 3, 4, 5}.
Definition 4. Given a subtree T

′
rooted at n, the

dependency span dsp(n) of n is defined as:

dsp(n) = cloz(
∪

n′∈T
′

hsp(n′) is consistent

hsp(n′)).

If the head spans of all the nodes of T
′

is not consis-
tent, dsp(n) = ∅.

For example, since hsp(在) is not consistent,
dsp(在)=dsp(南非)={9, 10}, which corresponds to
the target words “South” and “Africa”.

The tree annotation can be accomplished by a sin-
gle postorder transversal of T . The extraction of
head rules from each node can be readily achieved
with the same criteria as (Och and Ney, 2004). In
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the following, we focus on head-dependents rules
acquisition.

4.2 Head-Dependents Fragments Identification
We then identify the head-dependents fragments that
are suitable for rule induction from the annotated de-
pendency structure.

To facilitate the identification process, we first de-
fine two sets of dependency structure related to head
spans and dependency spans.

Definition 5. A acceptable head set ahs(T) of a de-
pendency structure T is a set of nodes, each of which
has a consistent head span.

For example, the elements of the acceptable head
set of the dependency structure in Figure 3 are dis-
played in gray.

Definition 6. A acceptable dependent set adt(T) of
a dependency structure T is a set of nodes, each of
which satisfies: dep(n) ̸= ∅.

For example, the elements of the acceptable de-
pendent set of the dependency structure in Figure 3
are denoted by boxes.

Definition 7. We say a head-dependents fragments
is acceptable if it satisfies the following properties:

1. the root falls into acceptable head set;

2. all the sinks fall into acceptable dependent set.

An acceptable head-dependents fragment holds
the property that the head span of the root and the de-
pendency spans of the sinks do not overlap with each
other, which enables us to determine the reordering
in the target side.

The identification of acceptable head-dependents
fragments can be achieved by a single preorder
transversal of the annotated dependency structure.
For each accessed internal node n, we check
whether the head-dependents fragment f rooted at
n is acceptable. If f is acceptable, we output an
acceptable head-dependents fragment; otherwise we
access the next node.

Typically, each acceptable head-dependents frag-
ment has three types of nodes: internal nodes, inter-
nal nodes of the dependency structure; leaf nodes,
leaf nodes of the dependency structure; head node, a
special internal node acting as the head of the related
head-dependents relation.

/P

{5,8}{9,10}

/P

{5,8}{9,10}

/NR

{3,4}{2-4}

/AD

{7}{7}

/VV

{6}{2-10}

}

heldheld successfullysuccessfully[FIFA World Cup][FIFA World Cup] South Africa][South Africa]

Input:

Output:

x2:x2:x1:x1:

x1 held successfully x2x1  held successfully x2

(x1: )(x2: )( ) 

      à  x1  held successfully x2

(a)

(b)

Figure 4: A lexicalized head-dependents rule (b) induced
from the only acceptable head-dependents fragment (a)
of Figure 3.

4.3 Rule Induction
From each acceptable head-dependents fragment,
we induce a set of lexicalized and unlexicalized
head-dependents rules.

4.3.1 Lexicalized Rule
We induce a lexicalized head-dependents rule

from an acceptable head-dependents fragment by
the following procedure:

1. extract the head-dependents relation and mark
the internal nodes as substitution sites. This
forms the input of a head-dependents rule;

2. place the nodes in order according to the head
span of the root and the dependency spans of
the sinks, then replace the internal nodes with
variables and the other nodes with the target
words covered by their head spans. This forms
the output of a head-dependents rule.

Figure 4 shows an acceptable head-dependents
fragment and a lexicalized head-dependents rule in-
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duced from it.

4.3.2 Unlexicalized Rules
Since head-dependents relations with verbs as

heads typically consist of more than four nodes, em-
ploying only lexicalized head-dependents rules will
result in severe sparseness problem. To alleviate
this problem, we generalize the lexicalized head-
dependents rules and induce rules with unlexicalized
nodes.

As we know, the modification relation of a head-
dependents relation is determined by the edges.
Therefore, we can replace the lexical word of each
node with its categories (i.e. POS) and obtain new
head-dependents relations with unlexicalized nodes
holding the same modification relation. Here we call
the lexicalized and unlexicalized head-dependents
relations as instances of the modification relation.
For a head-dependents relation with m node, we can
produce 2m − 1 instances with unlexicalized nodes.
Each instance represents the modification relation
with a different specification.

Based on this observation, from each lexical-
ized head-dependent rule, we generate new head-
dependents rules with unlexicalized nodes according
to the following principles:

1. change the aligned part of the target string into
a new variable when turning a head node or a
leaf node into its category;

2. keep the target side unchanged when turning a
internal node into its category.

Restrictions: Since head-dependents relations
with verbs as heads typically consists of more than
four nodes, enumerating all the instances will re-
sult in a massive grammar with too many kinds of
rules and inflexibility in decoding. To alleviate these
problems, we filter the grammar with the following
principles:

1. nodes of the same type turn into their categories
simultaneously.

2. as for leaf nodes, only those with open class
words can be turned into their categories.
In our experiments of this paper, we only
turn those dependents with POS tag in the
set of {CD,DT,OD,JJ,NN,NR,NT,AD,FW,PN}
into their categories.

x2:x2:x1:x1:

helddheld successfullysuccessfullyx1x1 x2x2

(x1: )(x2: )( ) 

 à x1  held successfully x2

x2:x2:x1:x1: x3::AAADDx3:AD

helddheld x3x3

AAAADAADDD

x1x1 x2x2

(x1: )(x2: )(x3:AD) 

 à x1  held x3 x2

x2:Px2:Px1:NRx1:NR

helddheld successfullysuccessfullyx1x1 x2x2

(x1:NR)(x2:P)( ) 

à x1  held successfully x2

x2:Px2:Px1:NRx1:NR x3::AAADDx3:AD

helddheld x3x3l

ADDDDDD

x1x1 x2x2

(x1:NR)(x2:P)(x3:AD) 

 à x1  held x3 x2

x2:x2:x1:x1:

x4x4 successfullysuccessfully

x4:VVx4:VV

x1x1 x2x2

(x1: )(x2: )( ) x4:VV

 à x1  x4 successfully x2

x2:x2:x1:x1: x3::AAADDx3:AD

x4x4 x3x3

AAAAADDDDDD

x4:VVx4:VV

x1x1 x2x2

(x1: )(x2: )(x3:AD) x4:VV

 à   x1  x4  x3 x2

x2:Px2:Px1:NRx1:NR

x4x4 successfullysuccessfully

x4:VVx4:VV

x1x1 x2x2

(x1:NR)(x2:P)( ) x4:VV

 à x1 x4 successfully x2

x2:Px2:Px1:NRx1:NR x3::AAADDx3:AD

x4x4 x3x3

AADAADDDDDD

x4:VVx4:VV

x1x1 x2x2

(x1:NR)(x2:P)(x3:AD) x4:VV

 à x1  x4 x3 x2

generalize leaf generalize leaf

generalize internalgeneralize internal

generalize leaf generalize leaf

generalize

head

Figure 5: An illustration of rule generalization. Where
“x1:世界杯” and “x2:在” indicate substitution sites
which can be replaced by a subtree rooted at “世界杯”
and “在” respectively. “x3:AD”indicates a substitution
site that can be replaced by a subtree whose root has part-
of-speech “AD”. The underline denotes a leaf node. The
box indicates the starting lexicalized head-dependents
rule.

Figure 5 illustrates the rule generalization process
under these restrictions.

4.3.3 Unaligned Words
We handle the unaligned words of the target side

by extending the head spans of the lexicalized head
and leaf nodes on both left and right directions.
This procedure is similar with the method of (Och
and Ney, 2004) except that we might extend several
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Algorithm 1: Algorithm for Rule Acquisition
Input: Source dependency structure T , target string S, alignment A
Output: Translation rule set R

1 HSet← ACCEPTABLE HEAD(T ,S,A)
2 DSet← ACCEPTABLE DEPENDENT(T ,S,A)
3 for each node n ∈ HSet do
4 extract head rules
5 append the extracted rules to R
6 if ∀n′ ∈ child(n) n′ ∈ DSet
7 then
8 obtain a head-dependent fragment f
9 induce lexicalized and unlexicalized head-dependents rules from f

10 append the induced rules to R

11 end
12 end

spans simultaneously. In this process, we might ob-
tain m(m ≥ 1) head-dependents rules from a head-
dependent fragment in handling unaligned words.
Each of these rules is assigned with a fractional
count 1/m.

4.4 Algorithm for Rule Acquisition

The rule acquisition is a three-step process, which is
summarized in Algorithm 1.

We take the extracted rule set as observed data and
make use of relative frequency estimator to obtain
the translation probabilities P (t|s) and P (s|t).

5 The model

Following (Och and Ney, 2002), we adopt a general
log-linear model. Let d be a derivation that convert
a source dependency structure T into a target string
e. The probability of d is defined as:

P (d) ∝
∏

i

ϕi(d)λi (1)

where ϕi are features defined on derivations and λi

are feature weights. In our experiments of this paper,
we used seven features as follows:

- translation probabilities P (t|s) and P (s|t);
- lexical translation probabilities Plex(t|s) and

Plex(s|t);
- rule penalty exp(−1);

- language model Plm(e);

- word penalty exp(|e|).

6 Decoding

Our decoder is based on bottom up chart parsing.
It finds the best derivation d∗ that convert the input
dependency structure into a target string among all
possible derivations D:

d∗ = argmaxd∈DP (D) (2)

Given a source dependency structure T , the decoder
transverses T in post-order. For each accessed in-
ternal node n, it enumerates all instances of the re-
lated modification relation of the head-dependents
relation rooted at n, and checks the rule set for
matched translation rules. If there is no matched
rule, we construct a pseudo translation rule accord-
ing to the word order of the head-dependents rela-
tion. For example, suppose that we can not find
any translation rule about to “(2010年) (FIFA) 世
界杯”, we will construct a pseudo translation rule
“(x1:2010年) (x2:FIFA) x3:世界杯 → x1 x2 x3”.
A larger translation is generated by substituting the
variables in the target side of a translation rule with
the translations of the corresponding dependents.
We make use of cube pruning (Chiang, 2007; Huang
and Chiang, 2007) to find the k-best items with inte-
grated language model for each node.

To balance performance and speed, we prune the
search space in several ways. First, beam thresh-
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old β , items with a score worse than β times of the
best score in the same cell will be discarded; sec-
ond, beam size b, items with a score worse than the
bth best item in the same cell will be discarded. The
item consist of the necessary information used in de-
coding. Each cell contains all the items standing for
the subtree rooted at it. For our experiments, we set
β = 10−3 and b = 300. Additionally, we also prune
rules that have the same source side (b = 100).

7 Experiments

We evaluated the performance of our dependency-
to-string model by comparison with replications of
the hierarchical phrase-based model and the tree-to-
string models on Chinese-English translation.

7.1 Data preparation

Our training corpus consists of 1.5M sentence
pairs from LDC data, including LDC2002E18,
LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08 and LDC2005T06.

We parse the source sentences with Stanford
Parser (Klein and Manning, 2003) into projective
dependency structures, whose nodes are annotated
by POS tags and edges by typed dependencies. In
our implementation of this paper, we make use of
the POS tags only.

We obtain the word alignments by running
GIZA++ (Och and Ney, 2003) on the corpus in
both directions and applying “grow-diag-and” re-
finement(Koehn et al., 2003).

We apply SRI Language Modeling Toolkit (Stol-
cke, 2002) to train a 4-gram language model with
modified Kneser-Ney smoothing on the Xinhua por-
tion of the Gigaword corpus.

We use NIST MT Evaluation test set 2002 as our
development set, NIST MT Evaluation test set 2004
(MT04) and 2005 (MT05) as our test set. The qual-
ity of translations is evaluated by the case insensitive
NIST BLEU-4 metric (Papineni et al., 2002).1

We make use of the standard MERT (Och, 2003)
to tune the feature weights in order to maximize the
system’s BLEU score on the development set.

1ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl

System Rule # MT04(%) MT05(%)
cons2str 30M 34.55 31.94
hiero-re 148M 35.29 33.22
dep2str 56M 35.82+ 33.62+

Table 1: Statistics of the extracted rules on training cor-
pus and the BLEU scores on the test sets. Where “+”
means dep2str significantly better than cons2str with p <
0.01.

7.2 The baseline models

We take a replication of Hiero (Chiang, 2007) as
the hierarchical phrase-based model baseline. In
our experiments of this paper, we set the beam size
b = 200 and the beam threshold β = 0. The maxi-
mum initial phrase length is 10.

We use constituency-to-string model (Liu et al.,
2006) as the syntax-based model baseline which
make use of composed rules (Galley et al., 2006)
without handling the unaligned words. In our exper-
iments of this paper, we set the tatTable-limit=20,
tatTable-threshold=10−1, stack-limit=100, stack-
threshold=10−1,hight-limit=3, and length-limit=7.

7.3 Results

We display the results of our experiments in Table
1. Our dependency-to-string model dep2str signif-
icantly outperforms its constituency structure-based
counterpart (cons2str) with +1.27 and +1.68 BLEU
on MT04 and MT05 respectively. Moreover, with-
out resort to phrases or parse forest, dep2str sur-
passes the hierarchical phrase-based model (hiero-
re) over +0.53 and +0.4 BLEU on MT04 and MT05
respectively on the basis of a 62% smaller rule set.

Furthermore, We compare some actual transla-
tions generated by cons2str, hiero-re and dep2str.
Figure 6 shows two translations of our test sets
MT04 and MT05, which are selected because each
holds a long distance dependency commonly used in
Chinese.

In the first example, the Chinese input holds
a complex long distance dependencies “巴 尼
耶 在... 与...后 表示”. This dependency cor-
responds to sentence pattern “noun+prepostional
phrase+prepositional phrase+verb”, where the for-
mer prepositional phrase specifies the position and
the latter specifies the time. Both cons2str and
hiero-re are confused by this sentence and mistak-

223



 

AfterAfter briefbrief talkstalks withwith PowellPowell ,, thethe USUS State DepartmentState Department BarnierBarnier ,,saidsaid

MT05----Segment 163

Reference: After a brief talk with 

Powell at the US State 

Department, Barnier said:

Cons2str: Barnier after brief 

talks in US State Department 

and Powell  said:

Hiero-re: After a short meeting 

with Barnier on the US State 

Department, Powell said:

Dep2str: After brief talks with 

Powell, the US State 

Department Barnier said,

13731373 20012001

ChinaChina appreciatesappreciates efforts

 

efforts ofof Anti -Anti - TerrorismTerrorism Committee Committee toto promotepromote allall inincountriescountries

MT04----Segment 1096

Reference: China appreciates the 

efforts of the Counter-Terrorism 

Committee to promote the 

implementation of the resolution 

1373(2001) in all states and to 

help enhance the anti-terrorist 

capabilities of developing 

countries.

Cons2str: China appreciates 

Anti - Terrorist Committee for 

promoting implementation of 

the resolution No. 1373(2001) 

and help developing countries 

strength counter-terrorism  

capability building for the 

efforts,

Hiero-re: China appreciates 

Anti - Terrorism Committee to 

promote countries implement 

resolution No . 1373 ( 2001 ) 

and help developing countries 

strengthen anti-terrorism 

capacity building support for 

efforts

Dep2str: China appreciates 

efforts of Anti - Terrorism 

Committee to promote all 

countries in the implementation 

of resolution  1373 ( 2001 )  , to 

help strengthen the anti-

terrorism capability building of 

developing countries

nsubj             

prep
prep

thethe implementationimplementation ofof ......

nsubj dobj

Figure 6: Actual translations produced by the baselines and our system. For our system, we also display the long
distance dependencies correspondence in Chinese and English. Here we omit the edges irrelevant to the long distance
dependencies.

enly treat “鲍尔(Powell)” as the subjective, thus
result in translations with different meaning from
the source sentence. Conversely, although “在” is
falsely translated into a comma, dep2str captures
this complex dependency and translates it into “Af-
ter ... ,(should be at) Barnier said”, which accords
with the reordering of the reference.

In the second example, the Chinese input holds
a long distance dependency “中国 赞赏 ... 努
力” which corresponds to a simple pattern “noun
phrase+verb+noun phrase”. However, due to the
modifiers of “努力” which contains two sub-
sentences including 24 words, the sentence looks
rather complicated. Cons2str and hiero-re fail to
capture this long distance dependency and provide
monotonic translations which do not reflect the
meaning of the source sentence. In contrast, dep2str
successfully captures this long distance dependency
and translates it into “China appreciates efforts of

...”, which is almost the same with the reference
“China appreciates the efforts of ...”.

All these results prove the effectiveness of our
dependency-to-string model in both translation and
long distance reordering. We believe that the ad-
vantage of dep2str comes from the characteristics of
dependency structures tending to bring semantically
related elements together (e.g., verbs become adja-
cent to all their arguments) and are better suited to
lexicalized models (Quirk et al., 2005). And the in-
capability of cons2str and hiero-re in handling long
distance reordering of these sentences does not lie in
the representation of translation rules but the com-
promises in rule extraction or decoding so as to bal-
ance the speed or grammar size and performance.
The hierarchical phrase-based model prohibits any
nonterminal X from spanning a substring longer
than 10 on the source side to make the decoding al-
gorithm asymptotically linear-time (Chiang, 2005).
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While constituency structure-based models typically
constrain the number of internal nodes (Galley et
al., 2006) and/or the height (Liu et al., 2006) of
translation rules so as to balance the grammar size
and performance. Both strategies limit the ability of
the models in processing long distance reordering of
sentences with long and complex modification rela-
tions.

8 Related Works

As a first step towards semantics, dependency struc-
tures are attractive to machine translation. And
many efforts have been made to incorporating this
desirable knowledge into machine translation.

(Lin, 2004; Quirk et al., 2005; Ding and Palmer,
2005; Xiong et al., 2007) make use of source depen-
dency structures. (Lin, 2004) employs linear paths
as phrases and view translation as minimal path cov-
ering. (Quirk et al., 2005) extends paths to treelets,
arbitrary connected subgraphs of dependency struc-
tures, and propose a model based on treelet pairs.
Both models require projection of the source depen-
dency structure to the target side via word alignment,
and thus can not handle non-isomorphism between
languages. To alleviate this problem, (Xiong et al.,
2007) presents a dependency treelet string corre-
spondence model which directly map a dependency
structure to a target string. (Ding and Palmer, 2005)
presents a translation model based on Synchronous
Dependency Insertion Grammar(SDIG), which han-
dles some of the non-isomorphism but requires both
source and target dependency structures. Most im-
portant, all these works do not specify the ordering
information directly in translation rules, and resort
to either heuristics (Lin, 2004; Xiong et al., 2007) or
separate ordering models(Quirk et al., 2005; Ding
and Palmer, 2005) to control the word order of
translations. By comparison, our model requires
only source dependency structure, and handles non-
isomorphism and ordering problems simultaneously
by directly specifying the ordering information in
the head-dependents rules that represent the source
side as head-dependents relations and the target side
as strings.

(Shen et al., 2008) exploits target dependency
structures as dependency language models to ensure
the grammaticality of the target string. (Shen et al.,

2008) extends the hierarchical phrase-based model
and present a string-to-dependency model, which
employs string-to-dependency rules whose source
side are string and the target as well-formed depen-
dency structures. In contrast, our model exploits
source dependency structures, as a tree-based sys-
tem, it run much faster (linear time vs. cubic time,
see (Huang et al., 2006)).

9 Conclusions and future work

In this paper, we present a novel dependency-to-
string model, which employs head-dependents rules
that represent the source side as head-dependents
relations and the target side as string. The head-
dependents rules specify the ordering information
directly and require only substitution operation.
Thus, our model does not need heuristics or order-
ing model of the previous works to control the word
order of translations. Large scale experiments show
that our model exhibits good performance in long
distance reordering and outperforms the state-of-
the-art constituency-to-string model and hierarchi-
cal phrase-based model without resort to phrases and
parse forest. For the first time, a source dependency-
based model shows improvement over the state-of-
the-art translation models.

In our future works, we will exploit the semantic
information encoded in the dependency structures
which is expected to further improve the transla-
tions, and replace 1-best dependency structures with
dependency forests so as to alleviate the influence
caused by parse errors.
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Abstract

Real document collections do not fit the inde-
pendence assumptions asserted by most statis-
tical topic models, but how badly do they vi-
olate them? We present a Bayesian method
for measuring how well a topic model fits a
corpus. Our approach is based on posterior
predictive checking, a method for diagnosing
Bayesian models in user-defined ways. Our
method can identify where a topic model fits
the data, where it falls short, and in which di-
rections it might be improved.

1 Introduction

Probabilistic topic models are a suite of machine
learning algorithms that decompose a corpus into
a set of topics and represent each document with a
subset of those topics. The inferred topics often cor-
respond with the underlying themes of the analyzed
collection, and the topic modeling algorithm orga-
nizes the documents according to those themes.

Most topic models are evaluated by their predic-
tive performance on held out data. The idea is that
topic models are fit to maximize the likelihood (or
posterior probability) of a collection of documents,
and so a good model is one that assigns high likeli-
hood to a held out set (Blei et al., 2003; Wallach et
al., 2009).

But this evaluation is not in line with how
topic models are frequently used. Topic mod-
els seem to capture the underlying themes of a
collection—indeed the monicker “topic model” is
retrospective—and so we expect that these themes
are useful for exploring, summarizing, and learning

about its documents (Mimno and McCallum, 2007;
Chang et al., 2009). In such exploratory data anal-
ysis, however, we are not concerned with the fit to
held out data.

In this paper, we develop and study new methods
for evaluating topic models. Our methods are based
on posterior predictive checking, which is a model
diagnosis technique from Bayesian statistics (Rubin,
1984; Gelman et al., 1996). The goal of a posterior
predictive check (PPC) is to assess the validity of a
Bayesian model without requiring a specific alterna-
tive model. Given data, we first compute a posterior
distribution over the latent variables. Then, we esti-
mate the probability of the observed data under the
data-generating distribution that is induced by the
posterior (the “posterior predictive distribution”). A
data set that is unlikely calls the model into ques-
tion, and consequently the posterior. PPCs can show
where the model fits and doesn’t fit the observations.
They can help identify the parts of the posterior that
are worth exploring.

The key to a posterior predictive check is the dis-
crepancy function. This is a function of the data that
measures a property of the model which is impor-
tant to capture. While the model is often chosen
for computational reasons, the discrepancy function
might capture aspects of the data that are desirable
but difficult to model. In this work, we will design
a discrepancy function to measure an independence
assumption that is implicit in the modeling assump-
tions but is not enforced in the posterior. We will
embed this function in a posterior predictive check
and use it to evaluate and visualize topic models in
new ways.
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Specifically, we develop discrepancy functions
for latent Dirichlet allocation (the simplest topic
model) that measure how well its statistical assump-
tions about the topics are matched in the observed
corpus and inferred topics. LDA assumes that each
observed word in a corpus is assigned to a topic, and
that the words assigned to the same topic are drawn
independently from the same multinomial distribu-
tion (Blei et al., 2003). For each topic, we mea-
sure the whether this assumption holds by comput-
ing the mutual information between the words as-
signed to that topic and which document each word
appeared in. If the assumptions hold, these two vari-
ables should be independent: low mutual informa-
tion indicates that the assumptions hold; high mu-
tual information indicates a mismatch to the model-
ing assumptions.

We embed this discrepancy in a PPC and study
it in several ways. First, we focus on topics that
model their observations well; this helps separate
interpretable topics from noisy topics (and “boiler-
plate” topics, which exhibit too little noise). Sec-
ond, we focus on individual terms within topics; this
helps display a model applied to a corpus, and under-
stand which terms are modeled well. Third, we re-
place the document identity with an external variable
that might plausibly be incorporated into the model
(such as time stamp or author). This helps point the
modeler towards the most promising among more
complicated models, or save the effort in fitting one.
Finally, we validate this strategy by simulating data
from a topic model, and assessing whether the PPC
“accepts” the resulting data.

2 Probabilistic Topic Modeling

Probabilistic topic models are statistical models of
text that assume that a small number of distributions
over words, called “topics,” are used to generate the
observed documents. One of the simplest topic mod-
els is latent Dirichlet allocation (LDA) (Blei et al.,
2003). In LDA, a set of K topics describes a cor-
pus; each document exhibits the topics with different
proportions. The words are assumed exchangeable
within each document; the documents are assumed
exchangeable within the corpus.

More formally, let φ1, . . . , φK be K topics, each
of which is a distribution over a fixed vocabulary.

For each document, LDA assumes the following
generative process

1. Choose topic proportions θd ∼ Dirichlet(α).

2. For each word

(a) Choose topic assignment zd,n ∼ θ.
(b) Choose word wd,n ∼ φzd,n .

This process articulates the statistical assumptions
behind LDA: Each document is endowed with its
own set of topic proportions θd, but the same set of
topics φ1:K governs the whole collection.

Notice that the probability of a word is indepen-
dent of its document θd given its topic assignment
zd,n (i.e., wd,n ⊥⊥ θd | zd,n). Two documents might
have different overall probabilities of containing a
word from the “vegetables” topic; however, all the
words in the collection (regardless of their docu-
ments) drawn from that topic will be drawn from the
same multinomial distribution.

The central computational problem for LDA is
posterior inference. Given a collection of docu-
ments, the problem is to compute the conditional
distribution of the hidden variables—the topics φk,
topic proportions θd, and topic assignments zd,n.
Researchers have developed many algorithms for
approximating this posterior, including sampling
methods (Griffiths and Steyvers, 2004) (used in this
paper), variational methods (Blei et al., 2003), dis-
tributed variants (Asuncion et al., 2008), and online
algorithms (Hoffman et al., 2010).

3 Checking Topic Models

Once approximated, the posterior distribution is
used for the task at hand. Topic models have been
applied to many tasks, such as classification, predic-
tion, collaborative filtering, and others. We focus
on using them as an exploratory tool, where we as-
sume that the topic model posterior provides a good
decomposition of the corpus and that the topics pro-
vide good summaries of the corpus contents.

But what is meant by “good”? To answer this
question, we turn to Bayesian model checking (Ru-
bin, 1981; Gelman et al., 1996). The goal of
Bayesian model checking is to assess whether the
observed data matches the modeling assumptions in
the directions that are important to the analysis. The
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Figure 1: Visualization of variability within topics. Nine randomly selected topics from the New York Times with
low (top row), medium (middle row) and high (bottom row) mutual information between words and documents. The
y-axis shows term rank within the topic, with size proportional to log probability. The x-axis represents divergence
from the multinomial assumption for each word: terms that are uniformly distributed across documents are towards
the left, while more specialized terms are to the right. Triangles represent real values, circles represent 20 replications
of this same plot from the posterior of the model.
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intuition is that only when satisfied with the model
should the modeler use the posterior to learn about
her data. In complicated Bayesian models, such as
topic models, Bayesian model checking can point to
the parts of the posterior that better fit the observed
data set and are more likely to suggest something
meaningful about it.

In particular, we will develop posterior predictive
checks (PPC) for topic models. In a PPC, we spec-
ify a discrepancy function, which is a function of
the data that measures an important property that we
want the model to capture. We then assess whether
the observed value of the function is similar to val-
ues of the function drawn from the posterior, through
the distribution of the data that it induces. (This dis-
tribution of the data is called the “posterior predic-
tive distribution.”)

An innovation in PPCs is the realized discrepancy
function (Gelman et al., 1996), which is a function
of the data and any hidden variables that are in the
model. Realized discrepancies induce a traditional
discrepancy by marginalizing out the hidden vari-
ables. But they can also be used to evaluate assump-
tions about latent variables in the posterior, espe-
cially when combined with techniques like MCMC
sampling that provide realizations of them. In topic
models, as we will see below, we use a realized dis-
crepancy to factor the observations and to check spe-
cific components of the model that are discovered by
the posterior.

3.1 A realized discrepancy for LDA

Returning to LDA, we design a discrepancy func-
tion that checks the independence assumption of
words given their topic assignments. As we men-
tioned above, given the topic assignment z the word
w should be independent of its document θ. Con-
sider a decomposition of a corpus from LDA, which
assigns every observed word wd,n to a topic zd,n.
Now restrict attention to all the words assigned to the
kth topic and form two random variables: W are the
words assigned to the topic and D are the document
indices of the words assigned to that topic. If the
LDA assumptions hold then knowing W gives no
information about D because the words are drawn
independently from the topic.

We measure this independence with the mutual

information between W and D:1

MI(W,D | k)

=
∑

w

∑

d

P (w, d | k) log
P (w | d, k)P (d | k)

P (w | k)P (d | k)

=
∑

w

∑

d

N(w, d, k)

N(k)
log

N(w, d, k)N(k)

N(d, k)N(w, k)
. (1)

Where N(w, d, k) is the number of tokens of type
w in topic k in document d, with N(w, k) =∑

dN(w, d, k), N(d, k) =
∑

wN(w, d, k), and
N(k) =

∑
w,dN(w, d, k). This function mea-

sures the divergence between the joint distribution
over word and document index and the product of
the marginal distributions. In the limit of infinite
samples, independent random variables have mutual
information of zero, but we expect finite samples
to have non-zero values even for truly independent
variables. Notice that this is a realized discrepancy;
it depends on the latent assignments of observed
words to topics.

Eq. 1 is defined as a sum over a set of documents
and a set of words. We can rearrange this summa-
tion as a weighted sum of the instantaneous mutual
information between words and documents:

IMI(w,D | k) = H(D|k)−H(D |W = w, k).
(2)

This quantity can be understood by considering the
per-topic distribution of document labels, p(d|k).
This distribution is formed by normalizing the
counts of how many words assigned to topic k ap-
peared in each document. The first term of Eq. 2
is the entropy—some topics are evenly distributed
across many documents (high entropy); others are
concentrated in fewer documents (low entropy).

The second term conditions this distribution on
a particular word type w by normalizing the per-
document number of times w appeared in each doc-
ument (in topic k). If this distribution is close
to p(d|k) then H(D|W = w, k) will be close to
H(D|k) and IMI(w,D|k) will be low. If, on the
other hand, word w occurs many times in only a few
documents, it will have lower entropy over docu-

1There are other choices of discrepancies, such as word-
word point-wise mutual information scores (Newman et al.,
2010).
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ments than the overall distribution over documents
for the topic and IMI(w,D|k) will be high.

We illustrate this discrepancy in Figure 1, which
shows nine topics trained from the New York Times.2

Each row contains randomly selected topics from
low, middle, and high ranges of MI, respectively.
Each triangle represents a word. Its place on the y-
axis is its rank in the topic. Its place on the x-axis
is its IMI(w|k), with more uniformly distributed
words (low IMI) to the left and more specific words
(high IMI) to the right. (For now, ignore the other
points in this figure.) IMI varies between topics, but
tends to increase with rank as less frequent words
appear in fewer documents.

The discrepancy captures different kinds of struc-
ture in the topics. The top left topic represents for-
mulaic language, language that occurs verbatim in
many documents. In particular, it models the boil-
erplate text “Here is a selective listing by critics of
The Times of new or noteworthy...” Identifying re-
peated phrases is a common phenomenon in topic
models. Most words show lower than expected IMI,
indicating that word use in this topic is less vari-
able than data drawn from a multinomial distribu-
tion. The middle-left topic is an example of a good
topic, according to this discrepancy, which is related
to Iraqi politics. The bottom-left topic is an example
of the opposite extreme from the top-left. It shows
a loosely connected series of proper names with no
overall theme.

3.2 Posterior Predictive Checks for LDA

Intuitively, the middle row of topics in Figure 1 are
the sort of topics we look for in a model, while the
top and bottom rows contain topics that are less use-
ful. Using a PPC, we can formally measure the dif-
ference between these topics. For each of the real
topics in Figure 1 we regenerated the same figure
20 times. We sampled new words for every token
from the posterior distribution of the topic, and re-
calculated the rank and IMI for each word. These
“shadow” figures are shown as gray circles. The
density of those circles creates a reference distribu-
tion indicating the expected IMI values at each rank
under the multinomial assumption.

2Details about the corpus and model fitting are in Section
4.2. Similar figures for two other corpora are in the supplement.

By themselves, IMI scores give an indication of
the distribution of a word between documents within
a topic: small numbers are better, large numbers in-
dicate greater discrepancy. These scores, however,
are based on the specific allocation of words to top-
ics. For example, lower-ranked, less frequent words
within a topic tend to have higher IMI scores than
higher-ranked, more frequent words. This difference
may be due to greater violation of multinomial as-
sumptions, but may also simply be due to smaller
sample sizes, as the entropy H(D|W = w, k) is es-
timated from fewer tokens. The reference distribu-
tions help distinguish between these two cases.

In more detail, we generate replications of the
data by considering a Gibbs sampling state. This
state assigns each observed word to a topic. We
first record the number of instances of each term as-
signed to each topic, N(w|k). Then for each word
wd,n in the corpus, we sample a new observed word
wrepd,n where P (w) ∝ N(w|zd,n). (We did not use
smoothing parameters.) Finally, we recalculate the
mutual information and instantenous mutual infor-
mation for each topic.

In the top-left topic, most of the words have much
lower IMI than the word at the same rank in repli-
cations, indicating lower than expected variability.
The exception is the word Broadway, which is more
variable than expected. In the middle-left topic,
IMI for the words Iraqi and Baghdad occur within
the expected range. These words fit the multino-
mial assumption: any word assigned to this topic
is equally likely to be Iraqi. Values for the words
Shiite, Sunni, and Kurdish are more specific to par-
ticular documents than we expect under the model.
In the bottom-left topic, almost all words occur with
greater variability than expected. This topic com-
bines many terms with only coincidental similarity,
such as Mets pitcher Grant Roberts and the firm
Kohlberg Kravis Roberts.

Turning to an analysis of the full mutual infor-
mation, Figure 2 shows the three left-hand topics
from Figure 1: Weekend, Iraq, and Roberts. The
histogram represents MI scores for 100 replications
of the topic, rescaled to have mean zero and unit
variance. The observed value, also rescaled, and
the mean replicated value (set to zero) are shown
with vertical lines. The formulaic Weekend topic
has significantly lower than expected MI. The Iraq
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Figure 2: News: Observed topic scores (vertical lines)
relative to replicated scores, rescaled so that replica-
tions have zero mean and unit variance. The Weekend
topic (top) has lower than expected MI. The Iraq (mid-
dle) and Roberts (bottom) topics both have MI greater
than expected.

and Roberts topics have significantly greater than
expected MI.

For most topics the actual discrepancy is outside
the range of any replicated discrepancies. In their
original formulation, PPCs prescribe computing a
tail probability of a replicated discrepancy being
greater than (or less than) the observed discrepancy
under the posterior predictive distribution. For ex-
ample if an observed value is greater than 70 of 100
replicated values, we report a PPC p-value of 0.7.

When the observed value is far outside the range
of any replicated values, as in Figure 2, that tail
probability will be degenerate at 0 or 1. So, we re-
port instead a deviance value, an alternative way of
comparing an observed value to a reference distri-
bution. We compute the distribution of the repli-
cated discrepancies and compute its standard devi-
ation. We then compute how many standard devia-
tions the observed discrepancy is from the mean of
the replicated discrepancies.

This score allows us to compare topics. The ob-
served value for the Weekend topic is 31.8 standard
deviations below the mean replicated value, and thus
has deviance of -31.8, which is lower than expected.
The Iraq topic has deviance of 16.8 and the Roberts
topic has deviance of 47.7. This matches our intu-
ition that the former topic is more useful than the
latter.

4 Searching for Systematic Deviations

We demonstrated that the mutual information dis-
crepancy function can detect violations of multi-
nomial assumptions, in which instances of a term
in a given topic are not independently distributed
among documents. One way to address this lack
of fit is to encode document-level extra-multinomial
variance (“burstiness”) into the model using Dirich-
let compound multinomial distributions (Doyle and
Elkan, 2009). If there is no pattern to the deviations
from multinomial word use across documents, this
method is the best we can do.

In many corpora, however, there are systematic
deviations that can be explained by additional vari-
ables. LDA is the simplest generative topic model,
and researchers have developed many variants of
LDA that account for a variety of variables that can
be found or measured with a corpus. Examples in-
clude models that account for time (Blei and Laf-
ferty, 2006), books (Mimno and McCallum, 2007),
and aspect or perspective (Mei and Zhai, 2006; Lin
et al., 2008; Paul et al., 2010). In this section, we
show how we can use the mutual information dis-
crepancy function of Equation 1 and PPCs to guide
our choice in which topic model to fit.

Greater deviance implies that a particular group-
ing better explains the variation in word use within
a topic. The discrepancy functions are large when
words appear more than expected in some groups
and less than expected in others. We know that
the individual documents show significantly more
variation than we expect from replications from the
model’s posterior distribution. If we combine docu-
ments randomly in a meaningless grouping, such de-
viance should decrease, as differences between doc-
uments are “smoothed out.” If a grouping of docu-
ments shows equal or greater deviation, we can as-
sume that that grouping is maintaining the underly-
ing structure of the systematic deviation from the
multinomial assumption, and that further modeling
or visualization using that grouping might be useful.

4.1 PPCs for systematic discrepancy

The idea is that the words assigned to a topic should
be independent of both document and any other vari-
able that might be associated with the document. We
simply replace the document index d with another
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Figure 3: Groupings decrease MI, but values are still larger than expected. Three ways of grouping words in a
topic from the New York Times. The word leaders varies more between desks than by time, while Sadr varies more by
time than desk.

variable g in the discrepancy. For example, the New
York Times articles are each associated with a par-
ticular news desk and also associated with a time
stamp. If the topic modeling assumptions hold, the
words are independent of both these variables. If we
see a significant discrepancy relative to a grouping
defined by a metadata feature, this systematic vari-
ability suggests that we might want to take that fea-
ture into account in the model.

Let G be a set of groups and let γ ∈ GD be
a grouping of D documents. Let N(w, g, k) =∑

dN(w, d, k)Iγd=g, that is, the number of words of
typew in topic k in documents in group g, and define
the other count variables similarly. We can now sub-
stitute these group-specific counts for the document-
specific counts in the discrepancy function in Eq.
1. Note that the previous discrepancy functions are
equivalent to a trivial grouping, in which each docu-
ment is the only member of its own group. In the fol-
lowing experiments we explore groupings by pub-
lished volume, blog, preferred political candidate,
and newspaper desk, and evaluate the effect of those
groupings on the deviation between mean replicated
values and observed values of those functions.

4.2 Case studies

We analyze three corpora, each with its own meta-
data: the New York Times Annotated Corpus (1987–
2007)3, the CMU 2008 political blog corpus (Eisen-
stein and Xing, 2010), and speeches from the British

3http://www.ldc.upenn.edu

House of Commons from 1830–1891.4 Descriptive
statistics are presented in Table 1. The realization
is represented by a single Gibbs sampling state after
1000 iterations of Gibbs sampling.

Table 1: Statistics for models used as examples.

Name Docs Tokens Vocab Topics
News 1.8M 76M 121k 1000
Blogs 13k 2.2M 90k 100
Parliament 540k 55M 52k 300

New York Times articles. Figure 3 shows three
groupings of words for the middle-left topic in Fig-
ure 1: by document, by month of publication (e.g.
May of 2005), and by desk (e.g. Editorial, Foreign,
Financial). Instantaneous mutual information values
are significantly smaller for the larger groupings, but
the actual values are still larger than expected under
the model. We are interested in measuring the de-
gree to which word usage varies within topics as a
function of both time and the perspective of the ar-
ticle. For example, we may expect that word choice
may differ between opinion articles, which overtly
reflect an author’s views, and news articles, which
take a more objective, factual approach.

We summarize each grouping by plotting the dis-
tribution of deviance scores for all topics. Results
for all 1000 topics grouped by documents, months,
and desks are shown in Figure 4.

4http://www.hansard-archive.parliament.uk/
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Figure 4: News: Lack of fit correlates best with desks.
We calculate the number of standard deviations between
the mean replicated discrepancy and the actual discrep-
ancy for each topic under three groupings. Boxes repre-
sent typical ranges, points represent outliers.
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Figure 5: News: Events change word distributions.
Words with the largest MI from a topic on Iraq’s gov-
ernment are shown, with individual scores grouped by
month.

Finally, we can analyze how individual words in-
teract with groupings like time or desk. Figure 5
breaks down the per-word discrepancy shown in Fig-
ure 3 by month, for the words with the largest overall
discrepancy. Kurdish is prominent during the Gulf
War and the 1996 cruise missile strikes, but is less
significant during the Iraq War. Individuals (Hus-
sein, Sadr, and Maliki) move on and off the stage.

Political blogs. The CMU 2008 political blog cor-
pus consists of six blogs, three of which supported
Barack Obama and three of which supported John
McCain. This corpus has previously been consid-
ered in the context of aspect-based topic models
(Ahmed and Xing, 2010) that assign distinct word
distributions to liberal and conservative bloggers. It
is reasonable to expect that blogs with different po-
litical leanings will use measurably different lan-
guage to describe the same themes, suggesting that
there will be systematic deviations from a multino-
mial hypothesis of exchangeability of words within
topics. Indeed, Ahmed and Xing obtained improved
results with such a model. Figure 6 shows the dis-
tribution of standard deviations from the mean repli-
cated value for a set of 150 topics grouped by doc-
ument, blog, and preferred candidate. Deviance is
greatest for blogs, followed by candidates and then
documents.
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Figure 6: Blogs: Lack of fit correlates more with blog
than preferred candidate. Grouping by preferred can-
didate has only slightly higher average deviance than by
documents, but the variance is greater.

Grouping by blogs appears to show greater de-
viance from mean replicated values than group-
ing by candidates, indicating that there is fur-
ther structure in word choice beyond a simple lib-
eral/conservative split. Are these results, however,
comparable? It may be that this difference is ex-
plained by the fact that there are six blogs and only
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two candidates. To determine whether this particular
assignment of documents to blogs is responsible for
the difference in discrepancy functions or whether
any such split would have greater deviance, we com-
pared random groupings to the real groupings and
recalculate the PPC. We generated 10 such group-
ings by permuting document blog labels and another
10 by permuting document candidate labels, each
time holding the topics fixed. The average number
of standard deviations across topics was 6.6 ± 14.4
for permuted “candidates” compared to 37.9± 39.2
for the real corpus, and 10.6 ± 12.9 for permuted
“blogs” compared to 44.4± 29.6 for real blogs.

British parliament proceedings. The parliament
corpus is divided into 305 volumes, each comprising
about three weeks of debates, with between 600 and
4000 speeches per session. In addition to volumes,
10 Prime Ministers were in office during this period.
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Figure 7: Parliament: Lack-of-fit correlates with time
(publication volume). Correlation with prime ministers
is not significantly better than with volume.

Grouping by prime minister shows greater av-
erage deviance than grouping by volumes, even
though there are substantially fewer divisions. Al-
though such results would need to be accompanied
by permutation experiments as in the blog corpus,
this methodology may be of interest to historians.

In order to provide insight into the nature of tem-
poral variation, we can group the terms in the sum-
mation in Equation 1 by word and rank the words by
their contribution to the discrepancy function. Fig-
ure 8 shows the most “mismatching” words for a
topic with the most probable words ships, vessels,
admiralty, iron, ship, navy, consistent with changes
in naval technology during the Victorian era (that
is, wooden ships to “iron clads”). Words that oc-
cur more prominently in the topic (ships, vessels)
are also variable, but more consistent across time.

Volume

S
co

re

0.0000
0.0005
0.0010
0.0015

0.0000
0.0005
0.0010
0.0015

0.0000
0.0005
0.0010
0.0015

0.0000
0.0005
0.0010
0.0015

0.0000
0.0005
0.0010
0.0015

0.0000
0.0005
0.0010
0.0015

iron

turret

clads

wooden

vessels

ships

1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890

Figure 8: Parliament: iron-clads introduced in 1860s.
High probability words (ships, vessels) are variable, but
show less concentrated discrepancy than iron, wooden.

5 Calibration on Synthetic Data

A posterior predictive check asks “do observations
sampled from the learned model look like the origi-
nal data?” In the previous sections, we have consid-
ered PPCs that explore variability within a topic on
a per-word basis, measure discrepancy at the topic
level, and compare deviance over all topics between
groupings of documents. Those results show that
the PPC detects deviation from multinomial assump-
tions when it exists: as expected, variability in word
choice aligns with known divisions in corpora, for
example by time and author perspective. We now
consider the opposite direction. When documents
are generated from a multinomial topic model, PPCs
should not detect systematic deviation.

We must also distinguish between lack of fit due
to model misspecification and lack of fit due to ap-
proximate inference. In this section, we present syn-
thetic data experiments where the learned model is
precisely the model used to generate documents. We
show that there is significant lack of fit introduced
by approximate inference, which can be corrected
by considering only parts of the model that are well-
estimated.

We generated 10 synthetic corpora, each consist-
ing of 100,000 100-word documents, drawn from 20
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Figure 9: Replicating only documents with large allocation in the topic leads to more uniform p-values. p-values
for 200 topics estimated from synthetic data generated from an LDA model are either uniform or skewed towards 1.0.
Overly conservative p-values would be clustered around 0.5.

topics over a vocabulary of 100 terms. Hyperpa-
rameters for both the document-topic and topic-term
Dirichlet priors were 0.1 for each dimension. We
then trained a topic model with the same hyperpa-
rameters and number of topics on each corpus, sav-
ing a Gibbs sampling state.

We can measure the fit of a PPC by examining the
distribution of empirical p-values, that is, the propor-
tion of replications wrep that result in discrepancies
less than the observed value. p-values should be uni-
formly distributed on (0, 1). Non-uniform p-values
indicate a lack of calibration. Unlike real collec-
tions, in synthetic corpora the range of discrepan-
cies from these replicated collections often includes
the real values, so p-values are meaningful. A his-
togram of p-values for 200 synthetic topics after 100
replications is shown in the left panel of Figure 9.

PPCs have been criticized for reusing training
data for model checking. For some models, the
posterior distribution is too close to the data, so all
replicated values are close to the real value, leading
to p-values clustered around 0.5 (Draper and Krn-
jajic, 2006; Bayarri and Castellanos, 2007). We
test divergence from a uniform distribution with a
Kolmogorov-Smirnov test. Our results indicate that
LDA is not overfitting, but that the distribution is not
uniform (KS p < 0.00001).

The PPC framework allows us to choose discrep-
ancy functions that reflect the relative importance
of subsets of words and documents. The second
panel in Figure 9 sums only over the 20 documents
with the largest probability of the topic, the third
sums over all documents but only over the top 10
most probable words, and the fourth sums over only
the top words and documents. This test indicates

that the distribution of p-values for the subset Top-
Words is not uniform (KS p < 0.00001), but that a
uniform distribution is a good fit for TopDocs (KS
p = 0.358) and TopWordsDocs (KS p = 0.069).

6 Conclusions

We have developed a Bayesian model checking
method for probabilistic topic models. Conditioned
on their topic assignment, the words of the docu-
ments are independently and identically distributed
by a multinomial distribution. We developed a real-
ized discrepancy function—the mutual information
between words and document indices, conditioned
on a topic—that checks this assumption. We em-
bedded this function in a posterior predictive check.

We demonstrated that we can use this posterior
predictive check to identify particular topics that fit
the data, and particular topics that misfit the data in
different ways. Moreover, our method provides a
new way to visualize topic models.

We adapted the method to corpora with external
variables. In this setting, the PPC provides a way to
guide the modeler in searching through more com-
plicated models that involve more variables.

Finally, on simulated data, we demonstrated that
PPCs with the mutual information discrepancy func-
tion can identify model fit and model misfit.
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Abstract

Dual decomposition has been recently pro-
posed as a way of combining complemen-
tary models, with a boost in predictive power.
However, in cases where lightweight decom-
positions are not readily available (e.g., due to
the presence of rich features or logical con-
straints), the original subgradient algorithm
is inefficient. We sidestep that difficulty by
adopting an augmented Lagrangian method
that accelerates model consensus by regular-
izing towards the averaged votes. We show
how first-order logical constraints can be han-
dled efficiently, even though the correspond-
ing subproblems are no longer combinatorial,
and report experiments in dependency pars-
ing, with state-of-the-art results.

1 Introduction

The last years have witnessed increasingly accurate
models for syntax, semantics, and machine transla-
tion (Chiang, 2007; Finkel et al., 2008; Petrov and
Klein, 2008; Smith and Eisner, 2008; Martins et
al., 2009a; Johansson and Nugues, 2008; Koo et al.,
2010). The predictive power of such models stems
from their ability to break locality assumptions. The
resulting combinatorial explosion typically demands
some form of approximate decoding, such as sam-
pling, heuristic search, or variational inference.

In this paper, we focus on parsers built from lin-
ear programming relaxations, the so-called “turbo
parsers” (Martins et al., 2009a; Martins et al., 2010).
Rush et al. (2010) applied dual decomposition as
a way of combining models which alone permit
efficient decoding, but whose combination is in-
tractable. This results in a relaxation of the origi-
nal problem that is elegantly solved with the sub-
gradient algorithm. While this technique has proven
quite effective in parsing (Koo et al., 2010; Auli
and Lopez, 2011) as well as machine translation
(Rush and Collins, 2011), we show here that its

success is strongly tied to the ability of finding a
“good” decomposition, i.e., one involving few over-
lapping components (or slaves). With many compo-
nents, the subgradient algorithm exhibits extremely
slow convergence (cf. Fig. 2). Unfortunately, a
lightweight decomposition is not always at hand, ei-
ther because the problem does not factor in a natural
way, or because one would like to incorporate fea-
tures that cannot be easily absorbed in few tractable
components. Examples include features generated
by statements in first-order logic, features that vio-
late Markov assumptions, or history features such as
the ones employed in transition-based parsers.

To tackle the kind of problems above, we adopt
DD-ADMM (Alg. 1), a recently proposed algorithm
that accelerates dual decomposition (Martins et al.,
2011). DD-ADMM retains the modularity of the
subgradient-based method, but it speeds up consen-
sus by regularizing each slave subproblem towards
the averaged votes obtained in the previous round
(cf. Eq. 14). While this yields more involved sub-
problems (with a quadratic term), we show that ex-
act solutions can still be efficiently computed for
all cases of interest, by using sort operations. As
a result, we obtain parsers that can handle very rich
features, do not require specifying a decomposition,
and can be heavily parallelized. We demonstrate the
success of the approach by presenting experiments
in dependency parsing with state-of-the-art results.

2 Background

2.1 Structured Prediction
Let x ∈ X be an input object (e.g., a sentence), from
which we want to predict a structured output y ∈
Y (e.g., a parse tree). The output set Y is assumed
too large for exhaustive search to be tractable. We
assume to have a model that assigns a score f(y) to
each candidate output, based on which we predict

ŷ = arg max
y∈Y

f(y). (1)
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Designing the model must obey certain practical
considerations. If efficiency is the major concern,
a simple model is usually chosen so that Eq. 1 can
be solved efficiently, at the cost of limited expressive
power. If we care more about accuracy, a model with
richer features and more involved score functions
may be designed. Decoding, however, will be more
expensive, and approximations are often necessary.
A typical source of intractability comes from the
combinatorial explosion inherent in the composition
of two or more tractable models (Bar-Hillel et al.,
1964; Tromble and Eisner, 2006). Recently, Rush
et al. (2010) have proposed a dual decomposition
framework to address NLP problems in which the
global score decomposes as f(y) = f1(z1)+f2(z2),
where z1 and z2 are two overlapping “views” of the
output, so that Eq. 1 becomes:

maximize f1(z1) + f2(z2)
w.r.t. z1 ∈ Y1, z2 ∈ Y2

s.t. z1 ∼ z2.
(2)

Above, the notation z1 ∼ z2 means that z1 and
z2 “agree on their overlaps,” and an isomorphism
Y ' {〈z1, z2〉 ∈ Y1×Y2 | z1 ∼ z2} is assumed. We
next formalize these notions and proceed to compo-
sitions of an arbitrary number of models. Of special
interest is the unexplored setting where this number
is very large and each component very simple.

2.2 Decomposition into Parts
A crucial step in the design of structured predictors
is that of decomposing outputs into parts (Taskar et
al., 2003). We assume the following setup:

Basic parts. We let R be a set of basic parts, such
that each element y ∈ Y can be identified with a
subset of R. The exact meaning of a “basic part”
is problem dependent. For example, in dependency
parsing, R can be the set of all possible dependency
arcs (see Fig. 1); in phrase-based parsing, it can be
the set of possible spans; in sequence labeling, it can
be the set of possible labels at each position. Our
only assumption is that we can “read out” y from
the basic parts it contains. For convenience, we rep-
resent y as a binary vector, y = 〈y(r)〉r∈R, where
y(r) = 1 if part r belongs to y, and 0 otherwise.

Decomposition. We generalize the decomposition
in Eq. 2 by considering sets Y1, . . . ,YS for S ≥ 2.

Figure 1: Parts used by our parser. Arcs are the ba-
sic parts: any dependency tree can be “read out” from
the arcs it contains. Consecutive siblings and grandpar-
ent parts introduce horizontal and vertical Markovization
(McDonald et al., 2006; Carreras, 2007). We break the
horizontal Markov assumption via all siblings parts and
the vertical one through parts which indicate a directed
path between two words. Inspired by transition-based
parsers, we also adopt head bigram parts, which look at
the heads attached to consecutive words. Finally, we fol-
low Martins et al. (2009a) and have parts which indicate
if an arc is non-projective (i.e., if it spans words that do
not descend from its head).

Each Ys is associated with its own set of parts Rs, in
the same sense as above; we represent the elements
of Ys as binary vectors zs = 〈zs(r)〉r∈Rs . Examples
are vectors indicating a tree structure, a sequence,
or an assignment of variables to a factor, in which
case it may happen that only some binary vectors
are legal. Some parts in Rs are basic, while others
are not. We denote by R̄s = Rs ∩ R the subset of
the ones that are. In addition, we assume that:

• R1, . . . ,RS jointly cover R, i.e., R ⊆ ⋃S
s=1 Rs;

• Only basic parts may overlap, i.e., Rs ∩ Rt ⊆
R, ∀s, t ∈ {1, . . . , S};
• Each zs ∈ Ys is completely defined by its entries

indexed by elements of R̄s, from which we can
guess the ones in Rs \ R̄s. This implies that each
y ∈ Y has a unique decomposition 〈z1, . . . , zS〉.

Fig. 1 shows several parts used in dependency pars-
ing models; in phrase-based parsing, these could be
spans and production rules anchored in the surface
string; in sequence labeling, they can be unigram,
bigram, and trigram labels.1

1There is a lot of flexibility about how to decompose the
model into S components: each set Rs can correspond to a sin-
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Global consistency. We want to be able to read
out y ∈ Y by “gluing” together the components
〈z1, . . . , zS〉. This is only meaningful if they are
“globally consistent,” a notion which we make pre-
cise. Two components zs ∈ Ys and zt ∈ Yt are said
to be consistent (denoted zs ∼ zt) if they agree on
their overlaps, i.e., if zs(r) = zt(r), ∀r ∈ Rs ∩ Rt.
A complete assignment 〈z1, . . . , zS〉 is globally con-
sistent if all pairs of components are consistent. This
is equivalent to the existence of a witness vector
〈u(r)〉r∈R such that zs(r) = u(r), ∀s, r ∈ R̄s.

With this setup, assuming that the score function
decomposes as f(z) =

∑S
s=1 fs(zs), the decoding

problem (which extends Eq. 2 for S ≥ 2) becomes:

P : maximize
∑S
s=1 fs(zs)

w.r.t. zs ∈ Ys, ∀s
〈u(r)〉r∈R ∈ R|R|,

s.t. zs(r) = u(r), ∀s, r ∈ R̄s.

(3)

We call the equality constraints expressed in the last
line the “agreement constraints.” It is these con-
straints that complicate the problem, which would
otherwise be exactly separable into S subproblems.
The dual decomposition method (Komodakis et al.,
2007; Rush et al., 2010) builds an approximation by
dualizing out these constraints, as we describe next.

2.3 Dual Decomposition
We describe dual decomposition in a slightly differ-
ent manner than Rush et al. (2010): we will first
build a relaxation of P (called P ′), in which the en-
tire approximation is enclosed. Then, we dualize P ′,
yielding problem D. In the second step, the duality
gap is zero, i.e., P ′ and D are equivalent.2

Relaxation. For each s ∈ {1, . . . , S} we consider
the convex hull of Ys,

Zs =

{ ∑

zs∈Ys

p(zs)zs

∣∣∣∣ p(zs) ≥ 0,
∑

zs∈Ys

p(zs) = 1

}
.

(4)

gle factor in a factor graph (Smith and Eisner, 2008), or to a
entire subgraph enclosing several factors (Koo et al., 2010), or
even to a formula in Markov logic (Richardson and Domingos,
2006). In these examples, the basic parts may correspond to
individual variable-value pairs.

2Instead of following the path P → P ′ → D, Rush et al.
(2010) go straight from P to D via a Lagrangian relaxation.
The two formulations are equivalent for linear score functions.

We have that Ys = Zs ∩ Z|Rs|; hence, problem P
(Eq. 3) is equivalent to one in which each Ys is re-
placed by Zs and the z-variables are constrained to
be integer. By dropping the integer constraints, we
obtain the following relaxed problem:

P ′ : maximize
∑S
s=1 fs(zs)

w.r.t. zs ∈ Zs, ∀s
〈u(r)〉r∈R ∈ R|R|,

s.t. zs(r) = u(r), ∀s, r ∈ R̄s.

(5)

If the score functions fs are convex, P ′ becomes a
convex program (unlike P , which is discrete); being
a relaxation, it provides an upper bound of P .

Lagrangian. Introducing a Lagrange multiplier
λs(r) for each agreement constraint in Eq. 5, one
obtains the Lagrangian function

L(z, u, λ) =
∑S

s=1

(
fs(zs) +

∑
r∈R̄s

λs(r)zs(r)
)

−∑r∈R
(∑

s:r∈R̄s
λs(r)

)
u(r), (6)

and the dual problem (the master)

D : minimize
∑S
s=1 gs(λs)

w.r.t. λ = 〈λ1, . . . , λS〉
s.t.

∑
s:r∈R̄s

λs(r) = 0, ∀r ∈ R,
(7)

where the gs(λs) are the solution values of the fol-
lowing subproblems (the slaves):

maximize fs(zs) +
∑
r∈R̄s

λs(r)zs(r)
w.r.t. zs ∈ Zs.

(8)

We assume that strong duality holds (w.r.t. Eqs. 5–
7), hence we have P ≤ P ′ = D.3

Solving the dual. Why is the dual formulation D
(Eqs. 7–8) more appealing than P ′ (Eq. 5)? The an-
swer is that the components 1, . . . , S are now de-
coupled, which makes things easier provided each
slave subproblem (Eq. 8) can be solved efficiently.
In fact, this is always a concern in the mind of
the model’s designer when she chooses a decom-
position (the framework that we describe in §3,
in some sense, alleviates her from this concern).
If the score functions are linear, i.e., of the form
fs(zs) =

∑
r∈Rs

θs(r)zs(r) for some vector θs =
〈θs(r)〉r∈Rs , then Eq. 8 becomes a linear program,
for which a solution exists at a vertex of Zs (which

3This is guaranteed if the score functions fs are linear.

240



in turn is an element of Ys). Depending on the struc-
ture of the problem, Eq. 8 may be solved by brute
force, dynamic programming, or specialized combi-
natorial algorithms (Rush et al., 2010; Koo et al.,
2010; Rush and Collins, 2011).

Applying the projected subgradient method (Ko-
modakis et al., 2007; Rush et al., 2010) to the mas-
ter problem (Eq. 7) yields a remarkably simple algo-
rithm, which at each round t solves the subproblems
in Eq. 8 for s = 1, . . . , S, and then gathers these
solutions (call them zt+1

s ) to compute an “averaged”
vote for each basic part,

ut+1(r) = 1
δ(r)

∑
s:r∈R̄s

zt+1
s (r), (9)

where δ(r) = |{s : r ∈ Rs}| is the number of com-
ponents which contain part r. An update of the La-
grange variables follows,

λt+1
s (r) = λts(r)− ηt(zt+1

s (r)− ut+1(r)), (10)

where ηt is a stepsize. Intuitively, the algorithm
pushes for a consensus among the slaves (Eq. 9),
via an adjustment of the Lagrange multipliers which
takes into consideration deviations from the aver-
age (Eq. 10). The subgradient method is guaran-
teed to converge to the solution of D (Eq. 7), for
suitably chosen stepsizes (Shor, 1985; Bertsekas et
al., 1999); it also provides a certificate of optimal-
ity in case the relaxation is tight (i.e., P = D) and
the exact solution has been found. However, con-
vergence is slow when S is large (as we will show
in the experimental section), and no certificates are
available when there is a relaxation gap (P < P ′).
In the next section, we describe the DD-ADMM al-
gorithm (Martins et al., 2011), which does not have
these drawbacks and shares a similar simplicity.

3 Alternating Directions Method

There are two reasons why subgradient-based dual
decomposition is not completely satisfying:

• it may take a long time to reach a consensus;

• it puts all its resources in solving the dual problem
D, and does not attempt to make progress in the
primal P ′, which is closer to our main concern.4

4Our main concern is P ; however solving P ′ is often a
useful step towards that goal, either because a good rounding
scheme exists, or because one may build tighter relaxations to
approach P (Sontag et al., 2008; Rush and Collins, 2011).

Taking a look back at the relaxed primal problem
P ′ (Eq. 5), we see that any primal feasible solution
must satisfy the agreement constraints. This sug-
gests that penalizing violations of these constraints
could speed up consensus.

Augmented Lagrangian. By adding a penalty
term to Eq. 6, we obtain the augmented Lagrangian
function (Hestenes, 1969; Powell, 1969):

Aρ(z, u, λ) = L(z, u, λ)− ρ

2

S∑

s=1

∑

r∈R̄s

(zs(r)− u(r))2,

(11)
where the parameter ρ ≥ 0 controls the intensity
of the penalty. Augmented Lagrangian methods
are well-known in the optimization community (see,
e.g., Bertsekas et al. (1999), §4.2). They alternate
updates to the λ-variables, while seeking to maxi-
mize Aρ with respect to z and u. In our case, how-
ever, this joint maximization poses difficulties, since
the penalty term couples the two variables. The al-
ternating directions method of multipliers (ADMM),
coined by Gabay and Mercier (1976) and Glowinski
and Marroco (1975), sidesteps this issue by perform-
ing alternate maximizations,

zt+1 = arg max
z

Aρ(z, u
t, λt), (12)

ut+1 = arg max
u

Aρ(z
t+1, u, λt), (13)

followed by an update of the Lagrange multipliers
as in Eq. 10. Recently, ADMM has attracted inter-
est, being applied in a variety of problems; see the
recent book by Boyd et al. (2011) for an overview.
As derived in the App. A, the u-updates in Eq. 13
have a closed form, which is precisely the averag-
ing operation performed by the subgradient method
(Eq. 9). We are left with the problem of comput-
ing the z-updates. Like in the subgradient approach,
the maximization in Eq. 12 can be separated into S
independent slave subproblems, which now take the
form:

maximize fs(zs) +
∑

r∈R̄s
λs(r)zs(r)

−ρ
2

∑
r∈R̄s

(zs(r)− ut(r))2

w.r.t. zs ∈ Zs(x).

(14)

Comparing Eq. 8 and Eq. 14, we observe that the
only difference is the presence in the latter of a
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quadratic term which regularizes towards the pre-
vious averaged votes ut(r). Because of this term,
the solution of Eq. 14 for linear score functions may
not be at a vertex (in contrast to the subgradient
method). We devote §4 to describing exact and effi-
cient ways of solving the problem in Eq. 14 for im-
portant, widely used slaves. Before going into de-
tails, we mention another advantage of ADMM over
the subgradient algorithm: it knows when to stop.

Primal and dual residuals. Recall that the sub-
gradient method provides optimality certificates
when the relaxation is tight (P = P ′) and an ex-
act solution of P has been found. While this is good
enough when tight relaxations are frequent, as in the
settings explored by Rush et al. (2010), Koo et al.
(2010), and Rush and Collins (2011), it is hard to
know when to stop when a relaxation gap exists.
We would like to have similar guarantees concern-
ing the relaxed primal P ′.5 A general weakness of
subgradient algorithms is that they do not have this
capacity, and so are usually stopped by specifying a
maximum number of iterations. In contrast, ADMM
allows to keep track of primal and dual residuals
(Boyd et al., 2011). This allows providing certifi-
cates not only for the exact solution of P (when the
relaxation is tight), but also to terminate when a near
optimal solution of the relaxed problem P ′ has been
found. The primal residual rtP measures the amount
by which the agreement constraints are violated:

rtP =

∑S
s=1

∑
r∈R̄s

(zts(r)− ut(r))2

∑
r∈R δ(r)

; (15)

the dual residual rtD is the amount by which a dual
optimality condition is violated (see Boyd et al.
(2011), p.18, for details). It is computed via:

rtD =

∑
r∈R δ(r)(u

t(r)− ut−1(r))2

∑
r∈R δ(r)

, (16)

Our stopping criterion is thus that these two residu-
als are below a threshold, e.g., 1 × 10−3. The com-
plete algorithm is depicted as Alg. 1. As stated in

5This problem is more important than it may look. Problems
with many slaves tend to be less exact, hence relaxation gaps
are frequent. Also, when decoding is embedded in training, it is
useful to obtain the fractional solution of the relaxed primal P
(rather than an approximate integer solution). See Kulesza and
Pereira (2007) and Martins et al. (2009b) for details.

Algorithm 1 ADMM-based Dual Decomposition
1: input: score functions 〈fs(.)〉Ss=1, parameters ρ, η,

thresholds εP and εD.
2: initialize t← 1
3: initialize u1(r)← 0.5 and λ1

s(r)← 0, ∀s, ∀r ∈ R̄s
4: repeat
5: for each s = 1, . . . , S do
6: make a zs-update, yielding zt+1

s (Eq. 14)
7: end for
8: make a u-update, yielding ut+1 (Eq. 9)
9: make a λ-update, yielding λt+1 (Eq. 10)

10: t← t+ 1
11: until rt+1

P < εP and rt+1
D < εD (Eqs. 15–16)

12: output: relaxed primal and dual solutions u, z, λ

Martins et al. (2011), convergence to the solution of
P ′ is guaranteed with a fixed stepsize ηt = τρ, with
τ ∈ [1, 1.618] (Glowinski and Le Tallec, 1989, Thm.
4.2). In our experiments, we set τ = 1.5, and adapt
ρ as described in (Boyd et al., 2011, p.20).6

4 Solving the Subproblems

In this section, we address the slave subproblems of
DD-ADMM (Eq. 14). We show how these subprob-
lems can be solved efficiently for several important
cases that arise in NLP applications. Throughout,
we assume that the score functions fs are linear, i.e.,
they can be written as fs(zs) =

∑
r∈Rs

θs(r)zs(r).
This is the case whenever a linear model is used, in
which case θs(r) = 1

δ(r)w · φ(x, r), where w is a
weight vector and φ(x, r) is a feature vector. It is
also the scenario studied in previous work in dual
decomposition (Rush et al., 2010). Under this as-
sumption, and discarding constant terms, the slave
subproblem in Eq. 14 becomes:

max
zs∈Zs

∑

r∈Rs\R̄s

θs(r)zs(r)−
ρ

2

∑

r∈R̄s

(zs(r)− as(r))2.

(17)
where as(r) = ut(r)+ρ−1(θs(r)+λts(r)). Since Zs
is a polytope, Eq. 17 is a quadratic program, which
can be solved with a general purpose solver. How-
ever, that does not exploit the structure of Zs and is
inefficient when |Rs| is large. We next show that for
many cases, a closed-form solution is available and

6Briefly, we initialize ρ = 0.03 and then increase/decrease
ρ by a factor of 2 whenever the primal residual becomes > 10
times larger/smaller than the dual residual.
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can be computed inO(|Rs|) time, up to log factors.7

Pairwise Factors. This is the case where RPAIR =
{r1, r2, r12}, where r1 and r2 are basic parts and
r12 is their conjunction, i.e., we have YPAIR =
{〈z1, z2, z12〉 | z12 = z1 ∧ z2}. This factor is use-
ful to make conjunctions of variables participate in
the score function (see e.g. the grandparent, sibling,
and head bigram parts in Fig. 1). The convex hull
of YPAIR is the polytope ZPAIR = {〈z1, z2, z12〉 ∈
[0, 1]3 | z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1}, as
shown by Martins et al. (2010). In this case, problem
(17) can be written as

max θ12z12 − ρ
2 [(z1 − a1)2 + (z2 − a2)2]

w.r.t. 〈z1, z2, z12〉 ∈ [0, 1]3

s.t. z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1
(18)

and has a closed form solution (see App. B).

Uniqueness Quantification and XOR. Many
problems involve constraining variables to take a
single value: for example, in dependency parsing,
a modifier can only take one head. This can be
expressed as the statement ∃!y : Q(y) in first-order
logic,8 or as a one-hot XOR factor in a factor
graph (Smith and Eisner, 2008; Martins et al.,
2010). In this case, RXOR = {r1, . . . , rn}, and
YXOR = {〈z1, . . . , zn〉 ∈ {0, 1}n |

∑n
i=1 zi = 1}.

The convex hull of YXOR is ZXOR = {〈z1, . . . , zn〉 ∈
[0, 1]n | ∑n

i=1 zi = 1}. Assume for the sake of
simplicity that all parts in RXOR are basic.9 Up to a
constant, the slave subproblem becomes:

minimize 1
2

∑n
i=1(zi − ai)2

w.r.t. 〈z1, . . . , zn〉 ∈ [0, 1]n

s.t.
∑n
i zi = 1.

(19)

This is the problem of projecting onto the probabil-
ity simplex, which can be done in O(n log n) time
via a sort operation (see App. C).10

7This matches the asymptotic time that would be necessary
to solve the corresponding problems in the subgradient method,
for which algorithms are straightforward to derive. The point is
that with ADMM fewer instances of these subproblems need to
be solved, due to faster convergence of the master problem.

8The symbol ∃! means “there is one and only one.”
9A similar derivation can be made otherwise.

10Also common is the need for constraining existence of “at
most one” element. This can be reduced to uniqueness quantifi-
cation by adding a dummy NULL label.

Existential Quantification and OR. Sometimes,
only existence is required, not necessarily unique-
ness. This can be expressed with disjunctions, ex-
istential quantifiers in first-order logic (∃y : Q(y)),
or as a OR factor. In this case, ROR = {r1, . . . , rn},
YOR = {〈z1, . . . , zn〉 ∈ {0, 1}n |

∨n
i=1 zi = 1},

and the convex hull is ZOR = {〈z1, . . . , zn〉 ∈
[0, 1]n | ∑n

i=1 zi ≥ 1} (see Tab. 1 in Martins et al.
(2010)). The slave subproblem becomes:

minimize 1
2

∑n
i=1(zi − ai)2

w.r.t. 〈z1, . . . , zn〉 ∈ [0, 1]n

s.t.
∑n
i zi ≥ 1.

(20)

We derive a procedure in App. D to compute this
projection in O(n log n) runtime, also with a sort.

Negations. The two cases above can be extended
to allow some of their inputs to be negated. By a
change of variables in Eqs. 19–20 it is possible to
reuse the same black box that solves those problems.
The procedure is as follows:

1. For i = 1, . . . , n, set a′i = 1−ai if the ith variable
is negated, and a′i = ai otherwise.

2. Obtain 〈z′1, . . . , z′n〉 as the solution of Eqs. 19 or
20 providing 〈a′1, . . . , a′n〉 as input.

3. For i = 1, . . . , n, set zi = 1−z′i if the ith variable
is negated, and zi = z′i otherwise.

The ability to handle negated variables adds a
great degree of flexibility. From De Morgan’s
laws, we can now handle conjunctions and impli-
cations (since

∧n
i=1Qi(x) ⇒ R(x) is equivalent to∨n

i=1 ¬Qi(x) ∨R(x)).

Logical Variable Assignments. All previous ex-
amples involve taking a group of existing variables
and defining a constraint. Alternatively, we may
want to define a new variable which is the result of
an operation involving other variables. For exam-
ple, R(x) := ∃!y : Q(x, y). This corresponds to the
XOR-WITH-OUTPUT factor in Martins et al. (2010).
Interestingly, this can be expressed as a XOR where
R(x) is negated (i.e., either ¬R(x) holds or exactly
one y satisfies Q(x, y), but not both).

A more difficult problem is that of the OR-WITH-
OUTPUT factor, expressed by the formula R(x) :=
∃y : Q(x, y). We have ROR-OUT = {r0, . . . , rn},
and YOR-OUT = {〈z0, . . . , zn〉 ∈ {0, 1}n | z0 =
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# Slaves Runtime Description
Tree ∃!h : arc(h,m), m 6= 0 O(n) O(n logn) Each non-root word has a head

flow(h,m, k)⇒ arc(h,m) O(n3) O(1) Only active arcs may carry flow
path(m, d) := ∃!h : flow(h,m, d), m 6= 0 O(n2) O(n logn)
path(h, d) := ∃!m : flow(h,m, d) O(n2) O(n logn) Paths and flows are consistent
path(0,m) := TRUE, flow(h,m,m) := TRUE (see Martins et al. (2010))

All siblings sibl(h,m, s) := arc(h,m) ∧ arc(h, s) O(n3) O(1) By definition
Grandp. grand(g, h,m) := arc(g, h) ∧ arc(h,m) O(n3) O(1) By definition

Head Bigram bigram(b, h,m) := arc(b,m− 1) ∧ arc(h,m), m 6= 0 O(n3) O(1) By definition
Consec. Sibl. lastsibl(h,m,m) := arc(h,m)

∃!m ∈ [h, k] : lastsibl(h,m, k) O(n2) O(n logn) Head automaton model
lastsibl(h,m, k) := lastsibl(h,m, k + 1) (see supplementary material)

⊕ nextsibl(h,m, k + 1) O(n3) O(1)
arc(h,m) := ∃!s ∈ [h,m] : nextsibl(h, s,m) O(n2) O(n logn)

Nonproj. Arc nonproj(h,m) := arc(h,m) ∧ ∃k ∈ [h,m] : ¬path(h, k) O(n2) O(n logn) By definition

Table 1: First-order logic formulae underlying our dependency parser. The basic parts are the predicate variables
arc(h,m) (indicating an arc linking head h to modifier m), path(a, d) (indicating a directed path from ancestor
a to descendant d), nextsibl(h,m, s) (indicating that 〈h,m〉 and 〈h, s〉 are consecutive siblings), nonproj(h,m)
(indicating that 〈h,m〉 is a non-projective arc), as well as the auxiliary variables flow(h,m, d) (indicating that arc
〈h,m〉 carries flow to d), and lastsibl(h,m, k) (indicating that, up to position k, the last seen modifier of h occurred
at position m). The non-basic parts are the pairwise factors sibl(h,m, s), grand(g, h,m), and bigram(b, h,m); as
well as each logical formula. Columns 3–4 indicate the number of parts of each kind, and the time complexity for
solving each subproblem. For a sentence of length n, there are O(n3) parts and the total complexity is O(n3 log n).

∨n
i=1 zi}. The convex hull of YOR-OUT is the follow-

ing set: ZOR-OUT = {〈z0, . . . , zn〉 ∈ [0, 1]n | z0 ≥∑n
i=1 zi, z0 ≤ zi, ∀i = 1, . . . , n} (Martins et al.,

2010, Tab.1). The slave subproblem is:

minimize 1
2

∑n
i=0(zi − ai)2

w.r.t. 〈z0, . . . , zn〉 ∈ [0, 1]n

s.t. z0 ≥
∑n
i=1 zi; z0 ≤ zi, ∀i = 1, . . . , n.

(21)
The problem in Eq. 21 is more involved than the
ones in Eqs. 19–20. Yet, there is still an efficient
procedure with runtime O(n log n) (see App. E).
By using the result above for negated variables, we
are now endowed with a procedure for many other
cases, such that AND-WITH-OUTPUT and formu-
las with universal quantifiers (e.g., R(x) := ∀y :
Q(x, y)). Up to a log-factor, the runtimes will be
linear in the number of predicates.

Larger Slaves. The only disadvantage of DD-
ADMM in comparison with the subgradient algo-
rithm is that there is not an obvious way of solving
the subproblem in Eq. 14 exactly for large combi-
natorial factors, such as the TREE constraint in de-
pendency parsing, or a sequence model. Hence, our
method seems to be more suitable for decomposi-
tions which involve “simple slaves,” even if their
number is large. However, this does not rule out the
possibility of using this method otherwise. Eckstein

and Bertsekas (1992) show that the ADMM algo-
rithm may still converge when the z-updates are in-
exact. Hence the method may still work if the slaves
are solved numerically up to some accuracy. We de-
fer this to future investigation.

5 Experiments: Dependency Parsing

We used 14 datasets with non-projective depen-
dencies from the CoNLL-2006 and CoNLL-2008
shared tasks (Buchholz and Marsi, 2006; Surdeanu
et al., 2008). We also used a projective English
dataset derived from the Penn Treebank by applying
the standard head rules of Yamada and Matsumoto
(2003).11 We did not force the parser to output pro-
jective trees or unique roots for any of the datasets;
everything is learned from the data. We trained by
running 10 iterations of the cost-augmented MIRA
algorithm (Crammer et al., 2006) with LP-relaxed
decoding, as in Martins et al. (2009b). Follow-
ing common practice (Charniak and Johnson, 2005;
Carreras et al., 2008), we employed a coarse-to-fine
procedure to prune away unlikely candidate arcs, as
described by Koo and Collins (2010). To ensure
valid parse trees at test time, we rounded fractional

11As usual, we train on sections §02–21, use §22 as validation
data, and test on §23. We ran SVMTool (Giménez and Marquez,
2004) to obtain automatic part-of-speech tags for §22–23.
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solutions as described in Martins et al. (2009a) (yet,
solutions were integral most of the time).

The parts used in our full model are the ones
depicted in Fig. 1. Note that a subgradient-based
method could handle some of those parts efficiently
(arcs, consecutive siblings, grandparents, and head
bigrams) by composing arc-factored models, head
automata, and a sequence labeler. However, no
lightweight decomposition seems possible for incor-
porating parts for all siblings, directed paths, and
non-projective arcs. Tab. 1 shows the first-order
logical formulae that encode the constraints in our
model. Each formula gives rise to a subproblem
which is efficiently solvable (see §4). By ablating
some of rows of Tab. 1 we recover known methods:

• Resorting to the tree and consecutive sibling for-
mulae gives one of the models in Koo et al.
(2010), with the same linear relaxation (a proof
of this fact is included in App. F);

• Resorting to tree, all siblings, grandparent, and
non-projective arcs, recovers a multi-commodity
flow configuration proposed by Martins et al.
(2009a); the relaxation is also the same.12

The experimental results are shown in Tab. 2.
For comparison, we include the best published re-
sults for each dataset (at the best of our knowledge),
among transition-based parsers (Nivre et al., 2006;
Huang and Sagae, 2010), graph-based parsers (Mc-
Donald et al., 2006; Koo and Collins, 2010), hybrid
methods (Nivre and McDonald, 2008; Martins et al.,
2008), and turbo parsers (Martins et al., 2010; Koo
et al., 2010). Our full model achieved the best re-
ported scores for 7 datasets. The last two columns
show a consistent improvement (with the exceptions
of Chinese and Arabic) when using the full set of
features over a second order model with grandparent
and consecutive siblings, which is our reproduction
of the model of Koo et al. (2010).13

12Although Martins et al. (2009a) also incorporated consec-
utive siblings in one of their configurations, our constraints are
tighter than theirs. See App. F.

13Note however that the actual results of Koo et al. (2010)
are higher than our reproduction, as can be seen in the second
column. The differences are due to the features that were used
and on the way the models were trained. The cause is not search
error: exact decoding with an ILP solver (CPLEX) revealed no
significant difference with respect to our G+CS column. We
leave further analysis for future work.

Best known UAS G+CS Full
Arabic 80.18 [Ma08] 81.12 81.10 (-0.02)
Bulgar. 92.88 [Ma10] 93.04 93.50 (+0.46)
Chinese 91.89 [Ma10] 91.05 90.62 (-0.43)
Czech 88.78 [Ma10] 88.80 89.46 (+0.66)
English 92.57 [Ko10] 92.45 92.68 (+0.23)
Danish 91.78 [Ko10] 91.70 91.86 (+0.16)
Dutch 85.81 [Ko10] 84.77 85.53 (+0.76)
German 91.49 [Ma10] 91.29 91.89 (+0.60)
Japane. 93.42 [Ma10] 93.62 93.72 (+0.10)
Portug. 93.03 [Ko10] 92.05 92.29 (+0.24)
Slovene 86.21 [Ko10] 86.09 86.95 (+0.86)
Spanish 87.04 [Ma10] 85.99 86.74 (+0.75)
Swedish 91.36 [Ko10] 89.94 90.16 (+0.22)
Turkish 77.55 [Ko10] 76.24 76.64 (+0.40)
PTB §23 93.04 [KC10] 92.19 92.53 (+0.34)

Table 2: Unlabeled attachment scores, excluding punc-
tuation. In the second column, [Ma08] denotes Martins
et al. (2008), [KC10] is Koo and Collins (2010), [Ma10]
is Martins et al. (2010), and [Ko10] is Koo et al. (2010).
In columns 3–4, “Full” is our full model, and “G+CS” is
our reproduction of the model of Koo et al. (2010), i.e.,
the same as “Full” but with all features ablated excepted
for grandparents and consecutive siblings.

AF +G+CS +AS +NP Full
PTB §22 91.02 92.13 92.32 92.36 92.41
PTB §23 91.36 92.19 92.41 92.50 92.53

Table 3: Feature ablation experiments. AF is an arc-
factored model; +G+CS adds grandparent and consec-
utive siblings; +AS adds all-siblings; +NP adds non-
projective arcs; Full adds the bigram and directed paths.

Feature ablation and error analysis. We con-
ducted a simple ablation study by training several
models on the English PTB with different sets of
features. Tab. 3 shows the results. As expected, per-
formance keeps increasing as we use models with
greater expressive power. We show some concrete
examples in App. G of sentences that the full model
parsed correctly, unlike less expressive models.

Convergence speed and optimality. Fig. 2 com-
pares the performance of DD-ADMM and the sub-
gradient algorithms in the validation section of the
PTB.14 For the second order model, the subgradient

14The learning rate in the subgradient method was set as ηt =
η0/(1+Nincr(t)), as in Koo et al. (2010), whereNincr(t) is the
number of dual increases up to the tth iteration, and η0 is chosen
to maximize dual decrease after 20 iterations (in a per sentence
basis). Those preliminary iterations are not plotted in Fig. 2.
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method has more slaves than in Koo et al. (2010):
it has a slave imposing the TREE constraint (whose
subproblems consists on finding a minimum span-
ning tree) and several for the all-sibling parts, yield-
ing an average number of 310.5 and a maximum
of 4310 slaves. These numbers are still manage-
able, and we observe that a “good” UAS is achieved
relatively quickly. The ADMM method has many
more slaves due to the multicommodity flow con-
straints (average 1870.8, maximum 65446), yet it
attains optimality sooner, as can be observed in the
right plot. For the full model, the subgradient-based
method becomes extremely slow, and the UAS score
severely degrades (after 1000 iterations it is 2%
less than the one obtained with the ADMM-based
method, with very few instances having been solved
to optimality). The reason is the number of slaves:
in this configuration and dataset the average number
of slaves per instance is 3327.4, and the largest num-
ber is 113207. On the contrary, the ADMM method
keeps a robust performance, with a large fraction of
optimality certificates in early iterations.

Runtime and caching strategies. Despite its suit-
ability to problems with many overlapping compo-
nents, our parser is still 1.6 times slower than Koo
et al. (2010) (0.34 against 0.21 sec./sent. in PTB
§23), and is far beyond the speed of transition-based
parsers (e.g., Huang and Sagae (2010) take 0.04
sec./sent. on the same data, although accuracy is
lower, 92.1%). Our implementation, however, is not
fully optimized. We next describe how considerable
speed-ups are achieved by caching the subproblems,
following a strategy similar to Koo et al. (2010).

Fig. 3 illustrates the point. After a few iterations,
many variables u(r) see a consensus being achieved
(i.e., ut(r) = zt+1

s (r),∀s) and enter an idle state:
they are left unchanged by the u-update in Eq. 9,
and so do the Lagrange variables λt+1

s (r) (Eq. 10).
If by iteration t all variables in a subproblem s are
idle, then zt+1

s (r) = zts(r), hence the subproblem
does not need to be resolved.15 Fig. 3 shows that

15Even if not all variables are idle in s, caching may still be
useful: note that the z-updates in Eq. 14 tend to be sparse for the
subproblems described in §4 (these are Euclidean projections
onto polytopes with 0/1 vertices, which tend to hit corners). An-
other trick that may accelerate the algorithm is warm-starting:
since many subproblems involve a sort operation, storing the
sorted indexes may speedup the next round.
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Figure 3: Fraction of active variables, subproblems and
messages along DD-ADMM iterations (full model). The
number of active messages denotes the total number of
variables (active or not) that participate in an active factor.
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Figure 4: Runtimes of DD-ADMM and CPLEX on PTB
§22 (each point is a sentence). Average runtimes are
0.362 (DD-ADMM) and 0.565 sec./sent. (CPLEX).

many variables and subproblems are left untouched
after the first few rounds.

Finally, Fig. 4 compares the runtimes of our im-
plementation of DD-ADMM with those achieved by
a state-of-the-art LP solver, CPLEX, in its best per-
forming configuration: the simplex algorithm ap-
plied to the dual LP. We observe that DD-ADMM
is faster in some regimes but slower in others. For
short sentences (< 15 words), DD-ADMM tends to
be faster. For longer sentences, CPLEX is quite ef-
fective as it uses good heuristics for the pivot steps
in the simplex algorithm; however, we observed that
it sometimes gets trapped on large problems. Note
also that DD-ADMM is not fully optimized, and that
it is much more amenable to parallelization than the
simplex algorithm, since it is composed of many in-
dependent slaves. This suggests potentially signifi-
cant speed-ups in multi-core environments.

6 Related Work

Riedel and Clarke (2006) first formulated depen-
dency parsing as an integer program, along with
logical constraints. The multicommodity flow for-
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Figure 2: UAS including punctuation (left) and fraction of optimality certificates (right) accross iterations of the
subgradient and DD-ADMM algorithms, in PTB §22. “Full” is our full model; “Sec Ord” is a second-order model
with grandparents and all siblings, for which the subgradient method uses a coarser decomposition with a TREE factor.
Since subgradient and DD-ADMM are solving the same problems, the solid lines (as the dashed ones) would meet in
the limit, however subgradient converges very slowly for the full model. The right plot shows optimality certificates
for both methods, indicating that an exact solution of P has been found; for DD-ADMM we also plot the fraction of
instances that converged to an accurate solution of P ′ (primal and dual residuals < 10−3) and hence can be stopped.

mulation was introduced by Martins et al. (2009a),
along with some of the parts considered here. Koo
et al. (2010) proposed a subgradient-based dual de-
composition method that elegantly combines head
automata with maximum spanning tree algorithms;
these parsers, as well as the loopy belief propagation
method of Smith and Eisner (2008), are all instances
of turbo parsers (Martins et al., 2010).

DD-ADMM has been proposed and theoretically
analyzed by Martins et al. (2011) for problems rep-
resentable as factor graphs. The general ADMM
method has a long-standing history in optimization
(Hestenes, 1969; Powell, 1969; Glowinski and Mar-
roco, 1975; Gabay and Mercier, 1976; Boyd et al.,
2011). Other methods have been recently proposed
to accelerate dual decomposition, such as Jojic et al.
(2010) and Meshi and Globerson (2011) (the latter
applying ADMM in the dual rather than the primal).

While our paper shows limitations of the sub-
gradient method when there are many overlapping
components, this method may still be advantageous
over ADMM in problems that are nicely decom-
posable, since it often allows reusing existing com-
binatorial machinery. Yet, the scenario we con-
sider here is realistic in NLP, where we often have
to deal with not-lightly-decomposable constrained
problems (e.g., exploiting linguistic knowledge).

7 Conclusion

We have introduced new feature-rich turbo parsers.
Since exact decoding is intractable, we solve an LP
relaxation through a recently proposed consensus al-

gorithm, DD-ADMM, which is suitable for prob-
lems with many overlapping components. We study
the empirical runtime and convergence properties of
DD-ADMM, complementing the theoretical treat-
ment in Martins et al. (2011). DD-ADMM com-
pares favourably against the subgradient method in
several aspects: it is faster to reach a consensus, it
has better stopping conditions, and it works better
in non-lightweight decompositions. While its slave
subproblems are more involved, we derived closed-
form solutions for many cases of interest, such as
first-order logic formulas and combinatorial factors.

DD-ADMM may be useful in other frameworks
involving logical constraints, such as the models
for compositional semantics presented by Liang
et al. (2011). Non-logical constraints may also
yield efficient subproblems, e.g., the length con-
straints in summarization and compression (Clarke
and Lapata, 2008; Martins and Smith, 2009; Berg-
Kirkpatrick et al., 2011). Finally, DD-ADMM can
be adapted to tighten its relaxations towards exact
decoding, as in Sontag et al. (2008) and Rush and
Collins (2011). We defer this for future work.
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Abstract

We exploit sketch techniques, especially the
Count-Min sketch, a memory, and time effi-
cient framework which approximates the fre-
quency of a word pair in the corpus without
explicitly storing the word pair itself. These
methods use hashing to deal with massive
amounts of streaming text. We apply Count-
Min sketch to approximate word pair counts
and exhibit their effectiveness on three im-
portant NLP tasks. Our experiments demon-
strate that on all of the three tasks, we get
performance comparable to Exact word pair
counts setting and state-of-the-art system. Our
method scales to 49 GB of unzipped web data
using bounded space of 2 billion counters (8
GB memory).

1 Introduction

There is more data available today on the web than
there has ever been and it keeps increasing. Use
of large data in the Natural Language Processing
(NLP) community is not new. Many NLP problems
(Brants et al., 2007; Turney, 2008; Ravichandran et
al., 2005) have benefited from having large amounts
of data. However, processing large amounts of data
is still challenging.

This has motivated NLP community to use com-
modity clusters. For example, Brants et al. (2007)
used 1500 machines for a day to compute the rela-
tive frequencies of n-grams from 1.8TB of web data.
In another work, a corpus of roughly 1.6 Terawords
was used by Agirre et al. (2009) to compute pair-
wise similarities of the words in the test sets using
the MapReduce infrastructure on 2, 000 cores. How-
ever, the inaccessibility of clusters to an average user

has attracted the NLP community to use streaming,
randomized, and approximate algorithms to handle
large amounts of data (Goyal et al., 2009; Levenberg
et al., 2010; Van Durme and Lall, 2010).

Streaming approaches (Muthukrishnan, 2005)
provide memory and time-efficient framework to
deal with terabytes of data. However, these ap-
proaches are proposed to solve a singe problem.
For example, our earlier work (Goyal et al., 2009)
and Levenberg and Osborne (2009) build approxi-
mate language models and show their effectiveness
in Statistical Machine Translation (SMT). Stream-
based translation models (Levenberg et al., 2010)
has been shown effective to handle large parallel
streaming data for SMT. In Van Durme and Lall
(2009b), a Talbot Osborne Morris Bloom (TOMB)
Counter (Van Durme and Lall, 2009a) was used to
find the top-K verbs “y” given verb “x” using the
highest approximate online Pointwise Mutual Infor-
mation (PMI) values.

In this paper, we explore sketch techniques,
especially the Count-Min sketch (Cormode and
Muthukrishnan, 2004) to build a single model to
show its effectiveness on three important NLP tasks:

• Predicting the Semantic Orientation of words
(Turney and Littman, 2003)

• Distributional Approaches for word similarity
(Agirre et al., 2009)

• Unsupervised Dependency Parsing (Cohen and
Smith, 2010) with a little linguistics knowl-
edge.

In all these tasks, we need to compute association
measures like Pointwise Mutual Information (PMI),
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and Log Likelihood ratio (LLR) between words. To
compute association scores (AS), we need to count
the number of times pair of words appear together
within a certain window size. However, explicitly
storing the counts of all word pairs is both computa-
tionally expensive and memory intensive (Agirre et
al., 2009; Pantel et al., 2009). Moreover, the mem-
ory usage keeps increasing with increase in corpus
size.

We explore Count-Min (CM) sketch to address
the issue of efficient storage of such data. The
CM sketch stores counts of all word pairs within a
bounded space. Storage space saving is achieved
by approximating the frequency of word pairs in
the corpus without explicitly storing the word pairs
themselves. Both updating (adding a new word pair
or increasing the frequency of existing word pair)
and querying (finding the frequency of a given word
pair) are constant time operations making it efficient
online storage data structure for large data. Sketches
are scalable and can easily be implemented in dis-
tributed setting.

We use CM sketch to store counts of word pairs
(except word pairs involving stop words) within a
window of size1 7 over different size corpora. We
store exact counts of words (except stop words) in
hash table (since the number of unique words is
not large that is quadratically less than the num-
ber of unique word pairs). The approximate PMI
and LLR scores are computed using these approxi-
mate counts and are applied to solve our three NLP
tasks. Our experiments demonstrate that on all of
the three tasks, we get performance comparable to
Exact word pair counts setting and state-of-the-art
system. Our method scales to 49 GB of unzipped
web data using bounded space of 2 billion counters
(8 GB memory). This work expands upon our ear-
lier workshop papers (Goyal et al., 2010a; Goyal et
al., 2010b).

2 Sketch Techniques

A sketch is a compact summary data structure to
store the frequencies of all items in the input stream.
Sketching techniques use hashing to map items in
streaming data onto a small sketch vector that can
be updated and queried in constant time. These tech-

17 is chosen from intuition and not tuned.

niques generally process the input stream in one di-
rection, say from left to right, without re-processing
previous input. The main advantage of using these
techniques is that they require a storage which is
sub-linear in size of the input stream. The following
surveys comprehensively review the streaming liter-
ature: (Rusu and Dobra, 2007; Cormode and Had-
jieleftheriou, 2008).

There exists an extensive literature on sketch tech-
niques (Charikar et al., 2004; Li et al., 2008; Cor-
mode and Muthukrishnan, 2004; Rusu and Dobra,
2007) in algorithms community for solving many
large scale problems. However, in practice, re-
searchers have preferred Count-Min (CM) sketch
over other sketch techniques in many application ar-
eas, such as Security (Schechter et al., 2010), Ma-
chine Learning (Shi et al., 2009; Aggarwal and Yu,
2010), and Privacy (Dwork et al., 2010). This moti-
vated us to explore CM sketch to solve three impor-
tant NLP problems.2

2.1 Count-Min Sketch

The Count-Min sketch (Cormode and Muthukrish-
nan, 2004) is a compact summary data structure
used to store the frequencies of all items in the in-
put stream. The sketch allows fundamental queries
on the data stream such as point, range and inner
product queries to be approximately answered very
quickly. It can also be applied to solve the finding
frequent items problem (Manku and Motwani, 2002)
in a data stream. In this paper, we are only interested
in point queries. The aim of a point query is to es-
timate the count of an item in the input stream. For
other details, the reader is referred to (Cormode and
Muthukrishnan, 2004).

Given an input stream of word pairs of length N
and user chosen parameters δ and ε, the algorithm
stores the frequencies of all the word pairs with the
following guarantees:

• All reported frequencies are within the true fre-
quencies by at most εN with a probability of at
least 1-δ.

• The space used by the algorithm is O(1ε log 1
δ ).

2In future, in another line of research, we will explore com-
paring different sketch techniques for NLP problems.
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• Constant time of O(log(1δ )) per each update and
query operation.

2.1.1 CM Data Structure
A Count-Min sketch (CM) with parameters (ε,δ)

is represented by a two-dimensional array with
width w and depth d :




sketch[1, 1] · · · sketch[1, w]
...

. . .
...

sketch[d, 1] · · · sketch[d,w]




Among the user chosen parameters, ε controls the
amount of tolerable error in the returned count and
δ controls the probability with which the returned
count is not within the accepted error. These val-
ues of ε and δ determine the width and depth of the
two-dimensional array respectively. To achieve the
guarantees mentioned in the previous section, we
set w=2

ε and d=log(1δ ). The depth d denotes the
number of pairwise-independent hash functions em-
ployed by the algorithm and there exists a one-to-
one correspondence between the rows and the set
of hash functions. Each of these hash functions
hk:{x1 . . . xN} → {1 . . . w}, 1 ≤ k ≤ d, takes a
word pair from the input stream and maps it into a
counter indexed by the corresponding hash function.
For example, h2(x) = 10 indicates that the word
pair “x” is mapped to the 10th position in the second
row of the sketch array.

Initialize the entire sketch array with zeros.
Update Procedure: When a new word pair “x”

with count c arrives, one counter in each row (as de-
cided by its corresponding hash function) is updated
by c.

sketch[k, hk(x)]← sketch[k, hk(x)] + c, ∀1 ≤ k ≤ d

Query Procedure: Since multiple word pairs can
get hashed to the same position, the frequency stored
by each position is guaranteed to overestimate the
true count. Thus, to answer the point query for a
given word pair, we return minimum over all the po-
sitions indexed by the k hash functions. The answer
to Query(x): ĉ = mink sketch[k, hk(x)]

Both update and query procedures involve evalu-
ating d hash functions and reading of all the values
in those indices and hence both these procedures are
linear in the number of hash functions. Hence both

these steps require O(log(1δ )) time. In our experi-
ments (see Section 3.1), we found that a small num-
ber of hash functions are sufficient and we use d=5.
Hence, the update and query operations take only a
constant time. The space used by the algorithm is
the size of the array i.e. wd counters, where w is the
width of each row.

2.1.2 Properties
Apart from the advantages of being space ef-

ficient, and having constant update and constant
querying time, the Count-Min sketch has also other
advantages that makes it an attractive choice for
NLP applications.

• Linearity: Given two sketches s1 and s2 com-
puted (using the same parameters w and d)
over different input streams, the sketch of the
combined data stream can be easily obtained
by adding the individual sketches in O(1ε log 1

δ )
time which is independent of the stream size.

• The linearity is especially attractive because it
allows the individual sketches to be computed
independent of each other, which means that it
is easy to implement it in distributed setting,
where each machine computes the sketch over
a sub set of corpus.

2.2 Conservative Update
Estan and Varghese introduced the idea of conserva-
tive update (Estan and Varghese, 2002) in the con-
text of computer networking. This can easily be used
with CM sketch to further improve the estimate of a
point query. To update a word pair “x” with fre-
quency c, we first compute the frequency ĉ of this
word pair from the existing data structure and the
counts are updated according to:

ĉ = mink sketch[k, hk(x)], ∀1 ≤ k ≤ d
sketch[k, hk(x)]← max{sketch[k, hk(x)], ĉ+ c}

The intuition is that, since the point query returns
the minimum of all the d values, we will update a
counter only if it is necessary as indicated by the
above equation. Though this is a heuristic, it avoids
the unnecessary updates of counter values and thus
reduces the error.

In our experiments, we found that employing the
conservative update reduces the Average Relative
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Error (ARE) of these counts approximately by a fac-
tor of 1.5. (see Section 3.1). But unfortunately,
this update can only be maintained over individual
sketches in distributed setting.

3 Intrinsic Evaluations

To show the effectiveness of the CM sketch and CM
sketch with conservative update (CU) in the context
of NLP, we perform intrinsic evaluations. First, the
intrinsic evaluations are designed to measure the er-
ror in the approximate counts returned by CM sketch
compared to their true counts. Second, we compare
the word pairs association rankings obtained using
PMI and LLR with sketch and exact counts.

It is memory and time intensive to perform many
intrinsic evaluations on large data (Ravichandran et
al., 2005; Brants et al., 2007; Goyal et al., 2009).
Hence, we use a subset of corpus of 2 million sen-
tences (Subset) from Gigaword (Graff, 2003) for it.
We generate words and word pairs over a window
of size 7. We store exact counts of words (except
stop words) in a hash table and store approximate
counts of word pairs (except word pairs involving
stop words) in the sketch.

3.1 Evaluating approximate sketch counts

To evaluate the amount of over-estimation error (see
Section 2.1) in CM and CU counts compared to the
true counts, we first group all word pairs with the
same true frequency into a single bucket. We then
compute the average relative error in each of these
buckets. Since low-frequency word pairs are more
prone to errors, making this distinction based on fre-
quency lets us understand the regions in which the
algorithm is over-estimating. Moreover, to focus on
errors on low frequency counts, we have only plot-
ted word pairs with count at most 100. Average Rel-
ative error (ARE) is defined as the average of abso-
lute difference between the predicted and the exact
value divided by the exact value over all the word
pairs in each bucket.

ARE =
1

N

N∑

i=1

|Exacti − Predictedi|
Exacti

Where Exact and Predicted denotes values of ex-
act and CM/CU counts respectively; N denotes the
number of word pairs with same counts in a bucket.

In Fig. 1(a), we fixed the number of counters to 20
million (20M ) with four bytes of memory per each
counter (thus it only requires 80 MB of main mem-
ory). Keeping the total number of counters fixed,
we try different values of depth (2, 3, 5 and 7) of the
sketch array and in each case the width is set to 20M

d .
The ARE curves in each case are shown in Fig. 1(a).
We can make three main observations from Figure
1(a): First it shows that most of the errors occur on
low frequency word pairs. For frequent word pairs,
in almost all the different runs the ARE is close to
zero. Secondly, it shows that ARE is significantly
lower (by a factor of 1.5) for the runs which use
conservative update (CUx run) compared to the runs
that use direct CM sketch (CMx run). The encourag-
ing observation is that, this holds true for almost all
different (width,depth) settings. Thirdly, in our ex-
periments, it shows that using depth of 3 gets com-
paratively less ARE compared to other settings.

To be more certain about this behavior with re-
spect to different settings of width and depth, we
tried another setting by increasing the number of
counters to 50 million. The curves in 1(b) follow a
pattern which is similar to the previous setting. Low
frequency word pairs are more prone to error com-
pared to the frequent ones and employing conserva-
tive update reduces the ARE by a factor of 1.5. In
this setting, depth 5 does slightly better than depth 3
and gets lowest ARE.

We use CU counts and depth of 5 for the rest of
the paper. As 3 and 5 have lowest ARE in different
settings and using 5 hash functions, we get δ = 0.01
(d = log(1δ ) refer Section 2.1) that is probability of
failure is 1 in 100, making the algorithm more robust
to false positives compared with 3 hash functions,
δ = 0.1 with probability of failure 1 in 10.

Fig. 1(c) studies the effect of the number of coun-
ters in the sketch (the size of the two-dimensional
sketch array) on the ARE with fixed depth 5. As ex-
pected, using more number of counters decreases the
ARE in the counts. This is intuitive because, as the
length of each row in the sketch increases, the prob-
ability of collision decreases and hence the array is
more likely to contain true counts. By using 100
million counters, which is comparable to the length
of the stream 88 million, we are able to achieve al-
most zero ARE over all the counts including the rare
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Figure 1: Compare 20 and 50 million counter models with different (width,depth) settings. The notation CMx represents the
Count Min sketch with a depth of ’x’ and CUx represents the CM sketch along with conservative update and depth ’x’.

ones3. Note that the space we save by not storing the
exact counts is almost four times the memory that
we use here because on an average each word pair
is twelve characters long and requires twelve bytes
(thrice the size of an integer) and 4 bytes for storing
the integer count. Note, we get even bigger space
savings if we work with longer phrases (phrase clus-
tering), phrase pairs (paraphrasing/translation), and
varying length n-grams (Information Extraction).

3.2 Evaluating word pairs association ranking

In this experiment, we compare the word pairs asso-
ciation rankings obtained using PMI and LLR with
CU and exact word pair counts. We use two kinds of
measures, namely recall and Spearman’s correlation
to measure the overlap in the rankings obtained by
exact and CU counts. Intuitively, recall captures the
number of word pairs that are found in both the sets
and then Spearman’s correlation captures if the rela-
tive order of these common word pairs is preserved
in both the rankings. In our experimental setup, if
the rankings match exactly, then we get a recall (R)
of 100% and a correlation (ρ) of 1.

The results with respect to different sized counter
(20 million (20M ), 50 million (50M )) models are
shown in Table 1. If we compare the second and
third column of the table using PMI and LLR for
20M counters, we get exact rankings for LLR com-
pared to PMI while comparing TopK word pairs.
The explanation for such a behavior is: since we are

3Even with other datasets we found that using counters lin-
ear in the size of the stream leads to ARE close to zero ∀ counts.

# Cs 20M 50M
AS PMI LLR PMI LLR
TopK R ρ R ρ R ρ R ρ

50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 .98 .94 1.0 1.0 1.0 1.0 1.0 1.0
500 .80 .98 1.0 1.0 .98 1.0 1.0 1.0
1000 .56 .99 1.0 1.0 .96 .99 1.0 1.0
5000 .35 .90 1.0 1.0 .85 .99 1.0 1.0
10000 .38 .55 1.0 1.0 .81 .95 1.0 1.0

Table 1: Evaluating the PMI and LLR rankings obtained using
CM sketch with conservative update (CU) and Exact counts

not throwing away any infrequent word pairs, PMI
will rank pairs with low frequency counts higher
(Church and Hanks, 1989). Hence, we are evaluat-
ing the PMI values for rare word pairs and we need
counters linear in size of stream to get almost perfect
ranking. This is also evident from the fourth column
for 50M of the Table 1, where CU PMI ranking gets
close to the optimal as the number of counters ap-
proaches stream size.

However, in some NLP problems, we are not in-
terested in low-frequency items. In such cases, even
using space less than linear in number of counters
would suffice. In our extrinsic evaluations, we show
that using space less than the length of the stream
does not degrade the performance.

4 Extrinsic Evaluations

4.1 Data

Gigaword corpus (Graff, 2003) and a 50% portion
of a copy of web crawled by (Ravichandran et al.,
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2005) are used to compute counts of words and word
pairs. For both the corpora, we split the text into
sentences, tokenize and convert into lower-case. We
generate words and word pairs over a window of size
7. We use four different sized corpora: SubSet (used
for intrinsic evaluations in Section 3), Gigaword
(GW), GigaWord + 20% of web data (GWB20), and
GigaWord + 50% of web data (GWB50). Corpus
Statistics are shown below. We store exact counts of
words in a hash table and store approximate counts
of word pairs in the sketch. Hence, the stream size
in our case is the total number of word pairs in a
corpus.

Corpus Subset GW GWB20 GWB50
Unzipped

.32 9.8 22.8 49
Size (GB)

# of sentences
2.00 56.78 191.28 462.60

(Million)
Stream Size

.088 2.67 6.05 13.20
(Billion)

4.2 Semantic Orientation
Given a word, the task of finding the Semantic Ori-
entation (SO) (Turney and Littman, 2003) of the
word is to identify if the word is more likely to be
used in positive or negative sense. We use a similar
framework as used by the authors to infer the SO.
We take the seven positive words (good, nice, excel-
lent, positive, fortunate, correct, and superior) and
the seven negative words (bad, nasty, poor, negative,
unfortunate, wrong, and inferior) used in (Turney
and Littman, 2003) work. The SO of a given word
is calculated based on the strength of its association
with the seven positive words, and the strength of
its association with the seven negative words. We
compute the SO of a word ”w” as follows:
SO-AS(W) =

∑

p∈Pwords

AS(p, w)−
∑

n∈Nwords

AS(n,w)

Where, Pwords and Nwords denote the seven pos-
itive and negative prototype words respectively. We
use PMI and LLR to compute association scores
(AS). If this score is positive, we predict the word
as positive. Otherwise, we predict it as negative.

We use the General Inquirer lexicon4 (Stone et
al., 1966) as a benchmark to evaluate the semantic

4The General Inquirer lexicon is freely available at http:
//www.wjh.harvard.edu/˜inquirer/

orientation scores similar to (Turney and Littman,
2003) work. Words with multiple senses have multi-
ple entries in the lexicon, we merge these entries for
our experiment. Our test set consists of 1597 posi-
tive and 1980 negative words. Accuracy is used as
an evaluation metric and is defined as the percentage
of number of correctly identified SO words.
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Figure 2: Evaluating Semantic Orientation using PMI and LLR
with different number of counters of CU sketch built using Gi-
gaword.

4.2.1 Varying sketch size

We evaluate SO of words using PMI and LLR
on Gigaword (9.8GB). We compare approximate
SO computed using varying sizes of CU sketches:
50 million (50M ), 100M , 200M , 500M , 1 billion
(1B) and 2 billion (2B) counters with Exact SO. To
compute these scores, we count the number of indi-
vidual words w1 and w2 and the pair (w1,w2) within
a window of size 7. Note that computing the exact
counts of all word pairs on these corpora is com-
putationally expensive and memory intensive, so we
consider only those pairs in which one word appears
in the prototype list and the other word appears in
the test set.

First, if we look at the Exact SO using PMI and
LLR in Figure 2(a) and 2(b) respectively, it shows
that using PMI, we get about 6 points higher ac-
curacy than LLR on this task (The 95% statistical
significance boundary for accuracy is about ± 1.5.).
Second, for both PMI and LLR, having more num-
ber of counters improve performance.5 Using 2B
counters, we get the same accuracy as Exact.

5We use maximum of 2B counters (8GB main memory), as
most of the current desktop machines have at most 8GB RAM.
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4.2.2 Effect of Increasing Corpus Size

We evaluate SO of words on three different sized
corpora (see Section 4.1): GW (9.8GB), GWB20
(22.8GB), and GWB50 (49GB). First, since for this
task using PMI performs better than LLR, so we will
use PMI for this experiment. Second, we will fix
number of counters to 2B (CU-2B) as it performs
the best in Section 4.2.1. Third, we will compare the
CU-2B counter model with the Exact over increas-
ing corpus size.

We can make several observations from the Fig-
ure 3: • It shows that increasing the amount of data
improves the accuracy of identifying the SO of a
word. We get an absolute increase of 5.5 points in
accuracy, when we add 20% Web data to GigaWord
(GW). Adding 30% more Web data (GWB50), gives
a small increase of 1.3 points in accuracy which is
not even statistically significant. • Second, CU-2B
performs as good as exact for all corpus sizes. •
Third, the number of 2B counters (bounded space)
is less than the length of stream for GWB20 (6.05B
), and GWB50 (13.2B). Hence, it shows that using
counters less than the stream length does not degrade
the performance. • These results are also compara-
ble to Turney’s (2003) state-of-the-art work where
they report an accuracy of 82.84%. Note, they use a
billion word corpus which is larger than GWB50.
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Figure 3: Evaluating Semantic Orientation of words with Ex-
act and CU counts with increase in corpus size

4.3 Distributional Similarity

Distributional similarity is based on the distribu-
tional hypothesis that similar terms appear in simi-
lar contexts (Firth, 1968; Harris, 1954). The context
vector for each term is represented by the strength
of association between the term and each of the lex-
ical, semantic, syntactic, and/or dependency units

that co-occur with it6. We use PMI and LLR to com-
pute association score (AS) between the term and
each of the context to generate the context vector.
Once, we have context vectors for each of the terms,
cosine similarity measure returns distributional sim-
ilarity between terms.

4.3.1 Efficient Distributional Similarity
We propose an efficient approach for computing

distributional similarity between word pairs using
CU sketch. In the first step, we traverse the corpus
and store counts of all words (except stop words) in
hash table and all word pairs (except word pairs in-
volving stop words) in sketch. In the second step,
for a target word “x”, we consider all words (except
infrequent contexts which appear less than or equal
to 10.) as plausible context (since it is faster than
traversing the whole corpus.), and query the sketch
for vocabulary number of word pairs, and compute
approximate AS between word-context pairs. We
maintain only top K AS scores7 contexts using pri-
ority queue for every target word “x” and save them
onto the disk. In the third step, we use cosine simi-
larity using these approximate topK context vectors
to compute efficient distributional similarity.

The efficient distributional similarity using
sketches has following advantages:

• It can return semantic similarity between any
word pairs that are stored in the sketch.

• It can return the similarity between word pairs
in time O(K).

• We do not store word pairs explicitly, and use
fixed number of counters, hence the overall
space required is bounded.

• The additive property of sketch (Sec. 2.1.2) en-
ables us to parallelize most of the steps in the
algorithm. Thus it can be easily extended to
very large amounts of text data.

We use two test sets which consist of word pairs,
and their corresponding human rankings. We gen-
erate the word pair rankings using efficient distri-
butional similarity. We report the spearman’s rank

6Here, the context for a target word “x” is defined as words
appear within a window of size 7.

7For this work, we use K = 1000 which is not tuned.
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correlation8 coefficient (ρ) between the human and
distributional similarity rankings. The two test sets
are:

1. WS-353 (Finkelstein et al., 2002) is a set of 353
word pairs.

2. RG-65: (Rubenstein and Goodenough, 1965)
is set of 65 word pairs.
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Figure 4: Evaluating Distributional Similarity between word
pairs on WS-353 test set using PMI and LLR with different
number of counters of CU sketch built using Gigaword data-set.

4.3.2 Varying sketch size
We evaluate efficient distributional similarity be-

tween between word pairs on WS-353 test set us-
ing PMI and LLR association scores on Giga-
word (9.8GB). We compare different sizes of CU
sketch (similar to SO evaluation): 50 million (50M ),
100M , 200M , 500M , 1 billion (1B) and 2 bil-
lion (2B) counters with the Exact word pair counts.
Here again, computing the exact counts of all word-
context pairs on these corpora is time, and memory
intensive, we generate context vectors for only those
words which are present in the test set.

First, if we look at word pair ranking using exact
PMI and LLR across Figures 4(a) and 4(b) respec-
tively, it shows that using LLR, we get better ρ of
.55 compared to ρ of .25 using PMI on this task (The
95% statistical significance boundary on ρ for WS-
353 is about ± .08). The explanation for such a be-
havior is: PMI rank context pairs with low frequency
counts higher (Church and Hanks, 1989) compared
to frequent ones which are favored by LLR. Second,

8To calculate the Spearman correlations values are trans-
formed into ranks (if tied ranks exist, average of ranks is taken),
and we calculate the Pearson correlation on them.

Test Set WS-353 RG-65
Model GW GWB20 GWB50 GW GWB20 GWB50

Agirre .64 .75
Exact .55 .55 .62 .65 .72 .74

CU-2B .53 .58 .62 .66 .72 .74

Table 2: Evaluating word pairs ranking with Exact and
CU counts. Scores are evaluated using ρ metric.

for PMI in Fig. 4(a), having more counters does not
improve ρ. Third, for LLR in Fig. 4(b), having more
number of counters improve performance and using
2B counters, we get ρ close to the Exact.

4.3.3 Effect of Increasing Corpus Size
We evaluate efficient distributional similarity be-

tween word pairs using three different sized cor-
pora: GW (9.8GB), GWB20 (22.8GB), and GWB50
(49GB) on two test sets: WS-353, and RG-65. First,
since for this task using LLR performs better than
PMI, so we will use LLR for this experiment. Sec-
ond, we will fix number of counters to 2B (CU-
2B) as it performs the best in Section 4.2.1. Third,
we will compare the CU-2B counter model with the
Exact over increasing corpus size. We also com-
pare our results against the state-of-the-art results
(Agirre) for distributional similarity (Agirre et al.,
2009). We report their results of context window of
size 7.

We can make several observations from the Ta-
ble 2: • It shows that increasing the amount of
data is not substantially improving the accuracy of
word pair rankings over both the test sets. • Here
again, CU-2B performs as good as exact for all cor-
pus sizes. • CU-2B and Exact performs same as the
state-of-the-art system. • The number of 2B coun-
ters (bounded space) is less than the length of stream
for GWB20 (6.05B ), and GWB50 (13.2B). Hence,
here again it shows that using counters less than the
stream length does not degrade the performance.

5 Dependency Parsing

Recently, maximum spanning tree (MST) algo-
rithms for dependency parsing (McDonald et al.,
2005) have shown great promise, primarily in su-
pervised settings. In the MST framework, words in
a sentence form nodes in a graph, and connections
between nodes indicate how “related” they are. A
maximum spanning tree algorithm constructs a de-
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pendency parse by linking together “most similar”
words. Typically the weights on edges in the graph
are parameterized as a linear function of features,
with weight learned by some supervised learning al-
gorithm. In this section, we ask the question: can
word association scores be used to derive syntactic
structures in an unsupervised manner?

A first pass answer is: clearly not. Metrics like
PMI would assign high association scores to rare
word pairs (mostly content words) leading to incor-
rect parses. Metrics like LLR would assign high
association scores to frequent words, also leading
to incorrect parses. However, with a small amount
of linguistic side information (Druck et al., 2009;
Naseem et al., 2010), we see that these issues can
be overcome. In particular, we see that large data
+ a little linguistics > fancy unsupervised learning
algorithms.

5.1 Graph Definition
Our approach is conceptually simple. We construct
a graph over nodes in the sentence with a unique
“root” node. The graph is directed and fully con-
nected, and for any two words in positions i and j,
the weight from word i to word j is defined as:

wij = αascasc(wi, wj)−αdistdist(i−j)+αlingling(ti, tj)

Here, asc(wi, wj) is a association score such as
PMI or LLR computed using approximate counts
from the sketch. Similarly, dist(i − j) is a simple
parameterized model of distances that favors short
dependencies. We use a simple unnormalized (log)
Laplacian prior of the form dist(i−j) = −|i−j−1|,
centered around 1 (encouraging short links to the
right). It is negated because we need to convert dis-
tances to similarities.

The final term, ling(ti, tj) asks: according to
some simple linguistic knowledge, how likely is if
that the (gold standard) part of speech tag associated
with word i points at that associated with word j?
For this, we use the same linguistic information
used by (Naseem et al., 2010), which does not
encode direction information. These rules are:
root→ { aux, verb }; verb→ { noun,
pronoun, adverb, verb }; aux → {
verb }; noun → { adj, art, noun,
num }; prep→ { noun }; adj → { adv

len ≤ 10 len ≤ 20 all
COHEN-DIRICHLET 45.9 39.4 34.9
COHEN-BEST 59.4 45.9 40.5
ORACLE 75.1 66.6 63.0
BASELINE+LING 42.4 33.8 29.7
BASELINE 33.5 30.4 28.9
CU-2B LLR OPTIMAL 62.4 ± 7.7 51.1 ± 3.2 41.1 ± 1.9

CU-2B PMI OPTIMAL 63.3 ± 7.8 52.0 ± 3.2 41.1 ± 2.0

CU-2B LLR BALANCED 49.1 ± 7.6 43.6 ± 3.3 37.2 ± 1.9

CU-2B PMI BALANCED 49.5 ± 8.0 45.0 ± 3.2 38.3 ± 2.0

CU-2B LLR SEMISUP 55.7 ± 0.0 44.1 ± 0.0 39.4 ± 0.0

CU-2B PMI SEMISUP 56.5 ± 0.0 45.8 ± 0.0 39.9 ± 0.0

Table 3: Comparing CU-2B build on GWB50 + a little lin-
guistics v/s fancy unsupervised learning algorithms.

}. We simply give an additional weight of 1 to any
edge that agrees with one of these linguistic rules.

5.2 Parameter Setting

The remaining issue is setting the interpolation pa-
rameters α associated with each of these scores.
This is a difficult problem in purely unsupervised
learning. We report results on three settings. First,
the OPTIMAL setting is based on grid search for op-
timal parameters. This is an oracle result based on
grid search over two of the three parameters (hold-
ing the third fixed at 1). In our second approach,
BALANCED, we normalize the three components to
“compete” equally. In particular, we scale and trans-
late all three components to have zero mean and unit
variance, and set the αs to all be equal to one. Fi-
nally, our third approach, SEMISUP, is based on us-
ing a small amount of labeled data to set the param-
eters. In particular, we use 10 labeled sentences to
select parameters based on the same grid search as
the OPTIMAL setting. Since this relies heavily on
which 10 sentences are used, we repeat this experi-
ment 20 times and report averages.

5.3 Experiments

Our experiments are on a dependency-converted ver-
sion of section 23 of the Penn Treebank using mod-
ified Collins’ head finding rules. We measure accu-
racies as directed, unlabeled dependency accuracy.
We separately report results of sentences of length
at most 10, at most 20 and finally of all length. Note
that there is no training or cross-validation: we sim-
ply run our MST parser on test data directly.

The results of the parsing experiments are shown
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in Table 3. We compare against the following al-
ternative systems. The first, Cohen-Dirichlet and
Cohen-Best, are previously reported state-of-the-art
results for unsupervised Bayesian dependency pars-
ing (Cohen and Smith, 2010). The first is results
using a simple Dirichlet prior; the second is the best
reported results for any system from that paper.

Next, we compare against an “oracle” system that
uses LLR extracted from the training data for the
Penn Treebank, where the LLR is based on the prob-
ability of observing an edge given two words. This
is not a true oracle in the sense that we might be
able to do better, but it is unlikely. The next two
baseline system are simple right branching base-
line trees. The Baseline system is a purely right-
branching tree. The Baseline+Ling system is one
that is right branching except that it can only create
edges that are compatible with the linguistic rules,
provided a relevant rule exists. For short sentences,
this is competitive with the Dirichlet prior results.

Finally we report variants of our approach using
association scores computed on the GWB50 using
CU sketch with 2 billion counters. We experiment
with two association scores: LLR and PMI. For each
measure, we report results based on the three ap-
proaches described earlier for setting the α hyper-
parameters. Error bars for our approaches are 95%
confidence intervals based on bootstrap resampling.

The results show that, for this task, PMI seems
slightly better than LLR, across the board. The OP-
TIMAL performance (based on tuning two hyperpa-
rameters) is amazingly strong: clearly beating out
all the baselines, and only about 15 points behind
the ORACLE system. Using the BALANCED ap-
proach causes a degradation of only 3 points from
the OPTIMAL on sentences of all lengths. In general,
the balancing approach seems to be slightly worse
than the semi-supervised approach, except on very
short sentences: for those, it is substantially better.
Overall, though, the results for both Balanced and
Semisup are competitive with state-of-the-art unsu-
pervised learning algorithms.

6 Discussion and Conclusion

The advantage of using sketch in addition to being
memory and time efficient is that it contains counts
for all word pairs and hence can be used to com-

pute association scores like PMI and LLR between
any word pairs. We show that using sketch counts in
our experiments, on the three tasks, we get perfor-
mance comparable to Exact word pair counts setting
and state-of-the-art system. Our method scales to 49
GB of unzipped web data using bounded space of 2
billion counters (8 GB memory). Moreover, the lin-
earity property of the sketch makes it scalable and
usable in distributed setting. Association scores and
counts from sketch can be used for more NLP tasks
like small-space randomized language models, word
sense disambiguation, spelling correction, relation
learning, paraphrasing, and machine translation.
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Abstract

Latent variable models have the potential
to add value to large document collections
by discovering interpretable, low-dimensional
subspaces. In order for people to use such
models, however, they must trust them. Un-
fortunately, typical dimensionality reduction
methods for text, such as latent Dirichlet al-
location, often produce low-dimensional sub-
spaces (topics) that are obviously flawed to
human domain experts. The contributions of
this paper are threefold: (1) An analysis of the
ways in which topics can be flawed; (2) an au-
tomated evaluation metric for identifying such
topics that does not rely on human annotators
or reference collections outside the training
data; (3) a novel statistical topic model based
on this metric that significantly improves topic
quality in a large-scale document collection
from the National Institutes of Health (NIH).

1 Introduction

Statistical topic models such as latent Dirichlet al-
location (LDA) (Blei et al., 2003) provide a pow-
erful framework for representing and summarizing
the contents of large document collections. In our
experience, however, the primary obstacle to accep-
tance of statistical topic models by users the outside
machine learning community is the presence of poor
quality topics. Topics that mix unrelated or loosely-
related concepts substantially reduce users’ confi-
dence in the utility of such automated systems.

In general, users prefer models with larger num-
bers of topics because such models have greater res-
olution and are able to support finer-grained distinc-
tions. Unfortunately, we have observed that there

is a strong relationship between the size of topics
and the probability of topics being nonsensical as
judged by domain experts: as the number of topics
increases, the smallest topics (number of word to-
kens assigned to each topic) are almost always poor
quality. The common practice of displaying only a
small number of example topics hides the fact that as
many as 10% of topics may be so bad that they can-
not be shown without reducing users’ confidence.

The evaluation of statistical topic models has tra-
ditionally been dominated by either extrinsic meth-
ods (i.e., using the inferred topics to perform some
external task such as information retrieval (Wei
and Croft, 2006)) or quantitative intrinsic methods,
such as computing the probability of held-out doc-
uments (Wallach et al., 2009). Recent work has
focused on evaluation of topics as semantically-
coherent concepts. For example, Chang et al. (2009)
found that the probability of held-out documents is
not always a good predictor of human judgments.
Newman et al. (2010) showed that an automated
evaluation metric based on word co-occurrence
statistics gathered from Wikipedia could predict hu-
man evaluations of topic quality. AlSumait et al.
(2009) used differences between topic-specific dis-
tributions over words and the corpus-wide distribu-
tion over words to identify overly-general “vacuous”
topics. Finally, Andrzejewski et al. (2009) devel-
oped semi-supervised methods that avoid specific
user-labeled semantic coherence problems.

The contributions of this paper are threefold: (1)
To identify distinct classes of low-quality topics,
some of which are not flagged by existing evalua-
tion methods; (2) to introduce a new topic “coher-
ence” score that corresponds well with human co-
herence judgments and makes it possible to identify
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specific semantic problems in topic models without
human evaluations or external reference corpora; (3)
to present an example of a new topic model that
learns latent topics by directly optimizing a metric
of topic coherence. With little additional computa-
tional cost beyond that of LDA, this model exhibits
significant gains in average topic coherence score.
Although the model does not result in a statistically-
significant reduction in the number of topics marked
“bad”, the model consistently improves the topic co-
herence score of the ten lowest-scoring topics (i.e.,
results in bad topics that are “less bad” than those
found using LDA) while retaining the ability to iden-
tify low-quality topics without human interaction.

2 Latent Dirichlet Allocation

LDA is a generative probabilistic model for docu-
mentsW = {w(1),w(2), . . . ,w(D)}. To generate a
word token w(d)

n in document d, we draw a discrete
topic assignment z(d)n from a document-specific dis-
tribution over the T topics θd (which is itself drawn
from a Dirichlet prior with hyperparameter α), and
then draw a word type for that token from the topic-
specific distribution over the vocabulary φ

z
(d)
n

. The
inference task in topic models is generally cast as in-
ferring the document–topic proportions {θ1, ...,θD}
and the topic-specific distributions {φ1 . . . ,φT }.

The multinomial topic distributions are usually
drawn from a shared symmetric Dirichlet prior with
hyperparameter β, such that conditioned on {φt}Tt=1

and the topic assignments {z(1), z(2), . . . ,z(D)},
the word tokens are independent. In practice, how-
ever, it is common to deal directly with the “col-
lapsed” distributions that result from integrating
over the topic-specific multinomial parameters. The
resulting distribution over words for a topic t is then
a function of the hyperparameter β and the number
of words of each type assigned to that topic, Nw|t.
This distribution, known as the Dirichlet compound
multinomial (DCM) or Pólya distribution (Doyle
and Elkan, 2009), breaks the assumption of condi-
tional independence between word tokens given top-
ics, but is useful during inference because the con-
ditional probability of a word w given topic t takes
a very simple form: P (w | t, β) =

Nw|t+β
Nt+|V|β , where

Nt =
∑

w′ Nw′|t and |V| is the vocabulary size.
The process for generating a sequence of words

from such a model is known as the simple Pólya urn
model (Mahmoud, 2008), in which the initial prob-
ability of word type w in topic t is proportional to
β, while the probability of each subsequent occur-
rence of w in topic t is proportional to the number
of times w has been drawn in that topic plus β. Note
that this unnormalized weight for each word type de-
pends only on the count of that word type, and is in-
dependent of the count of any other word type w′.
Thus, in the DCM/Pólya distribution, drawing word
type w must decrease the probability of seeing all
other word types w′ 6= w. In a later section, we will
introduce a topic model that substitutes a general-
ized Pólya urn model for the DCM/Pólya distribu-
tion, allowing a draw of word type w to increase the
probability of seeing certain other word types.

For real-world data, documents W are observed,
while the corresponding topic assignments Z are
unobserved and may be inferred using either vari-
ational methods (Blei et al., 2003; Teh et al., 2006)
or MCMC methods (Griffiths and Steyvers, 2004).
Here, we use MCMC methods—specifically Gibbs
sampling (Geman and Geman, 1984), which in-
volves sequentially resampling each topic assign-
ment z(d)n from its conditional posterior given the
documents W , the hyperparameters α and β, and
Z\d,n (the current topic assignments for all tokens
other than the token at position n in document d).

3 Expert Opinions of Topic Quality

Concentrating on 300,000 grant and related jour-
nal paper abstracts from the National Institutes of
Health (NIH), we worked with two experts from
the National Institute of Neurological Disorders and
Stroke (NINDS) to collaboratively design an expert-
driven topic annotation study. The goal of this study
was to develop an annotated set of baseline topics,
along with their salient characteristics, as a first step
towards automatically identifying and inferring the
kinds of topics desired by domain experts.1

3.1 Expert-Driven Annotation Protocol

In order to ensure that the topics selected for anno-
tation were within the NINDS experts’ area of ex-
pertise, they selected 148 topics (out of 500), all as-
sociated with areas funded by NINDS. Each topic

1All evaluated models will be released publicly.
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t was presented to the experts as a list of the thirty
most probable words for that topic, in descending or-
der of their topic-specific “collapsed” probabilities,
Nw|t+β
Nt+|V|β . In addition to the most probable words,
the experts were also given metadata for each topic:
The most common sequences of two or more con-
secutive words assigned to that topic, the four topics
that most often co-occurred with that topic, the most
common IDF-weighted words from titles of grants,
thesaurus terms, NIH institutes, journal titles, and
finally a list of the highest probability grants and
PubMed papers for that topic.

The experts first categorized each topic as one
of three types: “research”, “grant mechanisms and
publication types” or “general”.2 The quality of
each topic (“good”, “intermediate”, or “bad”) was
then evaluated using criteria specific to the type
of topic. In general, topics were only annotated
as “good” if they contained words that could be
grouped together as a single coherent concept. Addi-
tionally, each “research” topic was only considered
to be “good” if, in addition to representing a sin-
gle coherent concept, the aggregate content of the
set of documents with appreciable allocations to that
topic clearly contained text referring to the concept
inferred from the topic words. Finally, for each topic
marked as being either “intermediate” or “bad”, one
or more of the following problems (defined by the
domain experts) was identified, as appropriate:

• Chained: every word is connected to every
other word through some pairwise word chain,
but not all word pairs make sense. For exam-
ple, a topic whose top three words are “acids”,
“fatty” and “nucleic” consists of two distinct
concepts (i.e., acids produced when fats are
broken down versus the building blocks of
DNA and RNA) chained via the word “acids”.
• Intruded: either two or more unrelated sets

of related words, joined arbitrarily, or an oth-
erwise good topic with a few “intruder” words.
• Random: no clear, sensical connections be-

tween more than a few pairs of words.
• Unbalanced: the top words are all logically

connected to each other, but the topic combines
very general and specific terms (e.g., “signal

2Equivalent to “vacuous topics” of AlSumait et al. (2009).

transduction” versus “notch signaling”).

Examples of a good general topic, a good research
topic, and a chained research topic are in Table 1.

3.2 Annotation Results
The experts annotated the topics independently and
then aggregated their results. Interestingly, no top-
ics were ever considered “good” by one expert and
“bad” by the other—when there was disagreement
between the experts, one expert always believed the
topic to be “intermediate.” In such cases, the ex-
perts discussed the reasons for their decisions and
came to a consensus. Of the 148 topics selected for
annotation, 90 were labeled as “good,” 21 as “inter-
mediate,” and 37 as “bad.” Of the topics labeled as
“bad” or “intermediate,” 23 were “chained,” 21 were
“intruded,” 3 were “random,” and 15 were “unbal-
anced”. (The annotators were permitted to assign
more than one problem to any given topic.)

4 Automated Metrics for Predicting
Expert Annotations

The ultimate goal of this paper is to develop meth-
ods for building models with large numbers of spe-
cific, high-quality topics from domain-specific cor-
pora. We therefore explore the extent to which in-
formation already contained in the documents being
modeled can be used to assess topic quality.

In this section we evaluate several methods for
ranking the quality of topics and compare these
rankings to human annotations. No method is likely
to perfectly predict human judgments, as individual
annotators may disagree on particular topics. For
an application involving removing low quality top-
ics we recommend using a weighted combination of
metrics, with a threshold determined by users.

4.1 Topic Size
As a simple baseline, we considered the extent to
which topic “size” (as measured by the number of
tokens assigned to each topic via Gibbs sampling) is
a good metric for assessing topic quality. Figure 1
(top) displays the topic size (number of tokens as-
signed to that topic) and expert annotations (“good”,
“intermediate”, “bad”) for the 148 topics manually
labeled by annotators as described above. This fig-
ure suggests that topic size is a reasonable predic-
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Figure 1: Topic size is a good indicator of quality; the
new coherence metric is better. Top shows expert-rated
topics ranked by topic size (AP 0.89, AUC 0.79), bottom
shows same topics ranked by coherence (AP 0.94, AUC
0.87). Random jitter is added to the y-axis for clarity.

tor of topic quality. Although there is some overlap,
“bad” topics are generally smaller than “good” top-
ics. Unfortunately, this observation conflicts with
the goal of building highly specialized, domain-
specific topic models with many high-quality, fine-
grained topics—in such models the majority of top-
ics will have relatively few tokens assigned to them.

4.2 Topic Coherence

When displaying topics to users, each topic t is gen-
erally represented as a list of theM=5, . . . , 20 most
probable words for that topic, in descending order
of their topic-specific “collapsed” probabilities. Al-
though there has been previous work on automated
generation of labels or headings for topics (Mei et
al., 2007), we choose to work only with the ordered
list representation. Labels may obscure or detract
from fundamental problems with topic coherence,
and better labels don’t make bad topics good.

The expert-driven annotation study described in
section 3 suggests that three of the four types of
poor-quality topics (“chained,” “intruded” and “ran-
dom”) could be detected using a metric based on
the co-occurrence of words within the documents
being modeled. For “chained” and “intruded” top-
ics, it is likely that although pairs of words belong-
ing to a single concept will co-occur within a single

document (e.g., “nucleic” and “acids” in documents
about DNA), word pairs belonging to different con-
cepts (e.g., “fatty” and “nucleic”) will not. For ran-
dom topics, it is likely that few words will co-occur.

This insight can be used to design a new metric
for assessing topic quality. Letting D(v) be the doc-
ument frequency of word type v (i.e., the number
of documents with least one token of type v) and
D(v, v′) be co-document frequency of word types v
and v′ (i.e., the number of documents containing one
or more tokens of type v and at least one token of
type v′), we define topic coherence as

C(t;V (t)) =
M∑

m=2

m−1∑

l=1

log
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

, (1)

where V (t) = (v
(t)
1 , . . . , v

(t)
M ) is a list of the M most

probable words in topic t. A smoothing count of 1
is included to avoid taking the logarithm of zero.

Figure 1 shows the association between the expert
annotations and both topic size (top) and our coher-
ence metric (bottom). We evaluate these results us-
ing standard ranking metrics, average precision and
the area under the ROC curve. Treating “good” top-
ics as positive and “intermediate” or “bad” topics as
negative, we get average precision values of 0.89 for
topic size vs. 0.94 for coherence and AUC 0.79 for
topic size vs. 0.87 for coherence. We performed a
logistic regression analysis on the binary variable “is
this topic bad”. Using topic size alone as a predic-
tor gives AIC (a measure of model fit) 152.5. Co-
herence alone has AIC 113.8 (substantially better).
Both predictors combined have AIC 115.8: the sim-
pler coherence alone model provides the best perfor-
mance. We tried weighting the terms in equation 1
by their corresponding topic–word probabilities and
and by their position in the sorted list of the M most
probable words for that topic, but we found that a
uniform weighting better predicted topic quality.

Our topic coherence metric also exhibits good
qualitative behavior: of the 20 best-scoring topics,
18 are labeled as “good,” one is “intermediate” (“un-
balanced”), and one is “bad” (combining “cortex”
and “fmri”, words that commonly co-occur, but are
conceptually distinct). Of the 20 worst scoring top-
ics, 15 are “bad,” 4 are “intermediate,” and only one
(with the 19th worst coherence score) is “good.”
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Our coherence metric relies only upon word co-
occurrence statistics gathered from the corpus being
modeled, and does not depend on an external ref-
erence corpus. Ideally, all such co-occurrence infor-
mation would already be accounted for in the model.
We believe that one of the main contributions of our
work is demonstrating that standard topic models
do not fully utilize available co-occurrence informa-
tion, and that a held-out reference corpus is therefore
not required for purposes of topic evaluation.

Equation 1 is very similar to pointwise mutual in-
formation (PMI), but is more closely associated with
our expert annotations than PMI (which achieves
AUC 0.64 and AIC 170.51). PMI has a long history
in language technology (Church and Hanks, 1990),
and was recently used by Newman et al. (2010) to
evaluate topic models. When expressed in terms of
count variables as in equation 1, PMI includes an
additional term for D(v

(t)
m ). The improved perfor-

mance of our metric over PMI implies that what mat-
ters is not the difference between the joint probabil-
ity of words m and l and the product of marginals,
but the conditional probability of each word given
the each of the higher-ranked words in the topic.

In order to provide intuition for the behavior of
our topic coherence metric, table 1 shows three
example topics and their topic coherence scores.
The first topic, related to grant-funded training pro-
grams, is one of the best-scoring topics. All pairs
of words have high co-document frequencies. The
second topic, on neurons, is more typical of qual-
ity “research” topics. Overall, these words occur
less frequently, but generally occur moderately in-
terchangeably: there is little structure to their co-
variance. The last topic is one of the lowest-scoring
topics. Its co-document frequency matrix is shown
in table 2. The top two words are closely related:
487 documents include “aging” at least once, 122
include “lifespan”, and 55 include both. Meanwhile,
the third word “globin” occurs with only one of the
top seven words—the common word “human”.

4.3 Comparison to word intrusion
As an additional check for both our expert annota-
tions and our automated metric, we replicated the
“word intrusion” evaluation originally introduced by
Chang et al. (2009). In this task, one of the top ten
most probable words in a topic is replaced with a

● ●●● ● ● ●●● ● ●● ● ●●● ●●● ●● ●●● ●●● ● ●● ● ●●● ●●
●●● ●● ● ●● ●●● ●●●●●

●

●
●● ● ●●

●
● ● ●●●

●
● ●

●●●

●

● ●● ●
● ●●● ●

●

●

●
●

●

●

●
● ●

40000 60000 80000 120000 160000

0
4

8

Comparison of Topic Size to Intrusion Detection

Tokens assigned to topic

C
or

re
ct

 G
ue

ss
es

●● ●● ●● ●●● ● ●● ●● ●● ●●● ● ●● ●● ●●●● ● ●●● ● ● ●●
● ●●●●● ●● ●● ●● ●●● ●

●

●
●●● ●●

●
●●● ●●

●
●●

● ●●

●

●●● ●
● ●● ● ●

●

●

●
●

●

●

●
● ●

−600 −500 −400 −300 −200

0
4

8

Comparison of Coherence to Intrusion Detection

Coherence

C
or

re
ct

 G
ue

ss
es

Good Topics

Correct Guesses

F
re

qu
en

cy

0 2 4 6 8 10

0
15

35

Bad Topics

Correct Guesses

F
re

qu
en

cy

0 2 4 6 8 10

0
15

35

Figure 2: Top: results of the intruder selection task rel-
ative to two topic quality metrics. Bottom: marginal in-
truder accuracy frequencies of good and bad topics.

another word, selected at random from the corpus.
The resulting set of words is presented, in a random
order, to users, who are asked to identify the “in-
truder” word. It is very unlikely that a randomly-
chosen word will be semantically related to any of
the original words in the topic, so if a topic is a
high quality representation of a semantically coher-
ent concept, it should be easy for users to select the
intruder word. If the topic is not coherent, there may
be words in the topic that are also not semantically
related to any other word, thus causing users to se-
lect “correct” words instead of the real intruder.

We recruited ten additional expert annotators
from NINDS, not including our original annotators,
and presented them with the intruder selection task,
using the set of previously evaluated topics. Re-
sults are shown in figure 2. In the first two plots,
the x-axis is one of our two automated quality met-
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Table 1: Example topics (good/general, good/research, chained/research) with different coherence scores (numbers
closer to zero indicate higher coherence). The chained topic combines words related to aging (indicated in plain text)
and words describing blood and blood-related diseases (bold). The only connection is the common word human.

-167.1 students, program, summer, biomedical, training, experience, undergraduate, career, minority, student, ca-
reers, underrepresented, medical students, week, science

-252.1 neurons, neuronal, brain, axon, neuron, guidance, nervous system, cns, axons, neural, axonal, cortical,
survival, disorders, motor

-357.2 aging, lifespan, globin, age related, longevity, human, age, erythroid, sickle cell, beta globin, hb, senes-
cence, adult, older, lcr

Table 2: Co-document frequency matrix for the top words in a low-quality topic (according to our coherence metric),
shaded to highlight zeros. The diagonal (light gray) shows the overall document frequency for each word w. The
column on the right is Nw|t. Note that “globin” and “erythroid” do not co-occur with any of the aging-related words.

aging 487 53 0 65 42 0 51 0 138 0 914
lifespan 53 122 0 15 28 0 15 0 44 0 205

globin 0 0 39 0 0 19 0 15 27 3 200
age related 65 15 0 119 12 0 25 0 37 0 160

longevity 42 28 0 12 73 0 6 0 20 1 159
erythroid 0 0 19 0 0 69 0 8 23 1 110

age 51 15 0 25 6 0 245 1 82 0 103
sickle cell 0 0 15 0 0 8 1 43 16 2 93

human 138 44 27 37 20 23 82 16 4347 157 91
hb 0 0 3 0 1 1 0 2 5 15 73
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rics (topic size and coherence) and the y-axis is the
number of annotators that correctly identified the
true intruder word (accuracy). The histograms be-
low these plots show the number of topics with each
level of annotator accuracy for good and bad top-
ics. For good topics (green circles), the annotators
were generally able to detect the intruder word with
high accuracy. Bad topics (red diamonds) had more
uniform accuracies. These results suggest that top-
ics with low intruder detection accuracy tend to be
bad, but some bad topics can have a high accuracy.
For example, spotting an intruder word in a chained
topic can be easy. The low-quality topic recep-
tors, cannabinoid, cannabinoids, ligands, cannabis,
endocannabinoid, cxcr4, [virus], receptor, sdf1, is
a typical “chained” topic, with CXCR4 linked to
cannabinoids only through receptors, and otherwise
unrelated. Eight out of ten annotators correctly iden-
tified “virus” as the correct intruder. Repeating the
logistic regression experiment using intruder detec-
tion accuracy as input, the AIC value is 163.18—
much worse than either topic size or coherence.

5 Generalized Pólya Urn Models

Although the topic coherence metric defined above
provides an accurate way of assessing topic quality,
preventing poor quality topics from occurring in the
first place is preferable. Our results in the previous
section show that we can identify low-quality top-
ics without making use of external supervision; the
training data by itself contains sufficient information
at least to reject poor combinations of words.

In this section, we describe a new topic model that
incorporates the corpus-specific word co-occurrence
information used in our coherence metric directly
into the statistical topic modeling framework. It
is important to note that simply disallowing words
that never co-occur from being assigned to the same
topic is not sufficient. Due to the power-law charac-
teristics of language, most words are rare and will
not co-occur with most other words regardless of
their semantic similarity. It is rather the degree
to which the most prominent words in a topic do
not co-occur with the other most prominent words
in that topic that is an indicator of topic incoher-
ence. We therefore desire models that guide topics
towards semantic similarity without imposing hard

constraints.
As an example of such a model, we present a new

topic model in which the occurrence of word type w
in topic t increases not only the probability of seeing
that word type again, but also increases the probabil-
ity of seeing other related words (as determined by
co-document frequencies for the corpus being mod-
eled). This new topic model retains the document–
topic component of standard LDA, but replaces the
usual Pólya urn topic–word component with a gen-
eralized Pólya urn framework (Mahmoud, 2008).

A sequence of i.i.d. samples from a discrete dis-
tribution can be imagined as arising by repeatedly
drawing a random ball from an urn, where the num-
ber of balls of each color is proportional to the prob-
ability of that color, replacing the selected ball af-
ter each draw. In a Pólya urn, each ball is replaced
along with another ball of the same color. Samples
from this model exhibit the “burstiness” property:
the probability of drawing a ball of colorw increases
each time a ball of that color is drawn. This process
represents the marginal distribution of a hierarchical
model with a Dirichlet prior and a multinomial like-
lihood, and is used as the distribution over words
for each topic in almost all previous topic models.
In a generalized Pólya urn model, having drawn a
ball of color w, Avw additional balls of each color
v ∈ {1, . . . ,W} are returned to the urn. Given W
and Z , the conditional posterior probability of word
w in topic t implied by this generalized model is

P (w | t,W,Z, β,A) =

∑
vNv|tAvw + β

Nt + |V|β , (2)

where A is a W × W real-valued matrix, known
as the addition matrix or schema. The simple Pólya
urn model (and hence the conditional posterior prob-
ability of word w in topic t under LDA) can be re-
covered by setting the schema A to the identity ma-
trix. Unlike the simple Pólya distribution, we do not
know of a representation of the generalized Pólya
urn distribution that can be expressed using a con-
cise set of conditional independence assumptions. A
standard graphical model with plate notation would
therefore not be helpful in highlighting the differ-
ences between the two models, and is not shown.

Algorithm 1 shows pseudocode for a single Gibbs
sweep over the latent variables Z in standard LDA.
Algorithm 2 shows the modifications necessary to

268



1: for d ∈ D do
2: for wn ∈ w(d) do
3: Nzi|di ← Nzi|di − 1
4: Nwi|zi ← Nwi|zi − 1

5: sample zi ∝ (Nz|di + αz)
Nwi|z+β∑

z′ (Nwi|z′+β)

6: Nzi|di ← Nzi|di + 1
7: Nwi|zi ← Nwi|zi + 1
8: end for
9: end for

Algorithm 1: One sweep of LDA Gibbs sampling.

1: for d ∈ D do
2: for wn ∈ w(d) do
3: Nzi|di ← Nzi|di − 1
4: for all v do
5: Nv|zi ← Nv|zi −Avwi

6: end for
7: sample zi ∝ (Nz|di + αz)

Nwi|z+β∑
z′ (Nwi|z′+β)

8: Nzi|di ← Nzi|di + 1
9: for all v do

10: Nv|zi ← Nv|zi +Avwi

11: end for
12: end for
13: end for

Algorithm 2: One sweep of gen. Pólya Gibbs sam-
pling, with differences from LDA highlighted in red.

support a generalized Pólya urn model: rather than
subtracting exactly one from the count of the word
given the old topic, sampling, and then adding one
to the count of the word given the new topic, we sub-
tract a column of the schema matrix from the entire
count vector over words for the old topic, sample,
and add the same column to the count vector for the
new topic. As long as A is sparse, this operation
adds only a constant factor to the computation.

Another property of the generalized Pólya urn
model is that it is nonexchangeable—the joint prob-
ability of the tokens in any given topic is not invari-
ant to permutation of those tokens. Inference of Z
givenW via Gibbs sampling involves repeatedly cy-
cling through the tokens in W and, for each one,
resampling its topic assignment conditioned on W
and the current topic assignments for all tokens other
than the token of interest. For LDA, the sampling
distribution for each topic assignment is simply the
product of two predictive probabilities, obtained by

treating the token of interest as if it were the last.
For a topic model with a generalized Pólya urn for
the topic–word component, the sampling distribu-
tion is more complicated. Specifically, the topic–
word component of the sampling distribution is no
longer a simple predictive distribution—when sam-
pling a new value for z(d)n , the implication of each
possible value for subsequent tokens and their topic
assignments must be considered. Unfortunately, this
can be very computationally expensive, particularly
for large corpora. There are several ways around this
problem. The first is to use sequential Monte Carlo
methods, which have been successfully applied to
topic models previously (Canini et al., 2009). The
second approach is to approximate the true Gibbs
sampling distribution by treating each token as if it
were the last, ignoring implications for subsequent
tokens and their topic assignments. We find that
this approximate method performs well empirically.

5.1 Setting the Schema A

Inspired by our evaluation metric, we define A as

Avv ∝ λvD(v) (3)

Avw ∝ λvD(w, v)

where each element is scaled by a row-specific
weight λv and each column is normalized to sum
to 1. Normalizing columns makes comparison to
standard LDA simpler, because the relative effect of
smoothing parameter β=0.01 is equivalent. We set
λv = log (D/D(v)), the standard IDF weight used
in information retrieval, which is larger for less fre-
quent words. The column for word type w can be
interpreted as word types with significant associa-
tion with w. The IDF weighting therefore has the
effect of increasing the strength of association for
rare word types. We also found empirically that it is
helpful to remove off-diagonal elements for the most
common types, such as those that occur in more than
5% of documents (IDF < 3.0). Including nonzero
off-diagonal values in A for very frequent types
causes the model to disperse those types over many
topics, which leads to large numbers of extremely
similar topics. To measure this effect, we calcu-
lated the Jensen-Shannon divergence between all
pairs of topic–word distributions in a given model.
For a model using off-diagonal weights for all word
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Figure 3: Pólya urn topics (blue) have higher average coherence and converge much faster than LDA topics
(red). The top plots show topic coherence (averaged over 15 runs) over 1000 iterations of Gibbs sampling. Error bars
are not visible in this plot. The middle plot shows the average coherence of the 10 lowest scoring topics. The bottom
plots show held-out log probability (in thousands) for the same models (three runs each of 5-fold cross-validation).

Name Docs Avg. Tok. Tokens Vocab

NIH 18756 114.64 ± 30.41 2150172 28702

Table 3: Data set statistics.

types, the mean of the 100 lowest divergences was
0.29 ± .05 (a divergence of 1.0 represents distribu-
tions with no shared support) at T = 200. The aver-
age divergence of the 100 most similar pairs of top-
ics for standard LDA (i.e.,A = I) is 0.67±.05. The
same statistic for the generalized Pólya urn model
without off-diagonal elements for word types with
high document frequency is 0.822± 0.09.

Setting the off-diagonal elements of the schema
A to zero for the most common word types also has
the fortunate effect of substantially reducing prepro-
cessing time. We find that Gibbs sampling for the
generalized Pólya model takes roughly two to three
times longer than for standard LDA, depending on
the sparsity of the schema, due to additional book-
keeping needed before and after sampling topics.

5.2 Experimental Results

We evaluated the new model on a corpus of NIH
grant abstracts. Details are given in table 3. Figure 3

shows the performance of the generalized Pólya urn
model relative to LDA. Two metrics—our new topic
coherence metric and the log probability of held-out
documents—are shown over 1000 iterations at 50 it-
eration intervals. Each model was run over five folds
of cross validation, each with three random initial-
izations. For each model we calculated an overall
coherence score by calculating the topic coherence
for each topic individually and then averaging these
values. We report the average over all 15 models in
each plot. Held-out probabilities were calculated us-
ing the left-to-right method of Wallach et al. (2009),
with each cross-validation fold using its own schema
A. The generalized Pólya model performs very well
in average topic coherence, reaching levels within
the first 50 iterations that match the final score. This
model has an early advantage for held-out proba-
bility as well, but is eventually overtaken by LDA.
This trend is consistent with Chang et al.’s observa-
tion that held-out probabilities are not always good
predictors of human judgments (Chang et al., 2009).
Results are consistent over T ∈ {100, 200, 300}.

In section 4.2, we demonstrated that our topic co-
herence metric correlates with expert opinions of
topic quality for standard LDA. The generalized

270



Pólya urn model was therefore designed with the
goal of directly optimizing that metric. It is pos-
sible, however, that optimizing for coherence di-
rectly could break the association between coher-
ence metric and topic quality. We therefore repeated
the expert-driven evaluation protocol described in
section 3.1. We trained one standard LDA model
and one generalized Pólya urn model, each with
T = 200, and randomly shuffled the 400 resulting
topics. The topics were then presented to the experts
from NINDS, with no indication as to the identity of
the model from which each topic came. As these
evaluations are time consuming, the experts evalu-
ated the only the first 200 topics, which consisted of
103 generalized Pólya urn topics and 97 LDA top-
ics. AUC values predicting bad topics given coher-
ence were 0.83 and 0.80, respectively. Coherence
effectively predicts topic quality in both models.

Although we were able to improve the average
overall quality of topics and the average quality of
the ten lowest-scoring topics, we found that the gen-
eralized Pólya urn model was less successful reduc-
ing the overall number of bad topics. Ignoring one
“unbalanced” topic from each model, 16.5% of the
LDA topics and 13.5% from the generalized Pólya
urn model were marked as “bad.” While this result
is an improvement, it is not significant at p = 0.05.

6 Discussion

We have demonstrated the following:

• There is a class of low-quality topics that can-
not be detected using existing word-intrusion
tests, but that can be identified reliably using a
metric based on word co-occurrence statistics.
• It is possible to improve the coherence score

of topics, both overall and for the ten worst,
while retaining the ability to flag bad topics, all
without requiring semi-supervised data or ad-
ditional reference corpora. Although additional
information may be useful, it is not necessary.
• Such models achieve better performance with

substantially fewer Gibbs iterations than LDA.

We believe that the most important challenges in fu-
ture topic modeling research are improving the se-
mantic quality of topics, particularly at the low end,
and scaling to ever-larger data sets while ensuring

high-quality topics. Our results provide critical in-
sight into these problems. We found that it should be
possible to construct unsupervised topic models that
do not produce bad topics. We also found that Gibbs
sampling mixes faster for models that use word co-
occurrence information, suggesting that such meth-
ods may also be useful in guiding online stochastic
variational inference (Hoffman et al., 2010).
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Abstract

Argumentative Zoning (AZ) – analysis of the
argumentative structure of a scientific paper –
has proved useful for a number of informa-
tion access tasks. Current approaches to AZ
rely on supervised machine learning (ML).
Requiring large amounts of annotated data,
these approaches are expensive to develop and
port to different domains and tasks. A poten-
tial solution to this problem is to use weakly-
supervised ML instead. We investigate the
performance of four weakly-supervised clas-
sifiers on scientific abstract data annotated for
multiple AZ classes. Our best classifier based
on the combination of active learning and self-
training outperforms our best supervised clas-
sifier, yielding a high accuracy of 81% when
using just 10% of the labeled data. This re-
sult suggests that weakly-supervised learning
could be employed to improve the practical
applicability and portability of AZ across dif-
ferent information access tasks.

1 Introduction

Many practical tasks require accessing specific types
of information in scientific literature. For example,
a reader of scientific literature may be looking for
information about the objective of the study in ques-
tion, the methods used in the study, the results ob-
tained, or the conclusions drawn by authors. Sim-
ilarly, many Natural Language Processing (NLP)
tasks focus on the extraction of specific types of in-
formation in documents only.

To date, a number of approaches have been pro-
posed for sentence-based classification of scien-

tific literature according to categories of information
structure (or discourse, rhetorical, argumentative or
conceptual structure, depending on the framework
in question). Some of these classify sentences ac-
cording to typical section names seen in scientific
documents (Lin et al., 2006; Hirohata et al., 2008),
while others are based e.g. on argumentative zones
(Teufel and Moens, 2002; Mizuta et al., 2006; Teufel
et al., 2009), qualitative dimensions (Shatkay et al.,
2008) or conceptual structure (Liakata et al., 2010)
of documents.

The best of current approaches have yielded
promising results and proved useful for information
retrieval, information extraction and summarization
tasks (Teufel and Moens, 2002; Mizuta et al., 2006;
Tbahriti et al., 2006; Ruch et al., 2007). How-
ever, relying on fully supervised machine learning
(ML) and a large body of annotated data, existing
approaches are expensive to develop and port to dif-
ferent scientific domains and tasks.

A potential solution to this bottleneck is to de-
velop techniques based on weakly-supervised ML.
Relying on a small amount of labeled data and
a large pool of unlabeled data, weakly-supervised
techniques (e.g. semi-supervision, active learning,
co/tri-training, self-training) aim to keep the advan-
tages of fully supervised approaches. They have
been applied to a wide range of NLP tasks, includ-
ing named-entity recognition, question answering,
information extraction, text classification and many
others (Abney, 2008), yielding performance levels
similar or equivalent to those of fully supervised
techniques.

To the best of our knowledge, such techniques
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have not yet been applied to the analysis of infor-
mation structure of scientific documents by afore-
mentioned approaches. Recent experiments have
demonstrated the usefulness of weakly-supervised
learning for classifying discourse relations in scien-
tific texts, e.g. (Hernault et al., 2011). However, fo-
cusing on local (rather than global) structure of doc-
uments and being much more fine-grained in nature,
this related task differs from ours considerably.

In this paper, we investigate the potential of
weakly-supervised learning for Argumentative Zon-
ing (AZ) of scientific abstracts. AZ is an approach to
information structure which provides an analysis of
the rhetorical progression of the scientific argument
in a document (Teufel and Moens, 2002). It has
been used to analyze scientific texts in various disci-
plines – including computational linguistics (Teufel
and Moens, 2002), law, (Hachey and Grover, 2006),
biology (Mizuta et al., 2006) and chemistry (Teufel
et al., 2009) – and has proved useful for NLP tasks
such as summarization (Teufel and Moens, 2002).
Although the basic scheme is said to be discipline-
independent (Teufel et al., 2009), its application to
different domains has resulted in various modifica-
tions and laborious annotation exercises. This sug-
gests that a weakly-supervised approach would be
more practical than a fully supervised one for the
real-world application of AZ.

Taking two supervised classifiers as a comparison
point – Support Vector Machines (SVM) and Con-
ditional Random Fields (CRF) – we investigate the
performance of four weakly-supervised classifiers
on the AZ task: two based on semi-supervised learn-
ing (transductive SVM and semi-supervised CRF)
and two on active learning (Active SVM alone and
in combination with self-training).

The results are promising. Our best weakly-
supervised classifier (Active SVM with self-
training) outperforms the best supervised classifier
(SVM), yielding high accuracy of 81% when using
just 10% of the labeled data. When using just one
third of the labeled data, it performs equally well as
a fully supervised SVM which uses 100% of the la-
beled data. Our investigation suggests that weakly-
supervised learning could be employed to improve
the practical applicability and portability of AZ to
different information access tasks.

2 Data

We used in our experiments the recent dataset of
(Guo et al., 2010). Guo et al. (2010) provide a cor-
pus of 1000 biomedical abstracts (consisting of 7985
sentences and 225785 words) annotated according
to three schemes of information structure – those
based on section names (Hirohata et al., 2008), AZ
(Mizuta et al., 2006) and Core Scientific Concepts
(CoreSC) (Liakata et al., 2010). We focus here on
AZ only, because it subsumes all the categories of
the simple section name -based scheme, and accord-
ing to the inter-annotator agreement and ML experi-
ments reported by Guo et al. (2010) it performs bet-
ter on this data than the fairly fine-grained CoreSC
scheme.

AZ is a scheme which provides an analysis of
the rhetorical progression of the scientific argument,
following the knowledge claims made by authors.
(Teufel and Moens, 2002) introduced AZ and ap-
plied it first to computational linguistics papers.
(Hachey and Grover, 2006) applied the scheme later
to legal texts and (Mizuta et al., 2006) modified it for
biology papers. More recently, (Teufel et al., 2009)
introduced a refined version of AZ and applied it to
chemistry papers.

The biomedical dataset of (Guo et al., 2010) has
been annotated according to the version of AZ de-
veloped for biology papers (Mizuta et al., 2006)
(with only minor modifications concerning zone
names). Seven categories of this scheme (out of the
10 possible) actually appear in abstracts and in the
resulting corpus. These are shown and explained
in Table 1. For example, the Method zone (METH)
is for sentences which describe a way of doing re-
search, esp. according to a defined and regular
plan; a special form of procedure or characteristic
set of procedures employed in a field of study as a
mode of investigation and inquiry.

An example of a biomedical abstract annotated
according to AZ is shown in Figure 1, with different
zones highlighted in different colors. For example,
the RES zone is highlighted in lemon green.

Table 2 shows the distribution of sentences per
scheme category in the corpus: Results (RES) is
by far the most frequent zone (accounting for 40%
of the corpus), while Background (BKG), Objective
(OBJ), Method (METH) and Conclusion (CON) cover

274



Table 1: Categories of AZ appearing in the corpus of (Guo et al., 2010)
Category Abbr. Definition
Background BKG The circumstances pertaining to the current work, situation, or its causes, history, etc.
Objective OBJ A thing aimed at or sought, a target or goal
Method METH A way of doing research, esp. according to a defined and regular plan; a special form

of procedure or characteristic set of procedures employed in a field of study as a mode
of investigation and inquiry

Result RES The effect, consequence, issue or outcome of an experiment; the quantity, formula,
etc. obtained by calculation

Conclusion CON A judgment or statement arrived at by any reasoning process; an inference, deduction,
induction; a proposition deduced by reasoning from other propositions; the result of
a discussion, or examination of a question, final determination, decision, resolution,
final arrangement or agreement

Related work REL A comparison between the current work and the related work
Future work FUT The work that needs to be done in the future

Figure 1: An example of an annotated abstract
Butadiene (BD) metabolism shows gender, species and concentration dependency, making the extrapolation of animal results to humans complex. BD is metabolized mainly
by cytochrome P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-butanediol (EB-diol). For accurate risk assessment it is
important to elucidate species differences in the internal formation of the individual epoxides in order to assign the relative risks associated with their different mutagenic
potencies. Analysis of N-terminal globin adducts is a common approach for monitoring the internal formation of BD derived epoxides. Our long term strategy is to develop
an LC-MS/MS method for simultaneous detection of all three BD hemoglobin adducts. This approach is modeled after the recently reported immunoaffinity LC-MS/MS
method for the cyclic N,N-(2,3-dihydroxy-1,4-butadyil)-valine (pyr-Val, derived from DEB). We report herein the analysis of the EB-derived 2-hydroxyl-3-butenyl-valine
peptide (HB-Val). The procedure utilizes trypsin hydrolysis of globin and immunoaffinity (IA) purification of alkylated heptapeptides. Quantitation is based on LC-MS/MS
monitoring of the transition from the singly charged molecular ion of HB-Val (1-7) to the a(1) fragment. Human HB-Val (1-11) was synthesized and used for antibody
production. As internal standard, the labeled rat-[(13)C(5)(15)N]-Val (1-11) was prepared through direct alkylation of the corresponding peptide with EB. Standards were
characterized and quantified by LC-MS/MS and LC-UV. The method was validated with different amounts of human HB-Val standard. The recovery was >75% and
coefficient of variation <25%. The LOQ was set to 100 fmol/injection. For a proof of principal experiment, globin samples from male and female rats exposed to 1000 ppm
BD for 90 days were analyzed. The amounts of HB-Val present were 268.2+/-56 and 350+/-70 pmol/g (mean+/-S.D.) for males and females, respectively. No HB-Val was
detected in controls. These data are much lower compared to previously reported values measured by GC-MS/MS. The difference may be due higher specificity of the
LC-MS/MS method to the N-terminal peptide from the alpha-chain versus derivatization of both alpha- and beta-chain by Edman degradation, and possible instability of
HB-Val adducts during long term storage (about 10 years) between the analyses. These differences will be resolved by examining recently collected samples, using the same
internal standard for parallel analysis by GC-MS/MS and LC-MS/MS. Based on our experience with pyr-Val adduct assay we anticipate that this assay will be suitable for
evaluation of HB-Val in multiple species.

Background

Objective

Method
Result

Conclusion

Related work

Future work

Table 2: Distribution of sentences in the AZ-annotated
corpus

BKG OBJ METH RES CON REL FUT
Word 36828 23493 41544 89538 30752 2456 1174
Sentence 1429 674 1473 3185 1082 95 47
Sentence 18% 8% 18% 40% 14% 1% 1%

8-18% of the corpus each. Two categories are very
low in frequency, only covering 1% of the corpus
each: Related work (REL) and Future work (FUT).

Guo et al. (2010) report the inter-annotator agree-
ment between their three annotators: one linguist,
one computational linguist and one domain expert.
According to Cohen’s kappa (Cohen, 1960) the
agreement is relatively high: κ = 0.85.

3 Automatic identification of AZ

3.1 Features and feature extraction
Guo et al. (2010) used a variety of features in
their fully supervised ML experiments on different
schemes of information structure. Since their fea-
ture types cover the best performing feature types in
earlier works e.g. (Teufel and Moens, 2002; Lin et
al., 2006; Mullen et al., 2005; Hirohata et al., 2008;
Merity et al., 2009) we re-implemented and used
them in our experiment1. However, being aware
of the fact that some of these features may not be
optimal for weakly-supervised learning (i.e. when
learning from smaller data), we evaluate their per-
formance and suitability for the task later in sec-
tion 4.3.

• Location. Zones tend to appear in typical po-
sitions in abstracts. Each abstract was there-

1The only exception is the history feature which was left out
because it cannot be applied to all of our methods
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fore divided into ten parts (1-10, measured by
the number of words), and the location was de-
fined by the parts where the sentence begins
and ends.

• Word. All the words in the corpus.

• Bi-gram. Any combination of two adjacent
words in the corpus.

• Verb. All the verbs in the corpus.

• Verb Class. 60 verb classes appearing in
biomedical journal articles.

• Part-of-Speech – POS. The POS tag of each
verb in the corpus.

• Grammatical Relation – GR. Subject (nc-
subj), direct object (dobj), indirect object (iobj)
and second object (obj2) relations in the cor-
pus. e.g. (ncsubj observed 14 difference 5
obj). The value of this feature equals 1 if it
occurs in a particular sentence (and 0 if not).

• Subj and Obj. The subjects and objects ap-
pearing with any verbs in the corpus (extracted
from above GRs).

• Voice. The voice of verbs (active or passive) in
the corpus.

These features were extracted from the corpus us-
ing a number of tools. A tokenizer was used to detect
the boundaries of sentences and to separate punctu-
ation from adjacent words e.g. in complex biomed-
ical terms such as 2-amino-3,8-diethylimidazo[4,5-
f]quinoxaline. The C&C tools (Curran et al., 2007)
trained on biomedical literature were employed for
POS tagging, lemmatization and parsing. The
lemma output was used for creating Word, Bi-gram
and Verb features. The GR output was used for cre-
ating the GR, Subj, Obj and Voice features. The
”obj” marker in a subject relation indicates passive
voice (e.g. (ncsubj observed 14 difference 5 obj)).
The verb classes were acquired automatically from
the corpus using the unsupervised spectral cluster-
ing method of (Sun and Korhonen, 2009). To con-
trol the number of features we lemmatized the lexi-
cal items for all the features, and removed the words
and GRs with fewer than 2 occurrences and bi-grams
with fewer than 5 occurrences.

3.2 Machine learning methods
Support Vector Machines (SVM) and Conditional
Random Fields (CRF) have proved the best perform-
ing fully supervised methods in most recent works
on information structure, e.g. (Teufel and Moens,
2002; Mullen et al., 2005; Hirohata et al., 2008; Guo
et al., 2010). We therefore implemented these meth-
ods as well as weakly supervised variations of them:
active SVM with and without self-training, transduc-
tive SVM and semi-supervised CRF.

3.2.1 Supervised methods
SVM constructs hyperplanes in a multidimen-

sional space to separate data points of different
classes. Good separation is achieved by the hyper-
plane that has the largest distance from the nearest
data points of any class. The hyperplane has the
form w · x − b = 0, where w is its normal vec-
tor. We want to maximize the distance from the hy-
perplane to the data points, or the distance between
two parallel hyperplanes each of which separates the
data. The parallel hyperplanes can be written as:
w · x − b = 1 and w · x − b = −1, and the dis-
tance between them is 2

|w| . The problem reduces to:
Minimize |w| (in w, b)
Subject to

w · x− b ≥ 1 for x of one class,
w · x− b ≤ −1 for x of the other,

which can be solved by using the SMO algorithm
(Platt, 1999b). We used Weka software (Hall et al.,
2009) (employing its linear kernel) for SVM experi-
ments.

CRF is an undirected graphical model which de-
fines a probability distribution over the hidden states
(e.g. label sequences) given the observations. The
probability of a label sequence y given an observa-
tion sequence x can be written as:
p(y|x, θ) = 1

Z(x)exp(
∑

j θjFj(y, x)),
where Fj(y, x) is a real-valued feature function of
the states and the observations; θj is the weight of
Fj , and Z(x) is a normalization factor. The θ pa-
rameters can be learned using the L-BFGS algorithm
(Nocedal, 1980). We used Mallet software (McCal-
lum, 2002) for CRF experiments.

3.2.2 Weakly-supervised methods
Active SVM (ASVM) starts with a small amount of

labeled data, and iteratively chooses a proportion of
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unlabeled data for which SVM has less confidence
to be labeled (the labels can be restored from the
original corpus) and used in the next round of learn-
ing, i.e. active learning. Query strategies based on
the structure of SVM are frequently employed (Tong
and Koller, 2001; Novak et al., 2006). For exam-
ple, it is often assumed that the data points close to
the separating hyperplane are those that the SVM is
uncertain about. Unlike these methods, our learn-
ing algorithm compares the posterior probabilities
of the best estimate given each unlabeled instance,
and queries those with the lowest probabilities for
the next round of learning. The probabilities can be
obtained by fitting a Sigmoid after the standard SVM

(Platt, 1999a), and combined using a pairwise cou-
pling algorithm (Hastie and Tibshirani, 1998) in the
multi-class case. We used the SVM linear kernel in
Weka for classification, and the -M flag in Weka for
calculating the posterior probabilities.

Active SVM with self-training (ASSVM) is an ex-
tension of ASVM where each round of training has
two steps: (i) training on the labeled, and testing
on the unlabeled data, and querying; (ii) training on
both labeled and unlabeled/machine-labeled data by
using the estimates from step (i). The idea of ASSVM

is to make the best use of the labeled data, and to
make the most use of the unlabeled data.

Transductive SVM (TSVM) is an extension of
SVM which takes advantage of both labeled and un-
labeled data (Vapnik, 1998). Similar to SVM, the
problem is defined as:

Minimize |w| (in w, b, y(u))
Subject to

y(l)(w · x(l) − b) ≥ 1,
y(u)(w · x(u) − b) ≥ 1 ,
y(u) ∈ {−1, 1},

where x(u) is unlabeled data and y(u) the estimate
of its label. The problem can be solved by using
the CCCP algorithm (Collobert et al., 2006). We
used UniverSVM software (Sinz, 2011) for TSVM

experiments.
Semi-supervised CRF (SSCRF) can be imple-

mented with entropy regularization (ER). It ex-
tends the objective function on Labeled data∑

L log p(y(l)|x(l), θ) with an additional term∑
U

∑
Y p(y|x(u), θ) log p(y|x(u), θ) to minimize

the conditional entropy of the model’s predictions on
Unlabeled data (Jiao et al., 2006; Mann and Mccal-

lum, 2007). We used Mallet software (McCallum,
2002) for SSCRF experiments.

4 Experimental evaluation

4.1 Evaluation methods

We evaluated the ML results in terms of accuracy,
precision, recall, and F-measure against manual AZ
annotations in the corpus:

acc = no. of correctly classified sentences
total no. ofsentences in the corpus

p = no. of sentences correctly identified as Classi
total no. of sentences identified as Classi

r = no. of sentences correctly identified as Classi
total no. of sentences in Classi

f = 2∗p∗r
p+r

We used 10-fold cross validation for all the meth-
ods to avoid the possible bias introduced by rely-
ing on any particular split of the data. More specif-
ically, the data was randomly assigned to ten folds
of roughly the same size. Each fold was used once
as test data and the remaining nine folds as training
data. The results were then averaged.

Following (Dietterich, 1998), we used McNe-
mar’s test (McNemar, 1947) to measure the statisti-
cal significance between the results of different ML
methods. The chosen significance level was .05.

4.2 Results

Table 3 shows the results for the four weakly-
supervised and two supervised methods when 10%
of the training data (i.e. ∼700 sentences) has been
labeled. We can see that ASSVM is the best perform-
ing method with an accuracy of 81% and the macro

Table 3: Results when using 10% of the labeled data
Acc. F-score

MF BKG OBJ METH RES CON REL FUT
SVM .77 .74 .84 .68 .71 .82 .64 - -
CRF .70 .65 .75 .46 .48 .78 .76 - -
ASVM .80 .75 .88 .56 .68 .87 .78 .33
ASSVM .81 .76 .86 .56 .76 .88 .76 - -
TSVM .76 .73 .84 .61 .71 .79 .71 - -
SSCRF .73 .67 .76 .48 .52 .81 .78 - -

MF: Macro F-score of the five high frequency categories:
BKG, OBJ, METH, RES, CON.
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Figure 2: Learning curve for different methods when using 0-100% of the labeled data
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Figure 3: Area under learning curves at different intervals
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F-score of .76 (the macro F-score is calculated for
the 5 scheme categories which are found by all the
methods). ASVM performs nearly as well, with an
accuracy of 80% and F-score of .75. Both methods
outperform supervised SVM with a statistically sig-
nificant difference (p < .001).

TSVM is the lowest performing SVM-based
method. Yielding an accuracy of 76% and F-score
of .73 its performance is lower than that of the super-
vised SVM. However, it does outperform both CRF-
based methods. SSCRF performs better than CRF

with 3% higher accuracy and .02 higher F-score.
The difference in accuracy is statistically significant
(p < .001).

Only one method (ASVM) identifies six out of the
seven possible categories. Other methods identify
five categories. The 1-2 missing categories are very
low in frequency (accounting for 1% of the corpus
data each, see table 2). Looking at the results for
other categories, they seem to reflect the amount of
corpus data available for each category (Table 2),
with RES (Results) being the highest and OBJ (Ob-
jective) the lowest performing category with most

methods. Interestingly, the only method that per-
forms relatively well on OBJ is the supervised SVM.

The best method ASSVM outperforms other meth-
ods most clearly on METH (Method) category. Al-
though METH is a high frequency category (account-
ing for 18% of the corpus data) other methods tend
to confuse it with OBJ, presumably because a single
sentence may contain elements of both (e.g. scien-
tists may describe some of their method when de-
scribing the objective of the study).

Figure 2 shows the learning curve of different
methods (in terms of accuracy) when the percentage
of the labeled data (in the training set) ranges from 0
to 100%. ASSVM outperforms other methods, reach-
ing its best performance of 88% accuracy when us-
ing ∼40% of the labeled data. Indeed when using
33% of the labeled data, it performs already equally
well as fully-supervised SVM using 100% of the la-
beled data. The advantage of ASSVM over ASVM

(the second best method) is clear especially when
20-40% of the labeled data is used. SVM and TSVM

tend to perform quite similarly with each other when
more than 25% of the labeled data is used, but when
less data is available, SVM performs better. Look-
ing at the CRF-based methods, SSCRF outperforms
CRF in particular when 10-25% of the labeled data
is used. However, neither of them reaches the per-
formance level of SVM-based methods.

Figure 3 shows the area under the learning curves
(by the trapezoidal rule) at different intervals, which
gives a reasonable approximation to the overall per-
formance of different methods. The area under
ASSVM is the largest at each of the four intervals,
with a value of .08 at (0,10%], .07 at [10%,20%],
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.20 at [20%, 40%] and .50 at [40%,100%]. The dif-
ference between supervised and weakly-supervised
methods is more significant at (0, 20%] than at
[20%,100%].

4.3 Further analysis of the features

As explained in section 3.1, we employed in our
experiments a collection of features which had per-
formed well in previous supervised AZ experiments.
We conducted further analysis to investigate which
of these features are the most (and the least) useful
for weakly-supervised learning. We took our best
performing method ASSVM and conducted leave-
one-out analysis of the features with 10% of the la-
beled data. The results are shown in Table 4.

Table 4: Leaving one feature out results for ASSVM when
using 10% of the labeled data

Acc. F-score
MF BKG OBJ METH RES CON REL FUT

Location .73 .67 .67 .55 .62 .85 .65 - -
Word .80 .78 .87 .70 .74 .85 .72 - -
Bigram .81 .75 .83 .57 .71 .87 .78 .33 -
Verb .81 .79 .84 .77 .73 .87 .75 - -
VC .79 .75 .86 .62 .72 .84 .70 - -
POS .74 .70 .66 .65 .66 .82 .73 - -
GR .79 .75 .83 .67 .69 .84 .72 - -
Subj .80 .76 .87 .65 .73 .85 .72 - -
Obj .80 .78 .84 .75 .70 .85 .75 - -
Voice .78 .75 .88 .70 .71 .83 .62 - -
Φ .81 .76 .86 .56 .76 .88 .76 - -

MF: Macro F-score of the five high frequency categories:
BKG, OBJ, METH, RES, CON.
Φ: Employing all the features.

We can see that the Location feature is by far the
most useful feature for ASSVM. The performance
drops 8% in accuracy and .09 in F-score in the ab-
sence of this feature. Location is particularly im-
portant for BKG (which nearly always appears in the
same location: in the beginning of an abstract) and is
highly useful for METH and CON as well. Removing
POS has almost equally strong effect, in particular
on BKG and METH, suggesting that verb tense is par-
ticularly useful for distinguishing these categories.

Also Voice, Verb class and GR contribute to gen-
eral performance, especially to accuracy. Voice is
particularly important for CON, which differs from
other categories in the sense that it is marked by fre-
quent usage of active voice. Verb class is helpful for

METH, RES and CON while GR is helpful for all high
frequency categories.

Among the least helpful features are those which
suffer from sparse data problems, including e.g.
Word, Bi-gram, and Verb. They perform particularly
badly when applied to low frequency zones. How-
ever, this is not the case when using fully-supervised
methods (i.e. 100% of the labeled data), suggest-
ing that a good performance in fully supervised ex-
periments does not necessarily translate into a good
performance in weakly-supervised experiments, and
that careful feature analysis and selection is impor-
tant when aiming to optimize the performance when
learning from sparse data.

5 Discussion

In our experiments, the majority of weakly-
supervised methods outperformed their correspond-
ing supervised methods when using just 10% of
the labeled data. The SVM-based methods per-
formed better than the CRF-based ones (regardless of
whether they were weakly or fully supervised). Guo
et al. (2010) made a similar discovery when com-
paring fully supervised versions of SVM and CRF.

Our best performing weakly-supervised methods
were those based on active learning. Making a good
use of both labeled and unlabeled data, active learn-
ing combined with self-training (ASSVM) proved to
be the most useful method. Given 10% of the la-
beled data, ASSVM obtained an accuracy of 81% and
F-score of .76, outperforming the best supervised
method SVM with a statistically significant differ-
ence. It reached its top performance (88% accuracy)
when using 40% of the labeled data, and performed
equally well as fully supervised SVM (i.e. 100% of
the labeled data) when using just one third of the la-
beled data.

This result is in line with the results of many
other text classification works where active learn-
ing (alone or in combination with other techniques
such as self-training) has proved similarly useful,
e.g. (Lewis and Gale, 1994; Tong and Koller, 2002;
Brinker, 2006; Novak et al., 2006; Esuli and Sebas-
tiani, 2009; Yang et al., 2009).

While active learning iteratively explores the
unknown aspects of the unlabeled data, semi-
supervised learning attempts to make the best use
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of what it already knows about the data. In our ex-
periments, semi-supervised methods (TSVM and SS-
CRF) did not perform equally well as active learning
– TSVM even produced a lower accuracy than SVM

with the same amount of labeled data – although
these methods have gained success in related works.

We therefore looked into related works using
TSVM, e.g. (Chapelle and Zien, 2005), and discov-
ered that our dataset is much higher in dimensional-
ity than those employed in many other works. High
dimensional data is more sensitive, and therefore
fine-tuning with unlabeled data may cause a big de-
viation. We also looked into related works using
SSCRF, in particular the work of (Jiao et al., 2006)
who used the same SSCRF as the one we used in our
experiments. Jiao et al. (2006) employed a much
larger data set than we did – one including 5448 la-
beled instances (in 3 classes) and 5210-25145 unla-
beled instances. Given more labeled and unlabeled
data per class we might be able to obtain better per-
formance using SSCRF also on our task. However,
given the high cost of obtaining labeled data meth-
ods not needing it are preferable.

6 Conclusions and future work

Our experiments show that weakly-supervised
learning can be used to identify AZ in scientific
documents with good accuracy when only a limited
amount of labeled data is available. This is helpful
thinking of the real-world application and porting of
the approach to different tasks and domains. To the
best of our knowledge, no previous work has been
done on weakly-supervised learning of information
structure according to schemes of the type we have
focused on (Teufel and Moens, 2002; Mizuta et al.,
2006; Lin et al., 2006; Hirohata et al., 2008; Shatkay
et al., 2008; Liakata et al., 2010).

Recently, some work has been done on the related
task of classification of discourse relations in sci-
entific texts: (Hernault et al., 2011) used structural
learning (Ando and Zhang, 2005) for this task. They
obtained 30-60% accuracy on the RST Discourse
Treebank (including 41 relation types) when using
100-10000 labeled and 100000 unlabeled instances.
The accuracy was 20-60% when using the labeled
data only. However, although related, the task of
discourse relation classification differs substantially

from our task in that it focuses on local discourse re-
lations while our task focuses on the global structure
of the scientific document.

In the future, we plan to improve and extend this
work in several directions. First, the approach to
active learning could be improved in various ways.
The query strategy we employed (uncertainty sam-
pling) is a relatively straightforward method which
only considers the best estimate for each unlabeled
instance, disregarding other estimates that may con-
tain useful information. In the future, we plan to
experiment with more sophisticated strategies, e.g.
the margin sampling algorithm by (Scheffer et al.,
2001) and the query-by-committee (QBC) algorithm
by (Seung et al., 1992). In addition, there are al-
gorithms designed for reducing the redundancy in
queries which may be worth investigating (Hoi et al.,
2006).

Also, (Hoi et al., 2006) shows that Logistic Re-
gression (LR) outperforms SVM when used with ac-
tive learning, yielding higher F-score on the Reuters-
21578 data set (binary classification, 10,788 docu-
ments in total, 100 of them labeled). It would be
interesting to explore whether supervised methods
other than SVM are optimal for active learning when
applied to our task.

Secondly, we plan to investigate other semi-
supervised methods, for example, the Expectation-
Maximization (EM) algorithm. (Lanquillon, 2000)
has shown that EM SVM performs better than super-
vised and transductive SVM on a text classification
task when applied to the dataset of 20 Newsgroups
(20 classes, 4000 documents for testing, 10000 un-
labeled ones), yielding up to ∼10% higher accu-
racy when 200-5000 labeled documents are used for
training.

In addition, other combinations of weakly-
supervised methods might be worth looking into,
such as EM+active learning (McCallum and Nigam,
1998) and co-training+EM+active learning (Muslea
et al., 2002), which have proved promising in related
text classification works.

Besides looking for optimal ML strategies, we
plan to look for optimal features for the task. Our
feature analysis showed that not all the features
which had proved promising in fully supervised ex-
periments were equally promising when applied to
weakly-supervised learning from smaller data. We
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plan to look into ways of reducing the sparse data
problem in features, e.g. by classifying not only
verbs but also other word classes into semantically-
motivated categories.

One the key motivations for developing a weakly-
supervised approach is to facilitate easy porting of
schemes such as AZ to new tasks and domains. Re-
cent research shows that active learning in a target
domain can leverage information from a different
but related (source) domain (Rai et al., 2010). Mak-
ing use of existing annotated datasets in biology,
chemistry, computational linguistics and law (Teufel
and Moens, 2002; Mizuta et al., 2006; Hachey
and Grover, 2006; Teufel et al., 2009) we will ex-
plore optimal ways of combining weakly-supervised
learning with domain-adaptation.

The work presented in this paper has focused on
the abstracts annotated according to the AZ scheme.
In the future, we plan to investigate the usefulness
of weakly-supervised learning for identifying other
schemes of information structure, e.g. (Lin et al.,
2006; Hirohata et al., 2008; Shatkay et al., 2008;
Liakata et al., 2010), and not only in scientific ab-
stracts but also in full journal papers which typically
exemplify a larger set of scheme categories.

Finally, an important avenue of future research
is to evaluate the usefulness of weakly-supervised
identification of information structure for NLP tasks
such as summarization and information extraction
(Tbahriti et al., 2006; Ruch et al., 2007), and for
practical tasks such as manual review of scientific
papers for research purposes (Guo et al., 2010).
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Venkatasubramanian. 2010. Domain adaptation
meets active learning. In Proceedings of the NAACL
HLT 2010 Workshop on Active Learning for Natural
Language Processing.

P. Ruch, C. Boyer, C. Chichester, I. Tbahriti, A. Geiss-
buhler, P. Fabry, J. Gobeill, V. Pillet, D. Rebholz-
Schuhmann, C. Lovis, and A. L. Veuthey. 2007. Using
argumentation to extract key sentences from biomedi-
cal abstracts. Int J Med Inform, 76(2-3):195–200.

Tobias Scheffer, Christian Decomain, and Stefan Wro-
bel. 2001. Active hidden markov models for informa-
tion extraction. In Proceedings of the 4th International
Conference on Advances in Intelligent Data Analysis.

H. S. Seung, M. Opper, and H. Sompolinsky. 1992.
Query by committee. In Proceedings of the fifth an-
nual workshop on Computational learning theory.

H. Shatkay, F. Pan, A. Rzhetsky, and W. J. Wilbur. 2008.
Multi-dimensional classification of biomedical text:
Toward automated, practical provision of high-utility
text to diverse users. Bioinformatics, 24(18):2086–
2093.

F. Sinz, 2011. UniverSVM Support Vector Ma-
chine with Large Scale CCCP Functionality.
http://www.kyb.mpg.de/bs/people/fabee/universvm.html.

L. Sun and A. Korhonen. 2009. Improving verb cluster-
ing with automatically acquired selectional preference.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

I. Tbahriti, C. Chichester, Frederique Lisacek, and
P. Ruch. 2006. Using argumentation to retrieve
articles with similar citations. Int J Med Inform,
75(6):488–495.

S. Teufel and M. Moens. 2002. Summarizing scien-
tific articles: Experiments with relevance and rhetor-
ical status. Computational Linguistics, 28:409–445.

S. Teufel, A. Siddharthan, and C. Batchelor. 2009. To-
wards domain-independent argumentative zoning: Ev-
idence from chemistry and computational linguistics.
In Proceedings of EMNLP.

S. Tong and D. Koller. 2001. Support vector machine
active learning with applications to text classification.
Journal of Machine Learning Research, 2:45–66.

Simon Tong and Daphne Koller. 2002. Support vector
machine active learning with applications to text clas-
sification. J. Mach. Learn. Res., 2:45–66.

282



V. N. Vapnik. 1998. Statistical learning theory. Wiley,
New York.

Bishan Yang, Jian-Tao Sun, Tengjiao Wang, and Zheng
Chen. 2009. Effective multi-label active learning for
text classification. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining.

283



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 284–293,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Linear Text Segmentation Using Affinity Propagation

Anna Kazantseva
School of Electrical Engineering

and Computer Science,
University of Ottawa

ankazant@site.uottawa.ca

Stan Szpakowicz
School of Electrical Engineering

and Computer Science,
University of Ottawa &

Institute of Computer Science,
Polish Academy of Sciences
szpak@site.uottawa.ca

Abstract

This paper presents a new algorithm for lin-
ear text segmentation. It is an adaptation of
Affinity Propagation, a state-of-the-art clus-
tering algorithm in the framework of factor
graphs. Affinity Propagation for Segmenta-
tion, or APS, receives a set of pairwise simi-
larities between data points and produces seg-
ment boundaries and segment centres – data
points which best describe all other data points
within the segment. APS iteratively passes
messages in a cyclic factor graph, until conver-
gence. Each iteration works with information
on all available similarities, resulting in high-
quality results. APS scales linearly for realistic
segmentation tasks. We derive the algorithm
from the original Affinity Propagation formu-
lation, and evaluate its performance on topi-
cal text segmentation in comparison with two
state-of-the art segmenters. The results sug-
gest that APS performs on par with or outper-
forms these two very competitive baselines.

1 Introduction

In complex narratives, it is typical for the topic to
shift continually. Some shifts are gradual, others –
more abrupt. Topical text segmentation identifies the
more noticeable topic shifts. A topical segmenter’s
output is a very simple picture of the document’s
structure. Segmentation is a useful intermediate step
in such applications as subjectivity analysis (Stoy-
anov and Cardie, 2008), automatic summarization
(Haghighi and Vanderwende, 2009), question an-
swering (Oh, Myaeng, and Jang, 2007) and others.
That is why improved quality of text segmentation
can benefit other language-processing tasks.

We present Affinity Propagation for Segmenta-
tion (APS), an adaptation of a state-of-the-art clus-
tering algorithm, Affinity Propagation (Frey and
Dueck, 2007; Givoni and Frey, 2009).1 The origi-
nal AP algorithm considerably improved exemplar-
based clustering both in terms of speed and the qual-
ity of solutions. That is why we chose to adapt it to
segmentation. At its core, APS is suitable for seg-
menting any sequences of data, but we present it in
the context of segmenting documents. APS takes as
input a matrix of pairwise similarities between sen-
tences and, for each sentence, a preference value
which indicates an a priori belief in how likely
a sentence is to be chosen as a segment centre.
APS outputs segment assignments and segment cen-
tres – data points which best explain all other points
in a segment. The algorithm attempts to maximize
net similarity – the sum of similarities between all
data points and their respective segment centres.

APS operates by iteratively passing messages in
a factor graph (Kschischang, Frey, and Loeliger,
2001) until a good set of segments emerges. Each
iteration considers all similarities – takes into ac-
count all available information. An iteration in-
cludes sending at most O(N2) messages. For the
majority of realistic segmentation tasks, however,
the upper bound is O(MN) messages, where M
is a constant. This is more computationally ex-
pensive than the requirements of locally informed
segmentation algorithms such as those based on
HMM or CRF (see Section 2), but for a globally-
informed algorithm the requirements are very rea-
sonable. APS is an instance of loopy-belief propaga-
tion (belief propagation on cyclic graphs) which has

1An implementation of APS in Java, and the data sets, can be
downloaded at 〈www.site.uottawa.ca/∼ankazant〉.
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been used to achieved state-of-the-art performance
in error-correcting decoding, image processing and
data compression. Theoretically, such algorithms
are not guaranteed to converge or to maximize the
objective function. Yet in practice they often achieve
competitive results.

APS works on an already pre-compiled similaritiy
matrix, so it offers flexibility in the choice of simi-
larity metrics. The desired number of segments can
be set by adjusting preferences.

We evaluate the performance of APS on three
tasks: finding topical boundaries in transcripts of
course lectures (Malioutov and Barzilay, 2006),
identifying sections in medical textbooks (Eisen-
stein and Barzilay, 2008) and identifying chapter
breaks in novels. We compare APS with two recent
systems: the Minimum Cut segmenter (Malioutov
and Barzilay, 2006) and the Bayesian segmenter
(Eisenstein and Barzilay, 2008). The comparison
is based on the WindowDiff metric (Pevzner and
Hearst, 2002). APS matches or outperforms these
very competitive baselines.

Section 2 of the paper outlines relevant research
on topical text segmentation. Section 3 briefly cov-
ers the framework of factor graphs and outlines the
original Affinity Propagation algorithm for cluster-
ing. Section 4 contains the derivation of the new
update messages for APSeg. Section 5 describes the
experimental setting, Section 6 reports the results,
Section 7 discusses conclusions and future work.

2 Related Work

This sections discusses selected text segmentation
methods and positions the proposed APS algorithm
in that context.

Most research on automatic text segmentation re-
volves around a simple idea: when the topic shifts,
so does the vocabulary (Youmans, 1991). We can
roughly subdivide existing approaches into two cat-
egories: locally informed and globally informed.

Locally informed segmenters attempt to identify
topic shifts by considering only a small portion of
complete document. A classical approach is Text-
Tiling (Hearst, 1997). It consists of sliding two ad-
jacent windows through text and measuring lexical
similarity between them. Drops in similarity corre-
spond to topic shifts. Other examples include text

segmentation using Hidden Markov Models (Blei
and Moreno, 2001) or Conditional Random Fields
(Lafferty, McCallum, and Pereira, 2001). Locally
informed methods are often very efficient because
of lean memory and CPU time requirements. Due to
a limited view of the document, however, they can
easily be thrown off by short inconsequential digres-
sions in narration.

Globally informed methods consider “the big pic-
ture” when determining the most likely location of
segment boundaries. Choi (2000) applies divisive
clustering to segmentation. Malioutov and Barzilay
(2006) show that the knowledge about long-range
similarities between sentences improves segmenta-
tion quality. They cast segmentation as a graph-
cutting problem. The document is represented as a
graph: nodes are sentences and edges are weighted
using a measure of lexical similarity. The graph is
cut in a way which maximizes the net edge weight
within each segment and minimizes the net weight
of severed edges. Such Minimum Cut segmentation
resembles APS the most among others mentioned in
this paper. The main difference between the two is
in different objective functions.

Another notable direction in text segmentation
uses generative models to find segment boundaries.
Eisenstein and Barzilay (2008) treat words in a sen-
tence as draws from a multinomial language model.
Segment boundaries are assigned so as to maximize
the likelihood of observing the complete sequence.
Misra et al. (2009) use a Latent Dirichlet alloca-
tion topic model (Blei, Ng, and Jordan, 2003) to find
coherent segment boundaries. Such methods output
segment boundaries and suggest lexical distribution
associated with each segment. Generative models
tend to perform well, but are less flexible than the
similarity-based models when it comes to incorpo-
rating new kinds of information.

Globally informed models generally perform bet-
ter, especially on more challenging datasets such as
speech recordings, but they have – unsurprisingly –
higher memory and CPU time requirements.

The APS algorithm described in this paper com-
bines several desirable properties. It is unsupervised
and, unlike most other segmenters, does not require
specifying the desired number of segments as an in-
put parameter. On each iteration it takes into account
the information about a large portion of the docu-
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ment (or all of it). Because APS operates on a pre-
compiled matrix of pair-wise sentence similarities, it
is easy to incorporate new kinds of information, such
as synonymy or adjacency. It also provides some in-
formation as to what the segment is about, because
each segment is associated with a segment centre.

3 Factor graphs and affinity propagation
for clustering

3.1 Factor graphs and the max-sum algorithm
The APS algorithm is an instance of belief propa-
gation on a cyclic factor graph. In order to explain
the derivation of the algorithm, we will first briefly
introduce factor graphs as a framework.

Many computational problems can be reduced to
maximizing the value of a multi-variate function
F (x1, . . . , xn) which can be approximated by a sum
of simpler functions. In Equation 1, H is a set of
discrete indices and fh is a local function with argu-
ments Xh ⊂ {x1, . . . , xn}:

F (x1, . . . , xn) =
∑

h∈H
fh(Xh) (1)

Factor graphs offer a concise graphical represen-
tation for such problems. A global function F which
can be decomposed into a sum of M local function
fh can be represented as a bi-partite graph with M
function nodes and N variable nodes (M = |H|).
Figure 1 shows an example of a factor graph for
F (x1, x2, x3, x4) = f1(x1, x2, x3) + f2(x2, x3, x4).
The factor (or function) nodes are dark squares, the
variable nodes are light circles.

The well-known max-sum algorithm (Bishop,
2006) seeks a configuration of variables which max-
imizes the objective function. It finds the maximum
in acyclic factor graphs, but in graphs with cycles
neither convergence nor optimality are guaranteed
(Pearl, 1982). Yet in practice good approximations
can be achieved. The max-sum algorithm amounts
to propagating messages from function nodes to
variable nodes and from variable nodes to function
nodes. A message sent from a variable node x to a
function node f is computed as a sum of the incom-
ing messages from all neighbours of x other than f
(the sum is computed for each possible value of x):

µx→f =
∑

f ′∈N(x)\f
µf ′→x (2)

Figure 1: Factor graph for F (x1, x2, x3, x4)
= f1(x1, x2, x3) + f2(x2, x3, x4).

f1 f2

x1 x2 x3 x4

N(x) is the set of all function nodes which are x’s
neighbours. The message reflects the evidence about
the distribution of x from all functions which have x
as an argument, except for the function correspond-
ing to the receiving node f .

A message µf→x from function f to variable x is
computed as follows:

µf→x = max
N(f)\x

(f(x1, . . . , xm) +
∑

x′∈N(f)\x
µx′→f )

(3)
N(f) is the set of all variable nodes which are f ’s
neighbours. The message reflects the evidence about
the distribution of x from function f and its neigh-
bours other than x.

A common message-passing schedule on cyclic
factor graphs is flooding: iteratively passing all
variable-to-function messages, then all function-to-
variable messages. Upon convergence, the summary
message reflecting final beliefs about the maximiz-
ing configuration of variables is computed as a sum
of all incoming function-to-variable messages.

3.2 Affinity Propagation
The APS algorithm described in this paper is a mod-
ification of the original Affinity Propagation algo-
rithm intended for exemplar-based clustering (Frey
and Dueck, 2007; Givoni and Frey, 2009). This sec-
tion describes the binary variable formulation pro-
posed by Givoni and Frey, and lays the groundwork
for deriving the new update messages (Section 4).

Affinity Propagation for exemplar-based cluster-
ing is formulated as follows: to cluster N data
points, one must specify a matrix of pairwise sim-
ilarities {SIM(i, j)}i,j∈{1,...,N},i 6=j and a set of
self-similarities (so-called preferences) SIM(j, j)
which reflect a priori beliefs in how likely each data
point is to be selected as an exemplar. Preference
values occupy the diagonal of the similarity matrix.
The algorithm then assigns each data point to an ex-
emplar so as to maximize net similarity – the sum of
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Figure 2: Factor graph for affinity propagation.
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similarities between all points and their respective
exemplars; this is expressed by Equation 7. Figure 2
shows a schematic factor graph for this problem,
with N2 binary variables. cij = 1 iff point j is an
exemplar for point i. Function nodes Ej enforce a
coherence constraint: a data point cannot exemplify
another point unless it is an exemplar for itself:

Ej(c1j , . . . , cNj) =





−∞ if cjj = 0 ∧ cij = 1

for some i 6= j

0 otherwise
(4)

An I node encodes a single-cluster constraint: each
data point must belong to exactly one exemplar –
and therefore to one cluster:

Ii(ci1, . . . , ciN ) =

{
−∞ if

∑
j cij 6= 1

0 otherwise
(5)

An S node encodes user-defined similarities
between data-points and candidate exemplars
(SIM(i, j) is the similarity between points i and
j):

Sij(cij) =

{
SIM(i, j) if cij = 1

0 otherwise
(6)

Equation 7 shows the objective function which we
want to maximize: a sum of similarities between
data points and their exemplars, subject to the two

constraints (coherence and single-cluster per point).

S(c11, . . . , cNN ) =
∑

i,j

Si,j(cij) +
∑

i

Ii(ci1, . . . , ciN )

(7)

+
∑

j

Ej(c1j , . . . , cNj)

According to Equation 3, the computation of a sin-
gle factor-to-variable message involves maximizing
over 2n configurations. E and I , however, are bi-
nary constraints and evaluate to −∞ for most con-
figurations. This drastically reduces the number of
configurations which can maximize the message val-
ues. Given this simple fact, Givoni and Frey (2009)
show how to reduce the necessary update messages
to only two types of scalar ones: availabilities (α)
and responsibilities (ρ).2

A responsibility message ρij , sent from a variable
node cij to function node Ej , reflects the evidence
of how likely j is to be an exemplar for i given all
other potential exemplars:

ρij = SIM(i, j)−max
k 6=j

(SIM(i, k) + αik) (8)

An availability message αij , sent from a function
node Ej to a variable node cij , reflects how likely
point j is to be an exemplar for i given the evidence
from all other data points:

αij =





∑

k 6=j
max[ρkj , 0] if i = j

min[0, ρjj +
∑

k/∈{i,j}
max[ρkj , 0]] if i 6= j

(9)
Let γij(l) be the message value corresponding to set-
ting variable cij to l, l ∈ {0, 1}. Instead of sending
two-valued messages (corresponding to the two pos-
sible values of the binary variables), we can send
the difference for the two possible configurations:
γij = γij(1)− γij(0) – effectively, a log-likelihood
ratio.

2Normally, each iteration of the algorithm sends five types
of two-valued messages: to and from functions E and I and
a message from functions S. Fortunately, the messages sent
to and from E factors to the variable nodes subsume the three
other message types and it is not necessary to compute them
explicitly. See (Givoni and Frey, 2009, p.195) for details.
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Figure 3: Examples of valid configuration of hidden
variables {cij} for clustering and segmentation.

(a) Clustering (b) Segmentation

The algorithm converges when the set of points
labelled as exemplars remains unchanged for a pre-
determined number of iterations. When the al-
gorithm terminates, messages to each variable are
added together. A positive final message indicates
that the most likely value of a variable cij is 1 (point
j is an exemplar for i), a negative message indicates
that it is 0 (j is not an exemplar for i).

4 Affinity Propagation for Segmentation

This section explains how we adapt the Affinity
Propagation clustering algorithm to segmentation.

In this setting, sentences are data points and we
refer to exemplars as segment centres. Given a doc-
ument, we want to assign each sentence to a segment
centre so as to maximize net similarity.

The new formulation relies on the same underly-
ing factor graph (Figure 2). A binary variable node
cij is set to 1 iff sentence j is the segment centre for
sentence i. When clustering is the objective, a clus-
ter may consist of points coming from anywhere in
the data sequence. When segmentation is the ob-
jective, a segment must consist of a solid block of
points around the segment centre. Figure 3 shows,
for a toy problem with 5 data points, possible valid
configurations of variables {cij} for clustering (3a)
and for segmentation (3b).

To formalize this new linearity requirement, we
elaborate Equation 4 into Equation 10. Ej evaluates
to −∞ in three cases. Case 1 is the original coher-
ence constraint. Case 2 states that no point k may
be in the segment with a centre is j, if k lies before
the start of the segment (the sequence c(s−1)j = 0,
csj = 1 necessarily corresponds to the start of the
segment). Case 3 handles analogously the end of
the segment.

Ej =





−∞ 1. if cjj = 0 ∧ cij = 1 for some i 6= j

2. if cjj = 1 ∧ csj = 1 ∧ c(s−1)j = 0

∧ ckj = 1 for some s < j, k < s− 1

3. if cjj = 1 ∧ cej = 1 ∧ c(e+1)j = 0

∧ ckj = 1 for some e > j, k > e+ 1

0 otherwise
(10)

The E function nodes are the only changed part of
the factor graph, so we only must re-derive α mes-
sages (availabilities) sent from factors E to variable
nodes. A function-to-variable message is computed
as shown in Equation 11 (elaborated Equation 3),
and the only incoming messages to E nodes are re-
sponsibilities (ρ messages):

µf→x = max
N(f)\x

(f(x1, . . . , xm) +
∑

x′∈N(f)\x
µx′→f ) =

(11)

max
cij , i 6=j

((Ej(c1j , . . . , cNj) +
∑

cij , i 6=j
ρij(cij)))

We need to compute the message values for the
two possible settings of binary variables – denoted
as αij(1) and αij(0) – and propagate the difference
αij = αij(1) - αij(0).

Consider the case of factor Ej sending an α mes-
sage to the variable node cjj (i.e., i = j). If cjj = 0
then point j is not its own segment centre and the
only valid configuration is to set all other cij to 0:

αjj(0) = max
cij ,i 6=j

(Ej(c1j , . . . , cNj) +
∑

cij ,i 6=j
ρij(cij))

(12)

=
∑

i 6=j
ρij(0)

To compute αij(1) (point j is its own segment
centre), we only must maximize over configurations
which will not correspond to cases 2 and 3 in Equa-
tion 10 (other assignments are trivially non-optimal
because they would evaluate Ej to −∞). Let the
start of a segment be s, 1 ≤ s < j and the end of
the segment be e, j + 1 < e ≤ N . We only need to
consider configurations such that all points between
s and e are in the segment while all others are not.
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The following picture shows a valid configuration.3

1 s j e N

To compute the message αij(1), i = j, we have:

αjj(1) =
j

max
s=1

[

s−1∑

k=1

ρkj(0) +

j−1∑

k=s

ρkj(1)]+ (13)

N
max
e=j

[
e∑

k=j+1

ρkj(1) +
N∑

k=e+1

ρkj(0)]

Subtracting Equation 12 from Equation 13, we get:

αjj = αjj(1)− αjj(0) = (14)

j
max
s=1

(

j−1∑

k=s

ρkj) +
N

max
e=j

(
e∑

k=j+1

ρkj)

Now, consider the case of factor Ej sending an α
message to a variable node cij other than segment
exemplar j (i.e., i 6= j). Two subcases are possible:
point i may lie before the segment centre j (i < j),
or it may lie after the segment centre (i > j).

The configurations which may maximize αij(1)
(the message value for setting the hidden variable
to 1) necessarily conform to two conditions: point
j is labelled as a segment centre (cjj = 1) and all
points lying between i and j are in the segment.
This corresponds to Equation 15 for i < j and to
Equation 16 for i > j. Pictorial examples of corre-
sponding valid configurations precede the equations.

1 s i j e N

αij, i<j(1) =
i

max
s=1

[
s−1∑

k=1

ρkj(0) +
i−1∑

k=s

ρkj(1)]+

(15)
j∑

k=i+1

ρkj(1) +
N

max
e=j

[

e∑

k=j+1

ρkj(1) +

N∑

k=e+1

ρkj(0)]

3Variables cij set to 1 are shown as shaded circles, to 0 – as
white circles. Normally, variables form a column in the factor
graph; we transpose them to save space.

1 s j i e N

αij, i>j(1) =
j

max
s=1

[
s−1∑

k=1

ρkj(0) +

j−1∑

k=s

ρkj(1)]+

(16)
i−1∑

k=j

ρkj(1) +
N

max
e=i

[

e∑

k=i+1

ρkj(1) +

N∑

k=e+1

ρkj(0)]

To compute the message value for setting the
hidden variable cij to 0, we again distinguish
between i < j and i > j and consider whether cjj
= 1 or cjj = 0 (point j is / is not a segment centre).
For cjj = 0 the only optimal configuration is cij = 0
for all i 6= j. For cjj = 1 the set of possible optimal
configurations is determined by the position of point
i with respect to point j. Following the same logic
as in the previous cases we get Equation 17 for
i < j and Equation 18 for i > j.

1 i s j e N

αij(0) = max(
∑

k/∈i,j
ρkj(0), (17)

i−1∑

k=1

ρkj(0) +
j

max
s=i+1

[

s−1∑

k=i+1

ρkj(0) +

j−1∑

k=s

ρkj(1)]+

ρjj(1) +
N

max
e=j

[

e∑

k=j+1

ρkj(1) +

N∑

k=e+1

ρkj(0)])

1 s j e i N

αij(0) = max(
∑

k/∈i,j
ρkj(0), (18)

j
max
s=1

[

s−1∑

k=1

ρkj(0) +

j−1∑

k=s

ρkj(1)]+

ρjj(1) +
i−1

max
e=j

[
e∑

k=j+1

ρkj(1) +
i−1∑

k=e+1

ρkj(0)]

N∑

k=i+1

ρkj(0))

Due to space constraints, we will omit the details
of subtracting Equation 17 from 15 and Equation 18
from 16. The final update rules for both i < j and
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Algorithm 1 Affinity Propagation for Segmentation

1: input: 1) a set of pairwise similarities {SIM(i, j)}(i,j)∈{1,...,N}2 , SIM(i, j) ∈ R; 2) a set of prefer-
ences (self-similarities) {SIM(i, i)}i∈{1,...,N} indicating a priori likelihood of point i being a segment
centre

2: initialization: ∀i, j : αij = 0 (set all availabilities to 0)
3: repeat
4: iteratively update responsibilities (ρ) and availabilities (α)
5:

∀i, j : ρij = SIM(i, j) + max
k 6=j

(SIM(i, k)− αik)

6:

∀i, j : αij =





j
max
s=1

(

j−1∑

k=s

ρkj) +
N

max
e=j

(

e∑

k=j+1

ρkj) if i = j

min[
i

max
s=1

i−1∑

k=s

ρkj +

j∑

k=i+1

ρkj +
N

max
e=j

e∑

k=j+1

ρkj ,

i
max
s=1

i−1∑

k=s

ρkj +
j

min
s=i+1

s−1∑

k=i+1

ρkj ] if i < j

min[
j

max
s=1

j−1∑

k=s

ρkj +
i−1∑

k=j

ρkj +
N

max
e=i

e∑

k=i+1

ρkj ,

i−1
min
e=j

i−1∑

k=e+1

ρkj +
N

max
e=i

e∑

k=i+1

ρkj ] if i > j

7: until convergence
8: compute the final configuration of variables: ∀i, j j is the exemplar for i iff ρij + αij > 0
9: output: exemplar assignments

i > j appear in Algorithm 1, where we summarize
the whole process.

The equations look cumbersome but they are triv-
ial to compute. Every summand corresponds to find-
ing the most likely start or end of the segment, tak-
ing into account fixed information. When computing
messages for any given sender node, we can remem-
ber the maximizing values for neighbouring recipi-
ent nodes. For example, after computing the avail-
ability message from factor Ej to cij , we must only
consider one more responsibility value when com-
puting the message from Ej to variable c(i+1)j . The
cost of computing a message is thus negligible.

When the matrix is fully specified, each iteration
requires passing 2N2 messages, so the algorithm
runs in O(N2) time and requires O(N2) memory
(to store the similarities, the availabilities and the

responsibilities). When performing segmentation,
however, the user generally has some idea about
the average or maximum segment length. In such
more realistic cases, the input matrix of similarities
is sparse – it is constructed by sliding a window of
size M . M usually needs to be at least twice the
maximum segment length or thrice the average seg-
ment length. Each iteration, then, involves sending
2MN messages and the storage requirements are
also O(MN).

As is common in loopy belief propagation algo-
rithms, both availability and responsibility messages
are dampened to avoid overshooting and oscillating.
The dampening factor is λ where 0.5 ≤ λ < 1.

newMsg = λ ∗ oldMsg+ (1− λ)newMsg (19)

The APS algorithm is unsupervised. It only benefits
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from a small development set to fine-tune a few pa-
rameters: preference values and the dampening fac-
tor. APS does not require (nor allow) specifying the
number of segments beforehand. The granularity of
segmentation is adjusted through preference values;
this reflect how likely each sentence is to be selected
as a segment centre. (This translates into the cost of
adding a segment.)

Because each message only requires the knowl-
edge about one column or row of the matrix, the al-
gorithm can be easily parallelized.

5 Experimental Setting

Datasets. We evaluate the performance of the
APS algorithm on three datasets. The first, com-
piled by Malioutov and Barzilay (2006), consists
of manually transcribed and segmented lectures on
Artificial Intelligence, 3 development files and 19
test files. The second dataset consists of 227 chap-
ters from medical textbooks (Eisenstein and Barzi-
lay, 2008), 5 of which we use for development. In
this dataset the gold standard segment boundaries
correspond to section breaks specified by the au-
thors. The third dataset consists of 85 works of fic-
tion downloaded from Project Gutenberg, 3 of which
are used for development. The segment boundaries
correspond to chapter breaks or to breaks between
individual stories. They were inserted automatically
using HTML markup in the downloaded files.

The datasets exhibit different characteristics. The
lecture dataset and the fiction dataset are challeng-
ing because they are less cohesive than medical text-
books. The textbooks are cognitively more difficult
to process and the authors rely on repetition of ter-
minology to facilitate comprehension. Since lexical
repetition is the main source of information for text
segmentation, we expect a higher performance on
this dataset. Transcribed speech, on the other hand,
is considerably less cohesive. The lecturer makes an
effort to speak in “plain language” and to be com-
prehensible, relying less on terminology. The use of
pronouns is very common, as is the use of examples.

Repeated use of the same words is also uncom-
mon in fiction. In addition, the dataset was compiled
automatically using HTML markup. The markup
is not always reliable and occasionally the e-book
proofreaders skip it altogether, which potentially

adds noise to the dataset.
Baselines. We compare the performance of

APS with that of two state-of-the-art segmenters: the
Minimum Cut segmenter (Malioutov and Barzilay,
2006) and the Bayesian segmenter (Eisenstein and
Barzilay, 2008). The authors have made Java imple-
mentations publicly available. For the Minimum Cut
segmenter, we select the best parameters using the
script included with that distribution. The Bayesian
segmenter automatically estimates all necessary pa-
rameters from the data.

Preprocessing and the choice of similarity met-
ric. As described in Section 4, the APS algorithm
takes as inputs a matrix of pairwise similarities be-
tween sentences in the document and also, for each
sentence, a preference value.

This paper focuses on comparing globally in-
formed segmentation algorithms, and leaves for fu-
ture work the exploration of best similarity metrics.
To allow fair comparison, then, we use the same
metric as the Minimum Cut segmenter, cosine sim-
ilarity. Each sentence is represented as a vector of
token-type frequencies. Following (Malioutov and
Barzilay, 2006), the frequency vectors are smoothed
by adding counts of words from the adjacent sen-
tences and then weighted using a tf.idf metric (for
details, see ibid.) The similarity between sentence
vectors s1 and s2 is computed as follows:

cos(s1, s2) =
s1 • s2

||s1|| × ||s2||
(20)

The representation used by the Bayesian segmenter
is too different to be incorporated into our model di-
rectly, but ultimately it is based on the distribution
of unigrams in documents. This is close enough to
our representation to allow fair comparison.

The fiction dataset consists of books: novels or
collections of short stories. Fiction is known to ex-
hibit less lexical cohesion. That is why – when
working on this dataset – we work at the paragraph
level: the similarity is measured not between sen-
tences but between paragraphs. We use this repre-
sentation with all three segmenters.

All parameters have been fine-tuned on the devel-
opment portions of the datasets. For APS algorithm
per se we needed to set three parameters: the size of
the sliding window for similarity computations, the
dampening factor λ and the preference values. The
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BayesSeg MinCutSeg APS
AI 0.443 0.437 0.404
Clinical 0.353 0.382 0.371
Fiction 0.377 0.381 0.350

Table 1: Results of segmenting the three datasets us-
ing the Bayesian segmenter, the Minimum Cut seg-
menter and APS.

parameters for the similarity metric (best variation
of tf.idf, the window size and the decay factor for
smoothing) were set using the script provided in the
Minimum Cut segmenter’s distribution.

Evaluation metric. We have measured the per-
formance of the segmenters with the WindowDiff
metric (Pevzner and Hearst, 2002). It is computed
by sliding a window through reference and through
segmentation output and, at each window position,
comparing the number of reference breaks to the
number of breaks inserted by the segmenter (hypo-
thetical breaks). It is a penalty measure which re-
ports the number of windows where the reference
and hypothetical breaks do not match, normalized
by the total number of windows. In Equation 21,
ref and hyp denote the number of reference and hy-
pothetical segment breaks within a window.

winDiff =
1

N − k
N−k∑

i=1

(|ref − hyp| 6= 0) (21)

6 Experimental Results and Discussion

Table 1 compares the performance of the three seg-
menters using WindowDiff values. On the lecture
and fiction datasets, the APS segmenter outperforms
the others by a small margin, around 8% over the
better of the two. It is second-best on the clinical
textbook dataset. According to a one-tailed paired
t-test with 95% confidence cut-off, the improvement
is statistically significant only on the fiction dataset.
All datasets are challenging and the baselines are
very competitive, so drawing definitive conclusions
is difficult. Still, we can be fairly confident that
APS performs at least as well as the other two seg-
menters. It also has certain advantages.

One important difference between APS and the
other segmenters is that APS does not require the

number of segments as an input parameter. This is
very helpful, because such information is generally
unavailable in any realistic deployment setting. The
parameters are fine-tuned to maximize WindowDiff
values, so this results in high-precision, low-recall
segment assignments; that is because WindowDiff
favours missing boundaries over near-hits.

APS also outputs segment centres, thus providing
some information about a segment’s topic. We have
not evaluated how descriptive the segment centres
are; this is left for future work.

APS performs slightly better than the other seg-
menters but not by much. We hypothesize that one
of the reasons is that APS relies on the presence of
descriptive segment centres which are not necessar-
ily present for large, coarse-grained segments such
as chapters in novels. It is possible for APS to have
an advantage performing fine-grained segmentation.

7 Conclusions and Future Work

In this paper we have presented APS – a new algo-
rithm for linear text segmentation. APS takes into
account the global structure of the document and
outputs segment boundaries and segment centres. It
scales linearly in the number of input sentences, per-
forms competitively with the state-of-the-art and is
easy to implement. We also provide a Java imple-
mentation of the APS segmenter.

We consider two main directions for future work:
using more informative similarity metrics and mak-
ing the process of segmentation hierarchical. We
chose to use cosine similarity primarily to allow fair
comparison and to judge the algorithm itself, in iso-
lation from the information it uses. Cosine similarity
is a very simple metric which cannot provide an ad-
equate picture of topic fluctuations in documents. It
is likely that dictionary-based or corpus-based simi-
larity measures would yield a major improvement in
performance.

Reliance on descriptive segment centres may
handicap APS’s performance when looking for
coarse-grained segments. One possible remedy is to
look for shorter segments first and then merge them.
One can also modify the algorithm to perform hier-
archical segmentation: consider net similarity with
low-level segment centres as well as with high-level
ones. We plan to explore both possibilities.
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Abstract

This paper develops a minimally supervised
approach, based on focused distributional sim-
ilarity methods and discourse connectives,
for identifying of causality relations between
events in context. While it has been shown
that distributional similarity can help identify-
ing causality, we observe that discourse con-
nectives and the particular discourse relation
they evoke in context provide additional in-
formation towards determining causality be-
tween events. We show that combining dis-
course relation predictions and distributional
similarity methods in a global inference pro-
cedure provides additional improvements to-
wards determining event causality.

1 Introduction

An important part of text understanding arises from
understanding the semantics of events described in
the narrative, such as identifying the events that are
mentioned and how they are related semantically.
For instance, when given a sentence “The police
arrested him because he killed someone.”, humans
understand that there are two events, triggered by
the words “arrested” and “killed”, and that there is
a causality relationship between these two events.
Besides being an important component of discourse
understanding, automatically identifying causal re-
lations between events is important for various nat-
ural language processing (NLP) applications such
as question answering, etc. In this work, we auto-
matically detect and extract causal relations between
events in text.

Despite its importance, prior work on event
causality extraction in context in the NLP litera-
ture is relatively sparse. In (Girju, 2003), the au-
thor used noun-verb-noun lexico-syntactic patterns
to learn that “mosquitoes cause malaria”, where the
cause and effect mentions are nominals and not nec-
essarily event evoking words. In (Sun et al., 2007),
the authors focused on detecting causality between
search query pairs in temporal query logs. (Beamer
and Girju, 2009) tried to detect causal relations be-
tween verbs in a corpus of screen plays, but limited
themselves to consecutive, or adjacent verb pairs.
In (Riaz and Girju, 2010), the authors first cluster
sentences into topic-specific scenarios, and then fo-
cus on building a dataset of causal text spans, where
each span is headed by a verb. Thus, their focus was
not on identifying causal relations between events in
a given text document.

In this paper, given a text document, we first iden-
tify events and their associated arguments. We then
identify causality or relatedness relations between
event pairs. To do this, we develop a minimally su-
pervised approach using focused distributional sim-
ilarity methods, such as co-occurrence counts of
events collected automatically from an unannotated
corpus, to measure and predict existence of causal-
ity relations between event pairs. Then, we build on
the observation that discourse connectives and the
particular discourse relation they evoke in context
provide additional information towards determining
causality between events. For instance, in the ex-
ample sentence provided at the beginning of this
section, the words “arrested” and “killed” probably
have a relatively high apriori likelihood of being ca-
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sually related. However, knowing that the connec-
tive “because” evokes a contingency discourse re-
lation between the text spans “The police arrested
him” and “he killed someone” provides further ev-
idence towards predicting causality. The contribu-
tions of this paper are summarized below:

• Our focus is on identifying causality between
event pairs in context. Since events are of-
ten triggered by either verbs (e.g. “attack”) or
nouns (e.g. “explosion”), we allow for detec-
tion of causality between verb-verb, verb-noun,
and noun-noun triggered event pairs. To the
best of our knowledge, this formulation of the
task is novel.

• We developed a minimally supervised ap-
proach for the task using focused distributional
similarity methods that are automatically col-
lected from an unannotated corpus. We show
that our approach achieves better performance
than two approaches: one based on a frequently
used metric that measures association, and an-
other based on the effect-control-dependency
(ECD) metric described in a prior work (Riaz
and Girju, 2010).

• We leverage on the interactions between event
causality prediction and discourse relations
prediction. We combine these knowledge
sources through a global inference procedure,
which we formalize via an Integer Linear Pro-
gramming (ILP) framework as a constraint op-
timization problem (Roth and Yih, 2004). This
allows us to easily define appropriate con-
straints to ensure that the causality and dis-
course predictions are coherent with each other,
thereby improving the performance of causality
identification.

2 Event Causality

In this work, we define an event as an action or oc-
currence that happens with associated participants
or arguments. Formally, we define an event e
as: p(a1, a2, . . . , an), where the predicate p is the
word that triggers the presence of e in text, and
a1, a2, . . . , an are the arguments associated with
e. Examples of predicates could be verbs such as
“attacked”, “employs”, nouns such as “explosion”,

“protest”, etc., and examples of the arguments of
“attacked” could be its subject and object nouns.

To measure the causality association between a
pair of events ei and ej (in general, ei and ej
could be extracted from the same or different doc-
uments), we should use information gathered about
their predicates and arguments. A simple approach
would be to directly calculate the pointwise mu-
tual information (PMI)1 between pi(ai1, a

i
2, . . . , a

i
n)

and pj(aj1, a
j
2, . . . , a

j
m). However, this leads to very

sparse counts as the predicate pi with its list of ar-
guments ai1, . . . , a

i
n would rarely co-occur (within

some reasonable context distance) with predicate pj

and its entire list of arguments aj1, . . . , a
j
m. Hence,

in this work, we measure causality association us-
ing three separate components and focused distribu-
tional similarity methods collected about event pairs
as described in the rest of this section.

2.1 Cause-Effect Association

We measure the causality or cause-effect association
(CEA) between two events ei and ej using the fol-
lowing equation:

CEA(ei, ej) =

spp(ei, ej) + spa(ei, ej) + saa(ei, ej) (1)

where spp measures the association between event
predicates, spa measures the association between the
predicate of an event and the arguments of the other
event, and saa measures the association between
event arguments. In our work, we regard each event
e as being triggered and rooted at a predicate p.

2.1.1 Predicate-Predicate Association
We define spp as follows:

spp(ei, ej) = PMI(pi, pj)×max(ui, uj)

×IDF (pi, pj)×Dist(pi, pj) (2)

which takes into account the PMI between pred-
icates pi and pj of events ei and ej respectively,
as well as various other pieces of information. In
Suppes’ Probabilistic theory of Casuality (Suppes,
1970), he highlighted that event e is a possible cause
of event e′, if e′ happens more frequently with e than

1PMI is frequently used to measure association between
variables.
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by itself, i.e. P (e′|e) > P (e′). This can be easily
rewritten as P (e,e′)

P (e)P (e′) > 1, similar to the definition
of PMI:

PMI(e, e′) = log
P (e, e′)
P (e)P (e′)

which is only positive when P (e,e′)
P (e)P (e′) > 1.

Next, we build on the intuition that event predi-
cates appearing in a large number of documents are
probably not important or discriminative. Thus, we
penalize these predicates when calculating spp by
adopting the inverse document frequency (idf):

IDF (pi, pj) = idf(pi)× idf(pj)× idf(pi, pj),

where idf(p) = log D
1+N , D is the total number of

documents in the collection and N is the number of
documents that p occurs in.

We also award event pairs that are closer together,
while penalizing event pairs that are further apart in
texts, by incorporating the distance measure of Lea-
cock and Chodorow (1998), which was originally
used to measure similarity between concepts:

Dist(pi, pj) = −log |sent(p
i)− sent(pj)|+ 1

2× ws ,

where sent(p) gives the sentence number (index) in
which p occurs and ws indicates the window-size
(of sentences) used. If pi and pj are drawn from the
same sentence, the numerator of the above fraction
will return 1. In our work, we set ws to 3 and thus,
if pi occurs in sentence k, the furthest sentence that
pj will be drawn from, is sentence k + 2.

The final component of Equation 2, max(ui, uj),
takes into account whether predicates (events) pi and
pj appear most frequently with each other. ui and uj

are defined as follows:

ui =
P (pi, pj)

maxk[P (pi, pk)]− P (pi, pj) + ε

uj =
P (pi, pj)

maxk[P (pk, pj)]− P (pi, pj) + ε
,

where we set ε = 0.01 to avoid zeros in the denom-
inators. ui will be maximized if there is no other
predicate pk having a higher co-occurrence proba-
bility with pi, i.e. pk = pj . uj is treated similarly.

2.1.2 Predicate-Argument and
Argument-Argument Association

We define spa as follows:

spa(ei, ej) =
1

|Aej |
∑

a∈Aej

PMI(pi, a)

+
1

|Aei |
∑

a∈Aei

PMI(pj , a), (3)

where Aei and Aej are the sets of arguments of ei
and ej respectively.

Finally, we define saa as follows:

saa(ei, ej) =
1

|Aei ||Aej |
∑

a∈Aei

∑

a′∈Aej

PMI(a, a′) (4)

Together, spa and saa provide additional contexts
and robustness (in addition to spp) for measuring the
cause-effect association between events ei and ej .

Our formulation of CEA is inspired by the ECD
metric defined in (Riaz and Girju, 2010):

ECD(a, b) = max(v, w)×−log dis(a, b)

2×maxDistance , (5)

where

v =
P (a, b)

P (b)− P (a, b) + ε
× P (a, b)

maxt[P (a, bt)]− P (a, b) + ε

w=
P (a, b)

P (a)− P (a, b) + ε
× P (a, b)

maxt[P (at, b)]− P (a, b) + ε
,

where ECD(a,b) measures the causality between two
events a and b (headed by verbs), and the sec-
ond component in the ECD equation is similar to
Dist(pi, pj). In our experiments, we will evaluate
the performance of ECD against our proposed ap-
proach.

So far, our definitions in this section are generic
and allow for any list of event argument types. In
this work, we focus on two argument types: agent
(subject) and patient (object), which are typical core
arguments of any event. We describe how we extract
event predicates and their associated arguments in
the section below.

3 Verbal and Nominal Predicates

We consider that events are not only triggered by
verbs but also by nouns. For a verb (verbal predi-
cate), we extract its subject and object from its as-
sociated dependency parse. On the other hand, since
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events are also frequently triggered by nominal pred-
icates, it is important to identify an appropriate list
of event triggering nouns. In our work, we gathered
such a list using the following approach:

• We first gather a list of deverbal nouns from the
set of most frequently occurring (in the Giga-
word corpus) 3,000 verbal predicate types. For
each verb type v, we go through all its Word-
Net2 senses and gather all its derivationally re-
lated nouns Nv 3.

• From Nv, we heuristically remove nouns that
are less than three characters in length. We also
remove nouns whose first three characters are
different from the first three characters of v. For
each of the remaining nouns in Nv, we mea-
sured its Levenstein (edit) distance from v and
keep the noun(s) with the minimum distance.
When multiple nouns have the same minimum
distance from v, we keep all of them.

• To further prune the list of nouns, we next re-
moved all nouns ending in “er”, “or”, or “ee”,
as these nouns typically refer to a person, e.g.
“writer”, “doctor”, “employee”. We also re-
move nouns that are not hyponyms (children)
of the first WordNet sense of the noun “event”4.

• Since we are concerned with nouns denoting
events, FrameNet (Ruppenhofer et al., 2010)
(FN) is a good resource for mining such nouns.
FN consists of frames denoting situations and
events. As part of the FN resource, each FN
frame consists of a list of lexical units (mainly
verbs and nouns) representing the semantics of
the frame. Various frame-to-frame relations are
also defined (in particular the inheritance re-
lation). Hence, we gathered all the children
frames of the FN frame “Event”. From these
children frames, we then gathered all their noun
lexical units (words) and add them to our list of

2http://wordnet.princeton.edu/
3The WordNet resource provides derivational information

on words that are in different syntactic (i.e. part-of-speech) cat-
egories, but having the same root (lemma) form and that are
semantically related.

4The first WordNet sense of the noun “event” has the mean-
ing: “something that happens at a given place and time”

nouns. Finally, we also add a few nouns denot-
ing natural disaster from Wikipedia5.

Using the above approach, we gathered a list of
about 2,000 noun types. This current approach is
heuristics based which we intend to improve in the
future, and any such improvements should subse-
quently improve the performance of our causality
identification approach.

Event triggering deverbal nouns could have as-
sociated arguments (for instance, acting as subject,
object of the deverbal noun). To extract these ar-
guments, we followed the approach of (Gurevich
et al., 2008). Briefly, the approach uses linguistic
patterns to extract subjects and objects for deverbal
nouns, using information from dependency parses.
For more details, we refer the reader to (Gurevich et
al., 2008).

4 Discourse and Causality

Discourse connectives are important for relating dif-
ferent text spans, helping us to understand a piece of
text in relation to its context:
[The police arrested him] because [he killed someone].

In the example sentence above, the discourse con-
nective (“because”) and the discourse relation it
evokes (in this case, the Cause relation) allows read-
ers to relate its two associated text spans, “The po-
lice arrested him” and “he killed someone”. Also,
notice that the verbs “arrested” and “killed”, which
cross the two text spans, are causally related. To
aid in extracting causal relations, we leverage on the
identification of discourse relations to provide addi-
tional contextual information.

To identify discourse relations, we use the Penn
Discourse Treebank (PDTB) (Prasad et al., 2007),
which contains annotations of discourse relations
in context. The annotations are done over the
Wall Street Journal corpus and the PDTB adopts a
predicate-argument view of discourse relations. A
discourse connective (e.g. because) takes two text
spans as its arguments. In the rest of this section,
we briefly describe the discourse relations in PDTB
and highlight how we might leverage them to aid in
determining event causality.

5http://en.wikipedia.org/wiki/Natural disaster
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Coarse-grained relations Fine-grained relations
Comparison Concession, Contrast, Pragmatic-concession, Pragmatic-contrast
Contingency Cause, Condition, Pragmatic-cause, Pragmatic-condition
Expansion Alternative, Conjunction, Exception, Instantiation, List, Restatement
Temporal Asynchronous, Synchronous

Table 1: Coarse-grained and fine-grained discourse relations.

4.1 Discourse Relations

PDTB contains annotations for four coarse-grained
discourse relation types, as shown in the left column
of Table 1. Each of these are further refined into
several fine-grained discourse relations, as shown in
the right column of the table.6 Next, we briefly de-
scribe these relations, highlighting those that could
potentially help to determine event causality.

Comparison A Comparison discourse relation
between two text spans highlights prominent differ-
ences between the situations described in the text
spans. An example sentence is:
Contrast: [According to the survey, x% of Chinese Inter-
net users prefer Google] whereas [y% prefer Baidu].

According to the PDTB annotation manual
(Prasad et al., 2007), the truth of both spans is in-
dependent of the established discourse relation. This
means that the text spans are not causally related and
thus, the existence of a Comparison relation should
imply that there is no causality relation across the
two text spans.

Contingency A Contingency relation between
two text spans indicates that the situation described
in one text span causally influences the situation in
the other. An example sentence is:
Cause: [The first priority is search and rescue] because
[many people are trapped under the rubble].

Existence of a Contingency relation potentially
implies that there exists at least one causal event
pair crossing the two text spans. The PDTB an-
notation manual states that while the Cause and
Condition discourse relations indicate casual influ-
ence in their text spans, there is no causal in-
fluence in the text spans of the Pragmatic-cause
and Pragmatic-condition relations. For instance,
Pragmatic-condition indicates that one span pro-

6PDTB further refines these fine-grained relations into a fi-
nal third level of relations, but we do not use them in this work.

vides the context in which the description of the sit-
uation in the other span is relevant; for example:
Pragmatic-condition: If [you are thirsty], [there’s beer in
the fridge].

Hence, there is a need to also identify fine-grained
discourse relations.

Expansion Connectives evoking Expansion dis-
course relations expand the discourse, such as by
providing additional information, illustrating alter-
native situations, etc. An example sentence is:
Conjunction: [Over the past decade, x women were
killed] and [y went missing].

Most of the Expansion fine-grained relations (ex-
cept for Conjunction, which could connect arbitrary
pieces of text spans) should not contain causality re-
lations across its text spans.

Temporal These indicate that the situations de-
scribed in the text spans are related temporally. An
example sentence is:
Synchrony: [He was sitting at his home] when [the whole
world started to shake].

Temporal precedence of the (cause) event over the
(effect) event is a necessary, but not sufficient req-
uisite for causality. Hence by itself, Temporal re-
lations are probably not discriminative enough for
determining event causality.

4.2 Discourse Relation Extraction System

Our work follows the approach and features de-
scribed in the state-of-the-art Ruby-based discourse
system of (Lin et al., 2010), to build an in-
house Java-based discourse relation extraction sys-
tem. Our system identifies explicit connectives in
text, predict their discourse relations, as well as their
associated text spans. Similar to (Lin et al., 2010),
we achieved a competitive performance of slightly
over 80% F1-score in identifying fine-grained rela-
tions for explicit connectives. Our system is devel-
oped using the Learning Based Java modeling lan-
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guage (LBJ) (Rizzolo and Roth, 2010) and will be
made available soon. Due to space constraints, we
refer interested readers to (Lin et al., 2010) for de-
tails on the features, etc.

In the example sentences given thus far in this sec-
tion, all the connectives were explicit, as they appear
in the texts. PDTB also provides annotations for im-
plicit connectives, which we do not use in this work.
Identifying implicit connectives is a harder task and
incorporating these is a possible future work.

5 Joint Inference for Causality Extraction

To exploit the interactions between event pair
causality extraction and discourse relation identifi-
cation, we define appropriate constraints between
them, which can be enforced through the Con-
strained Conditional Models framework (aka ILP for
NLP) (Roth and Yih, 2007; Chang et al., 2008). In
doing this, the predictions of CEA (Section 2.1) and
the discourse system are forced to cohere with each
other. More importantly, this should improve the
performance of using only CEA to extract causal
event pairs. To the best of our knowledge, this ap-
proach for causality extraction is novel.

5.1 CEA & Discourse: Implementation Details

Let E denote the set of event mentions in a docu-
ment. Let EP = {(ei, ej) ∈ E × E | ei ∈ E , ej ∈
E , i < j, |sent(ei) − sent(ej)| ≤ 2} denote the
set of event mention pairs in the document, where
sent(e) gives the sentence number in which event e
occurs. Note that in this work, we only extract event
pairs that are at most two sentences apart. Next, we
define LER = {“causal”, “¬ causal”} to be the set of
event relation labels that an event pair ep ∈ EP can
be associated with.

Note that the CEA metric as defined in Section 2.1
simply gives a score without it being bounded to be
between 0 and 1.0. However, to use the CEA score
as part of the inference process, we require that it be
bounded and thus can be used as a binary prediction,
that is, predicting an event pair as causal or ¬causal.
To enable this, we use a few development documents
to automatically find a threshold CEA score that sep-
arates scores indicating causal vs ¬causal. Based
on this threshold, the original CEA scores are then
rescaled to fall within 0 to 1.0. More details on this

are in Section 6.2.
Let C denote the set of connective mentions in a

document. We slightly modify our discourse sys-
tem as follows. We define LDR to be the set of
discourse relations. We initially add all the fine-
grained discourse relations listed in Table 1 to LDR.
In the PDTB corpus, some connective examples are
labeled with just a coarse-grained relation, with-
out further specifying a fine-grained relation. To
accommodate these examples, we add the coarse-
grained relations Comparison, Expansion, and Tem-
poral to LDR. We omit the coarse-grained Con-
tingency relation from LDR, as we want to sepa-
rate Cause and Condition from Pragmatic-cause and
Pragmatic-condition. This discards very few exam-
ples as only a very small number of connective ex-
amples are simply labeled with a Contingency label
without further specifying a fine-grained label. We
then retrained our discourse system to predict labels
in LDR.

5.2 Constraints
We now describe the constraints used to support
joint inference, based on the predictions of the CEA
metric and the discourse classifier. Let sc(dr) be
the probability that connective c is predicated to be
of discourse relation dr, based on the output of our
discourse classifier. Let sep(er) be the CEA pre-
diction score (rescaled to range in [0,1]) that event
pair ep takes on the causal or ¬causal label er. Let
x〈c,dr〉 be a binary indicator variable which takes on
the value 1 iff c is labeled with the discourse relation
dr. Similarly, let y〈ep,er〉 be a binary variable which
takes on the value 1 iff ep is labeled as er. We then
define our objective function as follows:

max
[
|LDR|

∑

c∈C

∑

dr∈LDR

sc(dr) · x〈c,dr〉

+|LER|
∑

ep∈EP

∑

er∈LER

sep(er) · y〈ep,er〉
]

(6)

subject to the following constraints:
∑

dr∈LDR

x〈c,dr〉 = 1 ∀c ∈ C (7)

∑

er∈LER

y〈ep,er〉 = 1 ∀ep ∈ EP (8)

x〈c,dr〉 ∈ {0, 1} ∀c ∈ C, dr ∈ LDR (9)

y〈ep,er〉 ∈ {0, 1} ∀ep ∈ EP, er ∈ LER(10)
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Equation (7) requires that each connective c can
only be assigned one discourse relation. Equation
(8) requires that each event pair ep can only be
causal or ¬causal. Equations (9) and (10) indicate
that x〈c,dr〉 and y〈ep,er〉 are binary variables.

To capture the relationship between event pair
causality and discourse relations, we use the follow-
ing constraints:

x〈c,“Cause”〉 ≤
∑

ep∈EPc

y〈ep,“causal”〉 (11)

x〈c,“Condition”〉 ≤
∑

ep∈EPc

y〈ep,“causal”〉, (12)

where both equations are defined ∀c ∈ C. EPc is
defined to be the set of event pairs that cross the two
text spans associated with c. For instance, if the first
text span of c contains two event mentions ei, ej ,
and there is one event mention ek in the second text
span of c, then EPc = {(ei, ek), (ej , ek)}. Finally,
the logical form of Equation (11) can be written as:
x〈c,“Cause”〉 ⇒ y〈epi,“causal”〉 ∨ . . . ∨ y〈epj ,“causal”〉,
where epi, . . . , epj are elements in EPc. This states
that if we assign the Cause discourse label to c,
then at least one of epi, . . . , epj must be assigned as
causal. The interpretation of Equation (12) is simi-
lar.

We use two more constraints to capture the inter-
actions between event causality and discourse rela-
tions. First, we defined Cep as the set of connectives
c enclosing each event of ep in each of its text spans,
i.e.: one of the text spans of c contain one of the
event in ep, while the other text span of c contain the
other event in ep. Next, based on the discourse rela-
tions in Section 4.1, we propose that when an event
pair ep is judged to be causal, then the connective
c that encloses it should be evoking one of the dis-
course relations in LDRa = {“Cause”, “Condition”,
“Temporal”, “Asynchronous”, “Synchrony”, “Con-
junction”}. We capture this using the following con-
straint:

y〈ep,“causal”〉 ≤
∑

dra∈LDRa

x〈c,dra〉 ∀c ∈ Cep (13)

The logical form of Equation (13) can be written as:
y〈ep,“causal”〉 ⇒ x〈c,“Cause”〉 ∨ x〈c,“Condition”〉 . . . ∨
x〈c,“Conjunction”〉. This states that if we assign ep as
causal, then we must assign to c one of the labels in
LDRa .

Finally, we propose that for any connectives evok-
ing discourse relations LDRb

= {“Comparison”,
“Concession”, “Contrast”, “Pragmatic-concession”,
“Pragmatic-contrast”, “Expansion”, “Alternative”,
“Exception”, “Instantiation”, “List”, “Restate-
ment”}, any event pair(s) that it encloses should be
¬causal. We capture this using the following con-
straint:

x〈c,drb〉 ≤ y〈ep,“¬causal”〉
∀ drb ∈ LDRb

, ep ∈ EPc, (14)

where the logical form of Equation (14) can be writ-
ten as: x〈c,drb〉 ⇒ y〈ep,“¬causal”〉.

6 Experiments

6.1 Experimental Settings
To collect the distributional statistics for measuring
CEA as defined in Equation (1), we applied part-
of-speech tagging, lemmatization, and dependency
parsing (Marneffe et al., 2006) on about 760K docu-
ments in the English Gigaword corpus (LDC catalog
number LDC2003T05).

We are not aware of any benchmark corpus for
evaluating event causality extraction in contexts.
Hence, we created an evaluation corpus using the
following process: Using news articles collected
from CNN7 during the first three months of 2010, we
randomly selected 20 articles (documents) as evalu-
ation data, and 5 documents as development data.

Two annotators annotated the documents for
causal event pairs, using two simple notions for
causality: the Cause event should temporally pre-
cede the Effect event, and the Effect event occurs be-
cause the Cause event occurs. However, sometimes
it is debatable whether two events are involved in a
causal relation, or whether they are simply involved
in an uninteresting temporal relation. Hence, we al-
lowed annotations of C to indicate causality, and R
to indicate relatedness (for situations when the exis-
tence of causality is debatable). The annotators will
simply identify and annotate the C or R relations be-
tween predicates of event pairs. Event arguments are
not explicitly annotated, although the annotators are
free to look at the entire document text while mak-
ing their annotation decisions. Finally, they are free

7http://www.cnn.com
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System Rec% Pre% F1%
PMIpp 26.6 20.8 23.3
ECDpp &PMIpa,aa 40.9 23.5 29.9
CEA 62.2 28.0 38.6
CEA+Discourse 65.1 30.7 41.7

Table 2: Performance of baseline systems and our ap-
proaches on extracting Causal event relations.

System Rec% Pre% F1%
PMIpp 27.8 24.9 26.2
ECDpp &PMIpa,aa 42.4 28.5 34.1
CEA 63.1 33.7 43.9
CEA+Discourse 65.3 36.5 46.9

Table 3: Performance of the systems on extracting Causal
and Related event relations.

to annotate relations between predicates that have
any number of sentences in between and are not re-
stricted to a fixed sentence window-size.

After adjudication, we obtained a total of 492
C+R relation annotations, and 414C relation anno-
tations on the evaluation documents. On the devel-
opment documents, we obtained 92 C+R and 71 C
relation annotations. The annotators overlapped on
10 evaluation documents. On these documents, the
first (second) annotator annotated 215 (199) C + R
relations, agreeing on 166 of these relations. To-
gether, they annotated 248 distinct relations. Us-
ing this number, their agreement ratio would be 0.67
(166/248). The corresponding agreement ratio for
C relations is 0.58. These numbers highlight that
causality identification is a difficult task, as there
could be as many as N2 event pairs in a document
(N is the number of events in the document). We
plan to make this annotated dataset available soon.8

6.2 Evaluation

As mentioned in Section 5.1, to enable translat-
ing (the unbounded) CEA scores into binary causal,
¬causal predictions, we need to rescale or calibrate
these scores to range in [0,1]. To do this, we first
rank all the CEA scores of all event pairs in the de-
velopment documents. Most of these event pairs will
be ¬causal. Based on the relation annotations in
these development documents, we scanned through

8http://cogcomp.cs.illinois.edu/page/publication view/663
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this ranked list of scores to locate the CEA score
t that gives the highest F1-score (on the develop-
ment documents) when used as a threshold between
causal vs ¬causal decisions. We then ranked all
the CEA scores of all event pairs gathered from the
760K Gigaword documents, discretized all scores
higher than t into B bins, and all scores lower than
t into B bins. Together, these 2B bins represent the
range [0,1]. We used B = 500. Thus, consecu-
tive bins represent a difference of 0.001 in calibrated
scores.

To measure the causality between a pair of
events ei and ej , a simple baseline is to calculate
PMI(pi, pj). Using a similar thresholding and cali-
bration process to translate PMI(pi, pj) scores into
binary causality decisions, we obtained a F1 score of
23.1 when measured over the causality C relations,
as shown in the row PMIpp of Table 2.

As mentioned in Section 2.1.2, Riaz and Girju
(2010) proposed the ECD metric to measure
causality between two events. Thus, as a point of
comparison, we replaced spp of Equation (1) with
ECD(a, b) of Equation (5), substituting a = pi and
b = pj . After thresholding and calibrating the scores
of this approach, we obtained a F1-score of 29.7, as
shown in the row ECDpp&PMIpa,aa of Table 2.

Next, we evaluated our proposed CEA approach
and obtained a F1-score of 38.6, as shown in the row
CEA of Table 2. Thus, our proposed approach ob-
tained significantly better performance than the PMI
baseline and the ECD approach. Next, we per-
formed joint inference with the discourse relation
predictions as described in Section 5 and obtained
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an improved F1-score of 41.7. We note that we ob-
tained improvements in both recall and precision.
This means that with the aid of discourse relations,
we are able to recover more causal relations, as well
as reduce false-positive predictions.

Constraint Equations (11) and (12) help to re-
cover causal relations. For improvements in pre-
cision, as stated in the last paragraph of Section
5.2, identifying other discourse relations such as
“Comparison”, “Contrast”, etc., provides counter-
evidence to causality. Together with constraint
Equation (14), this helps to eliminate false-positive
event pairs as classified by CEA and contributes
towards CEA+Discourse having a higher precision
than CEA.

The corresponding results for extracting both
causality and relatedness C + R relations are given
in Table 3. For these experiments, the aim was for a
more relaxed evaluation and we simply collapsed C
and R into a single label.

Finally, we also measured the precision of the
top K causality C predictions, showing the preci-
sion trends in Figure 1. As shown, CEA in general
achieves higher precision when compared toPMIpp
and ECDpp&PMIpa,aa. The trends for C+R pre-
dictions are similar.

Thus far, we had included both verbal and nom-
inal predicates in our evaluation. When we repeat
the experiments for ECDpp&PMIpa,aa and CEA
on just verbal predicates, we obtained the respective
F1-scores of 31.8 and 38.3 on causality relations.
The corresponding F1-scores for casuality and relat-
edness relations are 35.7 and 43.3. These absolute
F1-scores are similar to those in Tables 2 and 3, dif-
fering by 1-2%.

7 Analysis

We randomly selected 50 false-positive predictions
and 50 false-negative causality relations to analyze
the mistakes made by CEA.

Among the false-positives (precision errors), the
most frequent error type (56% of the errors) is that
CEA simply assigns a high score to event pairs that
are not causal; more knowledge sources are required
to support better predictions in these cases. The next
largest group of error (22%) involves events contain-
ing pronouns (e.g. “he”, “it”) as arguments. Ap-

plying coreference to replace these pronouns with
their canonical entity strings or labeling them with
semantic class information might be useful.

Among the false-negatives (recall errors), 23%
of the errors are due to CEA simply assigning a
low score to causal event pairs and more contex-
tual knowledge seems necessary for better predic-
tions. 19% of the recall errors arises from causal
event pairs involving nominal predicates that are not
in our list of event evoking noun types (described in
Section 3). A related 17% of recall errors involves
nominal predicates without any argument. For these,
less information is available for CEA to make pre-
dictions. The remaining group (15% of errors) in-
volves events containing pronouns as arguments.

8 Related Work

Although prior work in event causality extraction
in context is relatively sparse, there are many prior
works concerning other semantic aspects of event
extraction. Ji and Grishman (2008) extracts event
mentions (belonging to a predefined list of target
event types) and their associated arguments. In other
prior work (Chen et al., 2009; Bejan and Harabagiu,
2010), the authors focused on identifying another
type of event pair semantic relation: event corefer-
ence. Chambers and Jurafsky (2008; 2009) chain
events sharing a common (protagonist) participant.
They defined events as verbs and given an existing
chain of events, they predict the next likely event in-
volving the protagonist. This is different from our
task of detecting causality between arbitrary event
pairs that might or might not share common argu-
ments. Also, we defined events more broadly, as
those that are triggered by either verbs or nouns. Fi-
nally, although our proposed CEA metric has resem-
blance the ECD metric in (Riaz and Girju, 2010), our
task is different from theirs and our work differs in
many aspects. They focused on building a dataset of
causal text spans, whereas we focused on identifying
causal relations between events in a given text doc-
ument. They considered text spans headed by verbs
while we considered events triggered by both verbs
and nouns. Moreover, we combined event causality
prediction and discourse relation prediction through
a global inference procedure to further improve the
performance of event causality prediction.
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9 Conclusion

In this paper, using general tools such as the depen-
dency and discourse parsers which are not trained
specifically towards our target task, and a minimal
set of development documents for threshold tuning,
we developed a minimally supervised approach to
identify causality relations between events in con-
text. We also showed how to incorporate discourse
relation predictions to aid event causality predictions
through a global inference procedure. There are sev-
eral interesting directions for future work, including
the incorporation of other knowledge sources such
as coreference and semantic class predictions, which
were shown to be potentially important in our er-
ror analysis. We could also use discourse relations
to aid in extracting other semantic relations between
events.
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Abstract

This paper introduces a psycholinguistic
model of sentence processing which combines
a Hidden Markov Model noun phrase chun-
ker with a co-reference classifier. Both mod-
els are fully incremental and generative, giv-
ing probabilities of lexical elements condi-
tional upon linguistic structure. This allows
us to compute the information theoretic mea-
sure of surprisal, which is known to correlate
with human processing effort. We evaluate
our surprisal predictions on the Dundee corpus
of eye-movement data show that our model
achieve a better fit with human reading times
than a syntax-only model which does not have
access to co-reference information.

1 Introduction

Recent research in psycholinguistics has seen a
growing interest in the role of prediction in sentence
processing. Prediction refers to the fact that the hu-
man sentence processor is able to anticipate upcom-
ing material, and that processing is facilitated when
predictions turn out to be correct (evidenced, e.g.,
by shorter reading times on the predicted word or
phrase). Prediction is presumably one of the factors
that contribute to the efficiency of human language
understanding. Sentence processing is incremental
(i.e., it proceeds on a word-by-word basis); there-
fore, it is beneficial if unseen input can be antici-
pated and relevant syntactic and semantic structure
constructed in advance. This allows the processor to
save time and makes it easier to cope with the con-
stant stream of new input.

Evidence for prediction has been found in a range
of psycholinguistic processing domains. Semantic

prediction has been demonstrated by studies that
show anticipation based on selectional restrictions:
listeners are able to launch eye-movements to the
predicted argument of a verb before having encoun-
tered it, e.g., they will fixate an edible object as soon
as they hear the word eat (Altmann and Kamide,
1999). Semantic prediction has also been shown in
the context of semantic priming: a word that is pre-
ceded by a semantically related prime or by a seman-
tically congruous sentence fragment is processed
faster (Stanovich and West, 1981; Clifton et al.,
2007). An example for syntactic prediction can be
found in coordinate structures: readers predict that
the second conjunct in a coordination will have the
same syntactic structure as the first conjunct (Fra-
zier et al., 2000). In a similar vein, having encoun-
tered the word either, readers predict that or and a
conjunct will follow it (Staub and Clifton, 2006).
Again, priming studies corroborate this: Compre-
henders are faster at naming words that are syntacti-
cally compatible with prior context, even when they
bear no semantic relationship to it (Wright and Gar-
rett, 1984).

Predictive processing is not confined to the sen-
tence level. Recent experimental results also provide
evidence for discourse prediction. An example is the
study by van Berkum et al. (2005), who used a con-
text that made a target noun highly predictable, and
found a mismatch effect in the ERP (event-related
brain potential) when an adjective appeared that was
inconsistent with the target noun. An example is (we
give translations of their Dutch materials):

(1) The burglar had no trouble locating the secret
family safe.
a. Of course, it was situated behind a
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bigneu but unobtrusive paintingneu.
b. Of course, it was situated behind a

bigcom but unobtrusive bookcasecom.

Here, the adjective big, which can have neutral or
common gender in Dutch, is consistent with the pre-
dicted noun painting in (1-a), but inconsistent with it
in (1-b), leading to a mismatch ERP on big in (1-b)
but not in (1-a).

Previous results on discourse effects in sentence
processing can also be interpreted in terms of pre-
diction. In a classical paper, Altmann and Steed-
man (1988) demonstrated that PP-attachment pref-
erences can change through discourse context: if the
context contains two potential referents for the tar-
get NP, then NP-attachment of a subsequent PP is
preferred (to disambiguate between the two refer-
ents), while if the context only contains one target
NP, VP-attachment is preferred (as there is no need
to disambiguate). This result (and a large body of
related findings) is compatible with an interpretation
in which the processor predicts upcoming syntactic
attachment based on the presence of referents in the
preceding discourse.

Most attempts to model prediction in human lan-
guage processing have focused on syntactic pre-
diction. Examples include Hale’s (2001) surprisal
model, which relates processing effort to the con-
ditional probability of the current word given the
previous words in the sentence. This approach has
been elaborated by Demberg and Keller (2009) in a
model that explicitly constructs predicted structure,
and includes a verification process that incurs ad-
ditional processing cost if predictions are not met.
Recent work has attempted to integrate semantic
and discourse prediction with models of syntactic
processing. This includes Mitchell et al.’s (2010)
approach, which combines an incremental parser
with a vector-space model of semantics. However,
this approach only provides a loose integration of
the two components (through simple addition of
their probabilities), and the notion of semantics used
is restricted to lexical meaning approximated by
word co-occurrences. At the discourse level, Dubey
(2010) has proposed a model that combines an incre-
mental parser with a probabilistic logic-based model
of co-reference resolution. However, this model
does not explicitly model discourse effects in terms

of prediction, and again only proposes a loose in-
tegration of co-reference and syntax. Furthermore,
Dubey’s (2010) model has only been tested on two
experimental data sets (pertaining to the interaction
of ambiguity resolution with context), no broad cov-
erage evaluation is available.

The aim of the present paper is to overcome these
limitations. We propose a computational model that
captures discourse effects on syntax in terms of pre-
diction. The model comprises a co-reference com-
ponent which explicitly stores discourse mentions
of NPs, and a syntactic component which adjust
the probabilities of NPs in the syntactic structure
based on the mentions tracked by the discourse com-
ponent. Our model is HMM-based, which makes
it possible to efficiently process large amounts of
data, allowing an evaluation on eye-tracking cor-
pora, which has recently become the gold-standard
in computational psycholinguistics (e.g., Demberg
and Keller 2008; Frank 2009; Boston et al. 2008;
Mitchell et al. 2010).

The paper is structured as follows: In Section 2,
we describe the co-reference and the syntactic mod-
els and evaluate their performance on standard data
sets. Section 3 presents an evaluation of the overall
model on the Dundee eye-tracking corpus. The pa-
per closes with a comparison with related work and
a general discussion in Sections 4 and 5.

2 Model

This model utilises an NP chunker based upon a hid-
den Markov model (HMM) as an approximation to
syntax. Using a simple model such as an HMM fa-
cilitates the integration of a co-reference component,
and the fact that the model is generative is a prereq-
uisite to using surprisal as our metric of interest (as
surprisal require the computation of prefix probabil-
ities). The key insight in our model is that human
sentence processing is, on average, facilitated when
a previously-mentioned discourse entity is repeated.
This facilitation depends upon keeping track of a list
of previously-mentioned entities, which requires (at
the least) shallow syntactic information, yet the fa-
cilitation itself is modeled primarily as a lexical phe-
nomenon. This allows a straightforward separation
of concerns: shallow syntax is captured using the
HMM’s hidden states, whereas the co-reference fa-
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cilitation is modeled using the HMM’s emissions.
The vocabulary of hidden states is described in Sec-
tion 2.1 and the emission distribution in Section 2.2

2.1 Syntactic Model

A key feature of the co-reference component of our
model (described below) is that syntactic analysis
and co-reference resolution happen simultaneously.
This could potentially slow down the syntactic anal-
ysis, which tends to already be quite slow for ex-
haustive surprisal-based incremental parsers. There-
fore, rather than using full parsing, we use an HMM-
based NP chunker which allows for a fast analysis.
NP chunking is sufficient to extract NP discourse
mentions and, as we show below, surprisal values
computed using HMM chunks provide a useful fit
on the Dundee eye-movement data.

To allow the HMM to handle possessive construc-
tions as well as NP with simple modifiers and com-
plements, the HMM decodes NP subtrees with depth
of 2, by encoding the start, middle and end of a
syntactic category X as ‘(X’, ‘X’ and ‘X)’, respec-
tively. To reduce an explosion in the number of
states, the category begin state ‘(X’ only appears at
the rightmost lexical token of the constituent’s left-
most daughter. Likewise, ‘X)’ only appears at the
leftmost lexical token of the constituent’s rightmost
daughter. An example use of this state vocabulary
can be seen in Figure 1. Here, a small degree of re-
cursion allows for the NP ((new york city’s) general
obligation fund) to be encoded, with the outer NP’s
left bracket being ‘announced’ at the token ’s, which
is the rightmost lexical token of the inner NP. Hid-
den states also include part-of-speech (POS) tags,
allowing simultaneous POS tagging. In the exam-
ple given in Figure 1, the full state can be read by
listing the labels written above a word, from top to
bottom. For example, the full state associated with
’s is (NP-NP)-POS. As ’s can also be a contraction
of is, another possible state for ’s is VBZ (without
recursive categories as we are only interested in NP
chunks).

The model uses unsmoothed bi-gram transition
probabilities, along with a maximum entropy dis-
tribution to guess unknown word features. The re-
sulting distribution has the form P(tag|word) and is
therefore unsuitable for computing surprisal values.

However, using Bayes’ theorem we can compute:

P(word|tag) =
P(tag|word)P(word)

P(tag)
(1)

which is what we need for surprisal. The pri-
mary information from this probability comes from
P(tag|word), however, reasonable estimates of
P(tag) and P(word) are required to ensure the prob-
ability distribution is proper. P(tag) may be esti-
mated on a parsed treebank. P(word), the probabil-
ity of a particular unseen word, is difficult to esti-
mate directly. Given that our training data contains
approximately 106 words, we assume that this prob-
ability must be bounded above by 10−6. As an ap-
proximation, we use this upper bound as the proba-
bility of P(word).

Training The chunker is trained on sections 2–
22 of the Wall Street Journal section of the Penn
Treebank. CoNLL 2000 included chunking as a
shared task, and the results are summarized by Tjong
Kim Sang and Buchholz (2000). Our chunker is not
comparable to the systems in the shared task for sev-
eral reasons: we use more training data, we tag si-
multaneously (the CoNLL systems used gold stan-
dard tags) and our notion of a chunk is somewhat
more complex than that used in CoNLL. The best
performing chunker from CoNLL 2000 achieved an
F-score of 93.5%, and the worst performing system
an F-score of 85.8%. Our chunker achieves a com-
parable F-score of 85.5%, despite the fact that it si-
multaneously tags and chunks, and only uses a bi-
gram model.

2.2 Co-Reference Model

In a standard HMM, the emission probabilities are
computed as P(wi|si) where wi is the ith word and si

is the ith state. In our model, we replace this with a
choice between two alternatives:

P(wi|si) =

{
λPseen before(wi|si)

(1−λ)Pdiscourse new(wi|si)
(2)

The ‘discourse new’ probability distribution is the
standard HMM emission distribution. The ‘seen be-
fore’ distribution is more complicated. It is in part
based upon caching language models. However, the
contents of the cache are not individual words but
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(NP NP NP NP)
(NP NP) (NP NP NP NP) NP (NP NP NP)
JJ NN IN NNP NNP NNP POS JJ NN NNS VBN RP DT NN NN

strong demand for new york city ’s general obligation bonds propped up the municipal market

Figure 1: The chunk notation of a tree from the training data.

Variable Type
l, l′ List of trie nodes
w,wi Words
t Tag
n,n′ Trie nodes

l← List(root of mention trie)
for w← w0 to wn do

l′← l
l← /0
Clear tag freq array f t
Clear word freq array f wt
for t ∈ tag set do

for n ∈ l′ do
f t(t)← f t(t)+ FreqO f (n, t)
n′← Getchild(w, t)
if n′ 6= /0 then

f wt(t)← f wt(t)+ FreqO f (n′,w, t)
l← n′ :: l

end if
end for

end for
Pseen before(w|t) = f t(t)/ f wt(t)

end for

Figure 2: Looking up entries from the NP Cache

rather a collection of all NPs mentioned so far in the
document.

Using a collection of NPs rather than individual
words complicates the decoding process. If m is the
size of a document, and n is the size of the current
sentence, decoding occurs in O(mn) time as opposed
to O(n), as the collection of NPs needs to be ac-
cessed at each word. However, we do not store the
NPs in a list, but rather a trie. This allows decoding
to occur in O(n logm) time, which we have found
to be quite fast in practise. The algorithm used to
keep track of currently active NPs is presented in
Figure 2. This shows how the distribution Pseen before
is updated on a word-by-word basis. At the end of
each sentence, the NPs of the Viterbi parse are added
to the mention trie after having their leading arti-
cles stripped. A weakness of the algorithm is that
mentions are only added on a sentence-by-sentence
basis (disallowing within-sentence references). Al-
though the algorithm is intended to find whole-string
matches, in practise, it will count any NP whose pre-
fix matches as being co-referent.

A consequence of Equation 2 is that co-reference
resolution is handled at the same time as HMM de-
coding. Whenever the ‘seen before’ distribution is
applied, an NP is co-referent with one occurring ear-
lier. Likewise, whenever the ‘discourse new’ dis-
tribution is applied, the NP is not co-referent with
any NP appearing previously. As one choice or the
other is made during decoding, the decoder there-
fore also selects a chain of co-referent entities. Gen-
erally, for words which have been used in this dis-
course, the magnitude of probabilities in the ‘seen
before’ distribution are much higher than in the ‘dis-
course new’ distribution. Thus, there is a strong
bias to classify NPs which match word-for-word as
being co-referent. There remains a possibility that
the model primarily captures lexical priming, rather
than co-reference. However, we note that string
match is a strong indicator of two NPs being corefer-
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ent (cf. Soon et al. 2001), and, moreover, the match-
ing is done on an NP-by-NP basis, which is more
suitable for finding entity coreference, rather than a
word-by-word basis, which would be more suitable
for lexical priming.

An appealing side-effect of using a simple co-
reference decision rule which is applied incremen-
tally is that it is relatively simple to incremen-
tally compute the transitive closure of co-reference
chains, resulting in the entity sets which are then
used in evaluation.

The co-reference model only has one free param-
eter, λ, which is estimated from the ACE-2 corpus.
The estimate is computed by counting how often a
repeated NP actually is discourse new. In the current
implementation of the model, λ is constant through-
out the test runs. However, λ could possibly be
a function of the previous discourse, allowing for
more complicated classification probabilities.

3 Evaluation

3.1 Data

Our evaluation experiments were conducted upon
the Dundee corpus (Kennedy et al., 2003), which
contains the eye-movement record of 10 participants
each reading 2,368 sentences of newspaper text.
This data set has previously been used by Demberg
and Keller (2008) and Frank (2009) among others.

3.2 Evaluation

Eye tracking data is noisy for a number of rea-
sons, including the fact that experimental partici-
pants can look at any word which is currently dis-
played. While English is normally read in a left-
to-right manner, readers often skip words or make
regressions (i.e., look at a word to the left of the
one they are currently fixating). Deviations from
a strict left-to-right progression of fixations moti-
vate the need for several different measures of eye
movement. The model presented here predicts the
Total Time that participants spent looking at a re-
gion, which includes any re-fixations after looking
away. In addition to total time, other possible mea-
sures include (a) First Pass, which measures the ini-
tial fixation and any re-fixations before looking at
any other word (this occurs, for instance, if the eye
initially lands at the start of a long word – the eye

will tend to re-fixate on a more central viewing lo-
cation), (b) Right Bounded reading time, which in-
cludes all fixations on a word before moving to the
right of the word (i.e., re-fixations after moving left
are included), and (c) Second Pass, which includes
any re-fixation on a word after looking at any other
word (be it to the left or the right of the word of inter-
est). We found that the model performed similarly
across all these reading time metrics, we therefore
only report results for Total Time.

As mentioned above, reading measures are hy-
pothesised to correlate with Surprisal, which is de-
fined as:

S(wt) =− log(P(wt |w1...wt1) (3)

We compute the surprisal scores for the syntax-only
HMM, which does not have access to co-reference
information (henceforth referred to as ‘HMM’)
and the full model, which combines the syntax-
only HMM with the co-reference model (henceforth
‘HMM+Ref’). To determine if our Dundee corpus
simulations provide a reasonable model of human
sentence processing, we perform a regression anal-
ysis with the Dundee corpus reading time measure
as the dependent variable and the surprisal scores as
the independent variable.

To account for noise in the corpus, we also use
a number of additional explanatory variables which
are known to strongly influence reading times.
These include the logarithm of the frequency of a
word (measured in occurrences per million) and the
length of a word in letters. Two additional explana-
tory variables were available in the Dundee corpus,
which we also included in the regression model.
These were the position of a word on a line, and
which line in a document a word appeared in. As
participants could only view one line at a time (i.e.,
one line per screen), these covariates are known as
line position and screen position, respectively.

All the covariates, including the surprisal es-
timates, were centered before including them in
the regression model. Because the HMM and
HMM+Ref surprisal values are highly collinear, the
HMM+Ref surprisal values were added as residuals
of the HMM surprisal values.

In a normal regression analysis, one must either
assume that participants or the particular choice of
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items add some randomness to the experiment, and
either each participant’s responses for all items must
be averaged (treating participants as a random fac-
tor), or all participant’s responses for each item is
averaged (treating items as a random factor). How-
ever, in the present analysis we utilise a mixed ef-
fects model, which allows both items and partici-
pants to be treated as random factors.1

The are a number of criteria which can be used
to test the efficacy of one regression model over an-
other. These include the Aikake Information Cri-
terion (AIC), the Bayesian Information Criterion
(BIC), which trade off model fit and number of
model parameters (lower scores are better). It is also
common to compare the log-likelihood of the mod-
els (higher log-likelihood is better), in which case a
χ2 can be used to evaluate if a model offers a sig-
nificantly better fit, given the number of parameters
is uses. We test three models: (i) a baseline, with
only low-level factors as independent variables; (ii)
the HMM model, with the baseline factors plus sur-
prisal computed by the syntax-only HMM; and (iii)
the HMM+Ref model which includes the raw sur-
prisal values of the syntax-only HMM and the sur-
prisal of the HMM+Ref models as computed as a
residual of the HMM surprisal score. We compare
the HMM and HMM+Ref to the baseline, and the
HMM+Ref model against the HMM model.

Some of the data needed to be trimmed. If, due to
data sparsity, the surprisal of a word goes to infinity
for one of the models, we entirely remove that word
from the analysis. This occurred seven times form
the HMM+Ref model, but did not occur at all with
the HMM model. Some of the eye-movement data
was trimmed, as well. Fixations on the first and last
words of a line were excluded, as were tracklosses.
However, we did not trim any items due to abnor-

1We assume that each participant and item bias the reading
time of the experiment. Such an analysis is known as having
random intercepts of participant and item. It is also possible
to assume a more involved analysis, known as random slopes,
where the participants and items bias the slope of the predictor.
The model did not converge when using random intercept and
slopes on both participant and item. If random slopes on items
were left out, the HMM regression model did converge, but not
the HMM+Ref model. As the HMM+Ref is the model of inter-
est random slopes were left out entirely to allow a like-with-like
comparison between the HMM and HMM+Ref regression mod-
els.

mally short or abnormally long fixation durations.

3.3 Results

The result of the model comparison on Total Time
reading data is summarised in Table 1. To allow this
work to be compared with other models, the lower
part of the table gives the abosolute AIC, BIC and
log likelihood of the baseline model, while the upper
part gives delta AIC, BIC and log likelihood scores
of pairs of models.

We found that both the HMM and HMM+Ref
provide a significantly better fit with the reading
time data than the Baseline model; all three crite-
ria agree: AIC and BIC lower than for the base-
line, and log-likelihood is higher. Moreover, the
HMM+Ref model provides a significantly better fit
than the HMM model, which demonstrates the bene-
fit of co-reference information for modeling reading
times. Again, all three measures provide the same
result.

Table 2 corroborates this result. It list the
mixed-model coefficients for the HMM+Ref model
and shows that all factors are significant predic-
tors, including both HMM surprisal and residualized
HMM+Ref surprisal.

4 Related Work

There have been few computational models of hu-
man sentence processing that have incorporated
a referential or discourse-level component. Niv
(1994) proposed a parsing model based on Com-
binatory Categorial Grammar (Steedman, 2001), in
which referential information was used to resolve
syntactic ambiguities. The model was able to cap-
ture effects of referential information on syntactic
garden paths (Altmann and Steedman, 1988). This
model differs from that proposed in the present pa-
per, as it is intended to capture psycholinguistic pref-
erences in a qualitative manner, whereas the aim
of the present model is to provide a quantitative
fit to measures of processing difficulty. Moreover,
the model was not based on a large-scale grammar,
and was not tested on unrestricted text. Spivey and
Tanenhaus (1998) proposed a sentence processing
model that examined the effects of referential infor-
mation, as well as other constraints, on the resolu-
tion of ambiguous sentences. Unlike Niv (1994),
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From To ∆ AIC ∆ BIC ∆ logLik χ2 Significance
Baseline HMM -80 -69 41 82.112 p< .001
Baseline HMM+Ref -99 -89 51 101.54 p< .001
HMM HMM+Ref -19 -8 11 21.424 p< .001

Model AIC BIC logLik
Baseline 10567789 10567880 -5283886

Table 1: Model comparison (upper part) and absolute scores for the Baseline model (lower part)

Coefficient Estimate Std Error t-value
(Intercept) 991.4346 23.7968 41.66

log(Word Frequency) -55.3045 1.4830 -37.29
Word Length 128.6216 1.4677 87.63

Screen Position -1.7769 0.1326 -13.40
Line Position 10.1592 0.7387 13.75

HMM 12.1287 1.3366 9.07
HMM+Ref 19.2772 4.1627 4.63

Table 2: Coefficients of the HMM+Ref model on Total Reading Times. Note that t > 2 indicates that the factor in
question is a significant predictor.

Spivey and Tanenhaus’s (1998) model was specifi-
cally designed to provide a quantitative fit to reading
times. However, the model lacked generality, being
designed to deal with only one type of sentence. In
contrast to both of these earlier models, the model
proposed here aims to be general enough to provide
estimated reading times for unrestricted text. In fact,
as far as we are aware, the present paper represents
the first wide-coverage model of human parsing that
has incorporated discourse-level information.

5 Discussion

The primary finding of this work is that incorporat-
ing discourse information such as co-reference into
an incremental probabilistic model of sentence pro-
cessing has a beneficial effect on the ability of the
model to predict broad-coverage human parsing be-
haviour.

Although not thoroughly explored in this paper,
our finding is related to an ongoing debate about the
structure of the human sentence processor. In par-
ticular, the model of Dubey (2010), which also sim-
ulates the effect of discourse on syntax, is aimed at
examining interactivity in the human sentence pro-
cessor. Interactivity describes the degree to which
human parsing is influenced by non-syntactic fac-

tors. Under the weakly interactive hypothesis, dis-
course factors may prune or re-weight parses, but
only when assuming the strongly interactive hypoth-
esis would we argue that the sentence processor pre-
dicts upcoming material due to discourse factors.
Dubey found that a weakly interactive model sim-
ulated a pattern of results in an experiment (Grodner
et al., 2005) which was previously believed to pro-
vide evidence for the strongly interactive hypothesis.
However, as Dubey does not provide broad-coverage
parsing results, this leaves open the possibility that
the model cannot generalise beyond the experiments
expressly modeled in Dubey (2010).

The model presented here, on the other hand,
is not only broad-coverage but could also be de-
scribed as a strongly interactive model. The strong
interactivity arises because co-reference resolution
is strongly tied to lexical generation probabilities,
which are part of the syntactic portion of our model.
This cannot be achieve in a weakly interactive
model, which is limited to pruning or re-weighting
of parses based on discourse information. As our
analysis on the Dundee corpus showed, the lexical
probabilities (in the form of HMM+Ref surprisal)
are key to improving the fit on eye-tracking data.
We therefore argue that our results provide evidence
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against a weakly interactive approach, which may be
sufficient to model individual phenomena (as shown
by Dubey 2010), but is unlikely to be able to match
the broad-coverage result we have presented here.
We also note that psycholinguistic evidence for dis-
course prediction (such as the context based lexi-
cal prediction shown by van Berkum et al. 2005,
see Section 1) is also evidence for strong interac-
tivity; prediction goes beyond mere pruning or re-
weighting and requires strong interactivity.

References

Gerry Altmann and Mark Steedman. Interaction
with context during human sentence processing.
Cognition, 30:191–238, 1988.

Gerry T. M. Altmann and Yuki Kamide. Incremen-
tal interpretation at verbs: Restricting the domain
of subsequent reference. Cognition, 73:247–264,
1999.

Marisa Ferrara Boston, John T. Hale, Reinhold
Kliegl, and Shravan Vasisht. Surprising parser
actions and reading difficulty. In Proceedings of
ACL-08:HLT, Short Papers, pages 5–8, 2008.

Charles Clifton, Adrian Staub, and Keith Rayner.
Eye movement in reading words and sentences.
In R V Gompel, M Fisher, W Murray, and R L
Hill, editors, Eye Movements: A Window in Mind
and Brain, pages 341–372. Elsevier, 2007.

Vera Demberg and Frank Keller. Data from eye-
tracking corpora as evidence for theories of syn-
tactic processing complexity. Cognition, 109:
192–210, 2008.

Vera Demberg and Frank Keller. A computational
model of prediction in human parsing: Unifying
locality and surprisal effects. In Proceedings of
the 29th meeting of the Cognitive Science Society
(CogSci-09), 2009.

Amit Dubey. The influence of discourse on syntax:
A psycholinguistic model of sentence processing.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL
2010), Uppsala, Sweden, 2010.

Stefan Frank. Surprisal-based comparison between
a symbolic and a connectionist model of sentence
processing. In 31st Annual Conference of the

Cognitive Science Society (COGSCI 2009), Ams-
terdam, The Netherlands, 2009.

Lyn Frazier, Alan Munn, and Charles Clifton. Pro-
cessing coordinate structure. Journal of Psy-
cholinguistic Research, 29:343–368, 2000.

Daniel J. Grodner, Edward A. F. Gibson, and Du-
ane Watson. The influence of contextual constrast
on syntactic processing: Evidence for strong-
interaction in sentence comprehension. Cogni-
tion, 95(3):275–296, 2005.

John T. Hale. A probabilistic earley parser as a psy-
cholinguistic model. In In Proceedings of the Sec-
ond Meeting of the North American Chapter of
the Asssociation for Computational Linguistics,
2001.

A. Kennedy, R. Hill, and J. Pynte. The dundee cor-
pus. In Proceedings of the 12th European confer-
ence on eye movement, 2003.

Jeff Mitchell, Mirella Lapata, Vera Demberg, and
Frank Keller. Syntactic and semantic factors in
processing difficulty: An integrated measure. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, Uppsala,
Sweden, 2010.

M. Niv. A psycholinguistically motivated parser for
CCG. In Proceedings of the 32nd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL-94), pages 125–132, Las Cruces, NM,
1994.

W. M. Soon, H. T. Ng, and D. C. Y. Lim. A ma-
chine learning approach to coreference resolution
of noun phrases. Computational Linguistics, 27
(4):521–544, 2001.

M. J. Spivey and M. K. Tanenhaus. Syntactic am-
biguity resolution in discourse: Modeling the ef-
fects of referential context and lexical frequency.
Journal of Experimental Psychology: Learning,
Memory and Cognition, 24(6):1521–1543, 1998.

Kieth E. Stanovich and Richard F. West. The effect
of sentence context on ongoing word recognition:
Tests of a two-pricess theory. Journal of Exper-
imental Psychology: Human Perception and Per-
formance, 7:658–672, 1981.

Adrian Staub and Charles Clifton. Syntactic predic-
tion in language comprehension: Evidence from

311



either . . .or. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 32:425–436,
2006.

Mark Steedman. The Syntactic Process. Bradford
Books, 2001.

Erik F. Tjong Kim Sang and Sabine Buchholz. In-
troduction to the conll-2000 shared task: Chunk-
ing. In Proceedings of CoNLL-2000 and LLL-
2000, pages 127–132. Lisbon, Portugal, 2000.

Jos J. A. van Berkum, Colin M. Brown, Pienie Zwit-
serlood, Valesca Kooijman, and Peter Hagoort.
Anticipating upcoming words in discourse: Evi-
dence from erps and reading times. Journal of Ex-
perimental Psychology: Learning, Memory and
Cognition, 31(3):443–467, 2005.

Barton Wright and Merrill F. Garrett. Lexical deci-
sion in sentences: Effects of syntactic structure.
Memory and Cognition, 12:31–45, 1984.

312



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 313–321,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Simple Effective Decipherment via Combinatorial Optimization

Taylor Berg-Kirkpatrick and Dan Klein
Computer Science Division

University of California at Berkeley
{tberg, klein}@cs.berkeley.edu

Abstract

We present a simple objective function that
when optimized yields accurate solutions to
both decipherment and cognate pair identifica-
tion problems. The objective simultaneously
scores a matching between two alphabets and
a matching between two lexicons, each in a
different language. We introduce a simple
coordinate descent procedure that efficiently
finds effective solutions to the resulting com-
binatorial optimization problem. Our system
requires only a list of words in both languages
as input, yet it competes with and surpasses
several state-of-the-art systems that are both
substantially more complex and make use of
more information.

1 Introduction

Decipherment induces a correspondence between
the words in an unknown language and the words
in a known language. We focus on the setting where
a close correspondence between the alphabets of the
two languages exists, but is unknown. Given only
two lists of words, the lexicons of both languages,
we attempt to induce the correspondence between
alphabets and identify the cognates pairs present in
the lexicons. The system we propose accomplishes
this by defining a simple combinatorial optimiza-
tion problem that is a function of both the alphabet
and cognate matchings, and then induces correspon-
dences by optimizing the objective using a block co-
ordinate descent procedure.

There is a range of past work that has var-
iously investigated cognate detection (Kondrak,
2001; Bouchard-Côté et al., 2007; Bouchard-Côté
et al., 2009; Hall and Klein, 2010), character-level
decipherment (Knight and Yamada, 1999; Knight
et al., 2006; Snyder et al., 2010; Ravi and Knight,

2011), and bilingual lexicon induction (Koehn and
Knight, 2002; Haghighi et al., 2008). We consider
a common element, which is a model wherein there
are character-level correspondences and word-level
correspondences, with the word matching parame-
terized by the character one. This approach sub-
sumes a range of past tasks, though of course past
work has specialized in interesting ways.

Past work has emphasized the modeling as-
pect, where here we use a parametrically simplistic
model, but instead emphasize inference.

2 Decipherment as Two-Level
Optimization

Our method represents two matchings, one at the al-
phabet level and one at the lexicon level. A vector of
variables x specifies a matching between alphabets.
For each character i in the source alphabet and each
character j in the target alphabet we define an indi-
cator variable xij that is on if and only if character i
is mapped to character j. Similarly, a vector y rep-
resents a matching between lexicons. For word u in
the source lexicon and word v in the target lexicon,
the indicator variable yuv denotes that u maps to v.
Note that the matchings need not be one-to-one.

We define an objective function on the matching
variables as follows. Let EDITDIST(u, v;x) denote
the edit distance between source word u and target
word v given alphabet matching x. Let the length
of word u be lu and the length of word w be lw.
This edit distance depends on x in the following
way. Insertions and deletions always cost a constant
ε.1 Substitutions also cost ε unless the characters
are matched in x, in which case the substitution is

1In practice we set ε = 1
lu+lv

. lu + lv is the maximum
number of edit operations between words u and v. This nor-
malization insures that edit distances are between 0 and 1 for
all pairs of words.
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free. Now, the objective that we will minimize can
be stated simply:

∑
u

∑
v yuv · EDITDIST(u, v;x),

the sum of the edit distances between the matched
words, where the edit distance function is parame-
terized by the alphabet matching.

Without restrictions on the matchings x and y
this objective can always be driven to zero by either
mapping all characters to all characters, or matching
none of the words. It is thus necessary to restrict
the matchings in some way. Let I be the size of
the source alphabet and J be the size of the target
alphabet. We allow the alphabet matching x to
be many-to-many but require that each character
participate in no more than two mappings and that
the total number of mappings be max(I, J), a
constraint we refer to as restricted-many-to-many.
The requirements can be encoded with the following
linear constraints on x:

∀i
∑

j

xij ≤ 2

∀j
∑

i

xij ≤ 2

∑

i

∑

j

xij = max(I, J)

The lexicon matching y is required to be τ -one-to-
one. By this we mean that y is an at-most-one-to-one
matching that covers proportion τ of the smaller of
the two lexicons. Let U be the size of the source
lexicon and V be this size of the target lexicon.
This requirement can be encoded with the following
linear constraints:

∀u
∑

v

yuv ≤ 1

∀v
∑

u

yuv ≤ 1

∑

u

∑

v

yuv = τ min(U, V )

Now we are ready to define the full optimization
problem. The first formulation is called the Implicit
Matching Objective since includes an implicit
minimization over edit alignments inside the com-
putation of EDITDIST.

(1) Implicit Matching Objective:

min
x,y

∑

u

∑

v

yuv · EDITDIST(u, v;x)

s.t. x is restricted-many-to-many

y is τ -one-to-one

In order to get a better handle on the shape of the
objective and to develop an efficient optimization
procedure we decompose each edit distance compu-
tation and re-formulate the optimization problem in
Section 2.2.

2.1 Example

Figure 1 presents both an example matching prob-
lem and a diagram of the variables and objective.
Here, the source lexicon consists of the English
words (cat, bat, cart, rat, cab), and
the source alphabet consists of the characters (a,
b, c, r, t). The target alphabet is (0, 1,
2, 3). We have used digits as symbols in the target
alphabet to make it clear that we treat the alphabets
as disjoint. We have no prior knowledge about any
correspondence between alphabets, or between lexi-
cons.

The target lexicon consists of the words (23,
1233, 120, 323, 023). The bipartite graphs
show a specific setting of the matching variables.
The bold edges correspond to the xij and yuv that
are one. The matchings shown achieve an edit dis-
tance of zero between all matched word pairs ex-
cept for the pair (cat, 23). The best edit align-
ment for this pair is also diagrammed. Here, ‘a’
is aligned to ‘2’, ‘t’ is aligned to ‘3’, and ‘c’ is
deleted and therefore aligned to the null position ‘#’.
Only the initial deletion has a non-zero cost since
all other alignments correspond to substitutions be-
tween characters that are matched in x.

2.2 Explicit Objective

Computing EDITDIST(u, v;x) requires running a
dynamic program because of the unknown edit
alignments; here we define those alignments z ex-
plicitly, which makes the EDITDIST(u, v;x) easy to
write explicitly at the cost of more variables. How-
ever, by writing the objective in an explicit form that
refers to these edit variables, we are able to describe
a efficient block coordinate descent procedure that
can be used for optimization.

EDITDIST(u, v;x) is computed by minimizing
over the set of monotonic alignments between the
characters of the source word u and the characters
of the target word v. Let un be the character at the
nth position of the source word u, and similarly for
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Figure 1: An example problem displaying source and target lexicons and alphabets, along with specific matchings.
The variables involved in the optimization problem are diagrammed. x are the alphabet matching indicator variables,
y are the lexicon matching indicator variables, and z are the edit alignment indicator variables. The index u refers to
a word in the source lexicon, v refers to word in the target lexicon, i refers to a character in the source alphabet, and
j refers to a character in the target alphabet. n and m refer to positions in source and target words respectively. The
matching objective function is also shown.

vm. Let zuv be the vector of alignment variables
for the edit distance computation between source
word u and target word v, where entry zuv,nm
indicates whether the character at position n of
source word u is aligned to the character at position
m of target word v. Additionally, define variables
zuv,n# and zuv,#m denoting null alignments, which
will be used to keep track of insertions and deletions.

EDITDIST(u, v;x) =

min
zuv

ε ·
(

SUB(zuv, x) + DEL(zuv) + INS(zuv)
)

s.t. zuv is monotonic

We define SUB(zuv, x) to be the number of sub-
stitutions between characters that are not matched
in x, DEL(zuv) to be the number of deletions, and
INS(zuv) to be the number of insertions.

SUB(zuv, x) =
∑

n,m

(1− xunvm)zuv,nm

DEL(zuv) =
∑

n

zuv,n#

INS(zuv) =
∑

m

zuv,#m

Notice that the variable zuv,nm being turned on in-
dicates the substitute operation, while a zuv,n# or
zuv,#m being turned on indicates an insert or delete
operation. These variables are digrammed in Fig-
ure 1. The requirement that zuv be a monotonic
alignment can be expressed using linear constraints,
but in our optimization procedure (described in Sec-
tion 3) these constraints need not be explicitly rep-
resented.

Now we can substitute the explicit edit distance
equation into the implicit matching objective (1).
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Noticing that the mins and sums commute, we arrive
at the explicit form of the matching optimization
problem.

(2) Explicit Matching Objective:

min
x,y,z

[∑

u,v

yuv · ε ·
(
SUB(zuv, x) + DEL(zuv) + INS(zuv)

)]

s.t. x is restricted-many-to-many

y is τ -one-to-one

∀uv zuv is monotonic

The implicit and explicit optimizations are the same,
apart from the fact that the explicit optimization now
explicitly represents the edit alignment variables z.
Let the explicit matching objective (2) be denoted
as J(x, y, z). The relaxation of the explicit problem
with 0-1 constraints removed has integer solutions,2

however the objective J(x, y, z) is non-convex. We
thus turn to a block coordinate descent method in the
next section in order to find local optima.

3 Optimization Method

We now state a block coordinate descent procedure
to find local optima of J(x, y, z) under the con-
straints on x, y, and z. This procedure alternates
between updating y and z to their exact joint optima
when x is held fixed, and updating x to its exact op-
timum when y and z are held fixed.

The psuedocode for the procedure is given in Al-
gorithm 1. Note that the function EDITDIST returns
both the min edit distance euv and the argmin edit
alignments zuv. Also note that cij is as defined in
Section 3.2.

3.1 Lexicon Matching Update

Let x, the alphabet matching variable, be fixed. We
consider the problem of optimizing J(x, y, z) over
the lexicon matching variable y and and the edit
alignments z under the constraint that y is τ -one-
to-one and each zuv is monotonic.

2This can be shown by observing that optimizing x when y
and z are held fixed yields integer solutions (shown in Section
3.2), and similarly for the optimization of y and z when x is
fixed (shown in Section 3.1). Thus, every local optimum with
respect to these block coordinate updates has integer solutions.
The global optimum must be one of these local optima.

Algorithm 1 Block Coordinate Descent
Randomly initialize alphabet matching x.
repeat

for all u, v do
(euv, zuv)← EDITDIST(u, v;x)

end for
[Hungarian]
y ← argminy τ -one-to-one

[∑
u,v yuveuv

]

[Solve LP]
x← argmaxx restr.-many-to-many

[∑
i,j xijcij

]

until convergence

Notice that y simply picks out which edit distance
problems affect the objective. The zuv in each of
these edit distance problems can be optimized in-
dependently. zuv that do not have yuv active have
no effect on the objective, and zuv with yuv active
can be optimized using the standard edit distance dy-
namic program. Thus, in a first step we compute the
U · V edit distances euv and best monotonic align-
ment variables zuv between all pairs of source and
target words usingU ·V calls to the standard edit dis-
tance dynamic program. Altogether, this takes time
O
(
(
∑

u lu) · (∑v lv)
)
.

Now, in a second step we compute the least
weighted τ -one-to-one matching y under the
weights euv. This can be accomplished in time
O(max(U, V )3) using the Hungarian algorithm
(Kuhn, 1955). These two steps produce y and z that
exactly achieve the optimum value of J(x, y, z) for
the given value of x.

3.2 Alphabet Matching Update

Let y and z, the lexicon matching variables and the
edit alignments, be fixed. Now, we find the optimal
alphabet matching variables x subject to the con-
straint that x is restricted-many-to-many.

It makes sense that to optimize J(x, y, z) with re-
spect to x we should prioritize mappings xij that
would mitigate the largest substitution costs in the
active edit distance problems. Indeed, with a little
algebra it can be shown that solving a maximum
weighted matching problem with weights cij that
count potential substitution costs gives the correct
update for x. In particular, cij is the total cost of
substitution edits in the active edit alignment prob-
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lems that would result if source character i were not
mapped to target character j in the alphabet match-
ing x. This can be written as:

cij =
∑

u,v

∑

n,m s.t. un=i,vm=j

ε · yuv · zuv,nm

If x were constrained to be one-to-one, we
could again apply the Hungarian algorithm, this
time to find a maximum weighted matching under
the weights cij . Since we have instead allowed
restricted-many-to-many alphabet matchings we
turn to linear programming for optimizing x. We
can state the update problem as the following linear
program (LP), which is guaranteed to have integer
solutions:

min
x

∑

ij

xijcij

s.t. ∀i
∑

j

xij ≤ 2, ∀j
∑

i

xij ≤ 2

∑

i

∑

j

xij = max(I, J)

In experiments we used the GNU Linear Program-
ming Toolkit (GLPK) to solve the LP and update
the alphabet matching x. This update yields match-
ing variables x that achieve the optimum value of
J(x, y, z) for fixed y and z.

3.3 Random Restarts
In practice we found that the block coordinate de-
scent procedure can get stuck at poor local optima.
To find better optima, we run the coordinate descent
procedure multiple times, initialized each time with
a random alphabet matching. We choose the local
optimum with the best objective value across all ini-
tializations. This approach yielded substantial im-
provements in achieved objective value.

4 Experiments

We compare our system to three different state-of-
the-art systems on three different data sets. We set
up experiments that allow for as direct a comparison
as possible. In some cases it must be pointed out
that the past system’s goals are different from our
own, and we will be comparing in a different way
than the respective work was intended. The three
systems make use of additional, or slightly different,
sources of information.

4.1 Phonetic Cognate Lexicons

The first data set we evaluate on consists of 583
triples of phonetic transcriptions of cognates in
Spanish, Portuguese, and Italian. The data set was
introduced by Bouchard-Côté et al. (2007). For a
given pair of languages the task is to determine the
mapping between lexicons that correctly maps each
source word to its cognate in the target lexicon. We
refer to this task and data set as ROMANCE.

Hall and Klein (2010) presented a state-of-the-
art system for the task of cognate identification and
evaluated on this data set. Their model explicitly
represents parameters for phonetic change between
languages and their parents in a phylogenetic tree.
They estimate parameters and infer the pairs of cog-
nates present in all three languages jointly, while we
consider each pair of languages in turn.

Their model has similarities with our own in that
it learns correspondences between the alphabets of
pairs of languages. However, their correspondences
are probabilistic and implicit while ours are hard and
explicit. Their model also differs from our own in
a key way. Notice that the phonetic alphabets for
the three languages are actually the same. Since
phonetic change occurs gradually across languages
a helpful prior on the correspondence is to favor the
identity. Their model makes use of such a prior.
Our model, on the other hand, is unaware of any
prior correspondence between alphabets and does
not make use of this additional information about
phonetic change.

Hall and Klein (2010) also evaluate their model
on lexicons that do not have a perfect cognate map-
ping. This scenario, where not every word in one
language has a cognate in another, is more realistic.
They produced a data set with this property by prun-
ing words from the ROMANCE data set until only
about 75% of the words in each source lexicon have
cognates in each target lexicon. We refer to this task
and data set as PARTIALROMANCE.

4.2 Lexicons Extracted from Corpora

Next, we evaluate our model on a noisier data set.
Here the lexicons in source and target languages
are extracted from corpora by taking the top 2,000
words in each corpus. In particular, we used the En-
glish and Spanish sides of the Europarl parallel cor-
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pus (Koehn, 2005). To make this set up more real-
istic (though fairly comparable), we insured that the
corpora were non-parallel by using the first 50K sen-
tences on the English side and the second 50K sen-
tences on the Spanish side. To generate a gold cog-
nate matching we used the intersected HMM align-
ment model of Liang et al. (2008) to align the full
parallel corpus. From this alignment we extracted a
translation lexicon by adding an entry for each word
pair with the property that the English word was
aligned to the Spanish in over 10% of the alignments
involving the English word. To reduce this transla-
tion lexicon down to a cognate matching we went
through the translation lexicon by hand and removed
any pair of words that we judged to not be cognates.
The resulting gold matching contains cognate map-
pings in the English lexicon for 1,026 of the words
in the Spanish lexicon. This means that only about
50% of the words in English lexicon have cognates
in the Spanish lexicon. We evaluate on this data set
by computing precision and recall for the number of
English words that are mapped to a correct cognate.
We refer to this task and data set as EUROPARL.

On this data set, we compare against the state-of-
the-art orthographic system presented in Haghighi
et al. (2008). Haghighi et al. (2008) presents sev-
eral systems that are designed to extract transla-
tion lexicons for non-parallel corpora by learning
a correspondence between their monolingual lexi-
cons. Since our system specializes in matching cog-
nates and does not take into account additional infor-
mation from corpus statistics, we compare against
the version of their system that only takes into ac-
count orthographic features and is thus is best suited
for cognate detection. Their system requires a small
seed of correct cognate pairs. From this seed the sys-
tem learns a projection using canonical correlation
analysis (CCA) into a canonical feature space that
allows feature vectors from source words and target
words to be compared. Once in this canonical space,
similarity metrics can be computed and words can be
matched using a bipartite matching algorithm. The
process is iterative, adding cognate pairs to the seed
lexicon gradually and each time re-computing a re-
fined projection. Our system makes no use of a seed
lexicon whatsoever.

Both our system and the system of Haghighi et
al. (2008) must solve bipartite matching problems

between the two lexicons. For this data set, the lexi-
cons are large enough that finding the exact solution
can be slow. Thus, in all experiments on this data
set, we instead use a greedy competitive linking al-
gorithm that runs in time O(U2V 2log(UV )).

Again, for this dataset it is reasonable to expect
that many characters will map to themselves in the
best alphabet matching. The alphabets are not iden-
tical, but are far from disjoint. Neither our system,
nor that of Haghighi et al. (2008) make use of this
expectation. As far as both systems are concerned,
the alphabets are disjoint.

4.3 Decipherment
Finally, we evaluate our model on a data set where
a main goal is to decipher an unknown correspon-
dence between alphabets. We attempt to learn a
mapping from the alphabet of the ancient Semitic
language Ugaritic to the alphabet of Hebrew, and
at the same time learn a matching between Hebrew
words in a Hebrew lexicon and their cognates in a
Ugaritic lexicon. This task is related to the task at-
tempted by Snyder et al. (2010). The data set con-
sists of a Ugaritic lexicon of 2,214 words, each of
which has a Hebrew cognate, the lexicon of their
2,214 Hebrew cognates, and a gold cognate dictio-
nary for evaluation. We refer to this task and data set
as UGARITIC.

The non-parameteric Bayesian system of Snyder
et al. (2010) assumes that the morphology of He-
brew is known, making use of an inventory of suf-
fixes, prefixes, and stems derived from the words
in the Hebrew bible. It attempts to learn a corre-
spondence between the morphology of Ugaritic and
that of Hebrew while reconstructing cognates for
Ugaritic words. This is a slightly different goal than
that of our system, which learns a correspondence
between lexicons. Snyder et al. (2010) run their
system on a set 7,386 Ugaritic words, the same set
that we extracted our 2,214 Ugaritic words with He-
brew cognates from. We evaluate the accuracy of the
lexicon matching produced by our system on these
2,214 Ugaritic words, and so do they, measuring the
number of correctly reconstructed cognates.

By restricting the source and target lexicons to
sets of cognates we have made the task easier. This
was necessary, however, because the Ugaritic and
Hebrew corpora used by Snyder et al. (2010) are not
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Model τ Accuracy
Hall and Klein (2010) – 90.3
MATCHER 1.0 90.1

Table 1: Results on ROMANCE data set. Our system is
labeled MATCHER. We compare against the phylogenetic
cognate detection system of Hall and Klein (2010). We
show the pairwise cognate accuracy across all pairs of
languages from the following set: Spanish, Portuguese,
and Italian.

comparable: only a small proportion of the words
in the Ugaritic lexicon have cognates in the lexicon
composed of the most frequent Hebrew words.

Here, the alphabets really are disjoint. The sym-
bols in both languages look nothing alike. There is
no obvious prior expectation about how the alpha-
bets will be matched. We evaluate against a well-
established correspondence between the alphabets
of Ugaritic and Hebrew. The Ugaritic alphabet con-
tains 30 characters, the Hebrew alphabet contains 22
characters, and the gold matching contains 33 en-
tries. We evaluate the learned alphabet matching by
counting the number of recovered entries from the
gold matching.

Due to the size of the source and target lexicons,
we again use the greedy competitive linking algo-
rithm in place of the exact Hungarian algorithm in
experiments on this data set.

5 Results

We present results on all four datasets ROMANCE,
PARTIALROMANCE, EUROPARL, and UGARITIC.
On the ROMANCE and PARTIALROMANCE data sets
we compare against the numbers published by Hall
and Klein (2010). We ran an implementation of
the orthographic system presented by Haghighi et
al. (2008) on our EUROPARL data set. We com-
pare against the numbers published by Snyder et al.
(2010) on the UGARITIC data set. We refer to our
system as MATCHER in result tables and discussion.

5.1 ROMANCE

The results of running our system, MATCHER, on
the ROMANCE data set are shown in Table 1. We
recover 88.9% of the correct cognate mappings on
the pair Spanish and Italian, 85.7% on Italian and
Portuguese, and 95.6% on Spanish and Portuguese.

Model τ Precision Recall F1
Hall and Klein (2010) – 66.9 82.0 73.6
MATCHER 0.25 99.7 34.0 50.7

0.50 93.8 60.2 73.3
0.75 81.1 78.0 79.5

Table 2: Results on PARTIALROMANCE data set. Our
system is labeled MATCHER. We compare against the
phylogenetic cognate detection system of Hall and Klein
(2010). We show the pairwise cognate precision, recall,
and F1 across all pairs of languages from the following
set: Spanish, Portuguese, and Italian. Note that approx-
imately 75% of the source words in each of the source
lexicons have cognates in each of the target lexicons.

Our average accuracy across all pairs of languages
is 90.1%. The phylogenetic system of Hall and
Klein (2010) achieves an average accuracy of 90.3%
across all pairs of languages. Our system achieves
accuracy comparable to that of the phylogenetic sys-
tem, despite the fact that the phylogenetic system is
substantially more complex and makes use of an in-
formed prior on alphabet correspondences.

The alphabet matching learned by our system is
interesting to analyze. For the pairing of Span-
ish and Portuguese it recovers phonetic correspon-
dences that are well known. Our system learns the
correct cognate pairing of Spanish /bino/ to Por-
tuguese /vinu/. This pair exemplifies two com-
mon phonetic correspondences for Spanish and Por-
tuguese: the Spanish /o/ often transforms to a /u/ in
Portuguese, and Spanish /b/ often transforms to /v/
in Portuguese. Our system, which allows many-to-
many alphabet correspondences, correctly identifies
the mappings /o/→ /u/ and /b/→ /v/ as well as the
identity mappings /o/→ /o/ and /b/→ /b/ which are
also common.

5.2 PARTIALROMANCE

In Table 2 we present the results of running our sys-
tem on the PARTIALROMANCE data set. In this data
set, only approximately 75% of the source words in
each of the source lexicons have cognates in each of
the target lexicons. The parameter τ trades off pre-
cision and recall. We show results for three different
settings of τ : 0.25, 0.5, and 0.75.

Our system achieves an average precision across
language pairs of 99.7% at an average recall of
34.0%. For the pairs Italian – Portuguese, and Span-
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Model Seed τ Precision Recall F1
Haghighi et al. (2008) 20 0.1 72.0 14.0 23.5

20 0.25 63.6 31.0 41.7
20 0.5 44.8 43.7 44.2
50 0.1 90.5 17.6 29.5
50 0.25 75.4 36.7 49.4
50 0.5 56.4 55.0 55.7

MATCHER 0 0.1 93.5 18.2 30.5
0 0.25 83.2 40.5 54.5
0 0.5 56.5 55.1 55.8

Table 3: Results on EUROPARL data set. Our system
is labeled MATCHER. We compare against the bilingual
lexicon induction system of Haghighi et al. (2008). We
show the cognate precision, recall, and F1 for the pair of
languages English and Spanish using lexicons extracted
from corpora. Note that approximately 50% of the words
in the English lexicon have cognates in the Spanish lexi-
con.

ish – Portuguese, our system achieves prefect preci-
sion at recalls of 32.2% and 38.1% respectively. The
best average F1 achieved by our system is 79.5%,
which surpasses the average F1 of 73.6 achieved by
the phylogenetic system of Hall and Klein (2010).

The phylogenetic system observes the phyloge-
netic tree of ancestry for the three languages and
explicitly models cognate evolution and survival in
a ‘survival’ tree. One might expect the phyloge-
netic system to achieve better results on this data set
where part of the task is identifying which words do
not have cognates. It is surprising that our model
does so well given its simplicity.

5.3 EUROPARL

Table 3 presents results for our system on the EU-
ROPARL data set across three different settings of τ :
0.1, 0.25, and 0.5. We compare against the ortho-
graphic system presented by Haghighi et al. (2008),
across the same three settings of τ , and with two dif-
ferent sizes of seed lexicon: 20 and 50. In this data
set, only approximately 50% of the source words
have cognates in the target lexicon.

Our system achieves a precision of 93.5% at a re-
call of 18.2%, and a best F1 of 55.0%. Using a seed
matching of 50 word pairs, the orthographic sys-
tem of Haghighi et al. (2008) achieves a best F1 of
55.7%. Using a seed matching of 20 word pairs,
it achieves a best F1 of 44.2%. Our system out-
performs the orthographic system even though the
orthographic system makes use of important addi-

Model τ Lexicon Acc. Alphabet Acc.
Snyder et al. (2010) – 60.4* 29/33*
MATCHER 1.0 90.4 28/33

Table 4: Results on UGARITIC data set. Our system is la-
beled MATCHER. We compare against the decipherment
system of Snyder et al. (2010). *Note that results for this
system are on a somewhat different task. In particular, the
MATCHER system assumes the inventories of cognates in
both Hebrew and Ugaritic are known, while the system
of Snyder et al. (2010) reconstructs cognates assuming
only that the morphology of Hebrew is known, which is a
harder task. We show cognate pair identification accuracy
and alphabet matching accuracy for Ugaritic and Hebrew.

tional information: a seed matching of correct cog-
nate pairs. The results show that as the size of
this seed is decreased, the performance of the ortho-
graphic system degrades.

5.4 UGARITIC

In Table 4 we present results on the UGARITIC data
set. We evaluate both accuracy of the lexicon match-
ing learned by our system, and the accuracy of the
alphabet matching. Our system achieves a lexicon
accuracy of 90.4% while correctly identifying 28 out
the 33 gold character mappings.

We also present the results for the decipherment
model of Snyder et al. (2010) in Table 4. Note that
while the evaluation data sets for our two models
are the same, the tasks are very different. In par-
ticular, our system assumes the inventories of cog-
nates in both Hebrew and Ugaritic are known, while
the system of Snyder et al. (2010) reconstructs cog-
nates assuming only that the morphology of Hebrew
is known, which is a harder task. Even so, the re-
sults show that our system is effective at decipher-
ment when semantically similar lexicons are avail-
able.

6 Conclusion

We have presented a simple combinatorial model
that simultaneously incorporates both a matching
between alphabets and a matching between lexicons.
Our system is effective at both the tasks of cognate
identification and alphabet decipherment, requiring
only lists of words in both languages as input.
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Abstract

In this paper, we consider the problem of un-
supervised morphological analysis from a new
angle. Past work has endeavored to design un-
supervised learning methods which explicitly
or implicitly encode inductive biases appropri-
ate to the task at hand. We propose instead
to treat morphological analysis as a structured
prediction problem, where languages with la-
beled data serve as training examples for un-
labeled languages, without the assumption of
parallel data. We define a universal morpho-
logical feature space in which every language
and its morphological analysis reside. We de-
velop a novel structured nearest neighbor pre-
diction method which seeks to find the mor-
phological analysis for each unlabeled lan-
guage which lies as close as possible in the
feature space to a training language. We ap-
ply our model to eight inflecting languages,
and induce nominal morphology with substan-
tially higher accuracy than a traditional, MDL-
based approach. Our analysis indicates that
accuracy continues to improve substantially as
the number of training languages increases.

1 Introduction

Over the past several decades, researchers in the nat-
ural language processing community have focused
most of their efforts on developing text processing
tools and techniques for English (Bender, 2009),
a morphologically simple language. Recently, in-
creasing attention has been paid to the wide variety
of other languages of the world. Most of these lan-
guages still pose severe difficulties, due to (i) their

lack of annotated textual data, and (ii) the fact that
they exhibit linguistic structure not found in English,
and are thus not immediately susceptible to many
traditional NLP techniques.

Consider the example of nominal part-of-speech
analysis. The Penn Treebank defines only four En-
glish noun tags (Marcus et al., 1994), and as a re-
sult, it is easy to treat the words bearing these tags
as completely distinct word classes, with no inter-
nal morphological structure. In contrast, a compara-
ble tagset for Hungarian includes 154 distinct noun
tags (Erjavec, 2004), reflecting Hungarian’s rich in-
flectional morphology. When dealing with such lan-
guages, treating words as atoms leads to severe data
sparsity problems.

Because annotated resources do not exist for most
morphologically rich languages, prior research has
focused on unsupervised methods, with a focus on
developing appropriate inductive biases. However,
inductive biases and declarative knowledge are no-
toriously difficult to encode in well-founded models.
Even putting aside this practical matter, a universally
correct inductive bias, if there is one, is unlikely to
be be discovered by a priori reasoning alone.

In this paper, we argue that languages for which
we have gold-standard morphological analyses can
be used as effective guides for languages lacking
such resources. In other words, instead of treating
each language’s morphological analysis as a de novo
induction problem to be solved with a purely hand-
coded bias, we instead learn from our labeled lan-
guages what linguistically plausible morphological
analyses looks like, and guide our analysis in this
direction.

322



More formally, we recast morphological induc-
tion as a new kind of supervised structured predic-
tion problem, where each annotated language serves
as a single training example. Each language’s noun
lexicon serves as a single input x, and the analysis
of the nouns into stems and suffixes serves as a com-
plex structured label y.

Our first step is to define a universal morpholog-
ical feature space, into which each language and its
morphological analysis can be mapped. We opt for
a simple and intuitive mapping, which measures the
sizes of the stem and suffix lexicons, the entropy of
these lexicons, and the fraction of word forms which
appear without any inflection.

Because languages tend to cluster into well de-
fined morphological groups, we cast our learn-
ing and prediction problem in the nearest neighbor
framework (Cover and Hart, 1967). In contrast to
its typical use in classification problems, where one
can simply pick the label of the nearest training ex-
ample, we are here faced with a structured predic-
tion problem, where locations in feature space de-
pend jointly on the input-label pair (x, y). Finding a
nearest neighbor thus consists of searching over the
space of morphological analyses, until a point in fea-
ture space is reached which lies closest to one of the
labeled languages. See Figure 1 for an illustration.

To provide a measure of empirical validation, we
applied our approach to eight languages with inflec-
tional nominal morphology, ranging in complexity
from very simple (English) to very complex (Hun-
garian). In all but one case, our approach yields
substantial improvements over a comparable mono-
lingual baseline (Goldsmith, 2005), which uses the
minimum description length principle (MDL) as its
inductive bias. On average, our method increases
accuracy by 11.8 percentage points, corresponding
to a 42% decrease in error relative to a supervised
upper bound. Further analysis indicates that accu-
racy improves as the number of training languages
increases.

2 Related Work

In this section, we briefly review prior work on un-
supervised morphological induction, as well as mul-
tilingual analysis in NLP.

Unsupervised Morphological Induction: Unsu-
pervised morphology remains an active area of re-
search (Schone and Jurafsky, 2001; Goldsmith,
2005; Adler and Elhadad, 2006; Creutz and La-
gus, 2005; Dasgupta and Ng, 2007; Creutz and La-
gus, 2007; Poon et al., 2009). Many existing algo-
rithms derive morpheme lexicons by identifying re-
curring patterns in words. The goal is to optimize the
compactness of the data representation by finding a
small lexicon of highly frequent strings, resulting in
a minimum description length (MDL) lexicon and
corpus (Goldsmith, 2001; Goldsmith, 2005). Later
work cast this idea in a probabilistic framework in
which the the MDL solution is equivalent to a MAP
estimate in a suitable Bayesian model (Creutz and
Lagus, 2005). In all these approaches, a locally op-
timal segmentation is identified using a task-specific
greedy search.

Multilingual Analysis: An influential line of prior
multilingual work starts with the observation that
rich linguistic resources exist for some languages
but not others. The idea then is to project linguis-
tic information from one language onto others via
parallel data. Yarowsky and his collaborators first
developed this idea and applied it to the problems of
part-of-speech tagging, noun-phrase bracketing, and
morphology induction (Yarowsky and Wicentowski,
2000; Yarowsky et al., 2000; Yarowsky and Ngai,
2001), and other researchers have applied the idea
to syntactic and semantic analysis (Hwa et al., 2005;
Padó and Lapata, 2006) In these cases, the existence
of a bilingual parallel text along with highly accurate
predictions for one of the languages was assumed.

Another line of work assumes the existence of
bilingual parallel texts without the use of any super-
vision (Dagan et al., 1991; Resnik and Yarowsky,
1997). This idea has been developed and applied to
a wide variety tasks, including morphological anal-
ysis (Snyder and Barzilay, 2008b; Snyder and Barzi-
lay, 2008a), part-of-speech induction (Snyder et al.,
2008; Snyder et al., 2009b; Naseem et al., 2009),
and grammar induction (Snyder et al., 2009a; Blun-
som et al., 2009; Burkett et al., 2010). An even
more recent line of work does away with the as-
sumption of parallel texts and performs joint unsu-
pervised induction for various languages through the
use of coupled priors in the context of grammar in-
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duction (Cohen and Smith, 2009; Berg-Kirkpatrick
and Klein, 2010).

In contrast to these previous approaches, the
method proposed in this paper does not assume the
existence of any parallel text, but does assume that
labeled data exists for a wide variety of languages, to
be used as training examples for our test language.

3 Structured Nearest Neighbor

We reformulate morphological induction as a super-
vised learning task, where each annotated language
serves as a single training example for our language-
independent model. Each such example consists
of an input-label pair (x, y), both of which contain
complex internal structure: The input x ∈ X con-
sists of a vocabulary list of all words observed in a
particular monolingual corpus, and the label y ∈ Y
consists of the correct morphological analysis of all
the vocabulary items in x.1 Because our goal is
to generalize across languages, we define a feature
function which maps each (x, y) pair to a universal
feature space: f : X × Y → Rd.

For each unlabeled input language x, our goal is
to predict a complete morphological analysis y ∈ Y
which maximizes a scoring function on the fea-
ture space, score : Rd → R. This scoring func-
tion is trained using the n labeled-language exam-
ples: (x, y)1, . . . , (x, y)n, and the resulting predic-
tion rule for unlabeled input x is given by:

y∗ = argmax
y∈Y

score
(
f(x, y)

)

Languages can be typologically categorized by
the type and richness of their morphology. On the
assumption that for each test language, at least one
typologically similar language will be present in the
training set, we employ a nearest neighbor scoring
function. In the standard nearest neighbor classifi-
cation setting, one simply predicts the label of the
closest training example in the input space.2 In our
structured prediction setting, the mapping to the uni-
versal feature space depends crucially on the struc-
ture of the proposed label y, not simply the input

1Technically, the label space of each input, Y , should be
thought of as a function of the input x. We suppress this depen-
dence for notational clarity.

2More generally the majority label of the k-nearest neigh-
bors.

x. We thus generalize nearest-neighbor prediction
to the structured scenario and propose the following
prediction rule:

y∗ = argmin
y∈Y

min
`
‖ f(x, y)− f(x`, y`) ‖, (1)

where the index ` ranges over the training languages.
In words, we predict the morphological analysis y
for our test language which places it as close as pos-
sible in the universal feature space to one of the
training languages `.

Morphological Analysis: In this paper we focus
on nominal inflectional suffix morphology. Consider
the word utiskom in Serbian, meaning impression
with the instrumental case marking. A correct analy-
sis of this word would divide it into a stem (utisak =
impression), a suffix (-om = instrumental case), and
a phonological deletion rule on the stem’s penulti-
mate vowel (..ak#→ ..k#).

More generally, as we define it, a morphological
analysis of a word typew consists of (i) a stem t, (ii),
a suffix f , and (iii) a deletion rule d. Either or both
of the suffix and deletion rule can beNULL. We al-
low three types of deletion rules on stems: deletion
of final vowels (..V# → ..#), deletion of penulti-
mate vowels (..V C# → ..C#), and removals and
additions of final accent marks (e.g. ..ã# → ..a#).
We require that stems be at least three characters
long and that suffixes be no more than four. And,
of course, we require that after (1) applying deletion
rule d to stem t, and (2) adding suffix f to the result,
we obtain word w.

Universal Feature Space: We employ a fairly
simple and minimal set of features, all of which
could plausibly generalize across a wide range of
languages. Consider the set of stems T , suffixes F ,
and deletion rules D, induced by the morphological
analyses y of the words x. Our first three features
simply count the sizes of these three sets.

These counting features consider only the raw
number of unique morphemes (and phonological
rules) being used, but not their individual frequency
or distribution. Our next set of features considers
the empirical entropy of these occurrences as dis-
tributed across the lexicon of words x by analysis y.
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Figure 1: Structured Nearest Neighbor Search: The inference procedure for unlabeled test language x, when trained
with three labeled languages, (x1, y1), (x2, y2), (x3, y3). Our search procedure iteratively attempts to find labels for x
which are as close as possible in feature space to each of the training languages. After convergence, the label which is
closest in distance to a training language is predicted, in this case being the label near training language (x3, y3).

For example, if the (x, y) pair consists of the ana-
lyzed words {kiss, kiss-es, hug}, then the empirical
distributions over stems, suffixes, and deletion rules
would be:

• P (t = kiss) = 2/3

• P (t = hug) = 1/3

• P (f = NULL) = 2/3

• P (f = −es) = 1/3

• P (d = NULL) = 1

The three entropy features are defined as the shan-
non entropies of these stem, suffix, and deletion rule
probabilities: H(t), H(f), H(d).3

Finally, we consider two simple percentage fea-
tures: the percentage of words in x which according
to y are left unsegmented (i.e. have the null suf-
fix, 2/3 in the example above), and the percentage of
segmented words which employ a deletion rule (0 in
the example above). Thus, in total, our model em-
ploys 8 universal morphological features. All fea-
tures are scaled to the unit interval and are assumed
to have equal weight.

3Note that here and throughout the paper, we operate over
word types, ignoring their corpus frequencies.

3.1 Search Algorithm
The main algorithmic challenge for our model lies in
efficiently computing the best morphological analy-
sis y for each language-specific word set x, accord-
ing to Equation 1. Exhaustive search through the
set of all possible morphological analyses is impos-
sible, as the number of such analyses grows expo-
nentially in the size of the vocabulary. Instead, we
develop a greedy search algorithm in the following
fashion (the search procedure is visually depicted in
Figure 1).

At each time-step t, we maintain a set of frontier
analyses

{
y(t,`)

}
`
, where ` ranges over the training

languages. The goal is to iteratively modify each of
these frontier analyses y(t,`) → y(t+1,`) so that the
location of the training language in universal feature
space — f

(
x, y(t+1,`)

)
— is as close as possible to

the location of the training language `: f
(
x`, y`).

After iterating this procedure to convergence, we
are left with a set of analyses

{
y(`)
}
`
, each of which

approximates the analyses which yield minimal dis-
tances to a particular training language:

y(`) ≈ argmin
y∈Y

‖ f(x, y)− f(x`, y`) ‖ .

We finally select from amongst these analyses and
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make our prediction:

`∗ = argmin
`
‖ f(x, y(`))− f(x`, y`) ‖

y∗ = y(`
∗)

The main outline of our search algorithm is based
on the MDL-based greedy search heuristic devel-
oped and studied by (Goldsmith, 2005). At a high
level, this search procedure alternates between indi-
vidual analyses of words (keeping the set of stems
and suffixes fixed), aggregate discoveries of new
stems (keeping the suffixes fixed), and aggregate dis-
coveries of new suffixes (keeping stems fixed). As
input, we consider the test words x in our new lan-
guage, and we run the search in parallel for each
training language (x`, y`). For each such test-train
language pair, the search consists of the following
stages:

Stage 0: Initialization
We initially analyze each word w ∈ x according

to peaks in successor frequency.4 If w’s n-character
prefix w:n has successor frequency > 1 and the sur-
rounding prefixes, w:n−1 and w:n+1 both have suc-
cessor frequency = 1, then we analyze w as a stem-
suffix pair: (w:n, wn+1:).5 Otherwise, we initialize
w as an unsuffixed stem. As this procedure tends to
produce an overly large set of suffixes F , we further
prune F down to the number of suffixes found in
the training language, retaining those which appear
with the largest number of stems. This initialization
stage is carried out once, and afterwards the follow-
ing three stages are repeated until convergence.

Stage 1: Reanalyze each word
In this stage, we reanalyze each word (in random

order). We use the set of stems T and suffixes F
obtained from the previous stage, and don’t permit
the addition of any new items to these lists. In-
stead, we focus on obtaining better analyses of each
word, while also building up a set of phonological
deletion rules D. For each word w ∈ x, we con-
sider all possible segmentations of w into a stem-

4The successor frequency of a string prefix s is defined as
the number of unique characters that occur immediately after s
in the vocabulary.

5With the restriction that at this stage we only allow suffixes
up to length 5, and stems of at least length 3.

suffix pair (t, f), for which f ∈ F , and where ei-
ther t ∈ T or some t′ ∈ T such that t is obtained
from t′ using a deletion rule d (e.g. by deleting a
final or penultimate vowel). For each such possi-
ble analysis y′, we compute the resulting location
in feature space f(x, y′), and select the analysis that
brings us closest to our target training language:
y = argminy′ ‖ f(x, y′)− f(x`, y`) ‖ .

Stage 2: Find New Stems
In this stage, we keep our set of suffixes F and

deletion rules D from the previous stage fixed, and
attempt to find new stems to add to T through an ag-
gregate analysis of unsegmented words. For every
string s, we consider the set of words which are cur-
rently unsegmented, and can be analyzed as a stem-
suffix pair (s, f) for some existing suffix f ∈ F ,
and some deletion rule d ∈ D. We then consider
the joint segmentation of these words into a new
stem s, and their respective suffixes. As before, we
choose the segmentation if it brings us closer in fea-
ture space to our target training language.

Stage 3: Find New Suffixes
This stage is exactly analogous to the previous

stage, except we now fix the set of stems T and seek
to find new suffixes.

3.2 A Monolingual Supervised Model

In order to provide a plausible upper bound on per-
formance, we also formulate a supervised monolin-
gual morphological model, using the structured per-
ceptron framework (Collins, 2002). Here we as-
sume that we are given some training sequence of in-
puts and morphological analyses (all within one lan-
guage): (x1, y1), (x2, y2), . . . , (xn, yn). We define
each input xi to be a noun w, along with a morpho-
logical tag z, which specifies the gender, case, and
number of the noun. The goal is to predict the cor-
rect segmentation of w into stem, suffix, and phono-
logical deletion rule: yi = (t, f, d).6

To do so, we define a feature function over input-
label pairs, (x, y), with the following binary feature
templates: (1) According to label yi, the stem is t

6While the assumption of the correct morphological tag as
input is somewhat unrealistic, this model still gives us a strong
upper bound on how well we can expect our unsupervised
model to perform.
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Type Counts Entropy Percentage
# words # stems # suffs # dels stem entropy suff entropy del entropy unseg deleted

BG 4833 3112 21 8 11.4 2.7 0.9 .45 .29
CS 5836 3366 28 12 11.5 3.2 1.6 .38 .53
EN 4178 3453 3 1 11.7 1.0 0.1 .73 .06
ET 6371 3742 141 5 11.5 5.0 0.2 .31 .04
HU 8051 3746 231 7 11.3 5.8 0.5 .23 .11
RO 5578 3297 23 8 11.5 2.9 1.4 .48 .51
SL 6111 3172 32 6 11.3 3.2 1.5 .33 .56
SR 5849 3178 28 5 11.4 2.9 1.4 .33 .53

Table 1: Corpus statistics for the eight languages. The first four columns give the number of unique word, stem, suffix,
and phonological deletion rule types. The next three columns give, respectively, the entropies of the distributions
of stems, suffixes (including NULL), and deletion rules (including NULL) over word types. The final two columns
give, respectively, the percentage of word types occurring with theNULL suffix, and the number of non-NULL suffix
words which use a phonological deletion rule. Note that the final eight columns define the universal feature space used
by our model. BG = Bulgarian, CS = Czech, EN = English, ET = Estonian, HU = Hungarian, RO = Romanian, SL =
Slovene, SR = Serbian

(one feature for each possible stem). (2) Accord-
ing to label yi, the suffix and deletion rule are (f, d)
(one feature for every possible pair of deletion rules
and suffixes). (3) According to label yi and morpho-
logical tag z, the suffix, deletion rule, and gender
are respectively (f, d,G). (4) According to label yi
and morphological tag z, the suffix, deletion rule,
and case are (f, d, C). (5) According to label yi and
morphological tag z, the suffix, deletion rule, and
number are (f, d,N).

We train a set of linear weights on our fea-
tures using the averaged structured perceptron algo-
rithm (Collins, 2002).

4 Experiments

In this section we turn to experimental findings to
provide empirical support for our proposed frame-
work.

Corpus: To test our cross-lingual model, we ap-
ply it to a morphologically analyzed corpus of eight
languages (Erjavec, 2004). The corpus includes a
roughly 100,000 word English text, Orwell’s novel
“Nineteen Eighty Four,” and its translation into
seven languages: Bulgarian, Czech, Estonian, Hun-
garian, Romanian, Slovene, and Serbian. All the
words in the corpus are tagged with morphologi-
cal stems and a detailed morpho-syntactic analysis.
Although the texts are parallel, we note that par-
allelism is nowhere assumed nor exploited by our

model. See Table 1 for a summary of relevant cor-
pus statistics. As indicated in the table, the raw num-
ber of nominal word types varies quite a bit across
the languages, almost doubling from 4,178 (English)
to 8,051 (Hungarian). In contrast, the number of
stems appearing within these words is relatively sta-
ble across languages, ranging from a minimum of
3,112 (Bulgarian) to a maximum of 3,746 (Hungar-
ian), an increase of just 20%.

In contrast, the number of suffixes across the lan-
guages varies quite a bit. Hungarian and Esto-
nian, both Uralic languages with very complex nom-
inal morphology, use 231 and 141 nominal suffixes,
respectively. Besides English, the remaining lan-
guages employ between 21 and 32 suffixes, and En-
glish is the outlier in the other direction, with just
three nominal inflectional suffixes.

Baselines and Results: As our unsupervised
monolingual baseline, we use the Linguistica pro-
gram (Goldsmith, 2001; Goldsmith, 2005). We ap-
ply Linguistica’s default settings, and run the “suffix
prediction” option. Our model’s search procedure
closely mirrors the one used by Linguistica, with
the crucial difference that instead of attempting to
greedily minimize description length, our algorithm
instead tries to find the analysis as close as possi-
ble in the universal feature space to that of another
language.

To apply our model, we treat each of the eight
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Linguistica
Our Model

SupervisedNearest Neighbor Self (oracle) Avg.
Accuracy Distance Accuracy Distance Accuracy Distance

BG 68.7 84.0 (RO) 0.13 88.7 0.03 68.6 3.90 94.7
CS 60.4 82.8 (BG) 0.40 84.5 0.03 66.3 4.05 93.5
EN 81.1 75.8 (BG) 1.29 89.3 0.10 58.3 4.30 93.4
ET 51.2 66.6 (HU) 0.35 80.9 0.03 52.8 4.57 86.5
HU 64.5 69.3 (ET) 0.81 66.5 1.10 68.0 4.94 94.9
RO 65.6 71.0 (CS) 0.11 71.2 0.15 62.3 3.95 89.1
SL 61.1 82.8 (SR) 0.07 85.5 0.04 61.7 3.69 95.4
SR 64.2 79.1 (SL) 0.06 82.2 0.04 63.0 3.71 94.8
avg. 64.6 76.4 0.40 81.1 0.19 62.6 4.14 92.8

Table 2: Prediction accuracy over word types for the Linguistica baseline, our cross-lingual model, and the monolin-
gual supervised perceptron model. For our model, we provide both prediction accuracy and resulting distance to the
training language in three different scenarios: (i) Nearest Neighbor: The training languages include all seven other
languages in our data set, and the predictions with minimal distance to a training language are chosen (the nearest
neighbor is indicated in parentheses). (ii) Self (oracle): Each language is trained to minimize the distance to its own
gold-standard analysis. (iii) Average: The feature values of all seven training languages are averaged together to
create a single objective.

languages in turn as the test language, with the other
seven serving as training examples. For each test
language, we iterate the search procedure for each
training language (performed in parallel), until con-
vergence. The number of required iterations varies
from 6 to 36 (depending on the test-training lan-
guage pair), and each iteration takes no more than 30
seconds of run-time on a 2.4GHz Intel Xeon E5620
processor. We also consider two variants of our
method. In the first (Self (oracle)), we train each
test language to minimize the distance to its own
gold standard feature values. In the second variant
(Avg.), we average the feature values of all seven
training languages into a single objective. As a plau-
sible upper bound on performance, we implemented
the structured perceptron described in Section 3.2.
For each language, we train the perceptron on a ran-
domly selected set of 80% of the nouns, and test on
the remaining 20%.

The prediction accuracy for all models is calcu-
lated as the fraction of word types with correctly
predicted suffixes. See Table 2 for the results. For
all languages other than English (which is a mor-
phological loner in our group of languages), our
model improves over the baseline by a substantial
margin, yielding an average increase of 11.8 abso-
lute percentage points, and a reduction in error rela-

tive to the supervised upper bound of 42%. Some of
the most striking improvements are seen on Serbian
and Slovene. These languages are closely related
to one another, and indeed our model discovers that
they are each others’ nearest neighbors. By guiding
their morphological analyses towards one another,
our model achieves a 21 percentage point increase
in the case of Slovene and a 15 percentage point in-
crease in the case of Slovene.

Perhaps unsurprisingly, when each language’s
gold standard feature values are used as its own
target (Self (oracle) in Table 2), performance in-
creases even further, to an average of 81.1%. By the
same token, the resulting distance in universal fea-
ture space between training and test analyses is cut
in half under this variant, when compared to the non-
oracular nearest neighbor method. The remaining
errors may be due to limitations of the search proce-
dure (i.e. getting caught in local minima), or to the
coarseness of the feature space (i.e. incorrect analy-
ses might map to the same feature values as the cor-
rect analysis). Finally, we note that minimizing the
distance to the average feature values of the seven
training languages (Avg. in Table 2) yields subpar
performance and very large distances between be-
tween predicted analyses and target feature values
(4.14 compared to 0.40 for nearest neighbor). This
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Figure 2: Locations in Feature Space of Linguistica predictions (green squares), gold standard analyses (red tri-
angles), and our model’s nearest neighbor predictions (blue circles). The original 8-dimensional feature space was
reduced to two dimensions using Multidimensional Scaling.

result may indicate that the average feature point be-
tween training languages is simply unattainable as
an analysis of a real lexicon of nouns.

Visualizing Locations in Feature Space: Besides
assessing our method quantitatively, we can also vi-
sualize the the eight languages in universal feature
space according to (i) their gold standard analyses,
(ii) the predictions of our model and (iii) the pre-
dictions of Linguistica. To do so, we reduce the 8-
dimensional features space down to two dimensions
while preserving the distances between the predicted
and gold standard feature vectors, using Multidi-
mensional Scaling (MDS). The results of this anal-
ysis are shown in Figure 2. With the exception of
English, our model’s analyses lie closer in feature
space to their gold standard counterparts than those
of the baseline. It is interesting to note that Serbian
and Slovene, which are very similar languages, have
essentially swapped places under our model’s anal-
ysis, as have Estonian and Hungarian (both highly
inflected Uralic languages). English has (unfortu-
nately) been pulled towards Bulgarian, the second
least inflecting language in our set.

Learning Curves: We also measured the perfor-
mance of our method as a function of the number
of languages in the training set. For each target lan-
guage, we consider all possible training sets of sizes
ranging from 1 to 7 and select the predictions which
bring our test language closest in distance to one of
the languages in the set. We then average the result-
ing accuracy over all training sets of each size. Fig-
ure 3 shows the resulting learning curves averaged
over all test languages (left), as well as broken down
by test language (right). The overall trend is clear:
as additional languages are added to the training set,
test performance improves. In fact, with only one
training language, our method performs worse (on
average) than the Linguistica baseline. However,
with two or more training languages available, our
method achieves superior results.

Accuracy vs. Distance: We can gain some in-
sight into these learning curves if we consider the
relationship between accuracy (of the test language
analysis) and distance to the training language (of
the same predicted analysis). The more training lan-
guages available, the greater the chance that we can
guide our test language into very close proximity to
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Figure 3: Learning curves for our model as the number of training languages increases. The figure on the left shows
the average accuracy of all eight languages for increasingly larger training sets (results are averaged over all training
sets of size 1,2,3,...). The dotted line indicates the average performance of the baseline. The figure on the right shows
similar learning curves, broken down individually for each test language (see Figure 1 for language abbreviations).

one of them. It thus stands to reason that a strong
(negative) correlation between distance and accu-
racy would lead to increased accuracy with larger
training sets. In order to assess this correlation, we
considered all 56 test-train language pairs and col-
lected the resulting accuracy and distance for each
pair. We separately scaled accuracy and distance to
the unit interval for each test language (as some test
languages are inherently more difficult than others).
The resulting plot, shown in Figure 4, shows the ex-
pected correlation: When our test language can be
guided very closely to the training language, the re-
sulting predictions are likely to be good. If not, the
predictions are likely to be bad.

5 Conclusions and Future Work

The approach presented in this paper recasts mor-
phological induction as a structured prediction task.
We assume the presence of morphologically labeled
languages as training examples which guide the in-
duction process for unlabeled test languages. We
developed a novel structured nearest neighbor ap-
proach for this task, in which all languages and their
morphological analyses lie in a universal feature
space. The task of the learner is to search through
the space of morphological analyses for the test lan-
guage and return the result which lies closest to one
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Figure 4: Accuracy vs. Distance: For all 56 possi-
ble test-train language pairs, we computed test accuracy
along with resulting distance in universal feature space
to the training language. Distance and accuracy are sep-
arately normalized to the unit interval for each test lan-
guage, and all resulting points are plotted together. A
line is fit to the points using least-squares regression.
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of the training languages. Our empirical findings
validate this approach: On a set of eight different
languages, our method yields substantial accuracy
gains over a traditional MDL-based approach in the
task of nominal morphological induction.

One possible shortcoming of our approach is that
it assumes a uniform weighting of the cross-lingual
feature space. In fact, some features may be far more
relevant than others in guiding our test language to
an accurate analysis. In future work, we plan to in-
tegrate distance metric learning into our approach,
allowing some features to be weighted more heavily
than others. Besides potential gains in prediction ac-
curacy, this approach may shed light on deeper rela-
tionships between languages than are otherwise ap-
parent.
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Abstract

Log-linear parsing models are often trained

by optimizing likelihood, but we would prefer

to optimise for a task-specific metric like F-

measure. Softmax-margin is a convex objec-

tive for such models that minimises a bound

on expected risk for a given loss function, but

its naı̈ve application requires the loss to de-

compose over the predicted structure, which

is not true of F-measure. We use softmax-

margin to optimise a log-linear CCG parser for

a variety of loss functions, and demonstrate

a novel dynamic programming algorithm that

enables us to use it with F-measure, lead-

ing to substantial gains in accuracy on CCG-

Bank. When we embed our loss-trained parser

into a larger model that includes supertagging

features incorporated via belief propagation,

we obtain further improvements and achieve

a labelled/unlabelled dependency F-measure

of 89.3%/94.0% on gold part-of-speech tags,

and 87.2%/92.8% on automatic part-of-speech

tags, the best reported results for this task.

1 Introduction

Parsing models based on Conditional Random

Fields (CRFs; Lafferty et al., 2001) have been very

successful (Clark and Curran, 2007; Finkel et al.,

2008). In practice, they are usually trained by max-

imising the conditional log-likelihood (CLL) of the

training data. However, it is widely appreciated that

optimizing for task-specific metrics often leads to

better performance on those tasks (Goodman, 1996;

Och, 2003).

An especially attractive means of accomplishing

this for CRFs is the softmax-margin (SMM) ob-

jective (Sha and Saul, 2006; Povey and Woodland,

2008; Gimpel and Smith, 2010a) (§2). In addition to

retaining a probabilistic interpretation and optimiz-

ing towards a loss function, it is also convex, mak-

ing it straightforward to optimise. Gimpel and Smith

(2010a) show that it can be easily implemented with

a simple change to standard likelihood-based train-

ing, provided that the loss function decomposes over

the predicted structure.

Unfortunately, the widely-used F-measure met-

ric does not decompose over parses. To solve this,

we introduce a novel dynamic programming algo-

rithm that enables us to compute the exact quanti-

ties needed under the softmax-margin objective us-

ing F-measure as a loss (§3). We experiment with

this and several other metrics, including precision,

recall, and decomposable approximations thereof.

Our ability to optimise towards exact metrics en-

ables us to verify the effectiveness of more effi-

cient approximations. We test the training proce-

dures on the state-of-the-art Combinatory Categorial

Grammar (CCG; Steedman 2000) parser of Clark

and Curran (2007), obtaining substantial improve-

ments under a variety of conditions. We then embed

this model into a more accurate model that incor-

porates additional supertagging features via loopy

belief propagation. The improvements are additive,

obtaining the best reported results on this task (§4).

2 Softmax-Margin Training

The softmax-margin objective modifies the standard

likelihood objective for CRF training by reweighting
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each possible outcome of a training input according

to its risk, which is simply the loss incurred on a par-

ticular example. This is done by incorporating the

loss function directly into the linear scoring function

of an individual example.

Formally, we are given m training pairs

(x(1), y(1))...(x(m), y(m)), where each x(i) ∈ X is

drawn from the set of possible inputs, and each

y(i) ∈ Y(x(i)) is drawn from a set of possible

instance-specific outputs. We want to learn the K
parameters θ of a log-linear model, where each λk ∈
θ is the weight of an associated feature hk(x, y).

Function f(x, y) maps input/output pairs to the vec-

tor h1(x, y)...hK(x, y), and our log-linear model as-

signs probabilities in the usual way.

p(y|x) =
exp{θTf(x, y)}∑

y′∈Y(x) exp{θTf(x, y′)} (1)

The conditional log-likelihood objective function is

given by Eq. 2 (Figure 1). Now consider a function

`(y, y′) that returns the loss incurred by choosing to

output y′ when the correct output is y. The softmax-

margin objective simply modifies the unnormalised,

unexponentiated score θTf(x, y′) by adding `(y, y′)
to it. This yields the objective function (Eq. 3) and

gradient computation (Eq. 4) shown in Figure 1.

This straightforward extension has several desir-

able properties. In addition to having a probabilis-

tic interpretation, it is related to maximum margin

and minimum-risk frameworks, it can be shown to

minimise a bound on expected risk, and it is convex

(Gimpel and Smith, 2010b).

We can also see from Eq. 4 that the only differ-

ence from standard CLL training is that we must

compute feature expectations with respect to the

cost-augmented scoring function. As Gimpel and

Smith (2010a) discuss, if the loss function decom-

poses over the predicted structure, we can treat its

decomposed elements as unweighted features that

fire on the corresponding structures, and compute

expectations in the normal way. In the case of

our parser, where we compute expectations using

the inside-outside algorithm, a loss function decom-

poses if it decomposes over spans or productions of

a CKY chart.

3 Loss Functions for Parsing

Ideally, we would like to optimise our parser towards

a task-based evaluation. Our CCG parser is evalu-

ated on labeled, directed dependency recovery us-

ing F-measure (Clark and Hockenmaier, 2002). Un-

der this evaluation we will represent output y′ and

ground truth y as variable-sized sets of dependen-

cies. We can then compute precision P (y, y′), recall

R(y, y′), and F-measure F1(y, y
′).

P (y, y′) =
|y ∩ y′|
|y′| (5)

R(y, y′) =
|y ∩ y′|
|y| (6)

F1(y, y
′) =

2PR

P +R
=

2|y ∩ y′|
|y|+ |y′| (7)

These metrics are positively correlated with perfor-

mance – they are gain functions. To incorporate

them in the softmax-margin framework we reformu-

late them as loss functions by subtracting from one.

3.1 Computing F-Measure-Augmented

Expectations at the Sentence Level

Unfortunately, none of these metrics decompose

over parses. However, the individual statistics that

are used to compute them do decompose, a fact we

will exploit to devise an algorithm that computes the

necessary expectations. Note that since y is fixed,

F1 is a function of two integers: |y ∩ y′|, represent-

ing the number of correct dependencies in y′; and

|y′|, representing the total number of dependencies

in y′, which we will denote as n and d, respectively.1

Each pair 〈n, d〉 leads to a different value of F1. Im-

portantly, both n and d decompose over parses.

The key idea will be to treat F1 as a non-local fea-

ture of the parse, dependent on values n and d.2 To

compute expectations we split each span in an oth-

erwise usual inside-outside computation by all pairs

〈n, d〉 incident at that span.

Formally, our goal will be to compute expecta-

tions over the sentence a1...aL. In order to abstract

away from the particulars of CCG we present the al-

gorithm in relatively familiar terms as a variant of

1For numerator and denominator.
2This is essentially the same trick used in the oracle F-measure

algorithm of Huang (2008), and indeed our algorithm is a sum-

product variant of that max-product algorithm.
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min
θ

m∑

i=1


−θTf(x(i), y(i)) + log

∑

y∈Y(x(i))
exp{θTf(x(i), y)}


 (2)

min
θ

m∑

i=1


−θTf(x(i), y(i)) + log

∑

y∈Y(x(i))
exp{θTf(x(i), y) + `(y(i), y)}


 (3)

∂

∂λk
=

m∑

i=1


−hk(x(i), y(i)) +

∑

y∈Y(x(i))

exp{θTf(x(i), y) + `(y(i), y)}∑
y′∈Y(x(i)) exp{θTf(x(i), y′) + `(y(i), y′)}hk(x

(i), y)


 (4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

the classic inside-outside algorithm (Baker, 1979).

We use the notation a : A for lexical entries and

BC ⇒ A to indicate that categories B and C com-

bine to form category A via forward or backward

composition or application.3 The weight of a rule

is denoted with w. The classic algorithm associates

inside score I(Ai,j) and outside score O(Ai,j) with

category A spanning sentence positions i through j,
computed via the following recursions.

I(Ai,i+1) =w(ai+1 : A)

I(Ai,j) =
∑

k,B,C

I(Bi,k)I(Ck,j)w(BC ⇒ A)

I(GOAL) =I(S0,L)

O(GOAL) =1

O(Ai,j) =
∑

k,B,C

O(Ci,k)I(Bj,k)w(AB ⇒ C)+

∑

k,B,C

O(Ck,j)I(Bk,i)w(BA⇒ C)

The expectation of A spanning positions i through j
is then I(Ai,j)O(Ai,j)/I(GOAL).

Our algorithm extends these computations to

state-split itemsAi,j,n,d.4 Using functions n+(·) and

d+(·) to respectively represent the number of cor-

rect and total dependencies introduced by a parsing

action, we present our algorithm in Fig. 3. The fi-

nal inside equation and initial outside equation in-

corporate the loss function for all derivations hav-

ing a particular F-score, enabling us to obtain the

3These correspond respectively to unary rules A → a and bi-

nary rules A→ BC in a Chomsky normal form grammar.
4Here we use state-splitting to refer to splitting an itemAi,j into

many items Ai,j,n,d, one for each 〈n, d〉 pair.

desired expectations. A simple modification of the

goal equations enables us to optimise precision, re-

call or a weighted F-measure.

To analyze the complexity of this algorithm, we

must ask: how many pairs 〈n, d〉 can be incident at

each span? A CCG parser does not necessarily re-

turn one dependency per word (see Figure 2 for an

example), so d is not necessarily equal to the sen-

tence length L as it might be in many dependency

parsers, though it is still bounded by O(L). How-

ever, this behavior is sufficiently uncommon that we

expect all parses of a sentence, good or bad, to have

close to L dependencies, and hence we expect the

range of d to be constant on average. Furthermore,

n will be bounded from below by zero and from

above by min(|y|, |y′|). Hence the set of all possi-

ble F-measures for all possible parses is bounded by

O(L2), but on average it should be closer to O(L).

Following McAllester (1999), we can see from in-

spection of the free variables in Fig. 3 that the algo-

rithm requires worst-case O(L7) and average-case

O(L5) time complexity, and worse-case O(L4) and

average-case O(L3) space complexity.

Note finally that while this algorithm computes

exact sentence-level expectations, it is approximate

at the corpus level, since F-measure does not decom-

pose over sentences. We give the extension to exact

corpus-level expectations in Appendix A.

3.2 Approximate Loss Functions

We will also consider approximate but more effi-

cient alternatives to our exact algorithms. The idea

is to use cost functions which only utilise statistics
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I(Ai,i+1,n,d) = w(ai+1 : A) iffn = n+(ai+1 : A), d = d+(ai+1 : A)

I(Ai,j,n,d) =
∑

k,B,C

∑

{n′,n′′:n′+n′′+n+(BC⇒A)=n},
{d′,d′′:d′+d′′+d+(BC⇒A)=d}

I(Bi,k,n′,d′)I(Ck,j,n′′,d′′)w(BC ⇒ A)

I(GOAL) =
∑

n,d

I(S0,L,n,d)

(
1− 2n

d+ |y|

)

O(S0,N,n,d) =

(
1− 2n

d+ |y|

)

O(Ai,j,n,d) =
∑

k,B,C

∑

{n′,n′′:n′−n′′−n+(AB⇒C)=n},
{d′,d′′:d′−d′′−d+(AB⇒C)=d}

O(Ci,k,n′,d′)I(Bj,k,n′′,d′′)w(AB ⇒ C)+

∑

k,B,C

∑

{n′,n′′:n′−n′′−n+(BA⇒C)=n},
{d′,d′′:d′−d′′−d+(BA⇒C)=d}

O(Ck,j,n′,d′)I(Bk,i,n′′,d′′)w(BA⇒ C)

Figure 3: State-split inside and outside recursions for computing softmax-margin with F-measure.

Figure 2: Example of flexible dependency realisation in

CCG: Our parser (Clark and Curran, 2007) creates de-

pendencies arising from coordination once all conjuncts

are found and treats “and” as the syntactic head of coor-

dinations. The coordination rule (Φ) does not yet estab-

lish the dependency “and - pears” (dotted line); it is the

backward application (<) in the larger span, “apples and

pears”, that establishes it, together with “and - pears”.

CCG also deals with unbounded dependencies which po-

tentially lead to more dependencies than words (Steed-

man, 2000); in this example a unification mechanism cre-

ates the dependencies “likes - apples” and “likes - pears”

in the forward application (>). For further examples and

a more detailed explanation of the mechanism as used in

the C&C parser refer to Clark et al. (2002).

available within the current local structure, similar to

those used by Taskar et al. (2004) for tracking con-

stituent errors in a context-free parser. We design

three simple losses to approximate precision, recall

and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required

to build parse y. Our decomposable approximation

to precision simply counts the number of incorrect

dependencies using the local dependency counts,

n+(·) and d+(·).

DecP (y) =
∑

t∈T (y)
d+(t)− n+(t) (8)

To compute our approximation to recall we require

the number of gold dependencies, c+(·), which

should have been introduced by a particular parsing

action. A gold dependency is due to be recovered

by a parsing action if its head lies within one child

span and its dependent within the other. This yields a

decomposed approximation to recall that counts the

number of missed dependencies.

DecR(y) =
∑

t∈T (y)
c+(t)− n+(t) (9)
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Unfortunately, the flexible handling of dependencies

in CCG complicates our formulation of c+, render-

ing it slightly more approximate. The unification

mechanism of CCG sometimes causes dependencies

to be realised later in the derivation, at a point when

both the head and the dependent are in the same

span, violating the assumption used to compute c+
(see again Figure 2). Exceptions like this can cause

mismatches between n+ and c+. We set c+ = n+
whenever c+ < n+ to account for these occasional

discrepancies.

Finally, we obtain a decomposable approximation

to F-measure.

DecF1(y) = DecP (y) +DecR(y) (10)

4 Experiments

Parsing Strategy. CCG parsers use a pipeline strat-

egy: we first multitag each word of the sentence with

a small subset of its possible lexical categories us-

ing a supertagger, a sequence model over these cat-

egories (Bangalore and Joshi, 1999; Clark, 2002).

Then we parse the sentence under the requirement

that the lexical categories are fixed to those preferred

by the supertagger. In our experiments we used two

variants on this strategy.

First is the adaptive supertagging (AST) approach

of Clark and Curran (2004). It is based on a step

function over supertagger beam widths, relaxing the

pruning threshold for lexical categories only if the

parser fails to find an analysis. The process either

succeeds and returns a parse after some iteration or

gives up after a predefined number of iterations. As

Clark and Curran (2004) show, most sentences can

be parsed with very tight beams.

Reverse adaptive supertagging is a much less ag-

gressive method that seeks only to make sentences

parsable when they otherwise would not be due to an

impractically large search space. Reverse AST starts

with a wide beam, narrowing it at each iteration only

if a maximum chart size is exceeded. Table 1 shows

beam settings for both strategies.

Adaptive supertagging aims for speed via pruning

while the reverse strategy aims for accuracy by ex-

posing the parser to a larger search space. Although

Clark and Curran (2007) found no actual improve-

ments from the latter strategy, we will show that

with our softmax-margin-trained models it can have

a substantial effect.

Parser. We use the C&C parser (Clark and Cur-

ran, 2007) and its supertagger (Clark, 2002). Our

baseline is the hybrid model of Clark and Curran

(2007), which contains features over both normal-

form derivations and CCG dependencies. The parser

relies solely on the supertagger for pruning, using

exact CKY for search over the pruned space. Train-

ing requires calculation of feature expectations over

packed charts of derivations. For training, we lim-

ited the number of items in this chart to 0.3 million,

and for testing, 1 million. We also used a more per-

missive training supertagger beam (Table 2) than in

previous work (Clark and Curran, 2007). Models

were trained with the parser’s L-BFGS trainer.

Evaluation. We evaluated on CCGbank (Hocken-

maier and Steedman, 2007), a right-most normal-

form CCG version of the Penn Treebank. We use

sections 02-21 (39603 sentences) for training, sec-

tion 00 (1913 sentences) for development and sec-

tion 23 (2407 sentences) for testing. We supply

gold-standard part-of-speech tags to the parsers. We

evaluate on labelled and unlabelled predicate argu-

ment structure recovery and supertag accuracy.

4.1 Training with Maximum F-measure Parses

So far we discussed how to optimise towards task-

specific metrics via changing the training objective.

In our first experiment we change the data on which

we optimise CLL. This is a kind of simple base-

line to our later experiments, attempting to achieve

the same effect by simpler means. Specifically, we

use the algorithm of Huang (2008) to generate or-

acle F-measure parses for each sentence. Updating

towards these oracle parses corrects the reachabil-

ity problem in standard CLL training. Since the su-

pertagger is used to prune the training forests, the

correct parse is sometimes pruned away – reducing

data utilisation to 91%. Clark and Curran (2007)

correct for this by adding the gold tags to the parser

input. While this increases data utilisation, it bi-

ases the model by training in an idealised setting not

available at test time. Using oracle parses corrects

this bias while permitting 99% data utilisation. The

labelled F-score of the oracle parses lies at 98.1%.

Though we expected that this might result in some

improvement, results (Table 3) show that this has no
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Condition Parameter Iteration 1 2 3 4 5

AST
β (beam width) 0.075 0.03 0.01 0.005 0.001

k (dictionary cutoff) 20 20 20 20 150

Reverse
β 0.001 0.005 0.01 0.03 0.075

k 150 20 20 20 20

Table 1: Beam step function used for standard (AST) and less aggressive (Reverse) AST throughout our experiments.

Parameter β is a beam threshold while k bounds the number of lexical categories considered for each word.

Condition Parameter Iteration 1 2 3 4 5 6 7

Training
β 0.001 0.001 0.0045 0.0055 0.01 0.05 0.1

k 150 20 20 20 20 20 20

C&C ’07
β 0.0045 0.0055 0.01 0.05 0.1

k 20 20 20 20 20

Table 2: Beam step functions used for training: The first row shows the large scale settings used for most experiments

and the standard C&C settings. (cf. Table 1)

LF LP LR UF UP UR Data Util (%)

Baseline 87.40 87.85 86.95 93.11 93.59 92.63 91%

Max-F Parses 87.46 87.95 86.98 93.09 93.61 92.57 99%

CCGbank+Max-F 87.45 87.96 86.94 93.09 93.63 92.55 99%

Table 3: Performance on section 00 of CCGbank when comparing models trained with treebank-parses (Baseline)

and maximum F-score parses (Max-F) using adaptive supertagging as well as a combination of CCGbank and Max-F

parses. Evaluation is based on labelled and unlabelled F-measure (LF/UF), precision (LP/UP) and recall (LR/UR).

effect. However, it does serve as a useful baseline.

4.2 Training with the Exact Algorithm

We first tested our assumptions about the feasibil-

ity of training with our exact algorithm by measur-

ing the amount of state-splitting. Figure 4 plots the

average number of splits per span against the rela-

tive span-frequency; this is based on a typical set of

training forests containing over 600 million states.

The number of splits increases exponentially with

span size but equally so decreases the number of

spans with many splits. Hence the small number of

states with a high number of splits is balanced by a

large number of spans with only a few splits: The

highest number of splits per span observed with our

settings was 4888 but we find that the average num-

ber of splits lies at 44. Encouragingly, this enables

experimentation in all but very large scale settings.

Figure 5 shows the distribution of n and d pairs

across all split-states in the training corpus; since
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Figure 4: Average number of state-splits per span length

as introduced by a sentence-level F-measure loss func-

tion. The statistics are averaged over the training forests

generated using the settings described in §4.

n, the number of correct dependencies, over d, the

number of all recovered dependencies, is precision,

the graph shows that only a minority of states have

either very high or very low precision. The range

of values suggests that the softmax-margin criterion
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will have an opportunity to substantially modify the

expectations, hopefully to good effect.
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Figure 5: Distribution of states with d dependencies of

which n are correct in the training forests.

We next turn to the question of optimization with

these algorithms. Due to the significant computa-

tional requirements, we used the computationally

less intensive normal-form model of Clark and Cur-

ran (2007) as well as their more restrictive training

beam settings (Table 2). We train on all sentences of

the training set as above and test with AST.

In order to provide greater control over the influ-

ence of the loss function, we introduce a multiplier

τ , which simply amends the second term of the ob-

jective function (3) to:

log
∑

y∈Y (xi)

exp{θT f(xi, y) + τ × `(yi, y)}

Figure 6 plots performance of the exact loss func-

tions across different settings of τ on various evalu-

ation criteria, for models restricted to at most 3000

items per chart at training time to allow rapid ex-

perimentation with a wide parameter set. Even in

this constrained setting, it is encouraging to see that

each loss function performs best on the criteria it op-

timises. The precision-trained parser also does very

well on F-measure; this is because the parser has a

tendency to perform better in terms of precision than

recall.

4.3 Exact vs. Approximate Loss Functions

With these results in mind, we conducted a compar-

ison of parsers trained using our exact and approxi-

mate loss functions. Table 4 compares their perfor-

mance head to head when restricting training chart

sizes to 100,000 items per sentence, the largest set-

ting our computing resources allowed us to experi-

ment with. The results confirm that the loss-trained

models improve over a likelihood-trained baseline,

and furthermore that the exact loss functions seem

to have the best performance. However, the approx-

imations are extremely competitive with their exact

counterparts. Because they are also efficient, this

makes them attractive for larger-scale experiments.

Training time increases by an order of magnitude

with exact loss functions despite increased theoreti-

cal complexity (§3.1); there is no significant change

with approximate loss functions.

Table 5 shows performance of the approximate

losses with the large scale settings initially outlined

(§4). One striking result is that the softmax-margin

trained models coax more accurate parses from the

larger search space, in contrast to the likelihood-

trained models. Our best loss model improves the

labelled F-measure by over 0.8%.

4.4 Combination with Integrated Parsing and

Supertagging

As a final experiment, we embed our loss-trained

model into an integrated model that incorporates

Markov features over supertags into the parsing

model (Auli and Lopez, 2011). These features have

serious implications on search: even allowing for the

observation of Fowler and Penn (2010) that our CCG

is weakly context-free, the search problem is equiva-

lent to finding the optimal derivation in the weighted

intersection of a regular and context-free language

(Bar-Hillel et al., 1964), making search very expen-

sive. Therefore parsing with this model requires ap-

proximations.

To experiment with this combined model we use

loopy belief propagation (LBP; Pearl et al., 1985),

previously applied to dependency parsing by Smith

and Eisner (2008). A more detailed account of its

application to our combined model can be found in

(2011), but we sketch the idea here. We construct a

graphical model with two factors: one is a distribu-
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Figure 6: Performance of exact cost functions optimizing F-measure, precision and recall in terms of (a) labelled

F-measure, (b) precision, (c) recall and (d) supertag accuracy across various settings of τ on the development set.

section 00 (dev) section 23 (test)

LF LP LR UF UP UR LF LP LR UF UP UR

CLL 86.76 87.16 86.36 92.73 93.16 92.30 87.46 87.80 87.12 92.85 93.22 92.49

DecP 87.18 87.93 86.44 92.93 93.73 92.14 87.75 88.34 87.17 93.04 93.66 92.43

DecR 87.31 87.55 87.07 93.00 93.26 92.75 87.57 87.71 87.42 92.92 93.07 92.76

DecF1 87.27 87.78 86.77 93.04 93.58 92.50 87.69 88.10 87.28 93.04 93.48 92.61

P 87.25 87.85 86.66 92.99 93.63 92.36 87.76 88.23 87.30 93.06 93.55 92.57

R 87.34 87.51 87.16 92.98 93.17 92.80 87.57 87.62 87.51 92.92 92.98 92.86

F1 87.34 87.74 86.94 93.05 93.47 92.62 87.71 88.01 87.41 93.02 93.34 92.70

Table 4: Performance of exact and approximate loss functions against conditional log-likelihood (CLL): decomposable

precision (DecP), recall (DecR) and F-measure (DecF1) versus exact precision (P), recall (R) and F-measure (F1).

Evaluation is based on labelled and unlabelled F-measure (LF/UF), precision (LP/UP) and recall (LR/UR).
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section 00 (dev) section 23 (test)

AST Reverse AST Reverse

LF UF ST LF UF ST LF UF ST LF UF ST

CLL 87.38 93.08 94.21 87.36 93.13 93.99 87.73 93.09 94.33 87.65 93.06 94.01

DecP 87.35 92.99 94.25 87.75 93.25 94.22 88.10 93.26 94.51 88.51 93.50 94.39

DecR 87.48 93.00 94.34 87.70 93.16 94.30 87.66 92.83 94.38 87.77 92.91 94.22

DecF1 87.67 93.23 94.39 88.12 93.52 94.46 88.09 93.28 94.50 88.58 93.57 94.53

Table 5: Performance of decomposed loss functions in large-scale training setting. Evaluation is based on labelled and

unlabelled F-measure (LF/UF) and supertag accuracy (ST).

tion over supertag variables defined by a supertag-

ging model, and the other is a distribution over these

variables and a set of span variables defined by our

parsing model.5 The factors communicate by pass-

ing messages across the shared supertag variables

that correspond to their marginal distributions over

those variables. Hence, to compute approximate ex-

pectations across the entire model, we run forward-

backward to obtain posterior supertag assignments.

These marginals are passed as inside values to the

inside-outside algorithm, which returns a new set

of posteriors. The new posteriors are incorporated

into a new iteration of forward-backward, and the

algorithm iterates until convergence, or until a fixed

number of iterations is reached – we found that a

single iteration is sufficient, corresponding to a trun-

cated version of the algorithm in which posteriors

are simply passed from the supertagger to the parser.

To decode, we use the posteriors in a minimum-risk

parsing algorithm (Goodman, 1996).

Our baseline models are trained separately as be-

fore and combined at test time. For softmax-margin,

we combine a parsing model trained with F1 and

a supertagger trained with Hamming loss. Table 6

shows the results: we observe a gain of up to 1.5%

in labelled F1 and 0.9% in unlabelled F1 on the test

set. The loss functions prove their robustness by im-

proving the more accurate combined models up to

0.4% in labelled F1. Table 7 shows results with au-

tomatic part-of-speech tags and a direct comparison

with the Petrov parser trained on CCGbank (Fowler

and Penn, 2010) which we outpeform on all metrics.

5These complex factors resemble those of Smith and Eisner

(2008) and Dreyer and Eisner (2009); they can be thought of

as case-factor diagrams (McAllester et al., 2008)

5 Conclusion and Future Work

The softmax-margin criterion is a simple and effec-

tive approach to training log-linear parsers. We have

shown that it is possible to compute exact sentence-

level losses under standard parsing metrics, not only

approximations (Taskar et al., 2004). This enables

us to show the effectiveness of these approxima-

tions, and it turns out that they are excellent sub-

stitutes for exact loss functions. Indeed, the approxi-

mate losses are as easy to use as standard conditional

log-likelihood.

Empirically, softmax-margin training improves

parsing performance across the board, beating the

state-of-the-art CCG parsing model of Clark and

Curran (2007) by up to 0.8% labelled F-measure.

It also proves robust, improving a stronger base-

line based on a combined parsing and supertagging

model. Our final result of 89.3%/94.0% labelled

and unlabelled F-measure is the best result reported

for CCG parsing accuracy, beating the original C&C

baseline by up to 1.5%.

In future work we plan to scale our exact loss

functions to larger settings and to explore training

with loss functions within loopy belief propagation.

Although we have focused on CCG parsing in this

work, we expect our methods to be equally appli-

cable to parsing with other grammar formalisms in-

cluding context-free grammar or LTAG.
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section 00 (dev) section 23 (test)

AST Reverse AST Reverse

LF UF ST LF UF ST LF UF ST LF UF ST

CLL 87.38 93.08 94.21 87.36 93.13 93.99 87.73 93.09 94.33 87.65 93.06 94.01

BP 87.67 93.26 94.43 88.35 93.72 94.73 88.25 93.33 94.60 88.86 93.75 94.84

+DecF1 87.90 93.40 94.52 88.58 93.88 94.79 88.32 93.32 94.66 89.15 93.89 94.98

+SA 87.73 93.28 94.49 88.40 93.71 94.75 88.47 93.48 94.71 89.25 93.98 95.01

Table 6: Performance of combined parsing and supertagging with belief propagation (BP); using decomposed-F1 as

parser-loss function and supertag-accuracy (SA) as loss in the supertagger.

section 00 (dev) section 23 (test)

LF LP LR UF UP UR LF LP LR UF UP UR

CLL 85.53 85.73 85.33 91.99 92.20 91.77 85.74 85.90 85.58 91.92 92.09 91.75

Petrov I-5 85.79 86.09 85.50 92.44 92.76 92.13 86.01 86.29 85.73 92.34 92.64 92.04

BP 86.45 86.75 86.17 92.60 92.92 92.29 86.84 87.08 86.61 92.57 92.82 92.32

+DecF1 86.73 87.07 86.39 92.79 93.16 92.43 87.08 87.37 86.78 92.68 93.00 92.37

+SA 86.51 86.86 86.16 92.60 92.98 92.23 87.20 87.50 86.90 92.76 93.08 92.44

Table 7: Results on automatically assigned POS tags. Petrov I-5 is based on the parser output of Fowler and Penn

(2010); evaluation is based on sentences for which all parsers returned an analysis.
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A Computing F-Measure-Augmented

Expectations at the Corpus Level

To compute exact corpus-level expectations for softmax-

margin using F-measure, we add an additional transition

before reaching the GOAL item in our original program.

To reach it, we must parse every sentence in the corpus,

associating statistics of aggregate 〈n, d〉 pairs for the en-

tire training set in intermediate symbols Γ(1)...Γ(m) with

the following inside recursions.

I(Γ
(1)
n,d) = I(S

(1)

0,|x(1)|,n,d)

I(Γ
(`)
n,d) =

∑

n′,n′′:n′+n′′=n

I(Γ
(`−1)
n′,d′ )I(S

(`)
0,N,n′′,d′′)

I(GOAL) =
∑

n,d

I(Γ
(m)
n,d )

(
1− 2n

d+ |y|

)

Outside recursions follow straightforwardly. Implemen-

tation of this algorithm would require substantial dis-

tributed computation or external data structures, so we

did not attempt it.
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Abstract

We present a system for the large scale in-
duction of cognate groups. Our model ex-
plains the evolution of cognates as a sequence
of mutations and innovations along a phy-
logeny. On the task of identifying cognates
from over 21,000 words in 218 different lan-
guages from the Oceanic language family, our
model achieves a cluster purity score over
91%, while maintaining pairwise recall over
62%.

1 Introduction

The critical first step in the reconstruction of an
ancient language is the recovery of related cog-
nate words in its descendants. Unfortunately, this
process has largely been a manual, linguistically-
intensive undertaking for any sizable number of de-
scendant languages. The traditional approach used
by linguists—the comparative method—iterates be-
tween positing putative cognates and then identify-
ing regular sound laws that explain correspondences
between those words (Bloomfield, 1938).

Successful computational approaches have been
developed for large-scale reconstruction of phyloge-
nies (Ringe et al., 2002; Daumé III and Campbell,
2007; Daumé III, 2009; Nerbonne, 2010) and an-
cestral word forms of known cognate sets (Oakes,
2000; Bouchard-Côté et al., 2007; Bouchard-Côté
et al., 2009), enabling linguists to explore deep his-
torical relationships in an automated fashion. How-
ever, computational approaches thus far have not
been able to offer the same kind of scale for iden-
tifying cognates. Previous work in cognate identi-
fication has largely focused on identifying cognates
in pairs of languages (Mann and Yarowsky, 2001;
Lowe and Mazaudon, 1994; Oakes, 2000; Kondrak,

2001; Mulloni, 2007), with a few recent exceptions
that can find sets in a handful of languages (Bergsma
and Kondrak, 2007; Hall and Klein, 2010).

While it may seem surprising that cognate de-
tection has not successfully scaled to large num-
bers of languages, the task poses challenges not
seen in reconstruction and phylogeny inference. For
instance, morphological innovations and irregular
sound changes can completely obscure relationships
between words in different languages. However, in
the case of reconstruction, an unexplainable word is
simply that: one can still correctly reconstruct its an-
cestor using words from related languages.

In this paper, we present a system that uses two
generative models for large-scale cognate identi-
fication. Both models describe the evolution of
words along a phylogeny according to automatically
learned sound laws in the form of parametric edit
distances. The first is an adaptation of the genera-
tive model of Hall and Klein (2010), and the other
is a new generative model called PARSIM with con-
nections to parsimony methods in computational bi-
ology (Cavalli-Sforza and Edwards, 1965; Fitch,
1971). Our model supports simple, tractable infer-
ence via message passing, at the expense of being
unable to model some cognacy relationships. To
help correct this deficiency, we also describe an ag-
glomerative inference procedure for the model of
Hall and Klein (2010). By using the output of our
system as input to this system, we can find cognate
groups that PARSIM alone cannot recover.

We apply these models to identifying cognate
groups from two language families using the Aus-
tronesian Basic Vocabulary Database (Greenhill et
al., 2008), a catalog of words from about 40% of
the Austronesian languages. We focus on data from
two subfamilies of Austronesian: Formosan and
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Oceanic. The datasets are by far the largest on
which automated cognate recovery has ever been at-
tempted, with 18 and 271 languages respectively.
On the larger Oceanic data, our model can achieve
cluster purity scores of 91.8%, while maintaining
pairwise recall of 62.1%. We also analyze the mis-
takes of our system, where we find that some of the
erroneous cognate groups our system finds may not
be errors at all. Instead, they may be previously
unknown cognacy relationships that were not anno-
tated in the data.

2 Background

Before we present our model, we first describe ba-
sic facts of the Austronesian language family, along
with a description of the Austronesian Basic Vocab-
ulary Database, which forms the dataset that we use
for our experiments. For far more detailed coverage
of the Austronesian languages, we direct the inter-
ested reader to Blust (2009)’s comprehensive mono-
graph.

2.1 The Austronesian Language Family
The Austronesian language family is one of the
largest in the world, comprising about one-fifth of
the world’s languages. Geographically, it stretches
from its homeland on Formosa (Taiwan) to Mada-
gascar in the west, and as far as Hawai’i and (at one
point) the Easter Islands to the east. Until the ad-
vent of European colonialism spread Indo-European
languages to every continent, Austronesian was the
most widespread of all language families.

Linguistically, the language family is as diverse
as it is large, but a few regularities hold. From
a phonological perspective, two features stand out.
First, the phoneme inventories of these languages
are typically small. For example, it is well-known
that Hawaiian has only 13 phonemes. Moreover, the
phonotactics of these languages are often restrictive.
Sticking with the same example, Hawaiian only al-
lows (C)V syllables: consonants clusters are forbid-
den, and no syllable may end with a consonant.

2.2 The Austronesian Basic Vocabulary
Database

The Austronesian Basic Vocabulary Database
(ABVD) (Greenhill et al., 2008) is an ambitious, on-
going effort to catalog the lexicons and basic facts

about all of the languages in the Austronesian lan-
guage family. It also contains manual reconstruc-
tions for select ancestor languages produced by lin-
guists.

The sample we use—from Bouchard-Côté et al.
(2009)—contains about 50,000 words across 471
languages spanning all the major divisions of Aus-
tronesian. These words are grouped into cognate
groups and arranged by gloss. For instance, there are
37 distinct cognate groups for the gloss “tail.” One
of these groups includes the words /ekor/, /ingko/,
/iNkot/, /kiikiPu/, and /PiPina/, among others. Most
of these words have been transcribed into the Inter-
national Phonetic Alphabet, though it appears that
some words are transcribed using the Roman alpha-
bet. For instance, the second word in the example is
likely /iNko/, which is a much more likely sequence
than what is transcribed.

In this sample, there are 6307 such cognate
groups and 210 distinct glosses. The data is
somewhat sparse: fewer than 50% of the possible
gloss/language pairs are present. Moreover, there is
some amount of homoplasy—that is, languages with
a word from more than one cognate group for a given
gloss.

Finally, it is important to note that the ABVD is
still a work in progress: they have data from only
50% of extant Austronesian languages.

2.3 Subfamilies of Austronesian
In this paper we focus on two branches of the Aus-
tronesian language family, one as a development set
and one as a test set. For our development set, we
use the Formosan branch. The languages in this
group are exclusively found on the Austronesian
homeland of Formosa. The family encompasses a
substantial portion of the linguistic diversity of Aus-
tronesian: Blust (2009) argues that Formosan con-
tains 9 of the 10 first-order splits of the Austrone-
sian family. Formosan’s diversity is surprising since
it contains a mere 18 languages. Thus, Formosan is
a smaller development set that nevertheless is repre-
sentative of larger families.

For our final test set, we use the Oceanic sub-
family, which includes almost 50% of the languages
in the Austronesian family, meaning that it repre-
sents around 10% of all languages in the world.
Oceanic also represents a large fraction of the ge-
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ographic diversity of Austronesian, stretching from
New Zealand in the south to Hawai’i in the north.
Our sample includes 21863 words from 218 lan-
guages in the Oceanic family.

3 Models

In this section we describe two models, one based on
Hall and Klein (2010)—which we call HK10—and
another new model that shares some connection to
parsimony methods in computational biology, which
we call PARSIM. Both are generative models that
describe the evolution of words w` from a set of lan-
guages {`} in a cognate group g along a fixed phy-
logeny T .1 Each cognate group and word is also
associated with a gloss or meaning m, which we as-
sume to be fixed.2 In both models, words evolve
according to regular sound laws ϕ`, which are spe-
cific to each language. Also, both models will make
use of a language model λ, which is used for gen-
erating words that are not dependent on the word in
the parent language. (We leave ϕ` and λ as abstract
parameters for now. We will describe them in sub-
sequent sections.)

3.1 HK10
The first model we describe is a small modification
of the phylogenetic model of Hall and Klein (2010).
In HK10, there is an unknown number of cognate
groups G where each cognate group g consists of a
set of words {wg,`}. In each cognate group, words
evolve along a phylogeny, where each word in a lan-
guage is the result of that word evolving from its
parent according to regular sound laws. To model
the fact that not all languages have a cognate in
each group, each language in the tree has an asso-
ciated “survival” variable Sg,`, where a word may
be lost on that branch (and its descendants) instead
of evolving. Once the words are generated, they are
then “permuted” so that the cognacy relationships

1Both of these models therefore are insensitive to geo-
graphic and historical factors that cannot be easily approxi-
mated by this tree. See Nichols (1992) for an excellent dis-
cussion of these factors.

2One could easily envision allowing the meaning of a word
to change as well. Modeling this semantic drift has been consid-
ered by Kondrak (2001). In the ABVD, however, any semantic
drift has already been elided, since the database has coarsened
glosses to the extent that there is no meaningful way to model
semantic drift given our data.
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Figure 1: Plate diagrams for (a) HK10 (Hall and Klein,
2010) and (b) PARSIM, our new parsimony model, for
a small set of languages. In HK10, words are generated
following a phylogenetic tree according to sound laws ϕ,
and then “scrambled” with a permutation π so that the
original cognate groups are lost. In PARSIM, all words
for each of the M glosses are generated in a single tree,
with innovations I starting new cognate groups. The
languages depicted are Formosan (For), Paiwan (Pai),
Atayalic (Ata), Ciuli Atayalic (Ciu), and Squliq Atayalic
(Squ).
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are obscured. The task of inference then is to re-
cover the original cognate groups.

The generative process for their model is as fol-
lows:

• For each cognate group g, choose a root word
Wroot ∼ p(W |λ), a language model over
words.

• For each language ` in a pre-order traversal of
the phylogeny:

1. Choose S` ∼ Bernoulli(β`), indicating
whether or not the word survives.

2. If the word survives, choose W` ∼
p(W |ϕ`,Wpar(`)).

3. Otherwise, stop generating words in that
language and its descendants.

• For each language, choose a random permuta-
tion π of the observed data, and rearrange the
cognates according to this permutation.

We reproduce the graphical model for HK10 for a
small phylogeny in Figure 1a.

Inference in this model is intractable; to perform
inference exactly, one has to reason over all parti-
tions of the data into cognate groups. To address
this problem, Hall and Klein (2010) propose an it-
erative bipartite matching scheme where one lan-
guage is held out from the others, and then words
are assigned to the remaining groups to maximize
the probability of the attachment. That is, for some
language ` and fixed assignments π−` for the other
languages, they seek an assignment π` that maxi-
mizes:

π∗ = argmax
π

∑

g

log p(w(`,π`(g))|ϕ, π,w−`)

Unfortunately, while this approach was effective
with only a few languages (they tested on three), this
algorithm cannot scale to the eighteen languages in
Formosan, let alone the hundreds of languages in
Oceanic. Therefore, we make two simple modifi-
cations. First, we restrict the cognate assignments
to stay within a gloss. Thus, there are many fewer
potential matchings to consider. Second, we use an
agglomerative inference procedure, which greedily
merges cognate groups that result in the greatest gain

in likelihood. That is, for all pairs of cognate groups
ga with words wa and gb with words wb, we com-
pute the score:

log p(wa∪b|ϕ)− log p(wa|ϕ)− log p(wb|ϕ)

This score is the difference between the log proba-
bility of generating two cognate groups jointly and
generating them separately. We then merge the two
that generate the highest gain in likelihood. Like
the iterative bipartite matching algorithm described
above, this algorithm is not exact. However, it is
O(n2 log n) (where n is the size of the largest gloss,
which for Oceanic is 153), while the bipartite match-
ing algorithm is O(n3) (Kuhn, 1955).

Actually, the original HK10 is doubly intractable.
They use weighted automata to represent distribu-
tions over strings, but these automata—particularly
if they are non-deterministic—make inference in
any non-trivial graphical model intractable. We dis-
cuss this issue in more detail in Section 6.

3.2 A Parsimony-Inspired Model

We now describe a new model called PARSIM that
supports exact inference tractably, though it sacri-
fices some of the expressive power of HK10. In
our model, each language has at most one word for
each gloss, and this one word changes from one
language to its children according to some edge-
specific Markov process. These changes may either
be mutations, which merely change the surface form
of the word, or innovations, which start a new word
in a new cognate group that is unrelated to the previ-
ous word. Mutations take the form of a conditional
edit operation that models insertions, substitutions,
and deletions that correspond to regular (and, with
lower probability, irregular) sound changes that are
likely to occur between a language and its parent.
Innovations, on the other hand, are generated from a
language model independent of the parent’s word.

Specifically, our generative process takes the fol-
lowing form:

• For each gloss m, choose a root word Wroot ∼
λ, a language model over words.

• For each language ` in a pre-order traversal of
the phylogeny:
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malapzo mappo
Ciuli Squliq

purrok
PaiwanRukai

pouroukou

Figure 2: A small example of how PARSIM works.
Listed here are the words for “ten” in four languages
from the Formosan family, along with the tree that ex-
plains them. The dashed line indicates an innovation on
the branch.

1. Choose I` ∼ Bernoulli(β`), indicating
whether or not the word is an innovation
or a mutation.

2. If it is a mutation, choose W` ∼
p(W |ϕ`,Wpar(`)).

3. Otherwise, choose W` ∼ λ.

We also depict our model as a plate diagram for a
small phylogeny in Figure 1b.

Because there is only one tree per gloss, there
is no assignment problem to consider, which is the
main source of the intractability of HK10. Instead,
pieces of the phylogeny are simply “cut” into sub-
trees whenever an innovation occurs. Thus, message
passing can be used to perform inference.

As an example of how our process works, con-
sider Figure 2. The Formosan word for “ten”
probably resembled either /purrok/ or /pouroukou/.
There was an innovation in Ciuli and Squliq’s an-
cestor Atayalic that produced a new word for ten.
This word then mutated separately into the words
/malapzo/ and /mappo/, respectively.

4 Relation to Parsimony

PARSIM is related to the parsimony principle
from computational biology (Cavalli-Sforza and Ed-
wards, 1965; Fitch, 1971), where it is used to search
for phylogenies. When using parsimony, a phy-
logeny is scored according to the derivation that re-
quires the fewest number of changes of state, where
a state is typically thought of as a gene or some other
trait in a species. These genes are typically called
“characters” in the computational biology literature,

and two species would have the same value for a
character if they share the same property that that
state represents.

When inducing phylogenies of languages, a natu-
ral choice for characters are glosses from a restricted
vocabulary like a Swadesh list, and two words are
represented as the same value for a character if they
are cognate (Ringe et al., 2002). Other features can
be used (Daumé III and Campbell, 2007; Daumé III,
2009), but they are not relevant to our discussion.

Consider the small example in Figure 3a with just
four languages. Here, cognacy is encoded using
characters. In this example, at least two changes of
state are required to explain the data: both C and B
must have evolved from A. Therefore, the parsimony
score for this tree is two.

Of course, there is no reason why all changes
should be equally likely. For instance, it might be
extremely likely that B changes into both A and
C, but that A never changes into B or C, and so
weighted variants of parsimony might be neces-
sary (Sankoff and Cedergren, 1983).

With this in mind, PARSIM can be thought of a
weighted variant of parsimony, with two differences.
First, the characters do not indicate ahead of time
which words are related. Instead, the characters are
the words themselves. Second, the transitions be-
tween different states (words) are not uniform. In-
stead, they are weighted by the log probability of
one word changing into another, including both mu-
tations and innovations.

Thus, the task of inference in PARSIM is to find
the most “parsimonious” explanation for the words
we have observed, which is the same as finding the
most likely derivation. Because the distances be-
tween words (that is, the transition probabilities)
are not known ahead of time, they must instead be
learned, which we discuss in Section 7.3

5 Limitations of the Parsimony Model

Potentially, our parsimony model sacrifices a cer-
tain amount of power to make inference tractable.
Specifically, it cannot model homoplasy, the pres-
ence of more than one word in a language for a given

3It is worth noting that we are not the first to point out a
connection between parsimony and likelihood. Indeed, many
authors in the computational biology literature have formally
demonstrated a connection (Farris, 1973; Felsenstein, 1973).
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Figure 3: Trees illustrating parsimony and its limitations. In these trees, there are four languages, with words A, B, and
C in various configurations. (a) The most parsimonious derivation for this tree has all intermediate states as A. There
are thus two changes. (b) An example of homoplasy. Here, given this tree, it seems likely that the ancestral languages
contained both A and B. (c) PARSIM cannot recover the example from (b), and so it encodes two innovations (shown
as dashed lines). (d) The HK10 model can recover this relationship, but this power makes the model intractable.

gloss. Homoplasy can arise for a variety of reasons
in phylogenetic models of cognates, and we describe
some in this section.

Consider the example illustrated in Figure 3b,
where the two central languages share a cognate, as
do the two outer languages. This is the canonical ex-
ample of homoplasy, and PARSIM cannot correctly
recover this grouping. Instead, it can at best only se-
lect group A or group B as the value for the parent,
and leave the other group fragmented as two innova-
tions, as in Figure 3c. On the other hand, HK10 can
recover this relationship (Figure 3d), but this power
is precisely what makes it intractable.

There are two reasons this kind of homoplasy
could arise. The first is that there were indeed two
words in the parent language for this gloss, or that
there were two words with similar meanings and
the two meanings drifted together. Second, the tree
could be an inadequate model of the evolution in
this case. For instance, there could have been a cer-
tain amount of borrowing between two of these lan-
guages, or there was not a single coherent parent lan-
guage, but rather a language continuum that cannot
be explained by any tree.

However, homoplasy seems to be relatively un-
common (though not unheard of) in the Oceanic and
Formosan families. Where it does appear, our model
should simply fail to get one of the cognate groups,
instead explaining all of them via innovation. To
repair this shortcoming, we can simply run the ag-
glomerative clustering procedure for the model of
Hall and Klein (2010), starting from the groups that
PARSIM has recovered. Using this procedure, we
can hopefully recover many of the under-groupings

caused by homoplasy.

6 Inference and Scale

6.1 Inference

In this section we describe the basics of infer-
ence in the PARSIM model. We have a nearly
tree-structured graphical model (Figure 1); it is
not a tree only because of the innovation param-
eters. Therefore, we apply the common trick of
grouping variables to form a tree. Specifically, we
group each word variable W` with its innovation
parameter I`. The distribution of interest is then
p(W`, I`|Wpar(`), φ`, β`), and the primary operation
is summing out messages µ from the children of a
language and sending a new message to its parent:

µ`(wpar(`)) =
∑

w`

p(w`|·)
∏

`′ ∈ child(`)

µ`′(w`)

p(w`|·) = p(w`|I` = 0, wpar(`), φ`)p(I` = 0|β`)
+ p(w`|I` = 1, φ`)P (I` = 1|β`)

(1)

The first term involves computing the probability of
the word mutating from its parent, and the second
involves the probability of the child word from a lan-
guage model. We describe the parameters and pro-
cedures for these operations in 7.1.

6.2 Scale

Even though inference by message-passing in our
model is tractable, we needed to make certain con-
cessions to make inference acceptably fast. These
choices mainly affect how we represent distributions
over strings.
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First, we need to model distributions and mes-
sages over words on the internal nodes of a phy-
logeny. The natural choice in this scenario is to use
weighted finite automata (Mohri et al., 1996). Au-
tomata have been used to successfully model distri-
butions of strings for inferring morphology (Dreyer
and Eisner, 2009) as well as cognate detection (Hall
and Klein, 2010). Even in models that would be
tractable with “ordinary” messages, inference with
automata quickly becomes intractable, because the
size of the automata grow exponentially with the
number of messages passed. Therefore, approxima-
tions must be used. Dreyer and Eisner (2009) used
a mixture of a k-best list and a unigram language
model, while Hall and Klein (2010) used an approx-
imation procedure that projected complex automata
to simple, tractable automata using a modified KL
divergence.

While either approach could be used here in prin-
ciple, we found that automata machinery was simply
too slow for our application. Instead, we exploit the
intuition that we do not need to accurately recon-
struct the word for any ancestral language. More-
over, it is inefficient to keep track of probabilities for
all strings. Therefore, we only track scores for words
that actually exist in a given gloss, which means that
internal nodes only have mass on those words. That
is, if a gloss has 10 distinct words across all the lan-
guages in our dataset, we pass messages that only
contain information about those 10 words.

Now, this representation—while more efficient
than the automata representations—results in infer-
ence that is still quadratic in the number of words
in a gloss, since we have distributions of the form
p(w`|wpar(`), φ`). Intuitively, it is unlikely that a
word from one distant branch of tree resembles a
word in another branch. Therefore, rather than score
all of these unlikely words, we use a beam where we
only factor in words whose score is at most a fac-
tor of e−10 less than the maximum score. Our initial
experiments found that using a beam provides large
savings in time with little impact on prediction qual-
ity.

7 Learning

PARSIM has three kinds of parameters that we need
to learn: the mutation parameters ϕ`, the innovation

probabilities β`, and the global language model λ
for generating new words. We learn these parame-
ters via Expectation Maximization (Dempster et al.,
1977), iterating between computing expected counts
and adjusting parameters to maximize the posterior
probability of the parameters. In this section, we de-
scribe those parameters.

7.1 Sound Laws
The core piece of our system is learning the sound
laws associated with each edge. Since the founda-
tion of historical linguists with the neogrammari-
ans, linguists have argued for the regularity of sound
change at the phonemic level (Schleicher, 1861;
Bloomfield, 1938). That is to say, if in some lan-
guage a /t/ changes to a /d/ in some word, it is al-
most certain that it will change in every other place
that has the same surrounding context.

In practice, of course, sound change is not entirely
regular, and complex extralinguistic events can lead
to sound changes that are irregular. For example,
in some cultures in which Oceanic languages are
spoken, the name of the chief is taboo: one cannot
speak his name, nor say any word that sounds too
much like his name. Speakers of these languages
do find ways around this prohibition, often resulting
in sound changes that cannot be explained by sound
laws alone (Keesing and Fifi’i, 1969).

Nevertheless, we find it useful to model sound
change as a largely regular if stochastic process.
We employ a sound change model whose expressive
power is equivalent to that of Hall and Klein (2010),
though with a different parameterization. We model
the evolution of a word w` to its child w`′ as a
sequence of unigram edits that include insertions,
deletions, and substitutions. Specifically, we use a
standard three-state pair hidden Markov model that
is closely related to the classic alignment algorithm
of Needleman and Wunsch (1970) (Durbin et al.,
2006).

The three states in this HMM correspond to
matches/substitutions, insertions, and deletions. The
transitions are set up such that insertions and dele-
tions cannot be interleaved. This prevents spurious
equivalent alignments, which would cause the model
to assign unnecessarily higher probability to transi-
tions with many insertions and deletions.

Actually learning these parameters involves learn-
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ing the transition probabilities of this HMM (which
model the overall probability of insertion and dele-
tion) as well as the emission probabilities (which
model the particular edits). Because there are rel-
atively few words for each language (96 on average
in Oceanic), we found it important to tie together
the parameters for the various languages, in contrast
to Hall and Klein (2010) who did not. In our maxi-
mization step, we fit a joint log-linear model for each
language, using features that are both specific to a
language and shared across languages. Our features
included indicators on each substitution, insertion,
and deletion operation, along with an indicator for
the outcome of each edit operation. This last fea-
ture reflects the propensity of a particular phoneme
to appear in a given language at all, no matter what
its ancestral phoneme was. This parameterization
is similar to the one used in the reconstruction sys-
tem of Bouchard-Côté et al. (2009), except that they
used edit operations that conditioned on the context
of the surrounding word, which is crucial when try-
ing to accurately reconstruct ancestral word forms.
To encourage parameter sharing, we used an `2 reg-
ularization penalty.

7.2 Innovation Parameters

The innovation parameters β` are parameters for
simple Bernoulli distribution that govern the propen-
sity for a language to start a new word. These pa-
rameters can be learned separately, though due to
data sparsity, we found it better to use a tied param-
eterization as with the sound laws. Specifically, we
fit a log linear model whose features are indicators
on the specific language, as well as a global inno-
vation parameter that is shared across all languages.
As with the sound laws, we used an `2 regularization
penalty to encourage the use of the global innovation
parameter.

7.3 Language Model

Finally, we have a single language model λ that is
also shared across all languages. λ is a simple bi-
gram language model over characters in the Interna-
tional Phonetic Alphabet. λ is used when generating
new words either via innovation or from the root of
the tree.

In principle, we could of course have language
models specific to each language, but because there

Formosan
System Prec Recall F1 Purity

Agg. HK10 77.6 83.2 80.0 84.7
PARSIM 87.8 71.0 78.5 94.6

Combination 85.2 81.3 83.2 92.3
Oceanic

System Prec Recall F1 Purity
PARSIM 84.4 62.1 71.5 91.8

Combination 76.0 73.8 74.9 85.5

Table 1: Results on the Formosan and Oceanic fami-
lies. PARSIM is the new parsimony model in this pa-
per, Agg. HK10 is our agglomerative variant of Hall and
Klein (2010) and Combination uses PARSIM’s output to
seed the agglomerative matcher. For the agglomerative
systems, we report the point with maximal F1 score, but
we also show precision/recall curves. (See Figure 4.)

are so few words per language, we found that
branch-specific language models caused the model
to prefer to innovate at almost every node since the
language models could essentially memorize the rel-
atively small vocabularies of these languages.

8 Experiments

8.1 Cognate Recovery

We ran both PARSIM and our agglomerative ver-
sion of HK10 on the Formosan datasets. For PAR-
SIM, we initialized the mutation parameters ϕ to a
model that preferred matches to insertions, substi-
tutions and deletions by a factor of e3, innovation
parameters to 0.5, and the language model to a uni-
form distribution over characters. For the agglomer-
ative HK10, we initialized its parameters to the val-
ues found by our model.4

Based on our observations about homoplasy, we
also considered a combined system where we ran
PARSIM, and then seeded the agglomerative cluster-
ing algorithm with the clusters found by PARSIM.

For evaluation, we report a few metrics. First,
we report cluster purity, which is a kind of pre-
cision measure for clusterings. Specifically, each
cluster is assigned to the cognate group that is the
most common cognate word in that group, and then
purity is computed as the fraction of words that

4Attempts to learn parameters directly with the agglomera-
tive clustering algorithm were not effective.
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Figure 4: Precision/Recall curves for our systems. The
Combined System starts from PARSIM’s output, so it
has fewer points to plot, and starts from a point with
lower precision. As PARSIM outputs only one result, it
is starred.

are in a cluster whose gold cognate group matches
the cognate group of the cluster. For gold parti-
tions G = {G1, G2, . . . , Gg} and found partitions
F = {F1, F2, . . . , Ff}, we have: purity(G,F ) =
1
N

∑
f maxg |Gg∩Ff |. We also report pairwise pre-

cision and recall computed over pairs of words.5 Fi-
nally, because agglomerative clustering does not de-
fine a natural “stopping point” other than when the
likelihood gain decreases to 0—which did not per-
form well in our initial tests—we will report both
a precision/recall curve, as well the maximum pair-
wise F1 obtained by the agglomerative HK10 and
the combined system.

The results are in Table 1. On Formosan, PAR-
SIM has much higher precision and purity than our
agglomerative version of HK10 at its highest point,
though its recall and F1 suffer somewhat. Of course,
the comparison is not quite fair, since we have se-
lected the best possible point for HK10.

However, our combination of the two systems
does even better. By feeding our high-precision re-
sults into the agglomerative system and sacrificing
just a little precision, our combined system achieves
much higher F1 scores than either of the systems
alone.

Next, we also examined precision and recall
curves for the two agglomerative systems on For-

5The main difference between precision and purity is that
pairwise precision is inherently quadratic, meaning that it pe-
nalizes mistakes in large groups much more heavily than mis-
takes in small groups.

mosan, which we have plotted in Figure 4, along
with the one point output by PARSIM.

We then ran PARSIM and the combined system
on the much larger Oceanic dataset. Performance
on all metrics decreased somewhat, but this is to be
expected since there is so much more data. As with
Formosan, PARSIM has higher precision than the
combined system, but it has much lower recall.

8.2 Reconstruction
We also wanted to see how well our cognates could
be used to actually reconstruct the ancestral forms of
words. To do so, we ran a version of Bouchard-Côté
et al. (2009)’s reconstruction system using both the
cognate groups PARSIM found in the Oceanic lan-
guage family and the gold cognate groups provided
by the ABVD. We then evaluated the average Leven-
shtein distance of the reconstruction for each word
to the reconstruction of that word’s Proto-Oceanic
ancestor provided by linguists. Our evaluation dif-
fers from Bouchard-Côté et al. (2009) in that they
averaged over cognate groups, which does not make
sense for our task because there are different cognate
groups. Instead, we average over per-modern-word
reconstruction error.

Using this metric, reconstructions using our sys-
tem’s cognates are an average of 2.47 edit opera-
tions from the gold reconstruction, while with gold
cognates the error is 2.19 on average. This repre-
sents an error increase of 12.8%. To see if there
was some pattern to these errors, we also plotted the
fraction of words with each Levenshtein distance for
these reconstructions in Figure 5. While the plots are
similar, the automatic cognates exhibit a longer tail.
Thus, even with automatic cognates, the reconstruc-
tion system can reconstruct words faithfully in many
cases, but in a few instances our system fails.

9 Analysis

We now consider some of the errors made by our
system. Broadly, there are two kinds of mistakes
in a model like ours: those affecting precision and
those affecting recall.

9.1 Precision
Many of our precision errors seem to be due to
our somewhat limited model of sound change. For
instance, the language Pazeh has two words for
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Figure 5: Percentage of words with varying levels of
Levenshtein distance from the gold reconstruction. Gold
Cognates were hand-annotated by linguists, while Auto-
matic Cognates were found by our system.

“to sleep:” /mudamai/ and /mid@m/. Somewhat
surprisingly the former word is cognate with Pai-
wan /qmereN/ and Saisiat /maPr@m/ while the lat-
ter is not. Our system, however, makes the mistake
of grouping /mid@m/ with the Paiwan and Saisiat
words. Our system has inferred that the insertions of
/u/ and /ai/ (which are required to bring /mudamai/
into alignment with the Saisiat and Paiwan words)
are less likely than substituting a few vowels and the
consonant /r/ for /d/ (which are required to align
/mid@m/). Perhaps a more sophisticated model of
sound change could correctly learn this relationship.

However, a preliminary inspection of the data
seems to indicate that not all of our precision errors
are actually errors, but rather places where the data
is insufficiently annotated (and indeed, the ABVD is
still a work in progress). For instance, consider the
words for “meat/flesh” in the Formosan languages:
Squliq /hiP/, Bunun /titiP/, Paiwan /seti/, Kavalan
/PisiP/, CentralAmi /titi/, Our system groups all of
these words except for Squliq /hiP/. However, de-
spite these words’ similarity, there are actually three
cognate groups here. One includes Squliq /hiP/ and
Kavalan /PisiP/, another includes just Paiwan /seti/,
and the third includes Bunun /titiP/ and CentralAmi
/titi/. Crucially, these cognate groups do not fol-
low the phylogeny closely. Thus, either there was a
significant amount of borrowing between these lan-
guages, or there was a striking amount of homoplasy
in Proto-Formosan, or these words are in fact mostly
cognate. While a more thorough, linguistically-
informed analysis is needed to ensure that these are
actually cognates, we believe that our system, in

conjunction with a trained Austronesian specialist,
could potentially find many more cognate groups,
speeding up the process of completing the ABVD.

9.2 Recall

Our system can also fail to group words that should
be grouped. One recurring problem seems to
be reduplication, which is a fairly common phe-
nomenon in Austronesian languages. For instance,
there is a cognate group for “to eat” that includes
Bunun /maun/, Thao /kman/, Favorlang /man/, and
Sediq /manakamakan/, among others. Our system
correctly finds this group, with the exception of
/manakamakan/, which is clearly the result of redu-
plication. Reduplication cannot be modeled using
mere sound laws, and so a more complex transition
model is needed to correctly identify these kinds of
changes.

10 Conclusion

We have presented a new system for automatically
finding cognates across many languages. Our sys-
tem is comprised of two parts. The first, PAR-
SIM, is a new high-precision generative model with
tractable inference. The second, HK10, is a mod-
ification of Hall and Klein (2010) that makes their
approximate inference more efficient. We discuss
certain trade-offs needed to make both models scale,
and demonstrated its performance on the Formosan
and Oceanic language families.

References
Shane Bergsma and Greg Kondrak. 2007. Multilingual

cognate identification using integer linear program-
ming. In RANLP Workshop on Acquisition and Man-
agement of Multilingual Lexicons, Borovets, Bulgaria,
September.

Leonard Bloomfield. 1938. Language. Holt, New York.
R. A. Blust. 2009. The Austronesian languages. Aus-

tralian National University.
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Abstract

We explore efficient domain adaptation for the
task of statistical machine translation based
on extracting sentences from a large general-
domain parallel corpus that are most relevant
to the target domain. These sentences may
be selected with simple cross-entropy based
methods, of which we present three. As
these sentences are not themselves identical
to the in-domain data, we call them pseudo
in-domain subcorpora. These subcorpora –
1% the size of the original – can then used
to train small domain-adapted Statistical Ma-
chine Translation (SMT) systems which out-
perform systems trained on the entire corpus.
Performance is further improved when we use
these domain-adapted models in combination
with a true in-domain model. The results
show that more training data is not always
better, and that best results are attained via
proper domain-relevant data selection, as well
as combining in- and general-domain systems
during decoding.

1 Introduction

Statistical Machine Translation (SMT) system per-
formance is dependent on the quantity and quality
of available training data. The conventional wisdom
is that more data is better; the larger the training cor-
pus, the more accurate the model can be.

The trouble is that – except for the few all-purpose
SMT systems – there is never enough training data
that is directly relevant to the translation task at
hand. Even if there is no formal genre for the text
to be translated, any coherent translation task will

have its own argot, vocabulary or stylistic prefer-
ences, such that the corpus characteristics will nec-
essarily deviate from any all-encompassing model of
language. For this reason, one would prefer to use
more in-domain data for training. This would em-
pirically provide more accurate lexical probabilities,
and thus better target the task at hand. However, par-
allel in-domain data is usually hard to find1, and so
performance is assumed to be limited by the quan-
tity of domain-specific training data used to build the
model. Additional parallel data can be readily ac-
quired, but at the cost of specificity: either the data
is entirely unrelated to the task at hand, or the data is
from a broad enough pool of topics and styles, such
as the web, that any use this corpus may provide is
due to its size, and not its relevance.

The task of domain adaptation is to translate a text
in a particular (target) domain for which only a small
amount of training data is available, using an MT
system trained on a larger set of data that is not re-
stricted to the target domain. We call this larger set
of data a general-domain corpus, in lieu of the stan-
dard yet slightly misleading out-of-domain corpus,
to allow a large uncurated corpus to include some
text that may be relevant to the target domain.

Many existing domain adaptation methods fall
into two broad categories. Adaptation can be done at
the corpus level, by selecting, joining, or weighting
the datasets upon which the models (and by exten-
sion, systems) are trained. It can be also achieved at
the model level by combining multiple translation or
language models together, often in a weighted man-
ner. We explore both categories in this work.

1Unless one dreams of translating parliamentary speeches.

355



First, we present three methods for ranking the
sentences in a general-domain corpus with respect to
an in-domain corpus. A cutoff can then be applied to
produce a very small–yet useful– subcorpus, which
in turn can be used to train a domain-adapted MT
system. The first two data selection methods are ap-
plications of language-modeling techniques to MT
(one for the first time). The third method is novel
and explicitly takes into account the bilingual na-
ture of the MT training corpus. We show that it is
possible to use our data selection methods to subse-
lect less than 1% (or discard 99%) of a large general
training corpus and still increase translation perfor-
mance by nearly 2 BLEU points.

We then explore how best to use these selected
subcorpora. We test their combination with the in-
domain set, followed by examining the subcorpora
to see whether they are actually in-domain, out-of-
domain, or something in between. Based on this, we
compare translation model combination methods.

Finally, we show that these tiny translation mod-
els for model combination can improve system per-
formance even further over the current standard way
of producing a domain-adapted MT system. The re-
sulting process is lightweight, simple, and effective.

2 Related Work

2.1 Training Data Selection

An underlying assumption in domain adaptation is
that a general-domain corpus, if sufficiently broad,
likely includes some sentences that could fall within
the target domain and thus should be used for train-
ing. Equally, the general-domain corpus likely in-
cludes sentences that are so unlike the domain of the
task that using them to train the model is probably
more harmful than beneficial. One mechanism for
domain adaptation is thus to select only a portion of
the general-domain corpus, and use only that subset
to train a complete system.

The simplest instance of this problem can be
found in the realm of language modeling, using
perplexity-based selection methods. The sentences
in the general-domain corpus are scored by their per-
plexity score according to an in-domain language
model, and then sorted, with only the lowest ones
being retained. This has been done for language
modeling, including by Gao et al (2002), and more

recently by Moore and Lewis (2010). The ranking
of the sentences in a general-domain corpus accord-
ing to in-domain perplexity has also been applied to
machine translation by both Yasuda et al (2008), and
Foster et al (2010). We test this approach, with the
difference that we simply use the source side per-
plexity rather than computing the geometric mean
of the perplexities over both sides of the corpus. We
also reduce the size of the training corpus far more
aggressively than Yasuda et al’s 50%. Foster et al
(2010) do not mention what percentage of the cor-
pus they select for their IR-baseline, but they con-
catenate the data to their in-domain corpus and re-
port a decrease in performance. We both keep the
models separate and reduce their size.

A more general method is that of (Matsoukas et
al., 2009), who assign a (possibly-zero) weight to
each sentence in the large corpus and modify the em-
pirical phrase counts accordingly. Foster et al (2010)
further perform this on extracted phrase pairs, not
just sentences. While this soft decision is more flex-
ible than the binary decision that comes from includ-
ing or discarding a sentence from the subcorpus, it
does not reduce the size of the model and comes
at the cost of computational complexity as well as
the possibility of overfitting. Additionally, the most
effective features of (Matsoukas et al., 2009) were
found to be meta-information about the source doc-
uments, which may not be available.

Another perplexity-based approach is that taken
by Moore and Lewis (2010), where they use the
cross-entropy difference as a ranking function rather
than just cross-entropy. We apply this criterion for
the first time to the task of selecting training data
for machine translation systems. We furthermore ex-
tend this idea for MT-specific purposes.

2.2 Translation Model Combination

In addition to improving the performance of a sin-
gle general model with respect to a target domain,
there is significant interest in using two translation
models, one trained on a larger general-domain cor-
pus and the other on a smaller in-domain corpus, to
translate in-domain text. After all, if one has ac-
cess to an in-domain corpus with which to select
data from a general-domain corpus, then one might
as well use the in-domain data, too. The expectation
is that the larger general-domain model should dom-
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inate in regions where the smaller in-domain model
lacks coverage due to sparse (or non-existent) ngram
counts. In practice, most practical systems also per-
form target-side language model adaptation (Eck et
al., 2004); we eschew this in order to isolate the ef-
fects of translation model adaptation alone.

Directly concatenating the phrase tables into one
larger one isn’t strongly motivated; identical phrase
pairs within the resulting table can lead to unpre-
dictable behavior during decoding. Nakov (2008)
handled identical phrase pairs by prioritizing the
source tables, however in our experience identical
entries in phrase tables are not very common when
comparing across domains. Foster and Kuhn (2007)
interpolated the in- and general-domain phrase ta-
bles together, assigning either linear or log-linear
weights to the entries in the tables before combining
overlapping entries; this is now standard practice.

Lastly, Koehn and Schroeder (2007) reported
improvements from using multiple decoding paths
(Birch et al., 2007) to pass both tables to the Moses
SMT decoder (Koehn et al., 2003), instead of di-
rectly combining the phrase tables to perform do-
main adaptation. In this work, we directly com-
pare the approaches of (Foster and Kuhn, 2007) and
(Koehn and Schroeder, 2007) on the systems gener-
ated from the methods mentioned in Section 2.1.

3 Experimental Framework

3.1 Corpora

We conducted our experiments on the Interna-
tional Workshop on Spoken Language Translation
(IWSLT) Chinese-to-English DIALOG task 2, con-
sisting of transcriptions of conversational speech in
a travel setting. Two corpora are needed for the
adaptation task. Our in-domain data consisted of the
IWSLT corpus of approximately 30,000 sentences
in Chinese and English. Our general-domain cor-
pus was 12 million parallel sentences comprising a
variety of publicly available datasets, web data, and
private translation texts. Both the in- and general-
domain corpora were identically segmented (in Chi-
nese) and tokenized (in English), but otherwise un-
processed. We evaluated our work on the 2008
IWSLT spontaneous speech Challenge Task3 test

2http://iwslt2010.fbk.eu/node/33
3Correct-Recognition Result (CRR) condition

set, consisting of 504 Chinese sentences with 7 En-
glish reference translations each. This is the most
recent IWSLT test set for which the reference trans-
lations are available.

3.2 System Description
In order to highlight the data selection work, we
used an out-of-the-box Moses framework using
GIZA++ (Och and Ney, 2003) and MERT (Och,
2003) to train and tune the machine translation sys-
tems. The only exception was the phrase table
for the large out-of-domain system trained on 12m
sentence pairs, which we trained on a cluster us-
ing a word-dependent HMM-based alignment (He,
2007). We used the Moses decoder to produce all
the system outputs, and scored them with the NIST
mt-eval31a 4 tool used in the IWSLT evalutation.

3.3 Language Models
Our work depends on the use of language models to
rank sentences in the training corpus, in addition to
their normal use during machine translation tuning
and decoding. We used the SRI Language Model-
ing Toolkit (Stolcke, 2002) was used for LM train-
ing in all cases: corpus selection, MT tuning, and
decoding. We constructed 4gram language mod-
els with interpolated modified Kneser-Ney discount-
ing (Chen and Goodman, 1998), and set the Good-
Turing threshold to 1 for trigrams.

3.4 Baseline System
The in-domain baseline consisted of a translation
system trained using Moses, as described above, on
the IWSLT corpus. The resulting model had a phrase
table with 515k entries. The general-domain base-
line was substantially larger, having been trained on
12 million sentence pairs, and had a phrase table
containing 1.5 billion entries. The BLEU scores of
the baseline single-corpus systems are in Table 1.

Corpus Phrases Dev Test
IWSLT 515k 45.43 37.17
General 1,478m 42.62 40.51

Table 1: Baseline translation results for in-domain and
general-domain systems.

4http://www.itl.nist.gov/iad/mig/tools/
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4 Training Data Selection Methods

We present three techniques for ranking and select-
ing subsets of a general-domain corpus, with an eye
towards improving overall translation performance.

4.1 Data Selection using Cross-Entropy

As mentioned in Section 2.1, one established
method is to rank the sentences in the general-
domain corpus by their perplexity score accord-
ing to a language model trained on the small in-
domain corpus. This reduces the perplexity of the
general-domain corpus, with the expectation that
only sentences similar to the in-domain corpus will
remain. We apply the method to machine trans-
lation, even though perplexity reduction has been
shown to not correlate with translation performance
(Axelrod, 2006). For this work we follow the proce-
dure of Moore and Lewis (2010), which applies the
cosmetic change of using the cross-entropy rather
than perplexity.

The perplexity of some string s with empirical n-
gram distribution p given a language model q is:

2−
∑

x p(x) log q(x) = 2H(p,q) (1)

where H(p, q) is the cross-entropy between p and
q. We simplify this notation to just HI(s), mean-
ing the cross-entropy of string s according to a lan-
guage model LMI which has distribution q. Se-
lecting the sentences with the lowest perplexity is
therefore equivalent to choosing the sentences with
the lowest cross-entropy according to the in-domain
language model. For this experiment, we used a lan-
guage model trained (using the parameters in Sec-
tion 3.3) on the Chinese side of the IWSLT corpus.

4.2 Data Selection using Cross-Entropy
Difference

Moore and Lewis (2010) also start with a language
model LMI over the in-domain corpus, but then fur-
ther construct a language modelLMO of similar size
over the general-domain corpus. They then rank the
general-domain corpus sentences using:

HI(s)−HO(s) (2)

and again taking the lowest-scoring sentences. This
criterion biases towards sentences that are both like

the in-domain corpus and unlike the average of the
general-domain corpus. For this experiment we re-
used the in-domain LM from the previous method,
and trained a second LM on a random subset of
35k sentences from the Chinese side of the general
corpus, except using the same vocabulary as the in-
domain LM.

4.3 Data Selection using Bilingual
Cross-Entropy Difference

In addition to using these two monolingual criteria
for MT data selection, we propose a new method
that takes in to account the bilingual nature of the
problem. To this end, we sum cross-entropy differ-
ence over each side of the corpus, both source and
target:

[HI−src(s)−HO−src(s)]+[HI−tgt(s)−HO−tgt(s)]
(3)

Again, lower scores are presumed to be better. This
approach reuses the source-side language models
from Section 4.2, but requires similarly-trained ones
over the English side. Again, the vocabulary of the
language model trained on a subset of the general-
domain corpus was restricted to only cover those
tokens found in the in-domain corpus, following
Moore and Lewis (2010).

5 Results of Training Data Selection

The baseline results show that a translation system
trained on the general-domain corpus outperforms a
system trained on the in-domain corpus by over 3
BLEU points. However, this can be improved fur-
ther. We used the three methods from Section 4 to
identify the best-scoring sentences in the general-
domain corpus.

We consider three methods for extracting domain-
targeted parallel data from a general corpus: source-
side cross-entropy (Cross-Ent), source-side cross-
entropy difference (Moore-Lewis) from (Moore and
Lewis, 2010), and bilingual cross-entropy difference
(bML), which is novel.

Regardless of method, the overall procedure is
the same. Using the scoring method, We rank the
individual sentences of the general-domain corpus,
select only the top N . We used the top N =
{35k, 70k, 150k} sentence pairs out of the 12 mil-
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lion in the general corpus 5. The net effect is that of
domain adaptation via threshhold filtering. New MT
systems were then trained solely on these small sub-
corpora, and compared against the baseline model
trained on the entire 12m-sentence general-domain
corpus. Table 2 contains BLEU scores of the sys-
tems trained on subsets of the general corpus.

Method Sentences Dev Test
General 12m 42.62 40.51
Cross-Entropy 35k 39.77 40.66
Cross-Entropy 70k 40.61 42.19
Cross-Entropy 150k 42.73 41.65
Moore-Lewis 35k 36.86 40.08
Moore-Lewis 70k 40.33 39.07
Moore-Lewis 150k 41.40 40.17
bilingual M-L 35k 39.59 42.31
bilingual M-L 70k 40.84 42.29
bilingual M-L 150k 42.64 42.22

Table 2: Translation results using only a subset of the
general-domain corpus.

All three methods presented for selecting a sub-
set of the general-domain corpus (Cross-Entropy,
Moore-Lewis, bilingual Moore-Lewis) could be
used to train a state-of-the-art machine transla-
tion system. The simplest method, using only the
source-side cross-entropy, was able to outperform
the general-domain model when selecting 150k out
of 12 million sentences. The other monolingual
method, source-side cross-entropy difference, was
able to perform nearly as well as the general-
domain model with only 35k sentences. The bilin-
gual Moore-Lewis method proposed in this paper
works best, consistently boosting performance by
1.8 BLEU while using less than 1% of the available
training data.

5.1 Pseudo In-Domain Data

The results in Table 2 show that all three meth-
ods (Cross-Entropy, Moore-Lewis, bilingual Moore-
Lewis) can extract subsets of the general-domain
corpus that are useful for the purposes of statistical
machine translation. It is tempting to describe these
as methods for finding in-domain data hidden in a

5Roughly 1x, 2x, and 4x the size of the in-domain corpus.

general-domain corpus. Alas, this does not seem to
be the case.

We trained a baseline language model on the in-
domain data and used it to compute the perplexity
of the same (in-domain) held-out dev set used to
tune the translation models. We extracted the top
N sentences using each ranking method, varying N
from 10k to 200k, and then trained language models
on these subcorpora. These were then used to also
compute the perplexity of the same held-out dev set,
shown below in Figure 1.
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Figure 1: Corpus Selection Results

The perplexity of the dev set according to LMs
trained on the top-ranked sentences varied from 77
to 120, depending on the size of the subset and the
method used. The Cross-Entropy method was con-
sistently worse than the others, with a best perplex-
ity of 99.4 on 20k sentences, and bilingual Moore-
Lewis was consistently the best, with a lowest per-
plexity of 76.8. And yet, none of these scores are
anywhere near the perplexity of 36.96 according to
the LM trained only on in-domain data.

From this it can be deduced that the selection
methods are not finding data that is strictly in-
domain. Rather they are extracting pseudo in-
domain data which is relevant, but with a differing
distribution than the original in-domain corpus.

As further evidence, consider the results of con-
catenating the in-domain corpus with the best ex-
tracted subcorpora (using the bilingual Moore-
Lewis method), shown in Table 3. The change in
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both the dev and test scores appears to reflect dissim-
ilarity in the underlying data. Were the two datasets
more alike, one would expect the models to rein-
force each other rather than cancel out.

Method Sentences Dev Test
IWSLT 30k 45.43 37.17
bilingual M-L 35k 39.59 42.31
bilingual M-L 70k 40.84 42.29
bilingual M-L 150k 42.64 42.22
IWSLT + bi M-L 35k 47.71 41.78
IWSLT + bi M-L 70k 47.80 42.30
IWSLT + bi M-L 150k 48.44 42.01

Table 3: Translation results concatenating the in-domain
and pseudo in-domain data to train a single model.

6 Translation Model Combination

Because the pseudo in-domain data should be kept
separate from the in-domain data, one must train
multiple translation models in order to advanta-
geously use the general-domain corpus. We now ex-
amine how best to combine these models.

6.1 Linear Interpolation
A common approach to managing multiple transla-
tion models is to interpolate them, as in (Foster and
Kuhn, 2007) and (Lü et al., 2007). We tested the
linear interpolation of the in- and general-domain
translation models as follows: Given one model
which assigns the probability P1(t|s) to the trans-
lation of source string s into target string t, and a
second model which assigns the probability P2(t|s)
to the same event, then the interpolated translation
probability is:

P (t|s) = λP1(t|s) + (1− λ)P2(t|s) (4)

Here λ is a tunable weight between 0 and 1, which
we tested in increments of 0.1. Linear interpolation
of phrase tables was shown to improve performance
over the individual models, but this still may not be
the most effective use of the translation models.

6.2 Multiple Models
We next tested the approach in (Koehn and
Schroeder, 2007), passing the two phrase tables di-
rectly to the decoder and tuning a system using both

phrase tables in parallel. Each phrase table receives
a separate set of weights during tuning, thus this
combined translation model has more parameters
than a normal single-table system.

Unlike (Nakov, 2008), we explicitly did not at-
tempt to resolve any overlap between the phrase ta-
bles, as there is no need to do so with the multiple
decoding paths. Any phrase pairs appearing in both
models will be treated separately by the decoder.
However, the exact overlap between the phrase ta-
bles was tiny, minimizing this effect.

6.3 Translation Model Combination Results

Table 4 shows baseline results for the in-domain
translation system and the general-domain system,
evaluated on the in-domain data. The table also
shows that linearly interpolating the translation
models improved the overall BLEU score, as ex-
pected. However, using multiple decoding paths,
and no explicit model merging at all, produced even
better results, by 2 BLEU points over the best indi-
vidual model and 1.3 BLEU over the best interpo-
lated model, which used λ = 0.9.

System Dev Test
IWSLT 45.43 37.17
General 42.62 40.51
Interpolate IWSLT, General 48.46 41.28
Use both IWSLT, General 49.13 42.50

Table 4: Translation model combination results

We conclude that it can be more effective to not
attempt translation model adaptation directly, and
instead let the decoder do the work.

7 Combining Multi-Model and Data
Selection Approaches

We presented in Section 5 several methods to im-
prove the performance of a single general-domain
translation system by restricting its training corpus
on an information-theoretic basis to a very small
number of sentences. However, Section 6.3 shows
that using two translation models over all the avail-
able data (one in-domain, one general-domain) out-
performs any single individual translation model so
far, albeit only slightly.
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Method Dev Test
IWSLT 45.43 37.17
General 42.62 40.51
both IWSLT, General 49.13 42.50
IWSLT, Moore-Lewis 35k 48.51 40.38
IWSLT, Moore-Lewis 70k 49.65 40.45
IWSLT, Moore-Lewis 150k 49.50 41.40
IWSLT, bi M-L 35k 48.85 39.82
IWSLT, bi M-L 70k 49.10 43.00
IWSLT, bi M-L 150k 49.80 43.23

Table 5: Translation results from using in-domain and
pseudo in-domain translation models together.

It is well and good to use the in-domain data
to select pseudo in-domain data from the general-
domain corpus, but given that this requires access
to an in-domain corpus, one might as well use it.
As such, we used the in-domain translation model
alongside translation models trained on the subcor-
pora selected using the Moore-Lewis and bilingual
Moore-Lewis methods in Section 4. The results are
in Table 5.

A translation system trained on a pseudo in-
domain subset of the general corpus, selected with
the bilingual Moore-Lewis method, can be further
improved by combining with an in-domain model.
Furthermore, this system combination works better
than the conventional multi-model approach by up
to 0.7 BLEU on both the dev and test sets.

Thus a domain-adapted system comprising two
phrase tables trained on a total of 180k sen-
tences outperformed the standard multi-model sys-
tem which was trained on 12 million sentences. This
tiny combined system was also 3+ points better than
the general-domain system by itself, and 6+ points
better than the in-domain system alone.

8 Conclusions

Sentence pairs from a general-domain corpus that
seem similar to an in-domain corpus may not actu-
ally represent the same distribution of language, as
measured by language model perplexity. Nonethe-
less, we have shown that relatively tiny amounts of
this pseudo in-domain data can prove more useful
than the entire general-domain corpus for the pur-
poses of domain-targeted translation tasks.

This paper has also explored three simple yet
effective methods for extracting these pseudo in-
domain sentences from a general-domain corpus. A
translation model trained on any of these subcorpora
can be comparable – or substantially better – than a
translation system trained on the entire corpus.

In particular, the new bilingual Moore-Lewis
method, which is specifically tailored to the ma-
chine translation scenario, is shown to be more ef-
ficient and stable for MT domain adaptation. Trans-
lation models trained on data selected in this way
consistently outperformed the general-domain base-
line while using as few as 35k out of 12 million sen-
tences. This fast and simple technique for discarding
over 99% of the general-domain training corpus re-
sulted in an increase of 1.8 BLEU points.

We have also shown in passing that the linear in-
terpolation of translation models may work less well
for translation model adaptation than the multiple
paths decoding technique of (Birch et al., 2007).
These approaches of data selection and model com-
bination can be stacked, resulting in a compact, two
phrase-table, translation system trained on 1% of the
available data that again outperforms a state-of-the-
art translation system trained on all the data.

Besides improving translation performance, this
work also provides a way to mine very large corpora
in a computationally-limited environment, such as
on an ordinary computer or perhaps a mobile device.
The maximum size of a useful general-domain cor-
pus is now limited only by the availability of data,
rather than by how large a translation model can be
fit into memory at once.
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Abstract

We investigate the differences between
language models compiled from original
target-language texts and those compiled
from texts manually translated to the tar-
get language. Corroborating established
observations of Translation Studies, we
demonstrate that the latter are signifi-
cantly better predictors of translated sen-
tences than the former, and hence fit the
reference set better. Furthermore, trans-
lated texts yield better language mod-
els for statistical machine translation than
original texts.

1 Introduction

Statistical machine translation (MT) uses large
target language models (LMs) to improve the
fluency of generated texts, and it is commonly
assumed that for constructing language mod-
els, “more data is better data” (Brants and Xu,
2009). Not all data, however, are created the
same. In this work we explore the differences be-
tween LMs compiled from texts originally writ-
ten in the target language and LMs compiled
from translated texts.

The motivation for our work stems from much
research in Translation Studies that suggests
that original texts are significantly different
from translated ones in various aspects (Geller-
stam, 1986). Recently, corpus-based compu-
tational analysis corroborated this observation,
and Kurokawa et al. (2009) apply it to sta-
tistical machine translation, showing that for
an English-to-French MT system, a transla-
tion model trained on an English-translated-to-

French parallel corpus is better than one trained
on French-translated-to-English texts. Our re-
search question is whether a language model
compiled from translated texts may similarly
improve the results of machine translation.

We test this hypothesis on several translation
tasks, where the target language is always En-
glish. For each language pair we build two En-
glish language models from two types of corpora:
texts originally written in English, and human
translations from the source language into En-
glish. We show that for each language pair, the
latter language model better fits a set of refer-
ence translations in terms of perplexity. We also
demonstrate that the differences between the
two LMs are not biased by content but rather
reflect differences on abstract linguistic features.

Research in Translation Studies suggests that
all translated texts, irrespective of source lan-
guage, share some so-called translation univer-
sals. Consequently, translated texts from sev-
eral languages to a single target language resem-
ble each other along various axes. To test this
hypothesis, we compile additional English LMs,
this time using texts translated to English from
languages other than the source. Again, we use
perplexity to assess the fit of these LMs to refer-
ence sets of translated-to-English sentences. We
show that these LMs depend on the source lan-
guage and differ from each other. Whereas they
outperform original-based LMs, LMs compiled
from texts that were translated from the source
language still fit the reference set best.

Finally, we train phrase-based MT systems
(Koehn et al., 2003) for each language pair. We
use four types of LMs: original; translated from
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the source language; translated from other lan-
guages; and a mixture of translations from sev-
eral languages. We show that the translated-
from-source-language LMs provide a significant
improvement in the quality of the translation
output over all other LMs, and that the mix-
ture LMs always outperform the original LMs.
This improvement persists even when the orig-
inal LMs are up to ten times larger than the
translated ones.

The main contributions of this work are there-
fore a computational corroboration of the hy-
potheses that

1. original and translated texts exhibit signif-
icant, measurable differences;

2. LMs compiled from translated texts better
fit translated references than LMs compiled
from original texts of the same (and much
larger) size (and, to a lesser extent, LMs
compiled from texts translated from lan-
guages other than the source language); and

3. MT systems that use LMs based on man-
ually translated texts significantly outper-
form LMs based on originally written texts.

It is important to emphasize that translated
texts abound: Many languages, especially low-
resource ones, are more likely to have translated
texts (religious scripts, educational materials,
etc.) than original ones. Some numeric data
are listed in Pym and Chrupa la (2005). Fur-
thermore, such data can be automatically identi-
fied (see Section 2). The practical impact of our
work on MT is therefore potentially dramatic.

This paper is organized as follows: Section 2
provides background and describes related work.
We explain our research methodology and re-
sources in Section 3 and detail our experiments
and results in Section 4. Section 5 discusses the
results and their implications.

2 Background and Related Work

Numerous studies suggest that translated texts
are different from original ones. Gellerstam
(1986) compares texts written originally in
Swedish and texts translated from English into
Swedish. He notes that the differences between
them do not indicate poor translation but rather

a statistical phenomenon, which he terms trans-
lationese. He focuses mainly on lexical dif-
ferences, for example less colloquialism in the
translations, or foreign words used in the trans-
lations “with new shades of meaning taken from
the English lexeme” (p.91). Only later studies
consider grammatical differences (see, e.g., San-
tos (1995)). The features of translationese were
theoretically organized under the terms laws of
translation and translation universals.

Toury (1980, 1995) distinguishes between two
laws: the law of interference and the law of
growing standardization. The former pertains
to the fingerprints of the source text that are
left in the translation product. The latter per-
tains to the effort to standardize the translation
product according to existing norms in the tar-
get language (and culture). Interestingly, these
two laws are in fact reflected in the architecture
of statistical machine translation: interference
corresponds to the translation model and stan-
dardization to the language model.

The combined effect of these laws creates a hy-
brid text that partly corresponds to the source
text and partly to texts written originally in the
target language but in fact belongs to neither
(Frawley, 1984). Baker (1993, 1995, 1996) sug-
gests several candidates for translation univer-
sals, which are claimed to appear in any trans-
lated text, regardless of the source language.
These include simplification, the tendency of
translated texts to simplify the language, the
message or both; and explicitation, their ten-
dency to spell out implicit utterances that occur
in the source text.

Baroni and Bernardini (2006) use machine
learning techniques to distinguish between origi-
nal and translated Italian texts, reporting 86.7%
accuracy. They manage to abstract from con-
tent and perform the task using only morpho-
syntactic cues. Ilisei et al. (2010) perform the
same task for Spanish but enhance it theoreti-
cally in order to check the simplification hypoth-
esis. The most informative features are lexical
variety, sentence length and lexical density.

van Halteren (2008) focuses on six languages
from Europarl (Koehn, 2005): Dutch, English,
French, German, Italian and Spanish. For each
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of these languages, a parallel six-lingual sub-
corpus is extracted, including an original text
and its translations into the other five languages.
The task is to identify the source language of
translated texts, and the reported results are ex-
cellent. This finding is crucial: as Baker (1996)
states, translations do resemble each other; how-
ever, in accordance with the law of interference,
the study of van Halteren (2008) suggests that
translation from different source languages con-
stitute different sublanguages. As we show in
Section 4.2, LMs based on translations from the
source language outperform LMs compiled from
non-source translations, in terms of both fitness
to the reference set and improving MT.

Kurokawa et al. (2009) show that the direction
of translation affects the performance of statis-
tical MT. They train systems to translate be-
tween French and English (and vice versa) us-
ing a French-translated-to-English parallel cor-
pus, and then an English-translated-to-French
one. They find that in translating into French
it is better to use the latter parallel corpus, and
when translating into English it is better to use
the former. Whereas they focus on the trans-
lation model, we focus on the language model
in this work. We show that using a LM trained
on a text translated from the source language of
the MT system does indeed improve the results
of the translation.

3 Methodology and Resources

3.1 Hypotheses

We investigate the following three hypotheses:

1. Translated texts differ from original texts;

2. Texts translated from one language differ
from texts translated from other languages;

3. LMs compiled from manually translated
texts are better for MT as measured using
BLEU than LMs compiled from original texts.

We test our hypotheses by considering trans-
lations from several languages to English. For
each language pair we create a reference set com-
prising several thousands of sentences written
originally in the source language and manually
translated to English. Section 3.4 provides de-
tails on the reference sets.

To investigate the first hypothesis, we train
two LMs for each language pair, one created
from original English texts and the other from
texts translated into English. Then, we check
which LM better fits the reference set.

Fitness of a LM to a set of sentences is mea-
sured in terms of perplexity (Jelinek et al., 1977;
Bahl et al., 1983). Given a language model and
a test (reference) set, perplexity measures the
predictive power of the language model over the
test set, by looking at the average probability
the model assigns to the test data. Intuitively,
a better model assigns higher probablity to the
test data, and consequently has a lower perplex-
ity; it is less surprised by the test data. For-
mally, the perplexity PP of a language model L
on a test set W = w1w2 . . . wN is the probabil-
ity of W normalized by the number of words N
Jurafsky and Martin (2008, page 96):

PP(L,W ) = N

√√√√
N∏

i=1

1

PL(wi|w1 . . . wi−1)
(1)

For the second hypothesis, we extend the ex-
periment to LMs created from texts translated
from other languages to English. For exam-
ple, we test how well a LM trained on French-
to-English-translated texts fits the German-to-
English reference set; and how well a LM trained
on German-to-English-translated texts fits the
French-to-English reference set.

Finally, for the third hypothesis, we use these
LMs for statistical MT (SMT). For each lan-
guage pair we build several SMT systems. All
systems use a translation model extracted from
a parallel corpus which is oblivious to the direc-
tion of the translation; and one of the above-
mentioned LMs. Then, we compare the trans-
lation quality of these systems in terms of the
BLEU metric (Papineni et al., 2002).

3.2 Language Models

In all the experiments, we use SRILM (Stolcke,
2002) to train 4-gram language models (with
the default backoff model) from various corpora.
Our main corpus is Europarl (Koehn, 2005),
specifically portions collected over years 1996 to
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1999 and 2001 to 2009. This is a large multi-
lingual corpus, containing sentences translated
from several European languages. However, it
is organized as a collection of bilingual corpora
rather than as a single multilingual one, and it
is hard to identify sentences that are translated
to several languages.

We therefore treat each bilingual sub-corpus
in isolation; each such sub-corpus contains sen-
tences translated from various languages. We
rely on the language attribute of the speaker
tag to identify the source language of sentences
in the English part of the corpus. Since this tag
is rarely used with English-language speakers,
we also exploit the ID attribute of the speaker
tag, which we match against the list of British
members of the European parliament.

We focus on the following languages: Ger-
man (DE), French (FR), Italian (IT), and Dutch
(NL). For each of these languages, L, we con-
sider the L-English Europarl sub-corpus. In
each sub-corpus, we extract chunks of approx-
imately 2.5 million English tokens translated
from each of these source languages (T-L), as
well as sentences written originally in English
(O-EN). The mixture corpus (MIX), which is
designed to represent “general” translated lan-
guage, is constructed by randomly selecting sen-
tences translated from any language (excluding
original English sentences). Table 1 lists the
number of sentences, number of tokens and av-
erage sentence length, for each sub-corpus and
each original language.

In addition, we use the Hansard corpus, con-
taining transcripts of the Canadian parliament
from 1996–20071. This is a bilingual French–
English corpus comprising about 80% original
English texts (EO) and about 20% texts trans-
lated from French (FO). We first separate orig-
inal English from the original French and then,
for each original language, we randomly extract
portions of texts of different sizes: 1M, 5M and
10M tokens from the FO corpus and 1M, 5M,
10M, 25M, 50M and 100M tokens from the EO
corpus; see Table 2.

1We are grateful to Cyril Goutte, George Foster and
Pierre Isabelle for providing us with an annotated version
of this corpus.

German–English

Orig. Lang. Sent’s Tokens Len

MIX 82,700 2,325,261 28.1

O-EN 91,100 2,324,745 25.5

T-DE 87,900 2,322,973 26.4

T-FR 77,550 2,325,183 30.0

T-IT 65,199 2,325,996 35.7

T-NL 94,000 2,323,646 24.7

French–English

Orig. Lang. Sent’s Tokens Len

MIX 90,700 2,546,274 28.1

O-EN 99,300 2,545,891 25.6

T-DE 94,900 2,546,124 26.8

T-FR 85,750 2,546,085 29.7

T-IT 72,008 2,546,984 35.4

T-NL 103,350 2,545,645 24.6

Italian–English

Orig. Lang. Sent’s Tokens Len

MIX 87,040 2,534,793 29.1

O-EN 93,520 2,534,892 27.1

T-DE 90,550 2,534,867 28.0

T-FR 82,930 2,534,930 30.6

T-IT 69,270 2,535,225 36.6

T-NL 96,850 2,535,053 26.2

Dutch–English

Orig. Lang. Sent’s Tokens Len

MIX 90,500 2,508,265 27.7

O-EN 97,000 2,475,652 25.5

T-DE 94,200 2,503,354 26.6

T-FR 86,600 2,523,055 29.1

T-IT 73,541 2,518,196 34.2

T-NL 101,950 2,513,769 24.7

Table 1: Europarl corpus statistics

To experiment with a non-European language
(and a different genre) we choose Hebrew (HE).
We use two English corpora: The original (O-
EN) corpus comprises articles from the Interna-
tional Herald Tribune, downloaded over a pe-
riod of seven months (from January to July
2009). The articles cover four topics: news
(53.4%), business (20.9%), opinion (17.6%) and
arts (8.1%). The translated (T-HE) corpus con-
sists of articles collected from the Israeli news-
paper HaAretz over the same period of time.
HaAretz is published in Hebrew, but portions of
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Original French

Size Sent’s Tokens Len

1M 54,851 1,000,076 18.23

5M 276,187 5,009,157 18.14

10M 551,867 10,001,716 18.12

Original English

Size Sent’s Tokens Len

1M 54,216 1,006,275 18.56

5M 268,806 5,006,482 18.62

10M 537,574 10,004,191 18.61

25M 1,344,580 25,001,555 18.59

50M 2,689,332 50,009,861 18.60

100M 5,376,886 100,016,704 18.60

Table 2: Hansard corpus statistics

it are translated to English. The O-corpus was
downsized, so both corpora had approximately
the same number of tokens in each topic. Ta-
ble 3 lists basic statistics for these corpora.

Hebrew–English

Orig. Lang. Sent’s Tokens Len

O-EN 135,228 3,561,559 26.3

T-HE 147,227 3,561,556 24.2

Table 3: Hebrew-to-English corpus statistics

3.3 SMT Training Data

To focus on the effect of the language model
on translation quality, we design SMT train-
ing corpora to be oblivious to the direction of
translation. Again, we use Europarl (January
2000 to September 2000) as the main source of
our parallel corpora. We also use the Hansard
corpus: We randomy extract 50,000 sentences
from the original French sub-corpora and an-
other 50,000 sentences from the original English
sub-corpora. For Hebrew we use the Hebrew–
English parallel corpus (Tsvetkov and Wintner,
2010) which contains sentences translated from
Hebrew to English (54%) and from English to
Hebrew (46%). The English-to-Hebrew part
comprises many short sentences (approximately
6 tokens per sentence) taken from a movie sub-
title database. This explains the small token to
sentence ratio of this particular corpus. Table 4
lists some details on those corpora.

Lang’s Side Sent’s Tokens Len

DE-EN
DE 92,901 2,439,370 26.3
EN 92,901 2,602,376 28.0

FR-EN
FR 93,162 2,610,551 28.0
EN 93,162 2,869,328 30.8

IT-EN
IT 85,485 2,531,925 29.6
EN 85,485 2,517,128 29.5

NL-EN
NL 84,811 2,327,601 27.4
EN 84,811 2,303,846 27.2

Hansard
FR 100,000 2,167,546 21.7
EN 100,000 1,844,415 18.4

HE-EN
HE 95,912 726,512 7.6
EN 95,912 856,830 8.9

Table 4: SMT training data details

3.4 Reference Sets

The reference sets have two uses. First, they
are used as the test sets in the experiments that
measure the perplexity of the language models.
Second, in the MT experiments we use them to
randomly extract 1000 sentences for tuning and
1000 (different) sentences for evaluation.

For each language L we use the L-English sub-
corpus of Europarl (over the period of October
to December 2000), containing only sentences
originally produced in language L. The Hansard
reference set is completely disjoint from the LM
and SMT training sets and comprises only orig-
inal French sentences. The Hebrew-to-English
reference set is an independent (disjoint) part
of the Hebrew-to-English parallel corpus. This
set mostly comprises literary data (88.6%) and a
small portion of news (11.4%). All sentences are
originally written in Hebrew and are manually
translated to English. See Table 5.

4 Experiments and Results

We detail in this section the experiments per-
formed to test the three hypotheses: that trans-
lated texts can be distinguished from original
ones, and provide better language models of
other translated texts; that texts translated
from other languages than the source are still
better predictors of translations than original
texts (Section 4.1); and that these differences
are important for SMT (Section 4.2).
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Lang’s Side Sent’s Tokens Len

DE-EN
DE 6,675 161,889 24.3
EN 6,675 178,984 26.8

FR-EN
FR 8,494 260,198 30.6
EN 8,494 271,536 32.0

IT-EN
IT 2,269 82,261 36.3
EN 2,269 78,258 34.5

NL-EN
NL 4,593 114,272 24.9
EN 4,593 105,083 22.9

Hansard
FR 8,926 193,840 21.72
EN 8,926 163,448 18.3

HE-EN
HE 7,546 102,085 13.5
EN 7,546 126,183 16.7

Table 5: Reference sets

4.1 Translated vs. Original texts

We train several 4-gram LMs for each Europarl
sub-corpus, based on the corpora described in
Section 3.2. For each language L, we train a
LM based on texts translated from L, from lan-
guages other than L as well as texts originally
written in English. The LMs are applied to the
reference set of texts translated from L, and we
compute the perplexity: the fitness of the LM
to the reference set. Table 6 details the results,
where for each sub-corpus and LM we list the
number of unigrams in the test set, the num-
ber of out-of-vocabulary items (OOV) and the
perplexity (PP). The lowest perplexity (reflect-
ing the best fit) in each sub-corpus is typeset in
boldface, and the highest (worst fit) is slanted.

These results overwhelmingly support our hy-
pothesis. For each language L, the perplexity
of the LM that was created from L transla-
tions is lowest, followed immediately by the MIX
LM. Furthermore, the perplexity of the LM cre-
ated from originally-English texts is highest in
all experiments. In addition, the perplexity of
LMs constructed from texts translated from lan-
guages other than L always lies between these
two extremes: it is a better fit of the refer-
ence set than original texts, but not as good
as texts translated from L (or mixture trans-
lations). This corroborates the hypothesis that
translations form a language in itself, and trans-
lations from L1 to L2, form a sub-language,
related to yet different from translations from

German to English translations

Orig. Lang. Unigrams OOV PP

MIX 32,238 961 83.45

O-EN 31,204 1161 96.50

T-DE 27,940 963 77.77

T-FR 29,405 1141 92.71

T-IT 28,586 1122 95.14

T-NL 28,074 1143 89.17

French to English translations

Orig. Lang. Unigrams OOV PP

MIX 33,444 1510 87.13

O-EN 32,576 1961 105.93

T-DE 28,935 2191 96.83

T-FR 30,609 1329 82.23

T-IT 29,633 1776 91.15

T-NL 29,221 2148 100.18

Italian to English translations

Orig. Lang. Unigrams OOV PP

MIX 33,353 462 90.71

O-EN 32,546 633 107.45

T-DE 28,835 628 100.46

T-FR 30,460 524 92.18

T-IT 29,466 470 80.57

T-NL 29,130 675 105.07

Dutch to English translations

Orig. Lang. Unigrams OOV PP

MIX 33,050 651 87.37

O-EN 32,064 771 100.75

T-DE 28,766 778 90.35

T-FR 30,502 775 96.38

T-IT 29,386 916 99.26

T-NL 29,178 560 78.25

Table 6: Fitness of various LMs to the reference set

other languages to L2.

A possible explanation for the different per-
plexity results between the LMs could be the
specific contents of the corpora used to com-
pile the LMs. To rule out this possibility and
to further emphasize that the corpora are in-
deed structurally different, we conduct more ex-
periments, in which we gradually abstract away
from the domain- and content-specific features
of the texts and emphasize their syntactic struc-
ture. We focus on German-to-English.

First, we remove all punctuation to eliminate
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possible bias due to differences in punctuation
conventions. Then, we use the Stanford Named
Entity Recognizer (Finkel et al., 2005) to iden-
tify named entities, which we replace with a
unique token (‘NE’). Next, we replace all nouns
with their POS tag; we use the Stanford POS
Tagger (Toutanova and Manning, 2000). Fi-
nally, for full lexical abstraction, we replace all
words with their POS tags.

At each step, we train six language models on
O- and T-texts and apply them to the reference
set (adapted to the same level of abstraction,
of course). As the abstraction of the text in-
creases, we also increase the order of the LMs:
From 4-grams for text without punctuation and
NE abstraction to 5-grams for noun abstraction
to 8-grams for full POS abstraction. The results,
which are depicted in Table 7, consistently show
that the T-based LM is a better fit to the ref-
erence set, albeit to a lesser extent. While we
do not show the details here, the same pattern
is persistent in all the other Europarl languages
we experiment with.

We repeat this experiment with the Hebrew-
to-English reference set. We train two 4-gram
LMs on the O-EN and T-HE corpora. We then
apply the two LMs to the reference set and com-
pute the perplexity. The results are presented
in Table 8. Although the T-based LM has more
OOVs, it is a better fit to the translated text
than the O-based LM: Its perplexity is lower
by 20.1%. Interestingly, the O-corpus LM has
more unique unigrams than the T-corpus LM,
supporting the claim of Al-Shabab (1996) that
translated texts have lower type-to-token ratio.

We also conduct the above-mentioned ab-
straction experiments. The results, which are
depicted in Table 9, consistently show that the
T-based LM is a better fit to the reference set.

Clearly, then, translated LMs better fit the
references than original ones, and the differences
can be traced back not just to (trivial) specific
lexical choice, but also to syntactic structure, as
evidenced by the POS abstraction experiments.
In fact, in order to retain the low perplexity level
of translated texts, a LM based on original texts
must be approximately ten times larger. We es-
tablish this by experimenting with the Hansard

No Punctuation

Orig. Lang. OOVs PP PP diff.

MIX 770 109.36 7.58%

O-EN 946 127.03 20.43%

T-DE 795 101.07 0.00%

T-FR 909 122.03 17.18%

T-IT 991 125.36 19.38%

T-NL 936 117.37 13.89%

NE Abstraction

Orig. Lang. OOVs PP PP diff.

MIX 643 99.13 6.99%

O-EN 772 114.19 19.26%

T-DE 661 92.20 0.00%

T-FR 752 110.22 16.35%

T-IT 823 112.72 18.21%

T-NL 771 105.81 12.86%

Noun Abstraction

Orig. Lang. OOVs PP PP diff.

MIX 400 38.48 4.71%

O-EN 459 42.06 12.80%

T-DE 405 36.67 0.00%

T-FR 472 40.96 10.47%

T-IT 489 41.39 11.39%

T-NL 440 39.54 7.26%

POS Abstraction

Orig. Lang. OOVs PP PP diff.

MIX 0 8.02 1.22%

O-EN 0 8.19 3.31%

T-DE 0 7.92 0.00%

T-FR 0 8.10 2.16%

T-IT 0 8.12 2.50%

T-NL 0 8.03 1.42%

Table 7: Fitness of O- vs. T-based LMs to the refer-
ence set (DE-EN), different abstraction levels

corpus. The results are persistent, but are omit-
ted for lack of space.

4.2 Original vs. Translated LMs for MT

The last hypothesis we test is whether a bet-
ter fitting language model yields a better ma-
chine translation system. In other words, we
expect the T-based LMs to outperform the O-
based LMs when used as part of an MT sys-
tem. We construct German-to-English, French-
to-English, Italian-to-English and Dutch-to-

369



Hebrew to English translations

Orig. Lang. Unigrams OOV PP

O-EN 74,305 2,955 282.75
T-HE 61,729 3,253 226.02

Table 8: Fitness of O- vs. T-based LMs to the refer-
ence set (HE-EN)

No Punctuation

Orig. Lang. OOVs PP PP diff.

O-EN 2,601 442.95 19.2%

T-HE 2,922 358.11 0.0%

NE Abstraction

Orig. Lang. OOVs PP PP diff.

O-EN 1,794 350.3 17.3%

T-HE 2,038 289.71 0.0%

Noun Abstraction

Orig. Lang. OOVs PP PP diff.

O-EN 679 93.31 12.4%

T-HE 802 81.72 0.0%

POS Abstraction

Orig. Lang. OOVs PP PP diff.

O-EN 0 11.47 6.2%

T-HE 0 10.76 0.0%

Table 9: Fitness of O- vs. T-based LMs to the refer-
ence set (HE-EN), different abstraction levels

English MT systems using the Moses phrase-
based SMT toolkit (Koehn et al., 2007). The
systems are trained on the parallel corpora de-
scribed in Section 3.3. We use the reference sets
(Section 3.4) as follows: 1,000 sentences are ran-
domly extracted for minimum error-rate tuning
(Och, 2003), and another set of 1,000 sentences
is randomly used for evaluation. Each system
is built and tuned with six different LMs: MIX,
O-based and four T-based (Section 3.2). We use
BLEU (Papineni et al., 2002) to evaluate trans-
lation quality. The results are listed in Table 10.

These results are consistent: the translated-
from-source systems outperform all other sys-
tems; mixture models come second; and systems
that use original English LMs always perform
worst. We test the statistical significance of dif-
ferences between various MT systems using the
bootstrap resampling method (Koehn, 2004). In
all experiments, the best system (translated-
from-source LM) is significantly better than all

DE to EN

LM BLEU

MIX 21.95

O-EN 21.35

T-DE 22.42

T-FR 21.47

T-IT 21.79

T-NL 21.59

FR to EN

LM BLEU

MIX 25.43

O-EN 24.85

T-DE 25.03

T-FR 25.91

T-IT 25.44

T-NL 25.17

IT to EN

LM BLEU

MIX 26.79

O-EN 25.69

T-DE 25.86

T-FR 26.56

T-IT 27.28

T-NL 25.77

NL to EN

LM BLEU

MIX 25.17

O-EN 24.46

T-DE 25.12

T-FR 24.79

T-IT 24.93

T-NL 25.73

Table 10: Machine translation with various LMs

other systems (p < 0.05); (even more) signifi-
cantly better than the O-EN system (p < 0.01);
and the mixture systems are significantly better
than the O-EN systems (p < 0.01).

We also construct a Hebrew-to-English MT
system using Moses’ factored translation model
(Koehn and Hoang, 2007). Every token in the
training corpus is represented as two factors:
surface form and lemma. Moreover, the Hebrew
input is fully segmented. The system is built
and tuned with O- and T-based LMs. Table 11
depicts the performance of the systems. The
T-based LM yields a statistically better BLEU
score than the O-based system.

LM BLEU p-value

O-based LM 11.98 0.012

T-based LM 12.57

Table 11: Hebrew-to-English MT results

The LMs used in the above experiments are
small. We now want to assess whether the ben-
efits of using translated LMs carry over to sce-
narios where large original corpora exist. We
build yet another set of French-to-English MT
systems. We use the Hansard SMT transla-
tion model and Hansard LMs to train nine MT
systems, three with varying sizes of translated
texts and six with varying sizes of original texts.
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We tune and evaluate on the Hansard reference
set. In another set of experiments we use the
Europarl French-to-English scenario (using Eu-
roparl corpora for the translation model and
for tuning and evaluation), but we use the nine
Hansard LMs to see whether our findings are
consistent also when LMs are trained on out-of-
domain (but similar genre) material.

Table 12 shows that the original English LMs
should be enlarged by a factor of ten to achieve
translation quality similar to that of translation-
based LMs. In other words, much smaller trans-
lated LMs perform better than much larger orig-
inal ones, and this is true for various LM sizes.

In-Domain

Original French

Size BLEU

1M 34.05

5M 35.12

10M 35.65

Original English

Size BLEU

1M 32.57

5M 33.37

10M 33.92

25M 34.71

50M 34.85

100M 35.36

Out-of-Domain

Original French

Size BLEU

1M 18.87

5M 23.90

10M 24.36

Original English

Size BLEU

1M 18.68

5M 23.02

10M 23.45

25M 23.82

50M 23.95

100M 24.16

Table 12: The effect of LM size on MT performance

5 Discussion

We use language models computed from dif-
ferent types of corpora to investigate whether
their fitness to a reference set of translated-
to-English sentences can differentiate between
them (and, hence, between the corpora on which
they are based). Our main findings are that LMs
compiled from manually translated corpora are
much better predictors of translated texts than
LMs compiled from original-language corpora of
the same size. The results are robust, and are
sustainable even when the corpora and the refer-
ence sentences are abstracted in ways that retain
their syntactic structure but ignore specific word
meanings. Furthermore, we show that trans-
lated LMs are better predictors of translated

sentences even when the LMs are compiled from
texts translated from languages other than the
source language. However, LMs based on texts
translated from the source language still outper-
form LMs translated from other languages.

We also show that MT systems based on
translated-from-source-language LMs outper-
form MT systems based on originals LMs or
LMs translated from other languages. Again,
these results are robust and the improvements
are statistically significant. This effect seems
to be amplified as translation quality improves.
Furthermore, our results show that original LMs
require ten times more data to exhibit the same
fitness to the reference set and the same trans-
lation quality as translated LMs.

More generally, this study confirms that in-
sights drawn from the field of theoretical trans-
lation studies, namely the dual claim according
to which (1) translations as such differ from orig-
inals, and (2) translations from different source
languages differ from each other, can be veri-
fied experimentally and contribute to the per-
formance of machine translation.

Future research is needed in order to un-
derstand why this is the case. One plausi-
ble hypothesis is that recurrent multiword ex-
pressions in the source language are frequently
solved by human translations and each of these
expressions converges to a set of high-quality
translation equivalents which are represented
in the LM. Another hypothesis is that since
translation-based LMs represent a simplified
mode of language use, the error potential is
smaller. We therefore expect translation-based
LMs to use more unmarked forms.

This work also bears on language typology:
we conjecture that LMs compiled from texts
translated not from the original language, but
from a closely related one, can be better than
texts translated from a more distant language.
Some of our results support this hypothesis, but
more research is needed in order to establish it.
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Abstract

Many machine translation evaluation met-
rics have been proposed after the seminal
BLEU metric, and many among them have
been found to consistently outperform BLEU,
demonstrated by their better correlations with
human judgment. It has long been the hope
that by tuning machine translation systems
against these new generation metrics, ad-
vances in automatic machine translation eval-
uation can lead directly to advances in auto-
matic machine translation. However, to date
there has been no unambiguous report that
these new metrics can improve a state-of-the-
art machine translation system over its BLEU-
tuned baseline.

In this paper, we demonstrate that tuning
Joshua, a hierarchical phrase-based statistical
machine translation system, with the TESLA
metrics results in significantly better human-
judged translation quality than the BLEU-
tuned baseline. TESLA-M in particular is
simple and performs well in practice on large
datasets. We release all our implementation
under an open source license. It is our hope
that this work will encourage the machine
translation community to finally move away
from BLEU as the unquestioned default and
to consider the new generation metrics when
tuning their systems.

1 Introduction

The dominant framework of machine translation
(MT) today is statistical machine translation (SMT)
(Hutchins, 2007). At the core of the system is the
decoder, which performs the actual translation. The

decoder is parameterized, and estimating the optimal
set of parameter values is of paramount importance
in getting good translations. In SMT, the parame-
ter space is explored by a tuning algorithm, typically
MERT (Minimum Error Rate Training) (Och, 2003),
though the exact method is not important for our
purpose. The tuning algorithm carries out repeated
experiments with different decoder parameter val-
ues over a development data set, for which reference
translations are given. An automatic MT evaluation
metric compares the output of the decoder against
the reference(s), and guides the tuning algorithm to-
wards iteratively better decoder parameters and out-
put translations. The quality of the automatic MT
evaluation metric therefore has an immediate effect
on the whole system.

The first automatic MT evaluation metric to show
a high correlation with human judgment is BLEU
(Papineni et al., 2002). Together with its close vari-
ant the NIST metric, they have quickly become the
standard way of tuning statistical machine transla-
tion systems. While BLEU is an impressively sim-
ple and effective metric, recent evaluations have
shown that many new generation metrics can out-
perform BLEU in terms of correlation with human
judgment (Callison-Burch et al., 2009; Callison-
Burch et al., 2010). Some of these new metrics in-
clude METEOR (Banerjee and Lavie, 2005; Lavie
and Agarwal, 2007), TER (Snover et al., 2006),
MAXSIM (Chan and Ng, 2008; Chan and Ng,
2009), and TESLA (Liu et al., 2010).

Given the close relationship between automatic
MT and automatic MT evaluation, the logical expec-
tation is that a better MT evaluation metric would
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lead to better MT systems. However, this linkage
has not yet been realized. In the SMT community,
MT tuning still uses BLEU almost exclusively.

Some researchers have investigated the use of bet-
ter metrics for MT tuning, with mixed results. Most
notably, Padó et al. (2009) reported improved human
judgment using their entailment-based metric. How-
ever, the metric is heavy weight and slow in practice,
with an estimated runtime of 40 days on the NIST
MT 2002/2006/2008 dataset, and the authors had to
resort to a two-phase MERT process with a reduced
n-best list. As we shall see, our experiments use the
similarly sized WMT 2010 dataset, and most of our
runs take less than one day.

Cer et al. (2010) compared tuning a phrase-based
SMT system with BLEU, NIST, METEOR, and
TER, and concluded that BLEU and NIST are still
the best choices for MT tuning, despite the proven
higher correlation of METEOR and TER with hu-
man judgment.

In this work, we investigate the effect of MERT
using BLEU, TER, and two variants of TESLA,
TESLA-M and TESLA-F, on Joshua (Li et al.,
2009), a state-of-the-art hierarchical phrase-based
SMT system (Chiang, 2005; Chiang, 2007). Our
empirical study is carried out in the context of WMT
2010, for the French-English, Spanish-English, and
German-English machine translation tasks. We
show that Joshua responds well to the change of
evaluation metric, in that a system trained on met-
ric M typically does well when judged by the same
metric M. We further evaluate the different systems
with manual judgments and show that the TESLA
family of metrics (both TESLA-M and TESLA-F)
significantly outperforms BLEU when used to guide
the MERT search.

The rest of this paper is organized as follows. In
Section 2, we describe the four evaluation metrics
used. Section 3 outlines our experimental set up us-
ing the WMT 2010 machine translation tasks. Sec-
tion 4 presents the evaluation results, both automatic
and manual. Finally, we discuss our findings in Sec-
tion 5, future work in Section 6, and conclude in
Section 7.

2 Evaluation metrics

This section describes the metrics used in our exper-
iments. We do not seek to explain all their variants
and intricate details, but rather to outline their core
characteristics and to highlight their similarities and
differences. In particular, since all our experiments
are based on single references, we omit the com-
plications due to multiple references and refer our
readers instead to the respective original papers for
the details.

2.1 BLEU

BLEU is fundamentally based on n-gram match pre-
cisions. Given a reference text R and a translation
candidate T , we generate the bag of all n-grams con-
tained inR and T for n = 1, 2, 3, 4, and denote them
as BNGn

R and BNGn
T respectively. The n-gram pre-

cision is thus defined as

Pn =
|BNGn

R ∩ BNGn
T|

|BNGn
T|

To compensate for the lack of the recall measure,
and hence the tendency to produce short translations,
BLEU introduces a brevity penalty, defined as

BP =

{
1 if|T| > |R|
e1−|R|/|T | if|T| ≤ |R|

where the | · | operator denotes the size of a bag or
the number of words in a text. The metric is finally
defined as

BLEU(R,T) = BP× 4
√
P1P2P3P4

BLEU is a very simple metric requiring neither
training nor language-specific resources. Its use of
the brevity penalty is however questionable, as sub-
sequent research on n-gram-based metrics has con-
sistently found that recall is in fact a more potent
indicator than precision (Banerjee and Lavie, 2005;
Zhou et al., 2006; Chan and Ng, 2009). As we
shall see, despite the BP term, BLEU still exhibits
a strong tendency to produce short translations.

2.2 TER

TER is based on counting transformations rather
than n-gram matches. The metric is defined as the
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minimum number of edits needed to change a can-
didate translation T to the reference R, normalized
by the length of the reference, i.e.,

TER(R,T) =
number of edits

|R|
One edit is defined as one insertion, deletion, or

substitution of a single word, or the shift of a con-
tiguous sequence of words, regardless of size and
distance. Minimizing the edit distance so defined
has been shown to be NP-complete, so the evalua-
tion is carried out in practice by a heuristic greedy
search algorithm.

TER is a strong contender as the leading new gen-
eration automatic metric and has been used in major
evaluation campaigns such as GALE. Like BLEU,
it is simple and requires no language specific re-
sources. TER also corresponds well to the human
intuition of an evaluation metric.

2.3 TESLA-M

TESLA1 is a family of linear programming-based
metrics proposed by Liu et al. (2010) that incor-
porates many newer ideas. The simplest varia-
tion is TESLA-M2, based on matching bags of n-
grams (BNG) like BLEU. However, unlike BLEU,
TESLA-M formulates the matching process as a
real-valued linear programming problem, thereby
allowing the use of weights. An example weighted
BNG matching problem is shown in Figure 1.

Two kinds of weights are used in TESLA-M.
First, the metric emphasizes the content words by
discounting the weight of an n-gram by 0.1 for ev-
ery function word it contains. Second, the similarity
between two n-grams is a function dependent on the
lemmas, the WordNet synsets (Fellbaum, 1998), and
the POS tag of every word in the n-grams.

Each node in Figure 1 represents one weighted n-
gram. The four in the top row represent one BNG,
and the three at the bottom represent the other BNG.
The goal of the linear programming problem is to
assign weights to the links between the two BNGs,
so as to maximize the sum of the products of the link
weights and their corresponding similarity scores.

1The source code of TESLA is available at
nlp.comp.nus.edu.sg/software/

2M stands for minimal.

w=1.0 w=0.1 w=0.1 w=0.1

w=0.01 w=0.1 w=0.1

w=0.1

s=0.1
s=0.8

s=0.5
s=0.8

w=1.0

Good morning morning , , sir sir .

Hello , , Querrien Querrien .

s=0.4

(a) The matching problem

w=1.0 w=0.1 w=0.1 w=0.1

w=0.01 w=0.1 w=0.1

w=0.1

w=0.1w=0.01 w=0.1

w=1.0

Good morning morning , , sir sir .

Hello , , Querrien Querrien .

(b) The solution

Figure 1: Matching two weighted bags of n-grams.
w denotes the weight and s denotes the similarity.

The constraints of the linear programming prob-
lem are: (1) all assigned weights must be non-
negative, and (2) the sum of weights assigned to all
links connecting a node cannot exceed the node’s
weight. Intuitively, we allow splitting n-grams into
fractional counts, and match them giving priority to
the pairs with the highest similarities.

The linear programming formulation ensures that
the matching can be solved uniquely and efficiently.
Once the solution is found and let the maximized
objective function value be S, the precision is com-
puted as S over the sum of weights of the translation
candidate n-grams. Similarly, the recall is S over the
sum of weights of the reference n-grams. The pre-
cision and the recall are then combined to form the
F-0.8 measure:

Fn =
Precision× Recall

0.8× Precision + 0.2× Recall

This F-measure gives more importance to the re-
call, reflecting its closer correlation with human
judgment. Fn for n = 1, 2, 3 are calculated and av-
eraged to produce the final score.

TESLA-M gains an edge over the previous two
metrics by the use of lightweight linguistic features
such as lemmas, synonym dictionaries, and POS
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Metric Spearman’s rho
TESLA-F .94

TESLA-M .93
meteor-next-* .92

1-TERp .90
BLEU-4-v13a-c .89

Table 1: Selected system-level Spearman’s rho cor-
relation with the human judgment for the into-
English task, as reported in WMT 2010.

Metric Spearman’s rho
TESLA-M .93

meteor-next-rank .82
1-TERp .81

BLEU-4-v13a-c .80
TESLA-F .76

Table 2: Selected system-level Spearman’s rho cor-
relation with the human judgment for the out-of-
English task, as reported in WMT 2010.

tags. While such tools are usually available even for
languages other than English, it does make TESLA-
M more troublesome to port to non-English lan-
guages.

TESLA-M did well in the WMT 2010 evaluation
campaign. According to the system-level correla-
tion with human judgments (Tables 1 and 2), it ranks
top for the out-of-English task and very close to the
top for the into-English task (Callison-Burch et al.,
2010).

2.4 TESLA-F3

TESLA-F builds on top of TESLA-M. While word-
level synonyms are handled in TESLA-M by exam-
ining WordNet synsets, no modeling of phrase-level
synonyms is possible. TESLA-F attempts to rem-
edy this shortcoming by exploiting a phrase table
between the target language and another language,
known as the pivot language.

Assume the target language is English and the
pivot language is French, i.e., we are provided with
an English-French phrase table. Let R and T be the

3TESLA-F refers to the metric called TESLA in (Liu et al.,
2010). To minimize confusion, in this work we call the metric
TESLA-F and refer to the whole family of metrics as TESLA.
F stands for full.

Bonjour , monsieur . / 1.0

Figure 2: A degenerate confusion network in
French. The phrase table maps Good morning , sir .
to Bonjour , monsieur .

Bonjour , / 0.9

Salut , / 0.1

Querrien / 1.0 . / 1.0

Figure 3: A confusion network in French. The
phrase table maps Hello , to Bonjour , with P = 0.9
and to Salut , with P = 0.1.

reference and the translation candidate respectively,
both in English. As an example,

R: Good morning , sir .
T: Hello , Querrien .

TESLA-F first segments both R and T into
phrases to maximize the probability of the sen-
tences. For example, suppose both Good morning ,
sir . and Hello , can be found in the English-French
phrase table, and proper name Querrien is out-of-
vocabulary, then a likely segmentation is:

R: ||| Good morning , sir . |||
T: ||| Hello , ||| Querrien ||| . |||

Each English phrase is then mapped to a bag
of weighted French phrases using the phrase table,
transforming the English sentences into confusion
networks resembling Figures 2 and 3. French n-
grams are extracted from these confusion network
representations, known as pivot language n-grams.
The bag of pivot language n-grams generated by R
is then matched against that generated by T with
the same linear programming formulation used in
TESLA-M.

TESLA-F incorporates all the F-measures used in
TESLA-M, with the addition of (1) the F-measures
generated over the pivot language n-grams described
above, and (2) the normalized language model score,
defined as 1

n logP , where n is the length of the
translation, and P the language model probability.
Unlike BLEU and TESLA-M which rely on simple
averages (geometric and arithmetic average respec-
tively) to combine the component scores, TESLA-
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F trains the weights over a set of human judg-
ments using a linear ranking support vector machine
(RSVM). This allows TESLA-F to exploit its com-
ponents more effectively, but also makes it more te-
dious to work with and introduces potential domain
mismatch problems.

TESLA-F makes use of even more linguistic in-
formation than TESLA-M, and has the capability
of recognizing some forms of phrase synonyms.
TESLA-F ranked top for the into-English evalua-
tion task in WMT 2010 (Table 1). However, the
added complexity, in particular the use of the lan-
guage model score and the tuning of the component
weights appear to make it less stable than TESLA-M
in practice. For example, it did not perform as well
in the out-of-English task.

3 Experimental setup

We run our experiments in the setting of the WMT
2010 news commentary machine translation cam-
paign, for three language pairs:

1. French-English (fr-en): the training text con-
sists of 84624 sentences of French-English bi-
text. The average French sentence length is 25
words.

2. Spanish-English (es-en): the training text con-
sists of 98598 sentences of Spanish-English bi-
text. The average Spanish sentence length is 25
words.

3. German-English (de-en): the training text con-
sists of 100269 sentences of German-English
bitext. The average German sentence length is
22 words.

The average English sentence length is 21 words
for all three language pairs. The text domain is
newswire report, and the English sides of the train-
ing texts for the three language pairs overlap sub-
stantially. The development data are 2525 four-way
translated sentences, in English, French, Spanish,
and German respectively. Similarly, the test data
are 2489 four-way translated sentences. As a conse-
quence, all MT evaluations involve only single ref-
erences.

We follow the standard approach for training hi-
erarchical phrase-based SMT systems. First, we to-
kenize and lowercase the training texts and create

fr-en es-en de-en
BLEU 3:49 (4) 5:09 (6) 2:41 (4)

TER 4:03 (4) 3:59 (4) 3:59 (5)
TESLA-M 13:00 (3) 17:34 (5) 13:40 (4)
TESLA-F 35:07 (4) 40:54 (4) 40:28 (5)

Table 3: Z-MERT training times in hours:minutes
and number of iterations in parenthesis

word alignments using the Berkeley aligner (Liang
et al., 2006; Haghighi et al., 2009) with five iter-
ations of training. Then, we create suffix arrays
and extract translation grammars for the develop-
ment and test set with Joshua in its default setting.
The maximum phrase length is 10. For the language
model, we use SRILM (Stolcke, 2002) to build a
trigram model with modified Kneser-Ney smooth-
ing from the monolingual training data supplied in
WMT 2010.

Parameter tuning is carried out using Z-
MERT (Zaidan, 2009). TER and BLEU are al-
ready implemented in the publicly released version
of Z-MERT, and Z-MERT’s modular design makes
it easy to integrate TESLA-M and TESLA-F into the
package. The maximum number of MERT iterations
is set to 100, although we observe that in practice,
the algorithm converges after 3 to 6 iterations. The
number of intermediate initial points per iteration is
set to 20 and the n-best list is capped to 300 trans-
lations. Table 3 shows the training times and the
number of MERT iterations for each of the language
pairs and evaluation metrics.

We use the publicly available version of TESLA-
F, which comes with phrase tables and a ranking
SVM model trained on the WMT 2010 development
data.

4 Automatic and manual evaluations

The results of the automatic evaluations are pre-
sented in Table 4. The best score according to each
metric is shown in bold. Note that smaller TER
scores are better, as are larger BLEU, TESLA-M,
and TESLA-F scores.4

We note that Joshua generally responds well to
the change of tuning metric. A system tuned on met-

4The TESLA-F scores shown here have been monotonically
scaled.
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tune\test BLEU TER TESLA-M TESLA-F
BLEU 0.5237 0.6029 0.3922 0.4114

TER 0.5239 0.6028 0.3880 0.4095
TESLA-M 0.5005 0.6359 0.4170 0.4223
TESLA-F 0.4992 0.6377 0.4164 0.4224

(a) The French-English task

tune\test BLEU TER TESLA-M TESLA-F
BLEU 0.5641 0.5764 0.4315 0.4328

TER 0.5667 0.5725 0.4204 0.4282
TESLA-M 0.5253 0.6246 0.4511 0.4398
TESLA-F 0.5331 0.6111 0.4498 0.4409

(b) The Spanish-English task

tune\test BLEU TER TESLA-M TESLA-F
BLEU 0.4963 0.6329 0.3369 0.3927

TER 0.4963 0.6355 0.3191 0.3851
TESLA-M 0.4557 0.7055 0.3784 0.4070
TESLA-F 0.4642 0.6888 0.3753 0.4068

(c) The German-English task

Table 4: Automatic evaluation scores

P(A) Kappa
French-English 0.6846 0.5269

Spanish-English 0.6124 0.4185
German-English 0.3973 0.0960

Table 5: Inter-annotator agreement

ric M usually does the best or very close to the best
when evaluated by M. On the other hand, the dif-
ferences between different systems can be substan-
tial, especially between BLEU/TER and TESLA-
M/TESLA-F.

In addition to the automatic evaluation, we en-
listed twelve judges to manually evaluate the first
200 test sentences. Four judges are assigned to
each of the three language pairs. For each test sen-
tence, the judges are presented with the source sen-
tence, the reference English translation, and the out-
put from the four competing Joshua systems. The
order of the translation candidates is randomized so
that the judges will not see any patterns. The judges
are instructed to rank the four candidates, and ties
are allowed.

The inter-annotator agreement is reported in Ta-
ble 5. We consider the judgment for a pair of system
outputs as one data point. Let P (A) be the propor-
tion of times that the annotators agree, and P (E)

fr-en es-en de-en
BLEU 44.1% 33.8% 49.6%

TER 41.4% 34.4% 47.8%
TESLA-M 65.8% 49.5% 57.8%
TESLA-F 66.4% 53.8% 55.1%

Table 6: Percentage of times each system produces
the best translation

be the proportion of times that they would agree by
chance. The Kappa coefficient is defined as

Kappa =
P(A)− P(E)

1− P(E)

In our experiments, each data point has three pos-
sible values: A is preferred, B is preferred, and no
preference, hence P (E) = 1/3. Our Kappa is cal-
culated in the same way as the WMT workshops
(Callison-Burch et al., 2009; Callison-Burch et al.,
2010).

Kappa coefficients between 0.4 and 0.6 are con-
sidered moderate, and our values are in line with
those reported in the WMT 2010 translation cam-
paign. The exception is the German-English pair,
where the annotators only reach slight agreement.
This might be caused by the lower quality of Ger-
man to English translations compared to the other
two language pairs.

Table 6 shows the proportion of times each sys-
tem produces the best translation among the four.
We observe that the rankings are largely consis-
tent across different language pairs: Both TESLA-
F and TESLA-M strongly outperform BLEU and
TER. Note that the values in each column do not
add up to 100%, since the candidate translations are
often identical, and even a different translation can
receive the same human judgment.

Table 7 shows our main result, the pairwise com-
parison between the four systems for each of the lan-
guage pairs. Again the rankings consistently show
that both TESLA-F and TESLA-M strongly out-
perform BLEU and TER. All differences are sta-
tistically significant under the Sign Test at p =
0.01, with the exception of TESLA-M vs TESLA-
F in the French-English task, BLEU vs TER in the
Spanish-English task, and TESLA-M vs TESLA-F
and BLEU vs TER in the German-English task. The
results provide strong evidence that tuning machine
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A\B BLEU TER TESLA-M TESLA-F
BLEU - 11.4% / 6.5% 29.1% / 52.1% 28.0% / 52.3%

TER 6.5% / 11.4% - 28.6% / 54.5% 27.5% / 55.0%
TESLA-M 52.1% / 29.1% 54.5% / 28.6% - 7.6% / 8.8%
TESLA-F 52.3% / 28.0% 55.0% / 27.5% 8.8% / 7.6% -

(a) The French-English task. All differences are significant under the Sign Test at p = 0.01, except the
strikeout TESLA-M vs TESLA-F.

A\B BLEU TER TESLA-M TESLA-F
BLEU - 25.8% / 22.3% 31.0% / 50.6% 24.4% / 50.8%

TER 22.3% / 25.8% - 31.9% / 51.0% 26.4% / 52.4%
TESLA-M 50.6% / 31.0% 51.0% / 31.9% - 25.9% / 33.4%
TESLA-F 50.8% / 24.4% 52.4% / 26.4% 33.4% / 25.9% -

(b) The Spanish-English task. All differences are significant under the Sign Test at p = 0.01, except
the strikeout BLEU vs TER.

A\B BLEU TER TESLA-M TESLA-F
BLEU - 21.8% / 18.4% 28.1% / 36.9% 27.3% / 35.3%

TER 18.4% / 21.8% - 26.9% / 39.5% 27.3% / 37.5%
TESLA-M 36.9% / 28.1% 39.5% / 26.9% - 24.3% / 21.3%
TESLA-F 35.3% / 27.3% 37.5% / 27.3% 21.3% / 24.3% -

(c) The German-English task. All differences are significant under the Sign Test at p = 0.01, except
the strikeout BLEU vs TER, and TESLA-M vs TESLA-F.

Table 7: Pairwise system comparisons. Each cell shows the proportion of time the system tuned on A is
preferred over the system tuned on B, and the proportion of time the opposite happens. Notice that the upper
right half of each table is the mirror image of the lower left half.
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translation systems using the TESLA metrics leads
to significantly better translation output.

5 Discussion

We examined the results manually, and found that
the relationship between the types of mistakes each
system makes and the characteristics of the corre-
sponding metric to be intricate. We discuss our find-
ings in this section.

First we observe that BLEU and TER tend to pro-
duce very similar translations, and so do TESLA-
F and TESLA-M. Of the 2489 test sentences in the
French-English task, BLEU and TER produced dif-
ferent translations for only 760 sentences, or 31%.
Similarly, TESLA-F and TESLA-M gave different
outputs for only 857 sentences, or 34%. In contrast,
BLEU and TESLA-M gave different translations for
2248 sentences, or 90%. It is interesting to find that
BLEU and TER should be so similar, considering
that they are based on very different principles. As a
metric, TESLA-M is certainly much more similar to
BLEU than TER is, yet they behave very differently
when used as a tuning metric.

We also observe that TESLA-F and TESLA-M
tend to produce much longer sentences than do
BLEU and TER. The average sentence lengths of the
TESLA-F- and TESLA-M-tuned systems across all
three language pairs are 26.5 and 26.6 words respec-
tively, whereas those for BLEU and TER are only
22.4 and 21.7 words. Comparing the translations
from the two groups, the tendency of BLEU and
TER to pick shorter paraphrases and to drop func-
tion words is unmistakable, often to the detriment of
the translation quality. Some typical examples from
the French-English task are shown in Figure 4.

Interestingly, the human translations average only
22 words, so BLEU and TER translations are in fact
much closer on average to the reference lengths, yet
their translations often feel too short. In contrast,
manual inspections reveal no tendency for TESLA-F
and TESLA-M to produce overly long translations.

These observations suggest that the brevity
penalty of BLEU is not aggressive enough. Nei-
ther is TER, which penalizes insertions and dele-
tions equally. Interestingly, by placing much more
emphasis on the recall, TESLA-M and TESLA-F
produce translations that are statistically too long,

but feel much more ‘correct’ lengthwise.
Another major difference between TESLA-

M/TESLA-F and BLEU/TER is that the TESLAs
heavily discount n-grams with function words. One
might thus expect the TESLA-tuned systems to be
less adept at function words; yet they translate them
surprisingly well, as shown in Figure 4. One ex-
planation is of course the sentence length effect we
have discussed. Another reason may be that since
the metric does not care much about function words,
the language model is given more freedom to pick
function words as it sees fit, without the fear of large
penalties. Paradoxically, by reducing the weights
of function words, we end up making better trans-
lations for them.

TER is the only metric that allows cheap block
movements, regardless of size or distance. One
might reasonably speculate that a TER-tuned system
should be more prone to reordering phrases. How-
ever, we find no evidence that this is so.

The relative performance of TESLA-M vs
TESLA-F is unsurprising. TESLA-F, being heav-
ier and slower, produces somewhat better results
than its minimalist counterpart, though the margin
is far less pronounced than that between TESLA-
M and the conventional BLEU and TER. Since ex-
tra resources including bitexts are needed in using
TESLA-F, TESLA-M emerges as the MT evaluation
metric of choice for tuning SMT systems.

6 Future work

We have presented empirical evidence that the
TESLA metrics outperform BLEU for MT tuning
in a hierarchical phrase-based SMT system. At
the same time, some open questions remain unan-
swered. We intend to investigate them in our future
work.

The work of (Cer et al., 2010) investigated the ef-
fect of tuning a phrase-based SMT system and found
that of the MT evaluation metrics that they tried,
none of them could outperform BLEU. We would
like to verify whether TESLA tuning is still pre-
ferred over BLEU tuning in a phrase-based SMT
system.

Based on our observations, it may be possible to
improve the performance of BLEU-based tuning by
(1) increasing the brevity penalty; (2) introducing
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BLEU in the future , americans want a phone that allow the user to . . .
TER in the future , americans want a phone that allow the user to . . .

TESLA-M in the future , the americans want a cell phone , which allow the user to . . .
TESLA-F in the future , the americans want a phone that allow the user to . . .

BLEU . . . also for interest on debt of the state . . .
TER . . . also for interest on debt of the state . . .

TESLA-M . . . also for the interest on debt of the state . . .
TESLA-F . . . also for the interest on debt of the state . . .

BLEU and it is hardly the end of carnival-like transfers .
TER and it is hardly the end of carnival-like transfers .

TESLA-M and it is far from being the end of the carnival-like transfers .
TESLA-F and it is far from being the end of the carnival-like transfers .

BLEU it is not certain that the state can act without money .
TER it is not certain that the state can act without money .

TESLA-M it is not certain that the state can act without this money .
TESLA-F it is not certain that the state can act without this money .

BLEU but the expense of a debt of the state . . .
TER but the expense of a debt of the state . . .

TESLA-M but at the expense of a greater debt of the state . . .
TESLA-F but at the expense of a great debt of the state . . .

Figure 4: Comparison of selected translations from the French-English task

a recall measure and emphasizing it over precision;
and/or (3) introducing function word discounting. In
the ideal case, such a modified BLEU metric would
deliver results similar to that of TESLA-M, yet with
a runtime cost closer to BLEU. It would also make
porting existing tuning code easier.

7 Conclusion

We demonstrate for the first time that a practical
new generation MT evaluation metric can signifi-
cantly improve the quality of automatic MT com-
pared to BLEU, as measured by human judgment.
We hope this work will encourage the MT research
community to finally move away from BLEU and to
consider tuning their systems with a new generation
metric.

All the data, source code, and results reported in
this work can be downloaded from our website at
http://nlp.comp.nus.edu.sg/software.
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Abstract

Methods for evaluating dependency parsing
using attachment scores are highly sensitive
to representational variation between depen-
dency treebanks, making cross-experimental
evaluation opaque. This paper develops a ro-
bust procedure for cross-experimental eval-
uation, based on deterministic unification-
based operations for harmonizing different
representations and a refined notion of tree
edit distance for evaluating parse hypothe-
ses relative to multiple gold standards. We
demonstrate that, for different conversions of
the Penn Treebank into dependencies, perfor-
mance trends that are observed for parsing
results in isolation change or dissolve com-
pletely when parse hypotheses are normalized
and brought into the same common ground.

1 Introduction

Data-driven dependency parsing has seen a consid-
erable surge of interest in recent years. Dependency
parsers have been tested on parsing sentences in En-
glish (Yamada and Matsumoto, 2003; Nivre and
Scholz, 2004; McDonald et al., 2005) as well as
many other languages (Nivre et al., 2007a). The
evaluation metric traditionally associated with de-
pendency parsing is based on scoring labeled or
unlabeled attachment decisions, whereby each cor-
rectly identified pair of head-dependent words is
counted towards the success of the parser (Buchholz
and Marsi, 2006). As it turns out, however, such
evaluation procedures are sensitive to the annotation
choices in the data on which the parser was trained.

Different annotation schemes often make differ-
ent assumptions with respect to how linguistic con-
tent is represented in a treebank (Rambow, 2010).
The consequence of such annotation discrepancies is
that when we compare parsing results across differ-
ent experiments, even ones that use the same parser
and the same set of sentences, the gap between re-
sults in different experiments may not reflect a true
gap in performance, but rather a difference in the an-
notation decisions made in the respective treebanks.

Different methods have been proposed for making
dependency parsing results comparable across ex-
periments. These methods include picking a single
gold standard for all experiments to which the parser
output should be converted (Carroll et al., 1998; Cer
et al., 2010), evaluating parsers by comparing their
performance in an embedding task (Miyao et al.,
2008; Buyko and Hahn, 2010), or neutralizing the
arc direction in the native representation of depen-
dency trees (Schwartz et al., 2011).

Each of these methods has its own drawbacks.
Picking a single gold standard skews the results in
favor of parsers which were trained on it. Trans-
forming dependency trees to a set of pre-defined la-
beled dependencies, or into task-based features, re-
quires the use of heuristic rules that run the risk of
distorting correct information and introducing noise
of their own. Neutralizing the direction of arcs is
limited to unlabeled evaluation and local context,
and thus may not cover all possible discrepancies.

This paper proposes a new three-step protocol for
cross-experiment parser evaluation, and in particu-
lar for comparing parsing results across data sets
that adhere to different annotation schemes. In the
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first step all structures are brought into a single for-
mal space of events that neutralizes representation
peculiarities (for instance, arc directionality). The
second step formally computes, for each sentence
in the data, the common denominator of the differ-
ent gold standards, containing all and only linguistic
content that is shared between the different schemes.
The last step computes the normalized distance from
this common denominator to parse hypotheses, mi-
nus the cost of distances that reflect mere annotation
idiosyncrasies. The procedure that implements this
protocol is fully deterministic and heuristics-free.

We use the proposed procedure to compare de-
pendency parsing results trained on Penn Treebank
trees converted into dependency trees according to
five different sets of linguistic assumptions. We
show that when starting off with the same set of
sentences and the same parser, training on differ-
ent conversion schemes yields apparently significant
performance gaps. When results across schemes are
normalized and compared against the shared linguis-
tic content, these performance gaps decrease or dis-
solve completely. This effect is robust across parsing
algorithms. We conclude that it is imperative that
cross-experiment parse evaluation be a well thought-
through endeavor, and suggest ways to extend the
protocol to additional evaluation scenarios.

2 The Challenge: Treebank Theories

Dependency treebanks contain information about
the grammatically meaningful elements in the utter-
ance and the grammatical relations between them.
Even if the formal representation in a dependency
treebank is well-defined according to current stan-
dards (Kübler et al., 2009), there are different ways
in which the trees can be used to express syntactic
content (Rambow, 2010). Consider, for instance, al-
gorithms for converting the phrase-structure trees in
the Penn Treebank (Marcus et al., 1993) into depen-
dency structures. Different conversion algorithms
implicitly make different assumptions about how to
represent linguistic content in the data. When mul-
tiple conversion algorithms are applied to the same
data, we end up with different dependency trees for
the same sentences (Johansson and Nugues, 2007;
Choi and Palmer, 2010; de Marneffe et al., 2006).
Some common cases of discrepancies are as follows.

Lexical vs. Functional Head Choice. In linguis-
tics, there is a distinction between lexical heads and
functional heads. A lexical head carries the seman-
tic gist of a phrase while a functional one marks its
relation to other parts of the sentence. The two kinds
of heads may or may not coincide in a single word
form (Zwicky, 1993). Common examples refer to
prepositional phrases, such as the phrase “on Sun-
day”. This phrase has two possible analyses, one se-
lects a lexical head (1a) and the other selects a func-
tional one (1b), as depicted below.

(1a) Sunday

on

(1b) on

Sunday

Similar choices are found in phrases which contain
functional elements such as determiners, coordina-
tion markers, subordinating elements, and so on.

Multi-Headed Constructions. Some phrases are
considered to have multiple lexical heads, for in-
stance, coordinated structures. Since dependency-
based formalisms require us to represent all con-
tent as binary relations, there are different ways we
could represent such constructions. Let us consider
the coordination of nominals below. We can choose
between a functional head (1a) and a lexical head
(2b, 2c). We can further choose between a flat rep-
resentation in which the first conjunct is a single
head (2b), or a nested structure where each con-
junct/marker is the head of the following element
(2c). All three alternatives empirically exist. Exam-
ple (2a) reflects the structures in the CoNLL 2007
shared task data (Nivre et al., 2007a). Johansson
and Nugues (2007) use structures like (2b). Exam-
ple (2c) reflects the analysis of Mel’čuk (1988).

(2a) and

earth wind fire

(2b) earth

wind and fire

(2c) earth

wind

and

fire

Periphrastic Marking. When a phrase includes
periphrastic marking — such as the tense and modal
marking in the phrase “would have worked” below
— there are different ways to consider its division
into phrases. One way to analyze this phrase would
be to choose auxiliaries as heads, as in (3a). Another
alternative would be to choose the final verb as the

prep pobj

conj conj
conj cc

coord

conj

coordconj
conj
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Experiment Gold Parse
#1 arrive

on

Sunday

arrive

on

Sunday
#2 arrive

Sunday

on

arrive

Sunday

on

Gold: #1 # 2
Parse
#1 1.0 0.0
#2 0.0 1.0

Figure 1: Calculating cross-experiment LAS results

main head, and let the auxiliaries create a verb chain
with different levels of projection. Each annotation
decision dictates a different direction of the arcs and
imposes its own internal division into phrases.

(3a) would

have

worked

(3b) worked

have

would

In standard settings, an experiment that uses
a data set which adheres to a certain annotation
scheme reports results that are compared against the
annotation standard that the parser was trained on.
But if parsers were trained on different annotation
standards, the empirical results are not comparable
across experiments. Consider, for instance, the ex-
ample in Figure 1. If parse1 and parse2 are com-
pared against gold2 using labeled attachment scores
(LAS), then parse1 results are lower than the results
of parse2, even though both parsers produced lin-
guistically correct and perfectly useful output.

Existing methods for making parsing results com-
parable across experiments include heuristics for
converting outputs into dependency trees of a prede-
fined standard (Briscoe et al., 2002; Cer et al., 2010)
or evaluating the performance of a parser within an
embedding task (Miyao et al., 2008; Buyko and
Hahn, 2010). However, heuristic rules for cross-
annotation conversion are typically hand written and
error prone, and may not cover all possible discrep-
ancies. Task-based evaluation may be sensitive to
the particular implementation of the embedding task
and the procedures that extract specific task-related
features from the different parses. Beyond that,
conversion heuristics and task-based procedures are
currently developed almost exclusively for English.
Other languages typically lack such resources.

A recent study by Schwartz et al. (2011) takes
a different approach towards cross-annotation eval-
uation. They consider different directions of
head-dependent relations (such as on→Sunday
and Sunday→on) and different parent-child and
grandparent-child relations in a chain (such as
arrive→on and arrive→sunday in “arrive on sun-
day”) as equivalent. They then score arcs that fall
within corresponding equivalence sets. Using these
new scores Schwartz et al. (2011) neutralize certain
annotation discrepancies that distort parse compar-
ison. However, their treatment is limited to local
context and does not treat structures larger than two
sequential arcs. Additionally, since arcs in differ-
ent directions are typically labeled differently, this
method only applies for unlabeled dependencies.

What we need is a fully deterministic and for-
mally precise procedure for comparing any set of la-
beled or unlabeled dependency trees, by consolidat-
ing the shared linguistic content of the complete de-
pendency trees in different annotation schemes, and
comparing parse hypotheses through sound metrics
that can take into account multiple gold standards.

3 The Proposal: Cross-Annotation
Evaluation in Three Simple Steps

We propose a new protocol for cross-experiment
parse evaluation, consisting of three fundamental
components: (i) abstracting away from annotation
peculiarities, (ii) generalizing theory-specific struc-
tures into a single linguistically coherent gold stan-
dard that contains all and only consistent informa-
tion from all sources, and (iii) defining a sound met-
ric that takes into account the different gold stan-
dards that are being considered in the experiments.

In this section we first define functional trees as
the common space of formal objects and define a de-
terministic conversion procedure from dependency
trees to functional trees. Next we define a set of for-
mal operations on functional trees that compute, for
every pair of corresponding trees of the same yield, a
single gold tree that resolves inconsistencies among
gold standard alternatives and combines the infor-
mation that they share. Finally, we define scores
based on tree edit distance, refined to consider the
distance from parses to the overall gold tree as well
as the different annotation alternatives.

vg vg

vgvg

tmod

pobj pobj

prepprep

tmod

tmod

tmod
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Preliminaries. Let T be a finite set of terminal
symbols and let L be a set of grammatical relation
labels. A dependency graph d is a directed graph
which consists of nodes Vd and arcs Ad ⊆ Vd × Vd.
We assume that all nodes in Vd are labeled by ter-
minal symbols via a function labelV : Vd → T . A
well-formed dependency graph d = (Vd, Ad) for a
sentence S = t1, t2, ..., tn is any dependency graph
that is a directed tree originating out of a node v0

labeled t0 = ROOT , and spans all terminals in
the sentence, that is, for every ti ∈ S there exists
vj ∈ Vd labeled labelV (vj) = ti. For simplicity we
assume that every node vj is indexed according to
the position of the terminal label, i.e., that for each
ti labeling vj , i always equals j. In a labeled de-
pendency tree, arcs in Ad are labeled by elements
of L via a function labelA : Ad → L that encodes
the grammatical relation between the terminals la-
beling the connected nodes. We define two auxiliary
functions on nodes in dependency trees. The func-
tion subtree : Vd → P(Vd) assigns to every node
v ∈ Vd the set of nodes accessible by it through
the reflexive transitive closure of the arc relation Ad.
The function span : Vd → P(T ) assigns to every
node v ∈ Vd a set of terminals such that span(v) =
{t ∈ T |t = labelV (u) and u ∈ subtree(v)}.1

Step 1: Functional Representation Our first goal
is to define a representation format that keeps all
functional relationships that are represented in the
dependency trees intact, but remains neutral with
respect to the directionality of the head-dependent
relations. To do so we define functional trees
— linearly-ordered labeled trees which, instead of
head-to-head binary relations, represent the com-
plete functional structure of a sentence. Assuming
the same sets of terminal symbols T and grammat-
ical relation labels L, and assuming extended sets
of nodes V and arcs A ⊆ V × V , a functional tree
π = (V, A) is a directed tree originating from a sin-
gle root v0 ∈ V where all non-terminal nodes in
π are labeled with grammatical relation labels that
signify the grammatical function of the chunk they
dominate inside the tree via labelNT : V → L. All

1If a dependency tree d is projective, than for all v ∈ Vd the
terminals in span(v) form a contiguous segment of S. The cur-
rent discussion assumes that all trees are projective. We com-
ment on non-projective dependencies in Section 4.

terminal nodes in π are labeled with terminal sym-
bols via a labelT : V → T function. The function
span : V → P(V ) now picks out the set of ter-
minal labels of the terminal nodes accessible by a
node v ∈ V via A. We obtain functional trees from
dependency trees using the following procedure:

• Initialize the set of nodes and arcs in the tree.

V := Vd

A := Ad

• Label each node v ∈ V with the label of its
incoming arc.

labelNT (v) = labelA(u, v)

• In case |span(v)| > 1 add a new node u as a
daughter designating the lexical head, labeled
with the wildcard symbol *:

V := V ∪ {u}
A := A ∪ {(v, u)}
labelNT (u) = ∗

• For each node v such that |span(v)| = 1, add a
new node u as a daughter, labeled with its own
terminal:

V := V ∪ {u}
A := A ∪ {(v, u)}
if (labelNT (v) �= ∗)

labelT (u) := labelV (v)

else
labelT (u) := labelV (parent(v))

That is to say, we label all nodes with spans
greater than 1 with the grammatical function of their
head, and for each node we add a new daughter u
designating the head word, labeled with its gram-
matical function. Wildcard labels are compatible
with any, more specific, grammatical function of the
word inside the phrase. This gives us a constituency-
like representation of dependency trees labeled with
functional information, which retains the linguis-
tic assumptions reflected in the dependency trees.
When applying this procedure, examples (1)–(3) get
transformed into (4)–(6) respectively.

(4a) ...

prep

on

*

Sunday

(4b) ...

*

on

pobj

Sunday
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(5a) ...

conj

earth

conj

wind

*

and

conj

fire
(5b) ...

*

earth

conj

wind

cc

and

conj

fire

(5c) ...

*

earth

coord

*

wind

coord

*

and

conj

fire

(6a) ...

*

would

vg

*

have

vg

worked

(6b) ...

vg

vg

would

*

have

*

worked

Considering the functional trees resulting from
our procedure, it is easy to see that for tree pairs
(4a)–(4b) and (5a)–(5b) the respective functional
trees are identical modulo wildcards, while tree pairs
(5b)–(5c) and (6a)–(6b) end up with different tree
structures that realize different assumptions con-
cerning the internal structure of the tree. In order
to compare, combine or detect inconsistencies in the
information inherent in different functional trees, we
define a set of formal operations that are inspired by
familiar notions from unification-based formalisms
(Shieber (1986) and references therein).

Step 2: Formal Operations on Trees The intu-
ition behind the formal operations we define is sim-
ple. A completely flat tree over a span is the most
general structural description that can be given to it.
The more nodes dominate a span, the more linguis-
tic assumptions are made with respect to its struc-
ture. If an arc structure in one tree merely elaborates
an existing flat span in another tree, the theories un-
derlying the schemes are compatible, and their in-
formation can be combined. Otherwise, there exists
a conflict in the linguistic assumptions, and we need
to relax some of the assumptions, i.e., remove func-
tional nodes, in order to obtain a coherent structure
that contains the information on which they agree.

Let π1, π2 be functional trees over the same yield
t1, .., tn. Let the function span(v) pick out the ter-
minals labeling terminal nodes that are accessible
via a node v ∈ V in the functional tree through the

relation A. We define first the tree subsumption re-
lation for comparing the amount of information in-
herent in the arc-structure of two trees.2

T-Subsumption, denoted �t, is a relation be-
tween trees which indicates that a tree π1 is
consistent with and more general than tree
π2. Formally: π1 �t π2 iff for every node
n ∈ π1 there exists a node m ∈ π2 such
that span(n) = span(m) and label(n) =
label(m).

Looking at the functional trees of (4a)–(4b) we
see that their unlabeled skeletons mutually subsume
each other. In their labeled versions, however, each
tree contains labeling information that is lacking in
the other. In the functional trees (5b)–(5c) a flat
structure over a span in (5b) is more elaborated in
(5c). In order to combine information in trees with
compatible arc structures, we define tree unification.

T-Unification, denoted �t, is the operation that
returns the most general tree structure π3 that
is subsumed by both π1, π2 if such exists, and
fails otherwise. Formally: π1 �t π2 = π3 iff
π1 �t π3 and π2 �t π3, and for all π4 such that
π1 �t π4 and π2 �t π4 it holds that π3 �t π4.

Tree unification collects the information from two
trees into a single result if they are consistent, and
detects an inconsistency otherwise. In case of an
inconsistency, as is the case in the functional trees
(6a) and (6b), we cannot unify the structures due
to a conflict concerning the internal division of an
expression into phrases. However, we still want to
generalize these two trees into one tree that contains
all and only the information that they share. For that
we define the tree generalization operation.

T-Generalization, denoted �t, is the operation
that returns the most specific tree that is more
general than both trees. Formally, π1 �t π2 =
π3 iff π3 �t π1 and π3 �t π2, and for every π4

such that π4 �t π1 and π4 �t π2 it holds that
π4 �t π3.

2Note that the wildcard symbol * is equal to any other sym-
bol. In case the node labels consist of complex feature structures
made of attribute-value lists, we replace label(n) = label(m)
in the subsumption definition with label(n) � label(m) in the
sense of (Shieber, 1986).
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Unlike unification, generalization can never fail.
For every pair of trees there exists a tree that is more
general than both: in the extreme case, pick the com-
pletely flat structure over the yield, which is more
general than any other structure. For (6a)–(6b), for
instance, we get that (6a)�t(6b) is a flat tree over
pre-terminals where “would” and “have” are labeled
with ‘vg’ and “worked” is the head, labeled with ‘*’.

The generalization of two functional trees pro-
vides us with one structure that reflects the common
and consistent content of the two trees. These struc-
tures thus provide us with a formally well-defined
gold standard for cross-treebank evaluation.

Step 3: Measuring Distances. Our functional
trees superficially look like constituency-based
trees, so a simple proposal would be to use Parse-
val measures (Black et al., 1991) for comparing the
parsed trees against the new generalized gold trees.
Parseval scores, however, have two significant draw-
backs. First, they are known to be too restrictive
with respect to some errors and too permissive with
respect to others (Carroll et al., 1998; Kübler and
Telljohann, 2002; Roark, 2002; Rehbein and van
Genabith, 2007). Secondly, F1 scores would still
penalize structures that are correct with respect to
the original gold, but are not there in the generalized
structure. Here we propose to adopt measures that
are based on tree edit distance (TED) instead. TED-
based measures are, in fact, an extension of attach-
ment scores for dependency trees. Consider, for in-
stance, the following operations on dependency arcs.

reattach-arc remove arc (u, v) ∈ Ad and add
an arc Ad ∪ {(w, v)}.

relabel-arc relabel arc l1(u, v) as l2(u, v)

Assuming that each operation is assigned a cost,
the attachment score of comparing two dependency
trees is simply the cost of all edit operations that are
required to turn a parse tree into its gold standard,
normalized with respect to the overall size of the de-
pendency tree and subtracted from a unity.3 Here
we apply the idea of defining scores by TED costs
normalized relative to the size of the tree and sub-
stracted from a unity, and extend it from fixed-size
dependency trees to ordered trees of arbitrary size.

3The size of a dependency tree, either parse or gold, is al-
ways fixed by the number of terminals.

Our formalization follows closely the formulation
of the T-Dice measure of Emms (2008), building on
his thorough investigation of the formal and empir-
ical differences between TED-based measures and
Parseval. We first define for any ordered and labeled
tree π the following operations.

relabel-node change the label of node v in π

delete-node delete a non-root node v in π with
parent u, making the children of v the children
of u, inserted in the place of v as a subsequence
in the left-to-right order of the children of u.

insert-node insert a node v as a child of u in
π making it the parent of a consecutive subse-
quence of the children of u.

An edit script ES(π1, π2) = {e0, e1....ek} between
π1 and π2 is a set of edit operations required for turn-
ing π1 into π2. Now, assume that we are given a cost
function defined for each edit operation. The cost of
ES(π1, π2) is the sum of the costs of the operations
in the script. An optimal edit script is an edit script
between π1 and π2 of minimum cost.

ES∗(π1, π2) = argminES(π1,π2)

∑

e∈ES(π1,π2)

cost(e)

The tree edit distance problem is defined to be the
problem of finding the optimal edit script and com-
puting the corresponding distance (Bille, 2005).

A simple way to calculate the error δ of a parse
would be to define it as the edit distance between
the parse hypothesis π1 and the gold standard π2.

δ(π1, π2) = cost(ES∗(π1, π2))

However, in such cases the parser may still get pe-
nalized for recovering nodes that are lacking in the
generalization. To solve this, we refine the distance
between a parse tree and the generalized gold tree
to discard edit operations on nodes that are there in
the native gold tree but are eliminated through gen-
eralization. We compute the intersection of the edit
script turning the parse tree into the generalize gold
with the edit script turning the native gold tree into
the generalized gold, and discard its cost. That is, if
parse1 and parse2 are compared against gold1 and
gold2 respectively, and if we set gold3 to be the re-
sult of gold1�tgold2, then δnew is defined as:
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Figure 2: The evaluation pipeline. Different versions of the treebank go into different experiments, resulting in
different parse and gold files. All trees are transformed into functional trees. All gold files enter generalization to
yield a new gold. The different δ arcs represent the different tree distances used for calculating the TED-based scores.

δnew(parse1, gold1,gold3) =
δ(parse1,gold3)
−cost(ES∗(parse1,gold3)∩ES∗(gold1,gold3))

Now, if gold1 and gold3 are identi-
cal, then ES∗(gold1,gold3)=∅ and we fall
back on the simple tree edit distance score
δnew(parse1,gold1,gold3)=δ(parse1, gold3).
When parse1 and gold1 are identical,
i.e., the parser produced perfect out-
put with respect to its own scheme, then
δnew(parse1,gold1,gold3)=δnew(gold1,gold1,gold3)
=δ(gold1,gold3) − cost(ES∗(gold1,gold3))=0, and
the parser does not get penalized for recovering a
correct structure in gold1 that is lacking in gold3.

In order to turn distances into accuracy measures
we have to normalize distances relative to the maxi-
mal number of operations that is conceivable. In the
worst case, we would have to remove all the internal
nodes in the parse tree and add all the internal nodes
of the generalized gold, so our normalization factor
ι is defined as follows, where |π| is the size4 of π.

ι(parse1,gold3) = |parse1| + |gold3|

We now define the score of parse1 as follows:5

1 − δnew(parse1,gold1,gold3)

ι(parse1,gold3)

Figure 2 summarizes the steps in the evalu-
ation procedure we defined so far. We start
off with two versions of the treebank, TB1 and
TB2, which are parsed separately and provide their
own gold standards and parse hypotheses in a la-
beled dependencies format. All dependency trees

4Following common practice, we equate size |π| with the
number of nodes in π, discarding the terminals and root node.

5If the trees have only root and leaves, ι = 0, score := 1.

are then converted into functional trees, and we
compute the generalization of each pair of gold
trees for each sentence in the data. This pro-
vides the generalized gold standard for all exper-
iments, here marked as gold3.6 We finally com-
pute the distances δnew(parse1,gold1,gold3) and
δnew(parse2,gold2,gold3) using the different tree
edit distances that are now available, and we repeat
the procedure for each sentence in the test set.

To normalize the scores for an entire test set of
size n we can take the arithmetic mean of the scores.

∑|test-set|
i=1 score(parse1i,gold1i,gold3i)

|test-set|
Alternatively we can globally average of all edit dis-
tance costs, normalized by the maximally possible
edits on parse trees turned into generalized trees.

1 −
∑|test-set|

i=1 δnew(parse1i,gold1i,gold3i)∑|test-set|
i=1 ι(parse1i,gold3i)

The latter score, global averaging over the entire test
set, is the metric we use in our evaluation procedure.

4 Experiments

We demonstrate the application of our procedure to
comparing dependency parsing results on different
versions of the Penn Treebank (Marcus et al., 1993).

The Data We use data from the PTB, converted
into dependency structures using the LTH soft-
ware, a general purpose tool for constituency-to-
dependency conversion (Johansson and Nugues,
2007). We use LTH to implement the five different
annotation standards detailed in Table 3.

6Generalization is an associative and commutative opera-
tion, so it can be extended for n experiments in any order.

TB1 parse1.dep

gold1.dep

parse2.dep

gold2.dep

parse1

gold3
gold1

parse2

gold2TB2

parse

parse

δ (parse1,gold3)
δ (gold1,gold3)

δ (parse2
,gold3

)
δ (gold2,gold3)

parse transform generalizeparse
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Train Default Old LTH CoNLL07
Gold

Default UAS 0.9142 0.6077 0.7772
LAS 0.8820 0.4801 0.6454
U-TED 0.9488 0.8926 0.9237
L-TED 0.9241 0.7811 0.8441

Old LTH UAS 0.6053 0.8955 0.6508
LAS 0.4816 0.8644 0.5771
U-TED 0.8931 0.9564 0.9092
L-TED 0.7811 0.9317 0.8197

CoNLL07 UAS 0.7734 0.6474 0.8917
LAS 0.6479 0.5722 0.8736
U-TED 0.9260 0.9097 0.9474
L-TED 0.8480 0.8204 0.9233

Default-OldLTH U-TED 0.9500 0.9543
L-TED 0.9278 0.9324

Default-CoNLL07 U-TED 0.9444† 0.9453†
L-TED 0.9266† 0.9260†

oldLTH-CoNLL07 U-TED 0.9519 0.9490
L-TED 0.9323 0.9283

default-oldLTH-CoNLL U-TED 0.9464† 0.9515 0.9471†
L-TED 0.9281† 0.9336 0.9280†

Train CoNLL07 Functional Lexical
Gold

CoNLL07 UAS 0.8917 0.8054 0.6986
LAS 0.8736 0.7895 0.6831
U-TED 0.9474 0.9357 0.9237
L-TED 0.9233 0.8960 0.8606

Functional UAS 0.8040 0.8970 0.6110
LAS 0.7873 0.8793 0.5977
U-TED 0.9347 0.9466 0.9107
L-TED 0.8948 0.9239 0.8316

Lexical UAS 0.7013 0.6138 0.8823
LAS 0.6875 0.6022 0.8635
U-TED 0.9252 0.9132 0.9500
L-TED 0.8623 0.8345 0.9266

CoNLL07-Functional U-TED 0.9473† 0.9473†
L-TED 0.9233 0.9247

CoNLL07-Lexical U-TED 0.9490† 0.9500†
L-TED 0.9253† 0.9266†

Functional-Lexical U-TED 0.9489† 0.9501†
L-TED 0.9266† 0.9267†

CoNLL07-Functional-Lexical U-TED 0.9489† 0.9489† 0.9501†
L-TED 0.9254† 0.9266† 0.9267†

Table 1: Cross-experiment dependency parsing evaluation for MaltParser trained on multiple schemes. We report stan-
dard LAS scores and TEDEVAL global average metrics. Boldface results outperform the rest of the results reported
in the same row. The † sign marks pairwise results where the difference is not statistically significant.

Train Default Old LTH CoNLL07
Gold

Default UAS 0.9173 0.6085 0.7709
LAS 0.8833 0.4780 0.6414
U-TED 0.9513 0.8903 0.9236
L-TED 0.9249 0.7727 0.8424

Old LTH UAS 0.6078 0.8952 0.6415
LAS 0.4809 0.8471 0.5669
U-TED 0.8960 0.9550 0.9096
L-TED 0.7823 0.9224 0.8170

CoNLL07 UAS 0.7767 0.6517 0.8991
LAS 0.6504 0.5725 0.8709
U-TED 0.9289 0.9087 0.9479
L-TED 0.8502 0.8159 0.9208

Default-oldLTH U-TED 0.9533 0.9515
L-TED 0.9289 0.9224

Default-CoNLL U-TED 0.9474† 0.9460†
L-TED 0.9281 0.9238

OldLTH-CoNLL U-TED 0.9479 0.9493
L-TED 0.9234 0.9258

Default-OldLTH-CoNLL U-TED 0.9492† 0.9461 0.9480†
L-TED 0.9298 0.9241† 0.9258†

Train CoNLL07 Functional Lexical
Gold

CoNLL07 UAS 0.8991 0.8077 0.7018
LAS 0.8709 0.7902 0.6804
U-TED 0.9479 0.9373 0.9221
L-TED 0.9208 0.8955 0.8505

Functional UAS 0.8083 0.8978 0.6150
LAS 0.7895 0.8782 0.5975
U-TED 0.9356 0.9476 0.9092
L-TED 0.8929 0.9226 0.8218

Lexical UAS 0.6997 0.6161 0.8826
LAS 0.6835 0.6034 0.8491
U-TED 0.9259 0.9152 0.9483
L-TED 0.8593 0.8340 0.9160

CoNLL-Functional U-TED 0.9479† 0.9487†
L-TED 0.9209 0.9237

CoNLL-Lexical U-TED 0.9497 0.9483
L-TED 0.9228 0.9161

Functional-Lexical U-TED 0.9504 0.9483
L-TED 0.9258 0.9161

CoNLL-Functional-Lexical U-TED 0.9498 0.9504† 0.9483†
L-TED 0.9229 0.9258 0.9161

Table 2: Cross-experiment dependency parsing evaluation for the MST parser trained on multiple schemes. We
report standard LAS scores and TEDEVAL global average metrics. Boldface results outperform the rest of the results
reported in the same row. The † sign marks pairwise results where the difference is not statistically significant.

ID Description
Default The LTH conversion default settings
OldLTH The conversion used in Johansson and Nugues (2007)
CoNLL07 The conversion used in the CoNLL shared task (Nivre et al., 2007a)
Lexical Same as CoNLL, but selecting only lexical heads when a choice exists
Functional Same as CoNLL, but selecting only functional heads when a choice exists

Table 3: LTH conversion schemes used in the experiments. The LTH conversion settings in terms of the complete
feature-value pairs associated with the LTH parameters in different schemes are detailed in the supplementary material.
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The Default, OldLTH and CoNLL schemes
mainly differ in their coordination structure, and the
Functional and Lexical schemes differ in their selec-
tion of a functional and a lexical head, respectively.
All schemes use the same inventory of labels.7 The
LTH parameter settings for the different schemes are
elaborated in the supplementary material.

The Setup We use two different parsers: (i) Malt-
Parser (Nivre et al., 2007b) with the arc eager algo-
rithm as optimized for English in (Nivre et al., 2010)
and (ii) MSTParser with the second-order projec-
tive model of McDonald and Pereira (2006). Both
parsers were trained on the different instances of
sections 2-21 of the PTB obeying the different an-
notation schemes in Table 3. Each trained model
was used to parse section 23. All non-projective de-
pendencies in the training and gold sets were projec-
tivized prior to training and parsing using the algo-
rithm of Nivre and Nilsson (2005). A more princi-
pled treatment of non-projective dependency trees is
an important topic for future research. We evaluated
the parses using labeled and unlabeled attachment
scores, and using our TEDEVAL software package.

Evaluation Our TEDEVAL software package im-
plements the pipeline described in Section 3. We
convert all parse and gold trees into functional
trees using the algorithm defined in Section 3, and
for each pair of parsing experiments we calculate
a shared gold standard using generalization deter-
mined through a chart-based greedy algorithm.8 Our
scoring procedure uses the TED algorithm defined
by Zhang and Shasha (1989).9 The unlabeled score
is obtained by assigning cost(e) = 0 for every e re-
labeling operation. To calculate pairwise statistical
significance we use a shuffling test with 10,000 it-
erations (Cohen, 1995). A sample of all files in the
evaluation pipeline for a subset of 10 PTB sentences
is available in the supplementary materials.10

7In case the labels are not taken from the same inventory,
e.g., subjects in one scheme are marked as SUB and in the other
marked as SBJ, it is possible define a a set of zero-cost operation
types — in such case, to the operation relabel(SUB,SBJ) — in
order not to penalize string label discrepancies.

8Our algorithm has space and runtime complexity of O(n2).
9Available via http://web.science.mq.edu.au/

˜swan/howtos/treedistance/
10The TEDEVAL software package is available via http:

//stp.lingfil.uu.se/˜tsarfaty/unipar

Results Table 1 reports the results for the inter-
and cross-experiment evaluation of parses produced
by MaltParser. The left hand side of the table
presents the parsing results for a set of experiments
in which we compare parsing results trained on the
Default, OldLTH and CoNLL07 schemes. In a sec-
ond set of experiments we compare the CoNLL07,
Lexical and Functional schemes. Table 2 reports the
evaluation of the parses produced by MSTParser for
the same experimental setup. Our goal here is not to
compare the parsers, but to verify that the effects of
switching from LAS to TEDEVAL are robust across
parsing algorithms.

In each of the tables, the top three groups of four
rows compare results of parsed dependency trees
trained on a particular scheme against gold trees of
the same and the other schemes. The next three
groups of two rows report the results for compar-
ing pairwise sets of experiments against a general-
ized gold using our proposed procedure. In the last
group of two rows we compare all parsing results
against a single gold obtained through a three-way
generalization.

As expected, every parser appears to perform at
its best when evaluated against the scheme it was
trained on. This is the case for both LAS and TEDE-
VAL measures and the performance gaps are statis-
tically significant. When moving to pairwise evalu-
ation against a single generalized gold, for instance,
when comparing CoNLL07 to the Default settings,
there is still a gap in performance, e.g., between
OldLTH and CoNLL07, and between OldLTH and
Default. This gap is however a lot smaller and is not
always statistically significant. In fact, when evalu-
ating the effect of linguistically disparate annotation
variations such as Lexical and Functional on the per-
formance of MaltParser, Table 1 shows that when
using TEDEVAL and a generalized gold the perfor-
mance gaps are small and statistically insignificant.

Moreover, observed performance trends when
evaluating individual experiments on their original
training scheme may change when compared against
a generalized gold. The Default scheme, for Malt-
Parser, appears better than OldLTH when both are
evaluated against their training schemes. But look-
ing at the pairwise-evaluated experiments, it is the
other way round (the difference is smaller, but statis-
tically significant). In evaluating against a three-way
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generalization, all the results obtained for different
training schemes are on a par with one another, with
minor gaps in performance, rarely statistically sig-
nificant. This suggests that apparent performance
trends between experiments when evaluating with
respect to the training schemes may be misleading.

These observations are robust across parsing algo-
rithms. In each of the tables, results obtained against
the training schemes show significant differences
whereas applying our cross-experimental procedure
shows small to no gaps in performance across dif-
ferent schemes. Annotation variants which seem to
have crucial effects have a relatively small influence
when parsed structures are brought into the same
formal and theoretical common ground for compar-
ison. Of course, it may be the case that one parser is
better trained on one scheme while the other utilizes
better another scheme, but objective performance
gaps can only be observed when they are compared
against shared linguistic content.

5 Discussion and Extensions

This paper addresses the problem of cross-
experiment evaluation. As it turns out, this prob-
lem arises in NLP in different shapes and forms;
when evaluating a parser against different annota-
tion schemes, when evaluating parsing performance
across parsers and different formalisms, and when
comparing parser performance across languages.
We consider our contribution successful if after
reading it the reader develops a healthy suspicion to
blunt comparison of numbers across experiments, or
better yet, across different papers. Cross-experiment
comparison should be a careful and well thought-
through endeavor, in which we retain as much infor-
mation as we can from the parsed structures, avoid
lossy conversions, and focus on an object of evalua-
tion which is agreed upon by all variants.

Our proposal introduces one way of doing so in
a streamlined, efficient and formally worked out
way. While individual components may be further
refined or improved, the proposed setup and imple-
mentation can be straightforwardly applied to cross-
parser and cross-framework evaluation. In the fu-
ture we plan to use this procedure for comparing
constituency and dependency parsers. A conversion
from constituency-based trees into functional trees

is straightforward to define: simply replace the node
labels with the grammatical function of their domi-
nating arc – and the rest of the pipeline follows.

A pre-condition for cross-framework evaluation
is that all representations encode the same set of
grammatical relations by, e.g., annotating arcs in de-
pendency trees or decorating nodes in constituency
trees. For some treebanks this is already the case
(Nivre and Megyesi, 2007; Skut et al., 1997; Hin-
richs et al., 2004) while for others this is still lack-
ing. Recent studies (Briscoe et al., 2002; de Marn-
effe et al., 2006) suggest that evaluation through a
single set of grammatical relations as the common
denominator is a linguistically sound and practically
useful way to go. To guarantee extensions for cross-
framework evaluation it would be fruitful to make
sure that resources use the same set of grammatical
relation labels across different formal representation
types. Moreover, we further aim to inquire whether
we can find a single set of grammatical relation la-
bels that can be used across treebanks for multiple
languages. This would then pave the way for the de-
velopment of cross-language evaluation procedures.

6 Conclusion

We propose an end-to-end procedure for compar-
ing dependency parsing results across experiments
based on three steps: (i) converting dependency trees
to functional trees, (ii) generalizing functional trees
to harmonize information from different sources,
and (iii) using distance-based metrics that take the
different sources into account. When applied to
parsing results of different dependency schemes,
dramatic gaps observed when comparing parsing re-
sults obtained in isolation decrease or dissolve com-
pletely when using our proposed pipeline.

Acknowledgments We thank the developers of
the LTH and TED software who made their code
available for our use. We thank Richard Johansson
for providing us with the LTH parameter settings of
existing dependency schemes. We thank Ari Rap-
poport, Omri Abend, Roy Schwartz and members of
the NLP lab at the Hebrew University of Jerusalem
for stimulating discussion. We finally thank three
anonymous reviewers for useful comments on an
earlier draft. The research reported in the paper was
partially funded by the Swedish Research Council.

394



References
Philip Bille. 2005. A survey on tree edit distance

and related. problems. Theoretical Computer Science,
337:217–239.

Ezra Black, Steven P. Abney, D. Flickenger, Claudia
Gdaniec, Ralph Grishman, P. Harrison, Donald Hin-
dle, Robert Ingria, Frederick Jelinek, Judith L. Kla-
vans, Mark Liberman, Mitchell P. Marcus, Salim
Roukos, Beatrice Santorini, and Tomek Strzalkowski.
1991. Procedure for quantitatively comparing the syn-
tactic coverage of English grammars. In E. Black, ed-
itor, Proceedings of the workshop on Speech and Nat-
ural Language, HLT, pages 306–311. Association for
Computational Linguistics.

Ted Briscoe, John Carroll, Jonathan Graham, and Ann
Copestake. 2002. Relational evaluation schemes.
In Proceedings of LREC Workshop“Beyond Parseval
– Towards improved evaluation measures for parsing
systems”.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X, pages 149–164.

Ekaterina Buyko and Udo Hahn. 2010. Evaluating
the impact of alternative dependency graph encodings
on solving event extraction tasks. In Proceedings of
EMNLP, pages 982–992.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: a survey and a new proposal. In
Proceedings of LREC, pages 447–454.

Daniel Cer, Marie-Catherine de Marneffe, Daniel Juraf-
sky, and Christopher D. Manning. 2010. Parsing to
stanford dependencies: Trade-offs between speed and
accuracy. In Proceedings of LREC.

Jinho D. Choi and Martha Palmer. 2010. Robust
constituent-to-dependency conversion for English. In
Proceedings of TLT.

Paul Cohen. 1995. Empirical Methods for Artificial In-
telligence. The MIT Press.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, pages 449–454.

Martin Emms. 2008. Tree-distance and some other vari-
ants of evalb. In Proceedings of LREC.

Erhard Hinrichs, Sandra Kübler, Karin Naumann, Heike
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Abstract

In order to obtain a fine-grained evaluation of
parser accuracy over naturally occurring text,
we study 100 examples each of ten reason-
ably frequent linguistic phenomena, randomly
selected from a parsed version of the En-
glish Wikipedia. We construct a correspond-
ing set of gold-standard target dependencies
for these 1000 sentences, operationalize map-
pings to these targets from seven state-of-the-
art parsers, and evaluate the parsers against
this data to measure their level of success in
identifying these dependencies.

1 Introduction

The terms “deep” and “shallow” are frequently used
to characterize or contrast different approaches to
parsing. Inevitably, such informal notions lack a
clear definition, and there is little evidence of com-
munity consensus on the relevant dimension(s) of
depth, let alone agreement on applicable metrics. At
its core, the implied dichotomy of approaches al-
ludes to differences in the interpretation of the pars-
ing task. Its abstract goal, on the one hand, could
be pre-processing of the linguistic signal, to enable
subsequent stages of analysis. On the other hand, it
could be making explicit the (complete) contribution
that the grammatical form of the linguistic signal
makes to interpretation, working out who did what
to whom. Stereotypically, one expects correspond-
ing differences in the choice of interface representa-
tions, ranging from various levels of syntactic anal-
ysis to logical-form representations of semantics.

In this paper, we seek to probe aspects of variation
in automated linguistic analysis. We make the as-
sumption that an integral part of many (albeit not all)

applications of parsing technology is the recovery of
structural relations, i.e. dependencies at the level of
interpretation. We suggest a selection of ten linguis-
tic phenomena that we believe (a) occur with reason-
ably high frequency in running text and (b) have the
potential to shed some light on the depths of linguis-
tic analysis. We quantify the frequency of these con-
structions in the English Wikipedia, then annotate
100 example sentences for each phenomenon with
gold-standard dependencies reflecting core proper-
ties of the phenomena of interest. This gold standard
is then used to estimate the recall of these dependen-
cies by seven commonly used parsers, providing the
basis for a qualitative discussion of the state of the
art in parsing for English.

In this work, we answer the call by Rimell et
al. (2009) for “construction-focused parser evalua-
tion”, extending and complementing their work in
several respects: (i) we investigate both local and
non-local dependencies which prove to be challeng-
ing for many existing state-of-the-art parsers; (ii) we
investigate a wider range of linguistic phenomena,
each accompanied with an in-depth discussion of
relevant properties; and (iii) we draw our data from
the 50-million sentence English Wikipedia, which
is more varied and a thousand times larger than the
venerable WSJ corpus, to explore a more level and
ambitious playing field for parser comparison.

2 Background

All parsing systems embody knowledge about possi-
ble and probable pairings of strings and correspond-
ing linguistic structure. Such linguistic and proba-
bilistic knowledge can be hand-coded (e.g., as gram-
mar rules) or automatically acquired from labeled or
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unlabeled training data. A related dimension of vari-
ation is the type of representations manipulated by
the parser. We briefly review some representative
examples along these dimensions, as these help to
position the parsers we subsequently evaluate.1

2.1 Approaches to parsing
Source of linguistic knowledge At one end of this
dimension, we find systems whose linguistic knowl-
edge is encoded in hand-crafted rules and lexical en-
tries; for English, the ParGram XLE system (Rie-
zler et al., 2002) and DELPH-IN English Resource
Grammar (ERG; Flickinger (2000))—each reflect-
ing decades of continuous development—achieve
broad coverage of open-domain running text, for ex-
ample. At the other end of this dimension, we find
fully unsupervised approaches (Clark, 2001; Klein
and Manning, 2004), where the primary source of
linguistic knowledge is co-occurrence patterns of
words in unannotated text. As Haghighi and Klein
(2006) show, augmenting this knowledge with hand-
crafted prototype “seeds” can bring strong improve-
ments. Somewhere between these poles, a broad
class of parsers take some or all of their linguistic
knowledge from annotated treebanks, e.g. the Penn
Treebank (PTB), which encodes “surface grammati-
cal analysis” (Marcus et al., 1993). Such approaches
include those that directly (and exclusively) use the
information in the treebank (e.g. Charniak (1997),
Collins (1999), Petrov et al. (2006), inter alios) as
well as those that complement treebank structures
with some amount of hand-coded linguistic knowl-
edge (e.g. O’Donovan et al. (2004), Miyao et al.
(2004), Hockenmaier and Steedman (2007), inter
alios). Another hybrid in terms of its acquisition of
linguistic knowledge is the RASP system of Briscoe
et al. (2006), combining a hand-coded grammar over
PoS tag sequences with a probabilistic tagger and
statistical syntactic disambiguation.

Design of representations Approaches to parsing
also differ fundamentally in the style of represen-
tation assigned to strings. These vary both in their

1Additional sources of variation among extant parsing tech-
nologies include (a) the behavior with respect to ungrammatical
inputs and (b) the relationship between probabilistic and sym-
bolic knowledge in the parser, where parsers with a hand-coded
grammar at their core typically also incorporate an automati-
cally trained probabilistic disambiguation component.

formal nature and the “granularity” of linguistic in-
formation (i.e. the number of distinctions assumed),
encompassing variants of constituent structure, syn-
tactic dependencies, or logical-form representations
of semantics. Parser interface representations range
between the relatively simple (e.g. phrase structure
trees with a limited vocabulary of node labels as in
the PTB, or syntactic dependency structures with a
limited vocabulary of relation labels as in Johansson
and Nugues (2007)) and the relatively complex, as
for example elaborate syntactico-semantic analyses
produced by the ParGram or DELPH-IN grammars.

There tends to be a correlation between the
methodology used in the acquisition of linguistic
knowledge and the complexity of representations: in
the creation of a mostly hand-crafted treebank like
the PTB, representations have to be simple enough
for human annotators to reliably manipulate. Deriv-
ing more complex representations typically presup-
poses further computational support, often involv-
ing some hand-crafted linguistic knowledge—which
can take the form of mappings from PTB-like repre-
sentations to “richer” grammatical frameworks (as
in the line of work by O’Donovan et al. (2004), and
others; see above), or can be rules for creating the
parse structures in the first place (i.e. a computa-
tional grammar), as for example in the treebanks of
van der Beek et al. (2002) or Oepen et al. (2004).2

In principle, one might expect that richer repre-
sentations allow parsers to capture complex syntac-
tic or semantic dependencies more explicitly. At the
same time, such “deeper” relations may still be re-
coverable (to some degree) from comparatively sim-
ple parser outputs, as demonstrated for unbounded
dependency extraction from strictly local syntactic
dependency trees by Nivre et al. (2010).

2.2 An armada of parsers

Stanford Parser (Klein and Manning, 2003) is a
probabilistic parser which can produce both phrase
structure trees and grammatical relations (syntactic
dependencies). The parsing model we evaluate is the

2A noteworthy exception to this correlation is the annotated
corpus of Zettlemoyer and Collins (2005), which pairs sur-
face strings from the realm of natural language database inter-
faces directly with semantic representations in lambda calculus.
These were hand-written on the basis of database query state-
ments distributed with the original datasets.
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English factored model which combines the prefer-
ences of unlexicalized PCFG phrase structures and
of lexical dependencies, trained on sections 02–21
of the WSJ portion of the PTB. We chose Stanford
Parser from among the state-of-the-art PTB-derived
parsers for its support for grammatical relations as
an alternate interface representation.

Charniak&Johnson Reranking Parser (Char-
niak and Johnson, 2005) is a two-stage PCFG parser
with a lexicalized generative model for the first-
stage, and a discriminative MaxEnt reranker for the
second-stage. The models we evaluate are also
trained on sections 02–21 of the WSJ. Top-50 read-
ings were used for the reranking stage. The output
constituent trees were then converted into Stanford
Dependencies. According to Cer et al. (2010), this
combination gives the best parsing accuracy in terms
of Stanford dependencies on the PTB.

Enju (Miyao et al., 2004) is a probabilistic HPSG
parser, combining a hand-crafted core grammar with
automatically acquired lexical types from the PTB.3

The model we evaluate is trained on the same ma-
terial from the WSJ sections of the PTB, but the
treebank is first semi-automatically converted into
HPSG derivations, and the annotation is enriched
with typed feature structures for each constituent.
In addition to HPSG derivation trees, Enju also pro-
duces predicate argument structures.

C&C (Clark and Curran, 2007) is a statistical
CCG parser. Abstractly similar to the approach of
Enju, the grammar and lexicon are automatically
induced from CCGBank (Hockenmaier and Steed-
man, 2007), a largely automatic projection of (the
WSJ portion of) PTB trees into the CCG framework.
In addition to CCG derivations, the C&C parser can
directly output a variant of grammatical relations.

RASP (Briscoe et al., 2006) is an unlexicalized
robust parsing system, with a hand-crafted “tag se-
quence” grammar at its core. The parser thus anal-
yses a lattice of PoS tags, building a parse forest
from which the most probable syntactic trees and
sets of corresponding grammatical relations can be
extracted. Unlike other parsers in our mix, RASP
did not build on PTB data in either its PoS tagging

3This hand-crafted grammar is distinct from the ERG, de-
spite sharing the general framework of HPSG. The ERG is not
included in our evaluation, since it was used in the extraction of
the original examples and thus cannot be fairly evaluated.

or syntactic disambiguation components.
MSTParser (McDonald et al., 2005) is a data-

driven dependency parser. The parser uses an edge-
factored model and searches for a maximal span-
ning tree that connects all the words in a sentence
into a dependency tree. The model we evaluate
is the second-order projective model trained on the
same WSJ corpus, where the original PTB phrase
structure annotations were first converted into de-
pendencies, as established in the CoNLL shared task
2009 (Johansson and Nugues, 2007).

XLE/ParGram (Riezler et al., 2002, see also
Cahill et al., 2008) applies a hand-built Lexical
Functional Grammar for English and a stochastic
parse selection model. For our evaluation, we used
the Nov 4, 2010 release of XLE and the Nov 25,
2009 release of the ParGram English grammar, with
c-structure pruning turned off and resource limita-
tions set to the maximum possible to allow for ex-
haustive search. In particular, we are evaluating the
f-structures output by the system.

Each parser, of course, has its own requirements
regarding preprocessing of text, especially tokeniza-
tion. We customized the tokenization to each parser,
by using the parser’s own internal tokenization or
pre-tokenizing to match the parser’s desired input.
The evaluation script is robust to variations in tok-
enization across parsers.

3 Phenomena

In this section we summarize the ten phenomena we
explore and our motivations for choosing them. Our
goal was to find phenomena where the relevant de-
pendencies are relatively subtle, such that more lin-
guistic knowledge is beneficial in order to retrieve
them. Though this set is of course only a sampling,
these phenomena illustrate the richness of structure,
both local and non-local, involved in the mapping
from English strings to their meanings. We discuss
the phenomena in four sets and then briefly review
their representation in the Penn Treebank.

3.1 Long distance dependencies

Three of our phenomena can be classified as involv-
ing long-distance dependencies: finite that-less rel-
atives clauses (‘barerel’), tough adjectives (‘tough’)
and right node raising (‘rnr’). These are illustrated
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in the following examples:4

(1) barerel: This is the second time in a row Aus-
tralia has lost their home tri-nations’ series.

(2) tough: Original copies are very hard to find.

(3) rnr: Ilúvatar, as his names imply, exists before
and independently of all else.

While the majority of our phenomena involve lo-
cal dependencies, we include these long-distance
dependency types because they are challenging for
parsers and enable more direct comparison with the
work of Rimell et al. (2009), who also address right
node raising and bare relatives. Our barerel category
corresponds to their “object reduced relative” cate-
gory with the difference that we also include adverb
relatives, where the head noun functions as a modi-
fier within the relative clause, as does time in (1). In
contrast, our rnr category is somewhat narrower than
Rimell et al. (2009)’s “right node raising” category:
where they include raised modifiers, we restrict our
category to raised complements.

Part of the difficulty in retrieving long-distance
dependencies is that the so-called extraction site is
not overtly marked in the string. In addition to this
baseline level of complication, these three construc-
tion types present further difficulties: Bare relatives,
unlike other relative clauses, do not carry any lexi-
cal cues to their presence (i.e., no relative pronouns).
Tough adjective constructions require the presence
of specific lexical items which form a subset of a
larger open class. They are rendered more difficult
by two sources of ambiguity: alternative subcatego-
rization frames for the adjectives and the purposive
adjunct analysis (akin to in order to) for the infiniti-
val VP. Finally, right node raising often involves co-
ordination where one of the conjuncts is in fact not
a well-formed phrase (e.g., independently of in (3)),
making it potentially difficult to construct the correct
coordination structure, let alone associate the raised
element with the correct position in each conjunct.

3.2 Non-dependencies
Two of our phenomena crucially look for the lack of
dependencies. These are it expletives (‘itexpl’) and
verb-particle constructions (‘vpart’):

4All examples are from our data. Words involved in the rel-
evant dependencies are highlighted in italics (dependents) and
boldface (heads).

(4) itexpl: Crew negligence is blamed, and it is sug-
gested that the flight crew were drunk.

(5) vpart: He once threw out two baserunners at
home in the same inning.

The English pronoun it can be used as an ordi-
nary personal pronoun or as an expletive: a place-
holder for when the language demands a subject (or
occasionally object) NP but there is no semantic role
for that NP. The expletive it only appears when it
is licensed by a specific construction (such as ex-
traposition, (4)) or selecting head. If the goal of
parsing is to recover from the surface string the de-
pendencies capturing who did what to whom, exple-
tive it should not feature in any of those dependen-
cies. Likewise, instances of expletive it should be
detected and discarded in reference resolution. We
hypothesize that detecting expletive it requires en-
coding linguistic knowledge about its licensers.

The other non-dependency we explore is between
the particle in verb-particle constructions and the
direct object. Since English particles are almost
always homophonous with prepositions, when the
object of the verb-particle pair follows the par-
ticle, there will always be a competing analysis
which analyses the sequence as V+PP rather than
V+particle+NP. Furthermore, since verb-particle
pairs often have non-compositional semantics (Sag
et al., 2002), misanalyzing these constructions could
be costly to downstream components.

3.3 Phrasal modifiers
Our next category concerns modifier phrases:

(6) ned: Light colored glazes also have softening
effects when painted over dark or bright images.

(7) absol: The format consisted of 12 games, each
team facing the other teams twice.

The first, (‘ned’), is a pattern which to our knowl-
edge has not been named in the literature, where a
noun takes the typically verbal -ed ending, is modi-
fied by another noun or adjective, and functions as a
modifier or a predicate. We believe this phenomenon
to be interesting because its unusual morphology is
likely to lead PoS-taggers astray, and because the
often-hyphenated Adj+N-ed constituent has produc-
tive internal structure constraining its interpretation.

The second phrasal modifier we investigate is the
absolutive construction. An absolutive consists of an
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NP followed by a non-finite predicate (such as could
appear after the copula be). The whole phrase mod-
ifies a verbal projection that it attaches to. Absolu-
tives may be marked with with or unmarked. Here,
we focus on the unmarked type as this lack of lexical
cue can make the construction harder to detect.

3.4 Subtle arguments
Our final three phenomena involve ways in which
verbal arguments can be more difficult to identify
than in ordinary finite clauses. These include de-
tecting the arguments of verbal gerunds (‘vger’), the
interleaving of arguments and adjuncts (‘argadj’) and
raising/control (‘control’) constructions.

(8) vger: Accessing the website without the “www”
subdomain returned a copy of the main site for
“EP.net”.

(9) argadj: The story shows, through flashbacks, the
different histories of the characters.

(10) control: Alfred “retired” in 1957 at age 60 but
continued to paint full time.

In a verbal gerund, the -ing form a verb retains
verbal properties (e.g., being able to take NP com-
plements, rather than only PP complements) but
heads a phrase that fills an NP position in the syn-
tax (Malouf, 2000). Since gerunds have the same
morphology as present participle VPs, their role in
the larger clause is susceptible to misanalysis.

The argadj examples are of interest because En-
glish typically prefers to have direct objects directly
adjacent to the selecting verb. Nonetheless, phe-
nomena such as parentheticals and heavy-NP shift
(Arnold et al., 2000), in which “heavy” constituents
appear further to the right in the string, allow for
adjunct-argument order in a minority of cases. We
hypothesize that the relative infrequency of this con-
struction will lead parsers to prefer incorrect analy-
ses (wherein the adjunct is picked up as a comple-
ment, the complement as an adjunct or the structure
differs entirely) unless they have access to linguis-
tic knowledge providing constraints on possible and
probable complementation patterns for the head.

Finally, we turn to raising and control verbs (‘con-
trol’) (e.g., Huddleston and Pullum (2002, ch. 14)).
These verbs select for an infinitival VP complement
and stipulate that another of their arguments (sub-
ject or direct object in the examples we explore) is

identified with the unrealized subject position of the
infinitival VP. Here it is the dependency between
the infinitval VP and the NP argument of the “up-
stairs” verb which we expect to be particularly sub-
tle. Getting this right requires specific lexical knowl-
edge about which verbs take these complementation
patterns. This lexical knowledge needs to be repre-
sented in such a way that it can be used robustly even
in the case of passives, relative clauses, etc.5

3.5 Penn Treebank representations

We investigated the representation of these 10 phe-
nomena in the PTB (Marcus et al., 1993) in two
steps: First we explored the PTB’s annotation guide-
lines (Bies et al., 1995) to determine how the rele-
vant dependencies were intended to be represented.
We then used Ghodke and Bird’s (2010) Treebank
Search to find examples of the intended annotations
as well as potential examples of the phenomena an-
notated differently, to get a sense of the consistency
of the annotation from both precision and recall per-
spectives. In this study, we take the phrase structure
trees of the PTB to represent dependencies based on
reasonable identification of heads.

The barerel, vpart, and absol phenomena are com-
pletely unproblematic, with their relevant dependen-
cies explicitly and reliably represented. In addition,
the tough construction is reliably annotated, though
one of the dependencies we take to be central is not
directly represented: The missing argument is linked
to a null wh head at the left edge of the comple-
ment of the tough predicate, rather than to its sub-
ject. Two further phenomena (rnr and vger) are es-
sentially correctly represented: the representations
of the dependencies are explicit and mostly but not
entirely consistently applied. Two out of a sample of
20 examples annotated as containing rnr did not, and
two out of a sample of 35 non-rnr-annotated coordi-
nations actually contained rnr. For vger the primary
problem is with the PoS tagging, where the gerund
is sometimes given a nominal tag, contrary to PTB
guidelines, though the structure above it conforms.

The remaining four constructions are more prob-
lematic. In the case of object control, while the guide-

5Distinguishing between raising and control requires fur-
ther lexical knowledge and is another example of a “non-
dependency” (in the raising examples). We do not draw that
distinction in our annotations.
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lines specify an analysis in which the shared NP is
attached as the object of the higher verb, the PTB
includes not only structures conforming to that anal-
ysis but also “small clause” structures, with the latter
obscuring the relationship of the shared argument to
the higher verb. In the case of itexpl, the adjoined
(S(-NONE- *EXP*)) indicating an expletive use of
it is applied consistently for extraposition (as pre-
scribed in the guidelines). However, the set of lex-
ical licensers of the expletive is incomplete. For ar-
gadj we run into the problem that the PTB does not
explicitly distinguish between post-verbal modifiers
and verbal complements in the way that they are at-
tached. The guidelines suggest that the function tags
(e.g., PP-LOC, etc.) should allow one to distinguish
these, but examination of the PTB itself suggests
that they are not consistently applied. Finally, the
ned construction is not mentioned in the PTB guide-
lines nor is its internal structure represented in the
treebank. Rather, strings like gritty-eyed are left un-
segmented and tagged as JJ.

We note that the PTB representations of many of
these phenomena (barerel, tough, rnr, argadj, control,
itexpl) involve empty elements and/or function tags.
Systems that strip these out before training, as is
common practice, will not benefit from the informa-
tion that is in the PTB.

Our purpose here is not to criticize the PTB,
which has been a tremendously important resource
to the field. Rather, we have two aims: The first is
to provide context for the evaluation of PTB-derived
parsers on these phenomena. The second is to high-
light the difficulty of producing consistent annota-
tions of any complexity as well as the hurdles faced
by a hand-annotation approach when attempting to
scale a resource to more complex representations
and/or additional phenomena (though cf. Vadas and
Curran (2008) on improving PTB representations).

4 Methodology

4.1 Data extraction

We processed 900 million tokens of Wikipedia text
using the October 2010 release of the ERG, follow-
ing the work of the WikiWoods project (Flickinger
et al., 2010). Using the top-ranked ERG deriva-
tion trees as annotations over this corpus and sim-
ple patterns using names of ERG-specific construc-

Phenomenon Frequency Candidates
barerel 2.12% 546
tough 0.07% 175
rnr 0.69% 1263
itexpl 0.13% 402
vpart 4.07% 765
ned 1.18% 349
absol 0.51% 963
vger 5.16% 679
argadj 3.60% 1346
control 3.78% 124

Table 1: Relative frequencies of phenomena matches in
Wikipedia, and number of candidate strings vetted.

tions or lexical types, we randomly selected a set
of candidate sentences for each of our ten phenom-
ena. These candidates were then hand-vetted in se-
quence by two annotators to identify, for each phe-
nomenon, 100 examples that do in fact involve the
phenomenon in question and which are both gram-
matical and free of typos. Examples that were ei-
ther deemed overly basic (e.g. plain V + V coordi-
nation, which the ERG treats as rnr) or inappropri-
ately complex (e.g. non-constituent coordination ob-
scuring the interleaving of arguments and adjuncts)
were also discarded at this step. Table 1 summarizes
relative frequencies of each phenomenon in about
47 million parsed Wikipedia sentences, as well as
the total size of the candidate sets inspected. For
the control and tough phenomena hardly any filtering
for complexity was applied, hence these can serve
as indicators of the rate of genuine false positives.
For phenomena that partially overlap with those of
Rimell et al. (2009), it appears our frequency es-
timates are comparable to what they report for the
Brown Corpus (but not the WSJ portion of the PTB).

4.2 Annotation format
We annotated up to two dependency triples per phe-
nomenon instance, identifying the heads and depen-
dents by the surface form of the head words in the
sentence suffixed with a number indicating word po-
sition (see Table 2).6 Some strings contain more
than one instance of the phenomenon they illustrate;
in these cases, multiple sets of dependencies are

6As the parsers differ in tokenization strategies, our evalua-
tion script treats these position IDs as approximate indicators.
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Item ID Phenomenon Polarity Dependency
1011079100200 absol 1 having-2|been-3|passed-4 ARG act-1
1011079100200 absol 1 withdrew-9 MOD having-2|been-3|passed-4
1011079100200 absol 1 carried+on-12 MOD having-2|been-3|passed-4

Table 2: Sample annotations for sentence # 1011079100200: The-0 act-1 having-2 been-3 passed-4 in-5 that-6 year-7
Jessop-8 withdrew-9 and-10 Whitworth-11 carried-12 on-13 with-14 the-15 assistance-16 of-17 his-18 son-19.

Phenomenon Head Type Dependent Distance
Bare relatives gapped predicate in relative ARG2/MOD modified noun 3.0 (8)
(barerel) modified noun MOD top predicate of relative 3.3 (8)
Tough adjectives tough adjective ARG2 to-VP complement 1.7 (5)
(tough) gapped predicate in to-VP ARG2 subject/modifiee of adjective 6.4 (21)
Right Node Raising verb/prep2 ARG2 shared noun 2.8 (9)
(rnr) verb/prep1 ARG2 shared noun 6.1 (12)
Expletive It it-subject taking verb !ARG1 it 1.2 (3)
(itexpl) raising-to-object verb !ARG2 it –
Verb+particle constructions particle !ARG2 complement 2.7 (9)
(vpart) verb+particle ARG2 complement 3.7 (10)
Adj/Noun2 + Noun1-ed head noun MOD Noun1-ed 2.4 (17)
(ned) Noun1-ed ARG1/MOD Adj/Noun2 1.0 (1.5)
Absolutives absolutive predicate ARG1 subject of absolutive 1.7 (12)
(absol) main clause predicate MOD absolutive predicate 9.8 (26)
Verbal gerunds selecting head ARG[1,2] gerund 1.9 (13)
(vger) gerund ARG2/MOD first complement/modifier of gerund 2.3 (8)
Interleaved arg/adj selecting verb MOD interleaved adjunct 1.2 (7)
(argadj) selecting verb ARG[2,3] displaced complement 5.9 (26)
Control “upstairs” verb ARG[2,3] “downstairs” verb 2.4 (23)
(control) “downstairs” verb ARG1 shared argument 4.8 (17)

Table 3: Dependencies labeled for each phenomenon type, including average and maximum surface distances.

recorded. In addition, some strings evince more than
one of the phenomena we are studying. However,
we only annotate the dependencies associated with
the phenomenon the string was selected to repre-
sent. Finally, in examples with coordinated heads or
dependents, we recorded separate dependencies for
each conjunct. In total, we annotated 2127 depen-
dency triples for the 1000 sentences, including 253
negative dependencies (see below). Table 3 outlines
the dependencies annotated for each phenomenon.

To allow for multiple plausible attachment sites,
we give disjunctive values for heads or dependents
in several cases: (i) with auxiliaries, (ii) with com-
plementizers (that or to, as in Table 2), (iii) in cases
of measure or classifier nouns or partitives, (iv) with
multi-word proper names and (v) where there is
genuine attachment ambiguity for modifiers. As
these sets of targets are disjunctive, these conven-
tions should have the effect of increasing measured
parser performance. 580 (27%) of the annotated de-
pendencies had at least one disjunction.

4.3 Annotation and reconciliation process

The entire data set was annotated independently by
two annotators. Both annotators were familiar with
the ERG, used to identify these sentences in the
WikiWoods corpus, but the annotation was done
without reference to the ERG parses. Before begin-
ning annotation on each phenomenon, we agreed on
which dependencies to annotate. We also communi-
cated with each other about annotation conventions
as the need for each convention became clear. The
annotation conventions address how to handle co-
ordination, semantically empty auxiliaries, passives
and similar orthogonal phenomena.

Once the entire data set was dual-annotated, we
compared annotations, identifying the following
sources of mismatch: typographical errors, incom-
pletely specified annotation conventions, inconsis-
tent application of conventions (101 items, dropping
in frequency as the annotation proceeded), and gen-
uine disagreement about what to annotate, either dif-
ferent numbers of dependencies of interest identified
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in an item (59 items) or conflicting elements in a de-
pendency (54 items).7 Overall, our initial annotation
pass led to agreement on 79% of the items, and a
higher per-dependency level of agreement. Agree-
ment could be expected to approach 90% with more
experience in applying annotation conventions.

We then reconciled the annotations, using the
comparison to address all sources of difference. In
most cases, we readily agreed which annotation was
correct and which was in error. In a few cases, we
decided that both annotations were plausible alter-
natives (e.g., in terms of alternative attachment sites
for modifiers) and so created a single merged anno-
tation expressing the disjunction of both (cf. § 4.2).

5 Evaluation

With the test data consisting of 100 items for each of
our ten selected phenomena, we ran all seven pars-
ing systems and recorded their dependency-style
outputs for each sentence. While these outputs
are not directly comparable with each other, we
were able to associate our manually-annotated tar-
get dependencies with parser-specific dependencies,
by defining sets of phenomenon-specific regular ex-
pressions for each parser. In principle, we allow this
mapping to be somewhat complex (and forgiving to
non-contentful variation), though we require that it
work deterministically and not involve specific lexi-
cal information. An example set is given in Fig. 2.

"absol" =>
{’ARG1’ => [
’\(ncsubj \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+) _\)’,
’\(ncmod _ \W*{W2}\W*_(\d+) \W*{W1}\W*_(\d+)\)’],
’ARG’ => [
’\(ncsubj \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+) _\)’,
’\(ncmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’],
’MOD’ => [
’\(xmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’,
’\(ncmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’,
’\(cmod _ \W*{W1}\W*_(\d+) \W*{W2}\W*_(\d+)\)’]}

Figure 2: Regexp set to evaluate C&C for absol.

These expressions fit the output that we got from the
C&C parser, illustrated in Fig. 3 with a relevant por-
tion of the dependencies produced for the example
in Table 2. Here the C&C dependency (ncsubj

passed 4 Act 1 ) matches the first target in the

7We do not count typographical errors or incompletely spec-
ified conventions as failures of inter-annotator agreement.

gold-standard (Table 2), but no matching C&C de-
pendency is found for the other two targets.

(xmod _ Act_1 passed_4)
(ncsubj passed_4 Act_1 _)
(ncmod _ withdrew,_9 Jessop_8)
(dobj year,_7 withdrew,_9)

Figure 3: Excerpts of C&C output for item in Table 2.

The regular expressions operate solely on the de-
pendency labels and are not lexically-specific. They
are specific to each phenomenon, as we did not at-
tempt to write a general dependency converter, but
rather to discover what patterns of dependency rela-
tions describe the phenomenon when it is correctly
identified by each parser. Thus, though we did not
hold out a test set, we believe that they would gener-
alize to additional gold standard material annotated
in the same way for the same phenomena.8

In total, we wrote 364 regular expressions to han-
dle the output of the seven parsers, allowing some
leeway in the role labels used by a parser for any
given target dependency. The supplementary mate-
rials for this paper include the test data, parser out-
puts, target annotations, and evaluation script.

Fig. 1 provides a visualization of the results of our
evaluation. Each column of points represents one
dependency type. Dependency types for the same
phenomenon are represented by adjacent columns.
The order of the columns within a phenomenon fol-
lows the order of the dependency descriptions in
Table 3: For each pair, the dependency type with
the higher score for the majority of the parsers is
shown first (to the left). The phenomena them-
selves are also arranged according to increasing (av-
erage) difficulty. itexpl only has one column, as we
annotated just one dependency per instance here.
(The two descriptions in Table 3 reflect different,
mutually-incompatible instance types.) Since ex-
pletive it should not be the semantic dependent of
any head, the targets are generalized for this phe-
nomenon and the evaluation script counts as incor-

8In the case of the XLE, our simplistic regular-expression
approach to the interpretation of parser outputs calls for much
more complex patterns than for the other parsers. This is owed
to the rich internal structure of LFG f-structures and higher
granularity of linguistic analysis, where feature annotations on
nodes as well as reentrancies need to be taken into account.
Therefore, our current results for the XLE admit small amounts
of both over- and under-counting.
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Figure 1: Individual dependency recall for seven parsers over ten phenomena.

rect any dependency involving referential it.
We observe fairly high recall of the dependencies

for vpart and vger (with the exception of RASP), and
high recall for both dependencies representing con-
trol for five systems. While Enju, Stanford, MST,
and RASP all found between 70 and 85% of the de-
pendency between the adjective and its complement
in the tough construction, only Enju and XLE rep-
resented the dependency between the subject of the
adjective and the gap inside the adjective’s comple-
ment. For the remaining phenomena, each parser
performed markedly worse on one dependency type,
compared to the other. The only exceptions here
are XLE and C&C’s (and to a lesser extent, C&J’s)
scores for barerel. No system scored higher than
33% on the harder of the two dependencies in rnror
absol, and Stanford, MST, and RASP all scored be-
low 25% on the harder dependency in barerel. Only
XLE scored higher than 10% on the second depen-
dency for ned and higher than 50% for itexpl.

6 Discussion

From the results in Fig. 1, it is clear that even the best
of these parsers fail to correctly identify a large num-
ber of relevant dependencies associated with linguis-
tic phenomena that occur with reasonable frequency

in the Wikipedia. Each of the parsers attempts
with some success to analyze each of these phe-
nomena, reinforcing the claim of relevance, but they
vary widely across phenomena. For the two long-
distance phenomena that overlap with those studied
in Rimell et al. (2009), our results are comparable.9

Our evaluation over Wikipedia examples thus shows
the same relative lack of success in recovering long-
distance dependencies that they found for WSJ sen-
tences. The systems did better on relatively well-
studied phenomena including control, vger, and vpart,
but had less success with the rest, even though all but
two of those remaining phenomena involve syntac-
tically local dependencies (as indicated in Table 3).

Successful identification of the dependencies in
these phenomena would, we hypothesize, benefit
from richer (or deeper) linguistic information when
parsing, whether it is lexical (tough, control, itexpl,
and vpart), or structural (rnr, absol, vger, argadj, and
barerel), or somewhere in between, as with ned. In
the case of treebank-trained parsers, for the informa-
tion to be available, it must be consistently encoded
in the treebank and attended to during training. As

9Other than Enju, which scores 16 points higher in the eval-
uation of Rimell et al., our average scores for each parser across
the dependencies for these phenomena are within 12 points of
those reported by Rimell et al. (2009) and Nivre et al. (2010).
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noted in Sections 2.1 and 3.5, there is tension be-
tween developing sufficiently complex representa-
tions to capture linguistic phenomena and keeping
an annotation scheme simple enough that it can be
reliably produced by humans, in the case of hand-
annotation.

7 Related Work

This paper builds on a growing body of work which
goes beyond (un)labeled bracketing in parser evalua-
tion, including Lin (1995), Carroll et al. (1998), Ka-
plan et al. (2004), Rimell et al. (2009), and Nivre et
al. (2010). Most closely related are the latter two of
the above, as we adopt their “construction-focused
parser evaluation methodology”.

There are several methodological differences be-
tween our work and that of Rimell et al. First, we
draw our evaluation data from a much larger and
more varied corpus. Second, we automate the com-
parison of parser output to the gold standard, and we
distribute the evaluation scripts along with the anno-
tated corpus, enhancing replicability. Third, where
Rimell et al. extract evaluation targets on the basis
of PTB annotations, we make use of a linguistically
precise broad-coverage grammar to identify candi-
date examples. This allows us to include both local
and non-local dependencies not represented or not
reliably encoded in the PTB, enabling us to evalu-
ate parser performance with more precision over a
wider range of linguistic phenomena.

These methodological innovations bring two em-
pirical results. The first is qualitative: Where previ-
ous work showed that overall Parseval numbers hide
difficulties with long-distance dependencies, our re-
sults show that there are multiple kinds of reason-
ably frequent local dependencies which are also dif-
ficult for the current standard approaches to pars-
ing. The second is quantitative: Where Rimell et
al. found two phenomena which were virtually un-
analyzed (recall below 10%) for one or two parsers
each, we found eight phenomena which were vir-
tually unanalyzed by at least one system, includ-
ing two unanalyzed by five and one by six. Every
system had at least one virtually unanalyzed phe-
nomenon. Thus we have shown that the dependen-
cies being missed by typical modern approaches to
parsing are more varied and more numerous than

previously thought.

8 Conclusion

We have presented a detailed construction-focused
evaluation of seven parsers over 10 phenomena,
with 1000 examples drawn from English Wikipedia.
Gauging recall of such “deep” dependencies, in our
view, can serve as a proxy for downstream pro-
cessing involving semantic interpretation of parser
outputs. Our annotations and automated evaluation
script are provided in the supplementary materials,
for full replicability. Our results demonstrate that
significant opportunities remain for parser improve-
ment, and highlight specific challenges that remain
invisible in aggregate parser evaluation (e.g. Parse-
val or overall dependency accuracy). These results
suggest that further progress will depend on train-
ing data that is both more extensive and more richly
annotated than what is typically used today (seeing,
for example, that a large part of more detailed PTB
annotation remains ignored in much parsing work).

There are obvious reasons calling for diversity in
approaches to parsing and for different trade-offs
in, for example, the granularity of linguistic analy-
sis, average accuracy, cost of computation, or ease
of adaptation. Our proposal is not to substitute
construction-focused evaluation on Wikipedia data
for widely used aggregate metrics and reference cor-
pora, but rather to augment such best practices in
the spirit of Rimell et al. (2009) and expand the
range of phenomena considered in such evaluations.
Across frameworks and traditions (and in principle
languages), it is of vital importance to be able to
evaluate the quality of parsing (and grammar induc-
tion) algorithms in a maximally informative manner.
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Abstract

Text simplification aims to rewrite text into
simpler versions, and thus make information
accessible to a broader audience. Most pre-
vious work simplifies sentences using hand-
crafted rules aimed at splitting long sentences,
or substitutes difficult words using a prede-
fined dictionary. This paper presents a data-
driven model based on quasi-synchronous
grammar, a formalism that can naturally
capture structural mismatches and complex
rewrite operations. We describe how such a
grammar can be induced from Wikipedia and
propose an integer linear programming model
for selecting the most appropriate simplifica-
tion from the space of possible rewrites gen-
erated by the grammar. We show experimen-
tally that our method creates simplifications
that significantly reduce the reading difficulty
of the input, while maintaining grammaticality
and preserving its meaning.

1 Introduction

Sentence simplification is perhaps one of the oldest
text rewriting problems. Given a source sentence,
the goal is to create a grammatical target that is
easier to read with simpler vocabulary and syntac-
tic structure. An example is shown in Table 1 in-
volving a broad spectrum of rewrite operations such
as deletion, substitution, insertion, and reordering.
The popularity of the simplification task stems from
its potential relevance to various applications. Ex-
amples include the development of reading aids for
people with aphasia (Carroll et al., 1999), non-native

Also contributing to the firmness in copper, the an-
alyst noted, was a report by Chicago purchasing
agents, which precedes the full purchasing agents re-
port that is due out today and gives an indication of
what the full report might hold.
Also contributing to the firmness in copper, the an-
alyst noted, was a report by Chicago purchasing
agents. The Chicago report precedes the full purchas-
ing agents report. The Chicago report gives an indica-
tion of what the full report might hold. The full report
is due out today.

Table 1: Example of a source sentence (top) and its sim-
plification (bottom).

speakers (Siddharthan, 2003) and more generally in-
dividuals with low literacy (Watanabe et al., 2009).
A simplification component could be also used as
a preprocessing step to improve the performance
of parsers (Chandrasekar et al., 1996), summarizers
(Beigman Klebanov et al., 2004) and semantic role
labelers (Vickrey and Koller, 2008).

Simplification is related to, but different from
paraphrase extraction (Barzilay, 2003). We must not
only have access to paraphrases (i.e., rewrite rules),
but also be able to combine them to generate new
text, in a simpler language. The task is also dis-
tinct from sentence compression as it aims to ren-
der a sentence more accessible while preserving its
meaning. On the contrary, compression unavoidably
leads to some information loss as it creates shorter
sentences without necessarily reducing complexity.
In fact, one of the commonest simplification oper-
ations is sentence splitting which usually produces
longer rather than shorter output! Moreover, mod-
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els developed for sentence compression have been
mostly designed with one rewrite operation in mind,
namely word deletion, and are thus unable to model
consistent syntactic effects such as reordering, sen-
tence splitting, changes in non-terminal categories,
and lexical substitution (but see Cohn and Lapata
2008 and Zhao et al. 2009 for notable exceptions).

In this paper we propose a sentence simplification
model that is able to handle structural mismatches
and complex rewriting operations. Our approach is
based on quasi-synchronous grammar (QG, Smith
and Eisner 2006), a formalism that is well suited for
text rewriting. Rather than postulating a strictly syn-
chronous structure over the source and target sen-
tences, QG identifies a “sloppy” alignment of parse
trees assuming that the target tree is in some way
“inspired by” the source tree. Specifically, our model
is formulated as an integer linear program and uses
QG to capture the space of all possible rewrites.
Given a source tree, it finds the best target tree li-
censed by the grammar subject to constraints such
as sentence length and reading ease. Our model is
conceptually simple and computationally efficient.
Furthermore, it finds globally optimal simplifica-
tions without resorting to heuristics or approxima-
tions during the decoding process.

Contrary to most previous approaches (see the
discussion in Section 2) which rely heavily on
hand-crafted rules, our model learns simplifi-
cation rewrites automatically from examples of
source-target sentences. Our work joins others in us-
ing Wikipedia to extract data appropriate for model
training (Yamangil and Nelken, 2008; Yatskar et al.,
2010; Zhu et al., 2010). Advantageously, the Sim-
ple English Wikipedia (henceforth SimpleEW) pro-
vides a large repository of simplified language; it
uses fewer words and simpler grammar than the or-
dinary English Wikipedia (henceforth MainEW) and
is aimed at non-native English speakers, children,
translators, people with learning disabilities or low
reading proficiency. We exploit Wikipedia and cre-
ate a (parallel) simplification corpus in two ways:
by aligning MainEW sentences to their SimpleEW
counterparts, and by extracting training instances
from SimpleEW revision histories, thus leveraging
Wikipedia’s collaborative editing process.

Our experimental results demonstrate that a sim-
plification model can be learned from Wikipedia

data alone without any manual effort. Perhaps un-
surprisingly, the quality of the QG grammar rules
greatly improves when these are learned from re-
vision histories which are less noisy than sentence
alignments. When compared against current state-
of-the-art methods (Zhu et al., 2010) our model
yields significantly simpler output that is both gram-
matical and meaning preserving.

2 Related Work

Sentence simplification has attracted a great deal
of attention due to its potential impact on society.
The literature is rife with attempts to simplify text
using mostly hand-crafted syntactic rules aimed at
splitting long and complicated sentences into sev-
eral simpler ones (Carroll et al., 1999; Chandrasekar
et al., 1996; Siddharthan, 2004; Vickrey and Koller,
2008). Other work focuses on lexical simplifications
and substitutes difficult words by more common
WordNet synonyms or paraphrases found in a pre-
defined dictionary (Devlin, 1999; Inui et al., 2003;
Kaji et al., 2002).

More recently, Yatskar et al. (2010) explore
data-driven methods to learn lexical simplifications
from Wikipedia revision histories. A key idea in
their work is to utilize SimpleEW edits, while rec-
ognizing that these may serve other functions, such
as vandalism removal or introduction of new con-
tent. Zhu et al. (2010) also use Wikipedia to learn
a sentence simplification model which is able to
perform four rewrite operations, namely substitu-
tion, reordering, splitting, and deletion. Inspired
by syntax-based SMT (Yamada and Knight, 2001),
their model consists of three components: a lan-
guage model P(s) whose role is to guarantee that the
simplification output is grammatical, a direct trans-
lation model P(s|c) capturing the probability that the
target sentence s is a simpler version of the source c,
and a decoder which searches for the simplifica-
tion s which maximizes P(s)P(s|c). The translation
model is the product of the aforementioned four
rewrite operations whose probabilities are estimated
from a parallel corpus of MainEW and SimpleEW
sentences using an expectation maximization algo-
rithm. Their decoder translates sentences into sim-
pler alternatives by greedily selecting the branch in
the source tree with the highest probability.
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Our own work formulates sentence simplification
in the framework of Quasi-synchronous grammar
(QG, Smith and Eisner 2006). QG allows to describe
non-isomorphic tree pairs (the grammar rules can
comprise trees of arbitrary depth, and fragments can
be mapped) and is thus suited to text-rewriting tasks
which typically involve a number of local modifi-
cations to the input text. We use quasi-synchronous
grammar to learn a wide range of rewrite opera-
tions capturing both lexical and structural simplifi-
cations naturally without any additional rule engi-
neering. In contrast to Yatskar et al. (2010) and Zhu
et al. (2010), simplification operations (e.g., substi-
tution or splitting) are not modeled explicitly; in-
stead, we leave it up to our grammar extraction algo-
rithm to learn appropriate rules that reflect the train-
ing data. Compared to Zhu et al., our model is con-
ceptually simpler and more general. The proposed
ILP formulation not only allows to efficiently search
through the space of many QG rules but also to in-
corporate constraints relating to grammaticality and
the task at hand without the added computational
cost of integrating a language model. Furthermore,
our learning framework is not limited to simplifi-
cation and could be easily adapted to other rewrit-
ing tasks. Indeed, the QG formalism has been pre-
viously applied to parser adaptation and projection
(Smith and Eisner, 2009), paraphrase identification
(Das and Smith, 2009), question answering (Wang
et al., 2007), and title generation (Woodsend et al.,
2010).

Finally, our work relates to a large body of recent
literature on Wikipedia and its potential for a wide
range of NLP tasks. Beyond text rewriting, examples
include semantic relatedness (Ponzetto and Strube,
2007), information extraction (Wu and Weld, 2010),
ontology induction (Nastase and Strube, 2008), and
the automatic creation of overview articles (Sauper
and Barzilay, 2009).

3 Sentence Simplification Model

Our model takes a single sentence as input and cre-
ates a version that is simpler to read. This may
involve rendering syntactically complex structures
simpler (e.g., through sentence splitting), or sub-
stituting rare words with more common words or
phrases (e.g., such that a second language learner

may be familiar with), or deleting elements of the
original text in order to produce a relatively sim-
pler and shallower syntactic structure. In addition,
the output must be grammatical and coherent. These
constraints are global in their scope, and cannot be
adequately satisfied by optimizing each one of them
individually. Our approach therefore uses an ILP
formulation which will provide a globally optimal
solution. Given an input sentence, our model decon-
structs it into component phrases and clauses, each
of which is simplified (lexically and structurally)
through QG rewrite rules. We generate all possible
simplifications for a given input and use the ILP to
find the best target subject to grammaticality con-
straints. In what follows we first detail how we ex-
tract QG rewrite rules as these form the backbone of
our model and then formulate the ILP proper.

3.1 Quasi-synchronous Grammar

Phrase alignment Our model operates on indi-
vidual sentences annotated with syntactic informa-
tion i.e., phrase structure trees. In our experiments,
we obtain this information from the Stanford parser
(Klein and Manning, 2003) but any other broadly
similar parser could be used instead. Given an input
sentence S1 or its parse tree T1, the QG constructs
a monolingual grammar for parsing, or generating,
possible translation trees T2. A grammar node in the
target tree T2 is modeled on a subset of nodes in the
source tree, with a rather loose alignment between
the trees.

We take aligned sentence pairs represented as
phrase structure trees and build up a list of leaf node
alignments based on lexical identity. We align direct
parent nodes where more than one child node aligns.
QG rules are created from aligned nodes above the
leaf node level if the all the nodes in the target tree
can be explained using nodes from the source. This
helps to improve the quality in what is inherently a
noisy process, and it is largely responsible for a rel-
atively small resulting grammar (see Table 2). Ex-
amples of phrase alignments (indicated with dotted
lines) are shown in Figure 1.

Syntactic simplification rules Each QG rule de-
scribes the transformations required from source to
target phrase sub-trees. It allows child (and possi-
bly grand-child) constituents to be deleted or re-
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Rule involving lexical substitution:
〈VP, VP〉 → 〈[ADVP [RB afterwards] VBD 3 NP 4 ], [VBD 3 NP 4 ADVP [RB later]]〉

Rule for splitting into main constituent and auxiliary sentence:
〈VP, VP, ST〉 → 〈[VP 1 and VP 2 ], [VP 1 ], [NP [PRP He] VP 2 .]〉

Figure 1: A source sentence (upper tree) is split into two sentences. Dotted lines show word alignments, while boxed
subscripts show aligned nodes used to form QG rules. Below, two QG rules learned from this data.

ordered, and for nodes to be flattened. In addition,
we allow insertion of punctuation and some func-
tion words, identified by a small set of POS tags. To
distinguish sentences proper (which have final punc-
tuation) from clauses, we modify the output of the
parser, changing the root sentence parse tag from S
to ST (a “top-level sentence”); this allows clauses to
be extracted and rewritten as stand-alone sentences.

Lexical simplification rules Lexical substitutions
are an important part of simplification. We learn
them from aligned sub-trees, in the same way as
described above for syntax rules, by allowing a
small number of lexical substitutions to be present
in the rules, and provided they do not include proper
nouns. The resulting QG rules could be applied
by matching the syntax of the whole sub-tree sur-
rounding the substitution, but this approach is overly
restrictive and suffers from data sparsity. Indeed,
Yatskar et al. (2010) learn lexical simplifications
without taking syntactic context into account. We
therefore add a post-processing stage to the learning
process. For rules where the syntactic structures of
the source and target sub-trees match, and the only

difference is a lexical substitution, we construct a
more general rule by extracting the words and cor-
responding POS tags involved in the substitution.
Then at the generation stage, identifying suitable
rules depends only on the substitution words, rather
than the surrounding syntactic context. An example
of a lexical substitution rule is shown in Figure 1.

Sentence splitting rules Another important sim-
plification technique is to split syntactically compli-
cated sentences into several shorter ones. To learn
QG rules for this operation, the source sentence is
aligned with two consecutive target sentences.

Rather than expecting to discover a split point in
the source sentence, we attempt to identify a node
in the source parse tree that contributes to both of
the two target sentences. Our intuition is that one
of the target sentences will follow the general syn-
tactic structure of the source sentence. We designate
this as the main sentence. A node in the source sen-
tence parse tree will be aligned with a (similar but
simpler) node in the main target sentence, but at the
same time it will fully explain the other target sen-
tence, which we term the auxiliary sentence. It is
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possible for the auxiliary sentence to come before or
after the main sentence. In the learning procedure,
we try both possible orderings, and record the order
in any QG rules successfully produced.

The resulting QG rule is a tuple of three phrase
structure elements: the source node, the node in the
target main sentence (the top level of this node is
typically the same as that of the source node), and
the phrase structure of the entire auxiliary sentence.1

In addition, there is a flag to indicate if the auxiliary
sentence comes before or after the main sentence.
This formalism is able to capture the operations re-
quired to split sentences containing coordinate or
subordinate clauses, parenthetical content, relative
clauses and apposition. An example of a sentence
splitting rule is illustrated in Figure 1.

3.2 ILP-based Generation
We cast the problem of finding a suitable target sim-
plification given a source sentence as an integer lin-
ear program (ILP). Specifically, simplified text is
created from source sentence parse trees by identi-
fying and applying QG grammar rules. These will
have matching structure and may also require lexical
matching (shown using italics in the example rules
in Figure 1). The generation process starts at the root
node of the parse tree, applying QG rules to sub-
trees until leaf nodes are reached. We do not use the
Bayesian probability model proposed by Smith and
Eisner (2006) to identify the best sequence of sim-
plification rules. Instead, where there is more than
one matching rule, and so more than one simplifi-
cation is possible, the alternatives are all generated
and incorporated into the target phrase structure tree.
The ILP model operates over this phrase structure
tree and selects the phrase nodes from which to form
the target output.

Applying the QG rules on the source sentence
generates a number of auxiliary sentences. Let S be
this set of sentences. Let P be the set of nodes in the
phrase structure trees of the auxiliary sentences, and
Ps ⊂ P be the set of nodes in each sentence s ∈ S .
Let the sets Di ⊂ P , ∀i ∈ P capture the phrase de-
pendency information for each node i, where each
set Di contains the nodes that depend on the pres-

1Note that the target component comprises the second and
third elements as a pair, and variables from the source compo-
nent are split between them.

ence of i. In a similar fashion, the sets Ai⊂ S , ∀i∈P
capture the indices of any auxiliary sentences that
depend on the presence of node i. C ⊂ P is the set
of nodes involving a choice of alternative simplifi-
cations (nodes in the tree where more than one QG
rewrite rule can be applied, as mentioned above);
Ci ⊂ P , i ∈ C are the sets of nodes that are direct
children of each such node, in other words they are
the individual simplifications. Let l(w)

i be the length
of each node i in words, and l(sy)

i its length in syl-
lables. As we shall see below counts of words and
syllables are important cues in assessing readability.

The model is cast as an binary integer linear
program. A vector of binary decision variables
x ∈ {0,1}|P | indicates if each node is to be part of
the output. A vector of auxiliary binary variables
y ∈ {0,1}|S | indicates which (auxiliary) sentences
have been chosen.

max
x ∑

i∈P
gixi + hw + hsy (1a)

s.t. x j→ xi ∀i ∈ P , j ∈Di (1b)

xi→ ys ∀i ∈ P ,s ∈ Ai (1c)

xi→ ys ∀s ∈ S , i ∈ Ps (1d)

∑
j∈Ci

x j = xi ∀i ∈ C , j ∈ Ci (1e)

∑
s∈S

yi ≥ 1 (1f)

xi ∈ {0,1} ∀i ∈ P (1g)

ys ∈ {0,1} ∀s ∈ S . (1h)

Our objective function, given in Equation (1a),
is the summation of local and global compo-
nents. Each phrase is locally given a rewrite
penalty gi, where common lexical substitutions,
rewrites and simplifications are penalized less (as
we trust them more), compared to rarer QG rules.
The penalty is a simple log-probability measure,
gi = log

(
nr
Nr

)
, where nr is the number of times the

QG rule r was seen in the training data, and Nr

the number of times all suitable rules for this
phrase node were seen. If no suitable rules exist, we
set gi = 0.

The other two components of the objective,
hw and hsy, are global in nature, and guide the ILP
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towards simpler language. They draw inspiration
from existing measures of readability (the ease with
which a document can be read and understood).
The primary aim of readability formulas is to assess
whether texts or books are suitable for students at
particular grade levels or ages (see Mitchell 1985 for
an overview). Intuitively, texts ought to be simpler if
they correspond to low reading levels. A commonly
used reading level measure is the Flesch-Kincaid
Grade Level (FKGL) index which estimates read-
ability as a combination of the average number of
syllables per word and the average number of words
per sentence. Unfortunately, this measure is non-
linear2 and cannot be incorporated directly into the
objective of the ILP. Instead, we propose a linear ap-
proximation. We provide the ILP with targets for the
average number of words per sentence (wps), and
syllables per word (spw). hw(x,y) then measures the
number of words below this target level that the ILP
has achieved:

hw(x,y) = wps×∑
i∈S

yi−∑
i∈P

l(w)
i xi.

When positive, this indicates that sentences are
shorter than target, and contributes positively to the
readability objective whilst encouraging the appli-
cation of sentence splitting and deletion-based QG
rules. Similarly, hsy(x,y) measures the number of
syllables below that expected, from the target aver-
age and the number of words the ILP has chosen:

hsy(x) = spw×∑
i∈P

l(w)
i xi−∑

i∈P
l(sy)
i xi.

This component of the objective encourages the
deletion or lexical substitution of complex words.
We can use the two target parameters (wps and spw)
to control how much simplification the ILP should
apply.

Constraint (1b) enforces grammatical correctness
by ensuring that the phrase dependencies are re-
spected and the resulting structure is a tree. Phrases
that depend on phrase i are contained in the set Di.
Variable xi is true, and therefore phrase i will be
included in the target output, if any of its depen-
dents x j ∈Di are true.3 Constraint (1c) links main

2FKGL = 0.39
(

total words
total sentences

)
+1.8

(
total syllables

total words

)
−15.59

3Constraints (1b), (1c) and (1d) are shown as dependencies
for clarity, but they were implemented as inequalities in the ILP.

phrases to auxiliary sentences, so that the latter can
only be included in the output if the main phrase
has also been chosen. This helps to control coher-
ence within the output text. Despite seeming similar
to (1c), the role of constraint (1d) is quite different.
It links phrase variables x to sentence variables y, to
ensure the logical integrity of the model is correct.
Where the QG provides alternative simplifications,
it makes sense of course to select only one. This is
controlled by constraint (1e), and by placing all al-
ternatives in the set Di for the node i.

With these constraints alone, and faced with a
source sentence that is particularly difficult to sim-
plify, it is possible for the ILP solver to return a “triv-
ial” solution of no output at all, as all other avail-
able solutions result in a negative objective value.
It is therefore necessary to impose a global mini-
mum output constraint (1f). In combination with the
dependency relations in (1c), this constraint ensures
that at least an element of the root sentence is present
in the output. Global maximum length constraints
are a frequently occurring aspect of ILP models used
in NLP applications. We decided not to incorporate
any such constraints into our model, as we did not
want to place limitations on the simplification of
original content.

4 Experimental Setup

In this section we present our experimental setup
for assessing the performance of the simplification
model described above. We give details on the cor-
pora and grammars we used, model parameters, the
systems used for comparison with our approach, and
explain how the output was evaluated.

Grammar Extraction QG rules were learned
from revision histories and an aligned simplifica-
tion corpus, which we obtained from snapshots4 of
MainEW and SimpleEW. Wiki-related mark-up and
meta-information was removed to extract the plain
text from the articles.

SimpleEW revisions not only simplify the text of
existing articles, they may also introduce new con-
tent, vandalize or remove vandalism, or perform nu-
merous automatic “house-keeping” modifications.

4The snapshots for MainEW (enwiki) and SimpleEW (sim-
plewiki dated 2010-09-16 and 2010-09-13, respectively (both
available from http://download.wikimedia.org/).
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Corpora Syntactic Lexical Splitting
Revision 316 269 184
Aligned 312 96 254

Table 2: Number of QG rules extracted (after removing
singletons) from revision-based and aligned corpora.

We identified suitable revisions for simplification by
selecting those where the author had mentioned a
keyword (such as simple, clarification or grammar)
in the revision comments. Each selected revision
was compared to the previous version. Because the
entire article is stored at each revision, we needed to
identify and align modified sentences. We first iden-
tified modified sections using the Unix diff pro-
gram, and then individual sentences within the sec-
tions were aligned using the program dwdiff5. This
resulted in 14,831 paired sentences. With regard to
the aligned simplification corpus, we paired 15,000
articles from SimpleEW and MainEW following the
language link within the snapshot files. Within the
paired articles, we identified aligned sentences us-
ing macro alignment (at paragraph level) then mi-
cro alignment (at sentence level), using tf.idf scores
to measure similarity (Barzilay and Elhadad, 2003;
Nelken and Schieber, 2006).

All source-target sentences (resulting from revi-
sions or alignments) were parsed with the Stanford
parser (Klein and Manning, 2003) in order to la-
bel the text with syntactic information. QG rules
were created by aligning nodes in these sentences
as described earlier. A breakdown of the number
and type of rules we obtained from the revision
and aligned corpora (after removing rules appear-
ing only once) is given in Table 2. Examples of the
most frequently learned QG rules are shown in Ta-
ble 3. Rules (1)–(3) involve syntactic simplification
and rules (4)–(6) involve sentence splitting. Exam-
ples of common lexical simplifications found by our
grammar are: “discovered” → “found”, “defeated”
→ “won against”, “may refer to”→ “could mean”,
“original”→ “first”, “requires”→ “needs”.

Sentence generation We generated simplified
versions of MainEW sentences. For each (parsed)
source sentence, we created and solved an ILP (see
Equation (1)) parametrized as follows: the number

5http://os.ghalkes.nl/dwdiff.html

1. 〈S, ST〉 → 〈[NP 1 VP 2 ], [NP 1 VP 2 .]〉
2. 〈S, ST〉 → 〈[VP 1 ], [This VP 1 .]〉
3. 〈NP, ST〉 → 〈[NP 1 , NP 2 ], [NP 1 was VP 2 .]〉
4. 〈ST, ST, ST〉 → 〈[S 1 , and S 2 ], [ST 1 ], [ST 2 ]〉
5. 〈ST, ST, ST〉 → 〈[S 1 : S 2 ], [ST 1 ], [ST 2 ]〉
6. 〈ST, ST, ST〉 → 〈[S 1 , but S 2 ], [ST 1 ], [ST 2 ]〉

Table 3: Examples of QG rules involving syntactic sim-
plification (1)–(3) and sentence division (4)–(6). The lat-
ter are shown as the tuple 〈source, target, aux〉. The trans-
form of nodes from S to ST (for example) rely on the
application of syntactic simplification rules rules. Boxed
subscripts show aligned nodes.

of target words per sentence (wps) was set to 8, and
syllables per word (spw) to 1.5. These two param-
eters were empirically tuned on the training set. To
solve the ILP model we used the ZIB Optimization
Suite software (Achterberg, 2007; Koch, 2004). The
solution was converted into a sentence by removing
nodes not chosen from the tree representation, then
concatenating the remaining leaf nodes in order.

Evaluation We evaluated our model on the same
dataset used in Zhu et al. (2010), an aligned cor-
pus of MainEW and SimpleEW sentences. The cor-
pus contains 100/131 source/target sentences and
was created automatically. Sentences from this cor-
pus (and their revisions) were excluded from train-
ing. We evaluated two versions of our model, one
with rewrite rules acquired from revision histories
of simplified documents and another one with rules
extracted from MainEW-SimpleEW aligned sen-
tences. These models were compared against Zhu
et al. (2010)6 who also learn simplification rules
from Wikipedia, and a simple baseline that uses
solely lexical simplifications7 provided by the Sim-
pleEW editor “SpencerK” (Spencer Kelly). An obvi-
ous idea would be to treat sentence simplification as
an English-to-English translation problem and use
an off-the-shelf system like Moses8 for the task.
However, we refrained from doing so as Zhu et al.
(2010) show that Moses performs poorly, it cannot
model rewrite operations that split sentences or drop
words and in most cases generates output identical

6We are grateful to Zhemin Zhu for providing us with his
test set and the output of his system.

7http://www.spencerwaterbed.com/soft/simple/
8http://www.statmt.org/moses/
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MainEW Wonder has recorded several critically acclaimed albums and hit singles, and writes and produces songs
for many of his label mates and outside artists as well.

Zhu et al Wonder has recorded several praised albums and writes and produces songs. Many of his label mates
and outside artists as well.

AlignILP Wonder has recorded several critically acclaimed albums and hit singles. He produces songs for many
of his label mates and outside artists as well. He writes.

RevILP Wonder has recorded many critically acclaimed albums and hit singles. He writes. He makes songs for
many of his label mates and outside artists as well.

SimpleEW He has recorded 23 albums and many hit singles, and written and produced songs for many of his label
mates and other artists as well.

MainEW The London journeys In 1790, Prince Nikolaus died and was succeeded by a thoroughly unmusical
prince who dismissed the entire musical establishment and put Haydn on a pension.

Zhu et al The London journeys in 1790, prince Nikolaus died and was succeeds by a son became prince. A son
became prince told the entire musical start and put he on a pension.

AlignILP The London journeys In 1790, Prince Nikolaus died. He was succeeded by a thoroughly unmusical
prince. He dismissed the entire musical establishment. He put Haydn on a pension.

RevILP The London journeys In 1790, Prince Nikolaus died. He was succeeded by a thoroughly unmusical
prince. He dismissed the whole musical establishment. He put Haydn on a pension.

SimpleEW The London journeys In 1790, Prince Nikolaus died and his son became prince. Haydn was put on a
pension.

Table 4: Example simplifications produced by the systems in this paper (RevILP, AlignILP) and Zhu et al.’s (2010)
model, compared to real Wikipedia text (MainEW: input source, SimpleEW: simplified target).

to the source.
We evaluated model output in two ways, using au-

tomatic evaluation measures and human judgments.
Intuitively, readability measures ought to be suit-
able for assessing the output of simplification sys-
tems. We report results with the well-known Flesch-
Kincaid Grade Level index (FKGL). Experiments
with other readability measures such as the Flesch
Reading Ease and the Coleman-Liau index obtained
similar results. In addition, we also assessed how the
system output differed from the human SimpleEW
gold standard by computing BLEU (Papineni et al.,
2002) and TERp (Snover et al., 2009). Both mea-
sures are commonly used to automatically evaluate
the quality of machine translation output. BLEU9

scores the target output by counting n-gram matches
with the reference, whereas TERp is similar to word
error rate, the only difference being that it allows
shifts and thus can account for word order differ-
ences. TERp also allows for stem, synonym, and
paraphrase substitutions which are common rewrite
operations in simplification.

In line with previous work on text rewriting
(e.g., Knight and Marcu 2002) we also evaluated

9We calculated single-reference BLEU using the mteval-
v13a script (with the default settings).

system output by eliciting human judgments. We
conducted three experiments. In the first experi-
ment participants were presented with a source sen-
tence and its target simplification and asked to rate
whether the latter was easier to read compared to the
source. In the second experiment, they were asked
to rate the grammaticality of the simplified output.
In the third experiment, they judged how well the
simplification preserved the meaning of the source.
In all experiments participants used a five point rat-
ing scale where a high number indicates better per-
formance. We randomly selected and automatically
simplified 64 sentences from Zhu et al.’s (2010) test
corpus using the four models described above. We
also included gold standard simplifications. Our ma-
terials thus consisted of 320 (64 × 5) source-target
sentences.10 We collected ratings from 45 unpaid
volunteers, all self reported native English speakers.
The studies were conducted over the Internet using
a custom built web interface. Examples of our ex-
perimental items are given in Table 4 (we omit the
output of SpencerK as this is broadly similar to the
source sentence, modulo lexical substitutions).

10A Latin square design ensured that subjects did not see two
different simplifications of the same sentence.
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Models FKGL BLEU TERP
MainEW 15.12 — —
SimpleEW 11.25 — —
SpencerK 14.67 0.47 0.51
Zhu et al 9.41 0.38 0.59
RevILP 10.92 0.42 0.60
AlignILP 12.36 0.34 0.85

Table 5: Model performance using automatic evaluation
measures.

5 Results

The results of our automatic evaluation are summa-
rized in Table 5. The first column reports the FKGL
readability index of the source sentences (MainEW),
of their target simplifications (SimpleEW) and the
output of four models: a simple baseline that re-
lies on lexical substitution (SpencerK), Zhu et al.’s
(2010) model, and two versions of our model, one
trained on revision histories (RevILP) and another
one trained on the MainEW-SimpleEW aligned cor-
pus (AlignILP). As can be seen, the source sentences
have the highest reading level. Zhu et al.’s system
has the lowest reading level followed by our own
models and SpencerK. All models are significantly11

different in reading level from SimpleEW with the
exception of RevILP (using a one-way ANOVA with
post-hoc Tukey HSD tests). SpencerK is not signif-
icantly different in readability from MainEW; Re-
vILP is significantly different from Zhu et al. and
AlignILP. In sum, these results indicate that RevILP
is the closest to SimpleEW and that the provenance
of the QG rules has an impact on the model’s perfor-
mance.

Table 5 also shows BLEU and TERp scores with
SimpleEW as the reference. These scores can be
used to examine how close to the gold standard our
models are. SpencerK has the highest BLEU and
lowest TERp scores.12 This is expected as this base-
line performs only a very limited type of rewriting,
namely lexical substitution. AlignILP is most differ-
ent from the reference, followed by Zhu et al. (2010)
and RevILP. Taken together these results indicate

11All significance differences reported throughout this paper
are with a level less than 0.01.

12The perfect BLEU score is one and the perfect TERp score
is zero.

Models Simplicity Grammaticality Meaning
SimpleEW 3.74 4.89 4.41
SpencerK 1.41 4.87 4.84
Zhu et al 2.92 3.43 3.44
RevILP 3.64 4.55 4.19
AlignILP 2.69 4.03 3.98

Table 6: Average human ratings for gold standard Sim-
pleEW sentences, a simple baseline (SpencerK) based on
lexical substitution, Zhu et al.’s 2010 model, and two ver-
sions of our ILP model (RevILP and AlignILP).

Zhu et al AlignILP RevILP SimpleEW
SpencerK 2♦4 2♦4 2�4 2�4
Zhu et al �♦4 2♦4 2♦4
AlignILP 2♦N 2♦4
RevILP ��N

Table 7: 2/�: is/not sig. diff. wrt simplicity; ♦/�: is/not
sig. diff. wrt grammaticality; 4/N: is/not sig. diff. wrt
meaning.

that the ILP models perform a fair amount of rewrit-
ing without simply rehashing the source sentence.

We now turn to the results of our judgment elic-
itation study. Table 6 reports the average ratings
for Simplicity (is the target sentence simpler than
the source?), Grammaticality (is the target sentence
grammatical?), and Meaning (does the target pre-
serve the meaning of the source?). With regard to
simplicity, our participants perceive the gold stan-
dard (SimpleEW) to be the simplest, followed by
RevILP, Zhu et al, and AlignILP. SpencerK is the
least simple model and the most grammatical one
as lexical substitutions do not change the structure
of the sentence. Interestingly, RevILP and AlignILP
are also rated highly with regard to grammaticality.
Zhu et al. (2010) is the least grammatical model.
Finally, RevILP preserves the meaning of the tar-
get as well as SimpleEW, whereas Zhu et al. yields
the most distortions. Again SpencerK is rated highly
amongst the other models as it is does not substan-
tially simplify and thus change the meaning of the
source.

Table 7 reports on pairwise comparisons between
all models and their statistical significance (again us-
ing a one-way ANOVA with post-hoc Tukey HSD
tests). RevILP is not significantly different from
SimpleEW on any dimension (Simplicity, Grammat-
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Original story: There was once a sweet little maid who lived with her father and mother in a pretty little
cottage at the edge of the village. At the further end of the wood was another pretty cottage and in it lived
her grandmother. Everybody loved this little girl, her grandmother perhaps loved her most of all and gave
her a great many pretty things. Once she gave her a red cloak with a hood which she always wore, so people
called her Little Red Riding Hood.
Generated simplification: There was once a sweet little maid. She lived with her father and mother in
a pretty little cottage at the edge of the village. At the further end of the wood it lived her grandmother.
Everybody loved this little girl. Her grandmother perhaps loved her most of all. She gave her a great many
pretty things. Once she gave her a red cloak with a hood, so persons called her Little Red Riding Hood.

Table 8: Excerpt of Little Red Riding Hood simplified by the RevILP model. Modifications to the original story are
highlighted in italics.

icality, Meaning), whereas Zhu et al. differs signif-
icantly from RevILP and SimpleEW on all dimen-
sions. It is also significantly different from Alig-
nILP in terms of grammaticality and meaning but
not simplicity. RevILP is significantly more simple
and grammatical than AlignILP but performs com-
parably with respect to preserving the meaning of
the source.

In sum, our results show that RevILP is the best
performing model. It creates sentences that are sim-
ple, grammatical and adhere to the meaning of
the source. The QG rules obtained from the revi-
sion histories produce better output compared to the
aligned corpus. As revision histories are created by
Wikipedia contributors, they tend to be a more ac-
curate data source than aligned sentences which are
obtained via an automatic and unavoidably noisy
procedure. Our results also show that a more gen-
eral model not restricted to specific rewrite opera-
tions like Zhu et al. (2010) obtains superior results
and has better coverage.

We also wanted to see whether a simplification
model trained on Wikipedia could be applied to an-
other domain. To this end, we used RevILP to sim-
plify five children stories from the Gutenburg13 col-
lection. The model simplified one sentence at a time
and was ran with the Wikipedia settings without any
modification. The mean FKGL on the simplified sto-
ries was 3.78. compared to 7.04 for the original ones.
An example of our system’s output on Little Red
Riding Hood is shown in Table 8.

Possible extensions and improvements to the cur-
rent model are many and varied. We have presented
an all-purpose simplification model without a target

13http://www.gutenberg.org

audience or application in mind. An interesting re-
search direction would be to simplify text accord-
ing to readability levels or text genres (e.g., news-
paper vs literary text). We could do this by incorpo-
rating readability-specific constraints to the ILP or
by changing the objective function (e.g., by favoring
more domain-specific rules). Finally, we would like
to extend the current model so as to simplify entire
documents both in terms of style and content.
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Abstract

Conversations provide rich opportunities for
interactive, continuous learning. When some-
thing goes wrong, a system can ask for clari-
fication, rewording, or otherwise redirect the
interaction to achieve its goals. In this pa-
per, we present an approach for using con-
versational interactions of this type to induce
semantic parsers. We demonstrate learning
without any explicit annotation of the mean-
ings of user utterances. Instead, we model
meaning with latent variables, and introduce
a loss function to measure how well potential
meanings match the conversation. This loss
drives the overall learning approach, which in-
duces a weighted CCG grammar that could be
used to automatically bootstrap the semantic
analysis component in a complete dialog sys-
tem. Experiments on DARPA Communica-
tor conversational logs demonstrate effective
learning, despite requiring no explicit mean-
ing annotations.

1 Introduction

Conversational interactions provide significant op-
portunities for autonomous learning. A well-defined
goal allows a system to engage in remediations when
confused, such as asking for clarification, reword-
ing, or additional explanation. The user’s response
to such requests provides a strong, if often indirect,
signal that can be used to learn to avoid the orig-
inal confusion in future conversations. In this pa-
per, we show how to use this type of conversational
feedback to learn to better recover the meaning of
user utterances, by inducing semantic parsers from

unannotated conversational logs. We believe that
this style of learning will contribute to the long term
goal of building self-improving dialog systems that
continually learn from their mistakes, with little or
no human intervention.

Many dialog systems use a semantic parsing com-
ponent to analyze user utterances (e.g., Allen et al.,
2007; Litman et al., 2009; Young et al., 2010). For
example, in a flight booking system, the sentence

Sent: I want to go to Seattle on Friday
LF: λx.to(x, SEA) ∧ date(x, FRI)

might be mapped to the logical form (LF) meaning
representation above, a lambda-calculus expression
defining the set of flights that match the user’s de-
sired constraints. This LF is a representation of the
semantic content that comes from the sentence, and
would be input to a context-dependent understand-
ing component in a full dialog system, for example
to find the date that the symbol FRI refers to.

To induce semantic parsers from interactions, we
consider user statements in conversational logs and
model their meaning with latent variables. We
demonstrate that it is often possible to use the dia-
log that follows a statement (including remediations
such as clarifications, simplifications, etc.) to learn
the meaning of the original sentence. For example,
consider the first user utterance in Figure 1, where
the system failed to understand the user’s request.
To complete the task, the system must use a reme-
diation strategy. Here, it takes the initiative by ask-
ing for and confirming each flight constraint in turn.
This strategy produces an unnatural conversation but
provides supervision for learning the meaning of the
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original utterance. We can easily record representa-
tions of the meanings the system intended to convey
at each step, as seen in Figure 1, and use this indirect
supervision for learning.

Learning from this weak signal is challenging. In
any specific conversation, the system’s remediations
can fail to recover aspects of the original user mean-
ing and can introduce spurious constraints, for ex-
ample when users change their goals mid conversa-
tion. To learn effectively, the model must accumu-
late evidence from many interactions to best recover
the meaning of each specific sentence.

We will learn semantic parsers defined by prob-
abilistic Combinatory Categorial Grammars (PC-
CGs), which include both a lexicon and a weighted
linear model for parse selection. The lexicon speci-
fies the meanings of individual words and phrases,
while the parameters of a parsing model define
how to best combine word- and phrase-level mean-
ings to analyze complete sentences. To learn with-
out labeled meaning representations, we make use
of a variant of the loss-sensitive Perceptron algo-
rithm (Singh-Miller and Collins, 2007). We define
loss functions to provide a rough measure of (1) how
well a candidate meaning for a utterance matches
the conversation that follows it and (2) how well the
candidate matches our expectations about the types
of things that are often said in the dialog’s domain.
These notions of loss drive not only the parameter
estimation but also the grammar induction process
that constructs the CCG lexicon. Experiments on
conversation logs from the DARPA Communicator
corpus (Walker et al., 2002) demonstrate the feasi-
bility of our approach.

This paper makes the following contributions:

• A formalization of the problem of learning
the meaning of user statements from conversa-
tional feedback, without requiring annotation.

• A new loss-sensitive learning algorithm for this
problem that induces semantic parsers from
conversation logs.

• Loss functions to measure the quality of hypo-
thetical utterance meanings within the conver-
sation in which they appear.

• An evaluation on logs from two dialog systems

SYSTEM: how can i help you? (OPEN TASK)
USER: i would like to fly from atlanta georgia to lon-

don england on september twenty fourth in the early
evening i would like to return on october first departing
from london in the late morning

SYSTEM: leaving what city? (ASK:λx.from(fl, x))
USER: atlanta georgia
SYSTEM: leaving atlanta. (CONFIRM:from(fl, ATL))

going to which city? (ASK:λx.to(fl, x))
USER: london
SYSTEM: arriving in london england.

(CONFIRM:to(fl, LON)) what date would you like to
depart atlanta? (ASK:λx.from(fl, ATL) ∧ depart-
date(fl, x))

USER: september twenty fourth in the early evening
[conversation continues]

Figure 1: Conversational excerpt from a DARPA Com-
municator travel-planning dialog. Each system statement
is labeled with representations of its speech act and log-
ical meaning, in parentheses. The user utterances have
no labels. Conversations of this type provide the training
data to learn semantic parsers for user utterances.

that demonstrate effective learning from con-
versations alone.

2 Problem

Our goal is to learn a function that maps a sentence
x to a lambda-calculus expression z. We assume ac-
cess to logs of conversations with automatically gen-
erated annotation of system utterance meanings, but
no explicit labeling of each user utterance meaning.

We define a conversation C = (~U,O) to be a se-
quence of utterances ~U = [u0, . . . , um] and a set
of conversational objects O. An object o ∈ O
is an entity that is being discussed, for example
there would be a unique object for each flight leg
discussed in a travel planning conversation. Each
utterance ui = (s, x, a, z) represents the speaker
s ∈ {User, System} producing the natural lan-
guage statement x which asserts a speech act a ∈
{ASK,CONFIRM, . . .} with meaning represen-
tation z. For example, from the second system ut-
terance in Figure 1 the question x =“Leaving what
city?” is an a=ASK speech act with lambda-calculus
meaning z = λx.from(fl, x). This meaning repre-
sents the fact that the system asked for the departure
city for the conversational object o = fl represent-
ing the flight leg that is currently being discussed.
We will learn from conversations where the speech
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acts a and logical forms z for user utterances are un-
labeled. Such data can be generated by recording
interactions, along with each system’s internal rep-
resentation of its own utterances.

Finally, since we will be analyzing sentences at a
specific point in a complete conversation, we define
our training data as a set {(ji, Ci)|i = 1 . . . n}. Each
pair is a conversation Ci and the index ji of the user
utterance x in Ci whose meaning we will attempt to
learn to recover. In general, the same conversation
C can be used in multiple examples, each with a dif-
ferent sentence index. Section 8 provides the details
of how the data was gathered for our experiments.

3 Overview of Approach

We will present an algorithm for learning a weighted
CCG parser, as defined in Section 5, that can be used
to map sentences to logical forms. The approach
induces a lexicon to represent the meanings of words
and phrases while also estimating the parameters of
a weighted linear model for selecting the best parse
given the lexicon.

Learning As defined in Section 2, the algorithm
takes a set of n training examples, {(ji, Ci) : i =
1, . . . , n}. For each example, our goal is to learn to
parse the user utterance x at position ji in Ci. The
training data contains no direct evidence about the
logical form z that should be paired with x, or the
CCG analysis that would be used to construct z. We
model all of these choices as latent variables.

To learn effectively in this complex, latent space,
we introduce a loss function L(z, j, C) ∈ R that
measures how well a logical form z models the
meaning for the user utterance at position j in C. In
Section 6, we will present the details of the loss we
use, which is designed to be sensitive to remedia-
tions in C (system requests for clarification, etc.) but
also be robust to the fact that conversations often do
not uniquely determine which z should be selected,
for example when the user prematurely ends the dis-
cussion. Then, in Section 7, we present an approach
for incorporating this loss function into a complete
algorithm that induces a CCG lexicon and estimates
the parameters of the parsing model.

This learning setup focuses on a subproblem in
dialog; semantic interpretation. We do not yet learn
to recover user speech acts or integrate the logical

form into the context of the conversation. These are
important areas for future work.

Evaluation We will evaluate performance on a
test set {(xi, zi)|i = 1, . . . ,m} of m sentences xi
that have been explicitly labeled with logical forms
zi. This data will allow us to directly evaluate the
quality of the learned model. Each sentence is an-
alyzed with the learned model alone; the loss func-
tion and any conversational context are not used dur-
ing evaluation. Parsers that perform well in this set-
ting will be strong candidates for inclusion in a more
complete dialog system, as motivated in Section 1.

4 Related Work

Most previous work on learning from conversational
interactions has focused on the dialog sub-problems
of response planning (e.g., Levin et al., 2000; Singh
et al., 2002) and natural language generation (e.g.,
Lemon, 2011). We are not aware of previous work
on inducing semantic parsers from conversations.

There has been significant work on supervised
learning for inducing semantic parsers. Various
techniques were applied to the problem includ-
ing machine translation (Papineni et al., 1997;
Ramaswamy and Kleindienst, 2000; Wong and
Mooney, 2006; 2007; Matuszek et al., 2010), higher-
order unification (Kwiatkowski et al., 2010), parsing
(Ruifang and Mooney, 2006; Lu et al., 2008), induc-
tive logic programming (Zelle and Mooney, 1996;
Thompson and Mooney, 2003; Tang and Mooney,
2000), probabilistic push-down automata (He and
Young, 2005; 2006) and ideas from support vec-
tor machines and string kernels (Kate and Mooney,
2006; Nguyen et al., 2006). The algorithms we de-
velop in this paper build on previous work on su-
pervised learning of CCG parsers (Zettlemoyer and
Collins, 2005; 2007), as we describe in Section 5.3.

There is also work on learning to do semantic
analysis with alternate forms of supervision. Clarke
et al. (2010) and Liang et al. (2011) describe ap-
proaches for learning semantic parsers from ques-
tions paired with database answers, while Gold-
wasser et al. (2011) presents work on unsuper-
vised learning. Our approach provides an alterna-
tive method of supervision that could complement
these approaches. Additionally, there has been sig-
nificant recent work on learning to do other, re-
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I want to go from Boston to New York and then to Chicago

S/N (N\N)/NP NP (N\N)/NP NP CONJ[] (N\N)/NP NP
λf.f λy.λf.λx.f(x) ∧ from(x, y) BOS λy.λf.λx.f(x) ∧ to(x, y) NYC λy.λf.λx.f(x) ∧ to(x, y) CHI

> > >
(N\N) (N\N) (N\N)

λf.λx.f(x) ∧ from(x,BOS) λf.λx.f(x) ∧ to(x,NY C) λf.λx.f(x) ∧ to(x,CHI)
<B

(N\N)
λf.λx.f(x) ∧ from(x,BOS) ∧ to(x,NY C)

<Φ>
(N\N)

λf.λx[].f(x) ∧ from(x[1], BOS) ∧ to(x[1], NY C) ∧ before(x[1], x[2]) ∧ to(x[2], CHI)
N

λx[].from(x[1], BOS) ∧ to(x[1], NY C) ∧ before(x[1], x[2]) ∧ to(x[2], CHI)
>

S
λx[].from(x[1], BOS) ∧ to(x[1], NY C) ∧ before(x[1], x[2]) ∧ to(x[2], CHI)

Figure 2: An example CCG parse. This parse shows the construction of a logical form with an array-typed variable x[]
that specifies a list of flight legs, indexed by x[1] and x[2]. The top-most parse steps introduce lexical items while the
lower ones create new nonterminals according the CCG combinators (>, <, etc.), see Steedman (2000) for details.

lated, natural language semantic analysis tasks from
context-dependent database queries (Miller et al.,
1996; Zettlemoyer and Collins, 2009), grounded
event streams (Chen et al., 2010; Liang et al., 2009),
environment interactions (Branavan et al., 2009;
2010; Vogel and Jurafsky, 2010), and even unanno-
tated text (Poon and Domingos, 2009; 2010).

Finally, the DARPA Communicator data (Walker
et al., 2002) has been previously studied. Walker and
Passonneau (2001) introduced a schema of speech
acts for evaluation of the DARPA Communicator
system performance. Georgila et al. (2009) extended
this annotation schema to user utterances using an
automatic process. Our speech acts extend this work
to additionally include full meaning representations.

5 Mapping Sentences to Logical Form

We will use a weighted linear CCG grammar for se-
mantic parsing, as briefly reviewed in this section.

5.1 Combinatory Categorial Grammars

Combinatory categorial grammars (CCGs) are a
linguistically-motivated model for a wide range of
language phenomena (Steedman, 1996; 2000). A
CCG is defined by a lexicon and a set of combina-
tors. The grammar defines a set of possible parse
trees, where each tree includes syntactic and seman-
tic information that can be used to construct logical
forms for sentences.

The lexicon contains entries that define categories
for words or phrases. For example, the second
lexical entry in the parse in Figure 2 is:

from := (N\N)/NP : λy.λf.λx.f(x) ∧ from(x, y)

Each category includes both syntactic and seman-

tic information. For example, the phrase “from”
is assigned the category with syntax (N\N)/NP
and semantics λy.λf.λx.f(x) ∧ from(x, y). The
outermost syntactic forward slash specifies that the
entry must first be combined with an NP to the
right (the departure city), while the inner back slash
specifies that it will later modify a noun N to the
left (to add a constraint to a set of flights). The
lambda-calculus semantic expression is designed
to build the appropriate meaning representation at
each of these steps, as seen in the parse in Figure 2.

In general, we make use of typed lambda cal-
culus to represent meaning (Carpenter, 1997), both
in the lexicon and in intermediate parse tree nodes.
We also introduce an extension for modeling array-
typed variables to represent lists of individual en-
tries. These constructions are used, for example, to
model sentences describing a sequence of segments
while specifying flight preferences.

Figure 2 shows how a CCG parse builds a logical
form for a complete sentence with an array-typed
variable. Each intermediate node in the tree is con-
structed with one of a small set of CCG combina-
tor rules, see the explanation from Steedman (1996;
2000). We make use of the standard application,
composition and coordination combinators, as well
as type-shifting rules introduced by Zettlemoyer and
Collins (2007) to model spontaneous, unedited text.

5.2 Weighted Linear CCGs
A weighted linear CCG (Clark and Curran, 2007)
provides a ranking on the space of possible parses
under the grammar, which can be used to select
the best logical form for a sentence. This type of
model is closely related to several other approaches
(Ratnaparkhi et al., 1994; Johnson et al., 1999;
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Lafferty et al., 2001; Collins, 2004; Taskar et al.,
2004). Let x be a sentence, y be a CCG parse, and
GEN(x; Λ) be the set of all possible CCG parses for
x given the lexicon Λ. Define φ(x, y) ∈ Rd to be
a d-dimensional feature–vector representation and
θ ∈ Rd to be a parameter vector. The optimal parse
for sentence x is

y∗(x) = arg max
y∈GEN(x;Λ)

θ · φ(x, y)

and the final output logical form z is the lambda-
calculus expression at the root of y∗(x).

We compute y∗(x) with a CKY-style chart pars-
ing algorithm. Since each chart entry contains a
full lambda-calculus meaning expression, we use
N -best pruning to control the number of options we
consider at each span. Learning a model of this form
involves learning the parameters θ and the lexicon
Λ. We will show that this is possible from conversa-
tional logs that do not contain any explicit labeling
of the logical forms for user utterances.

5.3 Supervised learning with GENLEX

Previous work on lexical induction, including the
GENLEX approach which we briefly review here,
has required labeled logical meaning representa-
tions. In Section 7, we will introduce a new way
of using GENLEX to learn from unannotated con-
versation logs.

The supervised CCG learning algorithms of
Zettlemoyer and Collins (2005; 2007) induce a
weighted CCG from training examples (xi, zi) for
i = 1 . . . n, where xi is a sentence and zi is the
corresponding lambda-calculus meaning representa-
tion. The output from the algorithm is a pair (θ,Λ)
containing the learned parameters and CCG lexicon.

They defined the function GENLEX(x, z) to map
a sentence x and its meaning z to a large set of poten-
tial lexical entries. These entries are generated with
rules that consider the logical form z and guess po-
tential CCG categories. For example, the rule p →
(N\N)/NP : λy.λf.λx.f(x) ∧ p(x, y) introduces
categories commonly used to model certain types of
prepositions. This rule would, for example, intro-
duce the category (N\N)/NP : λy.λf.λx.f(x) ∧
to(x, y) for any logical form z that contains the con-
stant to. GENLEX uses a small set of rules of this
type to generate categories that are paired with all

Example Conversation:

(1) SYSTEM: how can i help you? (OPEN TASK)

(2) USER: i would like to fly from boston arriving to new york
and back from new york to boston

(3) SYSTEM: leaving boston (CONFIRM:from(fl1, BOS))
on what date? (ASK:λx.departdate(fl1, x))

(4) USER: september twenty four

(5) SYSTEM: leaving boston (CONFIRM:from(fl1, BOS))
on september twenty four (CONFIRM:depart-
date(fl1, sept 24)) to new york
(CONFIRM:to(fl1, NY C)) is new york your final
destination? (ASK:¬∃x.fr(x,NY C))

(6) USER: yes i want to return to boston

(7) SYSTEM: sorry, i didn’t understand. (APOL-
OGY) where are you flying to from new york?
(ASK:λx.fr(fl2, NY C) ∧ to(fl2, x))

[conversation ends]

Candidate Logical Expressions for Utterance #2:

(a) λx.to(x,BOS) ∧ from(x,NY C)

(b) λx.from(x,BOS) ∧ to(x,NY C)

(c) λx.to(x,BOS) ∧ to(x,NY C)

(d) λx[].from(x[1], BOS) ∧ to(x[1], NY C)
∧ before(x[1], x[2]) ∧ return(x[2])
∧ from(x[2], NY C) ∧ to(x[2], BOS))

(e) λx[].from(x[1], BOS) ∧ to(x[1], NY C)
∧ before(x[1], x[2]) ∧ return(x[2])
∧ from(x[2], BOS) ∧ to(x[2], NY C)

Figure 3: Conversation reflecting an interaction as seen
in the DARPA Communicator travel-planning dialogs.

possible substrings in x to form an overly general
lexicon. The complete learning algorithm then si-
multaneously selects a small subset of all entries
generated by GENLEX and estimates parameter val-
ues θ. Zettlemoyer and Collins (2005) present a
more detailed explanation.

6 Measuring Loss

In Section 7, we will present a loss-sensitive learn-
ing algorithm that models the meaning of user utter-
ances as latent variables to be estimated from con-
versational interactions.

We first introduce a loss function to measure the
quality of potential meaning representations. This
loss function L(z, j, C) ∈ R indicates how well a
logical expression z represents the meaning of the
j-th user utterance in conversation C. For example,
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consider the first user utterance (j = 2) in Figure 3,
which is a request for a return trip from Boston to
New York. We would like to assign the lowest loss
to the meaning representation (d) in Figure 3 that
correctly encodes all of the stated constraints.

We make use of a loss function with two parts:
L(z, j, C) = Lc(z, j, C) + Ld(z). The conversa-
tion loss Lc (defined in Section 6.1) measures how
well the candidate meaning representation fits the
conversation, for example incorporating informa-
tion recovered through conversational remediations
as motivated in Section 1. The domain loss Ld (de-
scribed in Section 6.2) measures how well a logi-
cal form z matches domain expectations, such as
the fact that flights can only have a single origin.
These functions guide the types of meaning repre-
sentations we expect to see, but in many cases will
fail to specify a unique best option, for example
in conversations where the user prematurely termi-
nates the interaction. In Section 7, we will present a
complete, loss-driven learning algorithm that is ro-
bust to these types of ambiguities while inducing a
weighted CCG parser from conversations.

6.1 Conversation Loss

We will use a conversation loss function Lc(z, j, C)
that provides a rough indication of how well the log-
ical expression z represents a potential meaning for
the user utterance at position j in C. For example,
the first user utterance (j = 2) in Figure 3 is a re-
quest for a return trip from Boston to New York
where the user has explicitly mentioned both legs.
The figure also shows five options (a-e) for the logi-
cal form z. We want to assign the lowest loss to op-
tion (d), which includes all of the stated constraints.

The loss is computed in four steps for a user ut-
terance x at position j by (1) selecting a subset of
system utterances in the conversation C, (2) extract-
ing and computing loss for semantic content from
selected system utterances, (3) aligning the subex-
pressions in z to the extracted semantic content, and
(4) computing the minimal loss value from the best
alignment. In Figure 3, the loss for the candidate
logical forms is computed by considering the seg-
ment of system utterances up until the conversation
end. Within this segment, the matching for expres-
sion (d) involves mapping the origin and departure
constraints for the first leg (Boston - New York) onto

the earlier system confirmations while also align-
ing the ones for the second leg to system utterances
later in the selected portion of the conversation. Fi-
nally, the overall score depends on the quality of the
alignment, for example how many of the constraints
match to confirmations. This section presents the
full approach.
Segmentation For a user utterance at position j,
we select all system utterances from j − 1 until the
system believes it has completed the current subtask,
as indicated by a reset action or final offer. We call
this selected segment C̄. In Figure 3, C̄ ends with a
reset, but in a successful interaction it would have
ended with the offer of a specific flight.
Extracting Properties A property is a predicate-
entity-value triplet, where the entity can be a vari-
able from z or a conversational object. For example,
〈from, fl, BOS〉 is a property where fl is a ob-
ject from C̄ and 〈from, x,BOS〉 is a property from
z = λx.from(x,BOS). We define PC̄ to be the
set of properties from logical forms for system ut-
terances in C̄. Similarly, we define Pz to be the set
of properties in z.
Scoring System Properties For each system
property p ∈ PC̄ we compute its position value
pos(p), which is a normalized weighted average
over all the positions where it appears in a logi-
cal form. For each mention the weight is obtained
from its speech act. For example, properties that are
explicitly confirmed contribute more to the average
than those that were merely offered to the user in a
select statement.

We use pos(p) to compute a loss loss(p) for
each property p ∈ PC̄ . We first define P eC̄ to be all
properties in PC̄ with entity e. For entity e and po-
sition d, we define the entity-normalization function:

ne(d) =
d−minp∈P e

C̄
pos(p)

maxp∈P e
C̄
pos(p)−minp∈P e

C̄
pos(p)

.

For a given property p ∈ PC̄ with an entity e we
compute the loss value:

loss(p) = n−1e (1− ne(pos(p)))− 1 .

Where n−1
e is the inverse of ne. This loss value is de-

signed to, first, provide less loss for later properties
so that it, for example, favors the last property in a
series of statements that finally resolves a confusion

426



in the conversation. Second, the loss value is lower
for objects mentioned closer to the user utterance x,
thereby preferring objects discussed sooner.
Matching Properties An alignment A maps vari-
ables in z to conversational objects in C̄, for exam-
ple the flight legs fl1 and fl2 being discussed in
Figure 3. We will use alignments to match prop-
erties of z and C̄. To do this we extend the align-
ment function A to apply to properties, for example
A(〈from, x,BOS〉) = 〈from,A(x), BOS〉.
Scoring Alignments Finally, we compute the
conversation loss Lc(z, j, C) as follows:

Lc(z, j, C) = min
A

∑

pu∈Pz

∑

ps∈PC̄

s(A(pu), ps) .

The function s(A(pu), ps) ∈ R computes the com-
patibility of the two input properties. It is zero if
A(pu) 6= ps. Otherwise, it returns loss(ps).

We approximate the min computation in Lc over
alignments A as follows. For a logical form z at
position j, we align the outer-most variable to the
conversational object in C̄ that is being discussed at
j. The remaining variables are aligned greedily to
minimize the loss, by selecting a single conversa-
tional object for each in turn.

Finally, for each aligned variable, we increase the
loss by one for each unmatched property from Pz .
This increases the loss of logical forms that include
spurious information. However, since a conversation
might stop prematurely and therefore won’t discuss
the entire user request, we only increase the loss for
variables that are already aligned. For this purpose,
we define an aligned variable to be one that has at
least one property matched successfully.

6.2 Domain Loss
We also make use of a domain loss functionLd(z) ∈
R. The function takes a logical form z and returns
the number of violations there are in z to a set of
constraints on logical forms that occur commonly in
the dialog domain. For example, in a travel domain,
a violation might occur if a flight leg has two differ-
ent destination cities. The set of possible violations
must be specified for each dialog system, but can of-
ten be compiled from existing resources, such as a
database of valid flight ticketing options.

In our experiments, we will use a set of eight
simple constraints to check for violations in flight

Inputs: Training set {(ji, Ci) : i = 1 . . . n} where each exam-
ple includes the index ji of a sentence xi in the conversation
Ci. Initial lexicon Λ0. Number of iterations T . Margin γ.
Beam size k for lexicon generation. Loss function L(x, j, C),
as described in Section 6.

Definitions: GENLEX(x, C) takes as input a sentence and a
conversation and returns a set of lexical items as described in
Section 7. GEN(x; Λ) is the set of all possible CCG parses
for x given the lexicon Λ. LF (y) returns the logical form
z at the root of the parse tree y. Let Φi(y) be shorthand for
the feature function Φ(xi, y) defined in Section 5. Define
LEX(y) to be the set of lexical entries used in parse y. Fi-
nally, let MINLi(Y ) be {y|∀y′ ∈ Y,L(LF (y), ji, Ci) ≤
L(LF (y′), ji, Ci)}, the set of minimal loss parses in Y .

Algorithm:
θ = 0̄ , Λ = Λ0

For t = 1 . . . T, i = 1 . . . n :

Step 1: (Lexical generation)
a. Set λ = Λ ∪GENLEX(xi, Ci)
b. Let Y be the k highest scoring parses of xi using λ
c. Select new lexical entries from the lowest loss parses
λi =

⋃
y∈MINLi(Y ){l|l ∈ LEX(y)}

d. Set lexicon to Λ = Λ ∪ λi
Step 2: (Update parameters)

a. Define Gi = MINLi(GEN(xi,Λ, θ)) and
Lmin to be the minimal loss

b. Set Bi = GEN(xi,Λ, θ)−Gi
c. Set the relative loss function: ∆i(y) = L(y, Ci)−Lmin
d. Construct sets of margin violating good and bad parses:
Ri = {r|r ∈ Gi ∧

∃y′ ∈ Bi s.t. 〈θ,Φi(r)− Φi(y
′)〉 < γ∆i(r)}

Ei = {e|e ∈ Bi ∧
∃y′ ∈ Gi s.t. 〈θ,Φi(y′)− Φi(e)〉 < γ∆i(e)}

e. Apply the additive update:
θ = θ +

∑
r∈Ri

1
|Ri|Φi(r)−

∑
e∈Ei

1
|Ei|Φi(e)

Output: Parameters θ and lexicon Λ

Figure 4: The learning algorithm.

itineraries, which can have multiple legs. These
include, for example, checking that the legs have
unique origins and destinations that match across the
entire itinerary. For example, in Figure 3 the logical
forms (a), (b) and (d) will have no violations; they
describe valid flights. Example (c) has a single vio-
lation: a flight has two origins. Example (e) violates
a more complex constraint: the second flight’s origin
is different from the first flight’s destination.

7 Learning

Figure 4 presents the complete learning algorithm.
We assume access to training examples, {(ji, Ci) :
i = 1, . . . , n}, where each example includes the in-
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dex ji of a sentence xi in the conversation Ci. The al-
gorithm learns a weighted CCG parser, described in
Section 5, including both a lexicon Λ and parameters
θ. The approach is online, considering each example
in turn and performing two steps: (1) expanding the
lexicon and (2) updating the parameters.

Step 1: Lexical Induction We introduce new lex-
ical items by selecting candidates from the function
GENLEX , following previous work (Zettlemoyer
and Collins, 2005; 2007) as reviewed in Section 5.3.
However, we face the new challenge that there is
no labeled logical-form meaning z. Instead, let ZC̄
be set of all logical forms that appear in system
utterances in the relevant conversation segment C̄.
We will now define the conversational lexicon set:

GENLEX(x, C̄) =
⋃

z∈ZC̄

GENLEX(x, z)

where we use logical forms from system utterances
to guess possible CCG categories for analyzing the
user utterance. This approach will overgeneralize,
when the system talks about things that are unrelated
to what the user said, and will also often be incom-
plete, for example when the system does not repeat
parts of the original content. However, it provides a
way of guessing lexical items that can be combined
with previously learned ones, which can fill in any
gaps and help select the best analysis.

Step 1(a) in Figure 4 uses GENLEX to tem-
porarily create a large set of potential categories
based on the conversation. Steps (b-d) select a small
subset of these entries to add to the current lexicon
Λ: we find the k-best parses under the model, re-
rank them according to loss, find the lexical items
used in the best trees, and add them to Λ. This
approach favors lexical items that are used in high-
scoring but low-loss analyses, as computed given the
current model.

Step 2: Parameter Updates Given the loss func-
tion L(x, i, C), we use a variant of a loss-sensitive
perceptron to update the parameters (Singh-Miller
and Collins, 2007). In Steps (a-c), for the current
example i, we compute the relative loss function ∆i

that scales with the loss achieved by the best and
worst possible parses under the model. In contrast
to previous work, we do not only compute the loss

over a fixed n-best list of possible outputs, but in-
stead use the current model score to recompute the
options at each update. Then, Steps (d-e) find the set
Ri of least loss analyses and Ei of higher-loss can-
didates whose models scores are not separated by at
least γ∆i, where γ is a margin scale constant. The
final update (Step f) is additive and increases the pa-
rameters for features indicative of the analyses with
less loss while down weighting those for parses that
were not sufficiently separated.

Discussion This algorithm uses the conversation
to drive learning in two ways: it guides the lexi-
cal items that are proposed while also providing the
conversational feedback that defines the loss used to
update the parameters. The resulting approach is,
at every step, using information about how the con-
versation progressed after a user utterance to recon-
struct the meaning of the original statement.

8 Data Sets

For evaluation, we used conversation logs from the
Lucent and BBN dialog systems in the DARPA
Communicator corpus (Walker et al., 2002). We se-
lected these systems since they provide significant
opportunities for learning. They asked relatively
open ended questions, allowing for more complex
user responses, while also using a number of sim-
ple remediating strategies to recover from misun-
derstandings. The original conversational logs in-
cluded unannotated transcripts of system and user
utterances. Inspired by the speech act labeling ap-
proach of Walker and Passonneau (2001), we wrote
a set of scripts to label the speech acts and logical
forms for system statements. This could be done
with high accuracy since the original text was gener-
ated with templates. These labels represent what the
system explicitly said and do not require complex,
potentially error-prone annotation of the full state of
the original dialog system. The set of speech acts in-
cludes confirmations, information requests, selects,
offers, instructions, and a miscellaneous category.

The data sets include a total of 376 conversations,
divided into training and testing sets. Table 1 pro-
vides details about the training and testing sets, as
well as general data set statistics. We developed our
system using 4-fold cross validation on the training
sets. Although there are approximately 12,000 user
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Lucent BBN
# Conversations 214 162
Total # of utterances 11,974 12,579
Avg. utterances per conversation 55.95 77.65
Avg. tokens per user utterance 3.24 2.39
Total # of training utterances 208 67
Total # of testing utterances 96 67
Avg. tokens per selected utterance 11.72 9.53

Table 1: Data set statistics for Lucent and BBN systems.

utterances in the data sets, the vast majority are sim-
ple, short phrases (such as “yes” or “no”) which are
not useful for learning a semantic parser. We se-
lect user utterances with a small set of heuristics, in-
cluding a threshold (6 for Lucent, 4 for BBN) on the
number of words and requiring that at least one noun
phrase is present from our initial lexicon. This ap-
proach was manually developed to perform well on
the training sets, but is not perfect and does intro-
duce a small amount of noise into the data.

9 Experimental Setup

This section describes our experimental setup and
comparisons. We follow the setup of Zettlemoyer
and Collins (2007) where possible, including fea-
ture design, initialization of the semantic parser, and
evaluation metrics, as reviewed below.

Features and Parser The features include indica-
tors for lexical item use, properties of the logical
form that is being constructed, and indicators for
parsing operators used to build the tree. The parser
attempts to boost recall with a two-pass strategy that
allows for word skipping if the initial parse fails.

Initialization and Parameters We use an initial
lexicon that includes a list of domain-specific noun
phrases, such as city and airport names, and a list
of domain-independent categories for closed-class
words such as “the” and “and”. We also used a time
and number parser to expand this lexicon for each
input sentence with the BIU Number Normalizer.1

The learning parameters were tuned using the devel-
opment sets: the margin constant γ is set to 0.5, we
use 6 iterations and take the top 30 parses for lexical
generation (step 1, figure 4). The parser used for pa-
rameter update (step 2, figure 4) has a beam of 250.
The parameter vector is initialized to 0̄.

1http://www.cs.biu.ac.il/˜nlp/downloads/

Evaluation Metrics For evaluation, we measure
performance against gold standard labels. We report
both the number of exact matches, fully correct log-
ical forms, and a partial-credit number. We measure
partial-credit accuracy by mapping logical forms to
attribute-value pairs (for example, the expression
from(x, LA) will be mapped to from = LA) and
report precision and recall on attribute sets. This
more lenient measure does not test the overall struc-
ture of the logical expression, only its components.

Systems We compare performance with the fol-
lowing systems:

Full Supervision: We measured how a fully super-
vised approach would perform on our data by hand-
labeling the training data and using a 0-1 loss func-
tion that tests if the output logical form matches the
labeled one. For lexicon generation, the labels were
used instead of the conversation.

No Conversation Baseline: We also report results
for a no conversation baseline. This baseline sys-
tem is constructed by making two modifications to
the full approach. We remove the conversation loss
function and apply the GENLEX templates to every
possible logical constant, instead of only those in the
conversation. This baseline allows us to measure the
importance of having access to the conversations by
completely ignoring the context for each sentence.

Ablations: In addition to the baseline above, we
also do ablation tests by turning off various individ-
ual components of the complete algorithm.

10 Results

Table 2 shows exact match results for the develop-
ment sets, including different system configurations.
We report mean results across four folds. To ver-
ify their contributions, we include results where we
ablate the conversational loss and domain loss func-
tions. Both are essential.

The test results are listed in Table 3. The full
method significantly outperforms the baseline, indi-
cating that we are making effective use of the con-
versational feedback, although we do not yet match
the fully supervised result. The poor baseline per-
formance is not surprising, given the difficulty of the
task and lack of guidance when the conversations are
removed. The partial-credit numbers also demon-
strate an empirical trend that we observed; in many

429



Exact Match Metric
Lucent BBN

Prec. Rec. F1 Prec. Rec. F1
Without conversational loss 0.35 0.34 0.35 0.66 0.54 0.59

Without domain loss 0.42 0.42 0.42 0.69 0.56 0.61
Our Approach 0.63 0.61 0.62 0.77 0.64 0.69

Supervised method 0.76 0.75 0.75 0.81 0.67 0.73

Table 2: Mean exact-match results for cross fold evaluation on the development sets.

Exact Match Metric
Lucent BBN

Prec. Rec. F1 Prec. Rec. F1
No Conversations Baseline 0 0 0 0.16 0.15 0.15

Our Approach 0.58 0.55 0.56 0.85 0.75 0.79
Supervised method 0.7 0.68 0.69 0.87 0.78 0.82

Partial Credit Metric
Lucent BBN

Prec. Rec. F1 Prec. Rec. F1
No Conversations Baseline 0.26 0.35 0.29 0.26 0.33 0.29

Our Approach 0.68 0.63 0.65 0.97 0.57 0.72
Supervised method 0.75 0.68 0.72 0.96 0.68 0.79

Table 3: Exact- and partial-match results on the test sets.

cases where we do not produce the correct logical
form, the output is often close to correct, with only
one or two missed flight constraints.

The difference between the two systems is evi-
dent. The BBN system presents a simpler approach
to the dialog problem by creating a more constrained
conversation. This is done by handling one flight
at a time, in the case of flight planing, and pos-
ing simple and close ended questions to the user.
Such an approach encourages the user to make sim-
pler requests, with relatively few constraints in each
request. In contrast, the Lucent system presents a
less-constrained approach: interactions start with an
open ended prompt and the conversations flow in a
more natural, less constrained fashion. BBN’s sim-
plified approach makes it easier for learning, giving
us superior performance when compared to the Lu-
cent system, despite the smaller training set. This is
true for both our approach and supervised learning.

We compared the logical forms recovered by the
best conversational model to the labeled ones in the
training set. Many of the errors came from cases
where the dialog system never fully recovered from
confusions in the conversation. For example, the Lu-
cent system almost never understood user utterances
that specified flight arrival times. Since it was unable
to consistently recover and introduce this constraint,
the user would often just recalculate and specify a
departure time that would achieve the original goal.
This type of failure provides no signal for our learn-
ing algorithm, whereas the fully supervised algo-

rithm would use labeled logical forms to resolve the
confusion. Interestingly, the test set had more sen-
tences that suffered such failures than the develop-
ment set, which contributed to the performance gap.

11 Discussion
We presented a loss-driven learning approach that
induces the lexicon and parameters of a CCG parser
for mapping sentences to logical forms. The loss
was defined over the conversational context, without
requiring annotation of user utterances meaning.

The overall approach assumes that, in aggregate,
the conversations contain sufficient signal (remedia-
tions such as clarification, etc.) to learn effectively.
In this paper, we satisfied this requirement by us-
ing logs from automated systems that deployed rea-
sonably effective recovery strategies. An important
area for future work is to consider how this learning
can be best integrated into a complete dialog system.
This would include designing remediation strategies
that allow for the most effective learning and consid-
ering how similar techniques could be used simulta-
neously for other dialog subproblems.
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Abstract

We investigate an important and challeng-
ing problem in summary generation, i.e.,
Evolutionary Trans-Temporal Summarization
(ETTS), which generates news timelines from
massive data on the Internet. ETTS greatly
facilitates fast news browsing and knowl-
edge comprehension, and hence is a neces-
sity. Given the collection of time-stamped web
documents related to the evolving news, ETTS
aims to return news evolution along the time-
line, consisting of individual but correlated
summaries on each date. Existing summariza-
tion algorithms fail to utilize trans-temporal
characteristics among these component sum-
maries. We propose to model trans-temporal
correlations among component summaries for
timelines, using inter-date and intra-date sen-
tence dependencies, and present a novel com-
bination. We develop experimental systems to
compare 5 rival algorithms on 6 instinctively
different datasets which amount to 10251 doc-
uments. Evaluation results in ROUGE metrics
indicate the effectiveness of the proposed ap-
proach based on trans-temporal information.

1 Introduction

Along with the rapid growth of the World Wide
Web, document floods spread throughout the Inter-
net. Given a large document collection related to
a news subject (for example, BP Oil Spill), readers
get lost in the sea of articles, feeling confused and
powerless. General search engines can rank these

∗Corresponding author.

news webpages by relevance to a user specified as-
pect, i.e., a query such as “first relief effort for BP
Oil Spill”, but search engines are not quite capable
of ranking documents given the whole news subject
without particular aspects. Faced with thousands of
news documents, people usually have a myriad of in-
terest aspects about the beginning, the development
or the latest situation. However, traditional infor-
mation retrieval techniques can only rank webpages
according to their understanding of relevance, which
is obviously insufficient (Jin et al., 2010).

Even if the ranked documents could be in a satis-
fying order to help users understand news evolution,
readers prefer to monitor the evolutionary trajecto-
ries by simply browsing rather than navigate every
document in the overwhelming collection. Summa-
rization is an ideal solution to provide an abbrevi-
ated, informative reorganization for faster and bet-
ter representation of news documents. Particularly,
a timeline (see Table 1) can summarize evolutionary
news as a series of individual but correlated com-
ponent summaries (items in Table 1) and offer an
option to understand the big picture of evolution.

With unique characteristics, summarizing time-
lines is significantly different from traditional sum-
marization methods which are awkward in such sce-
narios. We first study a manual timeline of BP Oil
Spill in Mexico Gulf in Table 1 from Reuters News1

to understand why timelines generation is observ-
ably different from traditional summarization. No
traditional method has considered to partition corpus
into subsets by timestamps for trans-temporal cor-
relations. However, we discover two unique trans-

1http://www.reuters.com
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Table 1: Part of human generated timeline about BP Oil
Spill in 2010 from Reuters News website.

April 22, 2010
The Deepwater Horizon rig, valued at more than $560 million,
sinks and a five mile long (8 km) oil slick is seen.

April 25, 2010
The Coast Guard approves a plan to have remote underwater vehi-
cles activate a blowout preventer and stop leak. Efforts to activate
the blowout preventer fail.

April 28, 2010
The Coast Guard says the flow of oil is 5,000 barrels per day (bpd)
(210,000 gallons/795,000 litres) – five times greater than first esti-
mated. A controlled burn is held on the giant oil slick.

April 29, 2010
U.S. President Barack Obama pledges “every single available re-
source,” including the U.S. military, to contain the spreading spill.
Obama also says BP is responsible for the cleanup. Louisiana de-
clares state of emergency due to the threat to the state’s natural
resources.
April 30, 2010
An Obama aide says no drilling will be allowed in new areas, as the
president had recently proposed, until the cause of the Deepwater
Horizon accident is known.

temporal characteristics of component summaries
from the handcrafted timeline. Individuality. The
component summaries are summarized locally: the
component item on date t is constituted by sentences
with timestamp t. Correlativeness. The compo-
nent summaries are correlative across dates, based
on the global collection. To the best of our knowl-
edge, no traditional method has examined the rela-
tionships among these timeline items.

Although it is profitable, summarizing timeline
faces with new challenges:
• The first challenge for timeline generation is

to deliver important contents and avoid information
overlaps among component summaries under the
trans-temporal scenario based on global/local source
collection. Component items are individual but not
completely isolated due to the dynamic evolution.
• As we have individuality and correlativeness

to evaluate the qualities of component summaries,
both locally and globally, the second challenge is to
formulate the combination task into a balanced op-
timization problem to generate the timelines which
satisfy both standards with maximum utilities.

We introduce a novel approach for the web min-
ing problem Evolutionary Trans-Temporal Summa-
rization (ETTS). Taking a collection relevant to a
news subject as input, the system automatically out-
puts a timeline with items of component summaries

which represent evolutionary trajectories on specific
dates. We classify sentence relationships as inter-
date and intra-date dependencies. Particularly, the
inter-date dependency calculation includes temporal
decays to project sentences from all dates onto the
same time horizon (Figure 1 (a)). Based on intra-
/inter-date sentence dependencies, we then model
affinity and diversity to compute the saliency score
of each sentence and merge local and global rank-
ings into one unified ranking framework. Finally we
select top ranked sentences. We build an experimen-
tal system on 6 real datasets to verify the effective-
ness of our methods compared with other 4 rivals.

2 Related Work

Multi-document summarization (MDS) aims to pro-
duce a summary delivering the majority of informa-
tion content from a set of documents and has drawn
much attention in recent years. Conferences such as
ACL, SIGIR, EMNLP, etc., have advanced the tech-
nology and produced several experimental systems.

Generally speaking, MDS methods can be either
extractive or abstractive summarization. Abstractive
summarization (e.g. NewsBlaster2) usually needs
information fusion, sentence compression and refor-
mulation. We focus on extraction-based methods,
which usually involve assigning saliency scores to
some units (e.g. sentences, paragraphs) of the docu-
ments and extracting the units with highest scores.

To date, various extraction-based methods have
been proposed for generic multi-document summa-
rization. The centroid-based method MEAD (Radev
et al., 2004) is an implementation of the centroid-
based method that scores sentences based on fea-
tures such as cluster centroids, position, and TF.IDF,
etc. NeATS (Lin and Hovy, 2002) adds new features
such as topic signature and term clustering to select
important content, and use MMR (Goldstein et al.,
1999) to remove redundancy.

Graph-based ranking methods have been pro-
posed to rank sentences/passages based on “votes”
or “recommendations” between each other. Tex-
tRank (Mihalcea and Tarau, 2005) and LexPageR-
ank (Erkan and Radev, 2004) use algorithms similar
to PageRank and HITS to compute sentence impor-
tance. Wan et al. have improved the graph-ranking

2http://www1.cs.columbia.edu/nlp/newsblaster/
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algorithm by differentiating intra-document and
inter-document links between sentences (2007b),
and have proposed a manifold-ranking method to
utilize sentence-to-sentence and sentence-to-topic
relationships (Wan et al., 2007a).

ETTS seems to be related to a very recent task of
“update summarization” started in DUC 2007 and
continuing with TAC. However, update summariza-
tion only dealt with a single update and we make a
novel contribution with multi-step evolutionary up-
dates. Further related work includes similar timeline
systems proposed by (Swan and Allan, 2000) us-
ing named entities, by (Allan et al., 2001) measured
in usefulness and novelty, and by (Chieu and Lee,
2004) measured in interest and burstiness. We have
proposed a timeline algorithm named “Evolution-
ary Timeline Summarization (ETS)” in (Yan et al.,
2011b) but the refining process based on generated
component summaries is time consuming. We aim
to seek for more efficient summarizing approach.

To the best of our knowledge, neither update sum-
marization nor traditional systems have considered
the relationship among “component summaries”, or
have utilized trans-temporal properties. ETTS ap-
proach can also naturally and simultaneously take
into account global/local summarization with biased
information richness and information novelty, and
combine both summarization in optimization.

3 Trans-temporal Summarization

We conduct trans-temporal summarization based on
the global biased graph using inter-date dependency
and local biased graph using intra-date dependency.
Each graph is the complementary graph to the other.

3.1 Global Biased Summarization
The intuition for global biased summarization is that
the selected summary should be correlative with sen-
tences from neighboring dates, especially with those
informative ones. To generate the component sum-
mary on date t, we project all sentences in the collec-
tion onto the time horizon of t to construct a global
affinity graph, using temporal decaying kernels.

3.1.1 Temporal Proximity Based Projection
Clearly, a major technical challenge in ETTS is

how to define the temporal biased projection func-
tion Γ(∆t), where ∆t is the distance between the

Figure 1: Construct global/local biased graphs. Solid cir-
cles denote intra-date sentences on the pending date t and
dash ones represent inter-date sentences from other dates.

Figure 2: Proximity-based kernel functions, where σ=10.

pending date t and neighboring date t′, i.e., ∆t =
|t′ − t|. As in (Lv and Zhai, 2009), we present 5
representative kernel functions: Gaussian, Triangle,
Cosine, Circle, and Window, shown in Figure 2. Dif-
ferent kernels lead to different projections.

1. Gaussian kernel

Γ(∆t) = exp[
−∆t2

2σ2
]

2. Triangle kernel

Γ(∆t) =

{
1− ∆t

σ if ∆t ≤ σ
0 otherwise

3. Cosine (Hamming) kernel

Γ(∆t) =

{
1
2 [1 + cos(∆t·π

σ )] if ∆t ≤ σ
0 otherwise

4. Circle kernel

Γ(∆t) =

{√
1− (∆t

σ )2 if ∆t ≤ σ
0 otherwise
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5. Window kernel

Γ(∆t) =

{
1 if ∆t ≤ σ
0 otherwise

All kernels have one parameter σ to tune, which
controls the spread of kernel curves, i.e., it restricts
the projection scope of each sentence. In general,
the optimal setting of σ may vary according to the
news set because sentences presumably would have
wider semantic scope in certain news subjects, thus
requiring a higher value of σ and vice versa.

3.1.2 Modeling Global Affinity
Given the sentence collectionC partitioned by the

timestamp set T , C = {C1, C2, . . . , C |T |}, we ob-
tain Ct = {sti|1 ≤ i ≤ |Ct|} where si is a sentence
with the timestamp t = tsi . When we generate com-
ponent summary on t, we project all sentences onto
time horizon t. After projection, all sentences are
weighted by their influence on t. We use an affinity
matrix M t with the entry of the inter-date transition
probability on date t. The sum of each row equals to
1. Note that for the global biased matrix, we mea-
sure the affinity between local sentences from t and
global sentences from other dates. Therefore, intra-
date transition probability between sentences with
the timestamp t is set to 0 for local summarization.
M t
i,j is the transition probability of si to sj based

on the perspective of date t, i.e., p(si → sj |t):

p(si → sj |t) =

{ f(si→sj |t)∑
|C| f(si→sk|t) if

∑
f 6= 0

0 if tsi = tsj = t
(1)

f(si → sj |t) is defined as the temporal weighted
cosine similarity between two sentences:

f(si → sj |t) =
∑

w∈si∩sj
π(w, si|t) · π(w, sj |t) (2)

where the weight π associated with term w is calcu-
lated with the temporal weighted tf.isf formula:

π(w, s|t) =
Γ|t− ts| · tf(w, s)(1 + log( |C|Nw

))
√∑

|s|(tf(w, s)(1 + log( |C|Nw
)))2

.

(3)
where ts is the timestamp of sentence s, and
tf(w, s) is the term frequency of w in s. ts can be

any date from T . |C| is the sentences set size and
Nw is the number of sentences containing term w.

We let p(si → si|t)=0 to avoid self transition.
Note that although f(.) is a symmetric function,
p(si → sj |t) is usually not equal to p(sj → si|t),
depending on the degrees of nodes si and sj .

Now we establish the affinity matrix M t
i,j and by

using the general form of PageRank, we obtain:

~λ = µM−1~λ+
1− µ
|C| ~e (4)

where ~λ is the selective probability of all sentence
nodes and ~e is a column vector with all elements
equaling to 1. µ is the damping factor set as 0.85.
Usually the convergence of the iteration algorithm is
achieved when difference between the scores com-
puted at two successive iterations for any sentences
falls below a given threshold (0.0001 in this study).

3.1.3 Modeling Diversity
Diversity is to reflect both biased information

richness and sentence novelty, which aims to reduce
information redundancy. However, using standard
PageRank of Equation (4) will not result in diver-
sity. The aggregational effect of PageRank assigns
high salient scores to closely connected node com-
munities (Figure 3 (b)). A greedy vertex selection
algorithm may achieve diversity by iteratively se-
lecting the most prestigious vertex and then penal-
izing the vertices “covered” by the already selected
ones, such as Maximum Marginal Relevance and its
applications in Wan et al. (2007b; 2007a). Most re-
cently diversity rank DivRank is another solution
to diversity penalization in (Mei et al., 2010).

We incorporate DivRank in our general ranking
framework, which creates a dynamicM during each
iteration, rather than a static one. After z times of
iteration, the matrix M becomes:

M (z) = µM (z−1) · ~λ(z−1) +
1− µ
|C| ~e (5)

Equation (5) raises the probability for nodes with
higher centrality and nodes already having high
weights are likely to “absorb” the weights of its
neighbors directly, and the weights of neighbors’
neighbors indirectly. The process is to iteratively ad-
just matrix M according to ~λ and then to update ~λ
according to the changed M . As iteration increases
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there emerges a rich-gets-richer phenomenon (Fig-
ure 3 (c) and (d)). By incorporating DivRank, we
obtain rank r†i and the global biased ranking score
Gi for sentence si from date t to summarize Ct.

3.2 Local Biased Summarization
Naturally, the component summary for date t should
be informative within Ct. Given the sentence col-
lection Ct = {sti|1 ≤ i ≤ |Ct|}, we build an affin-
ity matrix for Figure 1 (b), with the entry of intra-
date transition probability calculated from standard
cosine similarity. We incorporate DivRank within
local summarization and we obtain the local biased
rank and ranking score for si, denoted as r‡i and Li.

3.3 Optimization of Global/Local Combination
We do not directly add the global biased ranking
score and local biased ranking score, as many previ-
ous works did (Wan et al., 2007b; Wan et al., 2007a),
because even the same ranking score gap may indi-
cate different rank gaps in two ranking lists.

Given subset Ct, let R = {ri}(i = 1,. . . ,|Ct|), ri
is the final ranking of si to estimate, optimize the
following objective cost function O(R),

O(R) =α

|Ct|∑

i=1

Gi‖
ri
Ψi
− r†i
Gi
‖2

+ β

|Ct|∑

i=1

Li‖
ri
Ψi
− r‡i
Li
‖2

(6)

where Gi is the global biased ranking score while Li
is the local biased ranking score. Ψi is expected to
be the merged ranking score, namely sentence im-
portance, which will be defined later. Among the
two components in the objective function, the first
component means that the refined rank should not
deviate too much from the global biased rank. We

use ‖ riΨi
− r†i
Gi ‖

2 instead of ‖ri− r†i ‖2 in order to dis-
tinguish the differences between sentences from the
same rank gap. The second component is similar by
refining rank from local biased summarization.

Our goal is to find R = R∗ to minimize the cost
function, i.e.,R∗ = argmin{O(R)}. R∗ is the final
rank merged by our algorithm. To minimize O(R),
we compute its first-order partial derivatives.

∂O(R)

∂ri
=

2α

Ψi
(
Gi
Ψi
ri − r†i ) +

2β

Ψi
(
Li
Ψi
ri − r‡i ) (7)

Let ∂O(R)
∂ri

= 0, we get

r∗i =
αΨir

†
i + βΨir

‡
i

αGi + βLi
(8)

Two special cases are that if (1) α = 0, β 6= 0:
we obtain ri = Ψir

‡
i /Li, indicating we only use the

local ranking score. (2) α 6= 0, β = 0, indicating we
ignore local ranking score and only consider global
biased summarization using inter-date dependency.

There can be many ways to calculate the sen-
tence importance Ψi. Here we define Ψi as the
weighted combination of itself with ranking scores
from global biased and local biased summarization:

Ψ
(z)
i =

αGi + βLi + γΨ
(z−1)
i

α+ β + γ
. (9)

To save one parameter we let α+β+γ = 1. In the z-
th iteration, r(z)

i is dependent on Ψ
(z−1)
i and Ψ

(z)
i is

indirectly dependent on r(z)
i via Ψ

(z−1)
i . Ψ

(0)
i = 0.

We iteratively approximate final Ψi for the ultimate
rank listR∗. The expectation of stable Ψi is obtained
when Ψ

(z)
i = Ψ

(z−1)
i . Final Ψi is expected to satisfy

Ψi = αGi + βLi + γΨi:

Ψi =
αGi + βLi

1− γ =
αGi + βLi
α+ β

(10)

Final Ψi is dependent only on original global/local
biased ranking scores. Equation (8) becomes more
concise with no Ψ or γ: r∗ is a weighted combina-
tion of global and local ranks by α

β (α 6= 0, β 6= 0):

r∗i =
α

α+ β
r†i +

β

α+ β
r‡i

=
1

1 + β/α
r†i +

1

1 + α/β
r‡i

(11)

4 Experiments and Evaluation

4.1 Datasets
There is no existing standard test set for ETTS meth-
ods. We randomly choose 6 news subjects with
special coverage and handcrafted timelines by ed-
itors from 10 selected news websites: these 6 test
sets consist of news datasets and golden standards to
evaluate our proposed framework empirically, which
amount to 10251 news articles. As shown in Ta-
ble 2, three of the sources are in UK, one of them
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(a) An illustrative network. (a) PageRank on t. (b) DivRank on t (c) DivRank on t′

Figure 3: An illustration of diverse ranking in a toy graph (a). Comparing (b) from general PageRank with (c),(d) from
DivRank, we find a better diversity by selecting {1,9} in (c) rather than {1,3} in (b). Moreover, (c) and (d) reflect
temporal biased processes on t {1,9} in (c) and t′ {2,12} in (d).

is in China and the rest are in the US. We choose
these sites because many of them provide timelines
edited by professional editors, which serve as refer-
ence summaries. The news belongs to different cate-
gories of Rule of Interpretation (ROI) (Kumaran and
Allan, 2004). More detailed statistics are in Table 3.

Table 2: News sources of 6 datasets
News Sources Nation News Sources Nation

BBC UK Fox News US
Xinhua China MSNBC US
CNN US Guardian UK
ABC US New York Times US

Reuters UK Washington Post US

Table 3: Detailed basic information of 6 datasets.
News Subjects #size #docs #stamps #RT AL
1.Influenza A 115026 2557 331 5 83

2.Financial Crisis 176435 2894 427 2 118
3.BP Oil Spill 63021 1468 135 6 76

4.Haiti Earthquake 12073 247 83 2 32
5.Jackson Death 37819 925 168 3 64

6.Obama Presidency 79761 2160 349 5 92
size: the whole sentence counts; #stamps: the number of timestamps;

Note average size of subsets is calculated as: avg.size=#size/#stamps;
RT: reference timelines; AL: avg. length of RT measured in sentences.

4.2 Experimental System Setups
• Preprocessing. As ETTS faces with much larger
corpus compared with traditional MDS, we apply
further data preprocessing besides stemming and
stop-word removal. We extract text snippets repre-
senting atomic “events” from all documents with a
toolkit provided by Yan et al. (2010; 2011a), by
which we attempt to assign more fine-grained and
accurate timestamps for every sentence within the
text snippets. After the snippet extraction procedure,
we filter the corpora by discarding non-event texts.

• Compression Rate and Date Selection. After
preprocessing, we obtain numerous snippets with
fine-grained timestamps, and then decompose them
into temporally tagged sentences as the global col-
lection C. We partition C according to timestamps
of sentences, i.e., C = C1 ∪ C2 ∪ · · · ∪ C |T |.
Each component summary is generated from its cor-
responding sub-collection. The sizes of component
summaries are not necessarily equal, and moreover,
not all dates may be represented, so date selection
is also important. We apply a simple mechanism
that users specify the overall compression rate φ, and
we extract more sentences for important dates while
fewer sentences for others. The importance of dates
is measured by the burstiness, which indicates prob-
able significant occurrences (Chieu and Lee, 2004).
The compression rate on ti is set as φi = |Ci|

|C| .

4.3 Evaluation Metrics
The ROUGE measure is widely used for evaluation
(Lin and Hovy, 2003): the DUC contests usually of-
ficially employ ROUGE for automatic summariza-
tion evaluation. In ROUGE evaluation, the summa-
rization quality is measured by counting the num-
ber of overlapping units, such as N-gram, word se-
quences, and word pairs between the candidate time-
lines CT and the reference timelines RT . There are
several kinds of ROUGE metrics, of which the most
important one is ROUGE-N with 3 sub-metrics:

1 ROUGE-N-R is an N-gram recall metric:

ROUGE-N-R =

∑
I∈RT

∑
N-gram∈I

Countmatch(N-gram)

∑
I∈RT

∑
N-gram∈I

Count (N-gram)
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2 ROUGE-N-P is an N-gram precision metric:

ROUGE-N-P =

∑
I∈CT

∑
N-gram∈I

Countmatch(N-gram)

∑
I∈CT

∑
N-gram∈I

Count (N-gram)

3 ROUGE-N-F is an N-gram F1 metric:

ROUGE-N-F =
2× ROUGE-N-P× ROUGE-N-R

ROUGE-N-P + ROUGE-N-R

I denotes a timeline. N in these metrics stands for
the length of N-gram and N-gram∈RT denotes the
N-grams in reference timelines while N-gram∈CT
denotes the N-grams in the candidate timeline.
Countmatch(N-gram) is the maximum number of N-
gram in the candidate timeline and in the set of ref-
erence timelines. Count(N-gram) is the number of N-
grams in reference timelines or candidate timelines.

According to (Lin and Hovy, 2003), among all
sub-metrics, unigram-based ROUGE (ROUGE-1)
has been shown to agree with human judgment most
and bigram-based ROUGE (ROUGE-2) fits summa-
rization well. We report three ROUGE F-measure
scores: ROUGE-1, ROUGE-2, and ROUGE-W,
where ROUGE-W is based on the weighted longest
common subsequence. The weight W is set to be
1.2 in our experiments by ROUGE package (version
1.55). Intuitively, the higher the ROUGE scores, the
similar the two summaries are.

4.4 Algorithms for Comparison
We implement the following widely used sum-
marization algorithms as baseline systems. They
are designed for traditional summarization without
trans-temporal dimension. The first intuitive way to
generate timelines by these methods is via a global
summarization on collection C and then distribu-
tion of selected sentences to their source dates. The
other one is via an equal summarization on all local
sub-collections. For baselines, we average both in-
tuitions as their performance scores. For fairness we
conduct the same preprocessing for all baselines.

Random: The method selects sentences ran-
domly for each document collection.

Centroid: The method applies MEAD algorithm
(Radev et al., 2004) to extract sentences according

to the following three parameters: centroid value,
positional value, and first-sentence overlap.

GMDS: The graph-based MDS proposed by
(Wan and Yang, 2008) first constructs a sentence
connectivity graph based on cosine similarity and
then selects important sentences based on the con-
cept of eigenvector centrality.

Chieu: (Chieu and Lee, 2004) present a simi-
lar timeline system with different goals and frame-
works, utilizing interest and burstiness ranking but
neglecting trans-temporal news evolution.

ETTS: ETTS is an algorithm with optimized
combination of global/local biased summarization.

RefTL: As we have used multiple human time-
lines as references, we not only provide ROUGE
evaluations of the competing systems but also of the
human timelines against each other, which provides
a good indicator as to the upper bound ROUGE
score that any system could achieve.

4.5 Overall Performance Comparison

We use a cross validation manner among 6 datasets,
i.e., train parameters on one subject set and exam-
ine the performance on the others. After 6 training-
testing processes, we take the average F-score per-
formance in terms of ROUGE-1, ROUGE-2, and
ROUGE-W on all sets. The overall results are shown
in Figure 4 and details are listed in Tables 4∼6.

Figure 4: Overall performance on 6 datasets.

From the results, we have following observations:
• Random has the worst performance as expected.
• The results of Centroid are better than those of

Random, mainly because the Centroid method takes
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Table 4: Overall performance comparison on Influenza
A (ROI∗ category: Science) and Financial Crisis (ROI
category: Finance). α=0.4, kernel=Gaussian, σ=60.

1. Influenza A 2. Financial Crisis
Systems R-1 R-2 R-W R-1 R-2 R-W
RefTL 0.491 0.114 0.161 0.458 0.112 0.159

Random 0.257 0.039 0.081 0.230 0.030 0.071
Centroid 0.331 0.050 0.114 0.305 0.041 0.108
GMDS 0.364 0.062 0.130 0.327 0.054 0.110
Chieu 0.350 0.059 0.128 0.325 0.052 0.109
ETTS 0.375 0.071 0.132 0.339 0.058 0.112

Table 5: Overall performance comparison on BP Oil
(ROI category: Accidents) and Haiti Quake (ROI cate-
gory: Disasters). α=0.4, kernel=Gaussian, σ=30.

3. BP Oil 4. Haiti Quake
Systems R-1 R-2 R-W R-1 R-2 R-W
RefTL 0.517 0.135 0.183 0.528 0.139 0.187

Random 0.262 0.041 0.096 0.266 0.043 0.093
Centroid 0.369 0.062 0.128 0.362 0.060 0.129
GMDS 0.389 0.084 0.139 0.380 0.106 0.137
Chieu 0.384 0.083 0.139 0.383 0.110 0.138
ETTS 0.441 0.107 0.158 0.436 0.111 0.145

Table 6: Overall performance comparison on Jackson
Death (ROI category: Legal Cases) and Obama Presi-
dency (ROI category: Politics). α=0.4, kernel=Gaussian,
σ=30.

5. Jackson Death 6. Obama Presidency
Systems R-1 R-2 R-W R-1 R-2 R-W
RefTL 0.482 0.113 0.161 0.495 0.115 0.163

Random 0.232 0.033 0.080 0.254 0.039 0.084
Centroid 0.320 0.051 0.109 0.325 0.053 0.111
GMDS 0.341 0.059 0.127 0.359 0.061 0.129
Chieu 0.344 0.059 0.128 0.346 0.060 0.125
ETTS 0.358 0.061 0.130 0.369 0.074 0.133
∗ROI: news categorization defined by Linguistic Data Consortium.

into account positional value and first-sentence over-
lap, which facilitate main aspects summarization.

• The GMDS system outperforms centroid-based
summarization methods. This is due to the fact that
PageRank-based framework ranks the sentence us-
ing eigenvector centrality which implicitly accounts
for information subsumption among all sentences.

Traditional MDS only consider sentence selection
from either the global or the local scope, and hence
bias occurs. Mis-selected sentences result in a low
recall. Generally the performance of global priority
intuition (i.e. only global summarization and then
distribution to temporal subsets) is better than local
priority methods (only local summarization). Proba-
ble bias is enlarged by searching for worthy sentence
in single dates. However, precision drops due to ex-

cessive choice of global timeline-worthy sentences.

Figure 5: α/β: global/local combination.

Figure 6: σ on long topics (≥1 year).

Figure 7: σ on short topics (<1 year).

• In general, the result of Chieu is better than
Centroid but unexpectedly, worse than GMDS. The
reason may be that Chieu does not capture suffi-
cient timeline attributes. The “interest” modeled
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in the algorithms actually performs flat clustering-
based summarization which is proved to be less use-
ful (Wang and Li, 2010). GMDS utilizes sentence
linkage, and partly captures “correlativeness”.
• ETTS under our proposed framework outper-

forms baselines, indicating that the properties we
use for timeline generation are beneficial. We also
add a direct comparison between ETTS and ETS
(Yan et al., 2011b). We notice that both balanced
algorithms achieve comparable performance (0.386
v.s. 0.412: a gap of 0.026 in terms of ROUGE-
1), but ETTS is much faster than ETS. It is under-
standable that ETS refines timelines based on neigh-
boring component summaries iteratively while for
ETTS neighboring information is incorporated in
temporal projection and hence there is no such pro-
cedure. Furthermore, ETS has 8 free parameters to
tune while ETTS has only 2 parameters. In other
words, ETTS is more simple to control.
• The performance on intensive focused news

within short time range (|last timestamp−first times-
tamp |<1 year) is better than on long lasting news.

Having proved the effectiveness of our proposed
methods, we carry the next move to identity how
global−local combination ratio α/β and projection
kernels take effects to enhance the quality of a sum-
mary in parameter tuning.

4.6 Parameter Tuning
Each time we tune one parameter while others are
fixed. To identify how global and local biased sum-
marization combine, we provide experiments on the
performance of varying α/β in Figure 5. Results in-
dicate that a balance between global and local biased
summarization is essential for timeline generation
because the performance is best when α

β ∈ [10, 100]
and outperforms global and local summarization in
isolation, i.e., when α=0 or β = 0 in Figure 5. Inter-
estingly, we conclude an opposite observation com-
pared with ETS. Different approaches might lead to
different optimum of global/local combination.

Another key parameter σ measures the temporal
projection influence from global collection to local
collection and hence the size of neighboring sen-
tence set. 6 datasets are classified into two groups.
Subject 1, 2, 6 are grouped as long news with a time
span of more than one year and the others are short
news. The effect of σ varies on long news sets and

short news sets. In Figure 6 σ is best around 60 and
in Figure 7 it is best at about 20∼40, indicating long
news has relatively wider semantic scope.

We then examine the effect of different projection
kernels. Generally, Gaussian kernel outperforms
others and window kernel is the worst, probably be-
cause Gaussian kernel provides the best smoothing
effect with no arbitrary cutoffs. Window kernel fails
to distinguish different weights of neighboring sets
by temporal proximity, so its performance is as ex-
pected. Other 3 kernels are comparable.

4.7 Sample Output and Case Study

Sample output is presented in Table 7 and it shares
major information similarity with the human time-
line in Table 1. Besides, we notice that a dynamic
φi is reasonable. Important burstiness is worthy of
more attention. Fewer sentences are selected on the
dates when nothing new occurs.
Interesting Findings. We notice that humans have
biases to generate timelines for they have (1) pref-
erence on local occurrences and (2) different writ-
ing styles. For instance, news outlets from United
States tend to summarize reactions by US govern-
ment while UK websites tend to summarize British
affairs. Some editors favor statistical reports while
others prefer narrative style, and some timelines
have detailed explanations while others are ex-
tremely concise with no more than two sentences for
each entry. Our system-generated timelines have a
large variance among all golden standards. Proba-
bly a new evaluation metric should be introduced to
measure the quality of human generated timelines
to mitigate the corresponding biases. A third in-
teresting observation is that subjects have different
volume patterns, e.g., H1N1 has a slow start and a
bursty evolution and BP Oil has a bursty start and a
quick decay. Obama is different in nature because
the report volume is temporally stable and scattered.

5 Conclusion

We present a novel solution for the important
web mining problem, Evolutionary Trans-Temporal
Summarization (ETTS), which generates trajectory
timelines for news subjects from massive data. We
formally formulate ETTS as a combination of global
and local summarization, incorporating affinity and

441



Table 7: Selected part of timeline generated by ETTS for BP Oil.

April 20, 2010
s1: An explosion on the Deepwater Horizon offshore oil drilling rig in
the Gulf of Mexico, around 40 miles south east of Louisiana, causing
several kills and injuries.
s2: The rig was drilling in about 5,000ft (1,525m) of water, pushing
the boundaries of deepwater drilling technology.
s3: The rig is owned and operated by Transocean, a company hired by
BP to carry out the drilling work.
s4: Deepwater Horizon oil rig fire leaves 11 missing.

April 22, 2010
s1: The US Coast Guard estimates that the rig is leaking oil at the rate
of up to 8,000 barrels a day.
s2: The Deepwater Horizon sinks to the bottom of the Gulf after burn-
ing for 36 hours, raising concerns of a catastrophic oil spill.
s3: Deepwater Horizon rig sinks in 5,000ft of water.

April 23, 2010
s1: The US coast guard suspends the search for missing workers, who
are all presumed dead.
s2: The Coast Guard says it had no indication that oil was leaking from
the well 5,000ft below the surface of the Gulf.
s3: Underwater robots try to shut valves on the blowout preventer to
stop the leak, but BP abandons that failed effort two weeks later.
s4: The US Coast Guard estimates that the rig is leaking oil at the rate
of up to 8,000 barrels a day.
s5: Deepwater Horizon clean-up workers fight to prevent disaster.

April 24, 2010

s1: Oil is found to be leaking from the well.

April 26, 2010
s1: BP’s shares fall 2% amid fears that the cost of cleanup and legal
claims will hit the London-based company hard.
s2: Roughly 15,000 gallons of dispersants and 21,000ft of containment
boom are placed at the spill site.

April 27, 2010
s1: BP reports a rise in profits, due in large part to oil price increases,
as shares rise again.
s2: The US departments of interior and homeland security announce
plans for a joint investigation of the explosion and fire.
s3: Minerals Management Service (MMS) approves a plan for two re-
lief wells.
s4: BP chairman Tony Hayward says the company will take full re-
sponsibility for the spill, paying for legitimate claims and cleanup cost.

April 28, 2010
s1: The coast guard says the flow of oil is 5,000bpd, five times greater
than first estimated, after a third leak is discovered.
s2: BP’s attempts to repair a hydraulic leak on the blowout preventer
valve are unsuccessful.
s3: BP reports that its first-quarter profits more than double to £3.65
billion following a rise in oil prices.
s4: Controlled burns begin on the giant oil slick.

diversity into a unified ranking framework. We im-
plement a system under such framework for ex-
periments on real web datasets to compare all ap-
proaches. Through our experiment we notice that
the combination plays an important role in timeline
generation, and global optimization weights slightly
higher (α/β ∈ [10, 100]), but auxiliary local infor-
mation does help to enhance performance in ETTS.
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Abstract

We propose a sentence generation strategy
that describes images by predicting the most
likely nouns, verbs, scenes and prepositions
that make up the core sentence structure. The
input are initial noisy estimates of the objects
and scenes detected in the image using state of
the art trained detectors. As predicting actions
from still images directly is unreliable, we use
a language model trained from the English Gi-
gaword corpus to obtain their estimates; to-
gether with probabilities of co-located nouns,
scenes and prepositions. We use these esti-
mates as parameters on a HMM that models
the sentence generation process, with hidden
nodes as sentence components and image de-
tections as the emissions. Experimental re-
sults show that our strategy of combining vi-
sion and language produces readable and de-
scriptive sentences compared to naive strate-
gies that use vision alone.

1 Introduction

What happens when you see a picture? The most
natural thing would be to describe it using words:
using speech or text. This description of an image is
the output of an extremely complex process that in-
volves: 1) perception in the Visual space, 2) ground-
ing to World Knowledge in the Language Space and
3) speech/text production (see Fig. 1). Each of these
components are challenging in their own right and
are still considered open problems in the vision and
linguistics fields. In this paper, we introduce a com-
putational framework that attempts to integrate these
†indicates equal contribution.

Figure 1: The processes involved for describing a scene.

components together. Our hypothesis is based on
the assumption that natural images accurately reflect
common everyday scenarios which are captured in
language. For example, knowing that boats usually
occur over water will enable us to constrain the
possible scenes a boat can occur and exclude highly
unlikely ones – street, highway. It also en-
ables us to predict likely actions (Verbs) given the
current object detections in the image: detecting a
dog with a person will likely induce walk rather
than swim, jump, fly. Key to our approach is
the use of a large generic corpus such as the English
Gigaword [Graff, 2003] as the semantic grounding
to predict and correct the initial and often noisy vi-
sual detections of an image to produce a reasonable
sentence that succinctly describes the image.

In order to get an idea of the difficulty of this
task, it is important to first define what makes up
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Figure 2: Illustration of various perceptual challenges for
sentence generation for images. (a) Different images with
semantically the same content. (b) Pose relates ambigu-
ously to actions in real images. See text for details.

a description of an image. Based on our observa-
tions of annotated image data (see Fig. 4), a de-
scriptive sentence for an image must contain at min-
imum: 1) the important objects (Nouns) that partic-
ipate in the image, 2) Some description of the ac-
tions (Verbs) associated with these objects, 3) the
scene where this image was taken and 4) the prepo-
sition that relates the objects to the scene. That is, a
quadruplet of T = {n, v, s, p} (Noun-Verb-Scene-
Preposition) that represents the core sentence struc-
ture. Generating a sentence from this quadruplet is
obviously a simplification from state of the art gen-
eration work, but as we will show in the experimen-
tal results (sec. 4), it is sufficient to describe im-
ages. The key challenge is that detecting objects, ac-
tions and scenes directly from images is often noisy
and unreliable. We illustrate this using example im-
ages from the Pascal-Visual Object Classes (VOC)
2008 challenge [Everingham et al., 2008]. First,
Fig. 2(a) shows the variability of images in their raw
image representations: pixels, edges and local fea-
tures. This makes it difficult for state of the art ob-
ject detectors [Felzenszwalb et al., 2010; Schwartz
et al., 2009] to reliably detect important objects in
the scene: boat, humans and water – average preci-
sion scores reported in [Felzenszwalb et al., 2010]
manages around 42% for humans and only 11% for
boat over a dataset of almost 5000 images in 20 ob-
ject categories. Yet, these images are semantically
similar in terms of their high level description. Sec-
ond, cognitive studies [Urgesi et al., 2006; Kourtzi,
2004] have proposed that inferring the action from
static images (known as an “implied action”) is of-

ten achieved by detecting the pose of humans in the
image: the position of the limbs with respect to one
another, under the assumption that a unique pose oc-
curs for a unique action. Clearly, this assumption
is weak as 1) similar actions may be represented by
different poses due to the inherent dynamic nature of
the action itself: e.g. walking a dog and 2) different
actions may have the same pose: e.g. walking a dog
versus running (Fig. 2(b)). The missing component
here is whether the key object (dog) under interac-
tion is considered. Recent works [Yao and Fei-Fei,
2010; Yang et al., 2010] that used poses for recog-
nition of actions achieved 70% and 61% accuracy
respectively under extremely limited testing condi-
tions with only 5-6 action classes each. Finally, state
of the art scene detectors [Oliva and Torralba, 2001;
Torralba et al., 2003] need to have enough represen-
tative training examples of scenes from pre-defined
scene classes for a classification to be successful –
with a reported average precision of 83.7% tested
over a dataset of 2600 images.

Addressing all these visual challenges is clearly
a formidable task which is beyond the scope of this
paper. Our focus instead is to show that with the
addition of language to ground the noisy initial vi-
sual detections, we are able to improve the qual-
ity of the generated sentence as a faithful descrip-
tion of the image. In particular, we show that it
is possible to avoid predicting actions directly from
images – which is still unreliable – and to use the
corpus instead to guide our predictions. Our pro-
posed strategy is also generic, that is, we make no
prior assumptions on the image domain considered.
While other works (sec. 2) depend on strong anno-
tations between images and text to ground their pre-
dictions (and to remove wrong sentences), we show
that a large generic corpus is also able to provide
the same grounding over larger domains of images.
It represents a relatively new style of learning: dis-
tant supervision [Liang et al., 2009; Mann and Mc-
callum, 2007]. Here, we do not require “labeled”
data containing images and captions but only sep-
arate data from each side. Another contribution is
a computationally feasible way via dynamic pro-
gramming to determine the most likely quadruplet
T ∗ = {n∗, v∗, s∗, p∗} that describes the image for
generating possible sentences.
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2 Related Work

Recently, several works from the Computer Vision
domain have attempted to use language to aid im-
age scene understanding. [Kojima et al., 2000] used
predefined production rules to describe actions in
videos. [Berg et al., 2004] processed news captions
to discover names associated with faces in the im-
ages, and [Jie et al., 2009] extended this work to as-
sociate poses detected from images with the verbs
in the captions. Both approaches use annotated ex-
amples from a limited news caption corpus to learn
a joint image-text model so that one can annotate
new unknown images with textual information eas-
ily. Neither of these works have been tested on com-
plex everyday images where the large variations of
objects and poses makes it nearly impossible to learn
a more general model. In addition, no attempt was
made to generate a descriptive sentence from the
learned model. The work of [Farhadi et al., 2010] at-
tempts to “generate” sentences by first learning from
a set of human annotated examples, and produc-
ing the same sentence if both images and sentence
share common properties in terms of their triplets:
(Nouns-Verbs-Scenes). No attempt was made to
generate novel sentences from images beyond what
has been annotated by humans. [Yao et al., 2010]
has recently introduced a framework for parsing im-
ages/videos to textual description that requires sig-
nificant annotated data, a requirement that our pro-
posed approach avoids.

Natural language generation (NLG) is a long-
standing problem. Classic approaches [Traum et al.,
2003] are based on three steps: selection, planning
and realization. A common challenge in generation
problems is the question of: what is the input? Re-
cently, approaches for generation have focused on
formal specification inputs, such as the output of the-
orem provers [McKeown, 2009] or databases [Gol-
land et al., 2010]. Most of the effort in those ap-
proaches has focused on selection and realization.
We address a tangential problem that has not re-
ceived much attention in the generation literature:
how to deal with noisy inputs. In our case, the inputs
themselves are often uncertain (due to misrecogni-
tions by object/scene detectors) and the content se-
lection and realization needs to take this uncertainty
into account.

3 Our Approach

Our approach is summarized in Fig. 3. The input is a
test image where we detect objects and scenes using
trained detection algorithms [Felzenszwalb et al.,
2010; Torralba et al., 2003]. To keep the framework
computationally tractable, we limit the elements of
the quadruplet (Nouns-Verbs-Scenes-Prepositions)
to come from a finite set of objects N , actions V ,
scenes S and prepositions P classes that are com-
monly encountered. They are summarized in Ta-
ble. 1. In addition, the sentence that is generated
for each image is limited to at most two objects oc-
curring in a unique scene.

Figure 3: Overview of our approach. (a) Detect objects
and scenes from input image. (b) Estimate optimal sen-
tence structure quadruplet T ∗. (c) Generating a sentence
from T ∗.

Denoting the current test image as I , the initial
visual processing first detects objects n ∈ N and
scenes s ∈ S using these detectors to compute
Pr(n|I) and Pr(s|I), the probabilities that object
n and scene s exist under I . From the observation
that an action can often be predicted by its key ob-
jects, Nk = {n1, n2, · · · , ni}, ni ∈ N that partici-
pate in the action, we use a trained Language model
Lm to estimate Pr(v|Nk). Lm is also used to com-
pute Pr(s|n, v), the predicted scene using the cor-
pus given the object and verb; and Pr(p|s), the pre-
dicted preposition given the scene. This process is
repeated over all n, v, s, p where we used a modi-
fied HMM inference scheme to determine the most
likely quadruplet: T ∗ = {n∗, v∗, s∗, p∗} that makes
up the core sentence structure. Using the contents
and structure of T ∗, an appropriate sentence is then
generated that describes the image. In the following
sections, we first introduce the image dataset used
for testing followed by details of how these compo-
nents are derived.
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Objects n ∈ N Actions v ∈ V Scenes s ∈ S Preps p ∈ P
’aeroplane’ ’bicycle’ ’bird’
’boat’ ’bottle’ ’bus’ ’car’
’cat’ ’chair’ ’cow’ ’table’
’dog’ ’horse’, ’motorbike’
’person’ ’pottedplant’
’sheep’ ’sofa’ ’train’
’tvmonitor’

’sit’ ’stand’ ’park’
’ride’ ’hold’ ’wear’
’pose’ ’fly’ ’lie’ ’lay’
’smile’ ’live’ ’walk’
’graze’ ’drive’ ’play’
’eat’ ’cover’ ’train’
’close’ ...

’airport’
’field’
’highway’
’lake’ ’room’
’sky’ ’street’
’track’

’in’ ’at’ ’above’
’around’ ’behind’
’below’ ’beside’
’between’
’before’ ’to’
’under’ ’on’

Table 1: The set of objects, actions (first 20), scenes and preposition classes considered

Figure 4: Samples of images with corresponding annota-
tions from the UIUC scene description dataset.

3.1 Image Dataset
We use the UIUC Pascal Sentence dataset, first in-
troduced in [Farhadi et al., 2010] and available on-
line1. It contains 1000 images taken from a sub-
set of the Pascal-VOC 2008 challenge image dataset
and are hand annotated with sentences that describe
the image by paid human annotators using Ama-
zon Mechanical Turk. Fig. 4 shows some sample
images with their annotations. There are 5 anno-
tations per image, and each annotation is usually
short – around 10 words long. We randomly selected
900 images (4500 sentences) as the learning corpus
to construct the verb and scene sets, {V,S} as de-
scribed in sec. 3.3, and kept the remaining 100 im-
ages for testing and evaluation.

3.2 Object and Scene Detections from Images
We use the Pascal-VOC 2008 trained object detec-
tors [Felzenszwalb et al., 2008] of 20 common ev-
eryday object classes that are defined in N . Each of
the detectors are essentially SVM classifiers trained
on a large number of the objects’ image represen-
tations from a large variety of sources. Although
20 classes may seem small, their existence in many

1http://vision.cs.uiuc.edu/pascal-sentences/

(a) (b)

Figure 5: (a) [Top] The part based object detector from
[Felzenszwalb et al., 2010]. [Bottom] The graphical
model representation of an object, for e.g. a bike. (b)
Examples of GIST gradients: (left) an outdoor scene vs
(right) an indoor scene [Torralba et al., 2003].

natural images (e.g. humans, cars and plants) makes
them particularly important for our task, since hu-
mans tend to describe these common objects as well.
As object representations, the part-based descriptor
of [Felzenszwalb et al., 2010] is used. This repre-
sentation decomposes any object, e.g. a cow, into
its constituent parts: head, torso, legs, which are
shared by other objects in a hierarchical manner.
At each level, image gradient orientations are com-
puted. The relationship between each parts is mod-
eled probabilistically using graphical models where
parts are the nodes and the edges are the conditional
probabilities that relate their spatial compatibility
(Fig. 5(a)). For example, in a cow, the probability
of finding the torso near the head is higher than find-
ing the legs near the head. This model’s intuition lies
in the assumption that objects can be deformed but
the relative position of each constituent parts should
remain the same. We convert the object detec-
tion scores to probabilities using Platt’s method [Lin
et al., 2007] which is numerically more stable to ob-
tain Pr(n|I). The parameters of Platt’s method are
obtained by estimating the number of positives and
negatives from the UIUC annotated dataset, from
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which we determine the appropriate probabilistic
threshold, which gives us approximately 50% recall
and precision.

For detecting scenes defined in S , we use the
GIST-based scene descriptor of [Torralba et al.,
2003]. GIST computes the windowed 2D Gabor fil-
ter responses of an input image. The responses of
Gabor filters (4 scales and 6 orientations) encode the
texture gradients that describe the local properties
of the image. Averaging out these responses over
larger spatial regions gives us a set of global im-
age properties. These high dimensional responses
are then reprojected to a low dimensional space via
PCA, where the number of principal components are
obtained empirically from training scenes. This rep-
resentation forms the GIST descriptor of an image
(Fig. 5(b)) which is used to train a set of SVM clas-
sifiers for each scene class in S. Again, Pr(s|I) is
computed from the SVM scores using [Lin et al.,
2007]. The set of common scenes defined in S is
learned from the UIUC annotated data (sec. 3.3).

3.3 Corpus-Guided Predictions

Figure 6: (a) Selecting the ROOT verb from the depen-
dency parse ride reveals its subject woman and direct
object bicycle. (b) Selecting the head noun (PMOD)
as the scene street reveals ADV as the preposition on

Predicting Verbs: The key component of our ap-
proach is the trained language model Lm that pre-
dicts the most likely verb v, associated with the ob-
jects Nk detected in the image. Since it is possi-
ble that different verbs may be associated with vary-
ing number of object arguments, we limit ourselves
to verbs that take on at most two objects (or more
specifically two noun phrase arguments) as a sim-
plifying assumption: Nk = {n1, n2} where n2 can
be NULL. That is, n1 and n2 are the subject and
direct objects associated with v ∈ V . Using this as-
sumption, we can construct the set of verbs, V . To
do this, we use human labeled descriptions of the
training images from the UIUC Pascal-VOC dataset

(sec. 3.1) as a learning corpus that allows us to deter-
mine the appropriate target verb set that is amenable
to our problem. We first apply the CLEAR parser
[Choi and Palmer, 2010] to obtain a dependency
parse of these annotations, which also performs
stemming of all the verbs and nouns in the sentence.
Next, we process all the parses to select verbs which
are marked as ROOT and check the existence of a
subject (DEP) and direct object (PMOD, OBJ) that
are linked to the ROOT verb (see Fig. 6(a)). Finally,
after removing common “stop” verbs such as {is,
are, be} we rank these verbs in terms of their oc-
currences and select the top 50 verbs which accounts
for 87.5% of the sentences in the UIUC dataset to be
in V .

Object class n ∈ N Synonyms, 〈n〉
bus autobus charabanc

double-decker jitney
motorbus motorcoach omnibus
passenger-vehicle schoolbus
trolleybus streetcar ...

chair highchair chaise daybed
throne rocker armchair
wheelchair seat ladder-back
lawn-chair fauteuil ...

bicycle bike wheel cycle velocipede
tandem mountain-bike ...

Table 2: Samples of synonyms for 3 object classes.

Next, we need to explain how n1 and n2 are
selected from the 20 object classes defined previ-
ously in N . Just as the 20 object classes are de-
fined visually over several different kinds of spe-
cific objects, we expand n1 and n2 in their tex-
tual descriptions using synonyms. For example,
the object class n1=aeroplane should include
the synonyms {plane, jet, fighter jet,
aircraft}, denoted as 〈n1〉. To do this, we ex-
pand each object class using their corresponding
WordNet synsets up to at most three hyponymns lev-
els. Example synonyms for some of the classes are
summarized in Table 2.

We can now compute from the Gigaword cor-
pus [Graff, 2003] the probability that a verb ex-
ists given the detected nouns, Pr(v|n1, n2). We do
this by computing the log-likelihood ratio [Dunning,
1993] , λnvn, of trigrams (〈n1〉 , v, 〈n2〉), computed
from each sentence in the English Gigaword corpus
[Graff, 2003]. This is done by extracting only the
words in the corpus that are defined inN and V (in-
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cluding their synonyms). This forms a reduced cor-
pus sequence from which we obtain our target tri-
grams. For example, the sentence:

the large brown dog chases a small young cat

around the messy room, forcing the cat to run

away towards its owner.

will be reduced to the stemmed sequence dog

chase cat cat run owner2 from which we ob-
tain the target trigram relationships: {dog chase
cat}, {cat run owner} as these trigrams re-
spect the (n1, v, n2) ordering. The log-likelihood ra-
tios, λnvn, computed for all possible (〈n1〉 , v, 〈n2〉)
are then normalized to obtain Pr(v|n1, n2). An ex-
ample of ranked λnvn in Fig. 7(a) shows that λnvn
predicts v that makes sense: with the most likely
predictions near the top of the list.

Predicting Scenes: Just as an action is strongly
related to the objects that participate in it, a
scene can be predicted from the objects and verbs
that occur in the image. For example, detect-
ing Nk={boat, person} with v={row} would
have predicted the scene s={coast}, since boats
usually occur in water regions. To learn this rela-
tionship from the corpus, we use the UIUC dataset
to discover what are the common scenes that should
be included in S. We applied the CLEAR depen-
dency parse [Choi and Palmer, 2010] on the UIUC
data and extracted all the head nouns (PMOD) in
the PP phrases for this purpose and excluded those
nouns with prepositions (marked as ADV) such as
{with, of} which do not co-occur with scenes in
general (see Fig. 6(b)). We then ranked the remain-
ing scenes in terms of their frequency to select the
top 8 scenes used in S.

To improve recall and generalization, we expand
each of the 8 scene classes using their WordNet
synsets 〈s〉 (up to a max of three hyponymns levels).
Similar to the procedure of predicting the verbs de-
scribed above, we compute the log-likelihood ratio
of ordered bigrams, {n, 〈s〉} and {v, 〈s〉}: λns and
λvs, by reducing the corpus sentence to the target
nouns, verbs and scenes defined inN ,V and S. The
probabilities Pr(s|n) and Pr(v|n) are then obtained
by normalizing λns and λvs. Under the assumption
that the priors Pr(n) and Pr(v) are independent and
applying Bayes rule, we can compute the probabil-

2stemming is done using [Choi and Palmer, 2010]

ity that a scene co-occurs with the object and action,
Pr(s|n, v) by:

Pr(s|n, v) =
Pr(n, v|s)Pr(s)

Pr(n, v)

=
Pr(n|s)Pr(v|s)Pr(s)

Pr(n)Pr(v)

∝ Pr(s|n)× Pr(s|v) (1)

where the constant of proportionality is justified un-
der the assumption that Pr(s) is equiprobable for all
s. (1) is computed for all nouns in Nk. As shown
in Fig. 7(b), we are able to predict scenes that co-
locate with reasonable correctness given the nouns
and verbs.

Predicting Prepositions: It is straightforward to
predict the appropriate prepositions associated with
a given scene. When we construct S from the UIUC
annotated data, we simply collect and rank all the as-
sociated prepositions (ADV) in the PP phrase of the
dependency parses. We then select the top 12 prepo-
sitions used to define P . Using P , we then compute
the log-likelihood ratio of ordered bigrams, {p, 〈s〉}
for prepositions that co-locate with the scene syn-
onyms over the corpus. Normalizing λps yields
Pr(p|s), the probability that a preposition co-locates
with a scene. Examples of ranked λps are shown in
Fig. 7(c). Again, we see that reasonable predictions
of p can be found.

Figure 7: Example of how ranked log-likelihood values
(in descending order) suggest a possible T : (a) λnvn for
n1 = person, n2 = bus predicts v = ride. (b) λns
and λvs for n = bus, v = ride then jointly predicts
s = street and finally (c) λps with s = street pre-
dicts p = on.

3.4 Determining T ∗ using HMM inference
Given the computed conditional probabilities:
Pr(n|I) and Pr(s|I) which are observations
from an input test image with the param-
eters of the trained language model, Lm:

449



Pr(v|n1, n2), Pr(s|n, v), Pr(p|s), we seek to
find the most likely sentence structure T ∗ by:

T ∗ = arg max
n,v,s,p

Pr(T |n, v, s, p)

= arg max
n,v,s,p

{Pr(n1|I)Pr(n2|I)Pr(s|I)×

Pr(v|n1, n2)Pr(s|n, v)Pr(p|s)} (2)

where the last equality holds by assuming indepen-
dence between the visual detections and corpus pre-
dictions. Obviously a brute force approach to try all
possible combinations to maximize eq. (2) will not
be feasible due to the large number of possible com-
binations: (20∗21∗8)∗(50∗20∗20)∗(8∗20∗50)∗
(12 ∗ 8) ≈ 5× 1013. A better solution is needed.

Figure 8: The HMM used for optimizing T . The relevant
transition and emission probabilities are also shown. See
text for more details.

Our proposed strategy is to pose the optimiza-
tion of T as a dynamic programming problem, akin
to a Hidden Markov Model (HMM) where the hid-
den states are related to the (simplified) sentence
structure we seek: T = {n1, n2, s, v, p}, and the
emissions are related to the observed detections:
{n1, n2, s} in the image if they exist. To sim-
plify our notations, as we are concerned with ob-
ject pairs we will write NN as the hidden states for
all n1, n2 pairs and nn as the corresponding emis-
sions (detections); and all object+verb pairs as hid-
den states NV. The hidden states are therefore de-
noted as: {NN,NV,S,P} with values taken from
their respective word classes from Table 1. The

emission states are {nn,s} with binary values: 1
if the detections occur or 0 otherwise. The full
HMM is summarized in Fig. 8. The rationale for
using a HMM is that we can reuse all previous com-
putation of the probabilities at each level to com-
pute the required probabilities at the current level.
From START, we assume all object pair detections
are equiprobable: Pr(NN|START) = 1

|N |∗(|N |+1)
where we have added an additional NULL value for
objects (at most 1). At each NN, the HMM emits
a detection from the image and by independence
we have: Pr(nn|NN) = Pr(n1|I)Pr(n2|I). Af-
ter NN, the HMM transits to the corresponding verb
at state NV with Pr(NV|NN) = Pr(v|n1, n2) ob-
tained from the corpus statistic3. As no action detec-
tions are performed on the image, NV has no emis-
sions. The HMM then transits from NV to S with
Pr(S|NV) = Pr(s|n, v) computed from the corpus
which emits the scene detection score from the im-
age: Pr(s|S) = Pr(s|I). From S, the HMM transits
to P with Pr(P|S) = Pr(p|s) before reaching the
END state.

Comparing the HMM with eq. (2), one can see
that all the corpus and detection probabilities are
accounted for in the transition and emission prob-
abilities respectively. Optimizing T is then equiv-
alent to finding the best (most likely) path through
the HMM given the image observations using the
Viterbi algorithm which can be done in O(105) time
which is significantly faster than the naive approach.
We show in Fig. 9 (right-upper) examples of the top
viterbi paths that produce T ∗ for four test images.

Note that the proposed HMM is suitable for gen-
erating sentences that contain the core components
defined in T which produces a sentence of the form
NP-VP-PP, which we will show in sec. 4 is suf-
ficient for the task of generating sentences for de-
scribing images. For more complex sentences with
more components: such as adjectives or adverbs, the
HMM can be easily extended with similar computa-
tions derived from the corpus.

3.5 Sentence Generation

Given the selected sentence structure T =
{n1, n2, v, s, p}, we generate sentences using the

3each verb, v, in NV will have 2 entries with the same value,
one for each noun.
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Figure 9: Four test images (left) and results. (Right-
upper): Sentence structure T ∗ predicted using Viterbi
and (Right-lower): Generated sentences. Words marked
in red are considered to be incorrect predictions. Com-
plete results are available at http://www.umiacs.umd.

edu/˜yzyang/sentence_generateOut.html.

following strategy for each component:
1) We add in appropriate determiners and cardi-

nals: the, an, a, CARD, based on the content
of n1,n2 and s. For e.g., if n1 = n2, we will use
CARD=two, and modify the nouns to be in the plu-
ral form. When several possible choices are avail-
able, a random choice is made that depends on the
object detection scores: the is preferred when we
are confident of the detections while an, a is pre-
ferred otherwise.

2) We predict the most likely preposition inserted
between the verbs and nouns learned from the Giga-
word corpus via Pr(p|v, n) during sentence genera-
tion. For example, our method will pick the prepo-
sition at between verb sit and noun table.

3) The verb v is converted to a form that agrees
with in number with the nouns detected. The
present gerund form is preferred such as eating,
drinking, walking as it conveys that an ac-
tion is being performed in the image.

4) The sentence structure is therefore of the form:
NP-VP-PP with variations when only one object
or multiple detections of the same objects are de-
tected. A special case is when no objects are de-
tected (below the predefined threshold). No verbs
can be predicted as well. In this case, we sim-
ply generate a sentence that describes the scene
only: for e.g. This is a coast, This is
a field. Such sentences account for 20% of the

entire UIUC testing dataset which are scored lower
in our evaluation metrics (sec. 4.1) since they do not
fully describe the image content in terms of the ob-
jects and actions.

Some examples of sentences generated using this
strategy are shown in Fig. 9(right-lower).

4 Experiments

We performed several experiments to evaluate our
proposed approach. The different metrics used for
evaluation and comparison are also presented, fol-
lowed by a discussion of the experimental results.

4.1 Sentence Generation Results

Three experiments are performed to evaluate the ef-
fectiveness of our approach. As a baseline, we sim-
ply generated T ∗ directly from images without using
the corpus. There are two variants of this baseline
where we seek to determine if listing all objects in
the image is crucial for scene description. Tb1 is a
baseline that uses all possible objects and scene de-
tected: Tb1 = {n1, n2, · · · , nm, s} and our sentence
will be of the form: {Object 1, object 2 and

object 3 are IN the scene.} and we simply
selected IN as the only admissible preposition. For
the second baseline, Tb2, we limit the number of ob-
jects to just any two: Tb2 = {n1, n2, s} and the
sentence generated will be of the form {Object
1 and object 2 are IN the scene}. In the
second experiment, we applied the HMM strategy
described above but made all transition probabilities
equiprobable, removing the effects of the corpus,
and producing a sentence structure which we denote
as T ∗eq. The third experiment produces the full T ∗
with transition probabilities learned from the corpus.
All experiments were performed on the 100 unseen
testing images from the UIUC dataset and we used
only the most likely (top) sentence generated for all
evaluation.

We use two evaluation metrics as a measure of the
accuracy of the generated sentences: 1) ROUGE-1
[Lin and Hovy, 2003] precision scores and 2) Rel-
evance and Readability of the generated sentences.
ROUGE-1 is a recall based metric that is commonly
used to measure the effectiveness of text summariza-
tion. In this work, the short descriptive sentence of
an image can be viewed as summarizing the image
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content and ROUGE-1 is able to capture how well
this sentence can describe the image by comparing it
with the human annotated ground truth of the UIUC
dataset. Due to the short sentences generated, we
did not consider other ROUGE metrics (ROUGE-2,
ROUGE-SU4) which captures fluency and is not an
issue here.

Experiment R1,(length) Relevance Readability
Baseline 1, T ∗b1 0.35,(8.2) 2.84± 1.40 3.64± 1.20

Baseline 2, T ∗b2 0.39,(6.8) 2.14± 1.13 3.94± 0.91

HMM no cor-
pus, T ∗eq

0.42,(6.5) 2.44± 1.25 3.88± 1.18

Full HMM, T ∗ 0.44,(6.9) 2.51± 1.30 4.10± 1.03

Human Anno-
tation

0.68,(10.1) 4.91± 0.29 4.77± 0.42

Table 3: Sentence generation evaluation results with hu-
man gold standard. Human R1 scores are averaged over
the 5 sentences using a leave one out procedure. Values
in bold are the top scores.

A main shortcoming of using ROUGE-1 is that
the generated sentences are compared only to a fi-
nite set of human labeled ground truth which ob-
viously does not capture all possible sentences that
one can generate. In other words, ROUGE-1 does
not take into account the fact that sentence genera-
tion is innately a creative process, and a better re-
call metric will be to ask humans to judge these
sentences. The second evaluation metric: Rele-
vance and Readability is therefore proposed as an
empirical measure of how much the sentence: 1)
conveys the image content (relevance) in terms of
the objects, actions and scene predicted and 2) is
grammatically correct (readability). We engaged the
services of Amazon Mechanical Turks (AMT) to
judge the generated sentences based on a discrete
scale ranging from 1–5 (low relevance/readability
to high relevance/readability). The averaged results
of ROUGE-1, R1 and mean length of the sentences
with the Relevance+Readability scores for all exper-
iments are summarized in Table 3. For comparison,
we also asked the AMTs to judge the ground truth
sentences as well.

4.2 Discussion
The results reported in Table 3 reveals both the
strengths and some shortcomings of the approach
which we will briefly discuss here. Firstly, the R1

scores indicate that based on a purely summariza-
tion (unigram-overlap) point of view, the proposed
approach of using the HMM to predict T ∗ achieves
the best results compared to all other approaches
with R1 = 0.44. This means that our sentences are
the closest in agreement with the human annotated
ground truth, correctly predicting the sentence struc-
ture components. In addition sentences generated by
T ∗ are also succinct: with an average length of 6.9
words per sentence. However, we are still some way
off the human gold standard since we do not predict
other parts-of-speech such as adjectives and adverbs.
Given this fact, our proposed approach performance
is comparable to other state of the art summarization
work in the literature [Bonnie and Dorr, 2004].

Next, we consider the Relevance+Readability
metrics based on human judges. Interestingly, the
first baseline, T ∗b1 is considered the most relevant de-
scription of the image and the least readable at the
same time. This is most likely due to the fact that
this recall oriented strategy will almost certainly de-
scribe some objects but the lack of any verb descrip-
tion; and longer sentences that average 8.2 words per
sentence, makes it less readable. It is also possible
that humans tend to penalize less irrelevant objects
compared to missing objects, and further evaluations
are necessary to confirm this. Since T ∗b2 is limited
to two objects just like the proposed HMM, it is a
more suitable baseline for comparison. Clearly, the
results show that adding the HMM to predict the op-
timal sentence structure increases the relevance of
the produced sentence. Finally, in terms of read-
ability, T ∗ generates the most readable sentences,
and this is achieved by leveraging on the corpus to
guide our predictions of the most reasonable nouns,
verbs, scenes and prepositions that agree with the
detections in the image.

5 Future Work

In this work, we have introduced a computationally
feasible framework that integrates visual perception
together with semantic grounding obtained from a
large textual corpus for the purpose of generating a
descriptive sentence of an image. Experimental re-
sults show that our approach produces sentences that
are both relevant and readable. There are, however,
instances where our strategy fails to predict the ap-
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propriate verbs or nouns (see Fig. 9). This is due
to the fact that object/scene detections can be wrong
and noise from the corpus itself remains a problem.
Compared to human gold standards, therefore, much
work still remains in terms of detecting these objects
and scenes with high precision. Currently, at most
two object classes are used to generate simple sen-
tences which was shown in the results to have penal-
ized the relevance score of our approach. This can
be addressed by designing more complex HMMs to
handle larger numbers of object and verb classes.
Another interesting direction of future work would
be to detect salient objects, learned from training
image+corpus or eye-movement data, and to verify
if these objects aid in improving the descriptive sen-
tences we generate. Another potential application

Figure 10: Images retrieved from 3 verbal search terms:
ride,sit,fly.

of representing images using T ∗ is that we can eas-
ily sort and retrieve images that are similar in terms
of their semantic content. This would enable us to
retrieve, for example, more relevant images given a
verbal search query such as {ride,sit,fly}, re-
turning images where these verbs are found in T ∗.
Some results of retrieved images based on their ver-
bal components are shown in Fig. 10: many images
with dissimilar visual content are correctly classified
based on their semantic meaning.
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Abstract

Automatically produced texts (e.g. transla-
tions or summaries) are usually evaluated with
n-gram based measures such as BLEU or
ROUGE, while the wide set of more sophisti-
cated measures that have been proposed in the
last years remains largely ignored for practical
purposes. In this paper we first present an in-
depth analysis of the state of the art in order
to clarify this issue. After this, we formalize
and verify empirically a set of properties that
every text evaluation measure based on simi-
larity to human-produced references satisfies.
These properties imply that corroborating sys-
tem improvements with additional measures
always increases the overall reliability of the
evaluation process. In addition, the greater the
heterogeneity of the measures (which is mea-
surable) the higher their combined reliability.
These results support the use of heterogeneous
measures in order to consolidate text evalua-
tion results.

1 Introduction

The automatic evaluation of textual outputs is a
core issue in many Natural Language Processing
(NLP) tasks such as Natural Language Generation,
Machine Translation (MT) and Automatic Sum-
marization (AS). State-of-the-art automatic evalu-
ation methods all operate by rewarding similari-
ties between automatically-produced candidate out-
puts and manually-produced reference solutions, so-
called human references or models.

Over the last decade, a wide variety of measures,
based on different quality assumptions, have been

proposed. Recent work suggests exploiting exter-
nal knowledge sources and/or deep linguistic an-
notation, and measure combination (see Section 2).
However, original measures based on lexical match-
ing, such as BLEU (Papineni et al., 2001a) and
ROUGE (Lin, 2004) are still preferred as de facto
standards in MT and AS, respectively. There are,
in our opinion, two main reasons behind this fact.
First, the use of a common measure certainly allows
researchers to carry out objective comparisons be-
tween their work and other published results. Sec-
ond, the advantages of novel measures are not easy
to demonstrate in terms of correlation with human
judgements.

Our goal is not to answer which is the most re-
liable metric or to propose yet another novel mea-
sure. Rather than this, we first analyze in depth the
state of the art, concluding that it is not easy to de-
termine the reliability of a measure. In absence of a
clear proof of the advantages of novel measures, sys-
tem developers naturally tend to prefer well-known
standard measures. Second, we formalize and check
empirically two intrinsic properties that any evalua-
tion measure based on similarity to human-produced
references satisfies. Assuming that a measure satis-
fies a set of basic formal constraints, these properties
imply that corroborating a system comparison with
additional measures always increases the overall re-
liability of the evaluation process, even when the
added measures have a low correlation with human
judgements. In most papers, evaluation results are
corroborated with similar n-gram based measures
(eg. BLEU and ROUGE). However, according to
our second property, the greater the heterogeneity of
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the measures (which is measurable) the higher their
reliability. The practical implication is that, corrob-
orating evaluation results with measures based on
higher linguistic levels increases the heterogeneity,
and therefore, the reliability of evaluation results.

2 State of the Art

2.1 Individual measures

Among NLP disciplines, MT probably has the
widest set of automatic evaluation measures. The
dominant approach to automatic MT evaluation is,
today, based on lexical metrics (also called n-gram
based metrics). These metrics work by rewarding
lexical similarity between candidate translations and
a set of manually-produced reference translations.
Lexical metrics can be classified according to how
they compute similarity. Some are based on edit dis-
tance, e.g., WER (Nießen et al., 2000), PER (Till-
mann et al., 1997), and TER (Snover et al., 2006).
Other metrics are based on computing lexical preci-
sion, e.g., BLEU (Papineni et al., 2001b) and NIST
(Doddington, 2002), lexical recall, e.g., ROUGE
(Lin and Och, 2004a) and CDER (Leusch et al.,
2006), or a balance between the two, e.g., GTM
(Melamed et al., 2003; Turian et al., 2003b), ME-
TEOR (Banerjee and Lavie, 2005), BLANC (Lita et
al., 2005), SIA (Liu and Gildea, 2006), MAXSIM
(Chan and Ng, 2008), and Ol (Giménez, 2008).

The lexical measure BLEU has been criticized in
many ways. Some drawbacks of BLEU are the lack
of interpretability (Turian et al., 2003a), the fact that
it is not necessary to increase BLEU to improve sys-
tems (Callison-burch and Osborne, 2006), the over-
scoring of statistical MT systems (Le and Przybocki,
2005), the low reliability over rich morphology lan-
guages (Homola et al., 2009), or even the fact that a
poor system translation of a book can obtain higher
BLEU results than a manually produced translation
(Culy and Riehemann, 2003).

The reaction to these criticisms has been focused
on the development of more sophisticated measures
in which candidate and reference translations are
automatically annotated and compared at different
linguistic levels. Some of the features employed
include parts of speech (Popovic and Ney, 2007;
Giménez and Màrquez, 2007), syntactic dependen-
cies (Liu and Gildea, 2005; Giménez and Màrquez,

2007; Owczarzak et al., 2007a; Owczarzak et al.,
2007b; Owczarzak et al., 2008; Chan and Ng,
2008; Kahn et al., 2009), CCG parsing (Mehay and
Brew, 2007), syntactic constituents (Liu and Gildea,
2005; Giménez and Màrquez, 2007), named entities
(Reeder et al., 2001; Giménez and Màrquez, 2007),
semantic roles (Giménez and Màrquez, 2007), dis-
course representations (Giménez, 2008), and textual
entailment features (Padó et al., 2009). In general,
when a higher linguistic level is incorporated, lin-
guistic features at lower levels are preserved.

The proposals for summarization evaluation are
less numerous. Some proposals for AS tasks are
based on syntactic units (Tratz and Hovy, 2008), de-
pendency triples (Owczarzak, 2009) or convolution
kernels (Hirao et al., 2005) which reported some re-
liability improvement over ROUGE in terms of cor-
relation with human judgements.

In general, however, it is not easy to determine
clearly the contribution of deeper linguistic knowl-
edge in those proposals. In the case of MT, im-
provements versus BLEU have been reported (Liu
and Gildea, 2005; Kahn et al., 2009), but not over
a more elaborated metric such as METEOR (Mehay
and Brew, 2007; Chan and Ng, 2008). Besides, con-
troversial results on their performance at sentence vs
system level have been reported in shared evaluation
tasks (Callison-Burch et al., 2008; Callison-Burch et
al., 2009; Callison-Burch et al., 2010).

2.2 Combined measures
Several researchers have suggested integrating het-
erogeneous measures. Some of them optimize the
measure combination function according to the met-
ric’s ability to emulate the behavior of human as-
sessors (i.e., correlation with human assessments).
For instance, using linear combinations (Padó et al.,
2009; Liu and Gildea, 2007; Giménez and Màrquez,
2008), Decision Trees (Akiba et al., 2001; Quirk,
2004), regression based algorithms (Paul et al.,
2007; Albrecht and Hwa, 2007a; Albrecht and Hwa,
2007b) or a variety of supervised machine learn-
ing algorithms(Quirk et al., 2005; Corston-Oliver et
al., 2001; Kulesza and Shieber, 2004; Gamon et al.,
2005; Amigó et al., 2005).

Some of these works report evidence on the con-
tribution of combining heterogeneous measures. For
instance, Albrecht and Hwa included syntax-based
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measures together with lexical measures, outper-
forming other combination schemes (Albrecht and
Hwa, 2007a; Albrecht and Hwa, 2007b). Liu and
Gildea, after examining the contribution of each
component metric, found that “metrics showing dif-
ferent properties of a sentence are more likely to
make a good combined metric”(Liu and Gildea,
2007). Akiba et al., which combined multiple edit-
distance features based on lexical, morphosyntac-
tic and lexical semantic information, observed that
their approach improved single editing distance for
several data sets (Akiba et al., 2001). More evi-
dence was provided by Corston and Oliver. They
showed that results on the task of discriminating be-
tween manual and automatic translations improve
when combining linguistic and n-gram based fea-
tures. In addition, they showed that this mixed com-
bination improved over the combination of linguistic
or n-gram based measures alone (Corston-Oliver et
al., 2001). (Padó et al., 2009) reported a reliability
improvement by including measures based on tex-
tual entailment in the set. In (Giménez and Màrquez,
2008), a simple arithmetic mean of scores for com-
bining measures at different linguistic levels was ap-
plied with remarkable results in recent shared evalu-
ation tasks (Callison-Burch et al., 2010).

2.3 Meta-evaluation criteria

Meta-evaluation methods have been gradually intro-
duced together with evaluation measures. For in-
stance, Papineni et al. (2001b) evaluated the reliabil-
ity of the BLEU metric according to its ability to em-
ulate human assessors, as measured in terms of Pear-
son correlation with human assessments of adequacy
and fluency at the document level. The measure
NIST (Doddington, 2002) was meta-evaluated also
in terms of correlation with human assessments, but
over different document sources and for a varying
number of references and segment sizes. Melamed
et al. (2003) argued, at the time of introducing the
GTM metric, that Pearson correlation coefficients
can be affected by scale properties. They suggested
using the non-parametric Spearman correlation co-
efficients instead. Lin and Och meta-evaluated
ROUGE over both Pearson and Spearman correla-
tion over a wide set of metrics, including NIST,
WER, PER, and variants of ROUGE, BLEU and
GTM. They obtained similar results in both cases

(Lin and Och, 2004a). Banerjee and Lavie (2005)
argued that the reliability of metrics at the document
level can be due to averaging effects but might not
be robust across sentence translations. In order to
address this issue, they computed the translation-by-
translation correlation with human assessments (i.e.,
correlation at the sentence level).

However, correlation with human judgements is
not enough to determine the reliability of measures.
First, correlation at sentence level (unlike correla-
tion at system level) tends to be low and difficult to
interpret. Second, correlation at system and segment
levels can produce contradictory results. In (Amigó
et al., 2009) it is observed that higher linguistic lev-
els in measures increases the correlation with human
judgements at the system level at the cost of corre-
lation at the segment level. As far as we know, a
clear explanation for these phenomena has not been
provided yet.

Third, a high correlation at system level does
not ensure a high reliability. Culy and Rieheman
observed that, although BLEU can achieve a high
correlation at system level in some test suites, it
over-scores a poor automatic translation of “Tom
Sawyer” against a human produced translation (Culy
and Riehemann, 2003). This meta-evaluation crite-
rion based on the ability to discern between man-
ual and automatic translations have been referred to
as human likeness (Amigó et al., 2006), in contrast
to correlation with human judgements which is re-
ferred to as human acceptability. Examples of meta-
measures based on this criterion are ORANGE (Lin
and Och, 2004b) and KING (Amigó et al., 2005).
In addition, many of the approaches to metric com-
bination described in Section 2.2 take human like-
ness as the optimization criterion (Corston-Oliver
et al., 2001; Kulesza and Shieber, 2004; Gamon et
al., 2005). The main advantage of meta-evaluation
based on human likeness is that, since human as-
sessments are not required, metrics can be evaluated
over larger test beds. However, the meta-evaluation
in terms of human likeness is difficult to interpret.

2.4 The use of evaluation measures

In general, the state of the art includes a wide set
of results that show the drawbacks of n-gram based
measures as BLEU, and a wide set of proposals for
new single and combined measures which are meta-
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evaluated in terms of human acceptability (i.e., their
ability to emulate human judges, typically measured
in terms of correlation with human judgements) or
human-likeness (i.e., their ability to discern between
automatic and human translations) (Amigó et al.,
2006). However, the original measures BLEU and
ROUGE are still preferred.

We believe that one of the reasons is the lack of
an in-depth study on to what extent providing ad-
ditional evaluation results with other metrics con-
tributes to the reliability of such results. The state of
the art suggests that the use of heterogeneous mea-
sures can improve the evaluation reliability. How-
ever, as far as we know, there is no comprehen-
sive analysis on the contribution of novel measures
when corroborating evaluation results with addi-
tional measures.

3 Similarity Based Evaluation Measures

In general, automatic evaluation measures applied
in tasks like MT or AS are similarity measures be-
tween system outputs and human references. These
measures are related with precision, recall or overlap
over specific types of linguistic units. For instance,
ROUGE measures n-gram recall. Other measures
that work at higher linguistic levels apply precision,
recall or overlap of linguistic components such as
dependency relations, grammatical categories, se-
mantic roles, etc.

In order to delimit our hypothesis, let us first de-
fine what is a similarity measure in this context. Un-
fortunately, as far as we know, there is no formal
concept covering the properties of current evaluation
similarity measures. A close concept is that of “met-
ric” or “distance function”. But, actually, measures
such as ROUGE or BLEU are not proper “metrics”,
because they do not satisfy the symmetry and the tri-
angle inequality properties. Therefore, we need a
new definition.

Being Ω the universe of system outputs s and
gold-standards g, we assume that a similarity mea-
sure, in our context, is a function x : Ω2 −→ < such
that there exists a decomposition function f : Ω −→
{e1..en} (e.g., words or other linguistic units or
relationships) satisfying the following constraints:
(i) maximum similarity is achieved only when then
the decomposition of the system output resembles
exactly the gold-standard decomposition; and (ii)
growing overlap or removing non overlapped ele-

ments implies growing x. Formally, if x ranges from
0 to 1:

f(s) = f(g)↔ x(s, g) = 1

(f(s) = f(s′) ∪ {e ∈ f(g) \ f(s′)})→ x(s, g) > x(s′, g)

(f(s) = f(s′)− {e ∈ f(s′) \ f(g)})→ x(s, g) > x(s′, g)

For instance, a random function and the reversal
of a similarity funtion (f ′(s) = 1

f(s) ) do not satisfy
these constraints. While the F measure over Pre-
cision and Recall satisfies these constraints1, pre-
cision and recall in isolation do not satisfy all of
them: maximum recall can be achieved without re-
sembling the goldstandard text decomposition; and
maximum precision can be achieved with only a few
overlapped elements.

BLEU (Papineni et al., 2001a) computes the n-
gram precision while the metric ROUGE (Lin and
Och, 2004a) computes the n-gram recall. How-
ever, in general, both metrics satisfy all the con-
straints, given that BLEU includes a brevity penalty
and ROUGE penalizes or limits the system output
length. The measure METEOR creates an align-
ment between the two strings (Banerjee and Lavie,
2005). This overlap-based measure satisfies also the
previous constraints. Measures based on edit dis-
tance over n-grams (Tillmann et al., 1997; Nießen
et al., 2000) or other linguistic units (Akiba et al.,
2001; Popovic and Ney, 2007) match also our def-
inition of similarity measure. The editing distance
is minimum when the two compared text are equal.
The more the evaluated text contains elements from
the gold-standard the more the editing distance is re-
duced (higher similarity). The word ordering can be
also expressed in terms of a decomposition function.
A similar reasoning applies to every relevant mea-
sure in the state-of-the art.

4 Data Sets and Measures

4.1 Data sets

In this paper, we provide empirical results for
MT and AS. For MT, we use the data sets from
the Arabic-to-English (AE) and Chinese-to-English
(CE) NIST MT Evaluation campaigns in 2004 and

1There is an exception. In an extreme case, when recall is
zero, removing non overlapped elements does not modify the F
measure.
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AE2004 CE2004 AE2005 CE2005

#human-references 5 5 5 4
#systems 5 10 7 10
#system-outputs-assessed 5 10 6 5
#system-outputs 1,353 1,788 1,056 1,082
#outputs-assessed per-system 347 447 266 272

Table 1: Description of the test beds from 2004 and 2005 NIST MT evaluation campaigns used in the experiments
throughout the paper.

DUC 2005 DUC 2006
#human-references 3-4 3-4
#systems 32 35
#system-outputs-assessed 32 35
#system-outputs 50 50
#outputs-assessed per-system 50 50

Table 2: Description of the test beds from 2005 and 2006 DUC evaluation campaigns used in the experiments through-
out the paper.

20052. Both include two translations exercises: for
the 2005 campaign we contacted each participant
individually and asked for permission to use their
data3. In our experiments, we take the sum of ad-
equacy and fluency, both in a 1-5 scale, as a global
measure of quality (LDC, 2005). Thus, human as-
sessments are in a 2-10 scale. For AS, we have used
the AS test suites developed in the DUC 2005 and
DUC 2006 evaluation campaigns4. This AS task
was to generate a question focused summary of 250
words from a set of 25-50 documents to a complex
question. Summaries were evaluated according to
several criteria. Here, we will consider the respon-
siveness judgements, in which the quality score was
an integer between 1 and 5. See Tables 1 and 2 for a
brief quantitative description of these test beds.

2http://www.nist.gov/speech/tests/mt
3We are grateful to a number of groups and companies who

responded positively: University of Southern California Infor-
mation Sciences Institute (ISI), University of Maryland (UMD),
Johns Hopkins University & University of Cambridge (JHU-
CU), IBM, University of Edinburgh, University of Aachen
(RWTH), National Research Council of Canada (NRC), Chi-
nese Academy of Sciences Institute of Computing Technology
(ICT), Instituto Trentino di Cultura - Centro per la Ricerca Sci-
entifica e Tecnologica(ITC-IRST), MITRE.

4http://duc.nist.gov/

4.2 Measures

As for evaluation measures, for MT we have used a
rich set of 64 measures provided within the ASIYA
Toolkit (Giménez and Màrquez, 2010)5. This in-
cludes measures operating at different linguistic lev-
els: lexical, syntactic, and semantic. At the lexical
level this set includes variants of 8 measures em-
ployed in the state of the art: BLEU, NIST, GTM,
METEOR, ROUGE, WER, PER and TER. In addi-
tion, we have included a basic measure Ol that com-
putes the lexical overlap without considering word
ordering. All these measures have similar granular-
ity. They use n-grams of a varying length as the ba-
sic unit with additional information provided by lin-
guistic tools. The underlying similarity criteria in-
clude precision, recall, overlap, or edit rate, and the
decomposition functions include words, dependency
tree nodes (DP HWC, DP-Or, etc.), constituency
parsing (CP-STM), discourse roles (DR-Or), seman-
tic roles (SR-Or), named entities, etc. Further details
on the measure set may be found in the ASIYA tech-
nical manual (Giménez and Màrquez, 2010).

According to our computations, our measures
cover high and low correlations at both levels. Cor-
relation at system level spans between 0.63 and 0.95.
Correlations at sentence level ranges from 0.18 up to
0.54. We will discriminate between two subsets of

5http://www.lsi.upc.edu/˜nlp/Asiya
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measures. The first one includes those that decom-
pose the text into words, n-grams, stems or lexical
semantic tags. This set includes BLEU, ROUGE,
NIST, GTM, PER and WER families. We will re-
fer to them as “lexical” measures. The second set
are those that consider deeper linguistic levels such
as parts of speech, syntactic dependencies, syntactic
constituents, etc. We will refer to them as “linguis-
tic” measures.

In the case of automatic summarization (AS), we
have employed the standard variants of ROUGE
(Lin, 2004). These 7 measures are ROUGE-{1..4},
ROUGE-SU, ROUGE-L and ROUGE-W. In addi-
tion we have included the reversed precision version
for each variant and the F measure of both. Notice
that the original ROUGE measures are oriented to
recall. In total, we have 21 measures for the sum-
marization task. All of them are based on n-gram
overlap.

5 Additive reliability

As discussed in Section 2, a number of recent pub-
lications address the problem of measure combi-
nation with successful results, specially when het-
erogeneous measures are combined. The following
property clarifies this issue and justifies the use of
heterogeneous measures when corroborating evalu-
ation results. It asserts that the reliability of system
improvements always increases when the evaluation
result is corroborated by an additional similarity
measure, regardless of the correlation achieved by
the additional measure in isolation.

For the sake of clarity, in the rest of the paper,
we will denote the similarity x(s, g) between sys-
tem output s and human reference g by x(s). The
quality of a system output s will be referred to as
Q(s). Let us define the reliability R(X) of a mea-
sure set as the probability of a real improvement (as
measured by human judges) when a score improve-
ment is observed simultaneously for all measures in
the set X. :

R(X) ≡ P (Q(s) ≥ Q(s′)|x(s) ≥ x(s′) ∀x ∈ X)

According to this definition, we may not be able
to predict the quality of any system output (i.e. a
translation) with a highly reliable measure set, but

we can ensure a system improvement when all mea-
sures corroborate the result. Then the additive relia-
bility property can be stated as:

R(X ∪ {x}) ≥ R(X)

We could think of violating this property by
adding, for instance, a measure consisting of a ran-
dom function (x′(s) = rand(0..1)) or a reversal of
the original measure (x′(s) = 1/x(s)). These kind
of measures, however, would not satisfy the con-
straints defined in Section 3.

This property is based on the idea that similar-
ity with human references according to any aspect
should not imply statistically a quality decrease. Al-
though our test suites includes measures with low
correlation at segment and system level, we can con-
firm empirically that all of them satisfy this property.

We have developed the following experiment:
taking all possible measure pairs in the test suites,
we have compared their reliability as a set versus the
maximal reliability of any of them (by computing
the difference R(X)−max(R(x1), R(x2)). Figure
1 shows the obtained distribution of this difference
for our MT and AS test suites. Remarkably, in al-
most every case this difference is positive.

This result has a key implication: Corroborating
evaluation results with a new measure, even when
it has lower correlation with human judgements, in-
creases the reliability of results. Therefore, if the
correlation with judgements is not determinant, the
question is now what factor determines the contri-
bution of the new measures. According to the fol-
lowing property, this factor is the heterogeneity of
measures.

6 Heterogeneity

This property states that the reliability of any mea-
sure combination is lower bounded by the hetero-
geneity of the measure set. In other words, a single
measure can be more or less reliable, but a system
improvement according to all measures in an het-
erogeneous set is reliable.

Let us define the heterogeneity H(X) of a set of
measures X as, given two system outputs s and s′
such that g 6= s 6= s′ 6= g (g is the reference
text), the probability that there exist two measures
that contradict each other. That is:

H(X) ≡ P (∃x, x′ ∈ X.x(s) > x(s′) ∧ x′(s) < x′(s′))
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Figure 1: Additive reliability for metric pairs.

Thus, given a set X of measures, the property
states that there exists a strict growing function F
such that:

R(X) ≥ F (H(X)) and H(X) = 1→ R(X) = 1

In other words, the more the similarity measures
tend to contradict each other, the more a unanimous
improvement over all similarity measures is reliable.
Clearly, the harder it is that measures agree, the more
meaningful it is when they do.

The first part is derived from the Additive Re-
liability property. Intuitively, any individual mea-
sure has zero heterogeneity. Increasing the hetero-
geneity implies joining measures or measure sets
progressively. According to the Additive Reliabil-
ity property, this joining implies a reliability in-
crease. Therefore, the higher the heterogeneity, the
higher the minimum Reliability achieved by the cor-
responding measure sets.

The second part is derived from the Heterogeneity
definition. If H(X) = 1 then, for any distinct pair
of outputs that differ from the reference, there exist
at least two measures in the set contradicting each
other. That is, H(X) = 1 implies that:

∀s 6= s′ 6= g(∃x, x′ ∈ X.x(s) > x(s′) ∧ x′(s) < x′(s′))

Therefore, if one output improves the other ac-
cording to all measures, then the output must be
equal than the reference.

¬(∃x, x′ ∈ X.x(s) > x(s′) ∧ x′(s) < x′(s′))→

Figure 2: Heterogeneity vs. reliability in MT test suites.

¬(g 6= s 6= s′ 6= g)→ g = s ∨ g = s′

According to the first constraint of similarity mea-
sures, a text that is equal to the reference achieves
the maximum score:

g = s→ f(g) = g(s)→ ∀x.x(s) ≥ x(s′)

Finally, if we assume that the reference (human pro-
duced texts) has a maximum quality, then it will
have equal or higher quality than the other output.

g = s→ Q(s) ≥ Q(s′)

Therefore, the reliability of the measure set is maxi-
mal. In summary, if H(X) = 1 then:

R(X) = P (Q(s) ≥ Q(s′)|x(s) ≥ x(s′) ∀x ∈ X) =

= P (Q(s) ≥ Q(s′)|s = g) = 1

Figures 2 and 3 show the relationship between the
heterogeneity of randomly selected measure sets and
their reliability for the MT and summarization test
suites. As the figures show, the higher the hetero-
geneity, the higher the reliability of the measure set.
The results in AS are less pronounced due to the re-
dundancy in ROUGE measure.

Notice that the heterogeneity property does not
necessarily imply a high correlation between reli-
ability and heterogeneity. For instance, an ideal
single measure would have zero heterogeneity and
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Figure 3: Heterogeneity vs. reliability in summarization
test suites.

achieve maximum reliability, appearing in the top
left area. The property rather brings us to the fol-
lowing situation: let us suppose that we have a set
of single measures available which achieve a certain
range of reliability. We can improve our system ac-
cording to any of these measures. Without human
assessments, we do not know what is the most re-
liable measure. But if we combine them, increas-
ing the heterogeneity, the minimal reliability of the
selected measures will be higher. This implies that
combining heterogeneous measures (e.g. at high lin-
guistic levels) that do not achieve high correlation
in isolation, is better than corroborating results with
any individual measure alone, such as ROUGE and
BLEU, which is the common practice in the state of
the art.

The main drawback of this property is that in-
creasing the heterogeneity implies a sensitivity re-
duction. For instance, if H(X) = 0.9, then only
for 10% of output pairs in the corpus there exists
an improvement according to all measures. In other
words, unanimous evaluation results from heteroge-
neous measures are reliable but harder to achieve for
the system developer. The next section investigates
on this issue.

Finally, Figure 4 shows that linguistic measures
increase the heterogeneity of measure sets. We have
generated sets of metrics of size 1 to 10 made up
by lexical or lexical and linguistic metrics. As the
figure shows, in the second case, the measure sets
achieve a higher heterogeneity.

Figure 4: Heterogeneity of lexical measures vs. lexical
and linguistic measures.

7 Score thresholds vs. Additive Reliability

According to the previous properties, corroborating
evaluation results with several measures increases
the reliability of evaluation results at the cost of sen-
sitivity. On the other hand, increasing the score
threshold of a single measure should have a similar
effect. Which is then the best methodology to im-
prove reliability? In this section we provide exper-
imental evidence on the relationship between both
ways of increasing reliability: we have found that,
corroborating evaluation results over single texts
with additional measures is more reliable than re-
quiring higher score differences according to any in-
dividual measure in the set. More specifically, we
have found that the reliability of a measure set is
higher than the reliability of each of the individual
measures at a similar level of sensitivity.

Formally, we define the sensitivity S(X) of a met-
ric set X as the probability of finding a score im-
provement within text pairs with a real (i.e. human
assessed) quality improvement:

S(X) = P (x(s) ≥ x(s′)∀x ∈ X|Q(s) ≥ Q(s′))

Being Rth(x) and Sth(x) the reliability and sen-
sitivity of a single measure x for a certain increase
score threshold th:
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Figure 5: Heterogeneity vs. reliability Gain for MT test
suites.

Rth(x) = P (Q(s) ≥ Q(s′)|x(s)− x(s′) ≥ th)

Sth(x) = P (x(s)− x(s′) ≥ th|Q(s) ≥ Q(s′))

The property that we want to check is that, at the
same sensitivity level, combining measures is more
reliable than increasing the score threshold of single
measures:

S(X) = Sth(x).x ∈ X −→ R(X) ≥ Rth(x)

Note that if we had a perfect measure xp such that
R(xp) = S(xp) = 1, then combining this measure
with a low reliability measure xl would produce a
lower sensitivity, but the maximal reliability would
be preserved.

In order to confirm empirically this property, we
have developed the following experiment: (i) We
compute the reliability and sensitivity of randomly
chosen measure sets over single text pairs. We have
generated sets of 2,3,5,10,20 and 40 measures. In
the case of summarization corpora we have com-
bined up to 20 measures. In addition, we com-
pute also the heterogeneity H(X) of each measure
set; (ii) Experimenting with different values for the
threshold th, we compute the reliability of single
measures for all potential sensitivity levels; (iii) For
each measure set, we compare the reliability of the
measure set versus the reliability of single measures
at the same sensitivity level. We will refer to this as
the Reliability Gain:

Figure 6: Heterogeneity vs. reliability Gain for MT test
suites.

Reliability Gain =

R(X)−max{Rth(x)/x ∈ X ∧ Sth(x) = S(X)}

If there are several reliability values with the same
sensitivity for a given single measures, we choose
the highest reliability value for the single measure.

Figures 5 and 6 illustrate the results for the MT
and AS corpora. The horizontal axis represents the
Heterogeneity of measure sets, while the vertical
axis represents the reliability gain. Remarkably, the
reliability gain is positive for all cases in our test
suites. The maximum reliability gain is 0.34 in the
case of MT and 0.08 for AS (note that summariza-
tion measures are more redundant in our corpora).
In both test suites, the largest information gains are
obtained with highly heterogeneous measure sets.

In summary, given comparable measures in terms
of reliability, corroborating evaluation results with
several measures is more effective than optimizing
systems according to the best measure in the set.
This empirical property provides an additional ev-
idence in favour of the use of heterogeneous mea-
sures and, in particular, of the use of linguistic mea-
sures in combination with standard lexical measures.

8 Conclusions

In this paper, we have analyzed the state of the art in
order to clarify why novel text evaluation measures
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are not exploited by the community. Our first con-
clusion is that it is not easy to determine the reliabil-
ity of measures, which is highly corpus-dependent
and often contradictory when comparing correlation
with human judgements at segment vs. system lev-
els.

In order to tackle this issue, we have studied a
number of properties that suggest the convenience of
using heterogeneous measures to corroborate eval-
uation results. According to these properties, we
can ensure that, even when if we can not determine
the reliability of individual measures, corroborating
a system improvement with additional measures al-
ways increases the reliability of the results. In ad-
dition, the more heterogeneous the measures em-
ployed (which is measurable), the higher the relia-
bility of the results. But perhaps the most impor-
tant practical finding is that the reliability at similar
sensitivity levels by corroborating evaluation results
with several measures is always higher than improv-
ing systems according to any of the combined mea-
sures in isolation.

These properties point to the practical advantages
of considering linguistic knowledge (beyond lexi-
cal information) in measures, even if they do not
achieve a high correlation with human judgements.
Our experiments show that linguistic knowledge in-
creases the heterogeneity of measure sets, which
in turn increases the reliability of evaluation results
when corroborating system comparisons with sev-
eral measures.
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Enrique Amigó, Jesús Giménez, Julio Gonzalo, and Fe-
lisa Verdejo. 2009. The contribution of linguis-
tic features to automatic machine translation evalua-
tion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 1 - Volume 1, ACL ’09,
pages 306–314, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. In Pro-
ceedings of ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for MT and/or Summarization.

Chris Callison-burch and Miles Osborne. 2006. Re-
evaluating the role of bleu in machine translation re-
search. In In EACL, pages 249–256.

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,
Christof Monz, and Josh Schroeder. 2008. Further
meta-evaluation of machine translation. In Proceed-
ings of the Third Workshop on Statistical Machine
Translation, pages 70–106.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009 work-
shop on statistical machine translation. In Proceedings
of the Fourth Workshop on Statistical Machine Trans-
lation.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar Zaidan.
2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR,
pages 17–53. Revised August 2010.

464



Yee Seng Chan and Hwee Tou Ng. 2008. MAXSIM:
A maximum similarity metric for machine translation
evaluation. In Proceedings of ACL-08: HLT, pages
55–62.

Simon Corston-Oliver, Michael Gamon, and Chris
Brockett. 2001. A Machine Learning Approach to the
Automatic Evaluation of Machine Translation. In Pro-
ceedings of the 39th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 140–147.

Christopher Culy and Susanne Z. Riehemann. 2003. The
Limits of N-gram Translation Evaluation Metrics. In
Proceedings of MT-SUMMIT IX, pages 1–8.

George Doddington. 2002. Automatic Evaluation
of Machine Translation Quality Using N-gram Co-
Occurrence Statistics. In Proceedings of the 2nd Inter-
national Conference on Human Language Technology,
pages 138–145.

Michael Gamon, Anthony Aue, and Martine Smets.
2005. Sentence-Level MT evaluation without refer-
ence translations: beyond language modeling. In Pro-
ceedings of EAMT, pages 103–111.
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A simple automatic mt evaluation metric. In Proceed-
ings of the Fourth Workshop on Statistical Machine
Translation, StatMT ’09, pages 33–36, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Jeremy G. Kahn, Matthew Snover, and Mari Ostendorf.
2009. Expected Dependency Pair Match: Predicting

translation quality with expected syntactic structure.
Machine Translation.

Alex Kulesza and Stuart M. Shieber. 2004. A learning
approach to improving sentence-level MT evaluation.
In Proceedings of the 10th International Conference
on Theoretical and Methodological Issues in Machine
Translation (TMI), pages 75–84.

LDC. 2005. Linguistic Data Annotation Spec-
ification: Assessment of Adequacy and Flu-
ency in Translations. Revision 1.5. Tech-
nical report, Linguistic Data Consortium.
http://www.ldc.upenn.edu/Projects/
TIDES/Translation/TransAssess04.pdf.

Audrey Le and Mark Przybocki. 2005. NIST 2005 ma-
chine translation evaluation official results. In Official
release of automatic evaluation scores for all submis-
sions, August.

Gregor Leusch, Nicola Ueffing, and Hermann Ney. 2006.
CDER: Efficient MT Evaluation Using Block Move-
ments. In Proceedings of 11th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics (EACL), pages 241–248.

Chin-Yew Lin and Franz Josef Och. 2004a. Auto-
matic Evaluation of Machine Translation Quality Us-
ing Longest Common Subsequence and Skip-Bigram
Statics. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL).

Chin-Yew Lin and Franz Josef Och. 2004b. ORANGE: a
Method for Evaluating Automatic Evaluation Metrics
for Machine Translation. In Proceedings of the 20th
International Conference on Computational Linguis-
tics (COLING).

Chin-Yew Lin. 2004. Rouge: A Package for Auto-
matic Evaluation of Summaries. In Marie-Francine
Moens and Stan Szpakowicz, editors, Text Summariza-
tion Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain, July. Associa-
tion for Computational Linguistics.

Lucian Vlad Lita, Monica Rogati, and Alon Lavie. 2005.
BLANC: Learning Evaluation Metrics for MT. In
Proceedings of the Joint Conference on Human Lan-
guage Technology and Empirical Methods in Natural
Language Processing (HLT-EMNLP), pages 740–747.

Ding Liu and Daniel Gildea. 2005. Syntactic Features
for Evaluation of Machine Translation. In Proceed-
ings of ACL Workshop on Intrinsic and Extrinsic Eval-
uation Measures for MT and/or Summarization, pages
25–32.

Ding Liu and Daniel Gildea. 2006. Stochastic Iter-
ative Alignment for Machine Translation Evaluation.
In Proceedings of the Joint 21st International Confer-
ence on Computational Linguistics and the 44th An-
nual Meeting of the Association for Computational
Linguistics (COLING-ACL), pages 539–546.

465



Ding Liu and Daniel Gildea. 2007. Source-Language
Features and Maximum Correlation Training for Ma-
chine Translation Evaluation. In Proceedings of the
2007 Meeting of the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 41–48.

Dennis Mehay and Chris Brew. 2007. BLEUATRE:
Flattening Syntactic Dependencies for MT Evaluation.
In Proceedings of the 11th Conference on Theoreti-
cal and Methodological Issues in Machine Translation
(TMI).

I. Dan Melamed, Ryan Green, and Joseph P. Turian.
2003. Precision and Recall of Machine Translation. In
Proceedings of the Joint Conference on Human Lan-
guage Technology and the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL).

Sonja Nießen, Franz Josef Och, Gregor Leusch, and Her-
mann Ney. 2000. An Evaluation Tool for Machine
Translation: Fast Evaluation for MT Research. In Pro-
ceedings of the 2nd International Conference on Lan-
guage Resources and Evaluation (LREC).

Karolina Owczarzak, Josef van Genabith, and Andy
Way. 2007a. Dependency-Based Automatic Evalua-
tion for Machine Translation. In Proceedings of SSST,
NAACL-HLT/AMTA Workshop on Syntax and Struc-
ture in Statistical Translation, pages 80–87.

Karolina Owczarzak, Josef van Genabith, and Andy Way.
2007b. Labelled Dependencies in Machine Transla-
tion Evaluation. In Proceedings of the ACL Workshop
on Statistical Machine Translation, pages 104–111.

Karolina Owczarzak, Josef van Genabith, and Andy Way.
2008. Evaluating machine translation with lfg depen-
dencies. Machine Translation, 21(2):95–119.

Karolina Owczarzak. 2009. Depeval(summ):
dependency-based evaluation for automatic sum-
maries. In ACL-IJCNLP ’09: Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1, pages
190–198, Morristown, NJ, USA. Association for Com-
putational Linguistics.
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Abstract

The Text Analysis Conference (TAC) ranks
summarization systems by their average score
over a collection of document sets. We in-
vestigate the statistical appropriateness of this
score and propose an alternative that better
distinguishes between human and machine
evaluation systems.

1 Introduction

For the past several years, the National Institute of
Standards and Technology (NIST) has hosted the
Text Analysis Conference (TAC) (previously called
the Document Understanding Conference (DUC))
(Nat, 2010). A major theme of this conference is
multi-document summarization: machine summa-
rization of sets of related documents, sometimes
query-focused and sometimes generic. The sum-
marizers are judged by how well the summaries
match human-generated summaries in either auto-
matic metrics such as ROUGE (Lin and Hovy, 2003)
or manual metrics such as responsiveness or pyra-
mid evaluation (Nenkova et al., 2007). Typically the
systems are ranked by their average score over all
document sets.

Ranking by average score is quite appropriate un-
der certain statistical hypotheses, for example, when
each sample is drawn from a distribution which
differs from the distribution of other samples only
through a location shift (Randles and Wolfe, 1979).
However, a non-parametric (rank-based) analysis of
variance on the summarizers’ scores on each docu-
ment set revealed an impossibly small p-value (less

Figure 1: Confidence Intervals from a non-parametric
Tukey’s honestly significant difference test for 46 TAC
2010 update document sets. The blue confidence interval
(for document set d1032) does not overlap any of the 30
red intervals. Hence, the test concludes that 30 document
sets have mean significantly different from the mean of
d1032.
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Figure 2: Overall Responsiveness scores.

Figure 3: Linguistic scores.

Figure 4: Pyramid scores.

Figure 5: ROUGE-2 scores for the TAC 2010 update
summary task, organized by document set (y-axis) and
summarizer (x-axis). The 51 summarizers fall into two
distinct groups: machine systems (first 43 columns) and
humans (last 8 columns). Note that each human only
summarized half of the document sets, thus creating 23
missing values in each of the last 8 columns. Black is
used to indicate missing values in the last 8 columns and
low scores in the first 43 columns.

than 10−12 using Matlab’s kruskalwallis 1),
providing evidence that a summary’s score is not
independent of the document set. This effect can
be seen in Figure 1, showing the confidence bands,
as computed by a Tukey honestly significant differ-
ence test for each document set’s difficulty as mea-
sured by the mean rank responsiveness score for
TAC 2010. The test clearly shows that the summa-
rizer performances on different document sets have
different averages.

We further illustrate this in Figures 2 – 5, which
show the scores of various summarizers on vari-
ous document sets using standard human and au-
tomatic evaluation methods (Dang and Owczarzak,
2008) of overall responsiveness, linguistic quality,
pyramid scores, and ROUGE-2 using color to indi-
cate the value of the score. Some rows are clearly
darker, indicating overall lower scores for the sum-

1The Kruskal-Wallis test performs a one-way analysis of
variance of document-set differences after first converting the
summary scores for each sample to their ranks within the pooled
sample. Computed from the converted scores, the Kruskal-
Wallis test statistic is essentially the ratio of the between-group
sum of squares to the combined within-group sum of squares.
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maries of these documents, and the variances of the
scores differ row-by-row. These plots show qualita-
tively what the non-parametric analysis of variance
demonstrates statistically. While the data presented
was for the TAC 2010 update document sets, similar
results hold for all the TAC 2008, 2009, and 2010
data. Hence, it may be advantageous to measure
summarizer quality by accounting for heterogeneity
of documents within each test set. A non-parametric
paired test like the Wilcoxon signed-rank is one way
to do this. Another way would be paired t-tests.

In the paper (Conroy and Dang, 2008) the authors
noted that while there is a significant gap in perfor-
mance between machine systems and human sum-
marizers when measured by average manual met-
rics, this gap is not present when measured by the
averages of the best automatic metric (ROUGE). In
particular, in the DUC 2005-2007 data some systems
have ROUGE performance within the 95% confi-
dence intervals of several human summarizers, but
their pyramid, linguistic, and responsiveness scores
do not achieve this level of performance. Thus,
the inexpensive automatic metrics, as currently em-
ployed, do not predict well how machine summaries
compare to human summaries.

In this work we explore the use of document-
paired testing for summarizer comparison. Our main
approach is to consider each pair of two summa-
rizers’ sets of scores (over all documents) as a bal-
anced two-sample dataset, and to assess that pair’s
mean difference in scores through a two-sample T
or Wilcoxon test, paired or unpaired. Our goal has
been to confirm that human summarizer scores are
uniformly different and better on average than ma-
chine summarizer scores, and to rate the quality of
the statistical method (T or W, paired or unpaired)
by the consistency with which the human versus
machine scores show superior human performance.
Our hope is that paired testing, using either the stan-
dard paired two-sample t-test or the distribution-
free Wilcoxon signed-rank test, can provide greater
power in the statistical analysis of automatic metrics
such as ROUGE.

2 Size and Power of Tests

Statistical tests are generally compared by choosing
rejection thresholds to achieve a certain small prob-

ability of Type I error (usually as α = .05). Given
multiple tests with the same Type I error, one prefers
the test with the smallest probability of Type II error.
Since power is defined to be one minus the Type II
error probability, we prefer the test with the most
power. Recall that a test-statistic S depending on
available data-samples gives rise to a rejection re-
gion by defining rejection of the null hypothesis H0

as the event {S ≥ c} for a cutoff or rejection thresh-
old c chosen so that

P (S ≥ c) ≤ α

for all probability laws compatible with the null hy-
pothesis where the (nominal) significance level α
is chosen in advance by the statistician, usually as
α = .05. However, in many settings, the null hy-
pothesis comprises many possible probability laws,
as here where the null hypothesis is that the under-
lying probability laws for the score-samples of two
separate summarizers are equal, without specifying
exactly what that probability distribution is. In this
case, the significance level is an upper bound for the
attained size of the test, defined as supP∈H0

P (S ≥
c), the largest rejection probability P (S ≥ c)
achieved by any probability law compatible with the
null hypothesis. The power of the test then depends
on the specific probability law Q from the consid-
ered alternatives in HA. For each such Q, and given
a threshold c, the power for the test at Q is the re-
jection probability Q(S ≥ c). These definitions re-
flect the fact that the null and alternative hypothe-
ses are composite, that is, each consists of multiple
probability laws for the data. One of the advan-
tages of considering a distribution-free two-sample
test statistic such as the Wilcoxon is that the proba-
bility distribution for the statistic S is then the same
for all (continuous, or non-discrete) probability laws
P ∈ H0, so that one cutoff c serves for all of H0

with all rejection probabilities equal to α. 2

Two test statistics, say S and S̃, are generally
compared in terms of their powers at fixed alterna-
tives Q in the alternative hypothesis HA, when their
respective thresholds c, c∗ have been defined so that
the sizes of the respective tests, supP∈H0

P (S ≥
2The Wilcoxon test is not distribution-free for discrete data.

However, the discrete TAC data can be thought of as rounded
continuous data, rather than as truly discrete data.
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c) and supP∈H0
P (S̃ ≥ c∗), are approximately

equal. In this paper, the test statistics under consid-
eration are – in one-sided testing — the (unpaired)
two-sample t test with pooled sample variance (T ),
the paired two-sample t test (T p), and the (paired)
signed-rank Wilcoxon test (W ); and for two-sided
testing, S is defined by the absolute value of one
of these statistics. The thresholds c for the tests
can be defined either by theoretical distributions, by
large-sample approximations, or by data-resampling
(bootstrap) techniques, and (only) in the last case
are these thresholds data-dependent, or random. We
explain these notions with respect to the two-sample
data-structure in which the scores from the first sum-
marizer are denoted X1, . . . , Xn, where n is the
number of documents with non-missing scores for
both summarizers, and the scores from the second
summarizer are Y1, . . . , Yn. Let Zk = Xk − Yk
denote the document-wise differences between the
summarizers’ scores, and Z̄ = n−1

∑n
k=1 Zk be

their average. Then the paired statistics are defined
as

T p =
√
n(n− 1) Z̄/(

n∑

k=1

(Zk − Z̄)2)1/2

and

W =

n∑

k=1

sgn(Zk)R
+
k

where R+
k is the rank of |Zk| among

|Z1|, . . . , |Zn|. Note that under both null and alter-
native hypotheses, the variates Zk are assumed in-
dependent identically distributed (iid), while under
H0, the random variables Zk are symmetric about 0.

The t-statistic T p is ‘parametric’ in the sense that
exact theoretical calculations of probabilities P (a <
T p < b) depend on the assumption of normality of
the differences Zk, and when that holds, the two-
sided cutoff c = c(T p) is defined as the 1 − α/2
quantile of the tn−1 distribution with n − 1 degrees
of freedom. However, when n is moderately or
very large, the cutoff is well approximated by the
standard-normal 1 − α/2 quantile zα/2, and T p be-
comes approximately nonparametrically valid with
this cutoff, by the Central Limit Theorem. The
Wilcoxon signed-rank statistic W has theoretical
cutoff c = c(W ) which depends only on n, when-
ever the data Zk are continuously distributed; but for

large n, the cutoff is given simply as
√
n3/12 · zα/2.

When there are ties (as might be common in discrete
data), the calculation of cutoffs and p-values for
Wilcoxon becomes slightly more complicated and
is no longer fully nonparametric except in a large-
sample approximate sense.

The situation for the two-sample unpaired t-
statistic T currently used in TAC evaluation is not
so neat. Even when the two samples X = {Xk}nk=1

and Y = {Yk}nk=1 are independent, exact theoret-
ical distribution of cutoffs is known only under the
parametric assumption that the scores are normally
distributed (and in the case of the pooled-sample-
variance statistic, that Var(Xk) = Var(Yk).) How-
ever, an essential element of the summarization data
is the heterogeneity of documents. This means that
while {Xk}nk=1 can be viewed as iid scores when
documents are selected randomly – and not neces-
sarily equiprobably – from the ensemble of all pos-
sible documents, the Yk and Xk samples are de-
pendent. Still, the pairs {(Xk, Yk)}nk=1, and there-
fore the differences {Zk}nk=1, are iid which is what
makes paired testing valid. However, there is no the-
oretical distribution for T from which to calculate
valid quantiles c for cutoffs, and therefore the use of
the unpaired t-statistic cannot be recommended for
TAC evaluation.

What can be done in a particular dataset, like the
TAC summarization score datsets we consider, to
ascertain the approximate validity of theoretically
derived large-sample cutoffs for test statistics? In
the age of plentiful and fast computers, quite a lot,
through the powerful computational machinery of
the bootstrap (Efron and Tibshirani, 1993).

The idea of bootstrap hypothesis testing (Efron
and Tibshirani, 1993), (Bickel and Ren, 2001) is to
randomly sample with replacement (the rows with
non-missing data in) the dataset {(Xk, Yk)}nk=1 in
such a way as to generate representative data that
plausibly would have been seen if two-sample score
data had been generated from two equally effec-
tive summarizers with score distributional charac-
teristics like the pooled scores from the two ob-
served summarizers. We have done this in two dis-
tinct ways, each creating 2000 datasets with n paired
scores:

MC Monte Carlo Method. For each of many it-
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erations (in our case 2000), define a new
dataset {(X ′k, Y ′k)}nk=1 by independently swap-
ping Xk and Yk with probability 1/2. Hence,
(X ′k, Y

′
k) = (Xk, Yk) with probability 1/2 and

(Yk, Xk) with probability 1/2.

HB Hybrid MC/Bootstrap. For each of 2000
iterations, create a re-sampled dataset
{(X ′′k , Y ′′k )}nk=1 in the following way. First,
sample n pairs (Xk, Yk) with replacement
from the original dataset. Then, as above,
randomly swap the components of each pair,
each with 1/2 probability.

Both of these two methods can be seen to gener-
ate two-sample data satisfying H0, with each score-
sample’s distribution obtained as a mixture of the
distributions actually generating the X and Y sam-
ples. The empirical qth quantiles for a statistic
S = S(X,Y) such as |W | or |T p| are estimated
from the resampled data as F̂−1S (q), where F̂S(t) is
simply the fraction of times (out of 2000) that the
statistic S applied to the constructed dataset had a
value less than or equal to t. The upshot is that the
1 − α empirical quantile for S based on either of
these simulation methods serves as a data-dependent
cutoff c attaining approximate size α for all H0-
generated data. The MC and HB methods will be
employed in Section 4 to check the theoretical p-
values.

3 Relative Efficiency of W versus T p

Statistical theory does have something to say about
the comparative powers of paired W versus T p

statistics. These statistics have been studied (Ran-
dles and Wolfe, 1979), in terms of their asymp-
totic relative efficiency for location-shift alternatives
based on symmetric densities (f(z−ϑ) is a location-
shift of f(z)). For many pairs of parametric and
rank-based statistics S, S̃, including W and T p, the
following assertion has been proved for testing H0

at significance level α.
First assume the Zk are distributed according to

some density f(z − ϑ), where f(z) is a symmet-
ric function (f(−z) = f(z)). Next assume ϑ = 0
under H0. When n gets large the powers at any al-
ternatives with very small ϑ = γ/

√
n, γ 6= 0, can

be made asymptotically equal by using samples of

size n with statistic S and of size ρ · n with statistic
S̃. Here ρ = ARE(S, S̃) is a constant not depend-
ing on n or γ but definitely depending on f , called
asymptotic relative efficiency of S with respect to S̃.
(The smaller ρ < 1 is, the more statistic S̃ is pre-
ferred among the two.)

Using this definition, it is known (Randles and
Wolfe 1979, Sec. 5.4 leading up to Table 5.4.7 on
p. 167) that the Wilcoxon signed-rank statistic W
provides greater robustness and often much greater
efficiency than the paired T, with ARE which is 0.95
with f a standard normal density, and which is never
less than 0.864 for any symmmetric density f . How-
ever, in our context, continuous scores such as pyra-
mid exhibit document-specific score differences be-
tween summarizers which often have approximately
normal-looking histograms, and although the alter-
natives perhaps cannot be viewed as pure location
shifts, it is unsurprising in view of the ARE theory
cited above that the W and T paired tests have very
similar performance. Nevertheless, as we found by
statistical analysis of the TAC data, both are far su-
perior to the unpaired T-statistic, with either theoret-
ical or empirical bootstrapped p-values.

4 Testing Setup and Results

To evaluate our ideas, we used the TAC data from
2008-2010 and focused on three manual metrics
(overall responsiveness, pyramid score, and lin-
guistic quality score) and two automatic metrics
(ROUGE-2 and ROUGE-SU4). We make the as-
sumption, backed by both the scores given and com-
ments made by NIST summary assessors 3, that au-
tomatic summarization systems do not perform at
the human level of performance. As such, if a statis-
tic based on an automatic metric, such as ROUGE-
2, were to show fewer systems performing at human
level of performance than the statistic of averaging
scores, such a statistic would be preferable because

3Assessors have commented privately at the Text Analysis
Conference 2008, that while the origin of the summary is hid-
den from them, “we know which ones are machine generated.”
Thus, automatic summarization fails the Turing test of machine
intelligence (Turing, 1950). This belief is also supported by
(Conroy and Dang, 2008) and (Dang and Owczarzak, 2008). Fi-
nally, our own results show no matter how you compare human
and machine scores all machines systems score significantly
worse than humans.
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2008: 2145 =
(
66
2

)
pairs 2009: 1830 =

(
61
2

)
pairs 2010: 1275 =

(
51
2

)
pairs

Metric Unpair-T Pair-T Wilc. Unpair-T Pair-T Wilc. Unpair-T Pair-T Wilc.
Linguistic 1234 1416 1410 1000 1182 1173 841 939 934

Overall 1202 1353 1342 982 1149 1146 845 894 889
Pyramid 1263 1417 1418 1075 1238 1216 875 933 926

ROUGE-2 1243 1453 1459 1016 1182 1193 812 938 939
ROUGE-SU4 1333 1493 1507 1059 1241 1254 894 983 976

Table 1: Number of significant differences found when testing for the difference of all pairs of summarization systems
(including humans).

2008: 464 = 58× 8 pairs 2009: 424 = 53× 8 pairs 2010: 344 = 43× 8 pairs
Metric Unpair-T Pair-T Wilc. Unpair-T Pair-T Wilc. Unpair-T Pair-T Wilc.

Linguistic 464 464 464 424 424 424 344 344 344
Overall 464 464 464 424 424 424 344 344 344
Pyramid 464 464 464 424 424 424 344 344 344

ROUGE-2 375 409 402 323 350 341 275 309 305
ROUGE-SU4 391 418 414 354 378 373 324 331 328

Table 2: Number of significant differences resulting from 8 × (N − 8) tests for human-machine system means or
signed-rank comparisons.

of its greater power in the machine vs. human sum-
marization domain.

For each of these metrics, we first created a score
matrix whose (i, j)-entry represents the score for
summarizer j on document set i (these matrices gen-
erated the colorplots in Figures 2 – 5). We then per-
formed a Wilcoxon signed-rank test on certain pairs
of columns of this matrix (any pair consisting of one
machine system and one human summarizer). As a
baseline, we did the same testing with a paired and
an unpaired t-test. Each of these tests resulted in a
p-value, and we counted how many were less than
.05 and called these the significant differences.

The results of these tests (shown in Table 2),
were somewhat surprising. Although we expected
the nonparametric signed-rank test to perform better
than an unpaired t-test, we were surprised to see that
a paired t-test performed even better. All three tests
always reject the null hypotheses when human met-
rics are used. This is what we’d like to happen with
automatic metrics as well. As seen from the table,
the paired t-test and Wilcoxon signed-rank test offer
a good improvement over the unpaired t-test.

The results in Table 1 are less clear, but still posi-
tive. In this case, we are comparing pairs of machine
summarization systems. In contrast to the human vs.

machine case, we do not know the truth here. How-
ever, since the number of significant differences in-
creases with paired testing here as well, we believe
this also reflects the greater discriminatory power of
paired testing.

We now apply the Monte Carlo and Hybrid Monte
Carlo to check the theoretical p-values reported in
Tables 1 and 2. The empirical quantiles found
by these methods generally confirm the theoreti-
cal p-value test results reported there, especially
in Table 2. In the overall tallies of all compar-
isons (Table 1), it seems that the bootstrap results
(comparing only W and the un-paired T ) make
W look still stronger for linguistic and overall re-
sponsiveness versus the T ; but for the pyramid
and ROUGE scores, the bootstrap p-values bring T
slightly closer to W although it still remains clearly
inferior, achieving roughly 10% fewer rejections.

5 Conclusions and Future Work

In this paper we observed that summarization sys-
tems’ performance varied significantly across doc-
ument sets on the Text Analysis Conference (TAC)
data. This variance in performance suggested that
paired testing may be more appropriate than the
t-test currently employed at TAC to compare the
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performance of summarization systems. We pro-
posed a non-parametric test, the Wilcoxon signed-
rank test, as a robust more powerful alternative to
the t-test. We estimated the statistical power of the
t-test and the Wilcoxon signed-rank test by calcu-
lating the number of machine systems whose per-
formance was significantly different than that of hu-
man summarizers. As human assessors score ma-
chine systems as not achieving human performance
in either content or responsiveness, automatic met-
rics such as ROUGE should ideally indicate this dis-
tinction. We found that the paired Wilcoxon test
significantly increases the number of machine sys-
tems that score significantly different than humans
when the pairwise test is performed on ROUGE-2
and ROUGE-SU4 scores. Thus, we demonstrated
that the Wilcoxon paired test shows more statistical
power than the t-test for comparing summarization
systems.

Consequently, the use of paired testing should not
only be used in formal evaluations such as TAC, but
also should be employed by summarization devel-
opers to more accurately assess whether changes to
an automatic system give rise to improved perfor-
mance.

Further study needs to analyze more summariza-
tion metrics such as those proposed at the recent
NIST evaluation of automatic metrics, Automati-
cally Evaluating Summaries of Peers (AESOP) (Nat,
2010). As metrics become more sophisticated and
aim to more accurately predict human judgements
such as overall responsiveness and linguistic qual-
ity, paired testing seems likely to be a more power-
ful statistical procedure than the unpaired t-test for
head-to-head summarizer comparisons.

Throughout our research in this paper, we treated
each separate kind of scores on a document set as
data for one summarizer to be compared with the
same kind of scores for other summarizers. How-
ever, it might be more fruitful to treat all the scores
as multivariate data and compare the summarizers
that way. Multivariate statistical techniques such as
Principal Component Analysis may play a construc-
tive role in suggesting highly discriminating new
composite scores, perhaps leading to statistics with
even more power to measure a summary’s quality.

ROUGE was inspired by the success of the
BLEU (BiLingual Evaluation Understudy), an n-

gram based evaluation for machine translation (Pa-
pineni et al., 2002). It is likely that paired testing
may also be appropriate for BLEU as well and will
give additional discriminating power between ma-
chine translations and human translations.
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Abstract

We present a quasi-synchronous dependency
grammar (Smith and Eisner, 2006) for ma-
chine translation in which the leaves of the
tree are phrases rather than words as in pre-
vious work (Gimpel and Smith, 2009). This
formulation allows us to combine structural
components of phrase-based and syntax-based
MT in a single model. We describe a method
of extracting phrase dependencies from paral-
lel text using a target-side dependency parser.
For decoding, we describe a coarse-to-fine ap-
proach based on lattice dependency parsing of
phrase lattices. We demonstrate performance
improvements for Chinese-English and Urdu-
English translation over a phrase-based base-
line. We also investigate the use of unsuper-
vised dependency parsers, reporting encourag-
ing preliminary results.

1 Introduction

Two approaches currently dominate statistical ma-
chine translation (MT) research. Phrase-based mod-
els (Koehn et al., 2003) excel at capturing local
reordering phenomena and memorizing multi-word
translations. Models that employ syntax or syntax-
like representations (Chiang, 2005; Galley et al.,
2006; Zollmann and Venugopal, 2006; Huang et al.,
2006) handle long-distance reordering better than
phrase-based systems (Auli et al., 2009) but often re-
quire constraints on the formalism or rule extraction
method in order to achieve computational tractabil-
ity. As a result, certain instances of syntactic diver-
gence are more naturally handled by phrase-based
systems (DeNeefe et al., 2007).

In this paper we present a new way of combin-
ing the advantages of phrase-based and syntax-based
MT. We propose a model in which phrases are orga-
nized into a tree structure inspired by dependency

syntax. Instead of standard dependency trees in
which words are vertices, our trees have phrases as
vertices. We describe a simple heuristic to extract
phrase dependencies from an aligned parallel cor-
pus parsed on the target side, and use them to com-
pute target-side tree features. We define additional
string-to-tree features and, if a source-side depen-
dency parser is available, tree-to-tree features to cap-
ture properties of how phrase dependencies interact
with reordering.

To leverage standard phrase-based features along-
side our novel features, we require a formalism
that supports flexible feature combination and effi-
cient decoding. Quasi-synchronous grammar (QG)
provides this backbone (Smith and Eisner, 2006);
we describe a coarse-to-fine approach for decod-
ing within this framework, advancing substantially
over earlier QG machine translation systems (Gim-
pel and Smith, 2009). The decoder involves generat-
ing a phrase lattice (Ueffing et al., 2002) in a coarse
pass using a phrase-based model, followed by lat-
tice dependency parsing of the phrase lattice. This
approach allows us to feasibly explore the combined
search space of segmentations, phrase alignments,
and target phrase dependency trees.

Our experiments demonstrate an average im-
provement of +0.65 BLEU in Chinese-English
translation across three test sets and an improvement
of +0.75 BLEU in Urdu-English translation over
a phrase-based baseline. We also describe experi-
ments in which we replace supervised dependency
parsers with unsupervised parsers, reporting promis-
ing results: using a supervised Chinese parser and
a state-of-the-art unsupervised English parser pro-
vides our best results, giving an averaged gain of
+0.79 BLEU over the baseline. We also discuss how
our model improves translation quality and discuss
future possibilities for combining approaches to ma-
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chine translation using our framework.

2 Related Work

We previously applied quasi-synchronous grammar
to machine translation (Gimpel and Smith, 2009),
but that system performed translation fundamentally
at the word level. Here we generalize that model to
function on phrases, enabling a tighter coupling be-
tween the phrase segmentation and syntactic struc-
tures. We also present a decoder efficient enough to
scale to large data sets and present performance im-
provements in large-scale experiments over a state-
of-the-art phrase-based baseline.

Aside from QG, there have been many efforts
to use dependency syntax in machine translation.
Quirk et al. (2005) used a source-side dependency
parser and projected automatic parses across word
alignments in order to model dependency syntax on
phrase pairs. Shen et al. (2008) presented an exten-
sion to Hiero (Chiang, 2005) in which rules have
target-side dependency syntax and therefore enable
the use of a dependency language model.

More recently, researchers have sought the bene-
fits of dependency syntax while preserving the ad-
vantages of phrase-based models, such as efficiency
and coverage. Galley and Manning (2009) loos-
ened standard assumptions about dependency pars-
ing so that the efficient left-to-right decoding pro-
cedure of phrase-based translation could be retained
while a dependency language model is incorporated.
Carreras and Collins (2009) presented a string-to-
dependency system that permits non-projective de-
pendency trees (thereby allowing a larger space of
translations) and use a rule extraction procedure that
includes rules for every phrase in the phrase table.

We take an additional step in this direction by
working with dependency grammars on the phrases
themselves, thereby bringing together the structural
components of phrase-based and dependency-based
MT in a single model. While others have worked
on combining rules from multiple syntax-based sys-
tems (Liu et al., 2009) or using posteriors from mul-
tiple models to score translations (DeNero et al.,
2010), we are not aware of any other work that seeks
to directly integrate phrase-based and syntax-based
machine translation at the modeling level.1

1Dymetman and Cancedda (2010) present a formal analy-

3 Model

Given a sentence s and its dependency tree τs,
we formulate the translation problem as finding the
target sentence t∗, the segmentation γ∗ of s into
phrases, the segmentation φ∗ of t∗ into phrases, the
dependency tree τ∗φ on the target phrases φ∗, and the
one-to-one phrase alignment a∗ such that

〈t∗,γ∗,φ∗, τ∗φ,a∗〉= argmax
〈t,γ,φ,τφ,a〉

p(t,γ,φ, τφ,a |s, τs)

We use a linear model (Och and Ney, 2002):

p(t,γ,φ, τφ,a | s, τs) ∝
exp{θ>g(s, τs, t,γ,φ, τφ,a)}

where g is a vector of arbitrary feature functions on
the full set of structures and θ holds corresponding
feature weights. Table 1 summarizes our notation.

In modeling p(t,γ,φ, τφ,a | s, τs), we make
use of quasi-synchronous grammar (QG; Smith
and Eisner, 2006). Given a source sentence and
its parse, a QG induces a probabilistic monolingual
grammar over sentences “inspired” by the source
sentence and tree. We denote this grammar byGs,τs ;
its (weighted) language is the set of translations of s.

Quasi-synchronous grammar makes no restric-
tions on the form of the target monolingual gram-
mar, though dependency grammars have been used
in most previous applications of QG (Wang et al.,
2007; Das and Smith, 2009; Smith and Eisner,
2009), including previous work in MT (Smith and
Eisner, 2006; Gimpel and Smith, 2009). We pre-
viously presented a word-based machine translation
model based on a quasi-synchronous dependency
grammar. However, it is well-known in the MT com-
munity that translation quality is improved when
larger units are modeled. Therefore, we use a de-
pendency grammar in which the leaves are phrases
rather than words.

We define a phrase dependency grammar as a
model p(φ, τφ|t) over the joint space of segmen-
tations of a sentence into phrases and dependency
trees on the phrases.2 Phrase dependency grammars

sis of the problem of intersecting phrase-based and hierarchical
translation models, but do not provide experimental results.

2We restrict our attention to projective trees in this paper,
but the generalization to non-projective trees is easily made.
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s = 〈s1, . . . , sn〉 source language sentence
t = 〈t1, . . . , tm〉 target language sentence, translation of s
γ = 〈γ1, . . . , γn′〉 segmentation of s into phrases
∀i, γi = 〈sj , . . . , sk〉 s.t. γ1 · . . . · γn′ = s
φ = 〈φ1, . . . , φm′〉 segmentation of t into phrases
∀i, φi = 〈tj , . . . , tk〉 s.t. φ1 · . . . · φm′ = t
τs : {1, . . . , n} → {0, . . . , n} dependency tree on source words s, where τs(i) is the index of

the parent of word si (0 is the root, $)
τφ : {1, . . . ,m′} → {0, . . . ,m′} dependency tree on target phrases φ, where τφ(i) is the index of

the parent of phrase φi
a : {1, . . . ,m′} → {1, . . . , n′} one-to-one alignment from phrases in φ to phrases in γ
θ = 〈λ,ψ〉 parameters of the full model (λ = phrase-based, ψ = QPDG)

Table 1: Key notation.

have recently been used by Wu et al. (2009) for fea-
ture extraction for opinion mining. When used for
translation modeling, they allow us to capture phe-
nomena like local reordering and idiomatic transla-
tions within each phrase as well as long-distance re-
lationships among the phrases in a sentence.

We then define a quasi-synchronous phrase
dependency grammar (QPDG) as a conditional
model p(t,γ,φ, τφ,a | s, τs) that induces a prob-
abilistic monolingual phrase dependency grammar
over sentences inspired by the source sentence and
(lexical) dependency tree. The source and tar-
get sentences are segmented into phrases and the
phrases are aligned in a one-to-one alignment.

We note that we actually depart here slightly from
the original definition of QG. The alignment variable
in QG links target tree nodes to source tree nodes.
However, we never commit to a source phrase de-
pendency tree, instead using a source lexical depen-
dency tree output by a dependency parser, so our
alignment variable a is a function from target tree
nodes (phrases in φ) to source phrases in γ, which
might not be source tree nodes. The features in our
model may consider a large number of source phrase
dependency trees as long as they are consistent with
τs.

4 Features

Our model contains all of the standard phrase-based
features found in systems like Moses (Koehn et al.,
2007), including four phrase table probability fea-
tures, a phrase penalty feature, an n-gram language
model, a distortion cost, six lexicalized reordering
features, and a word penalty feature.

We now describe in detail the additional features

$← said : $← we should
$← said that $← has been
$← is a - us→ relations
$← will be $← he said
$← it is cross - strait→ relations
$← this is $← pointed out that
$← we must , and→ is
the→ united states the chinese→ government
the→ development of $← is the
the two→ countries $← said ,
he→ said : one - china→ principle
$← he said : sino - us→ relations

Table 2: Most frequent phrase dependencies with at least
2 words in one of the phrases (dependencies in which one
phrase is entirely punctuation are not shown). $ indicates
the root of the tree.

in our model that are used to score phrase depen-
dency trees. We shall refer to these as QPDG
features and will find it useful later to notation-
ally distinguish their feature weights from those of
the phrase-based model. We use λ for weights of
the standard phrase-based model features and ψ for
weights of the QPDG features. We include three cat-
egories of features, differentiated by what pieces of
structure they consider.

4.1 Target Tree Features

We first include features that only consider t, φ,
and τφ. These features can be categorized as “syn-
tactic language model” features (Shen et al., 2008;
Galley and Manning, 2009), though unlike previous
work our features model both the phrase segmenta-
tion and dependency structure. Typically, these sorts
of features are probabilities estimated from a corpus
parsed using a supervised parser. However, there do
not currently exist treebanks with annotated phrase
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,→ made up 0.057
he→ made up 0.021

supreme court→ made up 0.014
court→ made up 0.014

in september 2000→ made up 0.014
in september 2000 ,→ made up 0.014

made up← of 0.065
made up← . 0.029
made up← , 0.016
made up← mind to 0.01

Table 3: Most probable child phrases for the parent
phrase “made up” for each direction, sorted by the con-
ditional probability of the child phrase given the parent
phrase and direction.

dependency trees.
Our solution is to use a standard supervised de-

pendency parser and extract phrase dependencies us-
ing bilingual information.3 We begin by obtaining
symmetrized word alignments and extracting phrase
pairs using the standard heuristic from phrase-based
MT (Koehn et al., 2003). Given the set of extracted
phrase pairs for a sentence, denote by W the set of
unique target-side phrases among them. We parse
the target sentence with a dependency parser and, for
each pair of phrases u, v ∈ W , we extract a phrase
dependency (along with its direction) if u and v do
not overlap and there is at least one lexical depen-
dency between a word in u and a word in v. If there
are lexical dependencies in both directions, we ex-
tract a phrase dependency only for the single longest
one. Since we use a projective dependency parser,
the longest lexical dependency between two phrases
is guaranteed to be unique. Table 2 shows a listing
of the most frequent phrase dependencies extracted
(lexical dependencies are omitted).

We note that during training we never explicitly
commit to any single phrase dependency tree for a
target sentence. Rather, we extract phrase depen-
dencies from all phrase dependency trees consis-
tent with the word alignments and the lexical de-
pendency tree. Thus we treat phrase dependency
trees analogously to phrase segmentations in stan-
dard phrase extraction.

We perform this procedure on all sentence pairs
in the parallel corpus. Given a set of extracted

3For a monolingual task, Wu et al. (2009) used a shal-
low parser to convert lexical dependencies from a dependency
parser into phrase dependencies.

phrase dependencies of the form 〈u, v, d〉, where
u is the head phrase, v is the child phrase, and
d ∈ {left , right} is the direction, we then estimate
conditional probabilities p(v|u, d) using relative fre-
quency estimation. Table 3 shows the most probable
child phrases for an example parent phrase. To com-
bat data sparseness, we perform the same procedure
with each word replaced by its word cluster ID ob-
tained from Brown clustering (Brown et al., 1992).

We include a feature in the model for the sum of
the scaled log-probabilities of each attachment:

m′∑

i=1

max
(

0, C + log p(φi|φτφ(i), d(i)
)

(1)

where d(i) = I[τφ(i)− i > 0] is the direction of the
dependency arc.

Although we use log-probabilities in this feature
function, we first add a constant C to each to ensure
they are all positive.4 The max expression protects
unseen parent-child phrase dependencies from caus-
ing the score to be negative infinity. Our motivation
is a desire for the features to be used to prefer one
derivation over another but not to rule out a deriva-
tion completely if it merely happens to contain a de-
pendency unobserved in the training data.

We also include lexical weighting features simi-
lar to those used in phrase-based MT (Koehn et al.,
2003). Whenever we extract a phrase dependency,
we extract the longest lexical dependency contained
within it. For all 〈parent, child, direction〉 lexi-
cal dependency tuples 〈x, y, d〉, we estimate condi-
tional probabilities plex (y|x, d) from the parsed cor-
pus using relative frequency estimation. Then, for a
phrase dependency with longest lexical dependency
〈x, y, d〉, we add a feature for plex (y|x, d) to the
model, using a formula similar to Eq. 1. Different
instances of a phrase dependency may have different
lexical dependencies extracted with them. We add
the lexical weight for the most frequent, breaking
ties by choosing the lexical dependency that maxi-
mizes p(y|x, d), as was also done by Koehn et al.
(2003).

In all, we include 4 target tree features: one for
phrase dependencies, one for lexical dependencies,

4The reasoning here is that whenever we use a phrase de-
pendency that we have observed in the training data, we want to
boost the score of the translation. If we used log-probabilities,
each observed dependency would incur a penalty.
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Figure 1: String-to-tree configurations; each is associated
with a feature that counts its occurrences in a derivation.

and the same features computed from a transformed
version of the corpus in which each word is replaced
by its Brown cluster.

4.2 String-to-Tree Configurations

We consider features that count instances of reorder-
ing configurations involving phrase dependencies.
In addition to the target-side structures, these fea-
tures consider γ and a, though not s or τs. For ex-
ample, when building a parent-child phrase depen-
dency with the child to the left, one feature value is
incremented if their aligned source-side phrases are
in the same order. This configuration is the leftmost
in Fig. 1; we include features for the other three con-
figurations there as well, for a total of 4 features in
this category.

4.3 Tree-to-Tree Configurations

We include features that consider s, γ, and τs in ad-
dition to t, φ, and τφ. We begin with features for
each of the quasi-synchronous configurations from
Smith and Eisner (2006), adapted to phrase depen-
dency grammars. That is, for a parent-child pair
〈τφ(i), i〉 in τφ, we consider the relationship be-
tween a(τφ(i)) and a(i), the source-side phrases
to which τφ(i) and i align. We use the follow-
ing named configurations from Smith and Eisner:
root-root, parent-child, child-parent, grandparent-
grandchild, sibling, and c-command.5 We define a
feature to count instances of each of these configu-
rations, including an additional feature for “other”
configurations that do not fit into these categories.6

When using a QPDG, there are multiple ways
to compute tree-to-tree configuration features, since

5See Fig. 3 in Smith and Eisner (2006) for illustrations.
6We actually include two versions of each configuration fea-

ture other than “root-root”: one for the source phrases being in
the same order as the target phrases and one for them being
swapped.

Input: sentence s, dependency parse τs, coarse
parameters λM , fine parameters 〈λ,ψ〉

Output: translation t

LMERT ← GenerateLattices (s, λM );
LFB ← FBPrune (LMERT, λM );
〈t,γ,φ, τφ,a〉 ← QGDEPPARSE(LFB, 〈λ,ψ〉);
return t;

Algorithm 1: CoarseToFineDecode

we use a phrase dependency tree for the target side,
a lexical dependency tree for the source side, and
a phrase alignment. We use the following heuristic
approach. Given a pair of source words, one with
index j in source phrase a(τφ(i)) and the other with
index k in source phrase a(i), we have a parent-
child configuration if τs(k) = j; if τs(j) = k, a
child-parent configuration is present. In order for the
grandparent-grandchild configuration to be present,
the intervening parent word must be outside both
phrases. For sibling and other c-command config-
urations, the shared parent or ancestor must also be
outside both phrases.

After obtaining a list of all configurations present
for each pair of words 〈j, k〉, we fire the feature for
the single configuration corresponding to the max-
imum distance |j − k|. If no configurations are
present between any pair of words, the “other” fea-
ture fires. Therefore, only one configuration feature
fires for each phrase dependency attachment.

Finally, we include features that consider the
dependency path distance between phrases in the
source-side dependency tree that are aligned to
parent-child pairs in τφ. We include a feature that
sums, for each target phrase i, the inverse of the
minimum undirected path length between each word
in a(i) and each word in τφ(a(i)). The minimum
undirected path length is defined as the number of
dependency arcs that must be crossed to travel from
one word to the other in τs. We use one feature
for undirected path length and one other for directed
path length. If there is no (un)directed path from a
word in a(i) to a word in τφ(a(i)), we use∞ as the
minimum length.

There are 15 features in this category, for a total
of 23 QPDG features.
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5 Decoding

For a QPDG model, decoding consists of finding
the highest-scoring tuple 〈t,γ,φ, τφ,a〉 for an in-
put sentence s and its parse τs, i.e., finding the most
probable derivation under the s/τs-specific grammar
Gs,τs . We follow Gimpel and Smith (2009) in con-
structing a lattice to representGs,τs and using lattice
parsing to search for the best derivation, but we con-
struct the lattice differently and employ a coarse-to-
fine strategy (Petrov, 2009) to speed up decoding.

It has become common in recent years for MT re-
searchers to exploit efficient data structures for en-
coding concise representations of the pruned search
space of the model, such as phrase lattices for
phrase-based MT (Ueffing et al., 2002; Macherey
et al., 2008; Tromble et al., 2008). Each edge in
a phrase lattice corresponds to a phrase pair and
each path through the lattice corresponds to a tuple
〈t,γ,φ,a〉 for the input s. Decoding for a phrase
lattice consists of finding the highest-scoring path,
which is done using dynamic programming. To also
maximize over τφ, we perform lattice dependency
parsing, which allows us to search over the space of
tuples 〈t,γ,φ,a, τφ〉. Given the lattice and Gs,τs ,
lattice parsing is a straightforward generalization of
the standard arc-factored dynamic programming al-
gorithm from Eisner (1996).

The lattice parsing algorithm requires O(E2V )
time and O(E2 + V E) space, where E is the num-
ber of edges in the lattice and V is the number of
nodes.7 Typical phrase lattices might easily contain
tens of thousands of nodes and edges, making exact
search prohibitively expensive for all but the small-
est lattices. So, we use approximate search based on
coarse-to-fine decoding. We now discuss each step
of this procedure; an outline is shown as Alg. 1.

Pass 1: Lattice Pruning After generating phrase
lattices using a phrase-based MT system, we prune
lattice edges using forward-backward pruning (Six-
tus and Ortmanns, 1999), which has also been used
in previous work using phrase lattices (Tromble et
al., 2008). This pruning method computes the max-
marginal for each lattice edge, which is the score of
the best full path that uses that edge. Max-marginals

7To prevent confusion, we use the term edge to refer to a
phrase lattice edge and arc to refer to a parent-child dependency
in the phrase dependency tree.

offer the advantage that the best path in the lattice is
preserved during pruning. For each lattice, we use
a grid search to find the most liberal threshold that
leaves fewer than 1000 edges in the resulting lattice.
As complexity is quadratic in E, forcing E to be
less than 1000 improves runtime substantially. Af-
ter pruning, the lattices still contain more than 1016

paths on average and oracle BLEU scores are typi-
cally 12-15 points higher than the model-best paths.

Pass 2: Parent Ranking Given a pruned lattice,
we then remove some candidate dependency arcs
from consideration. It is common in dependency
parsing to use a coarse model to rank the top k par-
ents for each word, and to only consider these during
parsing (Martins et al., 2009; Bergsma and Cherry,
2010). Unlike string parsing, our phrase lattices im-
pose several types of constraints on allowable arcs.
For example, each node in the phrase lattice is an-
notated with a coverage vector—a bit vector indicat-
ing which words in the source sentence have been
translated—which implies a topological ordering of
the nodes. To handle constraints like these, we first
use the Floyd-Warshall algorithm (Floyd, 1962) to
find the best score between every pair of nodes in
the lattice. This algorithm also tells us whether each
edge is reachable from each other edge, allowing
us to immediately prune dependency arcs between
edges that are unreachable from each other.

After eliminating impossible arcs, we turn to
pruning away unlikely ones. In standard (string) de-
pendency parsing, every word is assigned a parent.
In lattice parsing, however, most lattice edges will
not be assigned any parent. Certain lattice edges are
much more likely to be contained within paths, so
we allow some edges to have more candidate parent
edges than others. We introduce hyperparameters
α, β, and µ to denote, respectively, the minimum,
maximum, and average number of parent edges to
be considered for each lattice edge (α ≤ µ ≤ β).
We rank the full set of E2 arcs according to their
scores (using the QPDG features and their weights
ψ) and choose the top µE of these arcs while en-
suring that each edge has at least α and at most β
potential parent edges.

This step reduces the time complexity from
O(E2V ) to O(µEV ), where µ < E. In our ex-
periments, we set µ = 300, α = 100, and β = 400.
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Input: tuning set D = 〈S, T 〉, initial weights λ0 for
coarse model, initial weights ψ0 for
additional features in fine model

Output: coarse model learned weights: λM , fine
model learned weights: 〈λ∗,ψ∗〉

λM ← MERT (S, T , λ0, 100, MOSES);
LMERT ← GenerateLattices (S, λM );
LFB ← FBPrune (LMERT, λM );
〈λ∗,ψ∗〉 ←
MERT (LFB, T , 〈λM ,ψ0〉, 200, QGDEPPARSE);

return λM , 〈λ∗,ψ∗〉;
Algorithm 2: CoarseToFineTrain

Pass 3: Lattice Dependency Parsing After com-
pleting the coarse passes, we parse using bottom-up
dynamic programming based on the agenda algo-
rithm (Nederhof, 2003; Eisner et al., 2005). We only
consider arcs that survived the filtering in Pass 2.
We weight agenda items by the sum of their scores
and the Floyd-Warshall best path scores both from
the start node of the lattice to the beginning of the
item and the end of the item to any final node. This
heuristic helps us to favor exploration of items that
are highly likely under the phrase-based model.

If the score of the partial structure can only get
worse when combining it with other structures (e.g.,
in a PCFG), then the first time that we pop an item
of type GOAL from the agenda, we are guaranteed
to have the best parse. However, in our model, some
features are positive and others negative, making this
property no longer hold; as a result, GOAL items
may be popped out of order from the agenda. There-
fore, we use an approximation, simply popping G
GOAL items from the agenda and then stopping. The
items are sorted by their scores and the best is re-
turned by the decoder (or the k best in the case of
MERT). In our experiments, we set G = 4000.

The combined strategy yields average decoding
times in the range of 30 seconds per sentence, which
is comparable to other syntax-based MT systems.

6 Training

For tuning the coarse and fine parameters, we use
minimum error rate training (MERT; Och, 2003) in
a procedure shown as Alg. 2. We first use MERT to
train parameters for the coarse phrase-based model
used to generate phrase lattices. Then, after gener-
ating the lattices, we prune them and run MERT a

second time to tune parameters of the fine model,
which includes all phrase-based and QPDG param-
eters. The arguments to MERT are a vector of source
sentences (or lattices), a vector of target sentences,
the initial parameter values, the size of the k-best
list, and finally the decoder. We initialize λ to the
default Moses feature weights and for ψ we ini-
tialize the two target phrase dependency weights to
0.004, the two lexical dependency weights to 0.001,
and the weights for all configuration features to 0.0.
Our training procedure requires two executions of
MERT, and the second typically takes more itera-
tions to converge (10 to 20 is typical) than the first
due to the use of a larger feature set and increased
possibility for search error due to the enlarged search
space.

7 Experiments

For experimental evaluation, we consider Chinese-
to-English (ZH-EN) and Urdu-to-English (UR-
EN) translation and compare our system to
Moses (Koehn et al., 2007). For ZH-EN, we
used 303k sentence pairs from the FBIS corpus
(LDC2003E14). We segmented the Chinese data
using the Stanford Chinese segmenter in “CTB”
mode (Chang et al., 2008), giving us 7.9M Chinese
words and 9.4M English words. For UR-EN, we
used parallel data from the NIST MT08 evaluation
consisting of 1.2M Urdu words and 1.1M English
words.

We trained a baseline Moses system using de-
fault settings and features. Word alignment was
performed using GIZA++ (Och and Ney, 2003) in
both directions and the grow-diag-final-and
heuristic was used to symmetrize the alignments.
We used a max phrase length of 7 when extracting
phrases. Trigram language models were estimated
using the SRI language modeling toolkit (Stolcke,
2002) with modified Kneser-Ney smoothing (Chen
and Goodman, 1998). To estimate language models
for each language pair, we used the English side of
the parallel corpus concatenated with 200M words
of randomly-selected sentences from the Gigaword
v4 corpus (excluding the NY Times and LA Times).

We used this baseline Moses system to gener-
ate phrase lattices for our system, so our model in-
cludes all of the Moses features in addition to the
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MT03 (tune) MT02 MT05 MT06 Average
Moses 33.84 33.35 31.81 28.82 31.33
QPDG (TT) 34.63 (+0.79) 34.10 (+0.75) 32.15 (+0.34) 29.33 (+0.51) 31.86 (+0.53)
QPDG (TT+S2T+T2T) 34.98 (+1.14) 34.26 (+0.91) 32.34 (+0.53) 29.35 (+0.53) 31.98 (+0.65)

Table 4: Chinese-English Results (% BLEU).

QPDG features described in §4. In our experiments,
we compare our QPDG system (lattice parsing on
each lattice) to the Moses baseline (finding the best
path through each lattice). The conventional wis-
dom holds that hierarchical phrase-based transla-
tion (Chiang, 2005) performs better than phrase-
based translation for language pairs that require
large amounts of reordering, such as ZH-EN and
UR-EN. However, researchers have shown that this
performance gap diminishes when using a larger dis-
tortion limit (Zollmann et al., 2008) and may dis-
appear entirely when using a lexicalized reordering
model (Lopez, 2008; Galley and Manning, 2010).
So, we increase the Moses distortion limit from 6
(the default) to 10 and use Moses’ default lexical-
ized reordering model (Koehn et al., 2005).

We parsed the Chinese text using the Stanford
parser (Levy and Manning, 2003) and the English
text using TurboParser (Martins et al., 2009). We
note that computing our features requires parsing the
target (English) side of the parallel text, but not the
source side. We only need to parse the source side
of the tuning and test sets, and the only features that
look at the source-side parse are those from §4.3.

To obtain Brown clusters for the target tree fea-
tures in §4.1, we used code from Liang (2005).8

We induced 100 clusters from the English side of
the parallel corpus concatenated with 10M words of
randomly-selected Gigaword sentences. Only words
that appeared at least twice in this data were con-
sidered during clustering. An additional cluster was
created for all other words; this allowed us to use
phrase dependency cluster features even for out-of-
vocabulary words. We used a max phrase length of
7 when extracting phrase dependencies to match the
max phrase length used in phrase extraction. Ap-
proximately 87M unique phrase dependencies were
extracted from the ZH-EN data and 7M from the
UR-EN data.

We tuned the weights of our model using the pro-

8http://www.cs.berkeley.edu/˜pliang/
software

Dev (tune) MT09
Moses 24.21 23.56
QPDG (TT+S2T) 24.94 (+0.73) 24.31 (+0.75)

Table 5: Urdu-English Results (% BLEU).

cedure described in §6. For ZH-EN we used MT03
for tuning and MT02, MT05, and MT06 for test-
ing. For UR-EN we used half of the documents (882
sentence pairs) from the MT08 test set for tuning
(“Dev”) and MT09 for testing. We evaluated trans-
lation output using case-insensitive IBM BLEU (Pa-
pineni et al., 2001).

7.1 Results
Results for ZH-EN and UR-EN translation are
shown in Tables 4 and 5. We show results when us-
ing only the target tree features from §4.1 (TT), as
well as when adding the string-to-tree features from
§4.2 (S2T) and the tree-to-tree features from §4.3
(T2T). We note that T2T features are unavailable for
UR-EN because we do not have an Urdu parser. We
find that we can achieve moderate but consistent im-
provements over the baseline Moses system, for an
average increase of 0.65 BLEU points for ZH-EN
and 0.75 for UR-EN.

Fig. 2 shows an example sentence from the MT05
test set along with its translation output and deriva-
tions produced by Moses and our QPDG system
with the full feature set. This example shows the
kind of improvements that our system makes. In
Chinese, modifiers such as prepositional phrases and
clauses are generally placed in front of the words
they modify, frequently the opposite of English. In
addition, Chinese occasionally uses postpositions
where English uses prepositions. The Chinese sen-
tence in Fig. 2 exhibits both of these, as the preposi-
tional phrase “after the Palestinian election” appears
before the verb “strengthen” in the Chinese sen-
tence and “after” appears as a postposition. Moses
(Fig. 2(a)) does not properly reorder the preposi-
tional phrase, while our system (Fig. 2(b)) properly
handles both reorderings.9 We shall discuss these

9Our system’s derivation is not perfect, in that “in” is incor-
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Figure 2: (a) Moses translation output along with γ, φ, and a. An English gloss is shown above the Chinese sentence
and above the gloss is shown the dependency parse from the Stanford parser. (b) QPDG system output with additional
structure τφ. (c) reference translations.

types of improvements further in §8.

7.2 Unsupervised Parsing

Our results thus far use supervised parsers for both
Chinese and English, but parsers are only available
for a small fraction of the languages we would like
to translate. Fortunately, unsupervised dependency
grammar induction has improved substantially in re-
cent years due to a flurry of recent research. While
attachment accuracies on standard treebank test sets
are still relatively low, it may be the case that even
though unsupervised parsers do not match treebank
annotations very well, they may perform well when
used for extrinsic applications. We believe that
syntax-based MT offers a compelling platform for
development and extrinsic evaluation of unsuper-
vised parsers.

In this paper, we use the standard dependency
model with valence (DMV; Klein and Manning,
2004). When training is initialized using the out-
put of a simpler, concave dependency model, the

rectly translated and reordered, but the system was nonetheless
able to use it to improve the fluency of the output.

DMV can approach state-of-the-art unsupervised ac-
curacy (Gimpel and Smith, 2011). For English, the
resulting parser achieves 53.1% attachment accu-
racy on Section 23 of the Penn Treebank (Marcus et
al., 1993), which approaches the 55.7% accuracy of
a recent state-of-the-art unsupervised model (Blun-
som and Cohn, 2010). The Chinese parser, ini-
tialized and trained the same way, achieves 44.4%,
which is the highest reported accuracy on the Chi-
nese Treebank (Xue et al., 2004) test set.

Most unsupervised grammar induction models
assume gold standard POS tags and sentences
stripped of punctuation. We use the Stanford tag-
ger (Toutanova et al., 2003) to obtain tags for both
English and Chinese, parse the sentences without
punctuation using the DMV, and then attach punc-
tuation tokens to the root word of the tree in a post-
processing step. For English, the predicted parents
agreed with those of TurboParser for 48.7% of the
tokens in the corpus.

We considered all four scenarios: supervised and
unsupervised English parsing paired with supervised
and unsupervised Chinese parsing. Table 6 shows
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EN
unsupervised supervised

ZH unsupervised 31.18 (33.76) 31.86 (34.78)
supervised 32.12 (34.74) 31.98 (34.98)
Moses 31.33 (33.84)

Table 6: Results when using unsupervised dependency
parsers. Cells contain averaged % BLEU on the three test
sets and % BLEU on tuning data (MT03) in parentheses.

Feature Initial Learned
Left child, same order 9.0 8.9
Left child, swap phrases 1.1 0.0
Right child, same order 7.3 7.3
Right child, swap phrases 1.6 2.3
Root-root 0.4 0.8
Parent-child 4.2 6.1
Child-parent 1.2 0.4
Grandparent-grandchild 1.0 0.2
Sibling 2.4 1.9
C-command 6.1 6.7
Other 1.5 0.9

Table 7: Average feature values across best translations
of sentences in the MT03 tuning set, both before MERT
(column 2) and after (column 3). “Same” versions of tree-
to-tree configuration features are shown; the rarer “swap”
features showed a similar trend.

BLEU scores averaged over the three test sets with
tuning data BLEU in parentheses. Surprisingly, we
achieve our best results when using the unsupervised
English parser in place of the supervised one (+0.79
over Moses), while keeping the Chinese parser su-
pervised. Competitive performance is also found
by using the unsupervised Chinese parser and super-
vised English parser (+0.53 over Moses).

However, when using unsupervised parsers for
both languages, performance was below that of
Moses. During tuning for this configuration, we
found that MERT struggled to find good parameter
estimates, typically converging to suboptimal solu-
tions after a small number of iterations. We believe
this is due to the large number of features (37), the
noise in the parse trees, and known instabilities of
MERT. In future work we plan to experiment with
training algorithms that are more stable and that can
handle larger numbers of features.

8 Analysis

To understand what our model learns during MER
training, we computed the feature vectors of the best
derivation for each sentence in the tuning data at

both the start and end of tuning. Table 7 shows
these feature values averaged across all tuning sen-
tences. The first four features are the configurations
from Fig. 1, in order from left to right. From these
rows, we can observe that the model learns to en-
courage swapping when generating right children
and penalize swapping for left children. In addi-
tion to objects, right children in English are often
prepositional phrases, relative clauses, or other mod-
ifiers; as we noted above, Chinese generally places
these modifiers before their heads, requiring reorder-
ing during translation. Here the model appears to be
learning this reordering behavior.

From the second set of features, we see that the
model learns to favor producing dependency trees
that are mostly isomorphic to the source tree, by fa-
voring root-root and parent-child configurations at
the expense of most others.

9 Discussion

In looking at BLEU score differences between the
two systems, the unigram precisions were typically
equal or only slightly different, while precisions for
higher-order n-grams contained the bulk of the im-
provement. This suggests that our system is not
finding substantially better translations for individ-
ual words in the input, but rather is focused on re-
ordering the existing translations. This is not sur-
prising given our choice of features, which focus on
syntactic language modeling and syntax-based re-
ordering. The obvious next step for our framework
is to include bilingual rules that include source syn-
tax (Quirk et al., 2005), target syntax (Shen et al.,
2008), and syntax on both sides. Our framework al-
lows integrating together all of these and other types
of structures, with the ultimate goal of combining
the strengths of multiple approaches to translation
in a single model.
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Abstract

Preordering of source side sentences has
proved to be useful in improving statistical
machine translation. Most work has used a
parser in the source language along with rules
to map the source language word order into
the target language word order. The require-
ment to have a source language parser is a ma-
jor drawback, which we seek to overcome in
this paper. Instead of using a parser and then
using rules to order the source side sentence
we learn a model that can directly reorder
source side sentences to match target word or-
der using a small parallel corpus with high-
quality word alignments. Our model learns
pairwise costs of a word immediately preced-
ing another word. We use the Lin-Kernighan
heuristic to find the best source reordering ef-
ficiently during training and testing and show
that it suffices to provide good quality reorder-
ing.

We show gains in translation performance
based on our reordering model for translating
from Hindi to English, Urdu to English (with
a public dataset), and English to Hindi. For
English to Hindi we show that our technique
achieves better performance than a method
that uses rules applied to the source side En-
glish parse.

1 Introduction

Languages differ in the way they order words to pro-
duce sentences representing the same meaning. Ma-
chine translation systems need to reorder words in
the source sentence to produce fluent output in the

target language that preserves the meaning of the
source sentence.

Current phrase based machine translation systems
can capture short range reorderings via the phrase
table. Even the capturing of these local reordering
phenomena is constrained by the amount of training
data available. For example, if adjectives precede
nouns in the source language and follow nouns in the
target language we still need to see a particular ad-
jective noun pair in the parallel corpus to handle the
reordering via the phrase table. Phrase based sys-
tems also rely on the target side language model to
produce the right target side order. This is known
to be inadequate (Al-Onaizan and Papineni, 2006),
and this inadequacy has spurred various attempts to
overcome the problem of handling differing word
order in languages.

One approach is through distortion models, that
try to model which reorderings are more likely
than others. The simplest models just penalize
long jumps in the source sentence when producing
the target sentence. These models have also been
generalized (Al-Onaizan and Papineni, 2006; Till-
man, 2004) to allow for lexical dependencies on the
source. While these models are simple, and can
be integrated with the decoder they are insufficient
to capture long-range reordering phenomena espe-
cially for language pairs that differ significantly.

The weakness of these simple distortion models
has been overcome using syntax of either the source
or target sentence (Yamada and Knight, 2002; Gal-
ley et al., 2006; Liu et al., 2006; Zollmann and Venu-
gopal, 2006). While these methods have shown to
be useful in improving machine translation perfor-
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mance they generally involve joint parsing of the
source and target language which is significantly
more computationally expensive when compared to
phrase based translation systems. Another approach
that overcomes this weakness, is to to reorder the
source sentence based on rules applied on the source
parse (either hand written or learned from data) both
when training and testing (Collins et al., 2005; Gen-
zel, 2010; Visweswariah et al., 2010).

In this paper we propose a novel method for deal-
ing with the word order problem that is efficient and
does not rely on a source or target side parse being
available. We cast the word ordering problem as a
Traveling Salesman Problem (TSP) based on previ-
ous work on word-based and phrased-based statis-
tical machine translation (Tillmann and Ney, 2003;
Zaslavskiy et al., 2009). Words are the cities in the
TSP and the objective is to learn the distance be-
tween words so that the shortest tour corresponds to
the ordering of the words in the source sentence in
the target language. We show that the TSP distances
for reordering can be learned from a small amount
of high-quality word alignment data by means of
pairwise word comparisons and an informative fea-
ture set involving words and part-of-speech (POS)
tags adapted and extended from prior work on de-
pendency parsing (McDonald et al., 2005b). Ob-
taining high-quality word alignments that we require
for training is fairly easy compared with obtaining a
treebank required to obtain parses for use in syntax
based methods.

We show experimentally that our reordering
model, even when used to reorder sentences for
training and testing (rather than being used as an
additional score in the decoder) improves machine
translation performance for: Hindi → English, En-
glish→Hindi, and Urdu→ English. Although Urdu
is similar to Hindi from the point of reordering phe-
nomena we include it in our experiments since there
are publicly available datasets for Urdu-English. For
English→ Hindi we obtained better machine trans-
lation performance with our reordering model as
compared to a method that uses reordering rules ap-
plied to the source side parse.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work and places our work in
context. Section 3 outlines reordering issues due
to syntactic differences between Hindi and English.

Section 4 presents our reordering model, Section 5
presents experimental results and Section 6 presents
our conclusions and possible future work.

2 Related work

There have been several studies demonstrating im-
proved machine translation performance by reorder-
ing source side sentences based on rules applied to
the source side parse during training and decoding.
Much of this work has used hand written rules and
several language pairs have been studied e.g German
to English (Collins et al., 2005), Chinese to English
(Wang et al., 2007), English to Hindi (Ramanathan
et al., 2009), English to Arabic (Badr et al., 2009)
and Japanese to English (Lee et al., 2010). There
have also been some studies where the rules are
learned from the data (Genzel, 2010; Visweswariah
et al., 2010; Xia and McCord, 2004). In addition
there has been work (Yamada and Knight, 2002;
Zollmann and Venugopal, 2006; Galley et al., 2006;
Liu et al., 2006) which uses source and/or target
side syntax in a Context Free Grammar framework
which results in machine translation decoding being
considered as a parsing problem. In this paper we
propose a model that does not require either source
or target side syntax while also preserving the effi-
ciency of reordering techniques based on rules ap-
plied to the source side parse.

In work that is closely related to ours, (Tromble
and Eisner, 2009) formulated word reordering as a
Linear Ordering Problem (LOP), an NP-hard permu-
tation problem. They learned LOP model weights
capable of assigning a score to every possible per-
mutation of the source language sentence from an
aligned corpus by using a averaged perceptron learn-
ing model. The key difference between our model
and the model in (Tromble and Eisner, 2009) is that
while they learn costs of a word wi appearing any-
where before wj , we learn costs of wi immediately
preceding wj . This results in more compact models
and (as we show in Section 5) better models.

Our model results in us having to solve a TSP
instance. The relation between the TSP and ma-
chine translation decoding has been explored before.
(Knight, 1999) showed that TSP is a sub-class of MT
decoding and thus established that the latter is NP-
hard. (Zaslavskiy et al., 2009) casts phrase-based
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decoding as a TSP and they show favorable speed
performance trade-offs compared with Moses, an
existing state-of-the-art decoder. In (Tillmann and
Ney, 2003), a beam-search algorithm used for TSP
is adapted to work with an IBM-4 word-based model
and phrase-based model respectively. As opposed
to calculating TSP distances from existing machine
translation components ( viz. the translation, dis-
tortion and language model probabilities) we learn
model weights to reorder source sentences to match
target word order using an informative feature set
adapted from graph-based dependency parsing (Mc-
Donald et al., 2005a).

3 Hindi-English reordering issues

This section provides a brief survey of constructions
that the two languages in question differ as well as
have in common. (Ramanathan et al., 2009) notes
the following divergences:

• English follows SVO order while Hindi follows
SOV order

• English uses prepositions while Hindi uses
post-positions

• Hindi allows greater word order freedom

• Hindi has a relatively richer case-marking sys-
tem

In addition to these differences, (Visweswariah et
al., 2010) mention the similarity in word order in
the case of adjective noun sequences (some books
vs. kuch kitab).

4 Reordering model

Consider a source sentence w consisting of a se-
quence of n words w1, w2, ... wn that we would
like to reorder into the target language order. Given
a permutation π of the indices 1..n, let the candi-
date reordering be wπ1 , wπ2 , ..., wπn . Thus, πi de-
notes the index of the word in the source sentence
that maps to position i in the candidate reordering.
Clearly there are n! such permutations. Our reorder-
ing model assigns costs to candidate permutations
as:

C(π|w) =
∑

i

c(πi−1, πi).

The cost c(m,n) can be thought of as the cost of the
word at index m immediately preceding the word
with index n in the candidate reordering. In this pa-
per, we parametrize the costs as:

c(m,n) = θTΦ(w,m, n),

where θ is a learned vector of weights and Φ is a
vector of feature functions.

Given a source sentence w we reorder it accord-
ing to the permutation π that minimizes the cost
C(π|w). Thus, we would like our cost function
C(π|w) to be such that the correct reordering π∗ has
the lowest cost of all possible reorderings π. In Sec-
tion 4.1 we describe the features Φ that we use, and
in Section 4.2 we describe how we train the weights
θ to obtain a good reordering model.

Given our model structure, the minimization
problem that we need to solve is identical to solving
a Asymmetric Traveling Salesman Problem (ATSP)
with each word corresponding to a city, and the costs
c(m,n) representing the pairwise distances between
the cities. Consider the following example:

English input: John eats apples
Hindi: John seba(apples) khaataa hai(eats)
Desired reordered English: John apples eats
The ATSP that we need to solve is represented

pictorially in Figure 1 with sample costs. Note that
we have one extra node numbered 0. We start and
end the tour at node 0, and this determines the first
word in the reordered sentence. In this example the
minimum cost tour is:
Start→ John→ apple→ eats
recovering the right reordering for translation into
Hindi.

Solving the ATSP (which is a well known NP hard
problem) efficiently is crucial for the efficiency of
our reordering model. To solve the ATSP, we first
convert the ATSP to a symmetric TSP and then use
the Lin-Kernighan heuristic as implemented in Con-
corde, a state-of-the-art TSP solver (Applegate et al.,
2005). We also experimented with using the exact
TSP solver in Concorde but since it was slower and
did not improve performance we preferred using the
Lin-Kernighan heuristic. To convert the ATSP to
a symmetric TSP we double the size of the orig-
inal problem creating a node N

′
for every node

N in the original graph. Following (Hornik and
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3
apples

2
eats

1
John

0
Start

c(2,3)=3
c(3,2)=1

c(0,3)=5
c(3,0)=2

c(0,1)=-1
c(1,0)= 5

c(1,3)=0

c(0,2)=5

c(1,2)=3
c(2,1)=5

c(3,1)=5

c(2,0)=-2

Figure 1: Example of an ATSP for reordering the sen-
tence: John eats apples.

Hahsler, 2009), we then set new costs as follows:
c
′
(A,B) = ∞, c

′
(A,B

′
) = c

′
(B

′
, A) = c(A,B)

and C(A,A
′
) = −∞. Even with this doubling of

the number of nodes, we observed that solving the
TSPs with the Lin-Kernighan heuristic is very fast,
taking roughly 10 milliseconds per sentence on av-
erage. Overall, this means that our reordering model
is as fast as parsing and hence our model is compara-
ble in performance to techniques based on applying
rules to the parse tree.

4.1 Features

Since we would like to model reordering phenomena
which are largely related to analyzing the syntax of
the source sentence, we chose to use features based
on those that have in the past been used for parsing
(McDonald et al., 2005a). A subset of the features
we use was also used for reordering in (Tromble and
Eisner, 2009).

To be able to generalize from relatively small
amounts of data, we use features that in addition to
depending on the words in the input sentence w de-
pend on the part-of-speech (POS) tags of the words
in the input sentence. All features Φ(w, i, j) we use
are binary features, that fire based on the identities
of the words and POS tags at or surrounding posi-
tions i and j in the source sentence. The first set of
feature templates we use are given in Table 1. These
features depend only on the identities of the word
and POS tag of the two positions i and j and we call

wi pi wj pj
× × × ×
×

×
×

×
× ×
× ×
× ×

× ×
× ×

× ×
× × ×

Table 1: Bigram feature templates used to calculate the
cost that word at position i immediately precedes word at
position j in the target word order. wi (pi) denotes the
word (POS tag) at position i in the source sentence. Each
of the templates is also conjoined with i-j the signed dis-
tance between the two words in the source sentence.

these Bigram features.
The second set of feature templates we use are

given in Table 2. These features, in addition to ex-
amining positions i and j examine the surround-
ing positions. We instantiate these feature templates
separately for the POS tag sequence and for the
word sequence. We call these two feature sets Con-
textPOS and ContextWord respectively. When in-
stantiated with POS tags, the first row of Table 2
looks at all POS tags between positions i and j.
(Tromble and Eisner, 2009) use Bigram and Con-
textPOS features, while we extend their feature set
with the use of ContextWord features. Since Hindi
is verb final, in Hindi sentences with multiple verb
groups it is rare for words with a verb in between
to be placed together in the reordering to match En-
glish. Looking at the POS tags of words between
positions i and j allows us to penalize such reorder-
ings.

Each of the templates described in Table 1 and
Table 2 is also conjoined with i-j the signed dis-
tance between the two words in the source sentence.
The values of i-j between 5 and 10, and greater than
10 are quantized (negative values are similarly quan-
tized).

In Section 5.2 we report on experiments showing
the relative performance of these different feature
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oi−1 oi oi+1 ob oj−1 oj oj+1

× × ×
× × × ×

× × ×
× × ×
× × ×
× × ×

× × × ×
× × ×

× × ×
× × ×
× × ×

× × × ×
× × ×
× × ×

× × × ×
× × ×

× × ×

Table 2: Context feature templates used to calculate the
cost that word at position i immediately precedes word
at position j in the target word order. oi denotes the ob-
servation at position i in the source sentence and ob de-
notes an observation at a position between i and j (i.e
i + 1 ≤ b ≤ j − 1). Each of the templates is instan-
tiated with the observation sequence o taken to be the
word sequence w and the POS tag sequence p. Each of
the templates is also conjoined with i-j the signed dis-
tance between the two positions in the source sentence.

types for the task of reordering Hindi sentences to
be in English word order.

4.2 Training

To train the weights θ in our model, we need a
collection of sentences, where we have the desired
reference reordering π∗(x) for each input sentence
x. To obtain these reference reorderings we use
word aligned source-target sentence pairs. The qual-
ity and consistency of these reference reorderings
will depend on the quality of the word alignments
that we use. Given word aligned source and tar-
get sentences, we drop the source words that are not
aligned. Let mi be the mean of the target word po-
sitions that the source word at index i is aligned to.
We then sort the source indices in increasing order
of mi. If mi = mj (for example, because wi and wj
are aligned to the same set of words) we keep them

in the same order that they occurred in the source
sentence. Obtaining the target ordering in this man-
ner, is certainly not the only possible way and we
would like to explore better treatment of this in fu-
ture work.

We used the single best Margin Infused Re-
laxed Algorithm (MIRA) ((McDonald et al., 2005b),
(Crammer and Singer, 2003)) with the online up-
dates to our parameters being given by

θi+1 = arg min
θ
||θ − θi||

s.t. C(π∗|w) < C(π̂|w)− L(π∗, π̂).

In the equation above,

π̂ = arg min
π

C(π|x)

is the best reordering based on the current parameter
value and L is a loss function. We take the loss of
a reordering to be the number of words for which
the preceding word is wrong relative to the reference
target order.

We also experimented with the averaged percep-
tron algorithm (Collins, 2002), but found single best
MIRA to work slightly better and hence used MIRA
for all our experiments.

5 Experiments

In this section we report on experiments to evalu-
ate our reordering model. The first method we use
for evaluation (monolingual BLEU) is by generat-
ing the desired reordering of the source sentence (as
described in Section 4.2) and compare the reordered
output to this desired reordered sentence using the
BLEU metric. In addition, to these monolingual
BLEU results, we also evaluate (in Section 5.5) the
reordering by its effect on eventual machine transla-
tion performance.

We note that our reordering techniques uses POS
information for the input sentence. The POS taggers
used in this paper are Maximum Entropy Markov
models trained using manually annotated POS cor-
pora. For Hindi, we used roughly fifty thousand
words with twenty six tags from the corpus de-
scribed in (Dalal et al., 2007). For Urdu we used
roughly fifty thousand words and forty six tags from
the CRULP corpus (Hussain, 2008) and for English
we used the Wall Street Journal section of the Penn
Treebank.
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5.1 Reordering model training data and
alignment quality

To train our reordering models we need training data
where we have the input source language sentence
and the desired reordering in the target language.
As described in Section 4.2 we derive the refer-
ence reordered sentence using word alignments. Ta-
ble 3 presents our monolingual BLEU results for
Hindi to English reordering as the source of the
word alignments is varied. All results in Table 3
are with Bigram and ContextPOS features. We have
word alignments from three sources: A small set
of hand aligned sentences, HMM alignments (Vo-
gel et al., 1996) and alignments obtained using a su-
pervised Maximum Entropy aligner (Ittycheriah and
Roukos, 2005) trained on the hand alignments. The
F-measure for the HMM alignments were 65% and
78% for the Maximum Entropy model alignments.
We see that the quality of the alignments is an im-
portant determiner of reordering performance. Row
1 shows the BLEU for unreordered (baseline) Hindi
compared with the Hindi sentences reordered in En-
glish Order. Using just HMM alignments to train
our model we do worse than unreordered Hindi. Al-
though using the Maximum Entropy alignments is
better than using HMM alignments, we do not im-
prove upon a small number of hand alignments by
using all the Maximum Entropy alignments.

To improve upon the model trained with only
hand alignments we selected a small number of snip-
pets of sentences from our Maximum Entropy align-
ments. The goal was to pick parts of sentences
where the alignment is reliable enough to use for
training. The heuristic we used in the selection of
snippets was to pick maximal snippets of at least
7 consecutive Hindi words with all Hindi words
aligned to a consecutive span of English words,
with no unaligned English words in the span and no
English words aligned to Hindi words outside the
span. Adding snippets selected with this heuristic
improves the reordering performance of our model
as seen in the last row of Table 3.

5.2 Feature set comparison

In this section we report on experiments to deter-
mine the performance of the different classes of fea-
tures (Bigram, ContextPos and ContextWord) dis-

HMM MaxEnt Hand BLEU
- - - 35.9

220K - - 35.4
- 220K - 47.0
- 220K 6K 48.4
- - 6K 49.0
- Good 17K 6K 51.3

Table 3: Monolingual BLEU scores for Hindi to English
reordering using models trained on different alignment
types and tested on a development set of 280 Hindi sen-
tences (5590 tokens).

Feature template
Bigram ContextPOS ContextWord BLEU

- - - 35.9
× - - 43.8
× × - 49.0
× × × 51.3

Table 4: Monolingual BLEU scores for Hindi to En-
glish reordering using models trained with different fea-
ture sets and tested on a development set of 280 Hindi
sentences (5590 tokens).

cussed in Section 4.1. Table 4 shows monolingual
BLEU results for training with different features sets
for Hindi to English reordering. In all cases, we
use a set of 6000 sentence pairs which were hand
aligned to generate the training data. It is clear that
all three sets of features contribute to performance of
the reordering model, however the number of Con-
textWord features is larger than the number of Bi-
gram and ContextPOS features put together, and it
may be desirable to select from this set of features
especially when training on large amounts of data.

5.3 Monolingual reordering comparisons

Table 5 compares our reordering model with a reim-
plementation of the reordering model proposed in
(Tromble and Eisner, 2009). Both the models use
exactly the same features (bigram features and Con-
textPOS features) and are trained on the same data.
To generate our training data, for Hindi to English
and English to Hindi we use a set of 6000 hand
aligned sentences, for Urdu to English we use a set
of 8500 hand aligned sentences and for English to
French we use a set of 10000 hand aligned sentences
(a subset of Europarl and Hansards corpus). Our
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Language pair Monolingual BLEU
Source Target Unreordered LOP TSP
Hindi English 35.9 36.6 49.0

English Hindi 34.4 48.4 56.7
Urdu English 35.6 39.5 49.9

English French 64.4 78.2 81.2

Table 5: Monolingual BLEU scores comparing the orig-
inal source order with desired target reorder without re-
ordering, and reordering using our model (TSP) and the
model proposed in (Tromble and Eisner, 2009) (LOP).

test data consisted of 280 sentences for Hindi to En-
glish and 400 sentences for all other language pairs
generated from hand aligned sentences. We include
English-French here to compare on a fairly similar
language pair with local reordering phenomena (the
main difference being that in French adjectives gen-
erally follow nouns). We note that our model outper-
forms the model proposed in (Tromble and Eisner,
2009) in all cases.

5.4 Analysis of reordering performance

To get a feel for the qualitative performance of our
reordering algorithm and the kind of phenomena it
is able to capture, we analyze the reordering per-
formance in terms of (i) whether the clause restruc-
turing is done correctly – these can be thought of
as medium-to-long range reorderings, (ii) whether
clause boundaries are respected, and (iii) whether lo-
cal (short range) reordering is performed correctly.
The following analysis is for Hindi to English re-
ordering with the best model (this is also the model
used for Machine Translation experiments reported
on in Section 5.5).

• Clause structure: As discussed in Section 3,
the canonical clause order in Hindi is SOV,
while in English it is SVO. However, variations
on this structure are possible and quite frequent
(e.g., clauses with two objects). To evaluate
clause restructuring, we compared sequences
of subjects, objects and verbs in the output and
reference reorderings.

We had a set of 70 sentences annotated with
subject, direct object, indirect object and verb
information – these annotations were made on
the head word of each phrase, and the compar-

isons were on sequences of these words alone
and not the entire constituent phrase. 52 sen-
tences were reordered by the model to match
the order of the corresponding reference. Eight
sentences were ordered correctly but differently
from the reference, because the reference was
expressed in non-canonical fashion (e.g., in the
passive) – note that these cases negatively im-
pact the monolingual BLEU score. The follow-
ing example shows a sentence being reordered
correctly, where, however, the reference is ex-
pressed differently (note the position of the
subject “policy” (niiti) in the reference and the
reordered output) 1:

Input: aba1 (now) taka2 (till) aisii3 (this) niiti4
(policy) kabhii5 (ever) nahii6 (not) rahii7 (has)
hai8 (been)

Reordered: taka2 (till) aba1 (now) aisii3 (this)
niiti4 (policy) hai8 (been) kabhii5 (ever) nahii6
(not) rahii7 (has)

Reference: taka2 (till) aba1 (now) aisii3 (this)
kabhii5 (ever) nahii6 (not) rahii7 (has) hai8
(been) niiti4 (policy)

English: Till now this never has been the policy

The remaining ten sentences were reordered in-
correctly. These errors are largely in clauses
which deviate from the SVO order in some
way – clauses with multiple subjects or objects,
clauses with no object, etc.. For example, the
following sentence with two subjects and ob-
jects corresponding to the verb wearing has not
been reordered correctly.

Input: sabhii1 (all) purusha2 (men) safeda3
(white) evama4 (and) mahilaaen5 (women)
kesariyaa6 (saffron) vastra7 (clothes) dhaarana8
(wear) kiye9 hue10 (-ing) thiin11 (were)

Reordered: sabhii1 (all) purusha2 (men)
safeda3 (white) evama4 (and) mahilaaen5
(women) kesariyaa6 (saffron) vastra7 (clothes)
dhaarana8 (wear) thiin11 (were) kiye9 hue10 (-
ing)

Reference: sabhii1 (all) purusha2 (men)
thiin11 (were) dhaarana8 (wear) kiye9 hue10 (-

1The numeric subscripts in the examples indicate word po-
sitions in the input.

492



ing) safeda3 (white) evama4 (and) mahilaaen5
(women) kesariyaa6 (saffron)

English: All men were wearing white and the
women saffron

The model possibly needs more data with pat-
terns that deviate from the standard SOV order
to learn to reorder them correctly. We could
also add to the model, features pertaining to
subject, object, etc.

• Clause boundaries: Measured on a set of
844 sentences which were marked with clause
boundaries, 37 sentences (4.4 %) had reorder-
ings that violated these boundaries. An exam-
ple of such a clause-boundary violation is be-
low:

Input: main1 (I) sarakaara2 (government) kaa3
(of) dhyaana4 (attention) maananiiya5 (hon-
ourable) pradhaana6 (prime) mantri7 (min-
ister) dvaaraa8 (by) isa9 (this) sabhaa10
(house) me11 (in) kiye12 gaye13 (made) isa14
(this) vaade15 (promise) ki16 ora17 (towards)
dilaanaa18 (to bring) chaahuungaa19 (would
like)

Reordered: main1 (I) chahuungaa19 (would
like) dilaanaa18 (to bring) kii16 ora17 (to-
wards) isa9 (this) vaade15 (promise) kiye12
gaye13 (made) dvaaraa8 (by) maananiiya5
(honourable) mantri7 (minister) pradhaana6
(prime) dhyaana4 (attention) kaa3 (of)
sarakaara2 (government) men11 (in) isa14 (this)
sabhaa10 (house)

Reference: main1 (I) chahuungaa19 (would
like) dilaanaa18 (to bring) dhyaana4 (attention)
kaa3 (of) sarakaara2 (government) kii16 ora17
(towards) isa9 (this) vaade15 (promise) kiye12
gaye13 (made) dvaaraa8 (by) maananiiya5
(honourable) mantri7 (minister) pradhaana6
(prime) men11 (in) isa9 (this) sabhaa10 (house)

English I would like to bring the attention of
the government towards this promise made by
the honourable prime minister in this house.

Note how the italicized clause, which is kept
together in the reference, is split up incorrectly
in the reordered output. The proportion of such

boundary violations is, however, quite low, be-
cause Hindi being a verb-final language, most
clauses end with a verb and it is probably quite
straightforward for the model to keep clauses
separate. A clause boundary detection program
should make it possible to eliminate the re-
maining errors.

• Local reordering: To estimate the short range
reordering performance, we consider how of-
ten different POS bigrams in the input are re-
ordered correctly. Here, we expect the model
to reorder prepositions correctly, and to avoid
any reordering that moves apart nouns and their
adjectival pre-modifiers or components of com-
pound nouns (see Section 3). Table 6 sum-
marizes the reordering performance for these
categories for a set of 280 sentences (same as
the test set used in Section 5.1). Each row
in Table 6 indicates the total number of cor-
rect instances for the pair, i.e., the number of
instances of the pair in the reference (column
titled Total), the number of instances that al-
ready appear in the correct order in the input
(column Input), and the number that are or-
dered correctly by the reordering model (col-
umn Reordered). The first two rows show that
adjective-noun and noun-noun (compounds)
are in most cases correctly retained in the orig-
inal order by the model. The final row shows
that while many prepositions have been moved
into their correct positions, there are still quite a
few mismatches with the reference. An impor-
tant reason why this happens is that nouns mod-
ified by prepositional phrases can often also be
expressed as noun compounds. For example,
vidyuta (electricity) kii (of) aavashyakataaen
(requirements) in Hindi can be expressed either
as “requirements of electricity” or “electricity
requirements”. The latter expression results in
a match with the input (explaining many of the
104 correct orders in the input) and a mismatch
with the model’s reordering. The same problem
in the training data would also adversely impact
the learning of the preposition reordering rule.
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POS pair Total Input Reordered
adj-noun 234 192 196
noun-noun 46 44 42
prep-noun 436 104 250

Table 6: An analyis of reordering for a few POS bigrams

5.5 Machine translation results

We now present experiments in incorporating the re-
ordering model in machine translation systems. For
all results presented here, we reorder the training and
test data using the single best reordering based on
our reordering model for each sentence. For each of
the language pairs we evaluated, we trained Direct
Translation Model 2 (DTM) systems (Ittycheriah
and Roukos, 2007) with and without reordering and
compared performance on test data. We note that the
DTM system includes features that allow it to model
lexicalized reordering phenomena. The reordering
window size was set to +/-8 words for both the base-
line and our reordered input. In our experiments, we
left the word alignments fixed, i.e we reordered the
existing word alignments rather than realigning the
sentences after reordering. Redoing the word align-
ments with the reordered data could potentially give
further small improvements. We note that we ob-
tained better baseline performance using DTM sys-
tems than the standard Moses/Giza++ pipeline (e.g
we obtained a BLEU of 14.9 for English to Hindi
with a standard Moses/Giza++ pipeline). For all of
our systems we used a combination of HMM (Vo-
gel et al., 1996) and MaxEnt alignments (Ittycheriah
and Roukos, 2005).

For our Hindi-English experiments we use a train-
ing set of roughly 250k sentences (5.5M words) con-
sisting of the Darpa-TIDES dataset (Bojar et al.,
2010) and an internal dataset from several domains
but dominated by news. Our test set was roughly
1.2K sentences from the news domain with a sin-
gle reference. To train our reordering model, we
used roughly 6K alignments plus 17K snippets se-
lected from MaxEnt alignments as described in Sec-
tion 5.1 with bigram, ContextPOS and ContextWord
features. The monolingual reordering BLEU (on the
same data reported on in Section 5.3) was 54.0 for
Hindi to English and 60.8 for English to Hindi.

For our Urdu-English experiments we used 70k

Language pair BLEU
Source Target Unreordered Reordered
Hindi English 14.7 16.7
Urdu English 23.3 24.8

English Hindi 20.7 22.5

Table 7: Translation performance without reordering
(baseline) compared with performance after preordering
with our reordering model.

sentences from the NIST MT-08 training corpus
and used the MT-08 eval set for testing. We note
that the MT-08 eval set has four references as com-
pared to one reference for our Hindi-English test
set. This largely explains the improved baseline per-
formance for Urdu-English as compared to Hindi-
English. We present averaged results for the Web
and News part of the test sets. To train the reorder-
ing model we used 9K hand alignments and 11K
snippets extracted from MaxEnt alignments as de-
scribed in Section 5.1 with bigram, ContextPOS and
ContextWord context feature. The monolingual re-
ordering BLEU for the reordering model thus ob-
tained (on the same data reported on in Section 5.3)
was 52.7.

Table 7 shows that for Hindi to English, English
to Hindi and for Urdu to English we see a gain
of 1.5 - 2 BLEU points. For English → Hindi
we also experimented with a system that uses rules
(learned from the data using the methods described
in (Visweswariah et al., 2010)) applied to a parse to
reorder source side English sentences. This system
had a BLEU score of 21.2, which is an improvement
over the baseline, but our reordering model is better
by 1.3 BLEU points.

An added benefit of our reordering model is that
the decoder can be run with a smaller search space
exploring only a small amount of reordering with-
out losing accuracy but running substantially faster.
Table 8 shows the variation in machine Hindi to En-
glish translation performance with varying skip size
(this parameter sets the maximum number of words
skipped during decoding, lower values are associ-
ated with a restricted decoder search space and in-
creased speed).
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skip Unreordered Reordered
2 12.2 16.7
4 13.4 16.7
8 14.7 16.4

Table 8: Translation performance with/without reorder-
ing with varying decoder search space.

6 Conclusion and future work

In this paper we presented a reordering model to
reorder source language data to make it resemble
the target language word order without using either
a source or target parser. We showed consistent
gains of up to 2 BLEU points in machine transla-
tion performance using this model to preorder train-
ing and test data. We show better performance com-
pared to syntax based reordering rules for English
to Hindi translation. Our model used only a part of
speech tagger (sometimes trained with fairly small
amounts of data) and a small corpus of word align-
ments. Considering the fact that treebanks required
to build high quality parsers are costly to obtain, we
think that our reordering model is a viable alterna-
tive to using syntax for reordering. We also note,
that with the preordering based on our reordering
model we can achieve the best BLEU scores with
a much tighter search space in the decoder. Even ac-
counting for the cost of finding the best reordering
according to our model, this usually results in faster
processing than if we did not have the reordering in
place.

In future work we plan to explore using more data
from automatic alignments, perhaps by considering
a joint model for aligning and reordering. We would
also like to explore doing away with the requirement
of having a POS tagger, using completely unsuper-
vised methods to class words. We currently only
look at word pairs in calculating the loss function
used in MIRA updates. We would like to investigate
the use of other loss functions and their effect on re-
ordering performance. We also would like to explore
whether the use of scores from our reordering model
directly in machine translation systems can improve
performance relative to using just the single best re-
ordering.
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Abstract

We propose an algorithm allowing to effi-
ciently retrieve example treelets in a parsed
tree database in order to allow on-the-fly ex-
traction of syntactic translation rules. We also
propose improvements of this algorithm al-
lowing several kinds of flexible matchings.

1 Introduction

The popular Example-Based (EBMT) and Statistical
Machine Translation (SMT) paradigms make use of
the translation examples provided by a parallel bilin-
gual corpus to produce new translations. Most of
these translation systems process the example data
in a similar way: The parallel sentences are first
word-aligned. Then, translation rules are extracted
from these aligned sentences. Finally, the transla-
tion rules are used in a decoding step to translate
sentences. We use the term translation rule in a very
broad sense here, as it may refer to substring pairs as
in (Koehn et al., 2003), synchronous grammar rules
as in (Chiang, 2007) or treelet pairs as in (Quirk et
al., 2005; Nakazawa and Kurohashi, 2008).

As the size of bilingual corpus grow larger, the
number of translation rules to be stored can easily
become unmanageable. As a solution to this prob-
lem in the context of phrase-based Machine Transla-
tion, (Callison-Burch et al., 2005) proposed to pre-
align the example corpora, but delay the rule extrac-
tion to the decoding stage. They showed that using
Suffix Arrays, it was possible to efficiently retrieve
all sentences containing substrings of the sentence
to be translated, and thus extract the needed trans-
lation rules on-the-fly. (Lopez, 2007) proposed an

extension of this method for retrieving discontinu-
ous substrings, making it suitable for systems such
as (Chiang, 2007).

In this paper, we propose a method to apply the
same idea to Syntax-Based SMT and EBMT (Quirk
et al., 2005; Mi et al., 2008; Nakazawa and Kuro-
hashi, 2008). Since Syntax-Based systems usually
work with the parse trees of the source-side sen-
tences, we will need to be able to retrieve effi-
ciently examples trees from fragments (treelets) of
the parse tree of the sentence we want to translate.
We will also propose extensions of this method al-
lowing more flexible matchings.

2 Overview of the method

2.1 Treelet retrieval

We first formalize the setting of this chapter by pro-
viding some definitions.

Definition 2.1 (Treelets). A treelet is a connected
subgraph of a tree. A treelet T1 is a subtreelet of an-
other treelet T2 if T1 is itself a connected subgraph
of T2. We note |T| the number of nodes in a treelet.
If |T| = 1, T is called an elementary treelet. A lin-
ear treelet is a treelet whose nodes have at most 1
child. A subtree rooted at node n of a tree T is a
treelet containing all nodes descendants of n.

Definition 2.2 (Sub- and Supertreelets). If T1 is a
subtreelet of T2 and |T1| = |T2| − 1, we call T1

an immediate subtreelet of T2. Reciprocally, T2 is
an (immediate) supertreelet of T1. Furthermore, if
T2 and T1 are rooted at the same node in the original
tree, we say that T2 is a descending supertreelet of
T1. Otherwise it is an ascending supertreelet of T1.
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In treelet retrieval, we are given a certain treelet
type and want to find all of the tokens of this type in
the database DB. Each token of a given treelet type
will be identified by a mapping from the node of the
treelet type to the nodes of the treelet token in the
database.

Definition 2.3 (Matching). Given a treelet T and a
tree database DB, a matching of T in DB is a func-
tion M that associate the treelet T to a tree T in
DB and every node of T to nodes of T in such a
way that: ∀n ∈ T, label(M(n)) = label(n) and
∀(n1, n2) ∈ T s.t n2 is a child of n1, M(n2) is a
child of M(n1).

In the common case where the siblings of a tree
are ordered, a matching must satisfy the additional
restriction: ∀n1, n2 ∈ T, n1 <s n1 ⇔ M(n1) <s

M(n1), where <s is the partial order relation be-
tween nodes meaning “is a sibling and to the left of”

We note occ(T) (for “occurrences of T ”) the set
of all possible matchings from T to DB. We will
call computing T the task of finding occ(T). If
|occ(T)| = 0, we call T an empty treelet. Computing
a query tree TQ means computing all of its treelets.

Definition 2.4 (Notations). Although treelets are
themselves trees, we will use the word treelet to
emphasize they are a subpart of a bigger tree. We
will note T a treelet, and T a tree. TQ is the query
tree we want to compute. DB will refer to the set of
trees in our database. We will use a bracket notation
to describe trees or treelets. Thus “a(b c d(e))” is
the tree at the bottom of figure 2.

2.2 General approach
There exists already a large body of research about
tree pattern matching (Dubiner et al., 1994; Bruno
et al., 2002). However, our problem is quite differ-
ent from finding the tokens of a given treelet in a
database. We actually want to find all the tokens of
all of the treelets of a given query tree. The query
tree itself is unlikely to appear in full even once in
the database. In this respect, our approach will have
many similarities with (Callison-Burch et al., 2005)
and (Lopez, 2007), and can be seen as an extension
of these works.

The basis of the method in (Lopez, 2007) is to
look for the occurrences of continuous substrings us-
ing a Suffix Array, and then intersect them to find the

occurrences of discontinuous substrings. We will
have a similar approach with two variants. The first
variant consists in using an adaptation of the con-
cept of suffix arrays to trees, which we will call Path-
To-Root Arrays (section 3.4), that allows us to find
efficiently the set of occurrences of a linear treelet.
Occurrences of non-linear treelets can then be com-
puted by intersection. The second variant is to use an
inverted index (section 3.5). Then the occurrences of
all treelets, even the linear treelets, are computed by
intersection.

The main additional difficulty in considering trees
instead of strings is that while a string has a
quadratic number of continuous substrings, a tree
has in general an exponential number of treelets (eg.
several trillion for the dependency tree of a 70 words
sentence). There is also an exponential number of
discontinuous substrings, but (Lopez, 2007) only
consider substrings of bounded size, limiting this
problem. We will not try to bound the size of treelets
retrieved. It is therefore crucial to avoid computing
the occurrences of treelets that have no occurrences
in the database, and also to eliminate as much redun-
dant calculation as is possible.

Lopez proposes to use Prefix Trees for avoiding
any redundant or useless computation. We will use
a similar idea but with an hypergraph that we will
call “computation hypergraph” (section 3.2). This
hypergraph will not only fit the same role as the Pre-
fix Tree of (Lopez, 2007), but also will allow us to
easily implement different search strategies for flex-
ible search (section 6).

2.3 Representing positions
Whether we use a Path-to-Root Array or an inverted
index, we will need a compact way to represent the
position of a node in a tree. It is straightforward to
define such a position for strings, but slightly less for
trees. Especially, if we consider ordered trees, we
will want to be able to compare the relative location
of the nodes by comparing their positions.

The simplest possibility is to use an integer corre-
sponding to the rank of the node in a in-order depth-
first traversal of the tree. It is then easy, for two
nodes b and c, children of a parent node a, to check
if b is on the left of c, or on the left of a, for example.

A more advanced possibility is to use a represen-
tation inspired from (Zhang et al., 2001), in which

509



the position of a node is a tuple consisting of its rank
in a preorder (ie. children last) and a postorder (chil-
dren first) depth-first traversal, and of its distance to
the root. This allows to test easily whether a node
is an ancestor of another, and their distance to each
other. This allows in turn to compute by intersec-
tion the occurrences of discontinuous treelets, much
like what is done in (Lopez, 2007) for discontinuous
strings. This is discussed in section 7.2.

3 Computing treelets incrementally

We describe here in more details how the treelets can
be efficiently computed incrementally.

3.1 Dependence of treelet computation

Let us first define how it is possible to compute a
treelet from two of its subtreelets. Let us consider
a treelet T and two treelets T1 and T2 such that
T = T1 ∪ T2, where, in the equality and the union,
the treelet are seen as the set of their nodes. There
are two possibilities. If T1∩T2 = ∅, then the root of
T1 is a child of a node of T2 or vice-versa. We then
say that T1 and T2 form a disjoint coverage (abbrevi-
ated as D-coverage) of T. If T1∩T2 6= ∅, we will say
that T1 and T2 form an overlapping coverage (abbre-
viated as O-coverage) of T.

Given two treelets T1 and T2 forming a cover-
age of T, we can compute occ(T) from occ(T1) and
occ(T2) by combining their matchings.

Definition 3.1 (compatibility for O-coverage). Let
T be a treelet of TQ. Let T1 and T2 be 2 treelets
forming a O-coverage of T. Let M1 ∈ occ(T1)
and M2 ∈ occ(T2). M1 and M2 are compat-
ible if and only if M1|T1∩T2 = M2|T1∩T2 and
I(M1|T1\T2

) ∩ I(M2|T2\T1
) = ∅.

In the definition above, |S is the restriction of a func-
tion to a set S and I is the image set of a function.

If the children of a tree are ordered, we must add
the additional restriction: ∀(n1, n2) ∈ (T1 \ T2) ×
(T2 \ T1), n1 <s n2 ⇔M1(n1) <s M2(n2).

Definition 3.2 (compatibility for D-coverage). Let
T1 and T2 be 2 treelets forming a D-coverage
of T. Let’s suppose that the root n2 of T2 is a
child of node n1 of T1. Let M1 ∈ occ(T1) and
M2 ∈ occ(T2). M1 and M2 are compatible if and
only if M2(n2) is a child of M1(n1).

Figure 1: A computing hypergraph for “a(b c)”.

Definition 3.3 (intersection (⊗) operation). If two
matchings are compatible, we can form their union,
which is defined as (M1 ∪ M2)(n) = M1(n)
if n ∈ T1 and M2(n) else. We note
occ(T1) ⊗ occ(T2) = {M1 ∪ M2 | M1 ∈
occ(T1),M2 ∈ occ(T2) and M1 is compati-
ble with M2 }. Then,we have the property:
occ(T ) = occ(T1)⊗ occ(T2)

In practice, the intersection operation will be im-
plemented using merge and binary merge algorithms
(Baeza-Yates and Salinger, 2005), following (Lopez,
2007).

3.2 The computation hypergraph

We have seen that it is possible to compute occ(T)
from two subtreelets forming a coverage of T. This
can be represented by a hypergraph in which nodes
are all the treelets of a given query tree, and every
pair of overlapping or adjacent treelet is linked by
an hyperedge to their union treelet. Whenever we
have computed two starting points of an hyper-edge,
we can compute its destination treelet. An example
of a small computation hypergraph is described in
figure 1.

It is very convenient to represent the incremen-
tal computation of the treelets as a traversal of this
hypergraph. First because it contributes to avoid
redundant computations: each treelet is computed
only once, even if it is used to compute several other
treelets. Also, if a query tree contains two distinct
but identical treelets, only one computation will be
done, provided the two treelets are represented by
the same node in the hypergraph. The hypergraph
also allows us to avoid computing empty treelets, as
we describe in next section. This hypergraph there-
fore has the same role for us as the prefix tree used
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Figure 2: Inclusion DAG for the tree a(bcd(e))

in (Lopez, 2007). Of course, the hypergraph is gen-
erated on-the-fly during the traversal.

Furthermore, different traversals will define dif-
ferent computation strategies, and we will be able to
use some more advanced graph exploration methods
in section 6.

3.3 The Immediate Inclusion DAG

In many cases (but not always: see section 4.3),
the most optimal computation strategy should be
to always compute a treelet from two of its imme-
diate subtreelets. This is because the computation
time will be proportional to the size of the small-
est occurrence set of the two treelets, and thus the
“cheapest” subtreelet is always one of the immedi-
ate subtreelets. With this computation strategy, we
can replace the general computation hypergraph by
a DAG (Directed Acyclic Graph) in which every
treelet point to its immediate supertreelets. An ex-
ample is given on figure 2. We will call this DAG
the (Immediate) Inclusion DAG.

Traversals of the Inclusion DAG should be pruned
when an empty treelet is found, since all of its su-
pertreelets will also be empty. The algorithm 1 pro-
vide a general traversal of the DAG avoiding to com-
pute as many empty treelets as possible. It uses a
queue D of discovered treelets, and a data-structure
C that associate a treelet to those of its subtreelets
that have been already computed. Once a treelet T
has been computed and is found to be non empty, we
discover its immediate supertreelets TS1, TS2, . . . (if
they have not been discovered already) and add T to
C (TS1), C (TS2), . . . . The operation min(C (T)) re-

Algorithm 1: Generic DAG traversal
Add the set of precomputed treelets to D;1
while ∃T ∈ D s.t T ∈ precomputed or |C(T )| > 22
do

pop T from D;3
if T in precomputed then4

occ(T )← precomputed[T ];5
else6

T1,T2=min(C (T));7
if |occ(T1)| = 0 then8

occ(T )← ∅;9
else10

occ(T )← occ(T1)⊗ occ(T2);11

for TS ∈ supertree(T ) do12
if occ(TS) = undef then13

Add T to C(TS);14
if |occ(T )| > 0 and TS /∈ D then15

Add TS to D;16

trieve the 2 subtreelets from C (T) that have the least
occurrences. If one of them is empty, we can di-
rectly conclude that T is empty. No treelet whose all
immediate subtreelets are empty is ever put in the
discovered queue, which allows us to prune most of
the empty treelets of the Inclusion DAG.

A treelet in the inclusion DAG can be computed
as soon as two of its antecedents have been com-
puted. To start the computation (or rather, “seed”
it), it is necessary to know the occurrences of treelet
of smaller size. In the following sections 3.4 and
3.5, we describe two methods for efficiently obtain-
ing the set of occurrences of some initial treelets.

3.4 Path-to-Root Array
We present here a method to compute very effi-
ciently occ(T) when T is linear. This method is sim-
ilar to the use of Suffix Arrays (Manber and My-
ers, 1990) to find the occurrences of continuous sub-
strings in a text.

Definition 3.4 (Paths-to-Root Array). Given a la-
beled tree T and a node n ∈ T , the path-to-root
of n is the sequence of labels from n to the root.
The Paths-to-Root Array of a set of trees DB is the
lexicographically sorted list of the Path-to-Roots of
every node in DB.

Just as with suffixes, a path-to-root can be rep-
resented compactly by a pointer to its starting node
in DB. We then need to keep the database DB in
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Pos PtR Pos PtR Pos PtR
1 3:4 a 8 2:2 bf 15 1:3 fba
2 1:7 a 9 1:6 ca 16 3:3 fga
3 2:6 af 10 1:8 da 17 3:2 ga
4 1:4 afba 11 2:7 daf 18 2:1 gbf
5 3:7 ba 12 3:1 ega 19 1:5 gca
6 1:2 ba 13 2:3 f 20 1:1 hba
7 2:5 baf 14 3:8 fba 21 3:5 heba

Figure 3: Path To Root Array for a set of three trees.
“Pos.” is the position of the starting point of a given path-
to-root (noted as indexOfTree:positionInTree), and PtR is
the sequence of labels on this path-to-root. The path-to-
root are sorted in lexicographic order. We can find the set
of occurrences of any linear treelet with a binary search.
For example, the treelet a(b) corresponds to the label se-
quence “ba”. With a binary search, we find that the path-
to-root starting with “ba” are between indexes 5 and 7.
The corresponding occurrences are then 3:7, 1:2 and 2:5.

memory to retrieve efficiently the pointed-to path-
to-root. Once the Path-to-Root Array is built, for a
linear treelet T, we can find its occurrences by a bi-
nary search of the first and last path-to-root starting
with the labels of T. See figure 3 for an example.

Memory cost is quite manageable, since we only
need 10 bytes per nodes in total. 5 bytes per pointer
in the array (tree id: 4 bytes, start position: 1 byte),
and 5 bytes per nodes to store the database in mem-
ory (label id:4 bytes, parent position: 1 byte).

All the optimization tricks proposed in (Lopez,
2007) for Suffix Arrays can be used here, espe-
cially the optimization proposed in (Zhang and Vo-
gel, 2005).

3.5 Inverted Index and Precomputation
Instead of a Path-to-Root array, one can simply use
an inverted index. The inverted index associates
with every label the set of its occurrences, each oc-
currences being represented by a tuple containing
the index of the tree, the position of the label in the
tree, and the position of the parent of the label in

the tree. Knowing the position of the parent will
allow to compute treelets of size 2 by intersection
(D-coverage). This is less effective than the Path-
To-Root Array approach, but open the possibilities
for the flexible search discussed in section 6.

Taking the idea further, we can actually con-
sider the possibility of precomputing treelets of size
greater than 1, especially if they appear frequently
in the corpus.

4 Practical implementation of the traversal

4.1 Postorder traversal
The way we choose the treelet to be popped out on
line 3 of algorithm 1 will define different computa-
tion strategies. For concreteness, we describe now a
more specific traversal. We will process treelets in
an order depending on their root node. More pre-
cisely, we consider the nodes of the query tree in the
order given by a depth-first postorder traversal of the
query tree. This way, when a treelet rooted at n is
processed, all of the treelets rooted at a descendant
of n have already been processed.

We can suppose that every processed treelet is as-
signed an index that we note #T. This allows a con-
venient recursive representation of treelets.

Definition 4.1 (Recursive representation). Let T be
a treelet rooted at node n of TQ. We note ni the
ith child of n in TQ. For all i, ti is the subtree of
T rooted at ni. We note ti = ∅ and #ti = 0 if T
does not contain ni. The recursive representation of
T is then: [n, (#t1,#t2, . . . , #tm)]. We note T i the
value #ti.

For example, if TQ =“a(b c d(e))” and the treelets
“b” and “d(e)” have been assigned the indexes 2
and 4, the recursive representation of the treelet “a(b
d(e))” would be [a,(2,0,4)].

Algorithm 2 describes this “postorder traversal”.
DNode is a priority queue containing the treelets
rooted at Node discovered so far. The priority queue
pop out the smallest treelets first. Line 14 maintain a
list L of processed treelets and assign the index of T
in L to #T. Line 22 keeps track of the non-empty
immediate supertreelets of every treelet through a
dictionary S. This is used in the procedure compute-
supertreelets (algorithm 3) to generate the immedi-
ate supertreelets of a treelet T given its recursive rep-
resentation. In this procedure, line 6 produces the
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Algorithm 2: DAG traversal by query-tree pos-
torder

for Node in postorder-traversal(query-tree) do1
Telem = [Node, (0, 0, .., 0)];2
DNode ← Telem;3
while |DNode| > 0 do4

T=pop-first(DNode);5
if T in precomputed then6

occ(T )← precomputed[Node.label];7
else8

T1, T2=min(C (t));9
if |occ(T1)| = 0 then10

occ(T )← ∅;11
else12

occ(T )← occ(T1)⊗ occ(T2);13
Append T to L;14
#T ← |L|;15
for TS in compute-supertree(T, #T ) do16

Add T to C(TS);17
if |occ(T )| > 0 then18

if TS /∈ DNode and19

root(TS)=Node then
Add TS to D;20

for #t in C (T ) do21
Add #T to S(#t);22

descending supertreelets, and line 8 produces the as-
cending supertreelet. Figure 4 describes the content
of all these data structures for a simple run of the
algorithm.

This postorder traversal has several advantages.
A treelet is only processed once all of its immedi-
ate supertreelets have been computed, which is op-
timal to reduce the cost of the ⊗ operation. The
way the procedure compute-supertreelets discover
supertreelets from the info in S has also several
benefit. One is that, by not adding empty treelets
(line 18) to S , we naturally prevent the discovery
of larger empty treelets. Similarly, in the next sec-
tion, we will be able to prevent the discovery of non-
maximal treelets by modifying S . Modifications of
compute-supertreelets will also allow different kind
of retrieval in section 6.

4.2 Pruning non-maximal treelets

We now try to address another aspect of the over-
whelming number of potential treelets in a query
tree. As we said, in most practical cases, most of the
larger treelets in a query tree will be empty. Still, it is

Algorithm 3: compute-supertrees
Input: T ,#T
Output: lst: list of immediate supertreelets of T
m← |root(T)|;1
for i in 1 . . .m do2

for #TS in S(#T i) do3
if root(#TS) 6= root(T) then4

Tnew ← [root(T), T 0, ..#T ′, . . . , Tm];5
Append Tnew to lst;6

Tnew ← [parent(root(T)), (0, . . . ,#T, . . . , 0)];7

Append Tnew to lst;8

possible that some tree exactly identical to the query
tree (or some tree having a very large treelet in com-
mon with the query tree) do exist in the database.
This case is obviously a best case for translation,
but unfortunately could be a worst-case for our al-
gorithm, as it means that all of the (possibly trillions
of) treelets of the query tree will be computed.

To solve this issue, we try to consider a concept
analogous to that of maximal substring, or substring
class, found in Suffix Trees and Suffix Arrays (Ya-
mamoto and Church, 2001). The idea is that in most
cases where a query tree is “full” (that is all of its
treelets are not empty), most of the larger treelets
will share the same occurrences (in the database
trees that are very similar to the query tree). We for-
malize this as follow:

Definition 4.2 (domination and maximal treelets).
Let T1 be a subtreelet of T2. If for every matching
M1 of occ(T1), there exist a matching M2 of
occ(T2) such that M2|T1 = M1, we say that T1 is
dominated by T2. A treelet is maximal if it is not
dominated by any other treelet.

If T1 is dominated by T2, it means that all occur-
rences of T1 are actually part of an occurrence of
T2. We will therefore be, in general, more interested
by the larger treelet T2 and can prune as many non-
maximal treelets as we want in the traversal. The key
point is that the algorithm has to avoid discovering
most non maximal treelets.The algorithm 2 can eas-
ily be modified to do this. We will use the following
property.

Property 4.1. Given k treelets T1 . . . Tk with k dis-
tinct roots, all the roots being children of a same
node n. We note n(T1 . . . Tk) the treelet whose root
is n, and for which the k subtrees rooted at the k
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T d e b b(d) [Empty] b(e) b(d e) [Empty] c a a(b) a(b(e)) a(c) a(b c) a(b(e) c)
# 1 2 3 4 5 6 7 8 9 10 11 12 13
R d e b(..) b(1.) b(.2) b(1 2) c a(..) a(3.) a(5.) a(.7) a(3 7) a(5 7)
C - - - 1,3 2,3 4,5 - - 8,3 5,9 7,8 9,11 10,12
S - - 5 - - - - 9,11 10,12 13 12 13 -

Figure 4: A run of the algorithm 2, for the query tree a(b(d e) c). The row “T” represents the treelets in the order
they are discovered. The row “#” is the index #T, and the row “R” is the recursive representation of the treelet. Also
represented are the content of C and S at the end of the computation. When a treelet is poped out of DNode, occ(T) is
computed from the treelets listed in C (T ). If occ(T) is not empty, the entries of the immediate subtreelets of T in S
are updated with #T. We suppose here that |occ( b(d))|=0. Then, b(d e) is marked as empty and neither b(d) nor b(d e)
are added to the entries of their subtreelets in S. This way, when considering treelets rooted at the upper node “a”, the
algorithm will not discover any of the treelets containing b(d).

children of n are T1 . . . Tk. Let us further suppose
that for all i, Ti is dominated by a descending su-
pertreelet T d

i (with the possibility that Ti = T d
i ).

Then n(T1 . . . Tk) is dominated by n(T d
1 . . . T d

k ).
For example, if b(c) is dominated by b(c d), then
a(b(c) e) will be dominated by a(b(c d) e).

In algorithm 2, after processing each node, we
proceed to a cleaning of the S dictionary in the fol-
lowing way: for every treelet T (considering the
treelets by increasing size) that is dominated by
one of its supertreelets TS ∈ S(T) and for every
subtreelet T ′ of T such that T ∈ S(T ′), we re-
place T by TS in S(T ′). The procedure compute-
supertreelets, when called during the processing of
the parent node, will thus skip all of the treelets that
are ”trivially” dominated according to property 4.1.

Let’s note that testing for the domination of a
treelet T by one of its supertrelets TS is not a matter
of just testing if |occ(T)| = |occ(TS)|, as would be
the case with substring: a treelet can have less oc-
currences than one of its supertreelets (eg. b(a) has
more occurrences than b in b(a a) ). An efficient way
is to first check that the two treelets occurs in the
same number of sentences, then confirm this with a
systematic check of the definition.

4.3 The case of constituent trees
We have focused our experiments on dependency
trees, but the method can be applied to any tree.
However, the computations strategies we have used
might not be optimal for all kind of trees. In a de-
pendency tree, nodes are labeled by words and most
non-elementary treelets have a small number of oc-
currences. In a constituent tree, many treelets con-
taining only internal nodes have a high frequency

and will be expensive to compute.
If we have enough memory, we can solve this by

precomputing the most common (and therefore ex-
pensive) treelets.

However, it is usually not very interesting to re-
trieve all the occurrences of treelets such as “NP(Det
NN)” in the context of a MT system. Such very com-
mon pattern are best treated by some pre-computed
rules. What is interesting is the retrieval of lexical-
ized rules. More precisely, we want to retrieve ef-
ficiently treelets containing at least one leaf of the
query tree. Therefore, an alternative computation
strategy would only explore treelets containing at
least one terminal node. We would thus compute
successively “dog”, “NN(dog)” “NP(NN(dog))”,
“NP(Det NN(dog))”, etc.

4.4 Complexity

Processing time will be mainly dependent on two
factors: the number of treelets in a query tree that
need to be computed, and the average time to com-
pute a treelet.

Let NC be the size of the corpus. It can be shown
quite easily that the time needed to compute a treelet
with our method is proportional to its number of oc-
currences, which is itself growing as O(NC).

Let m be the size of the query tree. The number
of treelets needing to be computed is, in the worst
case, exponential in m. In practice, the only case
where most of the treelets are non-empty is when the
database contains trees similar to the query tree in
the database, and this is handled by the modification
of the algorithm is section 4.2. In other cases, most
of the treelets are empty, and empirically, we find
that the number of non-empty treelets in a query tree
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Database size (#nodes) 6M 60M
Largest non-empty treelet size 4.6 8.7
Processing time (PtR Array) 0.02 s 0.7 s
Processing time (Inv. Index) 0.02 s 0.9 s
Size on disk 40 MB 500 MB

Figure 5: Performances averaged on 100 sentences.

grows approximately as O(m ·N0.5
C ). It is also pos-

sible to bound the size of the retrieved treelets (only
retrieving treelets with less than 10 nodes, for exam-
ple), similarly to what is done in (Lopez, 2007). The
number of treelets will then only grows as O(m).

The total processing time of a given query tree
will therefore be on the order of O(m · N1.5

C ) (or
O(m · NC) if we bound the treelet size). The fact
that this give a complexity worse than linear with
respect to the database size might seem a concern,
but this is actually only because we are retrieving
more and more different types of treelets. The cost
of retrieving one treelet remain linear with respect to
the size of the corpus. We empirically find that even
for very large values of NC , processing time remain
very reasonable (see next section).

It should be also noted that the constant hid-
den in the big-O notation can be (almost) arbitrar-
ily reduced by precomputing more and more of the
most common (and more expensive) treelets (a time-
memory trade-off).

5 Experiments

We conducted experiments on a large database of
2.9 million automatically parsed dependency trees,
with a total of nearly 60 million nodes1. The largest
trees in the database have around 100 nodes. In or-
der to see how performance scale with the size of the
database, we also used a smaller subset of 230,000
trees containing near 6 million nodes.

We computed, using our algorithm, 100 randomly
selected query trees having from 10 to 70 nodes,
with an average of 27 nodes per tree. Table 5
shows the average performances per sentence. Con-
sidering the huge size of the database, a process-

1This database was an aggregate of several Japanese-English
corpora, notably the Yomiuri newspaper corpus (Utiyama and
Isahara, 2003) and the JST paper abstract corpus created at
NICT(www.nict.go.jp) through (Utiyama and Isahara, 2007).

Method Treelet Our
dictionary method

Disk space used 23 GB 500 MB
BLEU 11.6% 12.0%

Figure 6: Comparison with a dictionary-based baseline
(performances averaged over 100 sentences).

ing time below 1 second seems reasonable. The
increase in processing time between the small and
the large database is in line with the explanations
of section 4.4. Path-to-Root Arrays are slightly bet-
ter than Inverted indexes (we suspect a better im-
plementation could increase the difference further).
Both methods use up about the same disk space:
around 500MB. We also find that the approach of
section 4.2 brings virtually no overhead and gives
similar performances whether the query tree is in the
database or not (effectively reducing the worst-case
computation time from days to seconds).

We also conducted a small English-to-Japanese
translation experiment with a simple translation sys-
tem using Synchronous Tree Substitution Grammars
(STSG) for translating dependency trees. The sys-
tem we used is still in an experimental state and
probably not quite at the state-of-the-art level yet.
However, we considered it was good enough for our
purpose, since we mainly want to test our algorithm
is a practical way. As a baseline, from our cor-
pus of 2.9 millions dependency trees, we automat-
ically extracted STSG rules of size smaller than 6
and stored them in a database, considering that ex-
tracting rules of larger sizes would lead to an un-
manageable database size. We compared MT results
using only the rules of size smaller than 6 to using
all the rules computed on-the-fly after treelet retriev-
ing by our method. These results are summarized on
figure 6.

6 Flexible matching

We now describe an extension of the algorithm for
approximate matching of treelets. We consider that
each node of the query tree and database is labeled
by 2 labels (or more) of different generality. For
concreteness, let’s consider dependency trees whose
nodes are labeled by words and the Part-Of-Speech
(POS) of these words. We want to retrieve treelets
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that match by word or POS with the query tree.

6.1 Processing multi-Label trees
To do this, the inverted index will just need to
include entries for both words and POS. For ex-
ample, the dependency tree “likes,V:1 (Paul,N:0
Salmon,N:2 (and,CC:3 (Tuna,N:4)))” would pro-
duce the following (node,parents) entries in the in-
verted index: {N:[(0,1) (2,1) (4,3)], Paul:[(0,1)],
Salmon:[(2,1)],. . . }. This allows to search for a
treelet containing any combination of labels, like
“likes(N Salmon(CC(N)))”.

We actually want to compute all of the treelets of
a query tree TQ labeled by words and POS (meaning
each node can be matched by either word or POS).

We can compute TQ without redundant computa-
tions by slightly modifying the algorithm 2. First,
we modify the recursive representation of a treelet
so that it also includes the chosen label of its root
node. Then, the only modifications needed in algo-
rithm 2 are the following: 1- at initialization (line 3),
the elementary treelets corresponding to every pos-
sible labels are added to the discovered treelets set
D; 2- in procedure compute-supertrees, at line 8, we
generate one ascending supertreelet per label.

6.2 Weighted search
While the previous method would allow us to com-
pute as efficiently as possible all the treelets in-
cluded in a multi-labeled query tree, there is still
a problem: even avoiding redundant computations,
the number of treelets to compute can be huge, since
we are computing all combinations of labels. For
each treelet of size m we would have had in a single
label query tree, we now virtually have 2m treelets.
Therefore, it is not reasonable in general to try to
compute all these treelets.

However, we are not really interested in comput-
ing all possible treelets. In our case, the POS la-
bels allow us to retrieve larger examples when none
containing only words would be available. But we
still prefer to find examples matched by words rather
than by POS. We therefore need to tell the algorithm
that some treelets are more important that some oth-
ers. While we have used the Computation Hypertree
representation to compute treelets efficiently, we can
also use it to prioritize the treelets we want to com-
pute. This is easily implemented by giving a weight

POS matchings Without With
Processing time 0.9 s 22 s
Largest non-empty treelet size 8.7 11.4
Treelets of size>8 0.4 102
BLEU 12.0% 12.1%

Figure 7: Effect of POS-matching

to every treelet. We can then modify our traversal
strategy of the Inclusion DAG to compute treelets
having the biggest weights first: we just need to
specify that the treelet popped out on line 3 is the
treelet with the highest score (more generally, we
could consider a A* search).

6.3 Experiments

Using the above ideas, we have made some experi-
ments for computing query dependency trees labeled
with both words and POS. We score the treelets by
giving them a penalty of -1 for each POS they con-
tain, and stop the search when all remaining treelets
have a score lower than -2 (in other words, treelets
are allowed at most 2 POS-matchings). We also re-
quire POS-matched nodes to be non-adjacent.

We only have some small modifications to do to
algorithm 2. In line 3 of algorithm 2, elementary
treelets are assigned a weight of 0 or -1 depend-
ing on whether their label is a word or POS. Line 5
is replaced by ”pop the first treelet with minimal
weight and break the loop if the minimal weight is
inferior to -2”. In compute-supertreelets, we give a
weight to the generated supertreelets by combining
the weights of the child treelets.

Table 7 shows the increase in the size of the
biggest non-empty treelets when allowing 2 nodes
to be matched by POS. It also shows the impact on
BLEU score of using these additional treelets for on-
the-fly rule generation in our simple MT system. Im-
provement on BLEU is limited, but it might be due
to a very experimental handling of approximately
matched treelet examples in our MT system.

The computation time, while manageable, was
much slower than in the one-label case. This is due
to the increased number of treelets to be computed,
and to the fact that POS-labeled elementary treelets
have a high number of occurrences. It would be
more efficient to use more specific labeling (e.g V-

516



Figure 8: A packed forest.

mvt for verbs of movement instead of V).

7 Additional extensions

We briefly discuss here some additional extensions
to our algorithm that we will not detail for lack of
room and practical experiments.

7.1 Packed forest
Due to parsing ambiguities and automatic parsers
errors, it is often useful to use multiple parses of
a given sentence. These parses can be represented
by a packed forest such as the one in figure 8. Our
method allows the use of packed representation of
both the query tree and the database.

For the inverted index, the only difference is
that now, an occurrence of a label can have more
than one parent. For example, the inverted in-
dex of a database containing the packed forest
of figure 8 would contain the following entries:
{held: [(1,10a),(1,10b)], NP: [(6,9),(7,9),(9,10a)],
VP:[(10,N)], PP:[(8,10b)], a:[(2,6)], talk:[(3,6)],
with:[(4,7) (4,8)], Sharon:[(5,7) (5,8)]}. Where 10a
and 10b are some kind of virtual position that help to
specify that held and NP8 belong to the same chil-
dren list. We could also include a cost on edges
in the inverted index, which would allow to prune
matchings to unlikely parses.

The inverted index can now be used to search in
the trees contained in a packed forest database with-
out any modification. Modifications to the algorithm
in order to handle a packed forest query are similar
to the ones developed in section 6.

7.2 Discontinuous treelets
As we discussed in section 2.3, using a representa-
tion for the position of every node similar to (Zhang

et al., 2001), it is possible to determine the distance
and ancestor relationship of two nodes by just com-
paring their positions. This opens the possibility of
computing the occurrences of discontinuous treelets
in much the same way as is done in (Lopez, 2007)
for discontinuous substrings. We have not studied
this aspect in depth yet, especially since we are not
aware of any MT system making use of discontin-
uous syntax tree examples. This is nevertheless an
interesting future possibility.

8 Related work

As we previously mentioned, (Lopez, 2007) and
(Callison-Burch et al., 2005) propose a method sim-
ilar to ours for the string case.

We are not aware of previous proposals for ef-
ficient on-the-fly retrieving of translation examples
in the case of Syntax-Based Machine Translation.
Among the works involving rule precomputation,
(Zhang et al., 2009) describes a method for effi-
ciently matching precomputed treelets rules. These
rules are organized in a kind of prefix tree that al-
lows efficient matching of packed forests. (Liu et al.,
2006) also propose a greedy algorithm for matching
TSC rules to a query tree.

9 Conclusion and future work

We have presented a method for efficiently retriev-
ing examples of treelets contained in a query tree,
thus allowing on-the-fly computation of translation
rules for Syntax-Based systems. We did this by
building on approaches previously proposed for the
case of string examples, proposing an adaptation of
the concept of Suffix Arrays to trees, and formaliz-
ing computation as the traversal of an hypergraph.
This hypergraph allows us to easily formalize dif-
ferent computation strategy, and adapt the methods
to flexible matchings. We still have a lot to do with
respect to improving our implementation, exploring
the different possibilities offered by this framework
and proceeding to more experiments.
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Abstract

This paper presents a generative model for
the automatic discovery of relations between
entities in electronic medical records. The
model discovers relation instances and their
types by determining which context tokens ex-
press the relation. Additionally, the valid se-
mantic classes for each type of relation are de-
termined. We show that the model produces
clusters of relation trigger words which bet-
ter correspond with manually annotated re-
lations than several existing clustering tech-
niques. The discovered relations reveal some
of the implicit semantic structure present in
patient records.

1 Introduction

Semantic relations in electronic medical records
(EMRs) capture important meaning about the as-
sociations between medical concepts. Knowledge
about how concepts such as medical problems, treat-
ments, and tests are related can be used to improve
medical care by speeding up the retrieval of relevant
patient information or alerting doctors to critical in-
formation that may have been overlooked. When
doctors write progress notes and discharge sum-
maries they include information about how treat-
ments (e.g., aspirin, stent) were administered for
problems (e.g. pain, lesion) along with the out-
come, such as an improvement or deterioration. Ad-
ditionally, a doctor will describe the tests (e.g., x-
ray, blood sugar level) performed on a patient and
whether the tests were conducted to investigate a
known problem or revealed a new one. These textual

descriptions written in a patient’s record encode im-
portant information about the relationships between
the problems a patients has, the treatments taken for
the problems, and the tests which reveal and investi-
gate the problems.

The ability to accurately detect semantic rela-
tions in EMRs, such asTreatment-Administered-for-
Problem, can aid in querying medical records. Af-
ter a preprocessing phase in which the relations are
detected in all records they can be indexed and re-
trieved later as needed. A doctor could search for
all the times that a certain treatment has been used
on a particular problem, or determine all the treat-
ments used for a specific problem. An additional
application is the use of the relational information
to flag situations that merit further review. If a pa-
tient’s medical record indicates a test that was found
to reveal a critical problem but no subsequent treat-
ment was performed for the problem, the patient’s
record could be flagged for review. Similarly, if
a Treatment-Worsens-Problemrelation is detected
previously in a patient’s record, that information can
be brought to the attention of a doctor who advises
such a treatment in the future. By considering all
of the relations present in a corpus, better medical
ontologies could be built automatically or existing
ones can be improved by adding additional connec-
tions between concepts that have a relation in text.

Given the large size of EMR repositories, we ar-
gue that it is quite important to have the ability to
perform relation discovery between medical con-
cepts. Relations between medical concepts benefit
translational medicine whenever possible relations
are known. Uzuner et al. (2011) show that super-
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vised methods recognize such relations with high ac-
curacy. However, large sets of annotated relations
need to be provided for this purpose. To address
both the problem of discovering unknown relations
between medical concepts and the related problem
of generating examples for known relations, we have
developed an unsupervised method. This approach
has the advantages of not requiring an expensive an-
notation effort to provide training data for seman-
tic relations, which is particularly difficult for medi-
cal records, characterized by many privacy concerns.
Our analysis shows a high level of overlap between
the manually annotated relations and those that were
discovered automatically. Our experimental results
show that this approach improves upon simpler clus-
tering techniques.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the related work. Section
3 reports our novel generative model for discovering
relations in EMRs, Section 4 details the inference
and parameter estimation of our method. Section
5 details our experiments, Section 6 discusses our
findings. Section 7 summarizes the conclusions.

2 Related Work

Previous methods for unsupervised relation dis-
covery have also relied on clustering techniques.
One technique uses the context of entity arguments
to cluster, while another is to perform a post-
processing step to cluster relations found using an
existing relation extraction system. The approaches
most similar to ours have taken features from the
context of pairs of entities and used those features to
form a clustering space. In Hasegawa et al. (2004),
those features are tokens found within a context win-
dow of the entity pair. Distance between entity pairs
is then computed using cosine similarity. In another
approach, Rosenfeld and Feldman (2007) use hierar-
chical agglomerative clustering along with features
based on token patterns seen in the context, again
compared by cosine similarity.

Other approaches to unsupervised relation dis-
covery have relied on a two-step process where a
number of relations are extracted, usually from a
predicate-argument structure. Then similar relations
are clustered together since synonymous predicates
should be considered the same relation (e.g. “ac-

quire” and “purchase”). Yates (2009) considers the
output from an open information extraction system
(Yates et al., 2007) and clusters predicates and argu-
ments using string similarity and a combination of
constraints. Syed and Viegas (2010) also perform a
clustering on the output of an existing relation ex-
traction system by considering the number of times
two relations share the same exact arguments. Sim-
ilar relations are expected to have the same pairs
of arguments (e.g. “Ford produces cars” and “Ford
manufactures cars”). These approaches and others
(Agichtein and Gravano, 2000; Pantel and Pennac-
chiotti, 2006) rely on an assumption that relations
are context-independent, such as when a person is
born, or the capital of a nation. Our method will
discover relations that can depend on the context as
well. For instance, “penicillin” may be causally re-
lated to “allergic reaction” in one patient’s medical
record but not in another. The relation between the
two entities is not globally constant and should be
considered only within the scope of one patient’s
records.

Additionally, these two-step approaches tend
to rely on predicate-argument structures such as
subject-verb-object triples to detect arbitrary rela-
tions (Syed and Viegas, 2010; Yates et al., 2007).
Such approaches can take advantage of the large
body of research that has been done on extracting
syntactic parse structure and semantic role infor-
mation from text. However, these approaches can
overlook relations in text which do not map easily
onto those structures. Unlike these approaches, our
model can detect relations that are not expressed as
a verb, such as “[cough] + [green sputum]” to ex-
press a conjunction or “[Cl] 119 mEq / L [High]” to
express that a test reading is indicating a problem.

The 2010 i2b2/VA Challenge (Uzuner et al.,
2011) developed a set of annotations for medical
concepts and relations on medical progress notes
and discharge summaries. One task at the challenge
involved developing systems for the extraction of
eight types of relations between concepts. We use
this data set to compare our unsupervised method
with others.

The advantage of our work over existing unsu-
pervised approaches is the simultaneous clustering
of both argument words and relation trigger words.
These broad clusters handle: (i) synonyms, (ii) argu-
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ment semantic classes, and (iii) words belonging to
the same relation.

3 A Generative Model for Discovering
Relations

3.1 Unsupervised Relation Discovery

A simple approach to discovering relations between
medical entities in clinical texts uses a clustering ap-
proach, e.g. Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). We start with an assumption that rela-
tions exist between two entities, which we call argu-
ments, and may be triggered by certain words be-
tween those entities which we calltrigger words.
For example, given the text “[x-ray] revealed [lung
cancer]”, the first argument isx-ray, the second ar-
gument islung cancer, and the trigger word isre-
vealed. We further assume that the arguments must
belong to a small set of semantic classes specific to
the relation. For instance,x-ray belongs to a class
of medical tests, whereaslung cancerbelongs to a
class of medical problems. While relations may ex-
ist between distant entities in text, we focus on those
pairs of entities in text which have no other entities
between them. This increases the likelihood of a re-
lation existing between the entities and minimizes
the number of context words (words between the en-
tities) that are not relevant to the relation.

With these assumptions we build a baseline rela-
tion discovery using LDA. LDA is used as a baseline
because of its similarities with our own generative
model presented in the next section. Each consec-
utive pair of entities in text is extracted, along with
the tokens found between them. Each of the entities
in a pair is split into tokens which are taken along
with the context tokens to form a singlepseudo-
document. When the LDA is processed on all such
pseudo-documents, clusters containing words which
co-occur are formed. Our assumption that relation
arguments come from a small set of semantic classes
should lead to clusters which align with relations
since the two arguments of a relation will co-occur
in the pseudo-documents. Furthermore, those argu-
ment tokens should co-occur with relation trigger
words as well.

This LDA-based approach was examined on elec-
tronic medical records from the 2010 i2b2/VA Chal-
lenge data set (Uzuner et al., 2011). The data set

Cluster 1
Words: secondary, due, likely, patient, disease,
liver, abdominal, cancer, pulmonary, respiratory,
elevated, volume, chronic, edema, related
“Correct” instances: [Metastatic colon cancer]
with [abdominal carcinomatosis]; [symptoms]
were due to [trauma]
“Incorrect” instances : [mildly improving symp-
toms] , plan will be to continue with [his cur-
rent medicines]; [prophylaxis] against [peptic ul-
cer disease]
Cluster 2:
Words: examination, no, positive, culture, exam,
blood, patient, revealed, cultures, physical, out,
urine, notable, showed, cells
“Correct” instances: [a blood culture] grew out
[Staphylococcusaureus]; [tamponade] by [exam-
ination]
“Incorrect” instances : [the intact drain] drain-
ing [bilious material]; [a Pseudomonas cellulitis]
and [subsequent sepsis]

Figure 1: Two clusters found by examining the most
likely words under two LDA topics. The instances are
pseudo-documents whose probability of being assigned
to that cluster was over 70%

contains manually annotated medical entities which
were used to form the pairs of entities needed. For
example, Figure 1 illustrates examples of two clus-
ters out of 15 discovered automatically using LDA
on the corpus. The first cluster appears to contain
words which indicate a relation whose two argu-
ments are both medical problems (e.g. “disease”,
“cancer”, “edema”). The trigger words seem to in-
dicate a possible causal relation (e.g., “due”, “re-
lated”, “secondary”). The second cluster contains
words relevant to medical tests (e.g. “examination”,
“culture”) and their findings (“revealed”, “showed”,
“positive”). As illustrated in Figure 1, some of the
context words are not necessarily related to the re-
lation. The word “patient” for instance is present
in both clusters but is not a trigger word because
it is likely to be seen in the context of any rela-
tion in medical text. The LDA-based model treats
all words equally and cannot identify which words
are likely trigger words and which ones aregeneral
words, which merely occur frequently in the context
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of a relation.
In addition, while the LDA approach can de-

tect argument words which co-occur with trigger
words (e.g., “examination” and “showed”), the clus-
ters produced with LDA do not differentiate between
contextual words and words which belong to the ar-
guments of the relation. An approach which mod-
els arguments separately from context words could
learn the semantic classes of those arguments and
thus better model relations. Considering the exam-
ples from Figure 1, a model which could cluster
“examination”, “exam”, “cultures”, and “culture”
into onemedical testcluster and “disease”, “cancer”
and “edema” into amedical problemcluster separate
from the relation trigger words and general words
should model relations more accurately by better re-
flecting the implicit structure of the text. Because of
these limitations many relations discovered in this
way are not accurate, as can be seen in Figure 1.

3.2 Relation Discovery Model (RDM)

The limitations identified in the LDA-based ap-
proach are solved by a novel relation discovery
model (RDM) which jointly models relation argu-
ment semantic classes and considers them separately
from the context words. Relations triggered by pairs
of medical entities enable us to consider three ob-
servable features: (A1) the first argument; (A2)
the second argument; and (CW) the context words
found between A1 and A2.

For instance, in sentence S1 the arguments are
A1=“some air hunger” and A2=“his tidal volume”
while the context words are “last”, “night”, “when”,
“I”, and “dropped”.

S1:He developed [some air hunger]PROB last night
when I dropped [his tidal volume]TREAT from 450
to 350.

In the RDM, the contextual words are assumed to
come from a mixture model with 2 mixture compo-
nents: a relation trigger word (x = 0), or a general
word (x = 1), wherex is a variable representing
which mixture component a word belongs to. In
sentence S1 for example, the word “dropped” can
be seen as a trigger word for aTreatment-Causes-
Problemrelation. The remaining words are not trig-
ger words and hence are seen as general words.

Under the RDM’s mixture model, the probability

of a context word is:
P (wC |tr, z) =

P (wC |tr, x = 0) × P (x = 0|tr) +

P (wC |z, x = 1) × P (x = 1|tr)

WherewC is a context word, the variabletr is
the relation type, andz is the general word class.
The variablex chooses whether a context word
comes from a relation-specific distribution of trig-
ger words, or from a general word class. In the
RDM, the two argument classes are modeled jointly
asP (c1, c2|tr), wherec1 and c2 are two semantic
classes associated with a relation of typetr. How-
ever the assignment of classes to arguments depends
on a directionality variabled. If d = 0, then the first
argument is assigned semantic classc1 and the sec-
ond is assigned classc2. Whend = 1 however, the
class assignments are swapped. This models the fact
that a relation’s arguments do not come in a fixed
order, “[MRI] revealed [tumor]” is the same type of
relation as “[tumor] was revealed by [x-ray]”. Fig-
ure 2 shows the graphical model for the RDM. Each
candidate relation is modeled independently, with a
total of I relation candidates. Variablew1 is a word
observed from the first argument, andw2 is a word
observed from the second argument. The model
takes parameters for the number of relations types
(R), the number of argument semantic classes (A),
and the number of general word classes (K). The
generative process for the RDM is:

1. For relation typer = 1..R:

(a) Draw a binomial distributionσr from
Beta(αx) representing the mixture distri-
bution for relationr

(b) Draw a joint semantic class distribution
ψ1,2
r ∈ RC×C fromDirichlet(α1,2).

2. Draw a categorical word distributionφzz′ from
Dirichlet(βz) for each general word class
z′ = 1..K

3. Draw a categorical word distributionφrr′ from
Dirichlet(βr) for eachr′ = 1..R

4. for semantic classa′ = 1..A:

(a) Draw categorical word distributions
ω1
a′ and ω2

a′ from Dirichlet(β1) and
Dirichlet(β2) for the first and second
arguments, respectively.
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Figure 2: Graphical model for the RDM.c1,2 represents the joint generation ofc1 andc2

P (tr, d|tr
−i,d−i, c

1,2
−i ,x−i,z−i,wC

−i,w
1
−i,w

2
−i;α,β) ∝ u1 × u2 × u3

u1 = f(tr)+αr

I+Rαr × f(tr ,d)+αd
d

f(tr)+αd
0+αd

1
× f(tr ,c1,c2)+α1,2

f(tr)+C×Cα1,2

u2 =
∏WC
j

fi(zj)+α
z

WC+Kαz × f(tr ,xi)+α
x

f(tr)+2αx ×(1x=0
f(tr ,wC

j )+βr

f(tr)+Wβr + 1x=1
f(zj ,wC

j )+βz

f(zj)+Wβz )

u3 =
∏W1
j

f(a1,w1
j )+β1

f(a1)+Wβ1 × ∏W2
j

f(a2,w2
j )+β2

f(a2)+Wβ2

Figure 3: Gibbs sampling update equation for variablestr andd for theith relation candidate. The variablesa1 = c1

anda2 = c2 if d = 0, or a1 = c2 anda2 = c1 if d = 1. W is the size of the vocabulary.f(•) is the count of
the number of times that event occurred, excluding assignments for the relation instance being sampled. For instance,
f(tr, d) =

∑I
k 6=i I[t

r
k = tri ∧ dk = di]

5. Draw a categorical relation type distributionρ
fromDirichlet(αr)

6. For each pair of consecutive entities in the cor-
pus,i = 1..I:

(a) Sample a relation typetr from ρ
(b) Jointly sample semantic classesc1 andc2

for the first and second arguments from
ψ1,2
tr

(c) Draw a general word class categorical dis-
tribution θ fromDirichlet(αz)

(d) For each tokenj = 1..W1 in the first ar-
gument: Sample a wordw1

j from ω1
c1 if

d = 0 or ω2
c2 if d = 1

(e) For each tokenj = 1..W2 in the second
argument: Sample a wordw2

j from ω2
c2 if

d = 0 or ω1
c1 if d = 1

(f) For each tokenj = 1..WC in the context
of the entities:

i. Sample a general word classz from θ
ii. Sample a mixture componentx from
σtr

iii. Sample a word fromφrtr if x = 0 or

φzz if x = 1.

In the RDM, words from the arguments are in-
formed by the relation through an argument seman-
tic class which is sampled fromP (c1, c2|tr) = ψ1,2

tr .
Furthermore, words from the context are informed
by the relation type. These dependencies enable
more coherent relation clusters to form during pa-
rameter estimation because argument classes and re-
lation trigger words are co-clustered.

We chose to model two distinct sets of entity
words (ω1 andω2) depending on whether the entity
occurred in the first argument or the second argu-
ment of the relation. The intuition for using disjoint
sets of entities is based on the observation that an
entity may be expressed differently if it comes first
or second in the text.

4 Inference and Parameter Estimation

Assignments to the hidden variables in RDM can
be made by performing collapsed Gibbs sampling
(Griffiths and Steyvers, 2004). The joint probability
of the data is:
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P (wC,w1,w2;α,β) ∝
P (σ|αx)P (ρ|αr)P (δ|αd)P (ψ1,2|α1,2)
×P (φz|βz)P (φr|βr)P (ω1|β1)P (ω2|β2)
× ∏I

i [P (θi|αz)P (tri |ρ)P (di|tr, δtr )P (c1i , c
2
i |tr, ψ1,2)

× ∏WC,i

j P (zi,j |θi)P (xi,j |tri , σtri )P (wCi,j |xi,j , tri , zi,j)
× ∏W1,i

j P (w1
j |di, c1,2i , ω1)

× ∏W2,i

j P (w2
j |di, c1,2i , ω2)]

We need to sample variablestr, d, c1,2, x, and
z. We sampletr and d jointly while each of the
other variables is sampled individually. After
integrating out the multinomial distributions, we
can sampletr andd from the equation in Figure 3

The update equations for the remaining variables
can be derived from the same equation by dropping
terms which are constant across changes in that vari-
able.

In our experiments the hyperparameters were set
to αx = 1.0, αz = 1.0, α1,2 = 1.0, αd0 = 2, αd1 =
1, βr = 0.01, βz = 0.01, β1 = 1.0, β2 = 1.0.
Changing the hyperparameters did not significantly
affect the results.

5 Experimental Results

5.1 Experimental Setup

We evaluated the RDM using a corpus of electronic
medical records provided by the 2010 i2b2/VA
Challenge (Uzuner et al., 2011). We used the
training set, which consists of 349 medical records
from 4 hospitals, annotated with medical concepts
(specifically problems, treatments, and tests),
along with any relations present between those
concepts. We used these manually annotated
relations to evaluate how well the RDM performs
at relation discovery. The corpus is annotated
with a set of eight relations:Treatment-Addresses-
Problem, Treatment-Causes-Problem, Treatment-
Improves-Problem, Treatment-Worsens-Problem,
Treatment-Not-Administered-due-to-Problem, Test-
Reveals-Problem, Test-Conducted-for-Problem, and
Problem-Indicates-Problem. The data contains
13,460 pairs of consecutive concepts, of which
3,613 (26.8%) have a relation belonging to the list
above. We assess the model using two versions of
this data set consisting of: those pairs of consecutive

Relation 1 Relation 2 Relation 3 Relation 4
mg ( due showed
p.r.n. ) consistent no
p.o. Working not revealed
hours ICD9 likely evidence
prn Problem secondary done
q Diagnosis patient 2007
needed 30 ( performed
day cont started demonstrated
q. ): most without
4 closed s/p normal
2 SNMCT seen shows
every **ID-NUM related found
one PRN requiring showing
two mL including negative
8 ML felt well

Figure 4: Relation trigger words found by the RDM

entities which have a manually annotated relation
(DS1), and secondly, all consecutive pairs of entities
(DS2). DS1 allows us to assess the RDM’s cluster-
ing without the noise introduced from those pairs
lacking a true relation. Evaluations on DS2 will
indicate the level of degradation caused by large
numbers of entity pairs that have no true relation.
We also use a separate test set to assess how well
the model generalizes to new data. The test set
contains 477 documents comprising 9,069 manually
annotated relations.

5.2 Analysis

Figure 4 illustrates four of the fifteen trigger word
clusters (most likely words according toφr) learned
from dataset DS1 using the best set of parameters
according to normalized mutual information (NMI)
as described in section 5.3. These parameters were:
R = 9 relations,K = 15 general word classes, and
A = 15 argument classes. Examination of the most
likely words reveals a variety of trigger words, be-
yond obvious explicit ones. Example sentences for
the relation types from Figure 4 are presented in Fig-
ure 5 and discussed below.
Relation Type 1
Instances of this discovered relation are often found
embedded in long lists of drugs prescribed to the
patient. Tokens such as “p.o.” and “p.r.n.”, mean-
ing respectively “by mouth” and “when necessary”,
are indicative of a prescription relation. The learned
relation specifically considers arguments of a drug
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Instances of Relation Type 1

1. Haldol0.5-1 milligrams p.o. q.6-8h. p.r.n. agitation
2. plavixevery day to prevent failure of these stents
3. KBL mouthwash, 15 ccp .o. q.d. prn mouth discomfort
4. Miconazole nitrate powdertid prn for groin rash
5. AmBisome300 mg IV q.d. for treatment of her hepatic candidiasis

Instances of Relation Type 2

1. MAGNESIUM HYDROXIDE SUSP30 ML ) , 30 mL , Susp , By Mouth , At Bedtime , PRN , For Constipation
2. Depression , major( ICD9 296.00 , Working , Problem ) cont NOS home meds
3. Diabetes mellitus type II( ICD9 250.00 , Working , Problem ) cont home meds
4. ASCITES( ICD9 789.5 , Working , Diagnosis ) on spironalactone
5. *Dilutional hyponatremia( SNMCT **ID-NUM , Working , Diagnosis ) improved with fluid restriction

Instances of Relation Type 3

1. ESRDsecondary to her DM
2. slightly lightheadedand with increased HR
3. a 40% RCA, which was hazy
4. echogenic kidneysconsistent with renal parenchymal disease
5. *Librium for alcohol withdrawal

Instances of Relation Type 4

1. V-P lung scanwas performed on May 24 2007 , showed low probability of PE
2. a bedside transthoracic echocardiogramdone in the Cardiac Catheterization laboratory without evidence of

an effusion
3. exploration of the abdomenrevealed significant nodularity of the liver
4. Echocardiogramshowed moderate dilated left atrium
5. An MRI of the right legwas done which was equivocal for osteomyelitis

Figure 5: Examples for four of the discovered relations. Those marked with an asterisk have a different manually
chosen relation than the others

and a symptom treated by that drug. The closest
manually chosen relation isTreatment-Addresses-
Problemwhich included drugs as treatments.

Relation Type 2
Relation 2 captures a similar kind of relation to Re-
lation 1. All five examples for Relation 1 in Fig-
ure 5 came from a different set of hospitals than the
examples for Relation 2. This indicates the model
is detecting stylistic differences in addition to se-
mantic differences. This is one of shortcomings of
simple generative models. Because they cannot re-
flect the true underlying distribution of the data they
will model the observations in ways that are irrel-
evant to the task at hand. Relation 2 also contains
certain punctuation, such as parentheses which the
examples show are used to delineate a treatment
code. Instances of Relation 2 were often marked
asTreatment-Addresses-Problemrelations by anno-
tators.

Relation Type 3
The third relation captures problems which are re-

lated to each other. The manual annotations contain
a very similar relation calledProblem-Indicates-
Problem. This relation is also similar to Cluster 1
from Section 3.1, however under the RDM the words
are much more specific to the relation. This relation
is difficult to discover accurately because of the in-
frequent use of strong trigger words to indicate the
relation. Instead, the model must rely more on the
semantic classes of the arguments, which in this case
will both be types of medical problems.

Relation Type 4
The fourth relation is detecting instances where a
medical test has revealed some problem. This cor-
responds to theTest-Reveals-Problemrelation from
the data. Many good trigger words for that relation
have high probability under Relation 4. A compar-
ison of the RDM’s Relation 4 with LDA’s cluster 2
from Figure 1 shows that many words not relevant
to the relation itself are now absent.

Argument classes
Figure 6 shows the 3 most frequent semantic classes
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Concept 1 Concept 2 Concept 3
CT pain Percocet
scan disease Hgb
chest right Hct
x-ray left Anion
examination renal Vicodin
Chest patient RDW
EKG artery Bili
MRI - RBC
culture symptoms Ca
head mild Gap

Figure 6: Concept words found by the RDM

for the first argument of a relation (ω1). Most of the
other classes were assigned rarely, accounting for
only 19% of the instances collectively. Human an-
notators of the data set chose three argument classes:
Problems, Treatments, andTests. Concept 1 aligns
closely with a test semantic class. Concept 2 seems
to be capturing medical problems and their descrip-
tions. Finally, Concept 3 appears to be a combina-
tion of treatments (drugs) and tests. Tokens such as
“Hgb”, “Hct”, “Anion”, and “RDW” occur almost
exclusively in entities marked as tests by annotators.
It is not clear why this cluster contains both types
of words, but many of the high ranking words be-
yond the top ten do correspond to treatments, such as
“Morphine”, “Albumin”, “Ativan”, and “Tylenol”.
Thus the discovered argument classes show some
similarity to the ones chosen by annotators.

5.3 Evaluation

For a more objective analysis of the relations de-
tected, we evaluated the discovered relation types
by comparing them with the manually annotated
ones from the data using normalized mutual infor-
mation (NMI) (Manning et al., 2008). NMI is an
information-theoretic measure of the quality of a
clustering which indicates how much information
about the gold classes is obtained by knowing the
clustering. It is normalized to have a range from 0.0
to 1.0. It is defined as:

NMI(Ω; C) =
I(Ω; C)

[H(Ω) +H(C)]/2

whereΩ is the system-produced clustering,C is the
gold clustering,I is the mutual information, andH

is the entropy. The mutual information of two clus-
terings can be defined as:

I(Ω,C) =
∑

k

∑

j

|ωk ∩ cj |
N

log2
N |ωk ∩ cj |

|ωk||cj |

whereN is the number of items in the clustering.
The entropy is defined as

H(Ω) = −
∑

k

|ωk|
N

log2
|ωk|
N

The reference clusters consist of all relations an-
notated with the same relation type. The predicted
clusters consist of all relations which were assigned
the same relation type.

In addition to NMI, we also compute the F mea-
sure (Amigó et al., 2009). The F measure is com-
puted as:

F =
∑

i

|Li|
n

maxj{F (Li, Cj)}

where

F (Li, Cj) =
2 ×Recall(Li, Cj) × Precision(Li, Cj)

Recall(Li, Cj) + Precision(Li, Cj)

andPrecision is defined as:

Precision(Ci, Lj) =
|Ci ∩ Lj|

|Ci|

whileRecall is simply precision with the arguments
swapped:

Recall(L,C) = Precision(C,L)

Table 1 shows the NMI and F measure scores for
several baselines along with the RDM. Evaluation
was performed on both DS1 (concept pairs having
a manually annotated relation) and DS2 (all con-
secutive concept pairs). For DS2 we learned the
models using all of the data, and evaluated on those
entity pairs which had a manual relation annotated.
The LDA-based model from Section 3.1 is used as
one baseline. Two other baselines are K-means and
Complete-Link hierarchical agglomerative cluster-
ing using TF-IDF vectors of the context and argu-
ment words (similar to Hasegawa et al. (2004)).
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Method DS1 DS2
NMI F NMI F

Train set
Complete-link 4.2 37.8 N/A N/A
K-means 8.25 38.0 5.4 38.1
LDA baseline 12.8 23.0 15.6 26.2
RDM 18.2 39.1 18.1 37.4
Test set
LDA baseline 10.0 26.1 11.5 26.3
RDM 11.8 37.7 14.0 36.4

Table 1: NMI and F measure scores for the RDM and
baselines. The first two columns of numbers show the
scores when evaluation is restricted to only those pairs
of concepts which had a relation identified by annotators.
The last two columns are the NMI and F measure scores
when each method clusters all consecutive entity pairs,
but is only evaluated on those with a relation identified
by annotators.

Complete-link clustering did not finish on DS2
because of the large size of the data set. This high-
lights another advantage of the RDM. Hierarchical
agglomerative clustering is quadratic in the size of
the number of instances to be clustered, while the
RDM’s time and memory requirements both grow
linearly in the number of entity pairs. The scores
shown in Table 1 use the best parameterization of
each model as measured by NMI. For DS1 the
best LDA-based model used 15 clusters. K-means
achieved the best result with 40 clusters, while the
best Complete-Link clustering was obtained by us-
ing 40 clusters. The best RDM model used parame-
tersR = 9 relation,K = 15 general word classes,
andA = 15 argument classes. For DS2 the best
number of clusters for LDA was 10, while K-means
performed best with 58 clusters. The best RDM
model usedR = 100 relations,K = 50 general
word classes, andA = 15 argument classes. The
LDA-based approach saw an improvement when us-
ing the larger data set, however the RDM still per-
formed the best.

To assess how well the RDM performs on unseen
data we also evaluated the relations extracted by the
model on the test set. Only the RDM and LDA mod-
els were evaluated as clusters produced by K-means
and hierarchical clustering are valid only for the data
used to generate the clusters. Generative models on

the other hand can provide an estimate of the proba-
bility for each relation type on unseen text. For each
model we generate 10 samples after a burn in pe-
riod of 30 iterations and form clusters by assigning
each pair of concepts to the relation assigned most
often in the samples. The results of this evaluation
are presented in Table 1. While these cluster scores
are lower than those on the data used to train the
models, they still show the RDM outperforming the
LDA baseline model.

6 Discussion

The relation and argument clusters determined by
the RDM provide a better unsupervised relation dis-
covery method than the baselines. The RDM does
this using no knowledge about syntax or semantics
outside of that used to determine concepts. The
analysis shows that words highly indicative of rela-
tions are detected and clustered automatically, with-
out the need for prior annotation of relations or even
the choice of a predetermined set of relation types.
The discovered relations can be interpreted by a hu-
man or labeled automatically using a technique such
as the one presented in Pantel and Ravichandran
(2004). The fact that the discovered relations and ar-
gument classes align well with those chosen by an-
notators on the same data justify our assumptions
about relations being present and discoverable by
the way they are expressed in text. Table 1 shows
that the model does not perform as well when many
of the pairs of entities do not have a relation, but it
still performs better than the baselines.

While the RDM relies in large part on trigger
words for making clustering decisions it is also ca-
pable of including examples which do not contain
any contextual words between the arguments. In ad-
dition to modeling trigger words, a joint distribution
on argument semantic classes is also incorporated.
This allows the model to determine a relation type
even in the absence of triggers. For example, con-
sider the entity pair “[lung cancer] [XRT]”, where
XRT stands for external radiation therapy. By deter-
mining the semantic classes for the arguments (lung
cancer is a Problem, and XRT is a test), the set of
possible relations between the arguments can be nar-
rowed down. For instance, XRT is unlikely to be
in a causal relationship with a problem, or to make
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a problem worse. A further aid is the fact that the
learned relationships may be specialized. For in-
stance, there may be a learned relation type such
as “Cancer treatment addresses cancer problem”. In
this case, seeing a type of cancer (lung cancer) and a
type of cancer treatment (XRT) would be strong ev-
idence for that type of relation, even without trigger
words.

7 Conclusions

We presented a novel unsupervised approach to dis-
covering relations in the narrative of electronic med-
ical records. We developed a generative model
which can simultaneously cluster relation trigger
words as well as relation arguments. The model
makes use of only the tokens found in the con-
text of pairs of entities. Unlike many previous ap-
proaches, we assign relations to entities at the lo-
cation those entities appear in text, allowing us to
discover context-sensitive relations. The RDM out-
performs baselines built using Latent Dirichlet Allo-
cation and traditional clustering methods. The dis-
covered relations can be used for a number of ap-
plications such as detecting when certain treatments
were administered or determining if a necessary test
has been performed. Future work will include trans-
forming the RDM into a non-parametric model by
using the Chinese Restaurant Process (CRP) (Blei et
al., 2010). The CRP can be used to determine the
number of relations, argument classes, and general
word classes automatically.
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Abstract

We consider the problem of performing learn-
ing and inference in a large scale knowledge
base containing imperfect knowledge with
incomplete coverage. We show that a soft
inference procedure based on a combination
of constrained, weighted, random walks
through the knowledge base graph can be
used to reliably infer new beliefs for the
knowledge base. More specifically, we
show that the system can learn to infer
different target relations by tuning the weights
associated with random walks that follow
different paths through the graph, using a
version of the Path Ranking Algorithm (Lao
and Cohen, 2010b). We apply this approach to
a knowledge base of approximately 500,000
beliefs extracted imperfectly from the web
by NELL, a never-ending language learner
(Carlson et al., 2010). This new system
improves significantly over NELL’s earlier
Horn-clause learning and inference method:
it obtains nearly double the precision at rank
100, and the new learning method is also
applicable to many more inference tasks.

1 Introduction

Although there is a great deal of recent research
on extracting knowledge from text (Agichtein and
Gravano, 2000; Etzioni et al., 2005; Snow et
al., 2006; Pantel and Pennacchiotti, 2006; Banko
et al., 2007; Yates et al., 2007), much less
progress has been made on the problem of drawing
reliable inferences from this imperfectly extracted
knowledge. In particular, traditional logical

inference methods are too brittle to be used to make
complex inferences from automatically-extracted
knowledge, and probabilistic inference methods
(Richardson and Domingos, 2006) suffer from
scalability problems. This paper considers the
problem of constructing inference methods that can
scale to large knowledge bases (KB’s), and that are
robust to imperfect knowledge. The KB we consider
is a large triple store, which can be represented as a
labeled, directed graph in which each entity a is a
node, each binary relation R(a, b) is an edge labeled
R between a and b, and unary concepts C(a) are
represented as an edge labeled “isa” between the
node for the entity a and a node for the concept
C. We present a trainable inference method that
learns to infer relations by combining the results of
different random walks through this graph, and show
that the method achieves good scaling properties and
robust inference in a KB containing over 500,000
triples extracted from the web by the NELL system
(Carlson et al., 2010).

1.1 The NELL Case Study

To evaluate our approach experimentally, we study
it in the context of the NELL (Never Ending
Language Learning) research project, which is an
effort to develop a never-ending learning system that
operates 24 hours per day, for years, to continuously
improve its ability to read (extract structured facts
from) the web (Carlson et al., 2010). NELL began
operation in January 2010. As of March 2011,
NELL had built a knowledge base containing several
million candidate beliefs which it had extracted from
the web with varying confidence. Among these,
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NELL had fairly high confidence in approximately
half a million, which we refer to as NELL’s
(confident) beliefs. NELL had lower confidence in a
few million others, which we refer to as its candidate
beliefs.

NELL is given as input an ontology that defines
hundreds of categories (e.g., person, beverage,
athlete, sport) and two-place typed relations among
these categories (e.g., atheletePlaysSport(〈athlete〉,
〈sport〉)), which it must learn to extract from the
web. It is also provided a set of 10 to 20 positive
seed examples of each such category and relation,
along with a downloaded collection of 500 million
web pages from the ClueWeb2009 corpus (Callan
and Hoy, 2009) as unlabeled data, and access to
100,000 queries each day to Google’s search engine.
Each day, NELL has two tasks: (1) to extract
additional beliefs from the web to populate its
growing knowledge base (KB) with instances of the
categories and relations in its ontology, and (2) to
learn to perform task 1 better today than it could
yesterday. We can measure its learning competence
by allowing it to consider the same text documents
today as it did yesterday, and recording whether it
extracts more beliefs, more accurately today.1

NELL uses a large-scale semi-supervised multi-
task learning algorithm that couples the training
of over 1500 different classifiers and extraction
methods (see (Carlson et al., 2010)). Although
many of the details of NELL’s learning method
are not central to this paper, two points should
be noted. First, NELL is a multistrategy learning
system, with components that learn from different
“views” of the data (Blum and Mitchell, 1998): for
instance, one view uses orthographic features of
a potential entity name (like “contains capitalized
words”), and another uses free-text contexts in
which the noun phrase is found (e.g., “X frequently
follows the bigram ‘mayor of’ ”). Second, NELL
is a bootstrapping system, which self-trains on its
growing collection of confident beliefs.

1.2 Knowledge Base Inference: Horn Clauses

Although NELL has now grown a sizable knowl-
edge base, its ability to perform inference over this

1NELL’s current KB is available online at
http://rtw.ml.cmu.edu.

Eli Manning Giants
AthletePlays

ForTeam

HinesWard Steelers

AthletePlays
ForTeam NFL

TeamPlays
InLeague

MLBTeamPlays
InLeague

TeamPlays
InLeague

Figure 1: An example subgraph.

knowledge base is currently very limited. At present
its only inference method beyond simple inheritance
involves applying first order Horn clause rules to
infer new beliefs from current beliefs. For example,
it may use a Horn clause such as

AthletePlaysForTeam(a, b) (1)

∧ TeamPlaysInLeague(b, c)

⇒ AthletePlaysInLeague(a,c)

to infer that AthletePlaysInLeague(HinesWard,NFL),
if it has already extracted the beliefs in the
preconditions of the rule, with variables a, b and c
bound to HinesWard, PittsburghSteelers and NFL
respectively as shown in Figure 1. NELL currently
has a set of approximately 600 such rules, which
it has learned by data mining its knowledge base
of beliefs. Each learned rule carries a conditional
probability that its conclusion will hold, given that
its preconditions are satisfied.

NELL learns these Horn clause rules using
a variant of the FOIL algorithm (Quinlan and
Cameron-Jones, 1993), henceforth N-FOIL.
N-FOIL takes as input a set of positive and
negative examples of a rule’s consequent
(e.g., +AthletePlaysInLeague(HinesWard,NFL),
−AthletePlaysInLeague(HinesWard,NBA)), and
uses a “separate-and-conquer” strategy to learn a
set of Horn clauses that fit the data well. Each
Horn clause is learned by starting with a general
rule and progressively specializing it, so that it
still covers many positive examples but covers few
negative examples. After a clause is learned, the
examples covered by that clause are removed from
the training set, and the process repeats until no
positive examples remain.

Learning first-order Horn clauses is computation-
ally expensive—not only is the search space large,
but some Horn clauses can be costly to evaluate
(Cohen and Page, 1995). N-FOIL uses two tricks
to improve its scalability. First, it assumes that
the consequent predicate is functional—e.g., that
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each Athlete plays in at most one League. This
means that explicit negative examples need not
be provided (Zelle et al., 1995): e.g., if Ath-
letePlaysInLeague(HinesWard,NFL) is a positive
example, then AthletePlaysInLeague(HinesWard,c′)
for any other value of c′ is negative. In general,
this constraint guides the search algorithm toward
Horn clauses that have fewer possible instantiations,
and hence are less expensive to match. Second,
N-FOIL uses “relational pathfinding” (Richards
and Mooney, 1992) to produce general rules—i.e.,
the starting point for a predicate R is found
by looking at positive instances R(a, b) of the
consequent, and finding a clause that corresponds
to a bounded-length path of binary relations that
link a to b. In the example above, a start clause
might be the clause (1). As in FOIL, the clause
is then (potentially) specialized by greedily adding
additional conditions (like ProfessionalAthlete(a))
or by replacing variables with constants (eg,
replacing c with NFL).

For each N-FOIL rule, an estimated conditional
probability P̂ (conclusion|preconditions) is calcu-
lated using a Dirichlet prior according to

P̂ = (N+ +m ∗ prior)/(N+ +N− +m) (2)

where N+ is the number of positive instances
matched by this rule in the FOIL training data,
N− is the number of negative instances matched,
m = 5 and prior = 0.5. As the results below
show, N-FOIL generally learns a small number of
high-precision inference rules. One important role
of these inference rules is that they contribute to
the bootstrapping procedure, as inferences made by
N-FOIL increase either the number of candidate
beliefs, or (if the inference is already a candidate)
improve NELL’s confidence in candidate beliefs.

1.3 Knowledge Base Inference: Graph
Random Walks

In this paper, we consider an alternative approach,
based on the Path Ranking Algorithm (PRA) of Lao
and Cohen (2010b), described in detail below. PRA
learns to rank graph nodes b relative to a query
node a. PRA begins by enumerating a large set of
bounded-length edge-labeled path types, similar to
the initial clauses used in NELL’s variant of FOIL.
These path types are treated as ranking “experts”,

each performing a random walk through the graph,
constrained to follow that sequence of edge types,
and ranking nodes b by their weights in the resulting
distribution. Finally, PRA combines the weights
contributed by different “experts” using logistic
regression to predict the probability that the relation
R(a, b) is satisfied.

As an example, consider a path from a to b via
the sequence of edge types isa, isa−1 (the inverse of
isa), and AthletePlaysInLeague, which corresponds
to the Horn clause

isa(a, c) ∧ isa−1(c, a′) (3)
∧ AthletePlaysInLeague(a′, b)

⇒ AthletePlaysInLeague(a, b)

Suppose a random walk starts at a query node a
(say a=HinesWard). If HinesWard is linked to the
single concept node ProfessionalAthlete via isa, the
walk will reach that node with probability 1 after
one step. If A is the set of ProfessionalAthlete’s
in the KB, then after two steps, the walk will have
probability 1/|A| of being at any a′ ∈ A. If L is
the set of athletic leagues and ` ∈ L, let A` be the
set of athletes in league `: after three steps, the walk
will have probability |A`|/|A| of being at any point
b ∈ L. In short, the ranking associated with this
path gives the prior probability of a value b being an
athletic league for a—which is useful as a feature in
a combined ranking method, although not by itself a
high-precision inference rule.

Note that the rankings produced by this “expert”
will change as the knowledge base evolves—for
instance, if the system learns about proportionally
more soccer players than hockey players over time,
then the league rankings for the path of clause (3)
will change. Also, the ranking is specific to the
query node a. For instance, suppose the KB contains
facts which reflect the ambiguity of the team name
“Giants”2 as in Figure 1. Then the path for clause (1)
above will give lower weight to b = NFL for a =
EliManning than to b = NFL for a = HinesWard.

The main contribution of this paper is to introduce
and evaluate PRA as an algorithm for making
probabilistic inference in large KBs. Compared to
Horn clause inference, the key characteristics of this
new inference method are as follows:

2San Francisco’s Major-League Baseball and New York’s
National Football League teams are both called the “Giants”.
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• The evidence in support of inferring a relation
instance R(a, b) is based on many existing
paths between a and b in the current KB,
combined using a learned logistic function.

• The confidence in an inference is sensitive to
the current state of the knowledge base, and the
specific entities being queried (since the paths
used in the inference have these properties).

• Experimentally, the inference method yields
many more moderately-confident inferences
than the Horn clauses learned by N-FOIL.

• The learning and inference are more efficient
than N-FOIL, in part because we can exploit
efficient approximation schemes for random
walks (Lao and Cohen, 2010a). The resulting
inference is as fast as 10 milliseconds per query
on average.

The Path Ranking Algorithm (PRA) we use is
similar to that described elsewhere (Lao and Cohen,
2010b), except that to achieve efficient model
learning, the paths between a and b are determined
by the statistics from a population of training
queries rather than enumerated completely. PRA
uses random walks to generate relational features
on graph data, and combine them with a logistic
regression model. Compared to other relational
models (e.g. FOIL, Markov Logic Networks), PRA
is extremely efficient at link prediction or retrieval
tasks, in which we are interested in identifying top
links from a large number of candidates, instead of
focusing on a particular node pair or joint inferences.

1.4 Related Work

The TextRunner system (Cafarella et al., 2006)
answers list queries on a large knowledge base
produced by open domain information extrac-
tion. Spreading activation is used to measure
the closeness of any node to the query term
nodes. This approach is similar to the random
walk with restart approach which is used as a
baseline in our experiment. The FactRank system
(Jain and Pantel, 2010) compares different ways of
constructing random walks, and combining them
with extraction scores. However, the shortcoming
of both approaches is that they ignore edge type

information, which is important for achieving high
accuracy predictions.

The HOLMES system (Schoenmackers et al.,
2008) derives new assertions using a few manually
written inference rules. A Markov network
corresponding to the grounding of these rules to
the knowledge base is constructed for each query,
and then belief propagation is used for inference.
In comparison, our proposed approach discovers
inference rules automatically from training data.

Similarly, the Markov Logic Networks (Richard-
son and Domingos, 2006) are Markov networks
constructed corresponding to the grounding of rules
to knowledge bases. In comparison, our proposed
approach is much more efficient by avoiding the
harder problem of joint inferences and by leveraging
efficient random walk schemes (Lao and Cohen,
2010a).

Below we describe our approach in greater detail,
provide experimental evidence of its value for
performing inference in NELL’s knowledge base,
and discuss implications of this work and directions
for future research.

2 Approach

In this section, we first describe how we formulate
link (relation) prediction on a knowledge base as
a ranking task. Then we review the Path Ranking
Algorithm (PRA) introduced by Lao and Cohen
(2010b; 2010a). After that, we describe two
improvements to the PRA method to make it more
suitable for the task of link prediction in knowledge
bases. The first improvement helps PRA deal
with the large number of relations typical of large
knowledge bases. The second improvement aims at
improving the quality of inference by applying low
variance sampling.

2.1 Learning with NELL’s Knowledge Base

For each relationR in the knowledge base we train a
model for the link prediction task: given a concept a,
find all other concepts b which potentially have the
relationR(a, b). This prediction is made based on an
existing knowledge base extracted imperfectly from
the web. Although a model can potentially benefit
from predicting multiple relations jointly, such joint
inference is beyond the scope of this work.
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To ensure a reasonable number of training
instances, we generate labeled training example
queries from 48 relations which have more than
100 instances in the knowledge base. We create
two tasks for each relation—i.e., predicting b given
a and predicting a given b— yielding 96 tasks in
all. Each node a which has relation R in the
knowledge base with any other node is treated as a
training query, the actual nodes b in the knowledge
base known to satisfy R(a, b) are treated as labeled
positive examples, and any other nodes are treated
as negative examples.

2.2 Path Ranking Algorithm Review
We now review the Path Ranking Algorithm
introduced by Lao and Cohen (2010b). A relation
path P is defined as a sequence of relations
R1 . . . R`, and in order to emphasize the types
associated with each step, P can also be written as

T0
R1−−→ . . .

R`−→ T`, where Ti = range(Ri) =
domain(Ri+1), and we also define domain(P ) ≡
T0, range(P ) ≡ T`. In the experiments in this
paper, there is only one type of node which we call
a concept, which can be connected through different
types of relations. In this notation, relations like “the
team a certain player plays for”, and “the league a
certain player’s team is in” can be expressed by the
paths below (respectively):

P1 : concept
AtheletePlayesForTeam−−−−−−−−−−−−−−→ concept

P2 : concept
AtheletePlayesForTeam−−−−−−−−−−−−−−→ concept

TeamPlaysInLeagure−−−−−−−−−−−−−→ concept

For any relation path P = R1 . . . R` and a
seed node s ∈ domain(P ), a path constrained
random walk defines a distribution hs,P recursively
as follows. If P is the empty path, then define

hs,P (e) =

{
1, if e = s
0, otherwise

(4)

If P = R1 . . . R` is nonempty, then let P ′ =
R1 . . . R`−1, and define

hs,P (e) =
∑

e′∈range(P ′)

hs,P ′(e′) · P (e|e′;R`), (5)

where P (e|e′;R`) = R`(e
′,e)

|R`(e′,·)| is the probability of
reaching node e from node e′ with a one step random

walk with edge type R`. R(e′, e) indicates whether
there exists an edge with type R that connect e′ to e.

More generally, given a set of paths P1, . . . , Pn,
one could treat each hs,Pi(e) as a path feature for
the node e, and rank nodes by a linear model

θ1hs,P1(e) + θ2hs,P2(e) + . . . θnhs,Pn(e)

where θi are appropriate weights for the paths. This
gives a ranking of nodes e related to the query node
s by the following scoring function

score(e; s) =
∑

P∈P`

hs,P (e)θP , (6)

where P` is the set of relation paths with length≤ `.
Given a relation R and a set of node pairs
{(si, ti)} for which we know whether R(si, ti) is
true or not, we can construct a training dataset
D = {(xi, yi)}, where xi is a vector of all the
path features for the pair (si, ti)—i.e., the j-th
component of xi is hsi,Pj (ti), and where yi is a
boolean variable indicating whetherR(si, ti) is true.
We then train a logistic function to predict the
conditional probability P (y|x; θ). The parameter
vector θ is estimated by maximizing a regularized
form of the conditional likelihood of y given x. In
particular, we maximize the objective function

O(θ) =
∑

i

oi(θ)− λ1|θ|1 − λ2|θ|2, (7)

where λ1 controls L1-regularization to help struc-
ture selection, and λ2 controls L2-regularization
to prevent overfitting. oi(θ) is the per-instance
weighted log conditional likelihood given by

oi(θ) = wi[yi ln pi + (1− yi) ln(1− pi)], (8)

where pi is the predicted probability p(yi =

1|xi; θ) = exp(θTxi)
1+exp(θTxi)

, and wi is an importance
weight to each example. A biased sampling
procedure selects only a small subset of negative
samples to be included in the objective (see (Lao and
Cohen, 2010b) for detail).

2.3 Data-Driven Path Finding
In prior work with PRA, P` was defined as all
relation paths of length at most `. When the number
of edge types is small, one can generate P` by
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Table 1: Number of paths in PRA models of maximum
path length 3 and 4. Averaged over 96 tasks.

`=3 `=4
all paths up to length L 15, 376 1, 906, 624
+query support≥ α = 0.01 522 5016
+ever reach a target entity 136 792
+L1 regularization 63 271

enumeration; however, for domains with a large
number of edge types (e.g., a knowledge base), it is
impractical to enumerate all possible relation paths
even for small `. For instance, if the number of
edge types related to each node type is 100, even
the number of length three paths types easily reaches
millions. For other domains like parsed natural
language sentences, useful relation paths can be as
long as ten relations (Minkov and Cohen, 2008). In
this case, even with smaller number of possible edge
types, the total number of relation paths is still too
large for systematic enumeration.

In order to apply PRA to these domains, we
modify the path generation procedure in PRA to
produce only relation paths which are potentially
useful for the task. Define a query s to be supporting
a path P if hs,P (e) 6= 0 for any entity e. We require
that any path node created during path finding needs
to be supported by at least a fraction α of the training
queries si, as well as being of length no more than
` (In the experiments, we set α = 0.01) We also
require that in order for a relation path to be included
in the PRA model, it must retrieve at least one target
entity ti in the training set. As we can see from
Table 1, together these two constraints dramatically
reduce the number of relation paths that need to be
considered, relative to systematically enumerating
all possible relation paths. L1 regularization reduces
the size of the model even more.

The idea of finding paths that connects nodes in a
graph is not new. It has been embodied previously in
first-order learning systems (Richards and Mooney,
1992) as well as N-FOIL, and relational database
searching systems (Bhalotia et al., 2002). These
approaches consider a single query during path
finding. In comparison, the data-driven path finding
method we described here uses statistics from a
population of queries, and therefore can potentially
determine the importance of a path more reliably.

Table 2: Comparing PRA with RWR models. MRRs and
training times are averaged over 96 tasks.

`=2 `=3
MRR Time MRR Time

RWR(no train) 0.271 0.456
RWR 0.280 3.7s 0.471 9.2s
PRA 0.307 5.7s 0.516 15.4s

2.4 Low-Variance Sampling

Lao and Cohen (2010a) previously showed that
sampling techniques like finger printing and particle
filtering can significantly speedup random walk
without sacrificing retrieval quality. However, the
sampling procedures can induce a loss of diversity
in the particle population. For example, consider a
node in the graph with just two out links with equal
weights, and suppose we are required to generate
two walkers starting from this node. A disappointing
result is that with 50 percent chance both walkers
will follow the same branch, and leave the other
branch with no probability mass.

To overcome this problem, we apply a technique
called Low-Variance Sampling (LVS) (Thrun et
al., 2005), which is commonly used in robotics
to improve the quality of sampling. Instead of
generating independent samples from a distribution,
LVS uses a single random number to generate all
samples, which are evenly distributed across the
whole distribution. Note that given a distribution
P (x), any number r in [0, 1] points to exactly one
x value, namely x = arg minj

∑
m=1..j P (m) ≤

r. Suppose we want to generate M samples from
P (x). LVS first generates a random number r in
the interval [0,M−1]. Then LVS repeatedly adds
the fixed amount M−1 to r and chooses x values
corresponding to the resulting numbers.

3 Results

This section reports empirical results of applying
random walk inference to NELL’s knowledge base
after the 165th iteration of its learning process. We
first investigate PRA’s behavior by cross validation
on the training queries. Then we compare PRA and
N-FOIL’s ability to reliably infer new beliefs, by
leveraging the Amazon Mechanical Turk service.
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3.1 Cross Validation on the Training Queries

Random Walk with Restart (RWR) (also called
personalized PageRank (Haveliwala, 2002)) is a
general-purpose graph proximity measure which
has been shown to be fairly successful for many
types of tasks. We compare PRA to two versions
of RWR on the 96 tasks of link prediction with
NELL’s knowledge base. The two baseline methods
are an untrained RWR model and a trained RWR
model as described by Lao and Cohen (2010b). (In
brief, in the trained RWR model, the walker will
probabilistically prefer to follow edges associated
with different labels, where the weight for each edge
label is chosen to minimize a loss function, such as
Equation 7. In the untrained model, edge weights
are uniform.) We explored a range of values for
the regularization parameters L1 and L2 using cross
validation on the training data, and we fix both
L1 and L2 parameters to 0.001 for all tasks. The
maximum path length is fixed to 3.3

Table 2 compares the three methods using
5-fold cross validation and the Mean Reciprocal
Rank (MRR)4 measure, which is defined as the
inverse rank of the highest ranked relevant result
in a set of results. If the the first returned
result is relevant, then MRR is 1.0, otherwise,
it is smaller than 1.0. Supervised training can
significantly improve retrieval quality (p-value=9 ×
10−8 comparing untrained and trained RWR), and
leveraging path information can produce further
improvement (p-value=4× 10−4 comparing trained
RWR with PRA). The average training time for a
predicate is only a few seconds.

We also investigate the effect of low-variance
sampling on the quality of prediction. Figure 2 com-
pares independent and low variance sampling when
applied to finger printing and particle filtering (Lao
and Cohen, 2010a). The horizontal axis corresponds
to the speedup of random walk compared with
exact inference, and the vertical axis measures the
quality of prediction by MRR with three fold cross
validation on the training query set. Low-variance

3Results with maximum length 4 are not reported here.
Generally models with length 4 paths produce slightly better
results, but are 4-5 times slower to train

4For a set of queries Q,
MRR = 1

|Q|
∑

q∈Q
1

rank of the first correct answer for q
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Figure 2: Compare inference speed and quality over 96
tasks. The speedup is relative to exact inference, which is
on average 23ms per query.

sampling can improve prediction for both finger
printing and particle filtering. The numbers on the
curves indicate the number of particles (or walkers).
When using a large number of particles, the particle
filtering methods converge to the exact inference.
Interestingly, when using a large number of walkers,
the finger printing methods produce even better
prediction quality than exact inference. Lao and
Cohen noticed a similar improvement on retrieval
tasks, and conjectured that it is because the sampling
inference imposes a regularization penalty on longer
relation paths (2010a).

3.2 Evaluation by Mechanical Turk

The cross-validation result above assumes that the
knowledge base is complete and correct, which
we know to be untrue. To accurately compare
PRA and N-FOIL’s ability to reliably infer new
beliefs from an imperfect knowledge base, we
use human assessments obtained from Amazon
Mechanical Turk. To limit labeling costs, and
since our goal is to improve the performance of
NELL, we do not include RWR-based approaches
in this comparison. Among all the 24 functional
predicates, N-FOIL discovers confident rules for
8 of them (it produces no result for the other 16
predicates). Therefore, we compare the quality
of PRA to N-FOIL on these 8 predicates only.
Among all the 72 non-functional predicates—which
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Table 3: The top two weighted PRA paths for tasks on which N-FOIL discovers confident rules. c stands for concept.
ID PRA Path (Comment)

athletePlaysForTeam
1 c

athletePlaysInLeague−−−−−−−−−−−−−−−→ c
leaguePlayers−−−−−−−−−→ c

athletePlaysForTeam−−−−−−−−−−−−−−−→ c (teams with many players in the athlete’s league)

2 c
athletePlaysInLeague−−−−−−−−−−−−−−−→ c

leagueTeams−−−−−−−−−→ c
teamAgainstTeam−−−−−−−−−−−−→ c (teams that play against many teams in the athlete’s league)

athletePlaysInLeague
3 c

athletePlaysSport−−−−−−−−−−−−→ c
players−−−−−→ c

athletePlaysInLeague−−−−−−−−−−−−−−−→ c (the league that players of a certain sport belong to)

4 c
isa−−→ c

isa−1

−−−−→ c
athletePlaysInLeague−−−−−−−−−−−−−−−→ c (popular leagues with many players)

athletePlaysSport

5 c
isa−−→ c

isa−1

−−−−→ c
athletePlaysSport−−−−−−−−−−−−→ c (popular sports of all the athletes)

6 c
athletePlaysInLeague−−−−−−−−−−−−−−−→ c

superpartOfOrganization−−−−−−−−−−−−−−−−−→ c
teamPlaysSport−−−−−−−−−−−→ c (popular sports of a certain league)

stadiumLocatedInCity
7 c

stadiumHomeTeam−−−−−−−−−−−−−→ c
teamHomeStadium−−−−−−−−−−−−−→ c

stadiumLocatedInCity−−−−−−−−−−−−−−−→ c (city of the stadium with the same team)

8 c
latitudeLongitude−−−−−−−−−−−−→ c

latitudeLongitudeOf−−−−−−−−−−−−−−→ c
stadiumLocatedInCity−−−−−−−−−−−−−−−→ c (city of the stadium with the same location)

teamHomeStadium
9 c

teamPlaysInCity−−−−−−−−−−−−→ c
cityStadiums−−−−−−−−−→ c (stadiums located in the same city with the query team)

10 c
teamMember−−−−−−−−−→ c

athletePlaysForTeam−−−−−−−−−−−−−−−→ c
teamHomeStadium−−−−−−−−−−−−−→ c (home stadium of teams which share players with the query)

teamPlaysInCity
11 c

teamHomeStadium−−−−−−−−−−−−−→ c
stadiumLocatedInCity−−−−−−−−−−−−−−−→ c (city of the team’s home stadium)

12 c
teamHomeStadium−−−−−−−−−−−−−→ c

stadiumHomeTeam−−−−−−−−−−−−−→ c
teamPlaysInCity−−−−−−−−−−−−→ c (city of teams with the same home stadium as the query)

teamPlaysInLeague
13 c

teamPlaysSport−−−−−−−−−−−→ c
players−−−−−→ c

athletePlaysInLeague−−−−−−−−−−−−−−−→ c (the league that the query team’s members belong to)

14 c
teamPlaysAgainstTeam−−−−−−−−−−−−−−−−→ c

teamPlaysInLeague−−−−−−−−−−−−−→ c (the league that the query team’s competing team belongs to)
teamPlaysSport

15 c
isa−−→ c

isa−1

−−−−→ c
teamPlaysSport−−−−−−−−−−−→ c (sports played by many teams)

16 c
teamPlaysInLeague−−−−−−−−−−−−−→ c

leagueTeams−−−−−−−−−→ c
teamPlaysSport−−−−−−−−−−−→ c (the sport played by other teams in the league)

Table 4: Amazon Mechanical Turk evaluation for the promoted knowledge. Using paired t-test at task level, PRA is
not statistically different from N-FOIL for p@10 (p-value=0.3), but is significantly better for p@100 (p-value=0.003)

PRA N-FOIL
Task Pmajority #Paths p@10 p@100 p@1000 #Rules #Query p@10 p@100 p@1000
athletePlaysForTeam 0.07 125 0.4 0.46 0.66 1(+1) 7 0.6 0.08 0.01
athletePlaysInLeague 0.60 15 1.0 0.84 0.80 3(+30) 332 0.9 0.80 0.24
athletePlaysSport 0.73 34 1.0 0.78 0.70 2(+30) 224 1.0 0.82 0.18
stadiumLocatedInCity 0.05 18 0.9 0.62 0.54 1(+0) 25 0.7 0.16 0.00
teamHomeStadium 0.02 66 0.3 0.48 0.34 1(+0) 2 0.2 0.02 0.00
teamPlaysInCity 0.10 29 1.0 0.86 0.62 1(+0) 60 0.9 0.56 0.06
teamPlaysInLeague 0.26 36 1.0 0.70 0.64 4(+151) 30 0.9 0.18 0.02
teamPlaysSport 0.42 21 0.7 0.60 0.62 4(+86) 48 0.9 0.42 0.02

average 0.28 43 0.79 0.668 0.615 91 0.76 0.38 0.07
teamMember 0.01 203 0.8 0.64 0.48
companiesHeadquarteredIn 0.05 42 0.6 0.54 0.60
publicationJournalist 0.02 25 0.7 0.70 0.64
producedBy 0.19 13 0.5 0.58 0.68 N-FOIL does not produce results
competesWith 0.19 74 0.6 0.56 0.72 for non-functional predicates
hasOfficeInCity 0.03 262 0.9 0.84 0.60
teamWonTrophy 0.24 56 0.5 0.50 0.46
worksFor 0.13 62 0.6 0.60 0.74

average 0.11 92 0.650 0.620 0.615
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N-FOIL cannot be applied to—PRA exhibits a wide
range of performance in cross-validation. The are 43
tasks for which PRA obtains MRR higher than 0.4
and builds a model with more than 10 path features.
We randomly sampled 8 of these predicates to be
evaluated by Amazon Mechanical Turk.

Table 3 shows the top two weighted PRA features
for each task on which N-FOIL can successfully
learn rules. These PRA rules can be categorized into
broad coverage rules which behave like priors over
correct answers (e.g. 1-2, 4-6, 15), accurate rules
which leverage specific relation sequences (e.g. 9,
11, 14), rules which leverage information about the
synonyms of the query node (e.g. 7-8, 10, 12),
and rules which leverage information from a local
neighborhood of the query node (e.g. 3, 12-13, 16).
The synonym paths are useful, because an entity
may have multiple names on the web. We find
that all 17 general rules (no specialization) learned
by N-FOIL can be expressed as length two relation
paths such as path 11. In comparison, PRA explores
a feature space with many length three paths.

For each relation R to be evaluated, we generate
test queries s which belong to domain(R). Queries
which appear in the training set are excluded. For
each query node s, we applied a trained model
(either PRA or N-FOIL) to generate a ranked list
of candidate t nodes. For PRA, the candidates
are sorted by their scores as in Eq. (6). For
N-FOIL, the candidates are sorted by the estimated
accuracies of the rules as in Eq. (2) (which generate
the candidates). Since there are about 7 thousand
(and 13 thousand) test queries s for each functional
(and non-functional) predicate R, and there are
(potentially) thousands of candidates t returned for
each query s, we cannot evaluate all candidates of
all queries. Therefore, we first sort the queries s for
each predicate R by the scores of their top ranked
candidate t in descending order, and then calculate
precisions at top 10, 100 and 1000 positions for the
list of result R(sR,1, tR,11 ), R(sR,2, tR,21 ), ..., where
sR,1 is the first query for predicate R, tR,11 is its first
candidate, sR,2 is the second query for predicate R,
tR,21 is its first candidate, so on and so forth. To
reduce the labeling load, we judge all top 10 queries
for each predicate, but randomly sample 50 out of
the top 100, and randomly sample 50 out of the

Table 5: Comparing Mechanical Turk workers’ voted
assessments with our gold standard labels based on 100
samples.

AMT=F AMT=T
Gold=F 25% 15%
Gold=T 11% 49%

top 1000. Each belief is evaluated by 5 workers
at Mechanical Turk, who are given assertions like
“Hines Ward plays for the team Steelers”, as well
as Google search links for each entity, and the
combination of both entities. Statistics shows
that the workers spend on average 25 seconds to
judge each belief. We also remove some workers’
judgments which are obviously incorrect5. We
sampled 100 beliefs, and compared their voted result
to gold-standard labels produced by one author of
this paper. Table 5 shows that 74% of the time the
workers’ voted result agrees with our judgement.

Table 4 shows the evaluation result. The
Pmajority column shows for each predicate the
accuracy achieved by the majority prediction: given
a query R(a, ?), predict the b that most often
satisfies R over all possible a in the knowledge
base. Thus, the higher Pmajority is, the simpler
the task. Predicting the functional predicates
is generally easier predicting the non-functional
predicates. The #Query column shows the number
of queries on which N-FOIL is able to match any
of its rules, and hence produce a candidate belief.
For most predicates, N-FOIL is only able to produce
results for at most a few hundred queries. In
comparison, PRA is able to produce results for 6,599
queries on average for each functional predicate, and
12,519 queries on average for each non-functional
predicate. Although the precision at 10 (p@10) of
N-FOIL is comparable to that of PRA, precision
at 10 and at 1000 (p@100 and p@1000) are much
lower6.

The #Path column shows the number of paths
learned by PRA, and the #Rule column shows the
number of rules learned by N-FOIL, with the num-
bers before brackets correspond to unspecialized
rules, and the numbers in brackets correspond to

5Certain workers label all the questions with the same
answer

6If a method makes k predictions, and k < n, then p@n is
the number correct out of the k predictions, divided by n
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specialized rules. Generally, specialized rules have
much smaller recall than unspecialized rules. There-
fore, the PRA approach achieves high recall partially
by combining a large number of unspecialized paths,
which correspond to unspecialized rules. However,
learning more accurate specialized paths is part of
our future work.

A significant advantage of PRA over N-FOIL is
that it can be applied to non-functional predicates.
The last eight rows of Table 4 show PRA’s
performance on eight of these predicates. Compared
to the result on functional predicates, precisions
at 10 and at 100 of non-functional predicates
are slightly lower, but precisions at 1000 are
comparable. We note that for some predicates
precision at 1000 is better than at 100. After
some investigation we found that for many relations,
the top portion of the result list is more diverse:
i.e. showing products produced by different com-
panies, journalist working at different publications.
While the lower half of the result list is more
homogeneous: i.e. showing relations concentrated
on one or two companies/publications. On the
other hand, through the process of labeling the
Mechanical Turk workers seem to build up a prior
about which company/publication is likely to have
correct beliefs, and their judgments are positively
biased towards these companies/publications. These
two factors combined together result in positive bias
towards the lower portion of the result list. In future
work we hope to design a labeling strategy which
avoids this bias.

4 Conclusions and Future Work

We have shown that a soft inference procedure based
on a combination of constrained, weighted, random
walks through the knowledge base graph can be
used to reliably infer new beliefs for the knowledge
base. We applied this approach to a knowledge
base of approximately 500,000 beliefs extracted
imperfectly from the web by NELL. This new
system improves significantly over NELL’s earlier
Horn-clause learning and inference method: it
obtains nearly double the precision at rank 100. The
inference and learning are both very efficient—our
experiment shows that the inference time is as fast
as 10 milliseconds per query on average, and the

training for a predicate takes only a few seconds.
There are several prominent directions for future

work. First, inference starting from both the query
nodes and target nodes (Richards and Mooney,
1992) can be much more efficient in discovering
long paths than just inference from the query nodes.
Second, inference starting from the target nodes
of training queries is a potential way to discover
specialized paths (with grounded nodes). Third,
generalizing inference paths to inference trees or
graphs can produce more expressive random walk
inference models. Overall, we believe that random
walk is a promising way to scale up relational
learning to domains with very large data sets.
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Abstract

This paper introduces an attribute selection
task as a way to characterize the inherent mea-
ning of property-denoting adjectives in adjec-
tive-noun phrases, such as e.g.hot in hot sum-
mer denoting the attributeTEMPERATURE,
rather thanTASTE. We formulate this task
in a vector space model that represents adjec-
tives and nouns as vectors in a semantic space
defined over possible attributes. The vectors
incorporate latent semantic information ob-
tained from two variants of LDA topic mod-
els. Our LDA models outperform previous ap-
proaches on a small set of 10 attributes with
considerable gains on sparse representations,
which highlights the strong smoothing power
of LDA models. For the first time, we extend
the attribute selection task to a new data set
with more than 200 classes. We observe that
large-scale attribute selection is a hard prob-
lem, but a subset of attributes performs ro-
bustly on the large scale as well. Again, the
LDA models outperform the VSM baseline.

1 Introduction

Corpus-based statistical modeling of semantics is
gaining increased attention in computational linguis-
tics. This field of research includes distributional
vector space models (VSMs), i.e., models that rep-
resent the semantics of words or phrases as vectors
over high-dimensional cooccurrence data (Turney
and Pantel, 2010; Baroni and Lenci, 2010, i.a.), as
well as latent variable models (LVMs) which aggre-
gate distributional observations in ’hidden’, or latent
variables, thereby reducing the dimensionality of the

data. An example of the latter are topic models (Blei
et al., 2003), which have recently been applied to
modeling selectional preferences of verbs (Ritter et
al., 2010;Ó Séaghdha, 2010), or word sense disam-
biguation (Li et al., 2010).

A topic that is increasingly studied in distribu-
tional semantics is the semantics of adjectives, both
in isolation (Almuhareb, 2006) and in compositional
adjective-noun phrases (Hartung and Frank, 2010;
Guevara, 2010; Baroni and Zamparelli, 2010).

In this paper, we propose a new approach to a
problem we denote asattribute selection: The task is
to predict the hidden attribute meaning expressed by
a property-denoting adjective in composition with
a noun. The adjectivehot, e.g., may denote at-
tributes such asTEMPERATURE, TASTE or EMO-
TIONALITY . These adjective meanings can be com-
bined with nouns such astea, soupor debate, which
can be characterized in terms of attributes as well.
The goal of the task is to determine the hidden at-
tribute meaning predicated over the noun in a given
adjective-noun phrase, as illustrated in (1).

(1) a. a hotvalue summerconcept

b. TEMPERATURE(summer) = hot

It is by way of the composition of adjective and
noun that specific attributes are selected from the ad-
jective’s space of possible attribute meanings, and
typically lead to a disambiguation of the adjective
and possibly the noun. Hartung and Frank (2010)
were the first to model this insight in a VSM by rep-
resenting the meaning of adjectives and nouns in se-
mantic vectors defined over attributes. The meaning
of adjective-noun phrases is computed by means of
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Figure 1: Vectors forenormous(~e) andball (~b)

vector composition, such that the ‘hidden’ attribute
meaning of the phrase can be ‘selected’ as a promi-
nent component from the composed vector. This is
illustrated in Fig. 1 for the adjectiveenormous(~e)
in combination with the nounball (~b), with alter-
native composition operations: vector multiplication
(×) and addition (+).1 Both yield SIZE as the most
prominent component in the composed vector.

In the present paper we offer a new approach to
this formalization of the compositional meaning of
adjectives and nouns that owes to both distributional
VSMs and LVMs. Through this combination, we
attempt to improve on earlier work in Almuhareb
(2006) and Hartung and Frank (2010), which are
both embedded in a purely distributional setting.

Specifically, we use Latent Dirichlet Allocation
(LDA; Blei et al. (2003)) to train an attribute model
that captures semantic information encoded in ad-
jectives and nouns independently of one another.
Following Hartung and Frank (2010), this model is
embedded into a VSM that employs vector com-
position to combine the meaning of adjectives and
nouns. We present two variants of LDA that differ
in the way attributes are associated with the induced
LDA topics: Controled LDA (C-LDA) and Labeled
LDA (L-LDA; Ramage et al. (2009)). Both will be
presented in detail in Section 3.

Our aims in this paper are two-fold: (i) We inves-
tigate LDA as a modeling framework in the attribute
selection task, as its use of topics as latent variables
may alleviate inherent sparsity problems faced by
prior work using pattern-based (Almuhareb, 2006)
or vector space models (Hartung and Frank, 2010).
(ii) While these prior approaches were restricted to
a confined set of 10 attributes, we will we apply our

1The figure is adopted from the distributional setting of Har-
tung and Frank (2010), with component values defined by pat-
tern frequency counts for the chosen attribute nouns.

models on a much larger space of attributes, to probe
their capacity on a more realistic data set.

The remainder of this paper is divided as fol-
lows. Section 2 reviews related work on distribu-
tional models of adjective semantics, and introduces
the two frameworks in which we ground our ap-
proach: LVMs and VSMs. In Section 3 we introduce
two LDA models for attribute selection: C-LDA and
L-LDA. Section 4 describes the settings for two ex-
periments: In the first experiment, we perform at-
tribute selection confined to a space of 10 attributes
to compare against prior work. In the second setting
we perform attribute selection on a large scale, using
206 attributes. Section 5 presents and discusses the
results. Section 6 concludes.

2 Related Work

Distributional models of adjective semantics.
Almuhareb (2006) aims at capturing the relationship
between adjectives and attributes based on lexico-
syntactic patterns, such asthe ATTR of the * is ADJ.
Apart from inherent sparsity issues, his approach
does not account for the compositional nature of the
problem, as the contextual information contributed
by a noun is neglected: For instance, his model is
unable to predict thathot is unlikely to denoteTASTE

in the context ofsummer, other than inhot meal.
Compositionality of adjective-noun phrases and

how it can be adequately modeled in VSMs is
the main concern in Baroni and Zamparelli (2010)
and Guevara (2010), who are in search of the
best composition operator for combining adjective
with noun meanings. While these works adhere
to a purely latent representation of meaning, Har-
tung and Frank (2010) include attributes as sym-
bolic ‘hidden’ meanings of adjectives, nouns and
adjective-noun phrases in a distributional VSM.

Finally, a large body of work dealing with com-
positionality in distributional frameworks is not con-
fined to the special case of adjective-noun composi-
tion (Mitchell and Lapata (2008), Rudolph and Gies-
brecht (2010), i.a.). All these approaches regard
composition as a process combining vectors (or ma-
trices, resp.) to yield a new, contextualized vector
representation within the same semantic space.

Latent Dirichlet Allocation, aka. Topic Models
(TMs). LDA is a generative probabilistic model
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for document collections. Each document is repre-
sented as a mixture over latenttopics, where each
topic is a probability distribution over words (Blei et
al., 2003). These topics can be used as dense fea-
tures for, e.g., document clustering. Depending on
the number of topics, which has to be pre-specified,
the dimensionality of the document representation
can be considerably reduced in comparison to sim-
ple bag-of-words models. The remainder of this pa-
per will assume some familiarity with LDA and the
LDA terminology as introduced in Blei et al. (2003).

Recent work investigates ways of accommodating
supervision with LDA, e.g. supervised topic models
(Blei and McAuliffe, 2007), Labeled LDA (L-LDA)
(Ramage et al., 2009) or DiscLDA (Lacoste-Julien
et al., 2008). We will discuss L-LDA in Section 3.

Distributional VSMs and TMs. The idea to inte-
grate topic models and VSMs goes back to Mitchell
and Lapata (2009) who build a distributional model
with dimensions set to topics over bag-of-words fea-
tures. In their setting, LDA merely serves the pur-
pose of dimensionality reduction, whereas our par-
ticular motivation is to use topics as probabilistic
indicators for the prediction of attributes as seman-
tic target categories in adjective-noun composition.
Mitchell and Lapata (2010) compare VSMs defined
over bags of context words vs. latent topics in a sim-
ilarity judgement task. Their results indicate that a
multiplicative setting works best for vector compo-
sition in word-based models, while vector addition
is better suited for topic vectors.

3 Topic Models for Attribute Selection

3.1 Using LDA for modeling lexical semantics

Recently, LDA has been used for problems in lexical
semantics, where the primary goal is not document
modeling but the induction of semantic knowledge
from high-dimensional co-occurrence data. Ritter et
al. (2010) and́O Séaghdha (2010) model selectional
restrictions of verbs by inducing topic distributions
that characterize ’mixtures of topics’ observed in
verb argument positions. As a basis for LDA mod-
eling, they collectpseudo-documents, i.e. bags of
words that co-occur in syntactic argument positions.

We apply a similar idea to the attribute selection
problem: we collect pseudo-documents that char-
acterize attributes by adjectives and nouns that co-

occur with the attribute nouns in local contextual re-
lations. The topic distributions obtained from fitting
an LDA model to the collection of these pseudo-
documents can then be injected into semantic vector
representations for adjectives and nouns.

In its original statement, LDA is a fully unsuper-
vised process (apart from the desired number of top-
ics which has to be specified in advance) that es-
timates topic distributions over documentsθd and
topic-word distributionsφt with topics represented
as latent variables. Estimating these parameters on a
document collection yieldstopic proportionsP (t|d)
and topic distributionsP (w|t) that can be used to
compute a smooth distributionP (w|d) as in (2),
where t denotes a latent topic,w a word andd a
document in the corpus.

P (w|d) =
∑

t

P (w|t)P (t|d) (2)

Being designed for exploratory rather than dis-
criminative analysis, LDA does not intend condi-
tioning of words or topics on external categories.
That is, the resulting topics cannot be related to pre-
viously defined target categories. For attribute se-
lection, the LDA-inferred topics need to be linked
to semantic attributes. Therefore, we apply two ex-
tensions of standard LDA that are capable of taking
supervised category information into account, either
implicitly or directly, by including an additional ob-
servable variable into the generative process.

In general, LVMs can be expected to overcome
sparsity issues that are frequently encountered in
distributional models. This positive smoothing ef-
fect is achieved by marginalization over the latent
variables (cf. Prescher et al. (2000)). For instance, it
is unlikely to observe a dependency path linking the
adjectivematureto the attributeMATURITY . Such
a relation is more likely foryoung, for example. If
youngco-occurs withmaturein a different pseudo-
document (AGE might be a candidate), this results in
a situation where (i)youngandmatureshare one or
more latent topics and (ii) the topic proportions for
the attributesMATURITY andAGE will become sim-
ilar to the extent of common words in their pseudo-
documents. Consequently, the final attribute model
is expected to assign a (small) positive probability to
the relation betweenmatureandMATURITY without
observing it in the training data.
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3.2 Controled LDA

The generative story behind C-LDA is equivalent to
standard LDA. However, the collection of pseudo-
documents used as input to C-LDA is structured in
a controled way such that each document conveys
semantic information that specifically characterizes
the individual categories of interest (attributes, in
our case). In line with the distributional hypothesis
(Harris, 1968), we consider the pseudo-documents
constructed in this way as distributional fingerprints
of the meaning of the corresponding attribute.

The contents of the pseudo-documents are se-
lected along syntactic dependency paths linking
each attribute noun to meaningful context words (ad-
jectives and nouns).2 A corpus consisting of the two
sentences in (3), e.g., yields a pseudo-document for
the attribute nounSPEEDcontainingcar andfast.

(3) What is the speed of this car? The machine
runs at a very fast speed.

Though we are ultimately interested in triples of
attributes, adjectives and nouns that define the com-
positional semantics of adjective-noun phrases (cf.
(1)), C-LDA is only exposed to binary tuples be-
tween attributes and adjectives or nouns, respec-
tively. This is in line with Hartung and Frank
(2010), who obtained substantial performance im-
provements by splitting the ternary relation into two
binary relations.

Presenting LDA with pseudo-documents that cha-
racterize individual target attributes imports super-
vision into the LDA process in two respects: the
estimated topic proportionsP (t|d) will be highly
attribute-specific, and similarly so for the topic dis-
tributionsP (w|t). This makes the model more ex-
pressive for the ultimate labeling task. Moreover,
since C-LDA collects pseudo-documents focused on
individual target attributes, we are able to link exter-
nal categories to the generative process by heuristi-
cally labeling pseudo-documents with their respec-
tive attribute as target category. Thus, we approx-
imate P (w|a), the probability of a word given an
attribute, byP (w|d) as obtained from LDA:

2The dependency paths, together with the set of attribute
nouns of interest, have to be manually specified. See the sup-
plementary material for the full list of dependency paths used.

1 For each topick ∈ {1, . . . , K}:
2 Generateβk = (βk,1, . . . , βk,V )T ∼ Dir(· | η)
3 For each documentd:
4 For each topick ∈ {1, . . . , K}
5 GenerateΛ(d)

k ∈ {0, 1} ∼ Bernoulli(· | Φk)

6 Generateα(d) = L(d) × α

7 Generateθ(d) = (θl1 , . . . , θlMd
)T ∼ Dir(· | α(d))

8 For eachi in {1, . . . , Nd}:
9 Generatezi ∈ {λ

(d)
1 , . . . , λ

(d)
Md

} ∼ Mult(· | θ(d))

10 Generatewi ∈ {1, . . . , V } ∼ Mult(· | βzi)

Figure 2: L-LDA generative process (Ramage et al. 2009)

P (w|a) ≈ P (w|d) =
∑

t

P (w|t)P (t|d) (4)

3.3 Labeled LDA

L-LDA (Ramage et al., 2009) extends standard LDA
to include supervision for specific target categories,
yet in a different way: (i) The generative process
includes a second observed variable, i.e. each doc-
ument is explicitly labeled with a target category.
A document may be labeled with an arbitrary num-
ber of categories; unlabeled documents are also pos-
sible. However, L-LDA permits only binary as-
signments of categories to documents; probabilistic
weights over categories are not intended. (ii) Con-
trary to LDA, where the number of topics has to be
specified in advance, L-LDA sets this parameter to
the number of unique target categories. Moreover,
the model is constrained such that documents may
be assigned only those topics that correspond to their
observable category label(s). That is, latent topics
t in the standard formulation of LDA (2) are con-
strained to correspond to explicit labelsa.

More specifically, L-LDA extends the generative
process of LDA by constraining the topic distribu-
tions over documentsθ(d) to only those topics that
correspond to the document’s set of labelsΛ(d). This
is done by projecting the parameter vector of the
Dirichlet topic priorα to a lower-dimensional vec-
tor α(d) whose topic dimensions correspond to the
document labels.

This extension is integrated in steps 5 and 6 of
Fig. 2: First, in step 5, the document’s labelsΛ(d)

are generated for each topick. The resulting vector
of document’s labelsλ(d) = {k | Λ

(d)
k = 1} is used

to define a document-specific label projection matrix
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L
(d)

|λ(d)|×K
, such thatL(d)

ij = 1 if λ
(d)
i = j, and 0 oth-

erwise. This matrix is used in step 6 to project the
Dirichlet topic priorα to a lower-dimensional vec-
tor α(d), whose topic dimensions correspond to the
document labels. Topic proportions are then, in step
7, generated for this reduced parameter space.

In our instantiation of L-LDA, we collect pseudo-
documents for attributes exactly as for C-LDA. Doc-
uments are labeled with exactly one category, the at-
tribute noun. Note that, even though the relationship
between documents and topics is fixed, the one be-
tween topics and words is not. Any word occurring
in more than one document will be assigned a non-
zero probability for each corresponding topic.

Thus, with regard to attribute modeling, C-LDA
and L-LDA build an interesting pair of opposites:
The L-LDA model assumes that attributes are se-
mantically primitive in the sense that they cannot
be decomposed into smaller topical units, whereas
words may be associated with several attributes at
the same time. C-LDA, at the other end of the spec-
trum, licenses semantic variability on both the at-
tribute and the word level. Particularly, a word might
be associated with some of the topics underlying an
attribute, but not with all of them, and an attribute
can be characterized by multiple topics.

3.4 Vector Space Framework

For integrating the information obtained from C-
LDA or L-LDA into a distributional VSM, we fol-
low Hartung and Frank (2010): Adjectives and
nouns are modeled as independent semantic vectors
along their relationship to attributes; the most promi-
nent attribute(s) that represent the hidden meaning
of adjective-noun phrases are selected from their
composition (cf. Fig. 1).

The dimensions of the VSM are set to the pre-
selected attributes. Semantic vectors are computed
for all adjectives and nouns occurring at least five
times in the pseudo-documents. Vector component
valuesv〈w,a〉 are derived from the C-LDA and L-
LDA models in different ways: with C-LDA we
obtainP (w|a) by approximation fromP (w|d) (cf.
equation (4)), while in L-LDA we obtainP (w|a) di-
rectly from the induced topic-word distributionφt,
through labeled topicst = a (cf. equation (2)).

Vector composition is defined asvector multipli-

cation (×) or vector addition(+).
For attribute selection on the composed vector, we

use two methods we found to perform best in Har-
tung and Frank (2010): Entropy Selection (ESel)
and Most Prominent Component (MPC). ESel mea-
sures entropy over the vector components to identify
components that encode a high amount of informa-
tion. It selects all attributes that lead to an increase of
entropy when suppressed from the vector represen-
tation. If no informative components can be detected
in a vector due to a very broad, flat distribution of
the probability mass (cf.~b in Fig. 1), ESel yields an
empty list. MPC always chooses exactly one vector
component, i.e. the one with the highest value.

4 Experimental Settings

Attribute selection over small and large semantic
spaces. We evaluate the performance of the VSMs
based on C-LDA and L-LDA in two experimental
settings, contrasting the problem of attribute selec-
tion on semantic spaces of radically different dimen-
sionality, using sets of 10 vs. 206 attributes.

Evaluation measures. We evaluate against two
gold standards consisting of adjective-noun phrases
(or adjective-noun pairs) and their associated at-
tribute meanings. We report precision, recall and
f1-score. Where appropriate, we test differences in
the performance of various model configurations for
statistical significance in a randomized permutation
test (Yeh, 2000), using thesigf tool (Padó, 2006).

Baselines. We compare our models against two
baselines, PATTVSM and DEPVSM. PATTSVM is
reconstructed from Hartung and Frank (2010). It is
grounded in a selection of lexical patterns that iden-
tify the target elements (adjectives and nouns) for
the vector basis elements (i.e., the attribute nouns)
in a local context window. The component values
are defined using raw frequency counts over the ex-
tracted patterns. DEPVSM is similar to PATTVSM;
however, it relies on dependency paths that connect
the target elements and attributes in local contexts.
The paths are identical to the ones used for con-
structing pseudo-documents in C-LDA and L-LDA.
As in PATTVSM, the vector components are set to
raw frequencies over extracted paths.

Implementations. To implement our models, we
rely on MALLET (McCallum, 2002) for C-LDA and
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the Stanford Topic Modeling Toolbox3 for L-LDA.
In both cases, we run 1000 iterations of Gibbs sam-
pling, using default values for all hyperparameters.

Data set for attribute selection over 10 attributes.
The first experiment is conducted on the data set
used in Hartung and Frank (2010). It consists of
100 adjective-noun pairs manually annotated for
ten attributes: COLOR, DIRECTION, DURATION,
SHAPE, SIZE, SMELL, SPEED, TASTE, TEMPER-
ATURE, WEIGHT. To enable comparison, the di-
mensions of our models are set to exactly these at-
tributes.

Data set for attribute selection over a large se-
mantic space (206 attributes). In the second ex-
periment, we max out the attribute selection task
to a much larger set of attributes in order to an-
alyze the difficulty of the task on more represen-
tative data. We automatically construct a data set
of adjective-noun phrases labeled with appropriate
attributes from WordNet 3.0 (Fellbaum, 1998), re-
lying on the assumption that examples given in
glosses correspond to the respective word sense of
the adjective. We first extract all adjectives that
are linked to at least one attribute synset by the
attribute relation. Next, we run the glosses of
these adjectives (3592 in number) through TreeTag-
ger (Schmid, 1994) to find examples of adjectives
modifying nouns in attributive constructions. The
resulting adjective-noun phrases are labeled with the
attribute label linked to the given adjective sense.

This method yields 7901 labeled adjective-noun
phrases. They are divided into development and test
data according to a sampling procedure that respects
the following criteria: (i) Both sets must contain
all attributes with an equal number of phrases for
each attribute; (ii) phrases with both elements con-
tained in CoreWordNet4 are preferred, while others
are only considered if necessary to satisfy the first
criterion. This procedure yields 496/345 phrases
in the development/test set, distributed over 206 at-
tributes5.

3http://nlp.stanford.edu/software/tmt/.
4A subset of WordNet restricted to the 5000 most fre-

quently used word senses. Available from:http://
wordnetcode.princeton.edu/standoff-files/
core-wordnet.txt

5If an attribute provides only one example, this was added
to the development set. Therefore, the test set only comprises

Training data. The pseudo-documents are collec-
ted from dependency paths obtained from section 2
of the parsed pukWaC corpus (Baroni et al., 2009).

5 Discussion of Results

5.1 Experiment 1

In Experiment 1, we evaluate the performance
of C-LDA and L-LDA on the attribute selection
task over 10 attributes against the pattern-based
and dependency-based models PATTVSM and DE-
PVSM as competitive baselines. Besides a com-
parison to standard VSMs, we are especially in-
terested in the relative performance of the LDA
models. Given that C-LDA and L-LDA estimate
attribute-specific topic distributions in the structured
pseudo-documents under different assumptions re-
garding the correspondence of attributes and topics
(cf. Sec. 3.2 and 3.3), we expect the two LDA vari-
ants to differ in their capability to capture the topic
distributions in the labeled pseudo-documents.

5.1.1 Attribute Selection for 10 Attributes

Tables 1 and 2 summarize the results for at-
tribute selection over 10 attributes against the la-
beled adjective-noun pairs in the test set, using ESel
and MPC as selection functions on vectors com-
posed by multiplication (Table 1) and addition (Ta-
ble 2). The results reported for C-LDA correspond
to the best performing model (with number of top-
ics set to 42, as this setting yields the best and most
constant results over both composition operators).

C-LDA shows highest f-scores and recall over all
settings, and highest precision with vector addition.6

In line with Mitchell and Lapata (2010) (cf. Sec. 2),
we obtain the best overall results with vector addi-
tion (ESel: P: 0.55, R: 0.66, F: 0.61; MPC: P: 0.59,
R: 0.71, F: 0.64). The difference between C-LDA
and L-LDA is small but significant for vector mul-
tiplication; for vector addition, it is not significant.

Compared to the LDA models, the VSM baselines

206 attributes, while all models were trained on 262 attributes
obtained from WordNet in the first extraction step.

6In Tables 1 and 2, statistical significance of the differences
between the models is marked by the superscripts L, D and P,
denoting a significant difference overL-LDA, DepVSM and
PattVSM, respectively. All differences reported are significant
at p < 0.05, except for the difference between C-LDA and L-
LDA in Table 3 (p < 0.1).
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ESel MPC
P R F P R F

C-LDA 0.58 0.65 0.61L,P 0.57 0.64 0.60
L-LDA 0.68 0.54 0.60D 0.55 0.61 0.58D

DepVSM 0.48 0.58 0.53P 0.57 0.60 0.58
PattVSM 0.63 0.46 0.54 0.60 0.58 0.59

Table 1: Attribute selection over 10 attributes (×)

ESel MPC
P R F P R F

C-LDA 0.55 0.66 0.61D,P 0.59 0.71 0.64
L-LDA 0.53 0.57 0.55D,P 0.50 0.45 0.47D,P

DepVSM 0.38 0.65 0.48P 0.57 0.60 0.58
PattVSM 0.71 0.35 0.47 0.47 0.56 0.51

Table 2: Attribute selection over 10 attributes (+)

are competitive, but tend to perform lower. This ef-
fect is statistically significant for ESel with vector
multiplication: each of the LDA models statistically
significantly outperforms one of the VSM models,
DEPVSM and PATTVSM. With ESel and vector
addition, both LDA models outperform both VSM
models statistically significantly. The LDAESel,+

models outperform the PATTVSMESel,+ model of
Hartung and Frank (2010) by a high margin in
f-score: +0.14 for C-LDA; +0.08 for L-LDA.
Compared to the stronger multiplicative settings
PATTVSMESel,× and PATTVSMMPC,× this still
represents a plus of +0.07 and +0.02 in f-score, re-
spectively. We further observe a clear improvement
of the LDA models over the VSM models in terms of
recall (+0.20, C-LDAESel,+ vs. PATTVSMESel,×),
at the expense of some loss in precision (-0.08, C-
LDAESel,+ vs. PATTVSMESel,×). This clearly con-
firms a stronger generalization power of LDA com-
pared to VSM models.

With regard to selection functions, we observe
that MPC tends to perform better for the VSM mod-
els, while ESel is more suitable in the LDA models.

Figures 3 and 4 display the overall performance
curve ranging over different topic numbers for C-
LDA ESel,+ and C-LDAESel,× – compared to the
remaining models that are not dependent on topic
size. For topic numbers smaller than the attribute set
size, C-LDA underperforms, for obvious reasons.
Increasing ranges of topic numbers to 60 does not
show a linear effect on performance. Parameter set-
tings with performance drops below the VSM base-
lines are rare, which holds particularly for vector ad-
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Figure 3: Performance of C-LDAESel,× for different
topic numbers, compared against all other models
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Figure 4: Performance of C-LDAESel,+ for different
topic numbers, compared against all other models

dition at topic ranges larger than 10. With vector
addition, C-LDA outperforms L-LDA in almost all
configurations, yet at an overall lower performance
level of L-LDA (0.55 with addition vs. 0.6 with mul-
tiplication). Note that in the multiplicative setting,
C-LDA reaches the performance of L-LDA only in
its best configurations, while with vector addition it
obtains high performance that exceeds L-LDA’s top
f-score of 0.6 for topic ranges between 10 and 20.

Based on these observations, vector addition
seems to offer the more robust setting for C-LDA,
the model that is less strict with regard to topic-
attribute correspondences. Vector multiplication, on
the other hand, is more suitable for L-LDA and its
stricter association of topics with class labels.

5.1.2 Smoothing Power of LDA Models

Our hypothesis was that LDA models should be
better suited for dealing with sparse data, compared
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ESel MPC
P R F P R F

C-LDA 0.39 0.31 0.35 0.37 0.27 0.32
L-LDA 0.30 0.18 0.23 0.20 0.18 0.19

DepVSM 0.20 0.10 0.13 0.37 0.26 0.30
PattVSM 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Performance figures on sparse vectors (×)

ESel MPC
P R F P R F

C-LDA 0.43 0.33 0.38 0.44 0.28 0.34
L-LDA 0.34 0.16 0.22 0.37 0.18 0.24

DepVSM 0.16 0.17 0.17 0.36 0.21 0.27
PattVSM 0.13 0.04 0.06 0.17 0.25 0.20

Table 4: Performance figures on sparse vectors (+)

to pattern-based or purely distributional approaches.
While this is broadly confirmed in the above results
by global gains in recall, we conduct a special evalu-
ation focused on those pairs in the test set that suffer
from sparse data. We selected all adjective and noun
vectors that did not yield any positive component
values in the PATTVSM model. The 22 adjective-
noun pairs in the test set affected by these ’zero vec-
tors’ were evaluated using the remaining models.

The results in Tables 3 and 4 yield a very clear pic-
ture: C-LDA obtains highest precision, recall and
f-score across all settings, followed by L-LDA and
DEPVSMESel, while their ranks are reversed when
using MPC. Again, MPC works better for the VSM
models, ESel for the LDA models. Vector addition
performs best for C-LDA with f-scores of 0.38 and
0.34 – outperforming the pattern-based results on
sparse vectors by orders of magnitude.

5.2 Experiment 2

Experiment 2 is designed to max out the space of
attributes to be modeled, to assess the capacity of
both LDA models and the DEPVSM baseline model
in the attribute selection task on a large attribute
space.7 In contrast to Experiment 1, with its con-
fined semantic space of 10 target attributes, this rep-
resents a huge undertaking.

5.2.1 Large-scale Attribute Selection

Table 5 (columnall) displays the performance of
all models on attribute selection over a range of 206

7We did not apply PATTVSM to this large-scale experiment,
as only poor performance can be expected.

all property
× + × +

C-LDA 0.04 0.02 0.18L,D 0.10D

L-LDA 0.03 0.04 0.15 0.15
DepVSM 0.02 0.02 0.12 0.07

Table 5: Performance figures (in f-score) of C-LDAESel

on 206 (all) and 73 property attributes (property)

all property
P R F P R F

WIDTH 0.67 1.00 0.80 1.00 0.50 0.67
WEIGHT 0.80 0.57 0.67 0.50 0.57 0.53

MAGNETISM 0.50 1.00 0.67
SPEED 0.50 0.50 0.50 1.00 0.50 0.67

TEXTURE 0.33 1.00 0.50 0.33 1.00 0.50
DURATION 0.50 0.50 0.50 1.00 1.00 1.00

TEMPERATURE 0.30 0.75 0.43 0.43 0.75 0.55
AGE 0.33 0.50 0.40

THICKNESS 1.00 0.25 0.40 0.50 0.13 0.20
DEGREE 1.00 0.20 0.33
LENGTH 0.17 1.00 0.29 0.50 1.00 0.67
DEPTH 1.00 0.14 0.25 1.00 0.86 0.92

ACTION 0.17 0.50 0.25
LIGHT 0.33 0.17 0.22 0.20 0.17 0.18

POSITION 0.14 0.25 0.18 0.20 0.25 0.22
SHARPNESS 1.00 1.00 1.00

SERIOUSNESS 0.50 1.00 0.67
COLOR 0.13 0.25 0.17 0.29 0.50 0.36

LOYALTY 1.00 1.00 1.00

average 0.49 0.54 0.51 0.63 0.63 0.63

Table 6: Attribute selection on 206 attributes (all) and 73
property attributes (property); performance figures of C-
LDAESel,× for best attributes (F>0)

dimensions, contrasting vector addition and multi-
plication. The number of topics was set to 400. As
the overall performance is close to 0 for both com-
position methods, no parameter setting can be iden-
tified as particularly suited for this large-scale at-
tribute selection task. The differences between the
three models are very small and not significant8.

5.2.2 Focused Evaluation and Data Analysis

To gain a deeper insight into the modeling capac-
ity of the LDA models for this large-scale selection
task, Table 6 (columnall) presents a partial evalua-
tion of attributes that could be assigned to adjective-
noun pairs with an f-score>0 by C-LDAESel,×.

Despite the disappointing overall performance of

8Again, statistically significant differences are marked by
superscripts (cf. footnote 6). All differences reported are sig-
nificant atα < 0.05.

547



prediction correct
thin layer THICKNESS THICKNESS

heavy load WEIGHT WEIGHT

shallow water DEPTH DEPTH

short holiday DURATION DURATION

attractive force MAGNETISM MAGNETISM

short hair LENGTH LENGTH

serious book DIFFICULTY MIND

blue line COLOR UNION

weak president POSITION POWER

fluid society REPUTE CHANGEABLENESS

short flight DISTANCE DURATION

rough bark TEXTURE EVENNESS

faint heart CONSTANCY COWARDICE

Table 7: Sample of correct and false predictions of C-
LDAESel,× in Experiment 2

the LDA models on this large attribute space, it is
remarkable that C-LDA is able to induce distinctive
topic distributions for a number of attributes with up
to 0.51 f-score with balanced precision and recall,
a moderate drop of only -0.10 relative to the corre-
sponding model induced over 10 attributes.

Raising the attribute selection task from 10 to 206
attributes poses a true challenge to our models, by
the sheer size and diversity of the semantic space
considered. Table 7 gives an insight into the nature
of the data and the difficulty of the task, by listing
correct and false preditions of C-LDA for a small
sample of adjective-noun pairs. Possible explana-
tions for false predictions are manifold, among them
near misses (e.g.serious book, weak president, short
flight, rough bark), idiomatic expressions (e.g.faint
heart, blue line) or questionable labels provided by
WordNet (e.g.serious book).

As seen above, C-LDA achieves relatively high
performance figures on selected attributes (cf. Table
6, col. all). In order to identify what makes these
attributes different from others that resist success-
ful modeling, we investigated three factors: (i) the
amount of training data available for each attribute,
(ii) the ambiguity rate per attribute, and (iii) their
ontological subtype.

(i) Measuring the dependence between training
data size and f-score per attribute shows that a large
amount of training data is generally helpful, but not
the decisive factor (Pearson’sr = 0.19, p < 0.01).

(ii) The ambiguity rateARattr per attributeattr
is computed by averaging over all test pairsTPattr

labeled withattr, counting the total number of at-

tributesattr′ that are associated with each adjective
in pairs〈adj, n〉 ∈ TPattr in WordNet:

ARattr =

∑
attr′

∑
〈adj,n〉∈TPattr

|〈adj, attr′〉WN |
|TPattr |

Correlating this figure with the performance per at-
tribute in terms of f-score yields only a small pos-
itive correlation (Pearson’sr = 0.23, p < 0.01).
In fact, the qualitative analysis in Table 7 shows that
C-LDA is capable of assigning meaningful attributes
to adjective-noun phrases not only in easy, but also
ambiguous cases (cf.shallow water, whereDEPTH

is the only attribute provided forshallow in Word-
Net vs.short holiday, short hairor short flight).

(iii) Although the 206 attributes used in Exp. 2 are
rather diverse, including concepts such asHEIGHT,
KINDNESS or INDIVIDUALITY , we observe a high
number of attributes from Exp. 1 that are success-
fully modeled in Exp. 2 (5 out of 10, cf. column
all in Table 6). Given that they are categorized into
thepropertyclass in WordNet9, we presume that the
varying performance across attributes might be in-
fluenced by their ontological subtype. This hypoth-
esis is validated in a replication of Exp. 2, with train-
ing data limited to the 73 attributes pertaining to the
propertysubtype in WordNet. The test set was re-
stricted accordingly, resulting in 112 pairs that are
linked to apropertyattribute.

The overall performance of the models in this ex-
periment is shown in Table 5 (columnproperty):
With vector multiplication, the best-performing op-
eration across all models, all models benefit consid-
erably (+0.10 or more). C-LDA shows the largest
improvement, significantly outperforming both L-
LDA and DEPVSM. With vector addition, the per-
formance gains are slightly lower in general. In
this setting, L-LDA shows higher f-score than C-
LDA, though this difference is not statistically sig-
nificant. Still, C-LDA significantly outranges DE-
PVSM. Note that we can not show a significant dif-
ference between C-LDAESel,× and L-LDAESel,+,
so the comparison between these models remains in-
conclusive here. Note further that the affinity of C-
LDA with vector addition and L-LDA with vector
multiplication, respectively, is inverted in the large-
scale experiment (cf. Table 5).

9WordNet separates attributes intoproperties, qualitiesand
states, among several others.
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While these overall results are far from satisfac-
tory, they still clearly indicate that the LDA models
work effectively for at least a subset of attributes,
and outperform the VSM baseline.

Again, a more detailed analysis is given in Ta-
ble 6 (columnproperty), showing the performance
of the best individual property attributes (F>0) in
the restricted experiment. Average performance of
the best property attributes withF>0, individually,
amounts toF=0.6310. In comparison to the unres-
tricted setting (cf. columnall), nearly all property
attributes benefit from model training on selective
data. Exceptions areWIDTH, WEIGHT, THICKNESS,
AGE, DEGREE and LIGHT. Thus, apparently, some
of the adjectives associated with non-property at-
tributes in the full set provide some discriminative
power that is helpful to distinguish property types.

In a qualitative analysis of the 133 non-property
attributes filtered out in this experiment, we find that
the WordNet-SUMO mapping (Niles, 2003) does
not provide differentiating definitions for about 60%
of these attributes, linking them instead to a single
subjective assessment attribute. This suggests that
in many cases the distinctions drawn by WordNet
are too subtle even for humans to reproduce.

6 Conclusion

This paper explored the use of LDA topic models
in a semantic labeling task that predicts attributes
as ’hidden’ meanings in the compositional seman-
tics of adjective-noun phrases. LDA topic models
are expected to alleviate sparsity problems of dis-
tributional VSMs as encountered in prior work, by
incorporating latent semantic information about at-
tribute nouns. We investigated two variants of LDA
that employ different degrees of supervision for as-
sociating topics with attributes.

Our contributions are as follows. We proposed
two LDA models for the attribute selection task that
import supervision for a target category parameter
in different ways: L-LDA (Ramage et al., 2009)
embeds the target categories into the LDA process,
by defining a 1:1 correspondence of topics and tar-
get categories. C-LDA, by contrast, does not af-
fect the LDA generative process. Here, we heuris-

10In comparison, L-LDAESel,× yields an average f-score of
0.47 for attributes withF>0 in the property setting.

tically equate pseudo-documents with target cate-
gories, to approximate category-specific word-topic
distributions. By adhering to standard LDA, C-LDA
accommodates a greater variety in the distributions
of topics to attribute-specific documents and words,
as compared to L-LDA. Combining standard LDA
topic modeling with a means of interpreting the in-
duced topics relative to a set of external categories,
C-LDA offers greater flexibility and expressiveness.

Our experimental results show that modeling at-
tributes as latent or explicit topics with C-LDA and
L-LDA, respectively, outperforms the purely distri-
butional baseline model DEPVSM and PATTVSM
of prior work. Targeted evaluation on sparse data
points confirms that LDA models help to overcome
inherent sparsity effects of VSMs. C-LDA and L-
LDA are close in performance in Experiment 1. C-
LDA outperforms L-LDA only with optimal topic
parameter settings.

Finally, we probed the modeling capacity of LDA
and VSM models on a vast space of 206 attributes.
This task proved to be extremely difficult. However,
we obtain respectable results on a subset of attributes
denoting properties, where C-LDA performs best in
quantitative performance measures. It yields high-
est f-scores in full and partial evaluation – both with
the full-size attribute model, and when training and
testing is restricted to property attributes. The differ-
ences are small, but statistically significant between
the LDA models and the VSM baseline in a setting
restricted to property attributes.

Data analysis indicates that our models perform
more robustly on concrete attributes in contrast to
abstract attribute types that lack clear categorization.
This suggests that our approach to attribute selec-
tion is most appropriate for detecting attributes that
reflect clear ontological distinctions.

However, there is ample space for improvement.
In Hartung and Frank (2011), we show that the
quality of the noun vectors lags behind the adjec-
tive vectors. This clearly affects the performance
of our models in cases where the semantic contri-
bution of the noun is decisive for disambiguation.
Future work will focus on ways to enhance the noun
vector representations through additional contextual
features, to make them denser and more articulated
in structure.
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Abstract
In this paper, we propose a novel topic
model based on incorporating dictionary
definitions. Traditional topic models treat
words as surface strings without assuming
predefined knowledge about word mean-
ing. They infer topics only by observing
surface word co-occurrence. However, the
co-occurred words may not be semanti-
cally related in a manner that is relevant
for topic coherence. Exploiting dictionary
definitions explicitly in our model yields
a better understanding of word semantics
leading to better text modeling. We exploit
WordNet as a lexical resource for sense
definitions. We show that explicitly mod-
eling word definitions helps improve per-
formance significantly over the baseline
for a text categorization task.

1 Introduction

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) serves as a data-driven framework in model-
ing text corpora. The statistical model allows vari-
able extensions to integrate linguistic features such
as syntax (Griffiths et al., 2005), and has been ap-
plied in many areas.

In LDA, there are two factors which determine
the topic of a word: the topic distribution of the
document, and the probability of a topic to emit
this word. This information is learned in an unsu-
pervised manner to maximize the likelihood of the
corpus. However, this data-driven approach has
some limitations. If a word is not observed fre-
quently enough in the corpus, then it is likely to
be assigned the dominant topic in this document.
For example, the word grease (a thick fatty oil) in
a political domain document should be assigned
the topic chemicals. However, since it is an in-
frequent word, LDA cannot learn its correct se-
mantics from the observed distribution, the LDA

model will assign it the dominant document topic
politics. If we look up the semantics of the word
grease in a dictionary, we will not find any of its
meanings indicating the politics topic, yet there is
ample evidence for the chemical topic. Accord-
ingly, we hypothesize that if we know the seman-
tics of words in advance, we can get a better in-
dication of their topics. Therefore, in this paper,
we test our hypothesis by exploring the integration
of word semantics explicitly in the topic modeling
framework.

In order to incorporate word semantics from
dictionaries, we recognize the need to model
sense-topic distribution rather than word-topic dis-
tribution, since dictionaries are constructed at the
sense level. We use WordNet (Fellbaum, 1998)
as our lexical resource of choice. The notion of
a sense in WordNet goes beyond a typical word
sense in a traditional dictionary since a WordNet
sense links senses of different words that have
similar meanings. Accordingly, the sense for the
first verbal entry for buy and for purchase will
have the same sense id (and same definition) in
WordNet, while they could have different mean-
ing definitions in a traditional dictionary such as
the Merriam Webster Dictionary or LDOCE. In
our model, a topic will first emit a WordNet sense,
then the sense will generate a word. This is in-
spired by the intuition that words are instantiations
of concepts.

The paper is organized as follows: In Sections 2
and 3, we describe our models based on WordNet.
In Section 4, experiment results on text catego-
rization are presented. Moreover, we analyze both
qualitatively and quantitatively the contribution of
modeling definitions (by teasing out the contribu-
tion of explicit sense modeling in a word sense dis-
ambiguation task). Related work is introduced in
Section 5. We conclude in Section 6 by discussing
some possible future directions.552
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Figure 1: (a) LDA: Latent Dirichlet Allocation
(Blei et al., 2003). (b) STM: Semantic topic
model. The dashed arrows indicate the distribu-
tions (φ and η) and nodes (z) are not influenced by
the values of pointed nodes.

2 Semantic Topic Model

2.1 Latent Dirichlet Allocation

We briefly introduce LDA where Collapsed Gibbs
Sampling (Griffiths and Steyvers, 2004) is used
for inference. In figure 1a, given a corpus with
D documents, LDA will summarize each docu-
ment as a normalized T -dimension topic mixture
θ. Topic mixture θ is drawn from a Dirichlet distri-
bution Dir(α) with a symmetric prior α. φ con-
tains T multinomial distribution, each represent-
ing the probability of a topic z generating word w
p(w|z). φ is drawn from a Dirichlet distribution
Dir(β) with prior β.

In Collapsed Gibbs Sampling, the distribution
of a topic for the word wi = w based on values of
other data is computed as:

P (zi = z|z−i,w) ∝
n
(d)
−i,z + α

n
(d)
−i + Tα

× nw
−i,z + β

n−i,z +Wβ
(1)

In this equation, n(d)−i,z is a count of how many
words are assigned topic z in document d, exclud-
ing the topic of the ith word; nw−i,z is a count of
how many words = w are assigned topic z, also

excluding the topic of the ith word. Hence, the
first fraction is the proportion of the topic in this
document p(z|θ). The second fraction is the prob-
ability of topic z emitting wordw. After the topics
become stable, all the topics in a document con-
struct the topic mixture θ.

2.2 Applying Word Sense Disambiguation
Techniques

We add a sense node between the topic node and
the word node based on two linguistic observa-
tions: a) Polysemy: many words have more than
one meaning. A topic is more directly relevant to
a word meaning (sense) than to a word due to pol-
ysemy; b) Synonymy: different words may share
the same sense. WordNet explicitly models syn-
onymy by linking synonyms to the same sense. In
WordNet, each sense has an associated definition.

It is worth noting that we model the sense-word
relation differently from (Boyd-Graber and Blei,
2007), where in their model words are generated
from topics, then senses are generated from words.
In our model, we assume that during the genera-
tive process, the author picks a concept relevant to
the topic, then thinks of a best word that represents
that concept. Hence the word choice is dependent
on the relatedness of the sense and its fit to the
document context.

In standard topic models, the topic of a word
is sampled from the document level topic mixture
θ. The underlying assumption is that all words in a
document constitute the context of the target word.
However, it is not the case in real world corpora.
Titov and McDonald (2008) find that using global
topic mixtures can only extract global topics in on-
line reviews (e.g., Creative Labs MP3 players and
iPods) and ignores local topics (product features
such as portability and battery). They design the
Multi-grain LDA where the local topic of a word
is only determined by topics of surrounding sen-
tences. In word sense disambiguation (WSD), an
even narrower context is taken into consideration,
for instance in graph based WSD models (Mihal-
cea, 2005), the choice of a sense for a word only
depends on a local window whose size equals the
length of the sentence. Later in (Sinha and Mihal-
cea, 2007; Guo and Diab, 2010; Li et al., 2010),
people use a fixed window size containing around
12 neighbor words for WSD.

Accordingly, we adopt the WSD inspired local
window strategy in our model. However, we do553



not employ the complicated schema in (Titov and
McDonald, 2008). We simply hypothesize that the
surrounding εwords are semantically related to the
considered word, and they construct a local slid-
ing window for that target word. For a document
d with Nd words, we represent it as Nd local win-
dows – a window is created for each word. The
model is illustrated in the left rectangle in figure
1b. The window size is fixed for each word: it
contains ε/2 preceding words, and ε/2 following
words. Therefore, a word in the original document
will have ε copies, existing in ε+1 local windows.
Similarly, there are ε + 1 pairs of topics/senses
assigned for each word in the original document.
Each window has a distribution θi over topics. θi
will emit the topics of words in the window.

This approach enables us to exploit different
context sizes without restricting it to the sentence
length, and hence spread topic information across
sentence boundaries.

2.3 Integrating Definitions

Intuitively, a sense definition reveals some prior
knowledge on the topic domain: the definition of
sense [crime, offense, offence] indicates a legal
topic; the definition of sense [basketball] indicates
a sports topic, etc. Therefore, during inference, we
want to choose a topic/sense pair for each word,
such that the topic is supported by the context θ
and the sense definition also matches that topic.

Given that words used in the sense definitions
are strongly relevant to the sense/concept, we set
out to find the topics of those definition words, and
accordingly assign the sense sen itself these top-
ics. We treat a sense definition as a document and
perform Gibbs sampling on it. We normalize def-
inition length by a variable γ. Therefore, before
the topic model sees the actual documents, each
sense s has been sampled γ times. The γ topics
are then used as a “training set”, so that given a
sense, φ has some prior knowledge of which topic
it should be sampled from.

Consider the sense [party, political party] with
a definition “an organization to gain political
power” of length 6 when γ = 12. If topic
model assigns politics topic to the words “orga-
nization political power”, then sense [party, polit-
ical party] will be sampled from politics topic for
3 ∗ γ/definitionLength = 6 times.

We refer to the proposed model as Semantic
Topic Model (figure 1b). For each window vi in

the document set, the model will generate a distri-
bution of topics θi. It will emit the topics of ε+ 1
words in the window. For a word wij in window
vi, a sense sij is drawn from the topic, and then sij
generates the word wi. Sense-topic distribution φ
contains T multinomial distributions over all pos-
sible senses in the corpus drawn from a symmetric
Dirichlet distribution Dir(β). From WordNet we
know the set of words W (s) that have a sense s
as an entry. A sense s can only emit words from
W (s). Hence, for each sense s, there is a multi-
nomial distribution ηs over W (s). All η are drawn
from symmetric Dir(λ).

On the definition side, we use a different prior
αs to generate a topic mixture θ. Aside from gen-
erating si, zi will deterministically generate the
current sense sen for γ/Nsen times (Nsen is the
number of words in the definition of sense sen),
so that sen is sampled γ times in total.

The formal procedure of generative process is
the following:

For the definition of sense sen:
• choose topic mixture θ ∼ Dir(αs).
• for each word wi:
− choose topic zi ∼Mult(θ).
− choose sense si ∼Mult(φzi).
− deterministically choose sense sen ∼
Mult(φzi) for γ/Nsen times.
− choose word wi ∼Mult(ηsi).

For each window vi in a document:
• choose local topic mixture θi ∼ Dir(αd).
• for each word wij in vi:
− choose topic zij ∼Mult(θi).
− choose sense sij ∼Mult(φzij ).
− choose word wij ∼Mult(ηsij ).

2.4 Using WordNet
Since definitions and documents are in different
genre/domains, they have different distributions
on senses and words. Besides, the definition sets
contain topics from all kinds of domains, many of
which are irrelevant to the document set. Hence
we prefer φ and η that are specific for the doc-
ument set, and we do not want them to be “cor-
rupted” by the text in the definition set. There-
fore, as in figure 1b, the dashed lines indicate that
when we estimate φ and η, the topic/sense pair and
sense/word pairs in the definition set are not con-
sidered.

WordNet senses are connected by relations such
as synonymy, hypernymy, similar attributes, etc.554



We observe that neighboring sense definitions are
usually similar and are in the same topic domain.
Hence, we represent the definition of a sense as
the union of itself with its neighboring sense def-
initions pertaining to WordNet relations. In this
way, the definition gets richer as it considers more
data for discovering reliable topics.

3 Inference

We still use Collapsed Gibbs Sampling to find la-
tent variables. Gibbs Sampling will initialize all
hidden variables randomly. In each iteration, hid-
den variables are sequentially sampled from the
distribution conditioned on all the other variables.
In order to compute the conditional probability
P (zi = z, si = s|z−i, s−i,w) for a topic/sense
pair, we start by computing the joint probability
P (z, s,w) = P (z)P (s|z)P (w|s). Since the gen-
erative processes are not exactly the same for def-
initions and documents, we need to compute the
joint probability differently. We use a type spe-
cific subscript to distinguish them: Ps(·) for sense
definitions and Pd(·) for documents.

Let sen be a sense. Integrating out θ we have:

Ps(z) =

(
Γ(Tαs)

Γ(αs)T

)S S∏

sen=1

∏
z Γ(n

(sen)
z + αs)

Γ(n(sen) + Tα)
(2)

where n(sen)z means the number of times a word
in the definition of sen is assigned to topic z, and
n(sen) is the length of the definition. S is all the
potential senses in the documents.

We have the same formula of P (s|z) and
P (w|s) for definitions and documents. Similarly,
let nz be the number of words in the documents
assigned to topic z, and nsz be the number of times
sense s assigned to topic z. Note that when s
appears in the superscript surrounded by brackets
such as n(s)z , it denotes the number of words as-
signed to topics z in the definition of sense s. By
integrating out φ we obtain the second term:

P (s|z) =

(
Γ(Sβ)

Γ(β)S

)T T∏

z=1

∏
s Γ(ns

z + n
(s)
z γ/n(s) + β)

Γ(nz +
∑

s′ n
(s′)
z γ/n(s′) + Sβ)

(3)

At last, assume ns denotes the number of sense
s in the documents, and nws denotes the number of
sense s to generate the word w, then integrating
out η we have:

P (w|s) =

S∏

s=1

Γ(|W (s)|λ)

Γ(λ)|W (s)|

∏W (s)
w Γ(nw

s + λ)

Γ(ns + |W (s)|λ)
(4)

With equation 2-4, we can compute the condi-
tional probability Ps(zi = z, si = s|z−i, s−i,w)
for a sense-topic pair in the sense definition. Let
seni be the sense definition containing word wi,
then we have:

Ps(zi = z, si = s|z−i, s−i,w) ∝
n
(seni)
−i,z + αs

n
(seni)
−i + Tαs

ns
z + n

(s′)
−i,zγ/n

(s′) + β

nz +
∑

s′ n
(s′)
−i,zγ/n

(s′) + Sβ

nw
s + λ

ns + |W (s)|λ

(5)

The subscript −i in expression n−i denotes
the number of certain events excluding word wi.
Hence the three fractions in equation 5 correspond
to the probability of choosing z from θsen, choos-
ing s from z and choosingw from s. Also note that
our model defines s that can only generate words
in W (s), therefore for any word w /∈ W (s), the
third fraction will yield a 0.

The probability for documents is similar to that
for definitions except that there is a topic mixture
for each word, which is estimated by the topics in
the window. Hence Pd(z) is estimated as:

Pd(z) =
∏

i

Γ(Tαd)

Γ(αd)T

∏
z Γ(n

(vi)
z + αd)

Γ(n(vi) + Tαd)
(6)

Thus, the conditional probability for documents
can be estimated by cancellation terms in equation
6, 3, and 4:

Pd(zij = z, sij = s|z−ij, s−ij,w) ∝
n
(vi)
−ij,z + αd

n
(vi)
−ij + Tαd

ns
−ij,z + n

(s′)
z γ/n(s′) + β

n−ij,z +
∑

s′ n
(s′)
z γ/n(s′) + Sβ

nw
−ij,s + λ

n−ij,s + |W (s)|λ

(7)

3.1 Approximation
In current model, each word appears in ε+ 1 win-
dows, and will be generated ε + 1 times, so there
will be ε + 1 pairs of topics/senses sampled for
each word, which requires a lot of additional com-
putation (proportional to context size ε). On the
other hand, it can be imagined that the set of val-
ues {zij , sij |j − ε/2 ≤ i ≤ j + ε/2} in dif-
ferent windows vi should roughly be the same,
since they are hidden values for the same wordwj .
Therefore, to reduce computation complexity dur-
ing Gibbs sampling, we approximate the values of
{zij , sij | i 6= j} by the topic/sense (zjj , sjj) that
are generated from window vj . That is, in Gibbs
sampling, the algorithm does not actually sample
the values of {zij , sij , | i 6= j}; instead, it directly
assumes the sampled values are zjj , sjj .555



4 Experiments and Analysis

Data: We experiment with several datasets,
namely, the Brown Corpus (Brown), New York
Times (NYT) from the American National Cor-
pus, Reuters (R20) and WordNet definitions. In a
preprocessing step, we remove all the non-content
words whose part of speech tags are not one of
the following set {noun, adjective, adverb, verb}.
Moreover, words that do not have a valid lemma in
WordNet are removed. For WordNet definitions,
we remove stop words hence focusing on relevant
content words.

Corpora statistics after each step of preprocess-
ing is presented in Table 1. The column WN token
lists the number of word#pos tokens after prepro-
cessing. Note that now we treat word#pos as a
word token. The column word types shows cor-
responding word#pos types, and the total number
of possible sense types is listed in column sense
types. The DOCs size for WordNet is the total
number of senses defined in WordNet.

Experiments: We design two tasks to test our
models: (1) text categorization task for evaluat-
ing the quality of values of topic nodes, and (2) a
WSD task for evaluating the quality of the values
of the sense nodes, mainly as a diagnostic tool tar-
geting the specific aspect of sense definitions in-
corporation and distinguish that component’s con-
tribution to text categorization performance. We
compare the performance of four topic models.
(a) LDA: the traditional topic model proposed in
(Blei et al., 2003) except that it uses Gibbs Sam-
pling for inference. (b) LDA+def: is LDA with
sense definitions. However they are not explic-
itly modeled; rather they are treated as documents
and used as augmented data. (c) STM0: the topic
model with an additional explicit sense node in the
model, but we do not model the sense definitions.
And finally (d) STMn is the full model with defi-
nitions explicitly modeled. In this setting n is the
γ value. We experiment with different γ values
in the STM models, and investigate the semantic
scope of words/senses by choosing different win-
dow size ε. We report mean and standard deviation
based on 10 runs.

It is worth noting that a larger window size
ε suggests documents have larger impact on the
model (φ, η) than definitions, since each document
word has ε copies. This is not a desirable property
when we want to investigate the weight of defi-

nitions by choosing different γ values. Accord-
ingly, we only use zjj , sjj , wjj to estimate φ, η, so
that the impact of documents is fixed. This makes
more sense, in that after the approximation in sec-
tion 3.1, there is no need to use {zij , sij , | i 6= j}
(they have the same values as zjj , sjj).

4.1 Text Categorization

We believe our model can generate more “correct”
topics by looking into dictionaries. In topic mod-
els, each word is generalized as a topic and each
document is summarized as the topic mixture θ,
hence it is natural to evaluate the quality of in-
ferred topics in a text categorization task. We fol-
low the classification framework in (Griffiths et
al., 2005): first run topic models on each dataset
individually without knowing label information
to achieve document level topic mixtures, then we
employ Naive Bayes and SVM (both implemented
in the WEKA Toolkit (Hall et al., 2009)) to per-
form classification on the topic mixtures. For all
document, the features are the percentage of top-
ics. Similar to (Griffiths et al., 2005), we assess in-
ferred topics by the classification accuracy of 10-
fold cross validation on each dataset.

We evaluate our models on three datasets in the
cross validation manner: The Brown corpus which
comprises 500 documents grouped into 15 cate-
gories (same set used in (Griffiths et al., 2005));
NYT comprising 800 documents grouped into the
16 most frequent label categories; Reuters (R20)
comprising 8600 documents labeled with the most
frequent 20 categories. In R20, combination of
categories is treated as separate category labels,
so money, interest and interest are considered
different labels.

For the three datasets, we use the Brown cor-
pus only as a tuning set to decide on the topic
model parameters for all of our experimentation,
and use the optimized parameters directly on NYT
and R20 without further optimization.

4.1.1 Classification Results
Searching γ and ε on Brown: The classification
accuracy on the Brown corpus with different ε and
γ values using Naive Bayes and SVM are pre-
sented in figure 2a and 2b. In this section, the
number of topics T is set to 50. The possible
ε values in the horizontal axis are 2, 10, 20, 40,
all. The possible γ values are 0, 1, 2. Note that
ε = all means that no local window is used, and
γ = 0 means definitions are not used. The hyper-556



Corpus DOCs size orig tokens content tokens WN tokens word types sense types
Brown 500 1022393 580882 547887 27438 46645
NYT 800 743665 436988 393120 19025 37631
R20 8595 901691 450935 417331 9930 24834

SemCor 352 676546 404460 352563 28925 45973
WordNet 117659 1447779 886923 786679 42080 60567

Table 1: Corpus statistics
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Figure 2: Classification accuracy at different parameter settings

parameters are tuned as αd = 0.1, αs = 0.01, β =
0.01, λ = 0.1.

From figure 2, we observe that results using
SVM have the same trend as Naive Bayes except
that the accuracies are roughly 5% higher for SVM
classifier. The results of LDA and LDA+def sug-
gest that simply treating definitions as documents
in an augmented data manner does not help. Com-
paring SMT0 with LDA in the same ε values, we
find that explicitly modeling the sense node in the
model greatly improves the classification results.
The reason may be that words in LDA are inde-
pendent isolated strings, while in STM0 they are
connected by senses.

STM2 prefers smaller window sizes (ε less than
40). That means two words with a distance larger
than 40 are not necessarily semantically related or
share the same topic. This ε number also corre-
lates with the optimal context window size of 12
reported in WSD tasks (Sinha and Mihalcea, 2007;
Guo and Diab, 2010).

Classification results: Table 2 shows the results
of our models using best tuned parameters of ε =
10, γ = 2 on 3 datasets. We present three base-
lines in Table 2: (1) WEKA uses WEKA’s classi-
fiers directly on bag-of-words without topic mod-
eling. The values of features are simply term fre-
quency. (2) WEKA+FS performs feature selection
using information gain before applying classifica-
tion. (3) LDA, is the traditional topic model. Note
that Griffiths et al.’s (2005) implementation of

LDA achieve 51% on Brown corpus using Naive
Bayes . Finally the Table illustrates the results
obtained using our proposed models STM0 (γ=0)
and STM2 (γ = 2).

It is worth noting that R20 (compared to NYT)
is a harder condition for topic models. This is
because fewer words (10000 distinct words ver-
sus 19000 in NYT) are frequently used in a large
training set (8600 documents versus 800 in NYT),
making the surface word feature space no longer
as sparse as in the NYT or Brown corpus, which
implies simply using surface words without con-
sidering the words distributional statistics – topic
modeling – is good enough for classification. In
(Blei et al., 2003) figure 10b they also show worse
text categorization results over the SVM baseline
when more than 15% of the training labels of
Reuters are available for the SVM classifiers, indi-
cating that LDA is less necessary with large train-
ing data. In our investigation, we report results
on SVM classifiers trained on the whole Reuters
training set. In our experiments, LDA fails to cor-
rectly classify nearly 10% of the Reuters docu-
ments compared to the WEKA baseline, however
STM2 can still achieve significantly better accu-
racy (+4%) in the SVM classification condition.

Table 2 illustrates that despite the difference be-
tween NYT, Reuters and Brown (data size, genre,
domains, category labels), exploiting WSD tech-
niques (namely using a local window size cou-
pled with explicitly modeling a sense node) yields557



Brown NYT R20
NB SVM NB SVM NB SVM

WEKA 48 47.8 57 54.1 72.4 82.9
WEKA+FS 50 47.2 56.9 55.1 72.9 83.4

LDA 47.8±4.3 53.9±3.8 48.5±5.5 53.8±3.5 61.0±3.3 72.5±2.5
STM0 68.6±3.5 70.7±3.9 66.7±3.8 74.2±4.0 72.7±3.5 85.2±0.9
STM2 69.3±3.3 75.4±3.7 74.6±3.3 79.3±2.5 73±3.7 86.9±1.2

Table 2: Classification results on 3 datasets using hyperparameters tuned on Brown.
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Figure 3: SVM accuracy on each category of NYT

significantly better results than all three baselines
including LDA. Furthermore, explicit definition
modeling as used in STM2 yields the best perfor-
mance consistently overall.

Finally, in Figure 2c we show the SVM clas-
sification results on NYT in different parame-
ter settings. We find that the NYT classifica-
tion accuracy trend is consistent with that on the
Brown corpus for each parameter setting of ε ∈
{2, 10, 20, 40, all} and γ ∈ {0, 1, 2}. This further
proves the robustness of STMn.

4.2 Analysis on the Impact of Modeling
Definitions

4.2.1 Qualitative Analysis
To understand why definitions are helpful in text
categorization, we analyze the SVM performance
of STM0 and STM2 (ε = 10) on each cate-
gory of NYT dataset (figure 3). We find STM2
outperforms STM0 in all categories. However,
the largest gain is observed in Society, Miscel-
laneous, Culture, Technology. For Technology,
we should credit WordNet definitions, since Tech-
nology may contain many infrequent technical
terms, and STM0 cannot generalize the meaning
of words only by distributional information due to
their low frequency usage. However in some other
domains, fewer specialized words are repeatedly

used, hence STM0 can do as well as STM2.
For the other 3 categories, we hypothesize that

these documents are likely to be a mixture of mul-
tiple topics. For example, a Culture news could
contain topics pertaining to religion, history, art;
while a Society news about crime could relate to
law, family, economics. In this case, it is very
important to sample a true topic for each word,
so that ML algorithms can distinguish the Cul-
ture documents from the Religion ones by the pro-
portion of topics. Accordingly, adding definitions
should be very helpful, since it specifically defines
the topic of a sense, and shields it from the influ-
ence of other “incorrect/irrelevant” topics.

4.2.2 Quantitative Analysis with Word Sense
Disambiguation

A side effect of our model is that it sense disam-
biguates all words. As a means of analyzing and
gaining some insight into the exact contribution of
explicitly incorporating sense definitions (STMn)
versus simply a sense node (STM0) in the model,
we investigate the quality of the sense assignments
in our models. We believe that the choice of the
correct sense is directly correlated with the choice
of a correct topic in our framework. Accord-
ingly, a relative improvement of STMn over STM0
(where the only difference is the explicit sense def-
inition modeling) in WSD task is an indicator of
the impact of using sense definitions in the text
categorization task.
WSD Data: We choose the all-words WSD task in
which an unsupervised WSD system is required to
disambiguate all the content words in documents.
Our models are evaluated against the SemCor
dataset. We prefer SemCor to all-words datasets
available in Senseval-3 (Snyder and Palmer, 2004)
or SemEval-2007 (Pradhan et al., 2007), since
it includes many more documents than either set
(350 versus 3) and therefore allowing more reli-
able results. Moreover, SemCor is also the dataset
used in (Boyd-Graber et al., 2007), where a Word-
Net based topic model for WSD is introduced. The558



Total Noun Adjective Adverb Verb
sense annotated words 225992 86996 31729 18947 88320

polysemous words 187871 70529 21989 11498 83855
TF-IDF - 0.422 0.300 0.153 0.182

Table 3: Statistics of SemCor per POS

statistics of SemCor is listed in table 3.
We use hyperparameters tuned from the text cat-

egorization task: αd=0.1, αs=0.01, β=0.01, δ=1,
T=50, and try different values of ε ∈ {10, 20, 40}
and γ ∈ {0, 2, 10}. The Brown corpus and Word-
Net definitions corpus are used as augmented data,
which means the dashed line in figure 1c will be-
come bold. Finally, we choose the most frequent
answer for each word in the last 10 iterations of a
Gibbs Sampling run as the final sense choice.
WSD Results: Disambiguation per POS results
are presented in table 4. We only report results
on polysemous words. We can see that modeling
definitions (STM2 and STM10) improves perfor-
mance significantly over STM0’s across the board
per POS and overall. The fact that STMn picks
more correct senses helps explain why STMn clas-
sifies more documents correctly than STM0. Also
it is interesting to see that unlike in the text cate-
gorization task, larger values of γ generate better
WSD results. However, the window size ε, does
not make a significant difference, yet we note that
ε=10 is still the optimal value, similar to our ob-
servation in the text categorization task.

STM10 achieves similar results as in LDAWN
(Boyd-Graber et al., 2007) which was specifically
designed for WSD. LDAWN needs a fine grained
hypernym hierarchy to perform WSD, hence they
can only disambiguate nouns. They report differ-
ent performances under various parameter setting.
We cite their best performance of 38% accuracy
on nouns as a comparison point to our best perfor-
mance for nouns of 38.5%.

An interesting feature of STM10 is that it
performs much better in nouns than adverbs and
verbs, compared to a random baseline in Table
4. This is understandable since topic information
content is mostly borne by nouns and adjectives,
while adverbs and verbs tend to be less informa-
tive about topics (e.g., even, indicate, take), and
used more across different domain documents.
Hence topic models are weaker in their ability
to identify clear cues for senses for verbs and
adverbs. In support of our hypothesis about the
POS distribution, we compute the average TF-IDF

scores for each POS (shown in Table 3 according
to the equation illustrated below). The average
TF-IDF clearly indicate the positive skewness of
the nouns and adjectives (high TF-IDF) correlates
with the better WSD performance.

TF-IDF(pos) =

∑
i

∑
d TF-IDF(wi,d)

# of wi,d

where wi,d ∈ pos.
At last, we notice that the most frequent sense

baseline performs much better than our models.
This is understandable since: (1) most frequent
sense baseline can be treated as a supervised
method in the sense that the sense frequency is
calculated based on the sense choice as present
in sense annotated data; (2) our model is not de-
signed for WSD, therefore it discards a lot of in-
formation when choosing the sense: in our model,
the choice of a sense si is only dependent on two
facts: the corresponding topic zi and word wi,
while in (Li et al., 2010; Banerjee and Pedersen,
2003), they consider all the senses and words in
the context words.

5 Related work

Various topic models have been developed for
many applications. Recently there is a trend
of modeling document dependency (Dietz et al.,
2007; Mei et al., 2008; Daume, 2009). How-
ever, topics are only inferred based on word co-
occurrence, while word semantics are ignored.

Boyd-Graber et al. (2007) are the first to inte-
grate semantics into the topic model framework.
They propose a topic model based on WordNet
noun hierarchy for WSD. A word is assumed to be
generated by first sampling a topic, then choosing
a path from the root node of hierarchy to a sense
node corresponding to that word. However, they
only focus on WSD. They do not exploit word def-
initions, neither do they report results on text cat-
egorization.

Chemudugunta et al. (2008) also incorporate a
sense hierarchy into a topic model. In their frame-
work, a word may be directly generated from a
topic (as in standard topic models), or it can be559



Total Noun Adjective Adverb Verb
random 22.1 26.2 27.9 32.2 15.8

most frequent sense 64.7 74.7 77.5 74.0 59.6
STM0 ε = 10 24.1±1.4 29.3±4.3 28.7±1.1 34.1±3.1 17.1±1.6

ε = 20 24±1.3 30.2±3.3 29.1±1.4 34.9±3.1 15.9±0.7
ε = 40 24±2.4 28.4±4.3 28.7±1.1 36.4±4.7 17.3±2.4

STM2 ε = 10 27.5±1.1 36.1±3.8 34.0±1.2 33.4±1.8 17.8±1.4
ε = 20 25.7±1.3 32.0±4.2 33.5±0.7 34.2±3.4 17.3±0.7
ε = 40 26.1±1.3 32.5±3.9 33.6±0.9 34.2±3.4 17.5±1.4

STM10 ε = 10 28.8±1.1 38.5±2.3 34.7±0.8 34.0±3.3 18.4±1.2
ε = 20 27.7±1.0 36.8±2.2 34.5±0.7 33.0±3.1 17.6±0.7
ε = 40 28.1±1.5 38.4±3.1 34.0±1.0 35.1±5.4 17.0±0.9

Table 4: Disambiguation results per POS on polysemous words.

generated by choosing a sense path in the hierar-
chy. Note that no topic information is on the sense
path. If a word is generated from the hierarchy,
then it is not assigned a topic. Their models based
on different dictionaries improve perplexity.

Recently, several systems have been proposed
to apply topic models to WSD. Cai et al. (2007)
incorporate topic features into a supervised WSD
framework. Brody and Lapata (2009) place the
sense induction in a Baysian framework by assum-
ing each context word is generated from the target
word’s senses, and a context is modeled as a multi-
nomial distribution over the target word’s senses
rather than topics. Li et al. (2010) design sev-
eral systems that use latent topics to find a most
likely sense based on the sense paraphrases (ex-
tracted from WordNet) and context. Their WSD
models are unsupervised and outperform state-of-
art systems.

Our model borrows the local window idea from
word sense disambiguation community. In graph-
based WSD systems (Mihalcea, 2005; Sinha and
Mihalcea, 2007; Guo and Diab, 2010), a node is
created for each sense. Two nodes will be con-
nected if their distance is less than a predefined
value; the weight on the edge is a value returned
by sense similarity measures, then the PageR-
ank/Indegree algorithm is applied on this graph to
determine the appropriate senses.

6 Conclusion and Future Work

We presented a novel model STM that combines
explicit semantic information and word distribu-
tion information in a unified topic model. STM
is able to capture topics of words more accurately
than traditional LDA topic models. In future work,
we plan to model the WordNet sense network. We
believe that WordNet senses are too fine-grained,
hence we plan to use clustered senses, instead of

current WN senses, in order to avail the model of
more generalization power.
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Abstract

We present an automatic method which lever-
ages word lengthening to adapt a sentiment
lexicon specifically for Twitter and similar so-
cial messaging networks. The contributions of
the paper are as follows. First, we call at-
tention to lengthening as a widespread phe-
nomenon in microblogs and social messag-
ing, and demonstrate the importance of han-
dling it correctly. We then show that lengthen-
ing is strongly associated with subjectivity and
sentiment. Finally, we present an automatic
method which leverages this association to de-
tect domain-specific sentiment- and emotion-
bearing words. We evaluate our method by
comparison to human judgments, and analyze
its strengths and weaknesses. Our results are
of interest to anyone analyzing sentiment in
microblogs and social networks, whether for
research or commercial purposes.

1 Introduction

Recently, there has been a surge of interest in sen-
timent analysis of Twitter messages. Many re-
searchers (e.g., Bollen et al. 2011; Kivran-Swaine
and Naaman 2011) are interested in studying struc-
ture and interactions in social networks, where senti-
ment can play an important role. Others use Twitter
as a barometer for public mood and opinion in di-
verse areas such as entertainment, politics and eco-
nomics. For example, Diakopoulos and Shamma
(2010) use Twitter messages posted in conjunction
with the live presidential debate between Barack
Obama and John McCain to gauge public opinion,
Bollen et al. (2010) measure public mood on Twitter
and use it to predict upcoming stock market fluc-

tuations, and O’Connor et al. (2010) connect pub-
lic opinion data from polls to sentiment expressed in
Twitter messages along a timeline.

A prerequisite of all such research is an effec-
tive method for measuring the sentiment of a post
or tweet. Due to the extremely informal nature of
the medium, and the length restriction1, the lan-
guage and jargon which is used in Twitter varies sig-
nificantly from that of commonly studied text cor-
pora. In addition, Twitter is a quickly evolving
domain, and new terms are constantly being intro-
duced. These factors pose difficulties to methods
designed for conventional domains, such as news.
One solution is to use human annotation. For exam-
ple, Kivran-Swaine and Naaman (2011) use manual
coding of tweets in several emotion categories (e.g.,
joy, sadness) for their research. Diakopoulos and
Shamma (2010) use crowd sourcing via Amazon’s
Mechanical Turk. Manual encoding usually offers
a deeper understanding and correspondingly higher
accuracy than shallow automatic methods. However,
it is expensive and labor intensive and cannot be ap-
plied in real time. Crowd-sourcing carries additional
caveats of its own, such as issues of annotator exper-
tise and reliability (see Diakopoulos and Shamma
2010).

The automatic approach to sentiment analysis is
commonly used for processing data from social net-
works and microblogs, where there is often a huge
quantity of information and a need for low latency.
Many automatic approaches (including all those
used in the work mentioned above) have at their core
a sentiment lexicon, containing a list of words la-

1Messages in Twitter are limited to 140 characters, for com-
patibility with SMS messaging
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beled with specific associated emotions (joy, hap-
piness) or a polarity value (positive, neutral, nega-
tive). The overall sentiment of a piece of text is cal-
culated as a function of the labels of the component
words. Because Twitter messages are short, shal-
low approaches are sometimes considered sufficient
(Bermingham and Smeaton, 2010). There are also
approaches that use deeper machine learning tech-
niques to train sentiment classifiers on examples that
have been labeled for sentiment, either manually or
automatically, as described above. Recent examples
of this approach are Barbosa and Feng (2010) and
Pak and Paroubek (2010).

Most established sentiment lexicons (e.g., Wilson
et al. 2005, see Section 5) were created for a gen-
eral domain, and suffer from limited coverage and
inaccuracies when applied to the highly informal do-
main of social networks communication. By cre-
ating a sentiment lexicon which is specifically tai-
lored to the microblogging domain, or adapting an
existing one, we can expect to achieve higher accu-
racy and increased coverage. Recent work in this
area includes Velikovich et al. (2010), who devel-
oped a method for automatically deriving an exten-
sive sentiment lexicon from the web as a whole.
The resulting lexicon has greatly increased cover-
age compared to existing dictionaries and can handle
spelling errors and web-specific jargon. Bollen et al.
(2010) expand an existing well-vetted psychometric
instrument - Profile of Mood States (POMS) (Mc-
Nair et al., 1971) that associates terms with moods
(e.g. calm, happy). The authors use co-occurrence
information from the Google n-gram corpus (Brants
and Franz, 2006) to enlarge the original list of 72
terms to 964. They use this expanded emotion lexi-
con (named GPOS) in conjunction with the lexicon
of Wilson et al. (2005) to estimate public mood from
Twitter posts2.

The method we present in this paper leverages a
phenomenon that is specific to informal social com-
munication to enable the extension of an existing
lexicon in a domain specific manner.

2Although the authors state that all data and methods will
be made available on a public website, it was not present at the
time of the writing of this article.

2 Methodology

Prosodic indicators (such as high pitch, prolonged
duration, intensity, vowel quality, etc.) have long
been know (Bolinger, 1965) as ways for a speaker to
emphasize or accent an important word. The ways
in which they are used in speech are the subject of
ongoing linguistic research (see, for example, Cal-
houn 2010). In written text, many of these indica-
tors are lost. However, there exist some orthographic
conventions which are used to mark or substitute
for prosody, including punctuation and typographic
styling (italic, bold, and underlined text). In purely
text-based domains, such as Twitter, styling is not
always available, and is replaced by capitalization
or other conventions (e.g., enclosing the word in as-
terisks). Additionally, the informal nature of the do-
main leads to an orthographic style which is much
closer to the spoken form than in other, more formal,
domains. In this work, we hypothesize that the com-
monly observed phenomenon of lengthening words
by repeating letters is a substitute for prosodic em-
phasis (increased duration or change of pitch). As
such, it can be used as an indicator of important
words and, in particular, ones that bear strong in-
dication of sentiment.

Our experiments are designed to analyze the phe-
nomenon of lengthening and its implications to sen-
timent detection. First, in Experiment I, we show
the pervasiveness of the phenomenon in our dataset,
and measure the potential gains in coverage that can
be achieved by considering lengthening when pro-
cessing Twitter data. Experiment II substantiates
the claim that word lengthening is not arbitrary, and
is used for emphasis of important words, including
those conveying sentiment and emotion. In the first
part of Experiment III we demonstrate the implica-
tions of this connection for the purpose of sentiment
detection using an existing sentiment lexicon. In
the second part, we present an unsupervised method
for using the lengthening phenomenon to expand an
existing sentiment lexicon and tailor it to our do-
main. We evaluate the method through compari-
son to human judgments, analyze our results, and
demonstrate some of the benefits of our automatic
method.
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1. For every word in the vocabulary, extract the condensed form, where sequences of a repeated
letter are replaced with a single instance of that letter.
E.g., niiiice→ nice, realllly → realy ...

2. Create sets of words sharing the same condensed form.
E.g., {nice, niiice, niccccceee...}, {realy, really, realllly, ...} ...

3. Remove sets which do not contain at least one repeat of length three.
E.g.,{committee, committe, commitee}

4. Find the most frequently occurring form in the group, and mark it as the canonical form.
E.g., {nice, niiice, niccccceee...}, {realy, really, realllly, ...} ...

Figure 1: Procedure for detecting lengthened words and associating them with a canonical form.

3 Data

Half a million tweets were sampled from the Twit-
ter Streaming API on March 9th 2011. The tweets
were sampled to cover a diverse geographic distri-
bution within the U.S. such that regional variation in
language use should not bias the data. Some tweets
were also sampled from Britain to provide a more
diverse sampling of English. We restricted our sam-
ple to tweets from accounts which indicated their
primary language as English. However, there may
be some foreign language messages in our dataset,
since multi-lingual users may tweet in other lan-
guages even though their account is marked as “En-
glish”.

The tweets were tokenized and converted to
lower-case. Punctuation, as well as links, hash-
tags, and username mentions were removed. The
resulting corpus consists of approximately 6.5 mil-
lion words, with a vocabulary of 22 thousand words
occurring 10 times or more.

4 Experiment I - Detection

To detect and analyze lengthened words, we employ
the procedure described in Figure 1. We find sets
of words in our data which share a common form
and differ only in the number of times each letter is
repeated (Steps 1 & 2). In Step 3 we remove sets
where all the different forms are likely to be the re-
sult of misspelling, rather than lengthening. Finally,
in Step 4, we associate all the forms in a single set
with a canonical form, which is the most common
one observed in the data.

The procedure resulted in 4,359 sets of size > 1.

To reduce noise resulting from typos and mis-
spellings, we do not consider words containing non-
alphabetic characters, or sets where the canonical
form is a single character or occurs less than 10
times. This left us with 3,727 sets.

Analysis Table 1 lists the canonical forms of the
20 largest sets in our list (in terms of the number of
variations). Most of the examples are used to ex-
press emotion or emphasis. Onomatopoeic words
expressing emotion (e.g., ow, ugh, yay) are often
lengthened and, for some, the combined frequency
of the different lengthened forms is actually greater
than that of the canonical (single most frequent) one.

Lengthening is a common phenomenon in our
dataset. Out of half-a-million tweets, containing
roughly 6.5 million words, our procedure identifies
108,762 word occurrences which are lengthenings
of a canonical form. These words occur in 87,187
tweets (17.44% or approximately one out of every
six, on average). The wide-spread use of length-
ening is surprising in light of the length restriction
of Twitter. Grinter and Eldridge (2003) point out
several conventions that are used in text messages
specifically to deal with this restriction. The fact that
lengthening is used in spite of the need for brevity
suggests that it conveys important information.

Canonical Assumption We validate the assump-
tion that the most frequent form in the set is the
canonical form by examining sets containing one or
more word forms that were identified in a standard
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Can. Form Card. # Can. # Non-Can.
nice 76 3847 348
ugh 75 1912 1057
lmao 70 10085 3727
lmfao 67 2615 1619
ah 61 767 1603
love 59 16360 359
crazy 59 3530 253
yeah 57 4562 373
sheesh 56 247 131
damn 52 5706 299
shit 51 10332 372
really 51 9142 142
oh 51 7114 1617
yay 45 1370 375
wow 45 3767 223
good 45 21042 3171
ow 44 116 499
mad 44 3627 827
hey 44 4669 445
please 43 4014 157

Table 1: The canonical forms of the 20 largest sets (in
terms of cardinality), with the number of occurrences of
the canonical and non-canonical forms.

English dictionary3. This was the case for 2,092 of
the sets (56.13%). Of these, in only 55 (2.63%) the
most frequent form was not recognized by the dic-
tionary. This indicates that the strategy of choosing
the most frequent form as the canonical one is reli-
able and highly accurate (> 97%).

Implications for NLP To examine the effects of
lengthening on analyzing Twitter data, we look at
the difference in coverage of a standard English dic-
tionary when we explicitly handle lengthened words
by mapping them to the canonical form. Cov-
erage with a standard dictionary is important for
many NLP applications, such as information re-
trieval, translation, part-of-speech tagging and pars-
ing. The canonical form for 2,037 word-sets are
identified by our dictionary. We searched for oc-
currences of these words which were lengthened by
two or more characters, meaning they would not
be identified using standard lemmatization methods
or spell-correction techniques that are based on edit

3We use the standard dictionary for U.S. English included in
the Aspell Unix utility.

distance. We detected 25,101 occurrences of these,
appearing in 22,064 (4.4%) tweets. This implies that
a lengthening-aware stemming method can be used
to increase coverage substantially.

5 Experiment II - Relation to Sentiment

At the beginning of Section 2 we presented the hy-
pothesis that lengthening represents a textual substi-
tute for prosodic indicators in speech. As such, it is
not used arbitrarily, but rather applied to subjective
words to strengthen the sentiment or emotion they
convey. The examples presented in Table 1 in the
previous section appear to support this hypothesis.
In this section we wish to provide experimental evi-
dence for our hypothesis, by demonstrating a signif-
icant degree of association between lengthening and
subjectivity.

For this purpose we use an existing sentiment lex-
icon (Wilson et al., 2005), which is commonly used
in the literature (see Section 1) and is at the core
of OpinionFinder4, a popular sentiment analysis tool
designed to determine opinion in a general domain.
The lexicon provides a list of subjective words, each
annotated with its degree of subjectivity (strongly
subjective, weakly subjective), as well as its sen-
timent polarity (positive, negative, or neutral). In
these experiments, we use the presence of a word
(canonical form) in the lexicon as an indicator of
subjectivity. It should be noted that the reverse is
not true, i.e., the fact that a word is absent from the
lexicon does not indicate it is objective.

As a measure of tendency to lengthen a word, we
look at the number of distinct forms of that word ap-
pearing in our dataset (the cardinality of the set to
which it belongs). We group the words according to
this statistic, and compare to the vocabulary of our
dataset (all words appearing in our data ten times
or more, and consisting of two or more alphabetic
characters, see Section 4). Figure 2 shows the per-
centage of subjective words (those in the lexicon) in
each of the groups. As noted previously, this is a
lower bound, since it is possible (in fact, very likely)
that other words in the group are subjective, despite
being absent from the lexicon. The graph shows a
clear trend - the more lengthening forms a word has,

4http://www.cs.pitt.edu/mpqa/
opinionfinderrelease/

565



the more likely it is to be subjective (as measured by
the percentage of words in the lexicon).

The reverse also holds - if a word is used to con-
vey sentiment, it is more likely to be lengthened. We
can verify this by calculating the average number of
distinct forms for words in our data that are sub-
jective and comparing to the rest. This calculation
yields an average of 2.41 forms for words appearing
in our sentiment lexicon (our proxy for subjectiv-
ity), compared to an average of 1.79 for those that
aren’t5. This difference is statistically significant at
p < 0.01%, using a student t-test.

The lexicon we use was designed for a general
domain, and suffers from limited coverage (see be-
low) and inaccuracies (see O’Connor et al. 2010 and
below Section 6.2 for examples), due to the domain
shift. The sentiment lexicon contains 6,878 words,
but only 4,939 occur in our data, and only 2,446 ap-
pear more than 10 times. Of those appearing in our
data, only 485 words (7% of the lexicon vocabulary)
are lengthened (the bar for group 2+ in Figure 2),
but these are extremely salient. They encompass
701,607 instances (79% of total instances of words
from the lexicon), and 339,895 tweets. This pro-
vides further evidence that lengthening is used with
salient sentiment words.

These results also demonstrates the limitations of
using a sentiment lexicon which is not tailored to
the domain. Only a small fraction of the lexicon is
represented in our data, and it is likely that there are
many sentiment words that are commonly used but
are absent from it. We address this issue in the next
section.

6 Experiment III - Adapting the Sentiment
Lexicon

The previous experiment showed the connection be-
tween lengthening and sentiment-bearing words. It
also demonstrated some of the shortcomings of a
lexicon which is not specifically tailored to our do-
main. There are two steps we can take to use
the lengthening phenomenon to adapt an existing
sentiment lexicon. The first of these is simply
to take lengthening into account when identifying
sentiment-bearing words in our corpus. The second

5This, too, is a conservative estimate, since the later group
also includes subjective words, as mentioned.
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Figure 2: The percentage of subjective word-sets (those
whose canonical form appears in the lexicon) as a func-
tion of cardinality (number of lengthening variations).
The accompanying table provides the total number of sets
in each cardinality group.

is to exploit the connection between lengthening and
sentiment to expand the lexicon itself.

6.1 Expanding Coverage of Existing Words
We can assess the effect of specifically consider-
ing lengthening in our domain by measuring the
increase of coverage of the existing sentiment lex-
icon. Similarly to Experiment I (Section 4), we
searched for occurrences of words from the lexi-
con which were lengthened by two or more charac-
ters, and would therefore not be detected using edit-
distance. We found 12,105 instances, occurring in
11,439 tweets (2.29% of the total). This increase in
coverage is relatively small6, but comes at almost no
cost, by simply considering lengthening in the anal-
ysis.

A much greater benefit of lengthening, however,
results from using it as an aid in expanding the sen-
timent lexicon and detecting new sentiment-bearing
words. This is the subject of the following section.

6.2 Expanding the Sentiment Vocabulary
In Experiment II (Section 5) we showed that length-
ening is strongly associated with sentiment. There-
fore, words which are lengthened can provide us
with good candidates for inclusion in the lexicon.
We can employ existing sentiment-detection meth-

6Note that almost half of the increase in coverage calculated
in Experiment I (Section 4) comes from subjective words!
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ods to decide which candidates to include, and de-
termine their polarity.

Choosing a Candidate Set The first step in ex-
panding the lexicon is to choose a set of candidate
words for inclusion. For this purpose we start with
words that have 5 or more distinct forms. There
are 1,077 of these, of which only 217 (20.15%)
are currently in our lexicon (see Figure 2). Since
we are looking for commonly lengthened words,
we disregard those where the combined frequency
of the non-canonical forms is less than 1% that of
the canonical one. We also remove stop words,
even though some are often lengthened for emphasis
(e.g., me, and, so), since they are too frequent, and
introduce many spurious edges in our co-occurrence
graph. Finally, we filter words based on weight, as
described below. This leaves us with 720 candidate
words.

Graph Approach We examine two methods for
sentiment detection - that of Brody and Elhadad
(2010) for detecting sentiment in reviews, and that of
Velikovich et al. (2010) for finding sentiment terms
in a giga-scale web corpus. Both of these employ
a graph-based approach, where candidate terms are
nodes, and sentiments is propagated from a set of
seed words of known sentiment polarity. We calcu-
lated the frequency in our corpus of all strongly pos-
itive and strongly negative words in the Wilson et al.
(2005) lexicon, and chose the 100 most frequent in
each category as our seed sets.

Graph Construction Brody and Elhadad (2010)
considered all frequent adjectives as candidates and
weighted the edge between two adjectives by a func-
tion of the number of times they both modified a
single noun. Velikovich et al. (2010) constructed
a graph where the nodes were 20 million candidate
words or phrases, selected using a set of heuristics
including frequency and mutual information of word
boundaries. Context vectors were constructed for
each candidate from all its mentions in a corpus of
4 billion documents, and the edge between two can-
didates was weighted by the cosine similarity be-
tween their context vectors.

Due to the nature of the domain, which is highly
informal and unstructured, accurate parsing is dif-
ficult. Therefore we cannot employ the exact con-

struction method of Brody and Elhadad (2010). On
the other hand, the method of Velikovich et al.
(2010) is based on huge amounts of data, and takes
advantage of the abundance of contextual informa-
tion available in full documents, whereas our do-
main is closer to that of Brody and Elhadad (2010),
who dealt with a small number of candidates and
short documents typical to online reviews. There-
fore, we adapt their construction method. We con-
sider all our candidates words as nodes, along with
the words in our positive and negative seed sets. As a
proxy for syntactic relationship, edges are weighted
as a function of the number of times two words oc-
curred within a three-word window of each other in
our dataset. We remove nodes whose neighboring
edges have a combined weight of less than 20, mean-
ing they participate in relatively few co-occurrence
relations with the other words in the graph.

Algorithm Once the graph is constructed, we can
use either of the propagation algorithms of Brody
and Elhadad (2010) and Velikovich et al. (2010),
which we will denote Reviews and Web, respec-
tively. The Reviews propagation method is based on
Zhu and Ghahramani (2002). The words in the posi-
tive and negative seed groups are assigned a polarity
score of 1 and 0, respectively. All the rest start with
a score of 0.5. Then, an update step is repeated. In
update iteration t, for each word x that is not in the
seed, the following update rule is applied:

pt(x) =
Σy∈N(x)w(y, x) · pt−1(y)

Σy∈N(x)w(y, x)
(1)

Where pt(x) is the polarity of word x at step t,N(x)
is the set of the neighbors of x, and w(y, x) is the
weight of the edge connecting x and y. Following
Brody and Elhadad (2010), we set this weight to be
1 + log(#co(y, x)), where #co(y, x) is the number
of times y and x co-occurred within a three-word
window. The update step is repeated to convergence.

Velikovich et al. (2010) employed a different
label propagation method, as described in Fig-
ure 3. Rather than relying on diffusion along the
whole graph, this method considers only the sin-
gle strongest path between each candidate and each
seed word. In their paper, the authors claim that
their algorithm is more suitable than that of Zhu and
Ghahramani (2002) to a web-based dataset, which
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Input: G = (V,E), wij ∈ [0, 1]
P,N, γ ∈ R, T ∈ N

Output: poli ∈ R|V |
Initialize: poli, pol+i , pol-i = 0 for all i

pol+i = 1.0 for all vi ∈ P and
pol-i = 1.0 for all vi ∈ N

1: αij = 0 for all i 6= j, αii = 1 for all i
2: for vi ∈ P
3: F = {vi}
4: for t : 1...T
5: for (vk, vj) ∈ E such that vk ∈ F
6: αij = max(αij , αik · wk,j)

F = F ∪ {vj}
7: for vj ∈ V
8: pol+j =

∑
vi∈P αij

9: Repeat steps 1-8 using N to compute pol-

10: β =
∑

i pol+i /
∑

i pol-i
11: poli = pol+i − βpol-i , for all i
12: if |poli| < γ then poli = 0.0 for all i

Figure 3: Web algorithm from Velikovich et al. (2010).
P and N are the positive and negative seed sets, respec-
tively, wij are the weights, and T and γ are parameters9.

contained many dense subgraphs and unreliable as-
sociations based only on co-occurrence statistics.
We ran both algorithms in our experiment7, and
compared the results.

Evaluation We evaluated the output of the algo-
rithms by comparison to human judgments. For
words appearing in the sentiment lexicon, we used
the polarity label provided. For the rest, similarly
to Brody and Elhadad (2010), we asked volunteers
to rate the words on a five-point scale: strongly-
negative, weakly-negative, neutral, weakly-positive,
or strongly-positive. We also provided a N/A option
if the meaning of the word was unknown. Each word
was rated by two volunteers. Words which were la-
beled N/A by one or more annotators were consid-
ered unknown. For the rest, exact inter-rater agree-

7We normalize the weights described above when using the
Web algorithm.

9In Velikovich et al. (2010), the parameters T and γ were
tuned on a held out dataset. Since our graphs are comparatively
small, we do not need to limit the path length T in our search.
We do not use the threshold γ, but rather employ a simple cutoff
of the top 50 words.

Human Judgment
Pos. Neg. Neu. Unk.

Web Pos. 18 2 26 2
Neg. 8 19 17 8

Reviews Pos. 21 6 21 2
Neg. 9 14 11 16

Table 2: Evaluation of the top 50 positive and negative
words retrieved by the two algorithms through compari-
son to human judgment.

Web
pos. neg.
see shit
win niggas
way dis
gotta gettin

summer smh
lets tight
haha fuckin

birthday fuck
tomorrow sick

ever holy
school smfh
peace outta
soon odee
stuff wack
canes nigga

Reviews
pos. neg.

kidding rell
justin whore
win rocks
feel ugg

finale naw
totally yea
awh headache
boys whack
pls yuck

ever shawty
yer yeah
lord sus
mike sleepy
three hunni

agreed sick

Table 3: Top fifteen negative and positive words for the
algorithms of Brody and Elhadad (2010) (Reviews) and
Velikovich et al. (2010) (Web).

ment was 67.6%, but rose to 93% when considering
adjacent ratings as equivalent10. This is compara-
ble with the agreement reported by Brody and El-
hadad (2010). We assigned values 1 (strongly nega-
tive) to 5 (strongly positive) to the ratings, and cal-
culated the average between the two ratings for each
word. Words with an average rating of 3 were con-
sidered neutral, and those with lower and higher rat-
ings were considered negative and positive, respec-
tively.

Results Table 2 shows the distribution of the hu-
man labels among the top 50 most positive and most
negative words as determined by the two algorithms.
Table 3 lists the top 15 of these as examples.

10Cohen’s Kappa κ = 0.853
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From Table 2 we can see that both algorithms do
better on positive words (fewer words with reversed
polarity)11, and that the Web algorithm is more accu-
rate than the Reviews method. The difference in per-
formance can be explained by the associations used
by the algorithms. The Web algorithm takes into ac-
count the strongest path to every seed word, while
the Reviews algorithm propagates from the each
seed to its neighbors and then onward. This makes
the Reviews algorithm sensitive to strong associa-
tions between a word and a single seed. Because our
graph is constructed with co-occurrence edges be-
tween words, rather than syntactic relations between
adjectives, noisy edges are introduced, causing mis-
taken associations. The Web algorithm, on the other
hand, finds words that have a strong association with
the positive or negative seed group as a whole, thus
making it more robust. This explains some of the ex-
amples in Table 3. The words yeah and yea, which
often follow the negative seed word hell, are consid-
ered negative by the Reviews algorithm. The word
Justin refers to Justin Beiber, and is closely associ-
ated with the positive seed word love. Although the
Web algorithm is more robust to associations with
a single seed, it still misclassifies the word holy as
negative, presumably because it appears frequently
before several different expletives.

Detailed analysis shows that the numbers reported
in Table 2 are only rough estimates of performance.
For instance, several of the words in the unknown
category were correctly identified by the algorithm.
Examples include sm(f)h, which stands for “shak-
ing my (fucking) head” and expresses disgust or dis-
dain, sus, which is short for suspicious (as in “i hate
susssss ass cars that follow me/us when i’m/we walk-
inggg”), and odee, which means overdose and is
usually negative (though it does not always refers
to drugs, and is sometimes used as an intensifier,
e.g., “aint shit on tv odee bored”).

There were also cases were the human labels were
incorrect in the context of our domain. For exam-
ple, the word bull is listed as positive in the sen-
timent lexicon, presumably because of its financial
sense. In our domain it is (usually) short for bull-
shit. The word canes was rated as negative by one of

11This trend is not apparent from the top 15 results presented
in Table 3, but becomes noticeable when considering the larger
group.

the annotators, but in our data it refers to the Miami
Hurricanes, who won a game on the day our dataset
was sampled, and were the subject of many posi-
tive tweets. This example also demonstrates that our
method is capable of detecting terms which are asso-
ciated with sentiment at different time points, some-
thing that is not possible with a fixed lexicon.

7 Conclusion

In this paper we explored the phenomenon of length-
ening words by repeating a single letter. We showed
that this is a common phenomenon in Twitter, oc-
curring in one of every six tweets, on average, in our
dataset. Correctly detecting these cases is important
for comprehensive coverage. We also demonstrated
that lengthening is not arbitrary, and is often used
with subjective words, presumably to emphasize the
sentiment they convey. This finding leads us to de-
velop an unsupervised method based on lengthening
for detecting new sentiment bearing words that are
not in the existing lexicon, and discovering their po-
larity. In the rapidly-changing domain of microblog-
ging and net-speak, such a method is essential for
up-to-date sentiment detection.

8 Future Work

This paper examined one aspect of the lengthening
phenomenon. There are other aspects of lengthen-
ing that merit research, such as the connection be-
tween the amount of lengthening and the strength of
emphasis in individual instances of a word. In addi-
tion to sentiment-bearing words, we saw other word
classes that were commonly lengthened, including
intensifiers (e.g., very, so, odee), and named enti-
ties associated with sentiment (e.g., Justin, ’Canes).
These present interesting targets for further study.
Also, in this work we focused on data in English,
and it would be interesting to examine the phe-
nomenon in other languages. Another direction of
research is the connection between lengthening and
other orthographic conventions associated with sen-
timent and emphasis, such as emoticons, punctua-
tion, and capitalization. Finally, we plan to integrate
lengthening and its related phenomena into an accu-
rate, Twitter-specific, sentiment classifier.
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Abstract

In recent years, the amount of user-generated
opinionated texts (e.g., reviews, user com-
ments) continues to grow at a rapid speed: fea-
tured news stories on a major event easily at-
tract thousands of user comments on a popular
online News service. How to consume subjec-
tive information of this volume becomes an in-
teresting and important research question. In
contrast to previous work on review analysis
that tried to filter or summarize information
for a generic average user, we explore a dif-
ferent direction of enabling personalized rec-
ommendation of such information.

For each user, our task is to rank the comments
associated with a given article according to
personalized user preference (i.e., whether the
user is likely to like or dislike the comment).
To this end, we propose a factor model that
incorporates rater-comment and rater-author
interactions simultaneously in a principled
way. Our full model significantly outperforms
strong baselines as well as related models that
have been considered in previous work.

1 Introduction

Recent years have seen rapid growth in user-
generated opinions online. Many of them are user
reviews: a best-seller or a popular restaurant can
get over 1000 reviews on top review sites like Ama-
zon or Yelp. A large quantity of them also come in
the form of user comments on blogs or news arti-
cles. Most notably, during the short period of time
for which a major event is active, news stories on
one single event can easily attract over ten thousand

comments on a popular online news site like Yahoo!
News. One question becomes immediate: how can
we help people consume such gigantic amount of
opinionated information?

One possibility is to take the summarization route.
Briefly speaking (see Section 2 for a more detailed
discussion), previous work has largely formulated
review summarization as automatically or manually
identify ratable aspects, and present overall senti-
ment polarity for each aspect (Hu and Liu, 2004;
Popescu and Etzioni, 2005; Snyder and Barzilay,
2007; Titov and McDonald, 2008). A related line
of research looked into predicting helpfulness of re-
views in the hope of promoting those with better
quality, where helpfulness is usually defined as some
function over the percentage of users who found the
review to be helpful (Kim et al., 2006; Liu et al.,
2007; Danescu-Niculescu-Mizil et al., 2009). In
short, the focus of previous work has been on dis-
tilling subjective information for an average user.

Whether opinion consumers are looking for qual-
ity information or just wondering what other people
think, each may have different purposes or prefer-
ences that is not well represented by a generic av-
erage user. If we think about how we deal with in-
formation content overflow on the Web, there have
been two main frameworks to identify relevant infor-
mation for each person. One is search. Indeed many
top review sites allow users to search within reviews
for a given entity. But this is only useful when users
have explicit information needs that can be formu-
lated as queries. The other paradigm is recommen-
dation: based on what users have liked or disliked in
the past, the system will automatically recommend
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new items.
Can we provide similar recommendation mech-

anisms to help users consume large quantities of
subjective information? Many commenting environ-
ments allow users to mark “like” or “dislike” over
existing comments (e.g., Yahoo! News comments,
Facebook posts, or review sites that allow helpful-
ness votes). Can we learn from users’ past prefer-
ences, so that when a user is reading a new article,
we have a system that automatically ranks its com-
ments according to their likelihood of being liked by
the user? This can be used directly to create person-
alized presentation of comments (e.g., into a “like”
column and a “dislike” column), as well as enabling
down-stream applications such as personalized sum-
marization.

Recommending textual information has recently
attracted more attention. So far, the focus has been
mainly on recommending news articles (Ahn et al.,
2007; Das et al., 2007). Our task differs in several
aspects. Intuitively, recommending news articles is
largely about identifying the topics of interest to a
given user, and it is conceivable that unigram repre-
sentation of full-length articles can reasonably cap-
ture that information. In our case, most comments
for an article a user is reading are already of interest
to that user topically. Which ones the user ends up
liking may depend on several non-topical aspects of
the text: whether the user agrees with the viewpoint
expressed in the comment, whether the comment is
convincing and well-written, etc. Previous work has
shown that such analysis can be more difficult than
topic-based analysis (Pang and Lee, 2008), and we
have the additional challenge that comments are typ-
ically much shorter than full-length articles. How-
ever, the difficulty in analyzing the textual infor-
mation in comments can be alleviated by additional
contextual information such as author identities. If
between a pair of users one consistently likes or dis-
likes the other, then at least for the heavy users, this
authorship information alone could be highly infor-
mative. Indeed, previous work in collaborative filter-
ing has usually found no additional gain from lever-
aging content information when entity-level prefer-
ence information is abundant.

In this paper, we present a principled way of uti-
lizing multiple sources of information for the task of
recommending user comments, which significantly

outperforms strong baseline methods, as well as pre-
vious methods proposed for text recommendation.
While using authorship information alone tends to
provide stronger signal than using textual informa-
tion alone, to our surprise, even for heavy users,
adding textual information to the authorship infor-
mation yields additional improvements.

2 Related Work

There are two main bodies of related work: our
problem formulation is closer to collaborative filter-
ing, while the nature of the text we are dealing with
has more in common with opinion mining and sen-
timent analysis.

Our approach is related to a large body of work
in collaborative filtering. While a proper survey
is not possible here, we describe some of the ap-
proaches that are germane. Classical approaches in
collaborative filtering are based on item-item/user-
user similarity, these are nearest-neighbor methods
where the response for a user-item pair is predicted
based on a local neighborhood mean (Sarwar et al.,
2001; Wang et al., 2006). In general, neighbor-
hoods are defined by measuring similarities between
users/items through correlation measures like Pear-
son, cosine similarities, etc. Better approaches to
estimate similarities have also been proposed in Ko-
ren (2010). However, modern methods based on
matrix factorization have been shown to outperform
nearest neighbor methods (Salakhutdinov and Mnih,
2008a,b; Bell et al., 2007). Generalizations of ma-
trix factorization to include both features and past
ratings have been proposed (Agarwal and Chen,
2009; Stern et al., 2009). The approach in this pa-
per is an extension where in addition to interactions
among users and items (comments in our case), we
also consider the authorship information. Three-way
interactions were recently studied for personalized
tag recommendation (Rendle and Lars, 2010). Their
model was based on the sum of two-way interac-
tions, and was trained by using pairwise tag pref-
erences for each (user, item) pair. However, no fea-
tures were considered, which is an important consid-
eration for us. We show using both text and author-
ship provides the best performance.

Our work is also related to news personalization
that has received increasing attention in the last few
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years. For instance, Billsus and Pazanni (2007) de-
scribes an approach to build user profile models for
adaptive personalization in the context of mobile
content access. Their approach is based on a hybrid
model that combines content-based approaches with
similarity methods used in recommender systems.
This is further exemplified in the work by Ahn et al.
(2007) where text processing techniques are used to
build content profiles for users to recommend per-
sonalized news. In our experiments, we show that
such approaches are inferior to our method. A con-
tent agnostic approach based on collaborative filter-
ing techniques was proposed by Das et al. (2007);
cold-start for new items/users was not their focus,
but is important for our task — candidate comments
for recommendation are often not in training data.

As discussed in Section 1, previous work in opin-
ion mining and sentiment analysis has addressed the
information consumption challenge via review sum-
marization. Discussion of early work in that di-
rection can be found in Pang and Lee (2008). In
this line of work, opinions for each given aspect are
usually summarized as the average sentiment po-
larity associated with that aspect. Related to that,
people have looked into predicting review helpful-
ness given the textual information in reviews, where
helpfulness is either defined as the percentage of
users who have voted the review to be helpful (Kim
et al., 2006), or labeled by annotators according to
a set of criteria (Liu et al., 2007). Our goal dif-
fers in that we look for personalized ranking (what
a specific user might like) rather than generic qual-
ity (what an average user might like). Subsequently,
there has been work that tried to predict similarly
defined helpfulness scores using meta-information
over the reviewer. For instance, whether the au-
thor has used his/her true name or where the user
is from (Danescu-Niculescu-Mizil et al., 2009), as
well as graph structure in the social network be-
tween reviewers (Lu et al., 2010). In this work, we
simply use author identity to provide more context
to the short text; in future work, additional meta-
information over users can easily be incorporated
via our model.

As discussed in Section 1, whether a rater likes a
comment or not may depend on whether they agree
with the viewpoint expressed in the text and quality
of the text. While previous work has not looked into

the reader-comments relationship, there has been re-
lated work on identifying political orientations or
viewpoints (Lin and Hauptmann, 2006; Lin et al.,
2006; Mullen and Malouf, 2006, 2008; Laver et al.,
2003); whether a piece of text expresses support or
opposition in congressional debates (Thomas et al.,
2006) or online debates (Somasundaran and Wiebe,
2009, 2010); as well as identifying contrastive re-
lationship (Kawahara et al., 2010). Note that it is
not trivial to use previous work along this line to di-
rectly serve as sub-components in our setting. For
instance, for work on identifying political orienta-
tions or viewpoints, the training data consists of text
with the desired labels. In our setting, our labels
come in the form of whether users liked or disliked
a previous comment. In the simplest case, we might
have pair-wise constraints on whether two pieces of
text have the same viewpoints (i.e., liked or dis-
liked by the same rater), which would yield a dif-
ferent learning problem akin to the metric learning
problem; note, however, the complication that two
pieces of text receiving different labels from a given
user might not necessarily contain contrasting view-
points. Consequently, rather than trying to reduce
this problem to a set of known text classification
tasks, we address this task via a collaborative filter-
ing framework that incorporates textual features.

3 Method

In this section, we describe our model that predicts
rater affinity to comments. A key strength of our
model is the ability to incorporate rater-comment
and rater-author interactions simultaneously in a
principled fashion. Our model also provides a seam-
less mechanism to transition from cold-start (where
recommendations need to be made for users or items
with no or few past ratings) to warm-start scenarios
— with a large amount of data, it fits a per-rater (au-
thor) model; with increase in data sparsity, the model
applies a small sample size correction through fea-
tures (in our case, textual features). The exact for-
mula for such corrections in the presence of sparsity
is based on parameter estimates that are obtained by
applying an EM algorithm to the training data.
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3.1 Model

Notation: Let yij denote the rating that user i, called
the rater, gives to comment j. Since throughout, we
use suffix i to denote a rater and suffix j to denote a
comment, we slightly abuse notation and let xi (of
dimension pu) and xj (of dimension pc) denote fea-
ture vectors of user i and comment j respectively.
For example, xi can be the bag of words represen-
tation (a sparse vector) inferred through text anal-
ysis on comments voted positively by user i in the
past, and xj can be the bag of words representation
for comment j. We use a(j) to denote the author of
comment j, and use µij to denote the mean rating by
rater i on comment j, i.e., µij = E(yij). Of course it
is impossible to estimate µij empirically since each
user i usually rates a comment j at most once.

Model specification: We work in a generalized
linear model framework (McCullagh and Nelder,
1989) that assumes µij (or some monotone function
h of µij) is an additive function of (1) the rater bias
αi of user i since some users may have a tendency
of rating comments more positively or negatively
than others, (2) popularity βj of comment j, which
could reflect the quality of the comment in this set-
ting, and (3) the author reputation γa(j) of user a(j)
since comments by a reputed author may in general
get more positive ratings. Thus, the overall bias is
αi + βj + γa(j).

In addition to the bias, we include terms that
capture interactions among entities (raters, authors,
comments). Indeed, capturing such interactions is a
non-trivial part of our modeling procedure. In our
approach, we take recourse to factor models that
have been widely used in collaborative filtering ap-
plications in recent times. The basic idea is to at-
tach latent factors to each rater, author and comment.
These latent factors are finite dimensional Euclidean
vectors that are unknown and estimated from the
data. They provide a succinct representation of vari-
ous aspects that are important to explain interaction
among entities. In our case, we use the following
factors — (a) user factor vi of dimension rv(≥ 1)
to model rater-author affinity, (b) user factor ui and
comment factor cj of dimension ru(≥ 1) to model
rater-comment affinity. Intuitively, each could repre-
sent viewpoints of users or comments along different

i index for raters
j index for comments
a(j) author of comment j
yij rating given by rater i to comment j
µij mean rating given by rater i to comment j
xj feature vector of comment j

(e.g., textual features in comment j)
xi feature vector of user i

(e.g., comments voted positively by user i)
bias terms:
αi rater bias of user i
βj popularity of comment j

(e.g., quality of the comment)
γa(j) reputation of the author of comment j
interaction terms:
vi user factor for rater-author affinity
ui, cj factors for rater-comment affinity

Table 1: Table of Notations.

dimensions.
Affinity of rater i to comment j by author a(j)

is captured by (1) similarity between viewpoints of
users i and a(j), measured by v′iva(j); and (2) simi-
larity between the preferences of user i and the per-
spectives reflected in comment j, measured by u′icj .
The overall interaction is v′iva(j) + u′icj . Then, the
mean rating µij , or more precisely h(µij), is mod-
eled as the sum of bias and interaction terms. Math-
ematically, we assume:

yij ∼ N(µij , σ
2
y) or Bernoulli(µij)

h(µij) = αi + βj + γa(j) + v′iva(j) + u′icj
(1)

For numeric ratings, we use the Gaussian distri-
bution denoted by N (mean,var); for binary rat-
ings, we use the Bernoulli distribution. For Gaus-
sian, h(µij) = µij , and for Bernoulli, we assume
h(µij) = log

µij
1−µij , which is the commonly used

logistic transformation.
Table 1 summarizes the notations for easy refer-

ences. We denote the full model specified above as
vv+uc since both user-user interaction v′iva(j) and
user-comment interaction u′icj are modeled at the
same time.

Latent factors: A natural approach to estimate la-
tent factors in Equation 1 is through a maximum
likelihood estimation (MLE) approach. This does
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not work in our scenario since a large fraction of
entities have small sample size. For instance, if a
comment is rated only by one user and ru > 1,
the model is clearly overparametrized and the MLE
of the comment factor would tend to learn idiosyn-
crasies in the training data. Hence, it is imperative
to impose constraints on the factors to obtain esti-
mates that generalize well on unseen data. We work
in a Bayesian framework where such constraints are
imposed through prior distributions. The crucial is-
sue is the selection of appropriate priors. In our sce-
nario, we need priors that provide a good backoff
estimate when interacting entities have small sam-
ple sizes. For instance, to estimate latent factors of
a user with little data, we provide a backoff estimate
that is obtained by pooling data across users with
the same user features. We perform such a pooling
through regression, the mathematical specification is
given below.

αi ∼ N(g′xi, σ2α), ui ∼ N(Gxi, σ
2
u),

βj ∼ N(d′xj , σ2β), cj ∼ N(Dxj , σ
2
c ),

γa(j) ∼ N(0, σ2γ), vi ∼ N(0, σ2v),

where gpu×1 and dpc×1 are regression weight vec-
tors, and Gru×pu and Dru×pc are regression weight
matrices. These regression weights are learnt from
data and provide the backoff estimate. Take the prior
distribution of ui for example. We can rewrite the
prior as ui = Gxi + δi, where δi ∼ N(0, σ2u).
If user i has no rating in the training data, ui will
be predicted as the prior mean (backoff) Gxi, a lin-
ear projection from the feature vector xi through
matrix G learnt from data. This projection can be
thought of as a multivariate linear regression prob-
lem with weight matrix G, one weight vector per
dimension of ui. However, if user i has many rat-
ings in the training data, we will precisely estimate
the per-user residual δi that is not captured by the re-
gressionGxi. For sample sizes in between these two
extremes, the per user residual estimate is “shrunk”
toward zero — amount of shrinkage depends on the
sample size, past user ratings, variability in ratings
on comments rated by the user, and the value of vari-
ance components σ2· s.

3.2 Special Cases of Our Model
Our full model (vv+uc) includes several existing
models explored in collaborative filtering and social

networks as special cases.

The matrix factorization model: This model as-
sumes the mean rating of user i on item j is given
by h(µij) = αi + βj + u′icj , and the mean of
the prior distributions on αi, βj ,ui, cj are zero, i.e.,
g = d = G = D = 0. Recent work clearly illus-
trates that this method obtains better predictive accu-
racy than classical collaborative filtering techniques
based on item-item similarity (Bell et al. (2007)).

The uc model: This is also a matrix factorization
model but with priors based on regressions (i.e.,
non-zero g, d,G,D). It provides a mechanism to
deal with both cold and warm-start scenarios in rec-
ommender applications (Agarwal and Chen (2009)).

The vv model: This model assumes h(µij) = αi +
γa(j) + v′iva(j). It was first proposed by Hoff (2005)
to model interactions in social networks. The model
was fitted to small datasets (at most a few hundred
nodes) and the goal was to test certain hypotheses
on social behavior, out-of-sample prediction was not
considered.

The low-rank bilinear regression model: Here,
h(µij) = g′xi + d′xj + x′iG

′Dxj . This is a re-
gression model purely based on features with no per-
user or per-comment latent factors. In a more gen-
eral form, x′iG

′Dxj can be written as x′iAxj , where
Apu×pc is the matrix of regression weights (Chu and
Park, 2009). However, since xi and xj are typically
high dimensional, A can be a large matrix that needs
to be learnt from data. To reduce dimensionality, one
can decompose A as A = G′D, where the number
of rows inD andG are small. Thus, instead of learn-
ingA, we learn a low-rank approximation ofA. This
ensures scalability and provides an attractive method
to avoid over-fitting.

3.3 Model Fitting
Model fitting for our model is based on the
expectation-maximization (EM) algorithm (Demp-
ster et al., 1977). For ease of exposition and space
constraints, we only provide a sketch of the algo-
rithm for the Gaussian case, the logistic model can
be fitted along the same lines by using a variational
approximation (see Agarwal and Chen (2009)).

Let Y = {yij} denote the set of the observed
ratings. In the EM parlance, this is “incomplete”
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data that gets augmented with the latent factors
Θ = {ui,vi, cj} to obtain the “complete” data.
The goal of the EM algorithm is to find the param-
eter η = (g, d,G,D, σ2α, σ

2
β, σ

2
u, σ

2
v , σ

2
y) that maxi-

mizes the “incomplete” data likelihood Pr(Y |η) =∫
Pr(Y ,Θ|η)dΘ that is obtained after marginaliza-

tion (taking expectation) over the distribution of Θ.
Since such marginalization is not available in closed
form for our model, we use the EM algorithm.

EM algorithm: The complete data log-likelihood
l(η;Y ,Θ) for the full model in the Gaussian case
(where h(µij) = µij) is given by l(η;Y ,Θ) =

− 1
2

∑
ij

(
(yij − µij)2/σ2y + log σ2y

)

− 1
2

∑
i

(
(αi − g′xi)2/σ2α + log σ2α

)

− 1
2

∑
j

(
(βj − d′xj)2/σ2β + log σ2β

)

− 1
2

∑
i

(
‖ui −Gxi‖2/σ2u + ru log σ2u

)

− 1
2

∑
j

(
‖cj −Dxj‖2/σ2c + ru log σ2c

)
,

− 1
2

∑
i

(
v′ivi/σ

2
v + rv log σ2v + γ2i /σ

2
γ + log σ2γ

)
,

where ru is the dimension of factors ui and cj , and
rv is the dimension of vi. Let η(t) denote the esti-
mated parameter setting at the tth iteration. The EM
algorithm iterates through the following two steps
until convergence.

• E-step: Compute ft(η) = EΘ[l(η;Y ,Θ) |η(t)]
as a function of η, where the expectation is taken
over the posterior distribution of (Θ |η(t),Y ).
Note that here η is the input variable of function
ft, but η(t) consists of known quantities (deter-
mined in the previous iteration).

• M-step: Find the η that maximizes the expecta-
tion computed in the E-step.

η(t+1) = arg max
η

ft(η)

Since the expectation in the E-step is not available in
a closed form, we use a Gibbs sampler to compute
the Monte Carlo expectation (Booth and Hobert,
1999). The Gibbs sampler repeats the following
procedure L times. It samples αi, γi, βj , ui, vj ,
and cj sequentially one at a time by sampling from
the corresponding full conditional distributions. The
full conditional distributions are all Gaussian, hence
they are easy to sample. Once a Monte Carlo ex-
pectation is calculated from the samples, an updated

estimate of η is obtained in the M-step. The opti-
mization of variance components σ2· s in the M-step
is available in closed form, the regression param-
eters are estimated through off-the-shelf linear re-
gression routines. We note that the posterior distri-
bution of latent factors for known η is multi-modal,
we have found the Monte Carlo based EM method to
outperform other optimization methods like gradient
descent in terms of predictive accuracy.

4 Experiments

4.1 Data

We obtained comment rating data between March
and May, 2010 from Yahoo! News, with all user IDs
anonymized. On this site, users can post comments
on news article pages and rate the comments made
by others through thumb-up (positive) or thumb-
down (negative) votes. Clearly, for articles with very
few comments, there is no need to recommend com-
ments. Also, we do not expect deep personalized
recommendations for users who have rated very few
comments in the past. To focus on instances of in-
terest to us, we restricted ourselves to a subset of the
rating data associated with relatively heavy raters.
In particular, we formed the experimental dataset
by randomly selecting 9,003 raters who provided at
least 200 ratings (of which at least 10 were posi-
tive and 10 were negative), 189,291 authors who re-
ceived at least 20 ratings, and 5,088 news articles
that received at least 40 comments in the raw dataset
during the three-month period. Note that the per en-
tity sample size in the experimental dataset can be
smaller than the thresholds specified above. For in-
stance, a rater with more than 200 ratings in the raw
dataset can have fewer than 200 in the experimental
dataset due to the removal of certain authors or news
articles. (See Figure 2 for a distribution of users with
different activity levels.) In total, we have 4,440,222
ratings on 1,197,098 comments.

The 5,088 news articles were split into training
articles (the earliest 50%), tuning articles (next 5%),
and test articles (the last 45%) based on their pub-
lication time. The ratings and comments were split
into training, tuning, and test sets according to the
article they were associated with. All tuning param-
eters are determined using the tuning set, and per-
formances are reported over the test set. Note that
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this training-test split ensures that performance on
the test data best simulates our application scenar-
ios. It also creates a completely cold-start situation
for comments — no comment in the test set has any
past rating in the training set.

4.2 Experimental Setup
Features: All comments were tokenized, lower-
cased, with stopwords and punctuations removed.
We limited the vocabulary to the 10K most frequent
tokens in all comments associated with the training
articles. (See Section 4.3.3 for a discussion on the
effect of the vocabulary size.) For a given comment
j, xj is its bag of words representation, L2 normal-
ized. For term weighting, we experimented with
both presence value and tf-idf weighting. The latter
gives slight better performance. Rater feature vector
xi is created by summing over the feature vectors
of all comments rated positively by rater i, which is
then L2 normalized.

Methods: We compare the following methods
based on our model: The full model vv+uc, as well
as the three main special cases, vv, uc, and bilin-
ear, as defined in Section 3. The dimensions of vi,
ui and cj (i.e., rv and ru), and the rank of bilin-
ear are selected to obtain the best AUC on the tun-
ing set. In our experiments, rv = 2, ru = 3 and
rank of bilinear is 3. In addition, we also evaluate
the following baseline methods that predict per-user
preferences in isolation, primarily based on textual
information.

• Cosine similarity (cos): x′ixj . This is simply
based on how similar a new comment j is to the
comments rater i has liked in the past.

• Per-user SVM (svm): For each rater, train a sup-
port vector machine (SVM) classifier using only
comments (xj) rated by that user.

• Per-user Naive Bayes (nb): For each rater, train
a Naive Bayes classifier using only comments
(xj) rated by that user.1

Note that SVMs typically yield the best performance
on text classification tasks; a Naive Bayes classifier

1As we mentioned in Section 4.1, not all users have training
data of both classes in the experimental dataset. For svm and
nb, we use the following backoff: for users with training data
from only ci, we predict ci; for users with no training data at
all, we predict the majority class, in this case, the positive class.

can be more robust over shorter text spans common
in user comments given the high variance. For fair
comparisons, for the three baseline methods, we use
a simple way of utilizing author information: the
feature space is augmented with author IDs and each
xj is augmented with a(j)2. In Section 4.3, we only
report results using the augmented feature vectors
since they yield better performance (though the dif-
ference is fairly small).

Performance metrics: We use two types of met-
rics to measure the performance of a method: (1)
A global metric based on Receiver Operating Char-
acteristic (ROC) and (2) Precision at rank k (P@k).
The former measures the overall correlation of pre-
dicted scores for a method with the observed rat-
ings in the test set, while the latter measures the
performance of a hypothetical top-k recommenda-
tion scenario using the method. To summarize an
ROC curve into a single number, we use the Area
Under the ROC Curve (AUC). Since random guess
yields AUC score of 0.5, regardless of the class dis-
tribution, using this measure makes it convenient for
us to compare the performance over different sub-
sets of the data (where class distributions could be
different). The P@k of a method is computed as
follows: (1) For each rater, rank comments that the
rater rated in the test set according to the scores pre-
dicted by the method, and compute the precision at
rank k for that rater; and then (2) average the per-
rater precision numbers over all raters. To report
P@k, for k = 5, 10, 20, we only use raters who have
at least 50 ratings in the test set. Statistical signif-
icance based on a two-sample t-test across raters is
also reported.

4.3 Results
4.3.1 Main comparisons

We first show the ROC curves of different meth-
ods on the test set in Figure 1, and the AUCs and
precisions in Table 2. Results from significance tests
are in Table 3.

First, note that while svm significantly outper-
forms random guesses and nb, it is worse than bi-
linear, which is also using (mostly) textual infor-
mation, but learns the model for all users together,

2We assign weight 1 to a(j), so that the author information
have the same impact as the textual features.

577



False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

vv+uc
vv
uc
bilinear
svm
nb
cos
random

Figure 1: ROC curves of different models

Method AUC P@5 P@10 P@20
vv+uc 0.8360 0.9152 0.9079 0.8942

vv 0.8090 0.8810 0.8807 0.8727
uc 0.7857 0.9046 0.8921 0.8694

bilinear 0.7701 0.9028 0.8894 0.8668
svm 0.6768 0.7814 0.7678 0.7497

nb 0.6465 0.7660 0.7486 0.7309
cos 0.5382 0.6834 0.6813 0.6754

Table 2: AUCs and precisions of different models.

rather than in isolation. Next, uc outperforms bilin-
ear (significantly in AUC, P@10 and P@20), show-
ing per-user and per-comment latent factors help.
Note that vv outperforms uc in ROC, AUC and
P@20, but is worse than uc in P@5 and P@10; we
will take a closer look at this later. Finally, the full
model vv+uc significantly outperforms both vv and
uc, achieving 0.83 in AUC, and close to 90% in pre-
cision at rank 20.

4.3.2 Break-down by user activity level
Next, we investigate model performance in differ-

ent subsets of the test set. For succinctness, we use
AUC as our performance metric. In Figure 2(a), we
breakdown model performance by different author
activity levels. In Figure 2(b), we breakdown model
performance by different voter activity levels. We
also generated similar plots with the y-axis replaced
by P@5, P@10 and P@20, and observed the same
trend except that vv starts to outperform uc at differ-
ent user activity thresholds for different metrics.

Comparison Metrics p-value
vv+uc > vv All < 10−7

vv+uc > uc All < 10−20

uc > bilinear All except P@5 < 0.006
bilinear > svm All < 10−20

vv > svm All < 10−20

svm > nb All < 10−8

nb > cos All < 10−20

Table 3: Paired t-test results. Note that uc is better than
bilinear in P@5, but not significant. The orders of uc
and vv are not consistent across different metrics.

Not surprisingly, vv performs poorly for raters or
authors with no ratings observed in the training data.
However, once we have a small amount of ratings, it
starts to outperform uc, even though intuitively, the
textual information in the comment should be more
informative than the authorship information alone.
Using paired t-tests with significance level 0.05, we
report when vv starts to significantly outperform uc
in the following table, which is interpreted as fol-
lows — vv is not significantly worse than uc in met-
ric M if the author of a test comment received at
least Neq ratings in the training set, and vv signifi-
cantly outperforms uc in metric M if the author re-
ceived at least Ngt ratings in the training set.

Metric M P@5 P@10 P@20 AUC
# Ratings Neq 50 5 5 5

Ngt 1000 50 5 5

Recall that our training/test split is by article. Since
we have never observed a rater’s preference over the
test articles before, it is rather surprising that author
information alone can yield 0.8 in AUC score, even
for very light authors who have received between 3
and 5 votes in total in the training data. This suggests
that users’ viewpoints are quite consistent: a large
portion of the ratings can be adequately explained
by the pair of user identities. One interesting obser-
vation is that the number of ratings required for vv to
outperform uc in P@5 is quite high. This suggests
that to obtain high precision at the top of a recom-
mended list, comment features are important.

Nonetheless, modeling textual information in ad-
dition to author information provides additional im-
provements. Based on paired t-tests with signifi-
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Figure 2: AUC of different models as a function of the activity level of authors or raters. The x-axis (bottom) has the
form m-n, meaning the subset of the test data in which the number of ratings that each author received (as in (a)) or
each rater gave (as in (b)) in the training set is between m and n. In (c), we select both authors and raters based on the
m-n criterion. The x-axis (top) denotes the number of ratings in the subset

cance level 0.05, vv+uc significantly outperforms vv
in all metrics if the author received < 500 ratings
in the training set. Except for the very heavy au-
thors, even for cases where both raters and authors
are heavy users (Figure 2(c)), adding the comment
feature information still yields additional improve-
ment over the already impressive performance of us-
ing vv alone. In spite of the simple representation we
adopted for the textual information, the full model is
still capable of accounting for part of the residual
errors from vv model (that uses authorship informa-
tion alone) by using comment features — what was
actually written does matter.

Finally, if we breakdown the comparison be-
tween vv+uc and uc for different user activity lev-
els, vv+uc significantly outperforms uc (with level
0.05) in all metrics if the author received at least 5
ratings in the training set.

4.3.3 Analysis of textual features

Recall that we limited the vocabulary size to the
10K most frequent terms for efficiency reasons. Is
this limitation likely to affect our model perfor-
mance significantly? We examined the effect of dif-
ferent numbers of features. In the following table,
#features = n means that both xi and xj are bags

of n words3. Since the vv model does not utilize
rater or comment features, we examine AUC of the
uc model.

#features 1K 3K 5K 10K
AUC 0.7713 0.7855 0.7872 0.7876

As can be seen, the performance improvement is in
the 4th decimal place when we increase from 5K
features to 10K features. Thus, we do not further
increase the number of features in our experiments.

Note that our full model does not require rater fea-
tures and comment features to be in the same feature
space. Each is projected into the hidden “viewpoint”
space, via G and D, separately. For simplicity and
easy comparison to other methods, we used all com-
ments liked by a rater in the past to build the feature
vector of the rater. But since the full model already
has information of the textual content of comments
from the comment features, and which comments
were liked by the users from the ratings, rater fea-
tures constructed this way do not provide any new
information. Indeed, if we model ui ∼ N(1, σ2u),
instead of ui ∼ N(Gxi, σ

2
u), this omission of xi

does not hurt the performance of the model. In fu-
ture work, other meta-information about the rater

3Note that we used n most useful features in each case.
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can easily be incorporated into xi to enrich rater rep-
resentation.

Recall that comment featuresxj were projected to
comment factors cj via D. We envisioned that the
comment factors could be representing viewpoints.
Does our model conform to this intuition? Let’s con-
sider the simplest case, where we restrict ui and cj
to be one-dimensional vectors. In this case, each can
be represented by scalars ui and cj . If ui and cj
are of the same sign, then the rater is likely to like
the comment. Words assigned high positive weights
or low negative weights via D will have significant
contributions to the overall sign of cj . Now if we ex-
amine such words, will we see any meaningful dif-
ferences in the underlying viewpoints of these two
groups of words?

To address this question qualitatively, we manu-
ally sampled words with heavy weights, focusing on
politics-related ones (so that viewpoints are likely
to be polarized and easier to interpret). At one ex-
treme, we observe words like repukes, repugs, which
seemed to be derogatory mentions of Republica-
tions, and likely to represent an anti-Republication
point of view. At the other end, we observe terms
like libtards, nobama, obummer. While terms like
nobama may appear to be typos at first sight, a
quick search online reveals that these are at least
intentional typos expressing anti-Obama sentiments,
which clearly represents an opposite underlying per-
spective from terms like repukes.

These examples also illustrate the importance to
learn directly from the data of interest to us. Such
indicative words would never have appeared in more
formal writings. While we do not have direct labels
for perspectives, our model seems to be capturing
the underlying perspectives (as much as a unigram-
based model could) by learning from user preference
labels across different users. This allows us to learn
the text features most relevant to our dataset, which
is particularly important given the time-sensitive and
ever-evolving nature of news-related comments.

5 Conclusions

In this paper, we promote personalized recommen-
dation as a novel way of helping users to consume
large quantities of subjective information. We pro-
pose using a principled way of incorporating both

rater-comment and rater-author interactions simul-
taneously. Our full model significantly outperforms
strong baseline methods, as well as previous meth-
ods proposed for text recommendation. In particu-
lar, learning weights over textual features across all
users outperforms learning for each user individu-
ally, which holds true even for heavy raters. Further-
more, while using authorship information alone pro-
vides stronger signal than using textual information
alone, to our surprise, even for heavy users, adding
textual information yields additional improvements.

It is difficult to comprehensively capture user
affinity to comments using a finite number of rat-
ings observed during a certain time interval. News
and comments on news articles are dynamic in na-
ture, novel aspects may emerge over time. To cap-
ture such dynamic behavior, comment factors have
to be allowed to evolve over time and such an evolu-
tion would also necessitate the re-estimation of user
factors. Incorporating such temporal dynamics into
our modeling framework is a challenging research
problem and requires significant elaboration of our
current approach.
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Abstract

We present a data-driven approach to generat-
ing responses to Twitter status posts, based on
phrase-based Statistical Machine Translation.
We find that mapping conversational stimuli
onto responses is more difficult than translat-
ing between languages, due to the wider range
of possible responses, the larger fraction of
unaligned words/phrases, and the presence of
large phrase pairs whose alignment cannot be
further decomposed. After addressing these
challenges, we compare approaches based on
SMT and Information Retrieval in a human
evaluation. We show that SMT outperforms
IR on this task, and its output is preferred over
actual human responses in 15% of cases. As
far as we are aware, this is the first work to
investigate the use of phrase-based SMT to di-
rectly translate a linguistic stimulus into an ap-
propriate response.

1 Introduction

Recently there has been an explosion in the number
of people having informal, public conversations on
social media websites such as Facebook and Twit-
ter. This presents a unique opportunity to build
collections of naturally occurring conversations that
are orders of magnitude larger than those previously
available. These corpora, in turn, present new op-
portunities to apply data-driven techniques to con-
versational tasks.

We investigate the problem of response genera-
tion: given a conversational stimulus, generate an
appropriate response. Specifically, we employ a

large corpus of status-response pairs found on Twit-
ter to create a system that responds to Twitter status
posts. Note that we make no mention of context, in-
tent or dialogue state; our goal is to generate any re-
sponse that fits the provided stimulus; however, we
do so without employing rules or templates, with the
hope of creating a system that is both flexible and
extensible when operating in an open domain.

Success in open domain response generation
could be immediately useful to social media plat-
forms, providing a list of suggested responses to a
target status, or providing conversation-aware auto-
complete for responses in progress. These features
are especially important on hand-held devices (Has-
selgren et al., 2003). Response generation should
also be beneficial in building “chatterbots” (Weizen-
baum, 1966) for entertainment purposes or compan-
ionship (Wilks, 2006). However, we are most ex-
cited by the future potential of data-driven response
generation when used inside larger dialogue sys-
tems, where direct consideration of the user’s utter-
ance could be combined with dialogue state (Wong
and Mooney, 2007; Langner et al., 2010) to generate
locally coherent, purposeful dialogue.

In this work, we investigate statistical machine
translation as an approach for response generation.
We are motivated by the following observation: In
naturally occurring discourse, there is often a strong
structural relationship between adjacent utterances
(Hobbs, 1985). For example, consider the stimulus-
response pair from the data:

Stimulus: I’m slowly making this soup
...... and it smells gorgeous!
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Response: I’ll bet it looks delicious too!
Haha

Here “it” in the response refers to “this soup” in
the status by co-reference; however, there is also a
more subtle relationship between the “smells” and
“looks”, as well as “gorgeous” and “delicious”. Par-
allelisms such as these are frequent in naturally oc-
curring conversations, leading us to ask whether it
might be possible to translate a stimulus into an ap-
propriate response. We apply SMT to this problem,
treating Twitter as our parallel corpus, with status
posts as our source language and their responses as
our target language. However, the established SMT
pipeline cannot simply be applied out of the box.

We identify two key challenges in adapting SMT
to the response generation task. First, unlike bilin-
gual text, stimulus-response pairs are not semanti-
cally equivalent, leading to a wider range of possible
responses for a given stimulus phrase. Furthermore,
both sides of our parallel text are written in the same
language. Thus, the most strongly associated word
or phrase pairs found by off-the-shelf word align-
ment and phrase extraction tools are identical pairs.
We address this issue with constraints and features to
limit lexical overlap. Secondly, in stimulus-response
pairs, there are far more unaligned words than in
bilingual pairs; it is often the case that large portions
of the stimulus are not referenced in the response
and vice versa. Also, there are more large phrase-
pairs that cannot be easily decomposed (for example
see figure 2). These difficult cases confuse the IBM
word alignment models. Instead of relying on these
alignments to extract phrase-pairs, we consider all
possible phrase-pairs in our parallel text, and apply
an association-based filter.

We compare our approach to response genera-
tion against two Information Retrieval or nearest
neighbour approaches, which use the input stimu-
lus to select a response directly from the training
data. We analyze the advantages and disadvantages
of each approach, and perform an evaluation using
human annotators from Amazon’s Mechanical Turk.
Along the way, we investigate the utility of SMT’s
BLEU evaluation metric when applied to this do-
main. We show that SMT-based solutions outper-
form IR-based solutions, and are chosen over actual
human responses in our data in 15% of cases. As far

as we are aware, this is the first work to investigate
the feasibility of SMT’s application to generating re-
sponses to open-domain linguistic stimuli.

2 Related Work

There has been a long history of “chatterbots”
(Weizenbaum, 1966; Isbell et al., 2000; Shaikh et
al., 2010), which attempt to engage users, typically
leading the topic of conversation. They usually limit
interactions to a specific scenario (e.g. a Rogerian
psychotherapist), and use a set of template rules for
generating responses. In contrast, we focus on the
simpler task of generating an appropriate response
to a single utterance. We leverage large amounts of
conversational training data to scale to our Social
Media domain, where conversations can be on just
about any topic.

Additionally, there has been work on generat-
ing more natural utterances in goal-directed dia-
logue systems (Ratnaparkhi, 2000; Rambow et al.,
2001). Currently, most dialogue systems rely on ei-
ther canned responses or templates for generation,
which can result in utterances which sound very
unnatural in context (Chambers and Allen, 2004).
Recent work has investigated the use of SMT in
translating internal dialogue state into natural lan-
guage (Langner et al., 2010). In addition to dialogue
state, we believe it may be beneficial to consider
the user’s utterance when generating responses in or-
der to generate locally coherent discourse (Barzilay
and Lapata, 2005). Data-driven generation based on
users’ utterances might also be a useful way to fill in
knowledge gaps in the system (Galley et al., 2001;
Knight and Hatzivassiloglou, 1995).

Statistical machine translation has been applied to
a smörgåsbord of NLP problems, including question
answering (Echihabi and Marcu, 2003), semantic
parsing and generation (Wong and Mooney, 2006;
Wong and Mooney, 2007), summarization (Daumé
III and Marcu, 2009), generating bid-phrases in on-
line advertising (Ravi et al., 2010), spelling correc-
tion (Sun et al., 2010), paraphrase (Dolan et al.,
2004; Quirk et al., 2004) and query expansion (Rie-
zler et al., 2007). Most relevant to our efforts is the
work by Soricut and Marcu (2006), who applied the
IBM word alignment models to a discourse order-
ing task, exploiting the same intuition investigated
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in this paper: certain words (or phrases) tend to trig-
ger the usage of other words in subsequent discourse
units. As far as we are aware, ours is the first work
to explore the use of phrase-based translation in gen-
erating responses to open-domain linguistic stimuli,
although the analogy between translation and dia-
logue has been drawn (Leuski and Traum, 2010).

3 Data

For learning response-generation models, we use
a corpus of roughly 1.3 million conversations
scraped from Twitter (Ritter et al., 2010; Danescu-
Niculescu-Mizil et al., 2011). Twitter conversations
don’t occur in real-time as in IRC; rather as in email,
users typically take turns responding to each other.
Twitter’s 140 character limit, however, keeps con-
versations chat-like. In addition, the Twitter API
maintains a reference from each reply to the post
it responds to, so unlike IRC, there is no need for
conversation disentanglement (Elsner and Charniak,
2008; Wang and Oard, 2009). The first message of a
conversation is typically unique, not directed at any
particular user but instead broadcast to the author’s
followers (a status message). For the purposes of
this paper, we limit the data set to only the first two
utterances from each conversation. As a result of
this constraint, any system trained with this data will
be specialized for responding to Twitter status posts.

4 Response Generation as Translation

When applied to conversations, SMT models the
probability of a response r given the input status-
post s using a log-linear combination of feature
functions. Most prominent among these features
are the conditional phrase-translation probabilities
in both directions, P (s|r) and P (r|s), which ensure
r is an appropriate response to s, and the language
model P (r), which ensures r is a well-formed re-
sponse. As in translation, the response models are
estimated from counts of phrase pairs observed in
the training bitext, and the language model is built
using n-gram statistics from a large set of observed
responses. To find the best response to a given input
status-post, we employ the Moses phrase-based de-
coder (Koehn et al., 2007), which conducts a beam
search for the best response given the input, accord-
ing to the log-linear model.

what . . . � �
time . . . � �
u � . . . .
get . � . . .
out . . � . .
? . . . . .

i ge
t

of
f

at 5

Figure 1: Example from the data where word alignment
is easy. There is a clear correspondence between words
in the status and the response.

4.1 Challenge: Lexical Repetition
When applied directly to conversation data, off-the-
shelf MT systems simply learn to parrot back the
input, sometimes with slight modification. For ex-
ample, directly applying Moses with default settings
to the conversation data produces a system which
yields the following (typical) output on the above
example:

Stimulus: I’m slowly making this soup
...... and it smells gorgeous!

Response: i’m slowly making this soup
...... and you smell gorgeous!

This “paraphrasing” phenomenon occurs because
identical word pairs are frequently observed together
in the training data. Because there is a wide range
of acceptable responses to any status, these identical
pairs have the strongest associations in the data, and
therefore dominate the phrase table. In order to dis-
courage lexically similar translations, we filter out
all phrase-pairs where one phrase is a substring of
the other, and introduce a novel feature to penalize
lexical similarity:

φlex(s, t) = J(s, t)

Where J(s, t) is the Jaccard similarity between the
set of words in s and t.

4.2 Challenge: Word Alignment
Alignment is more difficult in conversational data
than bilingual data (Brown et al., 1990), or textual
entailment data (Brockett, 2006; MacCartney et al.,
2008). In conversational data, there are some cases
in which there is a decomposable alignment between
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Figure 2: Example from the data where word alignment
is difficult (requires alignment between large phrases in
the status and response).

words, as seen in figure 1, and some difficult cases
where alignment between large phrases is required,
for example figure 2. These difficult sentence pairs
confuse the IBM word alignment models which have
no way to distinguish between the easy and hard
cases.

We aligned words in our parallel data using the
widely used tool GIZA++ (Och and Ney, 2003);
however, the standard growing heuristic resulted in
very noisy alignments. Precision could be improved
considerably by using the intersection of GIZA++
trained in two directions (s→ r, and r → s), but the
alignment also became extremely sparse. The aver-
age number of alignments-per status/response pair
in our data was only 1.7, as compared to a dataset
of aligned French-English sentence pairs (the WMT
08 news commentary data) where the average num-
ber of intersection alignments is 14.

Direct Phrase Pair Extraction

Because word alignment in status/response pairs is
a difficult problem, instead of relying on local align-
ments for extracting phrase pairs, we exploit infor-
mation from all occurrences of the pair in determin-

C(s, t) C(s,¬t) C(s)
C(¬s, t) C(¬s,¬t) N − C(s)

C(t) N − C(t) N

Figure 3: Contingency table for phrase pair (s,t). Fisher’s
Exact Test estimates the probability of seeing this event,
or one more extreme assuming s and t are independent.

ing whether its phrases form a valid mapping.
We consider all possible phrase-pairs in the train-

ing data,1 then use Fisher’s Exact Test to filter out
pairs with low correlation (Johnson et al., 2007).
Given a source and target phrase s and t, we consider
the contingency table illustrated in figure 3, which
includes co-occurrence counts for s and t, the num-
ber of sentence-pairs containing s, but not t and vice
versa, in addition to the number of pairs containing
neither s nor t. Fisher’s Exact Test provides us with
an estimate of the probability of observing this table,
or one more extreme, assuming s and t are indepen-
dent; in other words it gives us a measure of how
strongly associated they are. In contrast to statistical
tests such as χ2, or the G2 Log Likelihood Ratio,
Fisher’s Exact Test produces accurate p-values even
when the expected counts are small (as is extremely
common in our case).

In Fisher’s Exact Test, the hypergeometric proba-
bility distribution is used to compute the exact prob-
ability of a particular joint frequency assuming a
model of independence:

C(s)!C(¬s)!C(t)!C(¬t)!
N !C(s, t)!C(¬s, t)!C(s,¬t)!C(¬s,¬t)!

The statistic is computed by summing the prob-
ability for the joint frequency in Table 3, and ev-
ery more extreme joint frequency consistent with the
marginal frequencies. Moore (2004) illustrates sev-
eral tricks which make this computation feasible in
practice.

We found that this approach generates phrase-
table entries which appear quite reasonable upon
manual inspection. The top 20 phrase-pairs (after fil-
tering out identical source/target phrases, substrings,

1We define a possible phrase-pair as any pair of phrases
found in a sentence-pair from our training corpus, where both
phrases consist of 4 tokens or fewer. The total number of phrase
pairs in a sentence pair (s, r) is O(|s| × |r|).
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Source Target
rt [retweet] thanks for the
potter harry
ice cream
how are you you ?
good morning
chuck norris
watching movie
i miss miss you too
are you i ’m
my birthday happy birthday
wish me luck good luck
how was it was
miss you i miss
swine flu
i love you love you too
how are are you ?
did you i did
jackson michael
how are you i ’m good
michael mj

Table 1: Top 20 Phrase Pairs ranked by the Fisher Exact
Test statistic. Slight variations (substrings or symmetric
pairs) were removed to show more variety. See the sup-
plementary materials for the top 10k (unfiltered) pairs.

and symmetric pairs) are listed in Table 1.2 Our ex-
periments in §6 show that using the phrase table pro-
duced by Fisher’s Exact Test outperforms one gen-
erated based on the poor quality IBM word align-
ments.

4.3 System Details

For the phrase-table used in the experiments (§6) we
used the 5M phrases with highest association ac-
cording the Fisher Exact Test statistic.3 To build
the language model, we used all of the 1.3M re-
sponses from the training data, along with roughly
1M replies collected using Twitter’s streaming API.

2See the supplementary materials for the top 10k (unfiltered)
phrase pairs.

3Note that this includes an arbitrary subset of the (1,1,1)
pairs (phrase pairs where both phrases were only observed once
in the data). Excluding these (1,1,1) pairs yields a rather small
phrase table, 201K phrase-pairs after filtering, while including
all of them led to a table which was too large for the memory of
the machine used to conduct the experiments.

We do not use any form of SMT reordering
model, as the position of the phrase in the response
does not seem to be very correlated with the corre-
sponding position in the status. Instead we let the
language model drive reordering.

We used the default feature weights provided by
Moses.4 Because automatic evaluation of response
generation is an open problem, we avoided the use of
discriminative training algorithms such as Minimum
Error-Rate Training (Och, 2003).

5 Information Retrieval

One straightforward data-driven approach to re-
sponse generation is nearest neighbour, or informa-
tion retrieval. This general approach has been ap-
plied previously by several authors (Isbell et al.,
2000; Swanson and Gordon, 2008; Jafarpour and
Burges, 2010), and is used as a point of compari-
son in our experiments. Given a novel status s and a
training corpus of status/response pairs, two retrieval
strategies can be used to return a best response r′:

IR-STATUS [rargmaxi sim(s,si)] Retrieve the re-
sponse ri whose associated status message si
is most similar to the user’s input s.

IR-RESPONSE [rargmaxi sim(s,ri)] Retrieve the re-
sponse ri which has highest similarity when di-
rectly compared to s.

At first glance, IR-STATUS may appear to be the
most promising option; intuitively, if an input status
is very similar to a training status, we might expect
the corresponding training response to pair well with
the input. However, as we describe in §6, it turns
out that directly retrieving the most similar response
(IR-RESPONSE) tends to return acceptable replies
more reliably, as judged by human annotators. To
implement our two IR response generators, we rely
on the default similarity measure implemented in the
Lucene5 Information Retrieval Library, which is an
IDF-weighted Vector-Space similarity.

6 Experiments

In order to compare various approaches to auto-
mated response generation, we used human evalu-

4The language model weight was set to 0.5, the translation
model weights in both directions were both set to 0.2, the lexical
similarity weight was set to -0.2.

5http://lucene.apache.org/
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ators from Amazon’s Mechanical Turk (Snow et al.,
2008). Human evaluation also provides us with data
for a preliminary investigation into the feasibility
of automatic evaluation metrics. While automated
evaluation has been investigated in the area of spo-
ken dialogue systems (Jung et al., 2009), it is unclear
how well it will correlate with human judgment in
open-domain conversations where the range of pos-
sible responses is very large.

6.1 Experimental Conditions
We performed pairwise comparisons of several
response-generation systems. Similar work on eval-
uating MT output (Bloodgood and Callison-Burch,
2010) has asked Turkers to rank more than two
choices, but in order to keep our evaluation as
straightforward as possible, we limited our experi-
ments to pairwise comparisons.

For each experiment comparing 2 systems (a and
b), we built a test set by selecting a random sam-
ple of 200 tweets which had received responses,
and which had a length between 4 and 20 words.
These tweets were selected from conversations col-
lected from a later, non-overlapping time-period
from those used in training. Each experiment used
a different random sample of 200 tweets. For each
of the 200 statuses, we generated a response using
method a and b, then showed the status and both re-
sponses to the Turkers, asking them to choose the
best response. The order of the systems used to
generate a response was randomized, and each of
the 200 HITs was submitted to 3 different Turkers.
Turkers were paid 1¢ per judgment.

The Turkers were instructed that an appropriate
response should be on the same topic as the sta-
tus, and should also “make sense” in response to it.
While this is an inherently subjective task, from in-
specting the results, we found Turkers to be quite
competent in judging between two responses.

The systems used in these pairwise comparisons
are summarized in table 2, and example output gen-
erated by each system is presented in Table 3.

6.2 Results
The results of the experiments are summarized in
Table 4. For each experiment we show the fraction
of HITs where the majority of annotators agreed sys-
tem a was better. We also show the p-value from an

System Name Description
RND-BASELINE Picks randomly from the set of

responses which are observed at
least twice in the training data.
The assumption is these are
likely very general responses

IR-STATUS rargmaxi sim(s,si) as described
in §5

IR-RESPONSE rargmaxi sim(s,ri) as described
in §5

MT-CHAT Phrase-based translation system
as described in §4

MT-BASELINE Exactly the same as MT-CHAT,
except using a phrase table ex-
tracted based on word align-
ments from GIZA++

HUMAN Actual responses from the test
data.

Table 2: Summary of systems compared experimentally

exact Binomial significance test; note that all dif-
ferences are significant with above 95% confidence.
Table 4 also shows the S coefficient (Bennett et al.,
1954) as a measure of agreement between annotators
for each experiment. S is equivalent the commonly
used Kappa, except it assumes the uniform distribu-
tion when computing expected or chance agreement
(Artstein and Poesio, 2008). The uniform distribu-
tion is appropriate in our setup, since annotators are
not told which system generated each output, and the
order of choices is randomized. If annotators were
indeed choosing randomly, they would be expected
to agree in 50% of cases. In most comparisons the
value of S is in the range of 0.2 to 0.4, which can
be considered “Fair agreement” (Landis and Koch,
1977).

Note that agreement between annotators is lower
than typically reported in corpus annotation tasks.
When annotating which of two automatically gen-
erated outputs is better, there is not always a clear
answer; both responses might be good or bad. We
can expect strong agreement only in cases where
one response is clearly better. Strong agreement is
not required, however, as we are using many anno-
tations to compare each pair of systems, and the hu-
man judgments are not intended to be used as train-
ing data. Similar agreement was reported in an eval-
uation of automatically generated MT output as part
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Status MT-CHAT MT-BASELINE IR-STATUS HUMAN RND-BASELINE IR-RESPONSE

riding to the
arc on my bike.
Hopefully I won’t
melt into the
pavement.

good luck on your
bike ride arc

i ca n’t wait for it
! i ’m arc is a year
.

grab some re-
freshing drinks
... and a towel ...
lol ... then eat ice
cream and suika
later ...

make sure to ride
in the middle of
the street

lmfaoooo ! u sure the cup wo
n’t melt ?

I really hate
watching movies
in the living
room.

me too , what
movies are you
doing in room ?

me too ! i love
those ? ) in my
mouth .

:( cheer up ! you
need to invest in
one of those turbo
fans

Why? no comfy
spots or just too
open to public

tas fazendo oq ? someone was
watching in the
living room kasi e
. :) i was too lazy
to go up to my
room . :) )

Hello Did I miss
David Getting
his teen choice
award? Or did
they not show it :(

hello miss ? *
he was getting his
will probably win
.

it ’s just like what
you just did the
exact date hello ?

it did n’t show yet
-ha- -lol-

nothing yet...he
presented though
he is so darn cute

you wish . are they gon na
show teen choice
awards again ? i
missed it

I can think the im-
possible is possi-
ble at any given
moment.

i think you can
do it , anything
is given impossi-
ble dreams really
specs

i ca n’t wait to
see if there is no
point in the end
but if you do a
few hours ...

i hope you use
those powers for
evil . i mean good
! good . that ’s
what i meant .

for sure Eric, and
that makes it not
’impossible’ any
longer.

no -user- ? nobody with
whom i might
apply the blue
cobalt ’ rabbit ’
at the moment .
given the econ-
omy , perhaps
-url- ( any of em )

I want to enter my
parents house into
a home makeover
contest. Any help
out there?

me too ! thanks
for the win , par-
ents are so smart
, just got home
makeover

oh man , i do
n’t want to come
back to my mom
is getting that

i put troy on the
potty everyday at
lunch and b4 u
know it he was
going on his own
... only took a
week .

check TLC I’m
pretty sure it was
them who were
recently posting
about looking
for houses to be
nominated!

good job you want to do
laundry with me
at my parents
house after i get
off ? maybe get a
free meal out of it
? !

Table 3: Example responses from each system. We tried to pick examples where most (or all) systems generate
reasonable responses for illustration purposes.

System A System B Fraction A p-value Agreement
(S)

System A
BLEU

System B
BLEU

MT-CHAT∗ IR-STATUS 0.645 5.0e-05 0.347 1.15 0.57
MT-CHAT∗ IR-RESPONSE 0.593 1.0e-02 0.333 0.84 1.53
IR-STATUS IR-RESPONSE∗ 0.422 3.3e-02 0.330 0.40 1.59
MT-CHAT∗ MT-BASELINE 0.577 3.8e-02 0.160 1.23 1.14
MT-CHAT HUMAN∗ 0.145 2.2e-16 0.433 N/A N/A
MT-CHAT∗ RND-BASELINE 0.880 2.2e-16 0.383 1.17 0.10

Table 4: Results of pairwise comparisons between various response-generation methods. Each row presents a com-
parison between systems a and b on 200 randomly selected tweets. The column Fraction A lists the fraction of HITs
where the majority of annotators agreed System A’s response was better. The winning system is indicated with an
asterisk∗. All differences are significant.
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of the WMT09 shared tasks (Callison-Burch et al.,
2009).6

The results of the paired evaluations provide a
clear ordering on the automatic systems: IR-STATUS

is outperformed by IR-RESPONSE, which is in turn
outperformed by MT-CHAT. These results are
somewhat surprising. We had expected that match-
ing status to status would create a more natural and
effective IR system, but in practice, it appears that
the additional level of indirection employed by IR-
STATUS created only more opportunity for confu-
sion and error. Also, we did not necessarily expect
MT-CHAT’s output to be preferred by human anno-
tators: the SMT system is the only one that generates
a completely novel response, and is therefore the
system most likely to make fluency errors. We had
expected human annotators to pick up on these flu-
ency errors, giving the the advantage to the IR sys-
tems. However, it appears that MT-CHAT’s ability
to tailor its response to the status on a fine-grained
scale overcame the disadvantage of occasionally in-
troducing fluency errors.7

Given MT-CHAT’s success over the IR systems,
we conducted further experiments to validate its out-
put. In order to test how close MT-CHAT’s responses
come to human-level abilities, we compared its out-
put to actual human responses from our dataset. In
some cases the human responses change the topic of
conversation, and completely ignore the initial sta-
tus. For instance, one frequent type of response we
noticed in the data was a greeting: “How have you
been? I haven’t talked to you in a while.” For the
purposes of this evaluation, we manually filtered out
cases where the human response was completely off-
topic from the status, selecting 200 pairs at random
that met our criteria and using the actual responses
as the HUMAN output.

When compared to the actual human-generated
response, MT-CHAT loses. However, its output is
preferred over the human responses 15% of the time,
a fact that is particularly surprising given the very
small – by MT standards – amount of data used to
train the model. A few examples where MT-CHAT’s
output were selected over the human response are

6See inter annotator agreement in table 4.
7Also, as one can see from the example exchanges in Ta-

ble 3, fluency errors are rampant across all systems, including
the gold-standard human responses.

listed in Table 5.
We also evaluated the effect of filtering all possi-

ble phrase pairs using Fisher’s Exact Test, which we
did instead of conducting phrase extraction accord-
ing to the very noisy word alignments. We altered
our MT-CHAT system to use the standard Moses
phrase-extraction pipeline, creating the system de-
noted as MT-BASELINE. We compared this to the
complete MT-CHAT system. Note that both systems
account for lexical repetition as described in §4.1.
MT-CHAT’s output is preferred 58% of the time over
MT-BASELINE, indicating that direct phrase extrac-
tion is useful in this conversational setting.

Finally, as an additional baseline, we compared
MT-CHAT’s output to random responses selected
from those observed 2 or more times in the train-
ing data. One might argue that short, common re-
sponses are very general, and that a reply like “lol”
could be considered a good response to almost any
status. However, the human evaluation shows a clear
preference for MT-CHAT’s output: raters favour re-
sponses that are tailored to the stimulus.

6.3 Automatic Evaluation

The field of SMT has benefited greatly from
the existence of an automatic evaluation metric,
BLEU (Papineni et al., 2002), which grades an out-
put candidate according to n-gram matches to one or
more reference outputs. To evaluate whether BLEU
is an appropriate automatic evaluation measure for
response generation, we attempted to measure its
agreement with the human judgments. We calcu-
late BLEU using a single reference derived from our
parallel corpus. We show the smoothed BLEU 1-4
scores for each system on each dataset evaluated in
Table 4. Although these scores are extremely low,
the overall BLEU scores agree with overall annota-
tor judgments in all cases except when comparing
MT-CHAT and IR-RESPONSE. It would seem that
BLEU has some agreement with human judgments
on this task, but perhaps not enough to be immedi-
ately useful.

7 Conclusions

We have presented several data-driven approaches,
based on information retrial and phrase-based SMT,
to the task of automatically responding to open-

590



Status MT-CHAT HUMAN

i want to go to a bonfire right about
now.

that does sound fun bonfire i wan na
go !

did my tweet bring that upon you ?
hehe

I’m the invisible man. man , you could never be invisible i can still see your face surrounded
in blue !

put ya number in my phone ..and
ima call you up !

call me when u do that in your phone
call :) for what ’s up ?

o well hw kum u dnt eva call or txt
me :) ? ! ? ! lolz jpn hw r ya tho :)
? ! ? !

Gray Maynard with hair? I did not
approve this.

maynard with grey hair ! i take it back, the hair isn’t working
for maynard.

Table 5: Examples where MT-CHAT output was preferred over HUMAN response by Turker annotators

domain linguistic stimuli.
Our experiments show that SMT techniques are

better-suited than IR approaches on the task of re-
sponse generation. Our system, MT-CHAT, pro-
duced responses which were preferred by human an-
notators over actual human responses 15% of the
time. Although this is still far from human-level
performance, we believe there is much room for
improvement: from designing appropriate word-
alignment and decoding algorithms that account for
the selective nature of response in dialogue, to sim-
ply adding more training data.

We described the many challenges posed by
adapting phrase-based SMT to dialogue, and pre-
sented initial solutions to several, including direct
phrasal alignment, and phrase-table scores discour-
aging responses that are lexically similar to the sta-
tus. Finally, we have provided results from an initial
experiment to evaluate the BLEU metric when ap-
plied to response generation, showing that though
the metric as is does not work well, there is suffi-
cient correlation to suggest that a similar, dialogue-
focused approach may be feasible.

By generating responses to Tweets out of context,
we have demonstrated that the models underlying
phrase-based SMT are capable of guiding the con-
struction of appropriate responses. In the future, we
are excited about the role these models could po-
tentially play in guiding response construction for
conversationally-aware chat input schemes, as well
as goal-directed dialogue systems.
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Abstract

We consider the problem of predicting mea-
surable responses to scientific articles based
primarily on their text content. Specif-
ically, we consider papers in two fields
(economics and computational linguistics)
and make predictions about downloads and
within-community citations. Our approach is
based on generalized linear models, allowing
interpretability; a novel extension that cap-
tures first-order temporal effects is also pre-
sented. We demonstrate that text features
significantly improve accuracy of predictions
over metadata features like authors, topical
categories, and publication venues.

1 Introduction

Written communication is an essential component
of the complex social phenomenon of science. As
such, natural language processing is well-positioned
to provide tools for understanding the scientific pro-
cess, by analyzing the textual artifacts (papers, pro-
ceedings, etc.) that it produces. This paper is about
modeling collections of scientific documents to un-
derstand how their textual content relates to how a
scientific community responds to them. While past
work has often focused on citation structure (Borner
et al., 2003; Qazvinian and Radev, 2008), our em-
phasis is on the text content, following Ramage et
al. (2010) and Gerrish and Blei (2010).

Instead of task-independent exploratory data anal-
ysis (e.g., topic modeling) or multi-document sum-

marization, we consider supervised models of the
collective response of a scientific community to a
published article. There are many measures of im-
pact of a scientific paper; ours come from direct
measurements of the number of downloads (from
an established website where prominent economists
post papers before formal publication) and citations
(within a fixed scientific community). We adopt a
discriminative approach based on generalized lin-
ear models that can make use of any text or meta-
data features, and show that simple lexical fea-
tures offer substantial power in modeling out-of-
sample response and in forecasting response for fu-
ture articles. Realistic forecasting evaluations re-
quire methodological care beyond the usual best
practices of train/test separation, and we elucidate
these issues.

In addition, we introduce a new regularization
technique that leverages the intuition that the rela-
tionship between observable features and response
should evolve smoothly over time. This regularizer
allows the learner to rely more strongly on more re-
cent evidence, while taking into account a long his-
tory of training data. Our time series-inspired regu-
larizer is computationally efficient in learning and is
a significant advance over earlier text-driven fore-
casting models that ignore the time variable alto-
gether (Kogan et al., 2009; Joshi et al., 2010).

We evaluate our approaches in two novel experi-
mental settings: predicting downloads of economics
articles and predicting citation of papers at ACL
conferences. Our approaches substantially outper-
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Figure 1: Left: the distribution of log download counts
for papers in the NBER dataset one year after post-
ing. Right: the distribution of within-dataset citations of
ACL papers within three years of publication (outliers ex-
cluded for readability).

form text-ignorant baselines on ground-truth predic-
tions. Our time series models permit flexibility in
features and offer a novel and perhaps more inter-
pretable view of the data than summary statistics.

2 Data

We make use of two collections of scientific litera-
ture, one from the economics domain, and the other
from computational linguistics and natural language
processing. Statistics are summarized in Table 1.

2.1 NBER

Our first dataset consists of research papers in eco-
nomics from the National Bureau of Economic
Research (NBER) from 1999 to 2009 (http://
www.nber.org). Approximately 1,000 research
economists are affiliated with the NBER. New
NBER working papers are posted to the website
weekly. The papers are not yet peer-reviewed, but
given the prominence of many economists affiliated
with the NBER, many of the papers are widely read.
Text from the abstracts of the papers and related
metadata are publicly available. Full text is available
to subscribers (universities typically have access).

The NBER provided us with download statistics
for these papers. For each paper, we computed
the total number of downloads in the first year af-
ter each paper’s posting.1 The download counts are
log-normally distributed, as shown in Figure 1, and
so our regression models (§3) minimize squared er-
rors in the log space. Our download logs begin in

1For the vast majority of papers, most of the downloads oc-
cur soon after the paper’s posting. We explored different mea-
sures with different download windows (two years, for exam-
ple) with broadly similar results. We leave a more detailed anal-
ysis of the time series patterns of downloads to future work.

Dataset # Docs. Avg. #
Words

Response

NBER 8,814 155 # downloads in first
year (mean 761)

ACL 4,026 3,966 at least 1 citation in
first 3 years? (54% no)

Table 1: Descriptive statistics about the datasets.

1999. We use the 8,814 papers from 1999–2009 pe-
riod (there are 16,334 papers in the full dataset dat-
ing back to 1985). We only use text from the ab-
stracts, since we were able to obtain full texts for
just a portion of the papers, and since the OCR of
the full texts we do have is very noisy.

2.2 ACL

Our second dataset consists of research papers
from the Association for Computational Linguis-
tics (ACL) from 1980 to 2006 (Radev et al., 2009a;
Radev et al., 2009b). We have the full texts for pa-
pers (OCR output) as well as structured citation data.
There are 15,689 papers in the whole dataset. For
the citation prediction task, we include conference
papers from ACL, EACL, HLT, and NAACL.2 We
remove journal papers, since they are characteristi-
cally different from conference papers, as well as
workshop papers. We do include short papers, in-
teractive demo session papers, and student research
papers that are included in the companion volumes
for these conferences (such papers are cited less than
full papers, but many are still cited). The resulting
dataset contains 4,026 papers. The number of pa-
pers in each year varies because not all conferences
are annual.

We look at citations in the three-year window fol-
lowing publication, excluding self-citations and only
considering citations from papers within these con-
ferences. Figure 1 shows a histogram; note that
many papers (54%) are not cited at all, and the dis-
tribution of citations per paper is neither normal nor
log-normal. We organize the papers into two classes:
those with zero citations and those with non-zero ci-
tations in the three-year window.

2EMNLP is a relatively recent conference, and, in this col-
lection, complete data for its papers postdate the end of the last
training period, so we chose to exclude it from our dataset.
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3 Model

Our forecasting approach is based on generalized
linear models for regression and classification. The
models are trained with an `2-penalty, often called
a “ridge” model (Hoerl and Kennard, 1970).3 For
the NBER data, where (log) number of downloads is
nearly a continuous measure, we use linear regres-
sion. For the ACL data, where response is the bi-
nary cited-or-not variable we use logistic regression,
often referred to as a “maximum entropy” model
(Berger et al., 1996) or a log-linear model. We
briefly review the class of models. Then, we de-
scribe a time series model appropriate for time series
data.

3.1 Generalized Linear Models
Consider a model that predicts a response y given a
vector input x = 〈x1, . . . , xd〉 ∈ Rd. Our models
are linear functions of x and parameterized by the
vector β. Given a corpus of M document features,
X , and responses Y , we estimate:

β̂ = argminβ R(β) + L(β,X, Y ) (1)

where L is a model-dependent loss function and R
is a regularization penalty to encourage models with
small weight vectors. We describe models and loss
functions first and then turn to regularization.

For the NBER data, the (log) number of down-
loads is continuous, and so we use least-squares
linear regression model. The loss function is the
sum of the squared errors for the M documents in
our training data: L(β,X, Y ) =

∑M
i=1(yi − ŷi)2,

where the prediction rule for new documents is:
ŷ =

∑d
j=0 βjxj . Probabilistically, this equates to an

assumption that β>x is the mean of a normal (i.e.,
Gaussian) distribution from which random variable
y is drawn.

For the ACL data, we predict y from a discrete
set C (specifically, the binary set of zero citations or
more than zero citations), and we use logistic regres-
sion. This model assumes that for the ith training
input xi, the output yi is drawn according to:

p(yi | xi) =
(
expβ>c xi

) /(∑
c′∈C expβ>c′xi

)

3Preliminary experiments found no consistent benefit from
`1 (“lasso”) models, though we note that `1-regularization leads
to sparse, compact models that may be more interpretable.

where there is a feature vector βc for each class
c ∈ C. Under this interpretation, parameter esti-
mation is maximum a posteriori inference for β,
and R(β) is a log-prior for the weights. The loss
function is the negative log likelihood for the M
documents: L(β,X, Y ) = −∑M

i=1 log p(yi | xi).
The prediction rule for a new document is: ŷ =
argmaxc∈C

∑d
j=0 βc,jxj . Generalized linear mod-

els and penalized regression are well-studied with
an extensive literature (Mccullagh and Nelder, 1989;
Hastie et al., 2009). We leave other types of mod-
els, such as Poisson (Cameron and Trivedi, 1998)
or ordinal (McCullagh, 1980) regression models, to
future work.

3.2 Ridge Regression

With large numbers of features, regularization is
crucial to avoid overfitting. In ridge regression (Ho-
erl and Kennard, 1970), a standard method to which
we compare the time series regularization discussed
in §3.3, the penalty R(β) is proportional to the `2-
norm of β:

R(β) = λ‖β‖2 = λ
∑

j β
2
j

where λ is a regularization hyperparameter that is
tuned on development data or by cross-validation.4

This penalty pushes many βj close (but not com-
pletely) to zero. In practice, we multiply the penalty
by the number of examples M to facilitate tuning of
λ.

The ridge linear regression model can be inter-
preted probabilistically as each coefficient βj is
drawn i.i.d. from a normal distribution with mean
0 and variance 2λ−1.

3.3 Time Series Regularization

A simple way to capture temporal variation is to con-
join traditional features with a time variable. Here,
we divide the dataset into T time steps (years). In the
new representation, the feature space expands from
Rd to RT×d. For a document published at year t, the
elements of x are non-zero only for those features
that correspond to year-t; that is xt′,j = 0 for all
t′ 6= t.

4The linear regression has a bias β0 that is always active.
The logistic regression also has an unpenalized bias βc,0 for
each class c. This weight is not regularized.
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Estimating this model with the new features using
the `2-penalty would be effectively estimating sepa-
rate models for each year under the assumption that
each βt,j is independent; even for features that dif-
fered only temporally (e.g., βt,j and βt+1,j).

In this work, we apply time series regularization
to GLMs, enabling models that have coefficients that
change over time but prefer gradual changes across
time steps. Boyd and Vandenberghe (2004, §6.3) de-
scribe a general version of this sort of regularizer.
To our knowledge, such regularizers have not previ-
ously been applied to temporal modeling of text.

The time series regularization penalty becomes:

R(β) = λ

T∑

t=1

d∑

j=1

β2t,j+λα

T∑

t=2

d∑

j=0

(βt,j − βt−1,j)2

It includes a standard `2-penalty on the coefficients,
and a penalty for differences between coefficients
for adjacent time steps to induce smooth changes.5

Similar to the previous model, in practice, we mul-
tiply the regularization constant λ by M

T to facili-
tate tuning of λ for datasets with different numbers
of examples M and numbers of time steps T . The
new parameter, α, controls the smoothness of the es-
timated coefficients. Setting α to zero imposes no
penalty for time-variation in the coefficients and re-
sults in independent ridge regressions at each time
step. Also, when the number of examples is con-
stant across time steps, setting a large α parameter
(α→∞) results in a single ridge regression over all
years since it imposes βt,j = βt+1,j for all t ∈ T .

The partial derivative is:

∂R/∂βt,j = 2λβt,j

+ 1{t > 1}2λα(βt,j − βt−1,j)
+ 1{t < T}2λα(βt,j − βt+1,j)

This time series regularization can be applied more
generally, not just to linear and logistic regression.

With either ridge regularization or this time se-
ries regularization scheme, Eq. 1 is an unconstrained
convex optimization problem for the linear models

5Our implementation of the time series regularizer does not
penalize the magnitude of the weight for the bias feature (as in
ridge regression). It does, however, penalize the difference in
the bias weight between time steps (as with other features).

β1 β2 β3 βT

Y1 Y2 Y3 YT

...
X1 X2 X3 XT

α,λ

Figure 2: Time series regression as a graphical model;
the variables Xt and Yt are the sets of feature vectors
and response variables from documents dated t.

we describe here. There exist a number of optimiza-
tion procedures for it; we use the L-BFGS quasi-
Newton algorithm (Liu and Nocedal, 1989).

Probabilistic Interpretation
We can interpret the time series regularization prob-
abilistically as follows. Let the coefficient for the
jth feature over time be βj = 〈β1,j , β2,j , ..., βT,j〉.
βj are draws from a multivariate normal distribu-
tion with a tridiagonal precision matrix Σ−1 = Λ ∈
RT×T :

Λ = λ




1 + α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
0 −α 1 + 2α −α . . .
0 0 −α 1 + 2α . . .
...

...
...

...
. . .




The form of R(β) follows from noting:

−2 log p(βj ;α, λ) = β>j Λβj + constant

The squared difference between adjacent time steps
comes from the off-diagonal entries in the preci-
sion matrix.6 Figure 2 shows a graphical represen-
tation of the time series regularization in our model.
Its Markov chain structure corresponds to the off-
diagonals.

There is a rich literature on time series analysis
(Box et al., 2008; Hamilton, 1994). The prior dis-
tribution over the sequence 〈β1,j , . . . , βT,j〉 that our
regularizer posits is closely linked to a first-order au-
toregressive process, AR(1).

6Consistent with the previous section, we assume that pa-
rameters for different features, βj and βk, are independent.
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NBER ACL
Response log(#downloads+1) 1{#citations > 0}
GLM type normal / squared-loss logistic / log-loss
Metric 1 mean absolute error accuracy
Metric 2 Kendall’s τ Kendall’s τ

Table 2: Summary of the setup for the NBER download
and ACL citation prediction experiments.

4 Features

NBER metadata features

• Authors’ last names. We treat each name as a bi-
nary feature. If a paper has multiple authors, all
authors are used and they have equal weights re-
gardless of their ordering.
• NBER program(s).7 There are 19 major re-

search programs at the NBER (e.g., Monetary
Economics, Health Economics, etc.).

ACL metadata features

• Authors’ last names as binary features.
• Conference venues. We use first letter of the ACL

anthology paper ID, which correlates with its con-
ference venue (e.g., P for the ACL main confer-
ence, H for the HLT conference, etc.).8

Text features

• Binary indicator features for the presence of each
unigram, bigram, and trigram. For the NBER
data, we have separate features for titles and ab-
stracts. For the ACL data, we have separate fea-
tures for titles and full texts. We pruned text fea-
tures by document frequency (details in §5).
• Log transformed word counts. We include fea-

tures for the numbers of words in the title and the
abstract (NBER) or the full text (ACL).

7Almost all NBER papers are tagged with one or more pro-
grams (we assign untagged papers a “null” tag). The complete
list of NBER programs can be found at http://www.nber.
org/programs

8Papers in the ACL dataset have a tag which shows which
workshop, conference, or journal they appeared in. However,
sometimes a conference is jointly held with another confer-
ence, such that meta information in the dataset is different even
though the conference is the same. For this reason, we simply
use the first letter of the paper ID.

5 Experiments

For each of the datasets in §2, we test our models
for two tasks: forecasting about future papers (i.e.,
making predictions about papers that appeared af-
ter a training dataset) and modeling held-out papers
from the past (i.e., making predictions within the
same time period as the training dataset, on held-out
examples).

For the NBER dataset, the task is to predict the
number of downloads a paper will receive in its first
year after publication. For the ACL dataset, the task
is to predict whether a paper will be cited at all (by
another ACL paper in our dataset) within the first
three years after its publication. To our knowledge,
clean, reliable citation counts are not available for
the NBER dataset; nor are download statistics avail-
able for the ACL dataset. Table 2 summarizes the
variables of interest, model types, and evaluation
metrics for the tasks.

5.1 Extrapolation

The lag between a paper’s publication and when its
outcome (download or citation count) can be ob-
served poses a unique methodological challenge.
Consider predicting the number of downloads over
g future time steps. If t is the time of forecasting,
we can observe the texts of all articles published be-
fore t. However, any article published in the interval
[t− g, t] is too recent for the outcome measurement
of y to be taken. We refer to the interval [t− g, t] as
the “forecast gap”. Since recent articles are some-
times the most relevant predictions at t, we do not
want to ignore them. Consider a paper at time step
t′, t−g < t′ < t. To extrapolate its number of down-
loads, we consider the observed number in [t′, t], and
then estimate the ratio r of downloads that occur in
the first t−t′ time steps, against the first g time steps,
using the fully observed portion of the training data.
We then scale the observed downloads during [t′, t]
by r−1 to extrapolate. The same method is used to
extrapolate citation counts.

In preliminary experiments, we observed that ex-
trapolating responses for papers in the forecast gap
led to better performance in general. For example,
for the ridge regressions trained on all past years
with the full feature set, the error dropped from 262
to 259 when using extrapolation compared to with-
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out extrapolation. Also, the extrapolated download
counts were quite close to the true values (which we
have but do not use because of the forecast gap): for
example, the mean absolute error of the extrapolated
responses was 99 when extrapolated based on the
median of the fully observed portion of the training
data (measured monthly).

5.2 Forecasting NBER Downloads
In our first set of experiments, we predict the number
of downloads of an NBER paper within one year of
its publication.

We compare four approaches for predicting
downloads. The first is a baseline that simply uses
the median of the log of the training and develop-
ment data as the prediction. The second and third
use GLMs with ridge regression-style regularization
(§3.2), trained on all past years (“all years”) and on
the single most recent past year (“one year”), respec-
tively. The last model (“time series”) is a GLM with
time series regularization (§3.3).

We divided papers by year. Figure 3 illustrates the
experimental setup. We held out a random 20% of
papers for each year from 1999–2007 as a test set for
the task of modeling the past. To define the feature
set and tune hyperparameters, we used the remain-
ing 80% of papers from 1999–2005 as our training
data and the remaining papers in 2006 as our devel-
opment data. After pruning,9 we have 37,251 to-
tal features, of which 2,549 are metadata features.
When tuning hyperparameters, we simulated the ex-
istence of a forecast gap by using extrapolated re-
sponses for papers in the last year of the training
data instead of their true responses. We considered
λ ∈ 5{2,1,...,−5,−6}, and α ∈ 5{3,2,...,−1,−2} and se-
lected those that led to the best performance on the
development set.

We then used the selected feature set and hyperpa-
rameters to test the forecasting and modeling capa-
bilities of each model. For forecasting, we predicted
numbers of downloads of papers in 2008 and 2009.
We used the baseline median, ridge regression, and
time series regularization models trained on papers
in 1999–2007 and 1999–2008, respectively. We
treated the last year of the training data (2007 and

9For NBER, text features appearing in less than 0.1% or
more than 99.9% of the training documents were removed. For
ACL, the thresholds were 2% and 98%.

training
modeling test (unused)

gap dev.
'99 '06'04 '05

training gap test
'99 '06 '07 '08

...

...

modeling test (unused)

80%

20%

80%

20%

training gap test
'99 '07...

modeling test
80%

20%

'08 '09

NBER Experiments

ACL Experiments

training
modeling test (unused)

dev.
'80 '98 '01...

80%

20%

(tuning, feature pruning)

training
modeling test (unused)

gap
'80 '01 '02    '03...

80%

20%

training
modeling test (unused)

gap
'80 '02 '03    '04...

80%

20%

training
modeling test

'80 '03...

80%

20%

gap
'05'04

test
'06

test
'05

test
'04

gap
'99    '00

(tuning, feature 
pruning)

Figure 3: An illustration of how the datasets were seg-
mented for the experiments. Portions of data for which
we report results are shaded. Time spans are not to scale.

2008, respectively) as a forecast gap, since we would
not have observed complete responses of papers in
these years when forecasting. For the “one year”
models, we trained ridge regressions only on the
most recent past year, using papers in 2007 and
2008, respectively, as training data.10 To test the
additive benefit of text features, we trained models
with just metadata features (NBER programs and
authors, denoted “Meta”) and with both metadata

10Papers from the most recent past year in a training set have
incomplete responses, so the models were trained on extrapo-
lated responses for that year. For the NBER development set
from 2005, a ridge regression on just 2004 papers (for which
extrapolation is needed) outperformed a regression on just 2003
(for which extrapolation is not needed), 278 to 367 mean abso-
lute error. For the ACL development set from 2001, a regression
on just 2000 (for which extrapolation is needed) led to slightly
lower performance (59% versus 61%) than a regression on just
1998 (for which extrapolation is not needed), probably due to
the relatively small number of conferences and papers in 2000.
For consistency with the other models and with the NBER ex-
periments, we evaluated regressions on the most recent (extrap-
olated) year in our ACL experiments.
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Features Model Modeling Forecasting
1999–07 2008 2009

– median 333 371 397
Meta one year 279 354 375
Meta all years 303 334 378
Meta time series 279 353 375
Full one year 271 346 351
Full all years 265 †300 339
Full time series ∗†245 ∗321 ∗332

Table 3: Mean absolute errors for the NBER download
predictions. “∗” indicates statistical significance between
time series models using metadata features and the full
feature set. “†” indicates statistical significance between
the time series and ridge regression models using the full
feature set (Wilcoxon signed-rank test, p < 0.01).

and text features (denoted “Full”).
To evaluate the modeling capabilities, we trained

the ridge regression and time series regularization
models on papers from 1999–2008 and predicted the
numbers of downloads of held-out papers in 1999–
2007. For comparison, we also trained ridge regres-
sion models on each individual year (“one year”)
and predicted the numbers of downloads of the held-
out papers in the corresponding year.

Table 3 shows mean absolute errors for each
method on both forecasting test splits, and mean ab-
solute errors averaged across papers over nine mod-
eling test splits. For interpretability, we report pre-
dictions in terms of download counts, though the
models were trained with log counts (§2.1). The re-
sults show that even a simple n-gram representation
of text contains a valuable, learnable signal that is
predictive of future downloads. While the time se-
ries model did not significantly outperform ridge re-
gression at predicting future downloads, it did result
in significantly better performance for modeling pa-
pers in the past.

5.3 Forecasting ACL Citations

We now turn to the problem of predicting citation
levels. Recall that here we aim to predict whether
an ACL paper will be cited within our dataset within
three years. Our experimental setup (Figure 3) is
similar to the setup for the NBER dataset, except
that we use logistic regression to model the discrete
cited-or-not response variable. We also make the
simplifying assumption that all citations occur at the
end of each year. Therefore, the forecast gap is only

Feat. Model Modeling Forecasting
1980–03 2004 2005 2006

– majority 55 56 60 50
Meta one year 61 56 54 62
Meta all years 65 58 53 60
Meta time series 66 56 53 56
Full one year 69 70 64 67
Full all years 67 69 70 70
Full time series 70 ∗69 ∗70 ∗72

Table 4: Classification accuracy (%) for predicting
whether ACL papers will be cited within three years. “∗”
indicates statistical significance between time series mod-
els using metadata features and the full feature set (bi-
nomial sign test, p < 0.01). With the full feature set,
differences between the time series and ridge (all years)
models are not statistically significant at the 0.01 level,
but for the modeling task p is estimated at 0.026, and for
the 2006 forecasting task, p is estimated at 0.050.

two years (we have observed complete citations in
the test year).

After feature pruning, there were 30,760 total fea-
tures, of which 1,694 are metadata features. We
considered λ ∈ 5{2,1,··· ,−8,−9} (“Full”) and λ ∈
5{2,1,··· ,−11,−12} (“Meta”); and α ∈ 5{6,5,··· ,0,−1}

(both “Full” and “Meta”), selecting the best values
using the development data.

Again, we compare four methods: a baseline of
always predicting the most frequent class in the
training data, “all years” and “one year” logistic re-
gression models, and a logistic regression with the
time series regularizer.

For the forecasting task, we used papers in 2004,
2005, and 2006 as test sets. As the training sets for
the “all years” and time series models, we used pa-
pers from 1980 up to the last year before each test
set, with the last two years extrapolated. As the
training sets for the “one year” models, we used pa-
pers from the year immediately before the test set,
with extrapolated responses.

To evaluate modeling capabilities, we predicted
citation levels of held-out papers in 1980–2003. We
used the “all years” and time series models trained
on 1980–2005. We trained “one year” models sepa-
rately for each year and predicted downloads for the
held-out papers in that year.

Table 4 shows classification accuracy for each
model on the test data for both the forecasting and
modeling tasks. It is again clear that adding text sig-
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nificantly improved the performance of the model.
Also, the time series regression model shows a
small, though not statistically significant, gain for
modeling whether past papers will be cited—as well
as similarly small gains on two of the three forecast-
ing test years.

5.4 Ranking
We can also use the models for ranking to help de-
cide which papers are expected to have the greatest
impact. With rankings, we can use the same metric
both for download and citation predictions. For the
NBER data, we ranked test-set papers based on the
predicted numbers of downloads and computed the
correlation to the actual numbers of downloads. For
the ACL data, we ranked papers based on the prob-
ability of being cited (within the next three years)
and computed the correlation to the actual numbers
of citations.11

To measure ranking models’ ranking quality, we
used Kendall’s τ , a nonparametric statistic that mea-
sures the similarity of two different orderings over
the same set of items. Here, the items are scien-
tific papers and the two metrics are the gold stan-
dard numbers of downloads (or citations) and model
predictions for the numbers of downloads, or cita-
tion probabilities. If q is the chance that a randomly
drawn pair of items will be ranked in the same way
by the two metrics, then τ = 2(q − 0.5).

Table 5 shows Kendall’s τ for each model for the
forecasting tasks (i.e., prediction of future citations
or downloads) in both datasets. As in the previous
experiments, we see small benefits for the time se-
ries regression model on most held-out data splits—
and larger benefits for including text features along
with metadata features.

6 Analysis

An advantage of the time series regularized regres-
sion model is its interpretability. Inspecting feature
coefficients in the model allows us to identify trends
and changes of interests over time within a scientific
community.

11Here, we use models of responses to individual papers for
ranking (i.e., in a pointwise ranking scheme). Time series reg-
ularization could also be applied to ranking models that model
pairwise preferences to optimize metrics like Kendall’s τ di-
rectly, as discussed by Joachims (2002).

Feat. Model NBER ACL
’08 ’09 ’04 ’05 ’06

Meta one year .29 .22 .17 .08 .16
Meta all years .31 .22 .15 .12 .21
Meta time series .29 .22 .14 .10 .17
Full one year .35 .31 .44 .39 .33
Full all years .43 .37 .42 .43 .40
Full time series .43 .38 .47 .44 .43

Table 5: Kendall’s τ rank correlation for future prediction
models on both datasets.
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Figure 4: Coefficients for two NBER bigram features.

First, we illustrate the difference between the time
series and the other models in Figure 4, for NBER
models’ weights for unemployment rate and infla-
tion rate appearing in a paper’s abstract. The year-
to-year weights of “one year” models fluctuate sub-
stantially, and the “all years” model is necessar-
ily constant, but the time series regularizer gives a
smooth trajectory.

6.1 Trends

Previous work has examined the flow of ideas
as trends in word and phrase frequencies, as in
the Google Books Ngram Viewer (Michel et al.,
2011).12 Topic models have been used extensively to
explore trends in low-dimensional spaces (Blei and
Lafferty, 2006; Wang et al., 2008; Wang and McCal-
lum, 2006; Ahmed and Xing, 2010). By contrast,
our approach allows us to examine trends in the im-
pact of text related to specific observation variables:
the coefficient trendline for a feature illustrates its
association with measurements of scholarly impact
(citation and download frequency).

Text frequencies can be quite different from the
discriminative weights our model assigns to fea-
tures. Figure 5 illustrates the βt,j trends in the ACL
time series model for some selected terms that oc-

12http://ngrams.googlelabs.com
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Figure 5: Feature trends: model coefficients vs. term fre-
quencies over time in the ACL corpus. Term freq. is the
fraction of tokens (or bigrams for m.t.) that year, that are
the term, averaged over a centered five-year window.

cur frequently in conference session titles. On the
right are term frequencies (with smoothing, since
year-to-year frequencies are bumpy). Most terms
decline over time. On the left, by contrast, are the
weights learned by our time series model. They
tell a very different story: for example, parsing has
shown a definite increase in interest, while interest
in grammars (e.g., formalisms) has declined some-
what. These trends have face validity, giving cre-
dence to our analysis; they also broadly agree with
Hall et al. (2008).

6.2 Authors

The regression method also allows analysis of author
influence, since we fit a coefficient for each of the
authors in the ACL dataset. Figure 6(a) addresses
the following question: do prolific authors get cited
more often, even after accounting for the content of
their papers?13 The effect is present but relatively
small according to our model: the total number of
papers co-authored by an author has a weak corre-
lation to the author’s citation prediction coefficient
(τ = 0.16).

Next, does the model provide more information
than the simple citation probability of an author?
Figure 6(b) compares coefficients to an author’s pa-
pers’ probability of being cited. Since we did not
prune author features, there are many authors with

13More precisely: if a prolific author and a non-prolific au-
thor write a paper, does the prolific author’s paper have a higher
probability of being cited than the non-prolific author’s, all
other things being equal?
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Figure 6: Analysis of author citation coefficients. Every
point is one ACL author, and the vertical axis shows the
citation coefficient, compared to (a) the number of docu-
ments co-authored by the author; and (b) the proportion
of an author’s papers that are cited within three years.
The vertical bar is the macro-averaged citation propor-
tion across authors, 41%.

only a few papers, resulting in unsmoothed proba-
bilities of 0, 0.5, 1, etc. (these correspond to the ver-
tical “bands” in the plot). By contrast, the `2-penalty
of the model naturally assigned coefficients close to
zero for such authors if it is justified.

In general, the simple probability agrees with the
coefficient, but there are differences. The semantics
of the regression imply we are measuring the rela-
tive citation probability of an author, controlling for
text and venue effects. If an author has a high cita-
tion prediction coefficient but a low citation proba-
bility, that implies the author has better-cited work
than would be expected according to the n-grams in
his or her papers. We have omitted names of au-
thors from the figure for clarity and confidentiality,
but high outlier authors tend to be well-known re-
searchers in the ACL community. Obviously, since
the prediction model is not perfect, it is not possible
to completely verify this hypothesis, but we feel this
analysis is reasonably suggestive.

7 Related Work

Previous work on modeling scientific literature
mostly focused on citation graphs (Borner et al.,
2003; Qazvinian and Radev, 2008). Some re-
searchers, e.g., Erosheva et al. (2004), have used
text content. Most of these are based on topic mod-
els: Gerrish and Blei (2010) measure scholarly im-
pact, Hall et al. (2008) study the “history of ideas”,
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and Ramage et al. (2010) rank universities based on
scholarly output using topic models.

Download rates and citation prediction were two
of the main tasks in the KDD Cup 2003 (McGovern
et al., 2003; Brank and Leskovec, 2003). Bethard
and Jurafsky (2010) considered the problem slightly
differently and proposed an information retrieval ap-
proach to citation prediction. Our approach is novel
in that we formulate the problem as a forecasting
task and we seek to predict future impact of articles.

Linear regression with text features has been used
to predict financial risk (Kogan et al., 2009) and
movie revenues (Joshi et al., 2010). While the fore-
casts in those papers are similar to ours, those au-
thors did not consider a forecast gap or allowing the
parameters of the model to vary over time.

Our time series regularization is closely related
to the fused lasso (Tibshirani et al., 2005). It pe-
nalizes a loss function by the `1-norm of the co-
efficients and their differences. The `1-penalty for
differences between coefficients encourages sparsity
in the differences. We use the `2-norm to induce
smooth changes across time steps.

8 Conclusions

We presented a statistical approach to predicting a
scientific community’s response to an article, based
on its textual content. To improve the interpretability
of the linear model, we developed a novel time series
regularizer that encourages gradual changes across
time steps. Our experiments showed that text fea-
tures significantly improve accuracy of predictions
over baseline models, and we found that the feature
weights learned with the time series regularizer re-
flect important trends in the literature.
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Abstract

A key factor of high quality word segmenta-
tion for Japanese is a high-coverage dictio-
nary, but it is costly to manually build such
a lexical resource. Although external lexical
resources for human readers are potentially
good knowledge sources, they have not been
utilized due to differences in segmentation cri-
teria. To supplement a morphological dictio-
nary with these resources, we propose a new
task of Japanese noun phrase segmentation.
We apply non-parametric Bayesian language
models to segment each noun phrase in these
resources according to the statistical behavior
of its supposed constituents in text. For in-
ference, we propose a novel block sampling
procedure named hybrid type-based sampling,
which has the ability to directly escape a lo-
cal optimum that is not too distant from the
global optimum. Experiments show that the
proposed method efficiently corrects the initial
segmentation given by a morphological ana-
lyzer.

1 Introduction

Word segmentation is the first step of natural lan-
guage processing for Japanese, Chinese and Thai
because they do not delimit words by white-space.
Segmentation for Japanese is a successful field of re-
search, achieving the F-score of nearly 99% (Kudo
et al., 2004). This success rests on a high-coverage
dictionary. Unknown words, or words not covered
by the dictionary, are often misidentified.

Historically, researchers have devoted exten-
sive human resources to build and maintain high-

coverage dictionaries (Yokoi, 1995). Since the or-
thography of Japanese does not specify a standard
for segmentation, researchers define their own crite-
ria before constructing lexical resources. For this
reason, it is difficult to exploit existing external
resources, such as dictionaries and encyclopedias
for human readers, where entry words are not seg-
mented according to the criteria. Among them,
encyclopedias are especially important in that they
contain a lot of terms that a morphological dictio-
nary fails to cover. Most of these terms are noun
phrases and consist of more than one word (mor-
pheme). For example, an encyclopedia has an en-
try “常山城” (tsuneyama-jou, “Tsuneyama Castle”).
According to our segmentation criteria, it consists
of two words “常山” (tsuneyama) and “城” (jou).
However, the morphological analyzer wrongly seg-
ments it into “常” (tsune) and “山城” (yamashiro)
because “常山” (tsuneyama) is an unknown word.

In this paper, we present the first attempt to uti-
lize encyclopedias for word segmentation. We seg-
ment each entry noun phrase into words. To do this,
we examine the main text of the entry, on the as-
sumption that if the noun phrase in question con-
sists of more than one word, its constituents appear
in the main text either freely or as part of other
noun phrases. For “常山城” (tsuneyama-jou), its
constituent “常山” (tsune) appears by itself and as
constituents of other nouns phrases such as “常山山
頂” (peak of Tsuneyama) and “常山駅” (Tsuneyama
Station) while “山城” (yamashiro) does not.

To segment each noun phrase, we use non-
parametric Bayesian language models (Goldwater et
al., 2009; Mochihashi et al., 2009). Our approach
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is based on two key factors: the bigram model and
type-based block sampling. The bigram model al-
leviates a problem of the unigram model, that is, a
tendency to misidentify a sequence of words in com-
mon collocations as a single word. Type-based sam-
pling (Liang et al., 2010) has the ability to directly
escape a local optimum, making inference very ef-
ficient. However, type-based sampling is not easily
applicable to the bigram model owing to sparsity and
its dependence on latent assignments.

We propose a hybrid type-based sampling proce-
dure, which combines the Metropolis-Hastings al-
gorithm with Gibbs sampling. We circumvent the
sparsity problem by joint sampling of unigram-level
type. Also, instead of calculating the probability of
every possible state of the jointly sampled random
variables, we only compare the current state with
a proposed state. This greatly eases the sampling
procedure while retaining the efficiency of type-
based sampling. Experiments show that the pro-
posed method quickly corrects the initial segmen-
tation given by a morphological analyzer.

2 Related Work

Japanese Morphological Analysis and Lexical
Acquisition Word segmentation for Japanese is
usually solved as the joint task of segmentation and
part-of-speech tagging, which is called morpholog-
ical analysis (Kurohashi et al., 1994; Asahara and
Matsumoto, 2000; Kudo et al., 2004). The stan-
dard approach in Japanese morphological analysis
is lattice-based path selection instead of character-
based IOB tagging. Given a sentence, an analyzer
first builds a lattice of words with dictionary look-up
and then selects an optimal path using pre-defined
parameters. This approach enables fast decoding
and achieves accuracy high enough for practical use.

This success, however, depends on a high-
coverage dictionary, and unknown words are often
misidentified. Although a line of research attempts
to identify unknown words on the fly (Uchimoto et
al., 2001; Asahara and Matsumoto, 2004), it by no
means provides a definitive solution because it suf-
fers from locality of contextual information avail-
able for identification (Nakagawa and Matsumoto,
2006). Therefore we like to perform separate lexical
acquisition processes in which wider context can be

examined.
Our approach in this paper has a complementary

relationship with unknown word acquisition from
text, which we previously proposed (Murawaki and
Kurohashi, 2008). Since, unlike Chinese and Thai,
Japanese is rich in morphology, morphological reg-
ularity can be used to determine if an unknown
word candidate in text is indeed the word to be ac-
quired. In general, this method works pretty well,
but one exception is noun phrases. Noun phrases
can hardly be distinguished from single nouns be-
cause in Japanese, no morphological marker is at-
tached to join nouns to form a noun phrase. We
previously resort to a heuristic measure to segment
noun phrases. The new statistical method provides a
straightforward solution to this problem.

Meanwhile, our language models have their own
problem. The assumption that language is a se-
quence of invariant words fails to capture rich mor-
phology, as our segmentation criteria specify that
each verb or adjective consists of an invariant stem
and an ending that changes its form according to
its grammatical roles. For this reason, we limit our
scope to noun phrases in this paper.

Use of Noun Phrases Named entity recogni-
tion (NER) is a field where encyclopedic knowl-
edge plays an important role. Kazama and Tori-
sawa (2008) encode information extracted from a
gazetteer (e.g. Wikipedia) as features of a CRF-
based Japanese NE tagger. They formalize the NER
task as the character-based labeling of IOB tags.
Noun phrases extracted from a gazetteer are also
straightforwardly represented as IOB tags. How-
ever, this does not fully solve the knowledge bot-
tleneck problem. They also used the output of a
morphological analyzer, which does not utilize en-
cyclopedic knowledge. NER performance may be
affected by segmentation errors in morphological
analysis involving unknown words.

Chinese word segmentation is often formalized as
a character tagging problem (Xue, 2003). In this
setting, it is easy to incorporate external resources
into the model. Low et al. (2005) introduce an exter-
nal dictionary as features of a discriminative model.
However, they only use words up to 4 characters in
length. We conjecture that words in their dictionary
are not noun phrases. External resources used by
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Peng et al. (2004) are also lists of short words and
characters.

Non-parametric Language Models Non-
parametric Bayesian statistics offers an elegant
solution to the task of unsupervised word segmen-
tation, in which the vocabulary size is not known in
advance (Goldwater et al., 2009; Mochihashi et al.,
2009). It does not compete with supervised segmen-
tation, however. Unsupervised word segmentation
is used elsewhere, for example, with theoretical
interest in children’s language acquisition (Johnson,
2008; Johnson and Demuth, 2010) and with the
application to statistical machine translation, in
which segmented text is merely an intermediate rep-
resentation (Xu et al., 2008; Nguyen et al., 2010).
In this paper we demonstrate that non-parametric
models can complement supervised segmentation.

3 Japanese Noun Phrase Segmentation

Our goal is to overcome the unknown word prob-
lem in morphological analysis by utilizing existing
resources such as dictionaries and encyclopedias for
human readers. In our settings, we are given a list of
entries from external resources. Almost all of them
are noun phrases and each entry consists of one or
more words.

A naı̈ve implementation would be to use noun
phrases as they are. In fact, ipadic1 regards as single
words a large number of long proper nouns like “関
西国際空港会社連絡橋” (literally, Kansai Interna-
tional Airport Company Connecting Bridge). How-
ever, this approach has various drawbacks. For ex-
ample, in information retrieval, the query “Kansai
International Airport” does not match the “single”
word for the bridge. So we apply segmentation.

Each entry is associated with text, which is usu-
ally the main text of the entry.2 We assume the text
as the key to segmenting the noun phrase. If the
noun phrase in question consists of more than one
word, its constituents would appear in the text either
freely or as part of other noun phrases.

We obtain the segmentation of an entry noun
phrase by considering the segmentation of the whole

1http://sourceforge.jp/projects/ipadic/
2We may augment the text with related documents if the

main text is not large enough.

text. One may instead consider a pipeline ap-
proach in which we first extract noun phrases in
text and then identify boundaries within these noun
phrases. However, noun phrases in text are not triv-
ially identifiable in the case that they contain un-
known words as their constituents. For example,
the analyzer erroneously segments the word “ちん
すこう” (chiNsukou) into “ちん” (chiN) and “すこ
う” (sukou), and since the latter is misidentified as
a verb, the incorrect noun phrase “ちん” (chiN) is
extracted.

We have a morphological analyzer with a dictio-
nary that covers frequent words. Although it often
misidentifies unknown words, the overall accuracy
is reasonably high. For this reason, we like to use
the segmentation given by the analyzer as the ini-
tial state and to make small changes to them to get
a desired output. We also use an annotated corpus,
which was used to build the analyzer. As the an-
notated corpus encodes our segmentation criteria, it
can be used to force the models to stick with our
segmentation criteria.

We concentrate on segmentation in this paper, but
we also need to assign a POS tag to each constituent
word and to incorporate segmented noun phrases
into the dictionary of the morphological analyzer.
We leave them for future work.3

4 Non-parametric Bayesian Language
Models

To correct the initial segmentation given by the an-
alyzer, we use non-parametric Bayesian language
models that have been applied to unsupervised word
segmentation (Goldwater et al., 2009). Specifically,
we adopt unigram and bigram models. We propose
a small modification to these models in order to ex-
ploit an annotated corpus when it is much larger than
raw text.

4.1 Unigram Model
In the unigram model, a word in the corpus wi is
generated as follows:

G|α0, P0 ∼ DP(α0, P0)

wi|G ∼ G
3Fortunately, the morphological analyzer JUMAN is capa-

ble of handling phrases, each of which consists of more than
one word. All we need to do is POS tagging.
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where G is a distribution over a countably infinite
set of words, and DP(α0, P0) is a Dirichlet pro-
cess (Ferguson, 1973) with the concentration param-
eter α0 and the base distribution P0, for which we
use a zerogram model described in Section 4.3.

Marginalizing out G, we can interpret the model
as a Chinese restaurant process. Suppose that we
have observed i − 1 words w−i = w1, · · · , wi−1,
the probability of wi is given by

P1(wi = w|w−i) =
n

w−i
w + α0P0

i − 1 + α0
, (1)

where n
w−i
w is the number of word label w observed

in w−i.
The unigram model is known for its tendency to

misidentify a sequence of words in common collo-
cations as a single word (Goldwater et al., 2009). In
preliminary experiments, we found that the unigram
model often interpreted a noun phrase as a single
word, even in the case that its constituents frequently
appeared in text.

4.2 Bigram Model
The problem of the unigram model can be alleviated
by the bigram model based on a hierarchical Dirich-
let process (Goldwater et al., 2009). In the bigram
model, word wi is generated as follows:

G|α0, P0 ∼ DP(α0, P0)

Hl|α1, G ∼ DP(α1, G)

wi|wi−1 = l, Hl ∼ Hl

Marginalizing out G and Hl, we can again explain
the model with the Chinese restaurant process. Un-
like the unigram model, however, the bigram model
depends on the latent table assignments z−i.

P2(wi|h−i) =
n

h−i

(wi−1,wi)
+ α1P1(wi|h−i)

n
h−i

(wi−1,∗) + α1

(2)

P1(wi|h−i) =
t
h−i
wi + α0P0(wi)

t
h−i
∗ + α0

(3)

where h−i = (w−i, z−i), t
h−i
wi is the number of ta-

bles labeled with wi and t
h−i
∗ is the total number of

tables. Thanks to exchangeability, we do not need to
track the exact seating assignments. Still, we need to
maintain a histogram for each w that consists of fre-
quencies of table customers (Blunsom et al., 2009).

4.3 Zerogram Model
Following Nagata (1996) and Mochihashi et al.
(2009), we model the zerogram distribution P0 with
the word length k and the character sequence w =
c1, · · · , ck. Specifically, we define P0 as the combi-
nation of a Poisson distribution with mean λ and a
bigram distribution over characters.

P0(w) = P (k; λ)
P (c1, · · · , ck, k|Θ)

P (k|Θ)

P (k; λ) = e−λ λk

k!

P (c1, · · · , ck, k|Θ) =

k+1∏

i=1

P (ci|ci−1)

Θ is the zerogram model, and c0 and ck+1 are a word
boundary marker. P (k|Θ) can be estimated by ran-
domly generating words from the model. We use
different λ for different scripts. The Japanese writ-
ing system uses several scripts, and each word can
be classified by script such as hiragana, katakana,
kanji, the mixture of hiragana and kanji, etc. The op-
timal value for λ depends on scripts. For example,
katakana, which predominantly denotes loan words,
is longer on average than hiragana, which is often
used for short function words.

We obtain the parameters and counts from an an-
notated corpus and fix them during noun phrase seg-
mentation. This greatly simplifies inference but may
make the model fragile with unknown words. For
this reason, we set a hierarchical Pitman-Yor process
prior (Teh, 2006; Goldwater et al., 2006) for the bi-
gram probability P (ci|ci−1) with the base distribu-
tion of character unigrams. Note that even character
bigrams are sparse because thousands of characters
are used in Japanese.

4.4 Mixing an Annotated Corpus
An annotated corpus can be used to force the mod-
els to stick with our segmentation criteria. A
straightforward way to do this is to mix it with
raw text while fixing the segmentation during infer-
ence (Mochihashi et al., 2009). A word found in
the annotated corpus is generally preferred because
it has fixed counts obtained from the annotated cor-
pus. We call this method direct mixing.

Direct mixing is problematic when raw text is
much smaller than the annotated corpus. With this
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situation, the role of raw text associated with the
noun phrase in question is marginalized by the an-
notated corpus.

As a solution to this problem, we propose another
mixing method called back-off mixing. In back-off
mixing, the annotated corpus is used as part of the
base distribution. In the unigram model, P0 in (1) is
replaced by

PBM
0 = λIPP0 + (1 − λIP)PREF

1 ,

where λIP is a parameter for linear interpolation and
PREF

1 is the unigram probability obtained from the
annotated text. The loose coupling makes the mod-
els robust to an imbalanced pair of texts. Similarly,
the back-off mixing bigram model replaces P1 in (2)
with

PBM
1 = λIPP1 + (1 − λIP)PREF

2 .

5 Inference

Collapsed Gibbs sampling is widely used to find
an optimal segmentation (Goldwater et al., 2009).
In this section, we first show that simple collapsed
sampling can hardly escape the initial segmentation.
To address this problem, we apply a block sam-
pling algorithm named type-based sampling (Liang
et al., 2010) to the unigram model. Since type-based
sampling is not applicable to the bigram model, we
propose a novel sampling procedure for the bigram
model, which we call hybrid type-based sampling.

5.1 Collapsed Sampling

In collapsed Gibbs sampling, the sampler repeatedly
samples every possible boundary position, condi-
tioned on the current state of the rest of the corpus.
It stochastically decides whether the corresponding
local area consists of a single word w1 or two words
w2w3 (w1 = w2.w3). The conditional probabilities
can be derived from (1).

Collapsed sampling is known for slow conver-
gence. This property is especially problematic in
our settings where the initial segmentation is given
by a morphological analyzer. Since the analyzer de-
terministically segments text using pre-defined pa-
rameters, the resultant segmentation is fairly consis-
tent. Segmentation errors involving unknown words
also occur in a regular way. Intuitively, we start with

a local optimum although it is not too distant from
the global optimum. The collapsed Gibbs sampler is
easily entrapped by this local optimum. For this rea-
son, the initial segmentation is usually chosen at ran-
dom (Goldwater et al., 2009). Sentence-based block
sampling is also susceptible to consistent initializa-
tion (Liang et al., 2010).

5.2 Type-based Sampling
To achieve fast convergence, we adopt a block sam-
pling algorithm named type-based sampling (Liang
et al., 2010). For the unigram model, a type-based
sampler jointly samples multiple positions that share
the same type. Two positions have the same type
if the corresponding areas are both of the form w1

or w2w3. Type-based sampling takes advantage of
the exchangeability of multiple positions with the
same type. Given n positions with the same type,
the sampler first samples the number of new bound-
aries m′ (0 ≤ m′ ≤ n), and then uniformly arranges
m′ boundaries out of n positions.

Type-based sampling has the ability to jump from
a local optimum (e.g. consistently segmented) to an-
other stable state (consistently unsegmented). While
Liang et al. (2010) used random initialization, we
take particular note of the possibility of efficiently
correcting the consistent segmentation by the ana-
lyzer.

Type-based sampling is, however, not applicable
to the bigram model for two reasons. The first prob-
lem is sparsity. For the bigram model, we need to
consider adjacent words, wl on the left and wr on
the right. This means that each type consists of
three or four words, wlw1wr or wlw2w3wr. Con-
sequently, few positions share the same type and
we fail to change closely-related areas wl′w1wr′ and
wl′w2w3wr′ , making inference inefficient.

The second and more fundamental problem arises
from the hierarchical settings. Since the bigram
model depends on latent table assignments, the joint
distribution of multiple positions is no longer a
closed-form function of counts.

Strictly speaking, we need to update the model
counts even when sampling one position because
the observation of the bigram ⟨wlw1⟩, for exam-
ple, may affect the probability P2(w2|h−, ⟨wlw1⟩).
Goldwater et al. (2009) approximate the probability
by not updating the model counts in collapsed Gibbs
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sampling (i.e. P2(w2|h−, ⟨wlw1⟩) ≈ P2(w2|h−)).
They rely on the assumption that repeated bigrams
are rare. Obviously this does not hold true for type-
based sampling. Hence for type-based sampling, we
have to update the model counts whenever we ob-
serve a new word.

One way to obtain the joint probability is to ex-
plicitly simulate the updates of histograms and other
model counts. This is very cumbersome as we need
to simulate n + 1 ways of model updates.

5.3 Hybrid Type-based Sampling

To address these problems, we propose a hybrid
sampler which incorporates the Metropolis-Hastings
algorithm into blocked Gibbs sampling. Metropolis-
Hastings is another technique for sampling from a
Markov chain. It first draws a proposed next state
h′ based on the current state h according to some
proposal distribution Q(h′; h). Then it accepts the
proposal with the probability of

min

{
P (h′)Q(h; h′)
P (h)Q(h′; h)

, 1

}
. (4)

If the proposal is not accepted, the current state is
used as the next state. Metropolis-Hastings is useful
when it is difficult to directly sample from P .

We use the Metropolis-Hastings algorithm within
Gibbs sampling. Instead of calculating the n + 1
probabilities of the number of boundaries, we only
compare the current state with a proposed bound-
ary arrangement. Also, the set of positions sampled
jointly is chosen at unigram-level type instead of
bigram-level type. The positions are no longer ex-
changeable. Therefore we calculate the conditional
probability of one specific boundary arrangement.

When n = 1, the only choice is to flip the cur-
rent state (i.e. (m,m′) ∈ {(0, 1), (1, 0)}). This re-
duces to simple collapsed sampling. Otherwise we
draw a proposed state in two steps. Given the n
positions and the number of current boundaries m,
we first draw the number of proposed boundaries m′

from a probability distribution fn(m′; m). We then
randomly arrange m′ boundaries. The probability
mass is uniformly divided by nCm′ arrangements.
One exception is the case when m /∈ {0, n} and
m′ = m. In this case we perform permutation to
obtain h′ ̸= h. To sum up, the proposal distribution
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is defined as follows:

Q(h′; h) =
fn(m′; m)

nCm′ − In(m, m′)
, (5)

where In(m,m′) is 1 if m /∈ {0, n} and m′ = m;
otherwise 0.

We construct fn(m′; m) by discretizing a beta
distribution (α = β < 1) and a normal distribution
with mean m, as shown in Figure 1. The former fa-
vors extreme values while the latter prefers smaller
moves.

The sampling of each type is done in the follow-
ing steps.

1. Collect n positions that share a unigram-level
type.

2. Propose a new boundary arrangement. In what
follows, we only focus on flipped boundaries
because the rest does not change the likelihood
ratio of the current and proposed states.

3. Calculate the current conditional probability.
This can be done by repeatedly applying (2)
while removing words one-by-one and updat-
ing the model counts accordingly.

4. Calculate the proposed conditional probability
while adding words one-by-one.

5. Decide whether to accept the proposal accord-
ing to (4). If the proposal is accepted, we final-
ize the arrangement; otherwise we revert to the
current state.

We implement skip approximation (Liang et al.,
2010) and sample each type once per iteration. This
is motivated by the observation that although the

610



joint sampling of a large number of positions is com-
putationally expensive, the proposal is accepted very
infrequently.

5.4 Additional Constraints

Partial annotations (Tsuboi et al., 2008; Neubig and
Mori, 2010) can be used for inference. If we know in
advance that a certain position is a boundary or non-
boundary, we simply keep it unaltered. As partially-
annotated text, we can use markup. Suppose that the
original text is written with wiki markup as follows:

*JR[[宇野線]][[常山駅]]
[gloss] JR Ube Line Tsuneyama Station

It is clear that the position between “線” (line) and
“常” (tsune) is a boundary.

Similarly, we can impose our trivial rules of seg-
mentation on the model. For example, we can keep
punctuation markers (Li and Sun, 2009) separate
from others.

6 Experiments
6.1 Settings

Data Set We evaluated our approach on Japanese
Wikipedia. For each entry of Wikipedia, we re-
garded the title as a noun phrase and used both the
title and main text for segmentation. We separately
applied our segmentation procedure to each entry.

We constructed the data set as follows. We ex-
tracted each entry from an XML dump of Japanese
Wikipedia.4 We normalized the title by dropping
trailing parentheses that disambiguate entries with
similar names (e.g. “赤城 (空母)” for Akagi (aircraft
carrier)). We extracted the main text from wikitext
and used wiki markup as boundary markers. We ap-
plied both the title and main text to the morphologi-
cal analyzer JUMAN5 to get an initial segmentation.
If the resultant segmentation conflicted with markup
information, we overrode the former. The initial seg-
mentation was also used as the baseline.

We only used entries that satisfied all of the fol-
lowing conditions.

1. The (normalized) title is longer than one char-
acter and contains hiragana, katakana and/or
kanji.

4http://download.wikimedia.org/jawiki/
5http://nlp.ist.i.kyoto-u.ac.jp/EN/

index.php?JUMAN

2. The main text is longer than 1,000 characters.

3. The title appears at least 5 times in the main
text.

The first condition ensures that there are segmenta-
tion ambiguities. The second and third conditions
exclude entries unsuitable for statistical methods.
14% of the entries satisfied these conditions.

We randomly selected 500 entries and manually
segmented their titles for evaluation. The 2-person
inter-annotator Kappa score was 0.95.

As an annotated corpus, we used Kyoto Text Cor-
pus.6 It contained 1,675,188 characters.

Models We compared the unigram and bigram
models. As for inference procedures, we used col-
lapsed Gibbs sampling (CL) for both models, type-
based sampling (TB) for the unigram model and
hybrid type-based sampling (HTB) for the bigram
model.

We tested two mixing methods of the annotated
corpus, direct mixing (DM) and back-off mixing
(BM).

To investigate the effect of initialization, we also
tried randomly segmented text as the initial state
(RAND). For random initialization, we placed a
boundary with probability 0.5 on each position un-
less it was a fixed boundary.

The unigram model has one Dirichlet process
concentration hyperparameter α0 and the bigram
model has α0 and α1. For each model, we experi-
mented with the following values.
α0: 0.1, 0.5, 1 5 10, 50, 100, 500, 1,000 and 5,000
α1: 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100 and 500
For comparison, we also performed hyperparame-
ter sampling. Following Escobar and West (1995),
we set a gamma prior and introduced auxiliary vari-
ables to infer concentration parameters from data.
For back-off mixing, we used the linear interpola-
tion parameter λIP = 0.5. The zerogram model was
trained on the annotated corpus.

In each run, we performed 10 burn-in iterations.
We then performed another 10 iterations to collect
samples.

6http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?Kyoto%20University%20Text%
20Corpus
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Table 1: Results of segmentation of entry titles (F-score (precision/recall)).

model best median inferred
unigram + CL 81.35 (77.78/85.27)** 80.09 (75.80/84.89) 80.86 (76.81/85.36)
unigram + TB 55.87 (66.71/48.06) 51.04 (62.64/43.06) 42.63 (54.91/34.84)
bigram + CL 80.65 (76.73/84.99) 79.96 (75.50/84.99) 80.54 (76.84/84.61)
bigram + HTB 83.23 (85.25/81.30)** 74.52 (71.33/78.00) 34.52 (46.69/27.38)
unigram + CL + DM 85.29 (83.14/87.54)** 81.62 (77.93/85.70)** 80.91 (82.87/79.04)
unigram + TB + DM 35.26 (47.74/29.95) 33.81 (46.20/26.66) 31.90 (44.30/24.93)
bigram + CL + DM 80.37 (76.01/85.27) 79.88 (75.42/84.89) 73.77 (78.49/69.59)
bigram + HTB + DM 69.66 (67.68/71.77) 67.39 (64.35/70.73) 31.54 (43.79/24.64)
unigram + CL + BM 81.28 (77.48/85.46) 80.23 (76.06/84.89) 81.42 (77.75/85.46)
unigram + TB + BM 57.22 (68.01/49.39) 52.98 (64.50/44.95) 42.43 (54.69/34.66)
bigram + CL + BM 81.33 (77.34/85.74) 80.07 (75.69/84.99) 81.46 (77.82/85.46)**

bigram + HTB + BM 86.32 (85.67/86.97)** 76.35 (71.89/81.40) 40.81 (53.35/33.05)
unigram + TB + RAND 56.01 (66.93/48.16) 50.89 (62.21/43.06) 42.68 (54.81/34.94)
bigram + HTB + RAND 79.68 (80.13/79.23) 68.16 (63.64/73.37) 34.99 (47.05/27.86)
unigram + TB + BM + RAND 57.44 (67.91/49.76) 50.86 (61.92/43.15) 42.31 (54.55/34.56)
bigram + HTB + BM + RAND 84.03 (83.10/84.99) 70.46 (65.25/76.58) 40.16 (52.60/32.48)
baseline (JUMAN) 80.09 (75.80/84.89)
** Statistically significant improvement with p < 0.01.

Evaluation Metrics We evaluated the segmenta-
tion accuracy of 500 entry titles. Specifically we
evaluated the performance of a model with preci-
sion, recall and the F-score, all of which were based
on tokens. We report the score of the most frequent
segmentation among 10 samples.

Following Lee et al. (2010), we report the best and
median settings of hyperparameters based on the F-
score, in addition to inferred values.

In order to evaluate the degree of difference
between a pair of segmentations, we employed
character-based evaluation. Following Kudo et
al. (2004), we converted a word sequence into
character-based BI labels and examined labeling dis-
agreements. McNemar’s test of significance was
based on this metric.

6.2 Results
Table 1 shows segmentation accuracy of various
models. One would notice that the baseline score
is much lower than the score previously reported re-
garding newspaper articles (Kudo et al., 2004). It
is because unlike newspaper articles, the titles of
Wikipedia entries contain an unusually high pro-
portion of unknown words. As suggested by rel-
atively low precision, unknown words tend to be
over-segmented by the morphological analyzer.

In the best hyperparameter settings, the back-off
mixing bigram model with hybrid type-based sam-

pling (bigram + HTB + BM) significantly outper-
formed the baseline and achieved the best F-score.
It did not performed well in the median setting as
it was sensitive to the value of α1. Hyperparameter
estimation led to catastrophic decreases in bigram
models as it made the hyperparameters much larger
than those in the best settings.

Collapsed sampling (+CL) returned scores com-
parable to that of the baseline. It is simply because
it did not change the initial segmentation a lot. In
contrast, type-based sampling (+TB) brought large
moves to the unigram model and significantly hurt
accuracy. As suggested by relatively low recall, the
unigram model prefers under-segmentation.

When combined with (hybrid) type-based sam-
pling (+TB/+HTB), back-off mixing (+BM) in-
creased accuracy from the corresponding non-
mixing models. By contrast, direct mixing (+DM)
drastically decreased accuracy from the non-mixing
models. We can confirm that when the main text
is orders of magnitude smaller than the annotated
text, the role of constituent words in the main text
is underestimated. To our surprise, collapsed sam-
pling with mixing models (+CL, +DM/+BM) out-
performed the baseline. However, the scores of type-
based sampling (+TB) suggest that with much more
iterations, the models would converge to undesired
states.
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The unigram model with random initialization
was indifferent from that with default initialization.
By contrast, the performance of the bigram model
slightly degenerated with random initialization.

6.3 Convergence

Figure 2 shows how segmentations differed from
the initial state in the course of inference.7 A diff
is defined as the number of character-based dis-
agreements between the baseline segmentation and a
model output. Hyperparameters used were those of
the best model with (hybrid) type-based sampling.

We can see that collapsed sampling was almost
unable to escape the initial state. With type-based
sampling (+TB), the unigram model went further
than the bigram model, but to an undesired direc-
tion. The bigram model with hybrid type-based
sampling (bigram + HTB) converged in few itera-
tions. Although the model with random initializa-
tion (+RAND) converged to a nearby point, the ini-
tial segmentation by the morphological analyzer re-
alized a bit faster convergence and better accuracy.

Figure 2 shows how acceptance rates changed
during inference. For comparison, a sample by a
type-based Gibbs sampler was treated as “accepted”
if the number of new boundaries was different from
that of the current boundaries (i.e. m′ ̸= m). The
acceptance rates were low and samplers seemingly
stayed around modes.

6.4 Approximation

Up to this point, we consider every possible bound-
ary position. However, this seems wasteful, given
that a large portion of text has only marginal influ-
ence on the segmentation of the noun phrase in ques-
tion. For this reason, we implemented approxima-
tion named matching skip. We sampled a boundary
only if the corresponding local area contained a sub-
string of the noun phrase in question.

Table 2 shows the result of approximation. Hy-
perparameters used were those of the best models
with full sampling. Matching skip steadily worsened
performance although not to a large extent. Mean-

7For a fair comparison, we might need to report changes
over time instead of iterations. However, the difference of con-
vergence speed is obvious in the iteration-based comparison al-
though (hybrid) type-based sampling takes several times longer
than collapsed sampling in the current naı̈ve implementation.
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while it drastically reduced the number of sampled
positions. The median skip rate was 90.87%, with a
standard deviation of 8.5.

6.5 Discussion
Figure 4 shows some segmentations corrected by
the back-off mixing bigram model with hybrid type-
based sampling. “市比野” (ichihino) is a rare place
name but can be identified by the model because
it is frequently used in the article. “こなみるく”
(konamiruku in hiragana) seems a pun on “粉ミル
ク” (kona miruku, “powdered milk”) and “コナミ”
(konami in katakana, a company). We consider it
as a single word because we cannot reconstruct the
etymology solely based on the main text. Note the
different scripts. In Japanese, people often change
the script to derive a proper noun from a common
noun, which a naı̈ve analyzer fails to recognize. It is
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Table 2: Effect of matching skip (F-score (precision/recall)).

model full matching skip
bigram + HTB 83.23 (85.25/81.30)** 82.86 (84.27/81.49)
bigram + HTB + BM 86.32 (85.67/86.97)** 83.87 (82.60/85.17)**

bigram + HTB + RAND 79.68 (80.13/79.23) 78.81 (78.64/75.07)
bigram + HTB + BM + RAND 84.03 (83.10/84.99) 81.08 (80.22/81.96)
baseline (JUMAN) 80.09 (75.80/84.89)
** Statistically significant improvement with p < 0.01.

樋 +脇 +町 +市 +比 +野⇒樋脇
hiwaki

+町
chou

+市比野
ichihino

(Ichihino, Hiwaki Town, an address)

り +そな +カード⇒りそな
risona

+カード
kaRdo

(Risona Card, a company)

ちり +とて +ちん⇒ちりとてちん
chiritotechiN (name of a play)

こな +みる +く⇒こなみるく
konamiruku

(a shop affiliated with Konami Corporation)

はい +じぃ⇒はいじぃ
haiziI (stage name of a comedian)

ちん +すこう⇒ちんすこう
chiNsukou (a traditional sweet)

コントラアルトクラリネット⇒コントラ
koNtora

+アルト
aruto

+クラリネット
kurarineQto (Contra-alto clarinet)

Figure 4: Examples of improved segmentations.

very important to identify hiragana words correctly.
As hiragana is mainly used to write function words
and other basic words, segmentation errors concern-
ing hiragana often bring disastrous effects on ap-
plications of morphological analysis. For example,
the analyzer over-segments “ちりとてちん” (chiri-
totechiN) into three shorter words among which the
second word “とて” (tote) is a particle, and this se-
quence of words is transformed into a terrible parse
tree.

Most improvements come from correction of
over-segmentation because the initial segmenta-
tion by the analyzer shows a tendency of over-
segmentation. An example of corrected under-
segmentation is “contra-alto clarinet.” The pres-
ence of “clarinet,” “alto” and “contrabass” and oth-
ers in the main text allowed the model to iden-

tify the constituents. On the other hand, the seg-
mentation failed when our assumption about con-
stituents does not hold. For example, the person
name “菊池俊吉” (kikuchi shuNkichi) is two words
but was erroneously combined into a single word by
the model because unfortunately he was always re-
ferred to by the full name.

7 Conclusions

In this paper, we proposed a new task of Japanese
noun phrase segmentation. We adopted non-
parametric Bayesian language models and proposed
hybrid type-based sampling that can efficiently cor-
rect segmentation given by the morphological an-
alyzer. Although supervised segmentation is very
competitive, we showed that it can be supplemented
with our unsupervised approach.

We applied the proposed method to encyclopedic
text to segment noun phrases in it. The proposed
method can be applied to other tasks. For example,
in unknown word acquisition (Murawaki and Kuro-
hashi, 2008), noun phrases are often acquired from
text as single words. We can now segment them into
words in a more sophisticated way.

In the future we will assign a POS tag to each
word in order to use segmented noun phrases in mor-
phological analysis. We assume that the meaning
of constituents in a noun phrase rarely depends on
outer context. So it would be helpful to augment
them with rich semantic information in advance in-
stead of disambiguating their meaning every time we
analyze given text.
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Abstract

We present an inference algorithm that orga-
nizes observed words (tokens) into structured
inflectional paradigms (types). It also natu-
rally predicts the spelling of unobserved forms
that are missing from these paradigms, and dis-
covers inflectional principles (grammar) that
generalize to wholly unobserved words.

Our Bayesian generative model of the data ex-
plicitly represents tokens, types, inflections,
paradigms, and locally conditioned string edits.
It assumes that inflected word tokens are gen-
erated from an infinite mixture of inflectional
paradigms (string tuples). Each paradigm is
sampled all at once from a graphical model,
whose potential functions are weighted finite-
state transducers with language-specific param-
eters to be learned. These assumptions natu-
rally lead to an elegant empirical Bayes infer-
ence procedure that exploits Monte Carlo EM,
belief propagation, and dynamic programming.
Given 50–100 seed paradigms, adding a 10-
million-word corpus reduces prediction error
for morphological inflections by up to 10%.

1 Introduction
1.1 Motivation

Statistical NLP can be difficult for morphologically
rich languages. Morphological transformations on
words increase the size of the observed vocabulary,
which unfortunately masks important generalizations.
In Polish, for example, each lexical verb has literally
100 inflected forms (Janecki, 2000). That is, a single
lexeme may be realized in a corpus as many different
word types, which are differently inflected for person,
number, gender, tense, mood, etc.

∗ This research was done at Johns Hopkins University as
part of the first author’s dissertation work. It was supported by
the Human Language Technology Center of Excellence and by
the National Science Foundation under Grant No. 0347822.

All this makes lexical features even sparser than
they would be otherwise. In machine translation
or text generation, it is difficult to learn separately
how to translate, or when to generate, each of these
many word types. In text analysis, it is difficult to
learn lexical features (as cues to predict topic, syntax,
semantics, or the next word), because one must learn
a separate feature for each word form, rather than
generalizing across inflections.

Our engineering goal is to address these problems
by mostly-unsupervised learning of morphology. Our
linguistic goal is to build a generative probabilistic
model that directly captures the basic representations
and relationships assumed by morphologists. This
model suffices to define a posterior distribution over
analyses of any given collection of type and/or token
data. Thus we obtain scientific data interpretation as
probabilistic inference (Jaynes, 2003). Our computa-
tional goal is to estimate this posterior distribution.

1.2 What is Estimated
Our inference algorithm jointly reconstructs token,
type, and grammar information about a language’s
morphology. This has not previously been attempted.

Tokens: We will tag each word token in a corpus
with (1) a part-of-speech (POS) tag,1 (2) an inflection,
and (3) a lexeme. A token of brokenmight be tagged
as (1) a VERB and more specifically as (2) the past
participle inflection of (3) the abstract lexeme �b&r��a�k.2

Reconstructing the latent lexemes and inflections
allows the features of other statistical models to con-
sider them. A parser may care that broken is a
past participle; a search engine or question answer-
ing system may care that it is a form of �b&r��a�k; and a
translation system may care about both facts.

1POS tagging may be done as part of our Bayesian model or
beforehand, as a preprocessing step. Our experiments chose the
latter option, and then analyzed only the verbs (see section 8).

2We use cursive font for abstract lexemes to emphasize that
they are atomic objects that do not decompose into letters.
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singular plural
present 1st-person breche brechen

2nd-person brichst brecht
3rd-person bricht brechen

past 1st-person brach brachen
2nd-person brachst bracht
3rd-person brach brachen

Table 1: Part of a morphological paradigm in German,
showing the spellings of some inflections of the lexeme
�b&r��a�k (whose lemma is brechen), organized in a grid.

Types: In carrying out the above, we will recon-
struct specific morphological paradigms of the lan-
guage. A paradigm is a grid of all the inflected forms
of some lexeme, as illustrated in Table 1. Our recon-
structed paradigms will include our predictions of
inflected forms that were never observed in the cor-
pus. This tabular information about the types (rather
than the tokens) of the language may be separately
useful, for example in translation and other genera-
tion tasks, and we will evaluate its accuracy.

Grammar: We estimate parameters ~θ that de-
scribe general patterns in the language. We learn
a prior distribution over inflectional paradigms by
learning (e.g.) how a verb’s suffix or stem vowel
tends to change when it is pluralized. We also learn
(e.g.) whether singular or plural forms are more com-
mon. Our basic strategy is Monte Carlo EM, so these
parameters tell us how to guess the paradigms (Monte
Carlo E step), then these reconstructed paradigms tell
us how to reestimate the parameters (M step), and so
on iteratively. We use a few supervised paradigms to
initialize the parameters and help reestimate them.

2 Overview of the Model

We begin by sketching the main ideas of our model,
first reviewing components that we introduced in
earlier papers. Sections 5–7 will give more formal
details. Full details and more discussion can be found
in the first author’s dissertation (Dreyer, 2011).

2.1 Modeling Morphological Alternations

We begin with a family of joint distributions p(x, y)
over string pairs, parameterized by ~θ. For example,
to model just the semi-systematic relation between a
German lemma and its 3rd-person singular present
form, one could train ~θ to maximize the likelihood
of (x, y) pairs such as (brechen, bricht). Then,
given a lemma x, one could predict its inflected form

y via p(y | x), and vice-versa.
Dreyer et al. (2008) define such a family via a

log-linear model with latent alignments,

p(x, y) =
∑

a

p(x, y, a) ∝
∑

a

exp(~θ · ~f(x, y, a))

Here a ranges over monotonic 1-to-1 character align-
ments between x and y. ∝means “proportional to” (p
is normalized to sum to 1). ~f extracts a vector of local
features from the aligned pair by examining trigram
windows. Thus ~θ can reward or penalize specific
features—e.g., insertions, deletions, or substitutions
in specific contexts, as well as trigram features of x
and y separately.3 Inference and training are done by
dynamic programming on finite-state transducers.

2.2 Modeling Morphological Paradigms
A paradigm such as Table 1 describes how some ab-
stract lexeme (�b&r��a�k) is expressed in German.4 We
evaluate whole paradigms as linguistic objects, fol-
lowing word-and-paradigm or realizational morphol-
ogy (Matthews, 1972; Stump, 2001). That is, we pre-
sume that some language-specific distribution p(π)
defines whether a paradigm π is a grammatical—and
a priori likely—way for a lexeme to express itself
in the language. Learning p(π) helps us reconstruct
paradigms, as described at the end of section 1.2.

Let π = (x1, x2, . . .). In Dreyer and Eisner (2009),
we showed how to model p(π) as a renormalized
product of many pairwise distributions prs(xr, xs),
each having the log-linear form of section 2.1:

p(π) ∝
∏

r,s

prs(xr, xs) ∝ exp(
∑

r,s

~θ·−→frs(xr, xs, ars))

This is an undirected graphical model (MRF) over
string-valued random variables xs; each factor prs
evaluates the relationship between some pair of
strings. Note that it is still a log-linear model, and pa-
rameters in ~θ can be reused across different rs pairs.

To guess at unknown strings in the paradigm,
Dreyer and Eisner (2009) show how to perform ap-
proximate inference on such an MRF by loopy belief

3Dreyer et al. (2008) devise additional helpful features based
on enriching the aligned pair with additional latent information,
but our present experiments drop those for speed.

4Our present experiments focus on orthographic forms, be-
cause we are learning from a written corpus. But it would be
natural to use phonological forms instead, or to include both in
the paradigm so as to model their interrelationships.
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X1pl

X2pl

X3pl

XLem

X1sg

X2sg

X3sg

brichen
brechen ... ? brichen

brechen ... ?

bricht
brecht ... ?

briche
breche ... ?

brichst
brechst ... ?

bricht brechen

Figure 1: A distribution over paradigms modeled as an
MRF over 7 strings. Random variables XLem, X1st, etc.,
are the lemma, the 1st person form, etc. Suppose two
forms are observed (denoted by the “lock” icon). Given
these observations, belief propagation estimates the poste-
rior marginals over the other variables (denoted by “?”).

propagation, using finite-state operations. It is not
necessary to include all rs pairs. For example, Fig. 1
illustrates the result of belief propagation on a simple
MRF whose factors relate all inflected forms to a
common (possibly unobserved) lemma, but not di-
rectly to one another.5

Our method could be used with any p(π). To speed
up inference (see footnote 7), our present experiments
actually use the directed graphical model variant of
Fig. 1—that is, p(π) = p1(x1) ·

∏
s>1 p1s(xs | x1),

where x1 denotes the lemma.

2.3 Modeling the Lexicon (types)

Dreyer and Eisner (2009) learned ~θ by partially ob-
serving some paradigms (type data). That work,
while rather accurate at predicting inflected forms,
sometimes erred: it predicted spellings that never oc-
curred in text, even for forms that “should” be com-
mon. To fix this, we shall incorporate an unlabeled
or POS-tagged corpus (token data) into learning.

We therefore need a model for generating tokens—
a probabilistic lexicon that specifies which inflections
of which lexemes are common, and how they are
spelled. We do not know our language’s probabilistic
lexicon, but we assume it was generated as follows:

1. Choose parameters ~θ of the MRF. This defines
p(π): which paradigms are likely a priori.

2. Choose a distribution over the abstract lexemes.
5This view is adopted by some morphological theorists (Al-

bright, 2002; Chan, 2006), although see Appendix E.2 for a
caution about syncretism. Note that when the lemma is unob-
served, the other forms do still influence one another indirectly.

3. For each lexeme, choose a distribution over its
inflections.

4. For each lexeme, choose a paradigm that will
be used to express the lexeme orthographically.

Details are given later. Briefly, step 1 samples ~θ
from a Gaussian prior. Step 2 samples a distribution
from a Dirichlet process. This chooses a countable
number of lexemes to have positive probability in the
language, and decides which ones are most common.
Step 3 samples a distribution from a Dirichlet. For
the lexeme �t�h�i�n�k, this might choose to make 1st-
person singular more common than for typical verbs.
Step 4 just samples IID from p(π).

In our model, each part of speech generates its own
lexicon: VERBs are inflected differently from NOUNs
(different parameters and number of inflections). The
size and layout of (e.g.) VERB paradigms is language-
specific; we currently assume it is given by a linguist,
along with a few supervised VERB paradigms.

2.4 Modeling the Corpus (tokens)
At present, we use only a very simple exchangeable
model of the corpus. We assume that each word was
independently sampled from the lexicon given its
part of speech, with no other attention to context.

For example, a token of brechen may have been
chosen by choosing frequent lexeme �b&r��a�k from the
VERB lexicon; then choosing 1st-person plural given
�b&r��a�k; and finally looking up that inflection’s spelling
in �b&r��a�k’s paradigm. This final lookup is determinis-
tic since the lexicon has already been generated.

3 A Sketch of Inference and Learning

3.1 Gibbs Sampling Over the Corpus
Our job in inference is to reconstruct the lexicon that
was used and how each token was generated from it
(i.e., which lexeme and inflection?). We use collapsed
Gibbs sampling, repeatedly guessing a reanalysis of
each token in the context of all others. Gradually, sim-
ilar tokens get “clustered” into paradigms (section 4).

The state of the sampler is illustrated in Fig. 2.
The bottom half shows the current analyses of the
verb tokens. Each is associated with a particular slot
in some paradigm. We are now trying to reanalyze
brechen at position ¼. The dashed arrows show
some possible analyses.
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singular plural

1st
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3rd bricht

brichst
brechst... ?

briche
breche... ?

brechen

bricht
brecht... ?

brichen
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springe
sprenge... ?

springt
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...
brechen... ... ...

3rd pl.

Figure 2: A state of the Gibbs sampler (note that the
assumed generative process runs roughly top-to-bottom).
Each corpus token i has been tagged with part of speech ti,
lexeme `i and inflection si. Token ¶ has been tagged as
�b&r��a�k and 3rd sg., which locked the corresponding type
spelling in the paradigm to the spelling w1 = bricht;
similarly for ¸ and º. Now w7 is about to be reanalyzed.

The key intuition is that the current analyses of the
other verb tokens imply a posterior distribution over
the VERB lexicon, shown in the top half of the figure.

First, because of the current analyses of ¶ and ¸,
the 3rd-person spellings of �b&r��a�k are already con-
strained to match w1 and w3 (the “lock” icon).

Second, belief propagation as in Fig. 1 tells us
which other inflections of �b&r��a�k (the “?” icon) are
plausibly spelled as brechen, and how likely they
are to be spelled that way.

Finally, the fact that other tokens are associated
with �b&r��a�k suggest that this is a popular lexeme, mak-
ing it a plausible explanation of ¼ as well. (This is
the “rich get richer” property of the Chinese restau-
rant process; see section 6.6.) Furthermore, certain
inflections of �b&r��a�k appear to be especially popular.

In short, given the other analyses, we know which
inflected lexemes in the lexicon are likely, and how
likely each one is to be spelled as brechen. This lets
us compute the relative probabilities of the possible
analyses of token ¼, so that the Gibbs sampler can
accordingly choose one of these analyses at random.

3.2 Monte Carlo EM Training of ~θ

For a given ~θ, this Gibbs sampler converges to the
posterior distribution over analyses of the full corpus.
To improve our ~θ estimate, we periodically adjust ~θ
to maximize or increase the probability of the most
recent sample(s). For example, having tagged w5 =

springt as s5 = 2nd-person plural may strengthen
our estimated probability that 2nd-person spellings
tend to end in -t. That revision to ~θ, in turn, will
influence future moves of the sampler.

If the sampler is run long enough between calls to
the ~θ optimizer, this is a Monte Carlo EM procedure
(see end of section 1.2). It uses the data to optimize a
language-specific prior p(π) over paradigms—an em-
pirical Bayes approach. (A fully Bayesian approach
would resample ~θ as part of the Gibbs sampler.)

3.3 Collapsed Representation of the Lexicon

The lexicon is collapsed out of our sampler, in the
sense that we do not represent a single guess about the
infinitely many lexeme probabilities and paradigms.
What we store about the lexicon is information about
its full posterior distribution: the top half of Fig. 2.

Fig. 2 names its lexemes as �b&r��a�k and �j�u�m�p for ex-
pository purposes, but of course the sampler cannot
reconstruct such labels. Formally, these labels are col-
lapsed out, and we represent lexemes as anonymous
objects. Tokens ¶ and ¸ are tagged with the same
anonymous lexeme (which will correspond to sitting
at the same table in a Chinese restaurant process).

For each lexeme ` and inflection s, we maintain
pointers to any tokens currently tagged with the slot
(`, s). We also maintain an approximate marginal
distribution over the spelling of that slot:6

1. If (`, s) points to at least one token i, then we
know (`, s) is spelled as wi (with probability 1).

2. Otherwise, the spelling of (`, s) is not known.
But if some spellings in `’s paradigm are known,
store a truncated distribution that enumerates the
25 most likely spellings for (`, s), according to
loopy belief propagation within the paradigm.

3. Otherwise, we have observed nothing about `:
it is currently unused. All such ` share the same
marginal distribution over spellings of (`, s):
the marginal of the prior p(π). Here a 25-best
list could not cover all plausible spellings. In-
stead we store a probabilistic finite-state lan-
guage model that approximates this marginal.7

6Cases 1 and 2 below must in general be updated whenever
a slot switches between having 0 and more than 0 tokens. Cases
2 and 3 must be updated when the parameters ~θ change.

7This character trigram model is fast to build if p(π) is de-
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A hash table based on cases 1 and 2 can now be
used to rapidly map any word w to a list of slots of
existing lexemes that might plausibly have generated
w. To ask whether w might instead be an inflection s
of a novel lexeme, we score w using the probabilistic
finite-state automata from case 3, one for each s.

The Gibbs sampler randomly chooses one of these
analyses. If it chooses the “novel lexeme” option,
we create an arbitrary new lexeme object in mem-
ory. The number of explicitly represented lexemes is
always finite (at most the number of corpus tokens).

4 Interpretation as a Mixture Model

It is common to cluster points in Rn by assuming
that they were generated from a mixture of Gaussians,
and trying to reconstruct which points were generated
from the same Gaussian.

We are similarly clustering word tokens by assum-
ing that they are generated from a mixture of weighted
paradigms. After all, each word token was obtained
by randomly sampling a weighted paradigm (i.e., a
cluster) and then randomly sampling a word from it.

Just as each Gaussian in a Gaussian mixture is
a distribution over all points Rn, each weighted
paradigm is a distribution over all spellings Σ∗ (but
assigns probability > 0 to only a finite subset of Σ∗).

Inference under our model clusters words together
by tagging them with the same lexeme. It tends to
group words that are “similar” in the sense that the
base distribution p(π) predicts that they would tend
to co-occur within a paradigm. Suppose a corpus
contains several unlikely but similar tokens, such
as discombobulated and discombobulating.
A language might have one probable lexeme from
whose paradigm all these words were sampled. It is
much less likely to have several probable lexemes that
all coincidentally chose spellings that started with
discombobulat-. Generating discombobulat-

only once is cheaper (especially for such a long pre-
fix), so the former explanation has higher probability.
This is like explaining nearby points in Rn as sam-
ples from the same Gaussian. Of course, our model
is sensitive to more than shared prefixes, and it does
not merely cluster words into a paradigm but assigns
them to particular inflectional slots in the paradigm.
fined as at the end of section 2.2. If not, one could still try belief
propagation; or one could approximate by estimating a language
model from the spellings associated with slot s by cases 1 and 2.

4.1 The Dirichlet Process Mixture Model

Our mixture model uses an infinite number of mix-
ture components. This avoids placing a prior bound
on the number of lexemes or paradigms in the lan-
guage. We assume that a natural language has an
infinite lexicon, although most lexemes have suffi-
ciently low probability that they have not been used
in our training corpus or even in human history (yet).

Our specific approach corresponds to a Bayesian
technique, the Dirichlet process mixture model. Ap-
pendix A (supplementary material) explains the
DPMM and discusses it in our context.

The DPMM would standardly be presented as gen-
erating a distribution over countably many Gaussians
or paradigms. Our variant in section 2.3 instead broke
this into two steps: it first generated a distribution
over countably many lexemes (step 2), and then gen-
erated a weighted paradigm for each lexeme (steps
3–4). This construction keeps distinct lexemes sepa-
rate even if they happen to have identical paradigms
(polysemy). See Appendix A for a full discussion.

5 Formal Notation

5.1 Value Types

We now describe our probability model in more for-
mal detail. It considers the following types of mathe-
matical objects. (We use consistent lowercase letters
for values of these types, and consistent fonts for
constants of these types.)

A word w, such as broken, is a finite string of
any length, over some finite, given alphabet Σ.

A part-of-speech tag t, such as VERB, is an ele-
ment of a certain finite set T , which in this paper we
assume to be given.

An inflection s,8 such as past participle, is an ele-
ment of a finite set St. A token’s part-of-speech tag
t ∈ T determines its set St of possible inflections.
For tags that do not inflect, |St| = 1. The sets St
are language-specific, and we assume in this paper
that they are given by a linguist rather than learned.
A linguist also specifies features of the inflections:
the grid layout in Table 1 shows that 4 of the 12
inflections in SVERB share the “2nd-person” feature.

8We denote inflections by s because they represent “slots” in
paradigms (or, in the metaphor of section 6.7, “seats” at tables in
a Chinese restaurant). These slots (or seats) are filled by words.
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A paradigm for t ∈ T is a mapping π : St → Σ∗,
specifying a spelling for each inflection in St. Table 1
shows one VERB paradigm.

A lexeme ` is an abstract element of some lexical
space L. Lexemes have no internal semantic struc-
ture: the only question we can ask about a lexeme is
whether it is equal to some other lexeme. There is no
upper bound on how many lexemes can be discovered
in a text corpus; L is infinite.

5.2 Random Quantities

Our generative model of the corpus is a joint probabil-
ity distribution over a collection of random variables.
We describe them in the same order as section 1.2.

Tokens: The corpus is represented by token vari-
ables. In our setting the sequence of words ~w =
w1, . . . , wn ∈ Σ∗ is observed, along with n. We
must recover the corresponding part-of-speech tags
~t = t1, . . . , tn ∈ T , lexemes ~̀ = `1, . . . , `n ∈ L,
and inflections ~s = s1, . . . , sn, where (∀i)si ∈ Sti .

Types: The lexicon is represented by type
variables. For each of the infinitely many lex-
emes ` ∈ L, and each t ∈ T , the paradigm
πt,` is a function St → Σ∗. For example,
Table 1 shows a possible value πVERB,�b&r��a�k.
The various spellings in the paradigm, such as
πVERB,�b&r��a�k(1st-person sing. pres.)=breche, are
string-valued random variables that are correlated
with one another.

Since the lexicon is to be probabilistic (section 2.3),
Gt(`) denotes tag t’s distribution over lexemes ` ∈
L, while Ht,`(s) denotes the tagged lexeme (t, `)’s
distribution over inflections s ∈ St.

Grammar: Global properties of the language are
captured by grammar variables that cut across lex-
ical entries: our parameters ~θ that describe typical
inflectional alternations, plus parameters ~φt, αt, α′t, ~τ
(explained below). Their values control the overall
shape of the probabilistic lexicon that is generated.

6 The Formal Generative Model

We now fully describe the generative process that
was sketched in section 2. Step by step, it randomly
chooses an assignment to all the random variables of
section 5.2. Thus, a given assignment’s probability—
which section 3’s algorithms consult in order to re-
sample or improve the current assignment—is the

product of the probabilities of the individual choices,
as described in the sections below. (Appendix B
provides a drawing of this as a graphical model.)

6.1 Grammar Variables p(~θ), p(−→φt), p(αt), p(α′t)
First select the grammar variables from a prior. (We
will see below how these variables get used.) Our
experiments used fairly flat priors. Each weight in ~θ
or
−→
φt is drawn IID from N (0, 10), and each αt or α′t

from a Gamma with mode 10 and variance 1000.

6.2 Paradigms p(πt,` | ~θ)
For each t ∈ T , let Dt(π) denote the distribution
over paradigms that was presented in section 2.2
(where it was called p(π)). Dt is fully specified by
our graphical model for paradigms of part of speech
t, together with its parameters ~θ as generated above.

This is the linguistic core of our model. It consid-
ers spellings: DVERB describes what verb paradigms
typically look like in the language (e.g., Table 1).

Parameters in ~θ may be shared across parts of
speech t. These “backoff” parameters capture gen-
eral phonotactics of the language, such as prohibited
letter bigrams or plausible vowel changes.

For each possible tagged lexeme (t, `), we now
draw a paradigm πt,` fromDt. Most of these lexemes
will end up having probability 0 in the language.

6.3 Lexical Distributions p(Gt | αt)
We now formalize section 2.3. For each t ∈ T , the
language has a distribution Gt(`) over lexemes. We
draw Gt from a Dirichlet process DP(G,αt), where
G is the base distribution over L, and αt > 0 is
a concentration parameter generated above. If αt
is small, then Gt will tend to have the property that
most of its probability mass falls on relatively few
of the lexemes in Lt def

= {` ∈ L : Gt(`) > 0}. A
closed-class tag is one whose αt is especially small.

For G to be a uniform distribution over an infinite
lexeme set L, we need L to be uncountable.9 How-
ever, it turns out10 that with probability 1, each Lt
is countably infinite, and all the Lt are disjoint. So
each lexeme ` ∈ L is selected by at most one tag t.

9For example, L def
= [0, 1], so that �b&r��a�k is merely a sugges-

tive nickname for a lexeme such as 0.2538159.
10This can be seen by considering the stick-breaking construc-

tion of the Dirichlet process that (Sethuraman, 1994; Teh et al.,
2006). A separate stick is broken for each Gt. See Appendix A.
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6.4 Inflectional Distributions p(Ht,` |
−→
φt, α′t)

For each tagged lexeme (t, `), the language specifies
some distribution Ht,` over its inflections.

First we construct backoff distributions Ht that are
independent of `. For each tag t ∈ T , let Ht be some
base distribution over St. As St could be large in
some languages, we exploit its grid structure (Table 1)
to reduce the number of parameters of Ht. We take
Ht to be a log-linear distribution with parameters

−→
φt

that refer to features of inflections. E.g., the 2nd-
person inflections might be systematically rare.

Now we model each Ht,` as an independent draw
from a finite-dimensional Dirichlet distribution with
meanHt and concentration parameter α′t. E.g., �t�h�i�n�k
might be biased toward 1st-person sing. present.

6.5 Part-of-Speech Tag Sequence p(~t | ~τ)

In our current experiments, ~t is given. But in general,
to discover tags and inflections simultaneously, we
can suppose that the tag sequence ~t (and its length n)
are generated by a Markov model, with tag bigram or
trigram probabilities specified by some parameters ~τ .

6.6 Lexemes p(`i | Gti)
We turn to section 2.4. A lexeme token depends on
its tag: draw `i from Gti , so p(`i | Gti) = Gti(`i).

6.7 Inflections p(si | Hti,`i)

An inflection slot depends on its tagged lexeme: we
draw si from Hti,`i , so p(si | Hti,`i) = Hti,`i(si).

6.8 Spell-out p(wi | πti,`i(si))
Finally, we generate the word wi through a determin-
istic spell-out step.11 Given the tag, lexeme, and in-
flection at position i, we generate the word wi simply
by looking up its spelling in the appropriate paradigm.
So p(wi | πti,`i(si)) is 1 if wi = πti,`i(si), else 0.

6.9 Collapsing the Assignment
Again, a full assignment’s probability is the product
of all the above factors (see drawing in Appendix B).

11To account for typographical errors in the corpus, the spell-
out process could easily be made nondeterministic, with the
observed word wi derived from the correct spelling πti,`i(si)
by a noisy channel model (e.g., (Toutanova and Moore, 2002))
represented as a WFST. This would make it possible to analyze
brkoen as a misspelling of a common or contextually likely
word, rather than treating it as an unpronounceable, irregularly
inflected neologism, which is presumably less likely.

But computationally, our sampler’s state leaves the
Gt unspecified. So its probability is the integral of
p(assignment) over all possible Gt. As Gt appears
only in the factors from headings 6.3 and 6.6, we can
just integrate it out of their product, to get a collapsed
sub-model that generates p(~̀ | ~t, ~α) directly:
∫

GADJ

· · ·
∫

GVERB

dG

(∏

t∈T
p(Gt | αt)

)(
n∏

i=1

p(`i | Gti)
)

= p(~̀ | ~t, ~α) =
n∏

i=1

p(`i | `1, . . . `i−1 ~t, ~α)

where it turns out that the factor that generates `i is
proportional to |{j < i : `j = `i and tj = ti}| if that
integer is positive, else proportional to αtiG(`i).

Metaphorically, each tag t is a Chinese restaurant
whose tables are labeled with lexemes. The tokens
are hungry customers. Each customer i = 1, 2, . . . , n
enters restaurant ti in turn, and `i denotes the label
of the table she joins. She picks an occupied table
with probability proportional to the number of pre-
vious customers already there, or with probability
proportional to αti she starts a new table whose label
is drawn from G (it is novel with probability 1, since
G gives infinitesimal probability to each old label).

Similarly, we integrate out the infinitely many
lexeme-specific distributionsHt,` from the product of
6.4 and 6.7, replacing it by the collapsed distribution

p(~s | ~̀,~t,−→φt,
−→
α′) [recall that

−→
φt determines Ht]

=

n∏

i=1

p(si | s1, . . . si−1, ~̀,~t,
−→
φt,
−→
α′)

where the factor for si is proportional to |{j < i :
sj = si and (tj , `j) = (ti, `i)}|+ α′tiHti(si).

Metaphorically, each table ` in Chinese restaurant
t has a fixed, finite set of seats corresponding to the
inflections s ∈ St. Each seat is really a bench that
can hold any number of customers (tokens). When
customer i chooses to sit at table `i, she also chooses
a seat si at that table (see Fig. 2), choosing either an
already occupied seat with probability proportional to
the number of customers already in that seat, or else
a random seat (sampled from Hti and not necessarily
empty) with probability proportional to α′ti .

7 Inference and Learning

As section 3 explained, the learner alternates between
a Monte Carlo E step that uses Gibbs sampling to
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sample from the posterior of (~s, ~̀,~t) given ~w and the
grammar variables, and an M step that adjusts the
grammar variables to maximize the probability of the
(~w,~s, ~̀,~t) samples given those variables.

7.1 Block Gibbs Sampling
As in Gibbs sampling for the DPMM, our sampler’s
basic move is to reanalyze token i (see section 3).
This corresponds to making customer i invisible and
then guessing where she is probably sitting—which
restaurant t, table `, and seat s?—given knowledge
of wi and the locations of all other customers.12

Concretely, the sampler guesses location (ti, `i, si)
with probability proportional to the product of
• p(ti | ti−1, ti+1, ~τ) (from section 6.5)
• the probability (from section 6.9) that a new cus-

tomer in restaurant ti chooses table `i, given the
other customers in that restaurant (and αti)

13

• the probability (from section 6.9) that a new
customer at table `i chooses seat si, given the
other customers at that table (and

−→
φti and α′ti)

13

• the probability (from section 3.3’s belief propa-
gation) that πti,`i(si) = wi (given ~θ).

We sample only from the (ti, `i, si) candidates for
which the last factor is non-negligible. These are
found with the hash tables and FSAs of section 3.3.

7.2 Semi-Supervised Sampling
Our experiments also consider the semi-supervised
case where a few seed paradigms—type data—are
fully or partially observed. Our samples should also
be conditioned on these observations. We assume
that our supervised list of observed paradigms was
generated by sampling from Gt.14 We can modify
our setup for this case: certain tables have a host
who dictates the spelling of some seats and attracts
appropriate customers to the table. See Appendix C.

7.3 Parameter Gradients
Appendix D gives formulas for the M step gradients.

12Actually, to improve mixing time, we choose a currently
active lexeme ` uniformly at random, make all customers {i :
`i = `} invisible, and sequentially guess where they are sitting.

13This is simple to find thanks to the exchangeability of the
CRP, which lets us pretend that i entered the restaurant last.

14Implying that they are assigned to lexemes with non-
negligible probability. We would learn nothing from a list of
merely possible paradigms, since Lt is infinite and every con-
ceivable paradigm is assigned to some ` ∈ Lt (in fact many!).

50 seed paradigms 100 seed paradigms
Corpus size 0 106 107 0 106 107

Accuracy 89.9 90.6 90.9 91.5 92.0 92.2
Edit dist. 0.20 0.19 0.18 0.18 0.17 0.17

Table 2: Whole-word accuracy and edit distance of pre-
dicted inflection forms given the lemma. Edit distance to
the correct form is measured in characters. Best numbers
per set of seed paradigms in bold (statistically signifi-
cant on our large test set under a paired permutation test,
p < 0.05). Appendix E breaks down these results per
inflection and gives an error analysis and other statistics.

8 Experiments

8.1 Experimental Design
We evaluated how well our model learns German
verbal morphology. As corpus we used the first 1
million or 10 million words from WaCky (Baroni
et al., 2009). For seed and test paradigms we used
verbal inflectional paradigms from the CELEX mor-
phological database (Baayen et al., 1995). We fully
observed the seed paradigms. For each test paradigm,
we observed the lemma type (Appendix C) and eval-
uated how well the system completed the other 21
forms (see Appendix E.2) in the paradigm.

We simplified inference by fixing the POS tag
sequence to the automatic tags delivered with the
WaCky corpus. The result that we evaluated for each
variable was the value whose probability, averaged
over the entire Monte Carlo EM run,15 was highest.
For more details, see (Dreyer, 2011).

All results are averaged over 10 different train-
ing/test splits of the CELEX data. Each split sampled
100 paradigms as seed data and used the remain-
ing 5,415 paradigms for evaluation.16 From the 100
paradigms, we also sampled 50 to obtain results with
smaller seed data.17

8.2 Results
Type-based Evaluation. Table 2 shows the results
of predicting verb inflections, when running with no
corpus, versus with an unannotated corpus of size 106

and 107 words. Just using 50 seed paradigms, but

15This includes samples from before ~θ has converged, some-
what like the voted perceptron (Freund and Schapire, 1999).

16100 further paradigms were held out for future use.
17Since these seed paradigms are sampled uniformly from a

set of CELEX paradigms, most of them are regular. We actually
only used 90 and 40 for training, reserving 10 as development
data for sanity checks and for deciding when to stop.
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Bin Frequency # Verb Forms
1 0–9 116,776
2 10–99 4,623
3 100–999 1,048
4 1,000–9,999 95
5 10,000– 10

all any 122,552

Table 3: The inflected verb forms from 5,615 inflectional
paradigms, split into 5 token frequency bins. The frequen-
cies are based on the 10-million word corpus.

no corpus, gives an accuracy of 89.9%. By adding
a corpus of 10 million words we reduce the error
rate by 10%, corresponding to a one-point increase
in absolute accuracy to 90.9%. A similar trend can
be seen when we use more seed paradigms. Sim-
ply training on 100 seed paradigms, but not using a
corpus, results in an accuracy of 91.5%. Adding a
corpus of 10 million words to these 100 paradigms re-
duces the error rate by 8.3%, increasing the absolute
accuracy to 92.2%. Compared to the large corpus,
the smaller corpus of 1 million words goes more than
half the way; it results in error reductions of 6.9%
(50 seed paradigms) and 5.8% (100 seed paradigms).
Larger unsupervised corpora should help by increas-
ing coverage even more, although Zipf’s law implies
a diminishing rate of return.18

We also tested a baseline that simply inflects each
morphological form according to the basic regular
German inflection pattern; this reaches an accuracy
of only 84.5%.

Token-based Evaluation. We now split our results
into different bins: how well do we predict the
spellings of frequently expressed (lexeme, inflection)
pairs as opposed to rare ones? For example, the third
person singular indicative of �g�i�v� (geben) is used
significantly more often than the second person plural
subjunctive of �b$a�s�k (aalen);19 they are in different
frequency bins (Table 3). The more frequent a form
is in text, the more likely it is to be irregular (Jurafsky
et al., 2000, p. 49).

The results in Table 4 show: Adding a corpus of
either 1 or 10 million words increases our prediction
accuracy across all frequency bins, often dramati-
cally. All methods do best on the huge number of

18Considering the 63,778 distinct spellings from all of our
5,615 CELEX paradigms, we find that the smaller corpus con-
tains 7,376 spellings and the 10× larger corpus contains 13,572.

19See Appendix F for how this was estimated from text.

50 seed paradigms 100 seed paradigms
Bin 0 106 107 0 106 107

1 90.5 91.0 91.3 92.1 92.4 92.6
2 78.1 84.5 84.4 80.2 85.5 85.1
3 71.6 79.3 78.1 73.3 80.2 79.1
4 57.4 61.4 61.8 57.4 62.0 59.9
5 20.7 25.0 25.0 20.7 25.0 25.0

all 52.6 57.5 57.8 53.4 58.5 57.8
all (e.d.) 1.18 1.07 1.03 1.16 1.02 1.01

Table 4: Token-based analysis: Whole-word accuracy re-
sults split into different frequency bins. In the last two
rows, all predictions are included, weighted by the fre-
quency of the form to predict. Last row is edit distance.

rare forms (Bin 1), which are mostly regular, and
worst on on the 10 most frequent forms of the lan-
guage (Bin 5). However, adding a corpus helps most
in fixing the errors in bins with more frequent and
hence more irregular verbs: in Bins 2–5 we observe
improvements of up to almost 8% absolute percent-
age points. In Bin 1, the no-corpus baseline is already
relatively strong.

Surprisingly, while we always observe gains from
using a corpus, the gains from the 10-million-word
corpus are sometimes smaller than the gains from the
1-million-word corpus, except in edit distance. Why?
The larger corpus mostly adds new infrequent types,
biasing ~θ toward regular morphology at the expense
of irregular types. A solution might be to model irreg-
ular classes with separate parameters, using the latent
conjugation-class model of Dreyer et al. (2008).

Note that, by using a corpus, we even improve
our prediction accuracy for forms and spellings that
are not found in the corpus, i.e., novel words. This
is thanks to improved grammar parameters. In the
token-based analysis above we have already seen that
prediction accuracy increases for rare forms (Bin 1).
We add two more analyses that more explicitly show
our performance on novel words. (a) We find all
paradigms that consist of novel spellings only, i.e.
none of the correct spellings can be found in the
corpus.20 The whole-word prediction accuracies for
the models that use corpus size 0, 1 million, and
10 million words are, respectively, 94.0%, 94.2%,
94.4% using 50 seed paradigms, and 95.1%, 95.3%,
95.2% using 100 seed paradigms. (b) Another, sim-

20This is measured on the largest corpus used in inference, the
10-million-word corpus, so that we can evaluate all models on
the same set of paradigms.
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pler measure is the prediction accuracy on all forms
whose correct spelling cannot be found in the 10-
million-word corpus. Here we measure accuracies
of 91.6%, 91.8% and 91.8%, respectively, using 50
seed paradigms. With 100 seed paradigms, we have
93.0%, 93.4% and 93.1%. The accuracies for the
models that use a corpus are higher, but do not al-
ways steadily increase as we increase the corpus size.

The token-based analysis we have conducted here
shows the strength of the corpus-based approach pre-
sented in this paper. While the integrated graphi-
cal models over strings (Dreyer and Eisner, 2009)
can learn some basic morphology from the seed
paradigms, the added corpus plays an important role
in correcting its mistakes, especially for the more fre-
quent, irregular verb forms. For examples of specific
errors that the models make, see Appendix E.3.

9 Related Work

Our word-and-paradigm model seamlessly handles
nonconcatenative and concatenative morphology
alike, whereas most previous work in morphological
knowledge discovery has modeled concatenative mor-
phology only, assuming that the orthographic form
of a word can be split neatly into stem and affixes—a
simplifying asssumption that is convenient but often
not entirely appropriate (Kay, 1987) (how should one
segment English stopping, hoping, or knives?).

In concatenative work, Harris (1955) finds mor-
pheme boundaries and segments words accordingly,
an approach that was later refined by Hafer and
Weiss (1974), Déjean (1998), and many others. The
unsupervised segmentation task is tackled in the
annual Morpho Challenge (Kurimo et al., 2010),
where ParaMor (Monson et al., 2007) and Morfessor
(Creutz and Lagus, 2005) are influential contenders.
The Bayesian methods that Goldwater et al. (2006b,
et seq.) use to segment between words might also be
applied to segment within words, but have no notion
of paradigms. Goldsmith (2001) finds what he calls
signatures—sets of affixes that are used with a given
set of stems, for example (NULL, -er, -ing, -s).
Chan (2006) learns sets of morphologically related
words; he calls these sets paradigms but notes that
they are not substructured entities, in contrast to the
paradigms we model in this paper. His models are
restricted to concatenative and regular morphology.

Morphology discovery approaches that han-
dle nonconcatenative and irregular phenomena
are more closely related to our work; they are
rarer. Yarowsky and Wicentowski (2000) identify
inflection-root pairs in large corpora without supervi-
sion. Using similarity as well as distributional clues,
they identify even irregular pairs like take/took.
Schone and Jurafsky (2001) and Baroni et al. (2002)
extract whole conflation sets, like “abuse, abused,
abuses, abusive, abusively, . . . ,” which may
also be irregular. We advance this work by not only
extracting pairs or sets of related observed words,
but whole structured inflectional paradigms, in which
we can also predict forms that have never been ob-
served. On the other hand, our present model does
not yet use contextual information; we regard this as
a future opportunity (see Appendix G). Naradowsky
and Goldwater (2009) add simple spelling rules to
the Bayesian model of (Goldwater et al., 2006a), en-
abling it to handle some systematically nonconcate-
native cases. Our finite-state transducers can handle
more diverse morphological phenomena.

10 Conclusions and Future Work

We have formulated a principled framework for si-
multaneously obtaining morphological annotation,
an unbounded morphological lexicon that fills com-
plete structured morphological paradigms with ob-
served and predicted words, and parameters of a non-
concatenative generative morphology model.

We ran our sampler over a large corpus (10 million
words), inferring everything jointly and reducing the
prediction error for morphological inflections by up
to 10%. We observed that adding a corpus increases
the absolute prediction accuracy on frequently occur-
ring morphological forms by up to almost 8%. Future
extensions to the model could leverage token context
for further improvements (Appendix G).

We believe that a major goal of our field should be
to build full-scale explanatory probabilistic models
of language. While we focus here on inflectional
morphology and evaluate the results in isolation, we
regard the present work as a significant step toward
a larger generative model under which Bayesian
inference would reconstruct other relationships as
well (e.g., inflectional, derivational, and evolution-
ary) among the words in a family of languages.
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Abstract

In this paper, we describe a novel approach to
cascaded learning and inference on sequences.
We propose a weakly joint learning model
on cascaded inference on sequences, called
multilayer sequence labeling. In this model,
inference on sequences is modeled as cas-
caded decision. However, the decision on a
sequence labeling sequel to other decisions
utilizes the features on the preceding results
as marginalized by the probabilistic models
on them. It is not novel itself, but our idea
central to this paper is that the probabilis-
tic models on succeeding labeling are viewed
as indirectly depending on the probabilistic
models on preceding analyses. We also pro-
pose two types of efficient dynamic program-
ming which are required in the gradient-based
optimization of an objective function. One
of the dynamic programming algorithms re-
sembles back propagation algorithm for mul-
tilayer feed-forward neural networks. The
other is a generalized version of the forward-
backward algorithm. We also report experi-
ments of cascaded part-of-speech tagging and
chunking of English sentences and show ef-
fectiveness of the proposed method.

1 Introduction

Machine learning approach is widely used to clas-
sify instances into discrete categories. In many
tasks, however, some set of inter-related labels
should be decided simultaneously. Such tasks are
called structured prediction. Sequence labeling is
the simplest subclass of structured prediction prob-
lems. In sequence labeling, the most likely one

among all the possible label sequences is predicted
for a given input. Although sequence labeling is
the simplest subclass, a lot of real-world tasks are
modeled as problems of this simplest subclass. In
addition, it might offer valuable insight and a toe-
hold for more general and complex structured pre-
diction problems. Many models have been proposed
for sequence labeling tasks, such as Hidden Markov
Models (HMM), Conditional Random Fields (CRF)
(Lafferty et al., 2001), Max-Margin Markov Net-
works (Taskar et al., 2003) and others. These models
have been applied to lots of practical tasks in natural
language processing (NLP), bioinformatics, speech
recognition, and so on. And they have shown great
success in recent years.

In real-world tasks, it is often needed to cascade
multiple predictions. A cascade of predictions here
means the situation in which some of predictions are
made based upon the results of other predictions.
Sequence labeling is not an exception. For exam-
ple, in NLP, we perform named entity recognition or
base-phrase chunking for given sentences based on
part-of-speech (POS) labels predicted by another se-
quence labeler. Natural languages are especially in-
terpreted to have a hierarchy of sequential structures
on different levels of abstraction. Therefore, many
tasks in NLP are modeled as a cascade of sequence
predictions.

If a prediction is based upon the result of another
prediction, we call the former upper stage and the
latter lower stage.

Methods pursued for a cascade of predictions –
including sequence predictions, of course–, are de-
sired to perform certain types of capability. One de-

628



sired capability is rich forward information propa-
gation, that is, the learning and estimation on each
stage of predictions should utilize rich informa-
tion of the results of lower stages whenever pos-
sible. “Rich information” here includes next bests
and confidence information of the results of lower
stages. Another is backward information propaga-
tion, that is, the rich annotated data on an upper stage
should affect the models on lower stages retroac-
tively.

Many current systems for a cascade of sequence
predictions adopt a simple1-best feed-forward ap-
proach. They simply take the most likely output at
each prediction stage and transfer it to the next upper
stage. Such a framework can maximize reusability
of existing sequence labeling systems. On the other
hand, it exhibits a strong tendency to propagate er-
rors to upper labelers.

Typical improvement on the1-best approach is
to keepk-best results in the cascade of predictions.
However, the largerk becomes, the more difficult it
is to enumerate and maintain thek-best results. It is
particularly prominent in sequence labeling.

The essence of this orientation is that the labeler
on an upper stage utilizes the information of all the
possible output candidates on lower stages. How-
ever, the size of the output space can become quite
large in sequence labeling. It effectively forbids ex-
plicit enumeration of all possible outputs, so it is
required to represent all the labeling possibilities
compactly or employ some approximation schemes.
Several studies are in this direction. In the method
proposed in Finkel et al. (2006), a cascades of se-
quence predictions is viewed as a Bayesian network,
and sample sequences are drawn at each stage ac-
cording to the output distribution. The samples are
then used to estimate the entire distribution of the
cascade. In the method proposed in Bunescu (2008),
an upper labeler uses the probabilities marginalized
on the parts of the output sequences on lower stages
as weights for the features. The weighted features
are integrated in the model of the labeler on the
upper stage. Ak-best approach (e.g., (Collins and
Duffy, 2002)) and the methods mentioned above are
effective to improve the forward information propa-
gation. However, they can never contribute on back-
ward information propagation.

To improve the both directions of information

propagation, Some studies propose the joint learning
of multiple sequence labelers. Sutton et al. (2007)
proposes the joint learning method in case where
multiple labels are assigned to each time slice of
the input sequences. It enables simultaneous learn-
ing and estimation of multiple sequence labelings
on the same input sequences, where time slices of
the outputs of all the out sequences are regularly
aligned. However, it puts the distribution of states
into Bayesian networks with cyclic dependencies,
and exact inference is not tractable in such a model
in general. Therefore, it requires some approxi-
mate inference algorithms in learning or predictions.
Moreover, it only considers the cases where labels of
an input sequence and all output sequences are reg-
ularly aligned. It is not clear how to build a joint
labeling model which handles irregular output label
sequences like semi-Markov models (Sarawagi and
Cohen, 2005).

In this paper, we propose a middle ground for
a cascade of sequence predictions. The proposed
method adopts the basic idea of Bunescu (2008). We
first assume that the model on all the sequence la-
beling stages is probabilistic one. In modeling of an
upper stage, a feature is weighted by the marginal
probability of the fragment of the outputs from a
lower stage. However, this is not novel itself be-
cause it is just a paraphrase of Bunescu’s core idea.
Our intuition behind the proposed method is as fol-
lows. Features integrated in the model on each stage
are weighted by the marginal probabilities of the
fragments of the outputs on lower stages. So, if
the output distributions on lower stages change, the
marginal probabilities of any fragments also change,
and this in turn can change the value of the features
on the upper stage. In other words, the features on
an upper stage indirectly depend on the models on
the lower stages. Based on this intuition, the learn-
ing procedure of the model on an upper stage can
affect not only direct model parameters, but also the
weights of the features by changing the model on
the lower stages. Supervised learning based on an-
notated data on an upper stage may affect the model
or model parameters on the lower stages. It could
be said that the information of annotation data on
an upper stage is propagated back to the model on
lower stages.

In the next section, we describe the formal nota-
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tion of our model. In Section 3, we propose an opti-
mization procedure according to the intuition noted
above. In Section 4, we report an experimental result
of our method. The proposed method shows some
improvements on a real-world task in comparison
with ordinary methods.

2 Formalization

In this section, we introduce the formal notation of
our model. Hereafter, for the sake of simplicity, we
only describe the simplest case in which there are
just two stages, one lower stage of sequence labeling
namedL1 and one upper stage of sequence labeling
namedL2. In L1, the most likely one among a set
of possible sequences is predicted for a given input
x. L2 is also a sequence labeling stage for the same
inputx and the output ofL1. No assumption is made
on the structure ofx. The information ofx is totally
encoded in feature functions. It is only assumed that
the output spaces of bothL1 andL2 are conditioned
on the initial inputx.

First of all, we describe the formalization of the
probabilistic model forL1. The model forL1 per
se is the same as ordinary ones for sequence label-
ing. For a given inputx, consider a directed acyclic
graph (DAG)G1 = (V1, E1). A source of a DAGG
is a node whose in-degree is equal to zero. A sink
of a DAG G is nodes whose out-degree is equal to
zero. Letsrc(G), snk(G) denote the set of source
and sink nodes inG, respectively. A successful path
of a DAGG is defined as a directed path onG whose
starting node is a source and end node is a sink. Ify
denotes a path on a DAG, lety also denote the set of
all the arcs appearing ony for the sake of shorthand.
We denote the set of all the possible successful paths
onG1 byY1. The space of the output candidates for
L1 is exactly equal toY1. For the modeling ofL1, it
is assumed that features of the formf⟨1,k1,e1,x⟩ ∈ R
(k1 ∈ K1, e1 ∈ E1) are allowed to be used. Here,
K1 is the index set of the feature types forL1. Such
a feature can capture an aspect of the correlation be-
tween adjacent nodes. We call this kind of features
input features forL1. This naming is used to distin-
guish them from another kind of features defined on
L1, which comes later. Although features onV1 can
be also defined, they are totally omitted in this paper
for brevity. Hereafter, if a symbol has subscripts,

then missing subscript indicates a set that range over

the omitted subscript. For example,f⟨1,e1,x⟩
def≡

{
f⟨1,k1,e1,x⟩

}
k1∈K1

, f⟨1,k1,x⟩
def≡

{
f⟨1,k1,e1,x⟩

}
e1∈E1

,

f⟨1,x⟩
def≡

{
f⟨1,k1,e1,x⟩

}
k1∈K1,e1∈E1

, and so on.
The probabilistic model onL1 forms the log-linear
model, that is,

P1(y1|x; θ1)
def≡ 1

Z1(x; θ1)
exp

(
θ1 · F⟨1,y1,x⟩

)

(y1 ∈ Y1) ,
(1)

whereθ⟨1,k1⟩ ∈ R (k1 ∈ K1) is the weight for the
feature of the same indexk1, and thek1-th element

of F⟨1,y1,x⟩, F⟨1,k1,y1,x⟩
def≡ ∑

e1∈y1
f⟨1,k1,e1,x⟩. Dot

operator (·) denotes the inner product with respect to
the subscripts commonly missing in both operands.
Z1 is the partition function forP1, defined as

Z1(x; θ1)
def≡

∑

y1∈Y1

exp
(
θ1 · F⟨1,y1,x⟩

)
. (2)

It is worth noting that this formalization subsumes
both directed and undirected linear-chain graphical
models, which are the most typical models for se-
quence labeling, including HMM and CRF. That is,
if the elements ofV1 are aligned into regular time
slices, and the nodes in each time slice are associated
with possible assignments of labels for that time, we
obtain the representation equivalent to the ordinary
linear-chain graphical models, in which all possible
label assignments for each state are expanded. In
such configuration, all the possible successful paths
defined in our notation have strict one-to-one corre-
spondence to all the possible joint assignments of
labels in linear-chain graphical models. We pur-
posely employ this DAG-based notation because; it
is convenient to describe the models and algorithms
for our purpose, it allows for labels to stay in arbi-
trary time as in semi-Markov models, and it is easily
extended to models for a set of trees instead of se-
quences by replacing the graph-based notation with
hypergraph-based notation.

Next, we formalize the probabilistic model on the
upper stageL2. Like L1, consider a DAGG2 =
(V2, E2) conditioned on the inputx, and the set of
all the possible successful paths onG2, denotedY2.
The space of the output candidates forL2 becomes
Y2.
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The form of the features available in designing the
probabilistic model forL2, denoted byP2, is the key
of this paper. A feature on an arce2 ∈ E2 can ac-
cess local characteristics of the confidence-rated su-
perposition of theL1’s outputs, in addition to the
information of the inputx. To formulate local char-
acteristics of the superposition of theL1’s outputs,
we first define output features ofL1, denoted by
h⟨1,k′

1,e1⟩ ∈ R (k′
1 ∈ K′

1, e1 ∈ E1). Here,K′
1 is

the index set of the output feature types ofL1. Be-
fore the output features are integrated into the model
for L2, they all are confidence-rated with respect to
P1, that is, each output featureh⟨1,k′

1,e1⟩ is numer-
ically rated by the estimated probabilities summed
over the sequences emitting that feature. More for-
mally, all theL1’s output features are integrated in
features forP2 in the form of the marginalized out-
put features, which are defined as follows;

h̄⟨1,k′
1,e1⟩(θ1)

def≡ h⟨1,k′
1,e1⟩P1(e1|x; θ1)(

k′
1 ∈ K′

1, e1 ∈ E1

)
,

(3)

where

P1(e1|x;θ1)
def≡

∑

y1∼e1

P1(y1|x; θ1)

=
∑

y1∈Y1

δe1∈y1P1(y1|x; θ1)

(e1 ∈ E1) .

(4)

Here, the notation
∑

y1∼e1
represents the sum-

mation over sequences consistent with an arc
e1 ∈ E1, that is, the summation over the set
{y1 ∈ Y1 | e1 ∈ y1}. δP denotes the indicator
function for a predicateP. The input features forP2

on an arce2 ∈ E2 are permitted to arbitrarily com-
bine the information ofx and theL1’s marginalized
output features̄h1, in addition to the local charac-
teristics of the arc at hande2. In summary, an input
feature forL2 on an arce2 ∈ E2 is of the form

f⟨2,k2,e2,x⟩
(
h̄1(θ1)

)
∈ R (k2 ∈ K2) , (5)

whereK2 is the index set of the input feature types
for L2. To make the optimization procedure feasible,
smoothness condition on anyL2’s input feature is
assumed with respect to all theL1’s output features,

that is,
∂f⟨2,k2,e2,x⟩
∂h̄⟨1,k′

1,e1⟩
is always guaranteed to exist for

∀k′
1, e1, k2, e2. For example, additions and mul-

tiplications between some elements ofh̄1(θ1) can
appear in the definition ofL2’s input features. For
given input featuresf⟨2,x⟩

(
h̄1(θ1)

)
and parameters

θ⟨2,k2⟩ ∈ R (k2 ∈ K2), the probabilistic model for
L2 is defined as follows;

P2(y2|x; θ1, θ2)

def≡ 1

Z2(x; θ1, θ2)
exp

(
θ2 · F⟨2,y2,x⟩

(
h̄1(θ1)

))

(y2 ∈ Y2) ,
(6)

where F⟨2,k2,y2,x⟩
(
h̄1(θ1)

) def≡∑
e2∈y2

f⟨2,k2,e2,x⟩
(
h̄1 (θ1)

)
and Z2 is the par-

tition function ofP2, defined by

Z2(x; θ1, θ2)

def≡
∑

y2∈Y2

exp
(
θ2 · F⟨2,y2,x⟩

(
h̄1(θ1)

))
.

(7)
The definition ofP2 (6) reveals one of the most im-
portant points in this paper.P2 is viewed not only
as the function of the ordinary direct parametersθ2

but also as the function ofθ1, which represents the
parameters for theL1’s model, through the interme-
diate variables̄h1. So optimization procedure onP2

may affect the determination of the values not only
of the direct parametersθ2 but also of the indirect
onesθ1.

If the result ofL1 is reduced to the single golden
output ỹ1, i.e. P1(y1|x) = δy1=ỹ1 , the definitions
above boil down to the formulation of the simple1-
best feed forward architecture.

3 Optimization Algorithm

In this section, we describe optimization procedure
for the model formulated in the previous section.
Let D = {⟨x̂, ⟨G1, ŷ1⟩, ⟨G2, ŷ2⟩⟩m}m=1,2,··· ,M de-
note annotated data for the supervised learning of
the model. Here,⟨G1, ŷ1⟩ is a pair of a DAG and
correctly annotated successful sequence forL1. The
same holds for⟨G2, ŷ2⟩. For givenD, we can define
the conditional log-likelihood function onL1 andL2

respectively, that is,

L1 (θ1; D)

def≡
∑

⟨x̂,ŷ1⟩∈D
log (P1 (ŷ1|x̂; θ1)) − |θ1|

2σ1
2

(8)
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Figure 1: Computation Graph of the Proposed Model

and

L2 (θ1, θ2; D)

def≡
∑

⟨x̂,ŷ2⟩∈D
log (P2 (ŷ2|x̂; θ1,θ2)) − |θ2|

2σ2
2

.

(9)
Here,σ1

2, σ2
2 are the variances of the prior distribu-

tions of the parameters. For the sake of simplicity,
we set the prior distribution as the zero-mean uni-
variance Gaussian. To optimize the both probabilis-
tic modelsP1 andP2 jointly, we also define the joint
conditional log-likelihood function

L (θ1,θ2; D)
def≡ L1 + L2 . (10)

The parameter values to be learned are the ones that
(possibly locally) maximize this objective function.
Note that this objective function is not guaranteed to
be globally convex.

We employ gradient-based parameter optimiza-
tion here. Optimization procedure repeatedly
searches a direction in the parameter space which
is ascendent with respect to the objective function,
and updates the parameter values into that direction
by small advances. Many existing optimization rou-
tines like steepest descent or conjugation gradient do
that job only by giving the objective value and gra-
dients on parameter values to be updated. So, the
optimization problem here boils down to the calcu-
lation of the objective value and gradients on given
parameter values.

Before entering the detailed description of the al-
gorithm for calculating the objective function and
gradients, we note the functional relations among
the objective function and previously defined vari-
ables. The diagram shown in Figure 1 illustrates
the functional relations among the parameters, input
and output feature functions, models, and objective
function. The variables at the head of a directed ar-
row in the figure is directly defined in terms of the
ones at the tail of the same arrow. The value of the

objective function on given parameter values can be
calculated in order of the arrows shown in the di-
agram. On the other hand, the parameter gradients
are calculated step-by-step in reverse order of the ar-
rows. The functional relations illustrated in the Fig-
ure 1 ensure some forms of the chain rule of dif-
ferentiation among the variables. The chain rule is
iteratively used to decompose the calculation of the
gradients into a divide-and-conquer fashion. These
two directions of stepwise computation are analo-
gous to the forward and back propagation for multi-
layer feedforward neural networks, respectively.

Algorithm 1 shows the whole picture of the
gradient-based optimization procedure for our
model. We first describe the flow to calculate the
objective value for a given parametersθ1 and θ2,
which is shown from line 2 through 4 in Algo-
rithm 1. The values of marginalized output features
h̄⟨1,x⟩ can be calculated by (3). Because they are the
simple marginals of features, the ordinary forward-
backward algorithm (hereafter, abbreviated as “F-
B”) on G1 offers an efficient way to calculate their
values. Although nothing definite about the forms
of the input features forL2 is presented in this pa-
per,f⟨2,x⟩ can be calculated once the values ofh̄⟨1,x⟩
have been obtained. Finally,L1, L2 and thenL are
easy to calculate because they are no different from
the ordinary log-likelihood computation.

Now we describe the algorithm to calculate the
parameter gradients,

∂L
∂θ1

=
∂L1

∂θ1
+

∂L2

∂θ1
,

∂L
∂θ2

=
∂L2

∂θ2
. (11)

Line 5 through line 7 in Algorithm 1 describe the
gradient computation. The terms∂L1

∂θ1
and ∂L2

∂θ2
in

(11) become the same forms that appear in the ordi-
nary CRF optimization, i.e., the difference between
the empirical frequencies of the features and the
model expectations of them,

∂L1

∂θ1
= Ẽ

[
F⟨1,y1,x⟩

]
− EP1

[
F⟨1,y1,x⟩

]
− |θ1|

σ1
2

,

∂L2

∂θ2
= Ẽ

[
F⟨2,y2,x⟩

]
− EP2

[
F⟨2,y2,x⟩

]
− |θ2|

σ2
2

.

(12)
These calculations are performed by the ordinary F-
B on G1 andG2, respectively. Using the chain rule
of differentiation derived from the functional rela-
tions illustrated in Figure 1, the remaining term∂L2

∂θ1
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Algorithm 1 Gradient-based optimization of the model parameters
Input: θ1, θ2

Output: arg max
⟨θ1,θ2⟩

L

1: while θ1 or θ2 changes significantlydo
2: calculateZ1 by (2), h̄1 by (3) with the F-B onG1, and thenL1 by (8)
3: calculatef⟨2,x⟩ according to their definitions
4: calculateZ2 by (7) with the F-B onG2, and thenL2 by (9) andL by (10)
5: calculate∂L1

∂θ1
and ∂L2

∂θ2
by (12) with the F-B onG1 andG2, respectively

6: calculate ∂L
∂f⟨1,x⟩

by (16) with the F-B onG2,
∂f⟨1,x⟩
∂h̄1

, and them∂L2

∂h̄1
= ∂L

∂f⟨1,x⟩
· ∂f⟨1,x⟩

∂h̄1

7: calculate∂L2
∂θ1

by (18) with Algorithm 2

8: ⟨θ1,θ2⟩ ← update-parameters
(
θ1, θ2, L, ∂L

∂θ1
, ∂L

∂θ2

)

9: end while

in (11) can be decomposed as follows;

∂L2

∂θ1
=

∂L2

∂f⟨2,x⟩
·
∂f⟨2,x⟩
∂θ1

=
∂L2

∂f⟨2,x⟩
·
∂f⟨2,x⟩
∂h̄1

· ∂h̄1

∂θ1
.

(13)
Note that Leibniz’s notation here denotes a Jacobian
with the index sets omitted in the numerator and the
denominator, for example,

∂f⟨2,x⟩
∂h̄1

def≡
{

∂f⟨2,k2,e2,x⟩
∂h⟨1,k′

1,e1⟩

}

k2∈K2,e2∈E2,k′
1∈K′

1,e1∈E1

(14)
And also recall that dot operators here stand for the
inner product with respect to the index sets com-
monly omitted in both operands, for example,

∂L2

∂f2
· ∂f2
∂h̄1

=
∑

k2∈K2,e2∈E2

∂L2

∂f⟨2,k2,e2,x⟩
·
∂f⟨2,k2,e2,x⟩

∂h̄1
.

(15)
We describe the manipulation of each factor in

the right side of (13) in turn. Noting
∂f⟨2,k2,e2,x⟩
∂f⟨2,k̀2,è2,x⟩

=

δk2=k̀2
δe2=è2 , each element of the first factor of (13)

∂L2
∂f⟨2,x⟩

can be transformed as follows;

∂L2

∂f⟨2,k2,e2,x⟩

= θ⟨2,k2⟩
∑

⟨x̂,ŷ2⟩∈D

(
δe2∈ŷ2

− P2(e2|x̂; θ1, θ2)
)

.

(16)

P2(e2|x̂; θ1, θ2), the marginal probability one2, can
be obtained as a by-product of the F-B for (12).

As described in the previous section, it is assumed

that the values of the second factor
∂f⟨2,x⟩
∂h̄1

is guaran-
teed to exists for any givenθ1, and the procedure for
calculating them is fixed in advance. The procedure
for some of concrete features is exemplified in the
previous section.

From the definition of̄h1 (3), each element of the
third factor of (13)∂h̄1

∂θ1
becomes

∂h̄⟨1,k′
1,e1⟩

∂θ⟨1,k1⟩
= h⟨1,k′

1,e1⟩CovP1(y1|x)

[
δe1∈y1 , F⟨1,k1,y1,x⟩

]
.

(17)
There exists efficient dynamic programming to cal-
culate the covariance value (17) (without goint into
that detail because it is very similar to the one shown
later in this paper), and of course we can run such
dynamic programming for∀k′

1 ∈ K′
1, e1 ∈ E1.

However, the size of the Jacobian∂h̄1
∂θ1

is equal to
|K′

1|×|E1|×|K1|. Since it is too large in many tasks
likely to arise in practice, we should avoid to calcu-
late all the elements of this Jacobian in a straight-
forward way. Instead of such naive computation, if

the values of ∂L2
∂f⟨2,x⟩

and
∂f⟨2,x⟩
∂h̄1

are obtained, then we

can compute∂L2

∂h̄1
= ∂L2

∂f⟨2,x⟩
· ∂f⟨2,x⟩

∂h̄1
, and from (13)
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and (17),

∂L2

∂θ1
=

∂L2

∂h̄1
· ∂h̄1

∂θ1

= EP1(y1|x)

[
H ′

⟨1,y1⟩F⟨1,y1,x⟩
]

− EP1(y1|x)

[
H ′

⟨1,y1⟩
]
EP1(y1|x)

[
F⟨1,y1,x⟩

]
,

(18)

whereH ′
⟨1,y1⟩

def≡ ∑
e1∈y1

∂L2

∂h̄⟨1,e1⟩
· h⟨1,e1⟩. In other

words, ∂L2
∂θ⟨1,k1⟩

becomes the covariance between the

k1-th input feature forL1 and the hypothetical fea-

tureh′
⟨1,e1⟩

def≡ ∂L2

∂h̄⟨1,e1⟩
· h⟨1,e1⟩.

The final problem is to derive an efficient way to
compute the first term of (18). The second term of
(18) can be calculated by the ordinary F-B because
it consists of the marginals of arc features. There are
two derivations of the algorithm for calculating the
first term. We describe briefly the both derivations.

One is a variant of the F-B on the expectation
semi-ring proposed in Li and Eisner (2009). First,
the F-B is generalized to the expectation semi-ring
with respect to the hypothetical featureh′

⟨1,e1⟩, and
by summing up the marginals of the feature vectors
f⟨1,e1,x⟩ on all the arcs under the distribution of the
semi-ring, then we obtain the expectation of the fea-
ture vectorf⟨1,e1,x⟩ on the semi-ring potential. This
expectation is equal to the first term of (18).1

Another derivation is to apply the automatic dif-
ferentiation (AD)(Wengert, 1964; Corliss et al.,
2002) on the F-B calculatingEP1

[
F⟨1,y1,x⟩

]
. It

exploits the fact that ∂
∂λEP ′

1

[
F⟨1,y1,x⟩

] ∣∣∣
λ=0

is

equal to the first term of (18), whereλ ∈
R is a dummy parameter, andP ′

1(y1|x)
def≡

1
Z1

exp
(
θ1 · F⟨1,y1,x⟩ + λH ′

⟨1,y1⟩

)
. It is easy

to derive the F-B for calculating the value

EP ′
1

[
F⟨1,y1,x⟩

] ∣∣∣
λ=0

. AD transforms this F-B into

another algorithm for calculating the differentiation
w.r.t. λ evaluated at the pointλ = 0. This trans-
formation is achieved in an automatic manner, by
replacing all appearances ofλ in the F-B with a dual
numberλ + ε. The dual number is a variant of the
complex number, with a kind of the imaginary unit
ε with the propertyε2 = 0. Like the usual complex

1For the detailed description, see Li and Eisner (2009) and
its references.

numbers, the arithmetic operations and the exponen-
tial function are generalized to the dual numbers,
and the ordinary F-B is also generalized to the dual
numbers. The imaginary part of the resulting values
is equal to the needed differentiation.2 Anyway,
these two derivations lead to the same algorithm, and
the resulting algorithm is shown as Algorithm 2.

The final line in the loop of Algorithm 1 can be
implemented by various optimization routines and
line search algorithms.

The time and space complexity to compute the ob-
jective and gradient values for given parameter vec-
tors θ1, θ2 is the same as that for that for Bunescu
(2008), up to a constant factor. Because the calcula-
tion of the objective function is essentially the same
as that for Bunescu (2008), and in gradient com-
putation, the time complexity of Algorithm 1 is the
same as that for the ordinary F-B (up to a constant
factor), and the proposed optimization procedure is
only required to store additional scalar valuesh′

⟨1,e1⟩
on eachG1’s arc.

4 Experiment

We examined effectiveness of the method proposed
in this paper on a real task. The task is to annotate
the POS tags and to perform base-phrase chunking
on English sentences.

Base-phrase chunking is a task to classify con-
tinuous subsequences of words into syntactic cat-
egories. This task is performed by annotating a
chunking label on each word (Ramshaw and Mar-
cus, 1995). The types of chunking label consist of
“Begin-Category”, which represents the beginning
of a chunk, “Inside-Category”, which represents the
inside of a chunk, and “Other.” Usually, POS la-
beling runs first before base-phrase chunking is per-
formed. Therefore, this task is a typical interesting
case where a sequence labeling depends on the out-
put from other sequence labelers.

The data used for our experiment consist of En-
glish sentences from the Penn Treebank project
(Marcus et al., 1993) consisting of 10948 sentences
and 259104 words. We divided them into two
groups, training data consisting of 8936 sentences
and 211727 words and test data consisting of 2012

2For example, Berz (1992) gives a detailed description of
the reason why the dual number is used for this purpose.
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Algorithm 2 Forward-backward Algorithm for Calculating Feature Covariances

Input: f⟨1,x⟩, ϕe1

def≡ exp
(
θ1 · f⟨1,e1,x⟩

)
, h′

e1

def≡ ∂L2

∂h̄⟨1,e1⟩
· h⟨1,e1⟩

Output: qk1 = CovP(y1|x)

[
H ′

⟨1,y1⟩, F⟨1,k1,y1,x⟩
] (∀k1 ∈ K1

)

1: for ∀v1 ∈ src(G1), αv1 ← 1, α′
v1

← 1
2: for all v1 ∈ V1 in a topological orderdo
3: prev ← {x ∈ V1 | (x, v1) ∈ E1}
4: αv1 ← ∑

x∈prev
ϕ(x,v1)αx, α′

v1
← ∑

x∈prev
ϕ(x,v1)

(
h′

(x,v1)αx + α′
x

)

5: end for
6: Z1 ← ∑

x∈snk(G1)

αx

7: for ∀v1 ∈ snk(G1), βv1 ← 1, β′
v1

← 1
8: for all v1 ∈ V1 in a reverse topological orderdo
9: next ← {x ∈ V1 | (v1, x) ∈ E1}

10: βv1 ← ∑
x∈next

ϕ(v1,x)βx, β′
v1

← ∑
x∈next

ϕ(v1,x)

(
h′

(v1,x)βx + β′
x

)

11: end for
12: for ∀k1 ∈ K1, qk1 ← 0
13: for all (u1, v1) ∈ E1 do
14: p ← ϕ(u1,v1)

(
αu1β

′
v1

+ α′
u1

βv1

)
/Z1

15: for ∀k1 ∈ K1, qk1 ← qk1 + pf⟨1,k1,e1,x⟩
16: end for

sentences and 47377 words. The number of the POS
label types is equal to 45. The number of the label
types used in base-phrase chunking is equal to 23.

We compare the proposed method to two exist-
ing sequence labeling methods as baselines. The
POS labeler is the same in all the three methods
used in this experiment. This labeler is a simple
CRF and learned by ordinary optimization proce-
dure. One baseline method is the1-best pipeline
method. A simple CRF model is learned for the
chunking labeling, on the input sentences and the
most likely POS label sequences predicted by the
already learned POS labeler. We call this method
“CRF + CRF.” The other baseline method has a
CRF model for the chunking labeling, which uses
the marginalized features offered by the POS la-
beler. However, the parameters of the POS labeler
are fixed in the training of the chunking model.
This method corresponds to the method proposed
in Bunescu (2008). We call this baseline “CRF +
CRF-MF” (“MF” for “marginalized features”). The
proposed method is the same as “CRF + CRF-MF”,
except that the both labelers are jointly trained by the

CRF CRF CRF
+ CRF + CRF-MF +CRF-BP

POS labeling 95.6 (95.6) 95.8
Base-phrase 92.1 92.7 93.1
chunking

Table 2: Experimental result (F-measure)

procedure described in Section 3. We call this pro-
posed method “CRF + CRF-BP” (“BP” for “back
propagation”).

In “CRF + CRF-BP,” the objective function for
joint learning (10) is not guaranteed to be convex, so
optimization procedure is sensible to the initial con-
figuration of the model parameters. In this experi-
ment, we set the parameter values learned by “CRF
+ CRF-MF” as the initial values for the training of
the “CRF + CRF-BP” method. Feature templates
used in this experiment are listed in Table 1. Al-
though we only described the formalization and op-
timization procedure of the models with arc features,
We use node features in the experiment.

Table 2 shows the result of the methods we men-
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=== Node feature templates ===

Node is source
Node is sink
Input word on the same time slice
Suffix of input word on the same time slice,n characters (n ∈ [1, 2, 3])
Initial word character is capitalized†

All word characters are capitalized†

Input word included in the vocabulary of POST † (T ∈ {(All possible POS labels)})
Input word contains numbers†

POS label‡

=== Arc feature templates ===

Tail node is source
Head node is sink
Corresponding ordered pair of POS labels‡

Table 1: List of feature templates. All node features are combined with the corresponding node label (POS or chunking
label) feature. All arc features are combined with the feature of the corresponding arc label pair.† features are
instantiated on each time slice in five character window.‡ features are not used in POS labeler, and marginalized as
output features for “CRF + CRF-MF” and “CRF + CRF-BP.”

tioned. In Table 2, bold numbers indicate significant
improvement over the baseline models withα =
0.05. From Table 2, the proposed method signifi-
cantly outperforms two baseline methods on chunk-
ing performance. Although the improvement on
POS labeling performance by the proposed method
“CRF + CRF-BP” is not significant, it might show
that optimization procedure provides some form of
backward information propagation in comparison to
“CRF + CRF-MF.”

5 Conclusions

In this paper, we adopt the method to weight features
on an upper sequence labeling stage by the marginal-
ized probabilities estimated by the model on lower
stages. We also point out that the model on an upper
stage is considered to depend on the model on lower
stages indirectly. In addition, we propose optimiza-
tion procedure that enables the joint optimization of
the multiple models on the different level of stages.
We perform an experiment on a real-world task, and
our method significantly outperforms existing meth-
ods.

We examined the effectiveness of the proposed
method only on one task in comparison to just a few
existing methods. In the future, we hope to compare
our method to other competing methods like joint

learning approaches in terms of both accuracy and
computational efficiency, and perform extensive ex-
periments on various tasks.
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Abstract

In this paper we present a fully unsupervised
syntactic class induction system formulated as
a Bayesian multinomial mixture model, where
each word type is constrained to belong to a
single class. By using a mixture model rather
than a sequence model (e.g., HMM), we are
able to easily add multiple kinds of features,
including those at both the type level (mor-
phology features) and token level (context and
alignment features, the latter from parallel cor-
pora). Using only context features, our sys-
tem yields results comparable to state-of-the
art, far better than a similar model without the
one-class-per-type constraint. Using the addi-
tional features provides added benefit, and our
final system outperforms the best published
results on most of the 25 corpora tested.

1 Introduction

Research on unsupervised learning for NLP has be-
come widespread recently, with part-of-speech in-
duction, or syntactic class induction, being a partic-
ularly popular task.1 However, despite a recent pro-
liferation of syntactic class induction systems (Bie-
mann, 2006; Goldwater and Griffiths, 2007; John-
son, 2007; Ravi and Knight, 2009; Berg-Kirkpatrick
et al., 2010; Lee et al., 2010), careful compari-
son indicates that very few systems perform better
than some much simpler and quicker methods dating
back ten or even twenty years (Christodoulopoulos

1The task is more commonly referred to as part-of-speech
induction, but we prefer the term syntactic class induction since
the induced classes may not coincide with part-of-speech tags.

et al., 2010). This fact suggests that we should con-
sider which features of the older systems led to their
success, and attempt to combine these features with
some of the machine learning methods introduced
by the more recent systems. We pursue this strat-
egy here, developing a system based on Bayesian
methods where the probabilistic model incorporates
several insights from previous work.

Perhaps the most important property of our model
is that it is type-based, meaning that all tokens of
a given word type are assigned to the same clus-
ter. This property is not strictly true of linguistic
data, but is a good approximation: as Lee et al.
(2010) note, assigning each word type to its most
frequent part of speech yields an upper bound ac-
curacy of 93% or more for most languages. Since
this is much better than the performance of cur-
rent unsupervised syntactic class induction systems,
constraining the model in this way seems likely to
improve performance by reducing the number of
parameters in the model and incorporating useful
linguistic knowledge. Both of the older systems
discussed by Christodoulopoulos et al. (2010), i.e.,
Clark (2003) and Brown et al. (1992), included this
constraint and achieved very good performance rel-
ative to token-based systems. More recently, Lee et
al. (2010) presented a new type-based model, and
also reported very good results.

A second property of our model, which distin-
guishes it from the type-based Bayesian model of
Lee et al. (2010), is that the underlying probabilistic
model is a clustering model, (specifically, a multino-
mial mixture model) rather than a sequence model
(HMM). In this sense, our model is more closely re-
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lated to several non-probabilistic systems that clus-
ter context vectors or lower-dimensional represen-
tations of them (Redington et al., 1998; Schütze,
1995; Lamar et al., 2010). Sequence models are
by far the most common method of supervised part-
of-speech tagging, and have also been widely used
for unsupervised part-of-speech tagging both with
and without a dictionary (Smith and Eisner, 2005;
Haghighi and Klein, 2006; Goldwater and Griffiths,
2007; Johnson, 2007; Ravi and Knight, 2009; Lee et
al., 2010). However, systems based on context vec-
tors have also performed well in these latter scenar-
ios (Schütze, 1995; Lamar et al., 2010; Toutanova
and Johnson, 2007) and present a viable alternative
to sequence models.

One advantage of using a clustering model rather
than a sequence model is that the features used for
clustering need not be restricted to context words.
Additional types of features can easily be incorpo-
rated into the model and inference procedure using
the same general framework as in the basic model
that uses only context word features. In particu-
lar, we present two extensions to the basic model.
The first uses morphological features, which serve
as cues to syntactic class and seemed to partly ex-
plain the success of two best-performing systems
analysed by Christodoulopoulos et al. (2010). The
second extension to our model uses alignment fea-
tures gathered from parallel corpora. Previous work
suggests that using parallel text can improve perfor-
mance on various unsupervised NLP tasks (Naseem
et al., 2009; Snyder and Barzilay, 2008).

We evaluate our model on 25 corpora in 20 lan-
guages that vary substantially in both syntax and
morphology. As in previous work (Lee et al., 2010),
we find that the one-class-per-type restriction boosts
performance considerably over a comparable token-
based model and yields results that are comparable
to state-of-the-art even without the use of morphol-
ogy or alignment features. Including morphology
features yields the best published results on 14 or 15
of our 25 corpora (depending on the measure) and
alignment features can improve results further.

2 Models

Our model is a multinomial mixture model with
Bayesian priors over the mixing weights θ and

α θ

z

β φ f

Z
M

nj

Figure 1: Plate diagram of the basic model with a single
feature per token (the observed variable f ). M , Z, and
nj are the number of word types, syntactic classes z, and
features (= tokens) per word type, respectively.

multinomial class output parameters ϕ. The model
is defined so that all observations associated with
a single word type are generated from the same
mixing component (syntactic class). In the basic
model, these observations are token-level features;
the morphology model adds type-level features as
well. We begin by describing the simplest version of
our model, where each word token is associated with
a single feature, for example its left context word
(the word that occurs to its left in the corpus). We
then show how to generalise the model to multiple
token-level features and to type-level features.

2.1 Basic model

In the basic model, each word token is represented
by a single feature such as its left context word.
These features are the observed data; the model ex-
plains the data by assuming that it has been gener-
ated from some set of latent syntactic classes. The
ith class is associated with a multinomial parameter
vector ϕi that defines the distribution over features
generated from that class, and with a mixing weight
θi that defines the prior probability of that class. θ
and ϕi are drawn from symmetric Dirichlet distribu-
tions with parameters α and β respectively.

The generative story goes as follows: First, gen-
erate the prior class probabilities θ. Next, for each
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word type j = 1 . . . M , choose a class assignment zj

from the distribution θ. For each class i = 1 . . . Z,
choose an output distribution over features ϕi. Fi-
nally, for each token k = 1 . . . nj of word type j,
generate a feature fjk from ϕzj , the distribution as-
sociated with the class that word type j is assigned
to. The model is illustrated graphically in Figure 1
and is defined formally as follows:

θ | α ∼ Dirichlet(α)

zj | θ ∼ Multinomial(θ)

ϕi | β ∼ Dirichlet(β)

fjk | ϕzj ∼ Multinomial(ϕzj )

In addition to the variables defined above, we will
use F to refer to the number of different possible
values a feature can take on (so that ϕ is a Z × F
matrix). Thus, one way to think of the model is as a
vector-based clustering system, where word type j is
associated with a 1×F vector of feature counts rep-
resenting the features of all nj tokens of j, and these
vectors are clustered into similar classes. The differ-
ence from other vector-based syntactic class induc-
tion systems is in the method of clustering. Here,
we define a Gibbs sampler that samples from the
posterior distribution of the clusters given the ob-
served features; other systems have used various
standard distance-based vector clustering methods.
Some systems also include dimensionality reduction
(Schütze, 1995; Lamar et al., 2010) to reduce the
size of the context vectors; we simply use the F most
common words as context features.

2.2 Inference
At inference time we want to sample a syntactic
class assignment z from the posterior of the model.
We use a collapsed Gibbs sampler, integrating out
the parameters θ and ϕ and sampling from the fol-
lowing distribution:

P (z|f , α, β) ∝ P (z|α)P (f |z, β). (1)

Rather than sampling the joint class assignment
P (z|f , α, β) directly, the sampler iterates over each
word type j, resampling its class assignment zj

given the current assignments z−j of all other word
types. The posterior over zj can be computed as

P (zj | z−j , f , α, β)

∝ P (zj | z−j , α, β)P (fj | f−j , z, α, β) (2)

where fj are the features associated with word type
j (one feature for each token of j). The first (prior)
factor is easy to compute due to the conjugacy be-
tween the Dirichlet and multinomial distributions,
and is equal to

P (zj = z | z−j , α) =
nz + α

n· + Zα
(3)

where nz is the number of types in class z and n·
is the total number of word types in all classes. All
counts in this and the following equations are com-
puted with respect to z−j (e.g., n· = M − 1).

Computing the second (likelihood) factor is
slightly more complex due to the dependencies be-
tween the different variables in fj that are induced
by integrating out the ϕ parameters. Consider first a
simple case where word type j occurs exactly twice
in the corpus, so fj contains two features. The prob-
ability of the first feature fj1 is equal to

P (fj1 = f | zj = z, z−j , f−j , β) =
nf,z + β

n·,z + Fβ
(4)

where nf,z is the number of times feature f has been
seen in class z, n·,z is the total number of feature
tokens in the class, and F is the number of different
possible features.

The probability of the second feature fj2 can be
calculated similarly, except that it is conditioned on
fj1 in addition to the other variables, so the counts
for previously observed features must include the
counts due to fj1 as well as those due to f−j . Thus,
the probability is

P (fj2 = f | fj1, zj = z, z−j , f−j , β)

=
nf,z + δ(fj1, fj2) + β

n·,z + 1 + Fβ
(5)

where δ is the Kronecker delta function, equal to 1
if its arguments are equal and 0 otherwise.

Extending this example to the general case, the
probability of a sequence of features fj is computed
using the chain rule, where the counts used in each
factor are incremented as necessary for each addi-
tional conditioning feature, yielding the following
expression:

P (fj | f−j , zj = z, z−j , β)

=

∏F
k=1

∏njk−1
i=0 (njk,z + i + β)

∏nj−1
i=0 (n·,z + i + Fβ)

(6)
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where njk is the number of instances of feature k in
word type j.2

2.3 Extended models
We can extend the model above in two different
ways: by adding more features at the word token
level, or by adding features at the type level. To add
more token-level features, we simply assume that
each word token generates multiple features, one
feature from each of several different kinds.3 For
example, the left context word might be one kind of
feature and the right context word another. We as-
sume conditional independence between the gener-
ated features given the syntactic class, so each kind
of feature t has its own output parameters ϕ(t). A
plate diagram of the model with T kinds of features
is shown in Figure 2 (a type-level feature is also in-
cluded in this diagram, as described below).

Due to the independence assumption between the
different kinds of features, the basic Gibbs sampler
is easy to extend to this case by simpling multiplying
in extra factors for the additional kinds of features,
with the prior (Equation 3) unchanged. The likeli-
hood becomes:

P (f
(1)
j , . . . , f

(T )
j | f (1...T )

−j , zj = z, z−j , β)

=
T∏

t=1

P (f
(t)
j | f (t)

−j , zj = z, z−j , β) (7)

where each factor in the product is computed using
Equation 6.

In addition to monolingual context features, we
also explore the use of alignment features for those
languages where we have parallel corpora. These
features are extracted for language ℓ by word-
aligning ℓ to another language ℓ′ (details of the
alignment procedure are described in Section 3.1).
The features used for each token e in ℓ are the left
and right context words of the word token that is
aligned to e (if there is one). As with the mono-
lingual context features, we use only the F most fre-
quent words in ℓ′ as possible features.

2One could approximate this likelihood term by assuming
independence between all nj feature tokens of word type j.
This is the approach taken by Lee et al. (2010).

3We use the word kind here to avoid confusion with type,
which we reserve for the type-token distinction, which can ap-
ply to features as well as words.

Note that this model with multiple context fea-
tures is deficient: it can generate data that are in-
consistent with any actual corpus, because there is
no mechanism to constrain the left context word
of token ei to be the same as the right context
word of token ei−1 (and similarly with alignment
features). However, deficient models have proven
useful in other unsupervised NLP tasks (Klein and
Manning, 2002; Toutanova and Johnson, 2007). In
particular, Toutanova and Johnson (2007) demon-
strate good performance on unsupervised part-of-
speech tagging (using a dictionary) with a Bayesian
model similar to our own. If we remove the part of
their model that relies on the dictionary (the mor-
phological ambiguity classes), their model is equiv-
alent to our own, without the restriction of one class
per type. We use this token-based version of our
model as a baseline in our experiments.

The final extension to our model introduces type-
level features, specifically morphology features.
The model is illustrated in Figure 2. We assume
conditional independence between the morphology
features and other features, so again we can simply
multiply another factor into the likelihood during in-
ference. There is only one morphological feature per
type, so this factor has the form of Equation 4. Since
frequent words will have many token-level features
contributing to the likelihood and only one morphol-
ogy feature, the morphology features will have a
greater effect for infrequent words (as appropriate,
since there is less evidence from context and align-
ments). As with the other kinds of features, we use
only a limited number Fm of morphology features,
as described below.

3 Experiments

3.1 Experimental setup

We evaluate our models using an increasing level
of complexity, starting with a model that uses only
monolingual context features. We use the F = 100
most frequent words as features, and consider two
versions of this model: one with two kinds of fea-
tures (one left and one right context word) and one
with four (two context words on each side).

For the model with morphology features we ran
the unsupervised morphological segmentation sys-
tem Morfessor (Creutz and Lagus, 2005) to get a
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Figure 2: Plate diagram of the extended model with T
kinds of token-level features (f (t) variables) and a single
kind of type-level feature (morphology, m).

segmentation for each word type in the corpus. We
then extracted the suffix of each word type4 and used
it as a feature type. This process yielded on average
Fm = 110 morphological feature types5. Each word
type generates at most one of these possible features.
If there are overlapping possibilities (e.g. -ingly and
-y) we take the longest possible match.

We also explore the idea of extending the mor-
phology feature space beyond suffixes, by including
features like capitalisation and punctuation. Specif-
ically we use the features described in Haghighi
and Klein (2006), namely initial-capital, contains-
hyphen, contains-digit and we add an extra feature
contains-punctuation.

For the model with alignment features, we fol-
low (Naseem et al., 2009) in using only bidirectional
alignments: using Giza++ (Och and Ney, 2003),
we get the word alignments in both directions be-
tween all possible language pairs in our parallel cor-
pora (i.e., alternating the source and target languages
within each pair). We then use only those align-
ments that are found in both directions. As discussed

4Since Morfessor yields multiple affixes for each word we
concatenated all the suffixes into a single suffix.

5There was large variance in the number of feature types for
each language ranging from 11 in Chinese to more than 350 in
German and Czech.

above, we use two kinds of alignment features: the
left and right context words of the aligned token in
the other language. The feature space is set to the
F = 100 most frequent words in that language.

Instead of fixing the hyperparameters α and β, we
used the Metropolis-Hastings sampler presented by
Goldwater and Griffiths (2007) to get updated values
based on the likelihood of the data with respect to
those hyperparameters6. In order to improve conver-
gence of the sampler, we used simulated annealing
with a sigmoid-shaped cooling schedule from an ini-
tial temperature of 2 down to 1. Preliminary experi-
ments indicated that we could achieve better results
by cooling even further (approximating the MAP so-
lution rather than a sample from the posterior), so for
all experiments reported here, we ran the sampler for
a total of 2000 iterations, with the last 400 of these
decreasing the temperature from 1 to 0.66.

Finally, we investigated two different initialisa-
tion techniques: First, we use random class as-
signments to word types (referred to as method 1)
and second, we assign each of the Z most frequent
word types to a separate class and then randomly
distribute the rest of the word types to the classes
(method 2).

3.2 Datasets
Although unsupervised systems should in principle
be language- and corpus-independent, most part-of-
speech induction systems (especially in the early lit-
erature) have been developed on English. Whether
because English is simply an easier language, or be-
cause of bias introduced during development, these
systems’ performance is considerably worse in other
languages (Christodoulopoulos et al., 2010)

Since we aim to use our system mostly on non-
English corpora, and ones that are significantly
smaller than the large English treebank corpora, we
developed our models using one of the languages of
the MULTEXT-East corpus (Erjavec, 2004), namely
Bulgarian. The other languages in the corpus were
used during development as a source of word align-
ments, but otherwise were only used for testing final
versions of our models. Since none of the authors
speak any of the languages in the MULTEXT col-

6For simplicity, we tied the β parameters for the two or four
kinds of context features to the same value, and similarly the β
parameters for the two kinds of alignment features.
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lection, we also used the Penn Treebank WSJ cor-
pus (Marcus et al., 1993) for development. Fol-
lowing Christodoulopoulos et al. (2010) we created
a smaller version of the WSJ corpus (referred to
as wsj-s) to approximate the size of the corpora in
MULTEXT-East. For comparison to other systems,
we also used the full WSJ at test time.

For further testing, we used the remaining MUL-
TEXT languages, as well as the languages of the
CONNL-X (Buchholz and Marsi, 2006) shared task.
This dataset contains 13 languages, 4 of which
are freely available (Danish, Dutch, Portuguese
and Swedish) and 9 that are used with permission
from the creators of the corpora ( Arabic7, Bul-
garian8, Czech9, German10, Chinese11, Japanese12,
Slovene13, Spanish14, Turkish15 ). Following Lee et
al. (2010) we used only the training sections for each
language.

Finally, to widen the scope of our system, we gen-
erated two more corpora in French16 and Ancient
Greek17, extracting the gold standard parts of speech
from the respective dependency treebanks.

3.3 Baselines

We chose three baselines for comparison. The first
is the basic k-means clustering algorithm, which we
applied to the same feature vectors we extracted for
our system (context + extended morphology), using
a Euclidean distance metric. This provides a very
simple vector-based clustering baseline. The second
baseline is a more recent vector-based syntactic class
induction method, the SVD approach of (Lamar et
al., 2010), which extends Schütze (1995)’s original
method and, like ours, enforces a one-class-per-tag
restriction. As a third baseline we use the system of
Clark (2003) since it is a type-level system that mod-

7Part of the Prague Arabic Treebank (Hajič et al., 2003;
Smrž and Pajas, 2004)

8Part of the BulTreeBank (Simov et al., 2004).
9Part of the Prague Dep. Treebank (Böhmová et al., 2001)

10Part of the TIGER Treebank (Brants et al., 2002)
11Part of the Sinica Treebank (Keh-Jiann et al., 2003)
12Part of the Tübingen Treebank of Spoken Japanese (for-

merly VERMOBIL Treebank - Kawata and Bartels (2000)).
13Part of the Slovene Dep. Treebank (Džeroski et al., 2006)
14Part of the Cast3LB Treebank (Civit et al., 2006)
15Part of the METU-Sabanci Treebank (Oflazer et al., 2003).
16French Treebank (Abeillé et al., 2000)
17Greek Dependency Treebank (Bamman et al., 2009)

els morphology and has produced very good results
on multilingual corpora.

4 Results and Analysis

4.1 Development results

Tables 1 and 2 present the results from develop-
ment runs, which were used to decide which fea-
tures to incorporate in the final system. We used V-
Measure (Rosenberg and Hirschberg, 2007) as our
primary evaluation score, but also present many-to-
one matching accuracy (M-1) scores for better com-
parison with previously published results. We chose
V-Measure (VM) as our evaluation score because it
is less sensitive to the number of classes induced by
the model (Christodoulopoulos et al., 2010), allow-
ing us to develop our models without using the num-
ber of classes as a parameter. We fixed the number
of classes in all systems to 45 during development;
note however that the gold standard tag set for Bul-
garian contains only 12 tags, so the results in Ta-
ble 1 (especially the M-1 scores) are not comparable
to previous results. For results using the number of
gold-standard tags refer to Table 4.

The first conclusion that can be drawn from these
results is the large difference between the token-
and type-based versions of our system, which con-
firms that the one-class-per-type restriction is help-
ful for unsupervised syntactic class induction. We
also see that for both languages, the performance of
the model using 4 context words (±2 on each side) is
worse than the 2 context words model. We therefore
used only two context words for all of our additional
test languages (below).

We can clearly see that morphological features
are helpful in both languages; however the extended
features of Haghighi and Klein (2006) seem to help
only on the English data. This could be due to the
fact that Bulgarian has a much richer morphology
and thus the extra features contribute little to the
overall performance of the model.

The contribution of the alignment features on the
Bulgarian corpus (aligned with English) is less sig-
nificant than that of morphology but when com-
bined, the two sets of features yield the best per-
formance. This provides evidence in favor of using
multiple features.

Finally, initialisation method 2 does not yield
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system ±1 words ±2 words
VM/M-1 VM/M-1

base 58.1 / 70.8 55.4 / 67.6
base(tokens) 48.3 / 62.5 37.0 / 54.4
base(init) 57.6 / 70.1 56.1 / 68.6
+morph 58.3 / 74.9 57.4 / 71.9
+morph(ext) 57.8 / 73.7 57.8 / 70.1
(init)+morph 57.8 / 74.3 57.3 / 69.5
(init)+morph(ext) 58.1 / 74.3 57.2 / 71.3
+aligns(EN) 58.1 / 72.6 56.7 / 71.1
+aligns(EN)+morph 59.0 / 75.4 57.5 / 69.7

Table 1: V-measure (VM) and many-to-one (M-1) results
on the MULTEXT-Bulgarian corpus for various mod-
els using either ±1 or ±2 context words as features.
base: context features only; (tokens): token-based model;
(init): Initialisation method 2—other results use method
1; (ext): Extended morphological features.

system ±1 words ±2 words
VM/M-1 VM/M-1

base 63.3 / 64.3 62.4 / 63.3
base(tokens) 48.6 / 57.8 49.3 / 38.3
base(init) 62.7 / 62.9 62.2 / 62.4
+morph 66.4 / 66.7 65.1 / 67.2
+morph(ext) 67.7 / 72.0 65.6 / 67.0
(init)+morph 64.8 / 66.9 64.2 / 66.0
(init)+morph(ext) 67.4 / 71.3 65.7 / 67.1

Table 2: V-measure and many-to-one results on the wsj-s
corpus for various models, as described in Table 1.

.

consistent improvements over the standard ran-
dom initialisation—if anything, it seems to perform
worse. We therefore use only method 1 in the re-
maining experiments.

4.2 Overall results

Table 3 presents the results on our parallel corpora.
We tested all possible combinations of two lan-
guages to align, and present both the average score
over all alignments, and the score under the best
choice of aligned language.18 Also shown are the
results of adding morphology features to the basic
model (context features only) and to the best align-
ment model for each language. In accord with our

18The choice of language was based on the same test data, so
the ‘best-language’ results should be viewed as oracle scores.

development results, adding morphology to the ba-
sic model is generally useful. The alignment results
are mixed: on the one hand, choosing the best pos-
sible language to align yields improvements, which
can be improved further by adding morphological
features, resulting in the best scores of all models
for most languages. On the other hand, without
knowing which language to choose, alignment fea-
tures do not help on average. We note, however,
that three out of the seven languages have English
as their best-aligned pair (perhaps due to its better
overall scores), which suggests that in the absence
of other knowledge, aligning with English may be a
good choice.

The low average performance of the alignment
features is disappointing, but there are many pos-
sible variations on our method for extracting these
features that we have not yet tested. For example,
we used only bidirectional alignments in an effort to
improve alignment precision, but these alignments
typically cover less than 40% of tokens. It is pos-
sible that a higher-recall set of alignments could be
more useful.

We turn now to our results on all 25 corpora,
shown in Table 4 along with corpus statistics, base-
line results, and the best published results for each
language (when available). Our system, includ-
ing morphology features in all cases, is listed as
BMMM (Bayesian Multinomial Mixture Model).
We do not include alignment features for the MUL-
TEXT languages since these features only yielded
improvements for the oracle case where we know
which aligned language to choose. Nevertheless, our
MULTEXT scores mostly outperform all other sys-
tems. Overall, we acheive the highest published re-
sults on 14 (VM) or 15 (M-1) of the 25 corpora.

One surprising discovery is the high performance
of the k-means clustering system. Despite its sim-
plicity, it is competitive with the other systems and
in a few cases even achieves the best published re-
sults.

5 Conclusion

We have presented a Bayesian model for syntactic
class induction that has two important properties.
First, it is type-based, assigning the same class to
every token of a word type. We have shown by
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BASE ALIGNMENTS
Lang. base +morph Avg. Best +morph

VM/M-1 VM/M-1 VM/M-1 VM/M1 VM/M1
Bulgarian 54.4 / 61.5 54.5 / 64.3 53.1 / 60.5 55.2 / 64.5(EN) 55.7 / 66.0
Czech 54.2 / 58.9 53.9 / 64.2 52.6 / 58.4 53.8 / 59.7(EN) 55.4 / 66.4
English 62.9 / 72.4 63.3 / 73.3 62.5 / 72.0 63.2 / 71.9(HU) 63.5 / 73.7
Estonian 52.8 / 63.5 53.3 / 67.4 52.8 / 63.9 53.5 / 65.0(EN) 54.3 / 66.9
Hungarian 53.3 / 60.4 54.8 / 68.2 53.3 / 60.8 53.9 / 61.1(RO) 55.9 / 67.1
Romanian 53.9 / 62.4 52.3 / 61.1 56.2 / 63.7 57.5 / 64.6(ES) 54.5 / 63.4
Slovene 57.2 / 65.9 56.7 / 67.9 54.7 / 64.1 55.9 / 64.4(HU) 56.7 / 67.9
Serbian 49.1 / 56.6 49.0 / 62.0 47.3 / 55.6 48.9 / 59.4(CZ) 48.3 / 60.8

Table 3: V-measure (VM) and many-to-one (M-1) results on the languages in the MULTEXT-East corpus using
the gold standard number of classes shown in Table 4. BASE results use ±1-word context features alone or with
morphology. ALIGNMENTS adds alignment features, reporting the average score across all possible choices of paired
language and the scores under the best performing paired language (in parens), alone or with morphology features.

Language Types Tags k-means SVD2 clark Best Pub. BMMM

W
SJ wsj 49,190 45 59.5 / 61.6 58.2 / 64.0 65.6 / 71.2 68.8 / 76.1∗ 66.1 / 72.8

wsj-s 16,850 45 56.7 / 60.1 54.3 / 60.7 63.8 / 68.8 62.3 / 70.7∗ 67.7 / 72.0

M
U

LT
E

X
T-

E
as

t

Bulgarian 16,352 12 50.3 / 59.3 41.7 / 51.0 55.6 / 66.5 - 54.5 / 64.4
Czech 19,115 12 48.6 / 56.7 35.5 / 50.9 52.6 / 64.1 - 53.9 / 64.2
English 9,773 12 56.5 / 65.4 52.3 / 65.5 60.5 / 70.6 - 63.3 / 73.3
Estonian 17,845 11 45.3 / 55.6 38.7 / 55.3 44.4 / 58.4 - 53.3 / 64.4
Hungarian 20,321 12 46.7 / 53.9 39.8 / 49.5 48.9 / 61.4 - 54.8 / 68.2
Romanian 15,189 14 45.2 / 55.1 42.1 / 52.6 40.9 / 49.9 - 52.3 / 61.1
Slovene 17,871 12 46.9 / 56.2 39.5 / 54.2 54.9 / 69.4 - 56.7 / 67.9
Serbian 18,095 12 41.4 / 47.0 39.1 / 54.6 51.0 / 64.1 - 49.0 / 62.0

C
oN

L
L

06
Sh

ar
ed

Ta
sk

Arabic 12,915 20 43.3 / 60.7 27.6 / 49.0 40.6 / 59.8 - 42.4 / 61.5
Bulgarian 32,439 54 53.6 / 65.6 49.0 / 65.3 59.6 / 70.4 - 58.8 / 68.9
Chinese 40,562 15 32.6 / 61.1 24.5 / 54.6 31.8 / 56.7 - 42.6 / 69.4
Czech 130,208 12 - - 47.1 / 65.5 - 48.4 / 65.7
Danish 18,356 25 51.7 / 61.6 40.8 / 57.6 52.7 / 65.3 - / 66.7† 59.0 / 71.1
Dutch 28,393 13 45.3 / 60.5 36.7 / 52.4 52.2 / 67.9 - / 67.3‡ 54.7 / 71.1
German 72,326 54 58.7 / 67.5 54.1 / 64.2 63.0 / 73.9 - / 68.4‡ 61.9 / 74.4
Japanese 3,231 80 76.1 / 76.2 74.4 / 75.5 78.6 / 77.4 - 77.4 / 78.5
Portuguese 28,931 22 51.6 / 64.4 45.9 / 63.1 57.4 / 69.2 - / 75.3† 63.9 / 76.8
Slovene 7,128 29 52.6 / 64.2 44.0 / 60.3 53.9 / 63.5 - 49.4 / 56.2
Spanish 16,458 47 59.5 / 69.2 54.8 / 68.2 61.6 / 71.9 - / 73.2† 63.2 / 71.7
Swedish 20,057 41 53.2 / 62.2 47.4 / 59.1 58.9 / 68.7 - / 60.6‡ 58.0 / 68.2
Turkish 17,563 30 40.8 / 62.8 27.4 / 52.4 36.8 / 58.1 - 40.2 / 58.7
French 49,964 23 48.2 / 68.6 46.3 / 68.5 57.3 / 77.8 - 55.0 / 76.6
A.Greek 15,194 15 38.6 / 44.8 24.2 / 38.5 33.3 / 45.4 - 40.5 / 45.1

Table 4: Final results on 25 corpora in 20 languages, with the number of induced classes equal to the number of gold
standard tags in all cases. k-means and SVD2 models could not produce a clustering in the Czech CoNLL corpus due
its size. Best published results are from ∗Christodoulopoulos et al. (2010), †Berg-Kirkpatrick et al. (2010) and ‡Lee
et al. (2010). The latter two papers do not report VM scores. No best published results are shown for the MULTEXT
languages; Christodoulopoulos et al. (2010) report results based on 45 tags suggesting that clark performs best on
these corpora.

645



comparison with a token-based version of the model
that this restriction is very helpful. Second, it is
a clustering model rather than a sequence model.
This property makes it easy to incorporate multi-
ple kinds of features into the model at either the to-
ken or the type level. Here, we experimented with
token-level context features and alignment features
and type-level morphology features, showing that
morphology features are helpful in nearly all cases,
and alignment features can be helpful if the aligned
language is properly chosen. Our results even with-
out these extra features are competitive with state-
of-the-art; with the additional features we achieve
the best published results in the majority of the 25
corpora tested.

Since it is so easy to add extra features to our
model, one direction for future work is to explore
other possible features. For example, it could be
useful to add dependency features from an unsuper-
vised dependency parser. We are also interested in
improving our morphology features, either by con-
sidering other ways to extract features during pre-
processing (for example, including prefixes or not
concatenating together all suffixes), or by develop-
ing a joint model for inducing both morphology and
syntactic classes simultaneously. Finally, our model
could be extended by replacing the standard mixture
model with an infinite mixture model (Rasmussen,
2000) in order to induce the number of syntactic
classes automatically.
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itor, Treebanks: Building and Using Syntactically An-
notated Corpora, pages 103 – 126. Kluwer Academic
Publishers.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER tree-
bank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, Sozopol.

Peter F. Brown, Vincent J. Della Pietra, Peter V. Desouza,
Jennifer C. Lai, and Robert L. Mercer. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Compu-
tational Natural Language Learning, CoNLL-X ’06,
pages 149–164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsupervised
POS induction: How far have we come? In Proceed-
ings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pages 575–584, Cam-
bridge, MA, October. Association for Computational
Linguistics.

Montserrat Civit, Ma. Martı́, and Núria Bufı́. 2006.
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Abstract

Responding to the need for semantic lexical
resources in natural language processing ap-
plications, we examine methods to acquire
noun compounds (NCs), e.g., orange juice, to-
gether with suitable fine-grained semantic in-
terpretations, e.g., squeezed from, which are
directly usable as paraphrases. We employ
bootstrapping and web statistics, and utilize
the relationship between NCs and paraphras-
ing patterns to jointly extract NCs and such
patterns in multiple alternating iterations. In
evaluation, we found that having one com-
pound noun fixed yields both a higher number
of semantically interpreted NCs and improved
accuracy due to stronger semantic restrictions.

1 Introduction

Noun compounds (NCs) such as malaria mosquito
and colon cancer tumor suppressor protein are chal-
lenging for text processing since the relationship
between the nouns they are composed of is im-
plicit. NCs are abundant in English and understand-
ing their semantics is important in many natural lan-
guage processing (NLP) applications. For example,
a question answering system might need to know
whether protein acting as a tumor suppressor is a
good paraphrase for tumor suppressor protein. Sim-
ilarly, a machine translation system facing the un-
known noun compound Geneva headquarters might
translate it better if it could first paraphrase it as
Geneva headquarters of the WTO. Given a query
for “migraine treatment”, an information retrieval
system could use paraphrasing verbs like relieve and
prevent for query expansion and result ranking.

Most work on noun compound interpretation has
focused on two-word NCs. There have been two
general lines of research: the first one derives the NC
semantics from the semantics of the nouns it is made
of (Rosario and Hearst, 2002; Moldovan et al., 2004;
Kim and Baldwin, 2005; Girju, 2007; Séaghdha,
2009; Tratz and Hovy, 2010), while the second one
models the relationship between the nouns directly
(Vanderwende, 1994; Lapata, 2002; Kim and Bald-
win, 2006; Nakov and Hearst, 2006; Nakov and
Hearst, 2008; Butnariu and Veale, 2008).

In either case, the semantics of an NC is typi-
cally expressed by an abstract relation like CAUSE

(e.g., malaria mosquito), SOURCE (e.g., olive oil),
or PURPOSE (e.g., migraine drug), coming from a
small fixed inventory. Some researchers however,
have argued for a more fine-grained, even infinite,
inventory (Finin, 1980). Verbs are particularly use-
ful in this respect and can capture elements of the
semantics that the abstract relations cannot. For ex-
ample, while most NCs expressing MAKE, can be
paraphrased by common patterns like be made of
and be composed of, some NCs allow more specific
patterns, e.g., be squeezed from for orange juice, and
be topped with for bacon pizza.

Recently, the idea of using fine-grained para-
phrasing verbs for NC semantics has been gain-
ing popularity (Butnariu and Veale, 2008; Nakov,
2008b); there has also been a related shared task at
SemEval-2010 (Butnariu et al., 2010). This interest
is partly driven by practicality: verbs are directly us-
able as paraphrases. Still, abstract relations remain
dominant since they offer a more natural generaliza-
tion, which is useful for many NLP applications.
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One good contribution to this debate would be a
direct study of the relationship between fine-grained
and coarse-grained relations for NC interpretation.
Unfortunately, the existing datasets do not allow
this since they are tied to one particular granular-
ity; moreover, they only contain a few hundred NCs.
Thus, our objective is to build a large-scale dataset
of hundreds of thousands of NCs, each interpreted
(1) by an abstract semantic relation and (2) by a set
of paraphrasing verbs. Having such a large dataset
would also help the overall advancement of the field.

Since there is no universally accepted abstract re-
lation inventory in NLP, and since we are interested
in NC semantics from both a theoretical and a prac-
tical viewpoint, we chose the set of abstract relations
proposed in the theory of Levi (1978), which is dom-
inant in theoretical linguistics and has been also used
in NLP (Nakov and Hearst, 2008).

We use a two-step algorithm to jointly harvest
NCs and patterns (verbs and prepositions) that in-
terpret them for a given abstract relation. First,
we extract NCs using a small number of seed pat-
terns from a given abstract relation. Then, using
the extracted NCs, we harvest more patterns. This
is repeated until no new NCs and patterns can be
extracted or for a pre-specified number of itera-
tions. Our approach combines pattern-based extrac-
tion and bootstrapping, which is novel for NC in-
terpretation; however, such combinations have been
used in other areas, e.g., named entity recognition
(Riloff and Jones, 1999; Thelen and Riloff, 2002;
Curran et al., 2007; McIntosh and Curran, 2009).

The remainder of the paper is organized as fol-
lows: Section 2 gives an overview of related work,
Section 3 motivates our semantic representation,
Sections 4, 5, and 6 explain our method, dataset and
experiments, respectively, Section 7 discusses the
results, Section 8 provides error analysis, and Sec-
tion 9 concludes with suggestions for future work.

2 Related Work

As we mentioned above, the implicit relation be-
tween the two nouns forming a noun compound can
often be expressed overtly using verbal and prepo-
sitional paraphrases. For example, student loan is
“loan given to a student”, while morning tea can be
paraphrased as “tea in the morning”.

Thus, many NLP approaches to NC semantics
have used verbs and prepositions as a fine-grained
semantic representation or as features when pre-
dicting coarse-grained abstract relations. For ex-
ample, Vanderwende (1994) associated verbs ex-
tracted from definitions in an online dictionary with
abstract relations. Lauer (1995) expressed NC se-
mantics using eight prepositions. Kim and Baldwin
(2006) predicted abstract relations using verbs as
features. Nakov and Hearst (2008) proposed a fine-
grained NC interpretation using a distribution over
Web-derived verbs, prepositions and coordinating
conjunctions; they also used this distribution to pre-
dict coarse-grained abstract relations. Butnariu and
Veale (2008) adopted a similar fine-grained verb-
centered approach to NC semantics. Using a dis-
tribution over verbs as a semantic interpretation was
also carried out in a recent challenge: SemEval-2010
Task 9 (Butnariu et al., 2009; Butnariu et al., 2010).

In noun compound interpretation, verbs and
prepositions can be seen as patterns connecting the
two nouns in a paraphrase. Similar pattern-based ap-
proaches have been popular in information extrac-
tion and ontology learning. For example, Hearst
(1992) extracted hyponyms using patterns such as
X, Y, and/or other Zs, where Z is a hypernym of
X and Y. Berland and Charniak (1999) used sim-
ilar patterns to extract meronymy (part-whole) re-
lations, e.g., parts/NNS of/IN wholes/NNS matches
basements of buildings. Unfortunately, matches are
rare, which makes it difficult to build large semantic
inventories. In order to overcome data sparseness,
pattern-based approaches are often combined with
bootstrapping. For example, Riloff and Jones (1999)
used a multi-level bootstrapping algorithm to learn
both a semantic lexicon and extraction patterns, e.g.,
owned by X extracts COMPANY and facilities in X
extracts LOCATION. That is, they learned seman-
tic lexicons using extraction patterns, and then, al-
ternatively, they extracted new patterns using these
lexicons. They also introduced a second level of
bootstrapping to retain the most reliable examples
only. While the method enables the extraction of
large lexicons, its quality degrades rapidly, which
makes it impossible to run for too many iterations.
Recently, Curran et al. (2007) and McIntosh and
Curran (2009) proposed ways to control degradation
using simultaneous learning and weighting.
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Bootstrapping has been applied to noun com-
pound extraction as well. For example, Kim and
Baldwin (2007) used it to produce a large number
of semantically interpreted noun compounds from
a small number of seeds. In each iteration, the
method replaced one component of an NC with its
synonyms, hypernyms and hyponyms to generate a
new NC. These new NCs were further filtered based
on their semantic similarity with the original NC.
While the method acquired a large number of noun
compounds without significant semantic drifting, its
accuracy degraded rapidly after each iteration. More
importantly, the variation of the sense pairs was lim-
ited since new NCs had to be semantically similar to
the original NCs.

Recently, Kozareva and Hovy (2010) combined
patterns and bootstrapping to learn the selectional
restrictions for various semantic relations. They
used patterns involving the coordinating conjunction
and, e.g., “* and John fly to *”, and learned argu-
ments such as Mary/Tom and France/New York. Un-
like in NC interpretation, it is not necessary for their
arguments to form an NC, e.g., Mary France and
France Mary are not NCs. Rather, they were in-
terested in building a semantic ontology with a pre-
defined set of semantic relations, similar to YAGO
(Suchanek et al., 2007), where the pattern work for
would have arguments like a company/UNICEF.

3 Semantic Representation

Inspired by (Finin, 1980), Nakov and Hearst (2006)
and (Nakov, 2008b) proposed that NC semantics is
best expressible using paraphrases involving verbs
and/or prepositions. For example, bronze statue is
a statue that is made of, is composed of, consists of,
contains, is of, is, is handcrafted from, is dipped in,
looks like bronze. They further proposed that se-
lecting one such paraphrase is not enough and that
multiple paraphrases are needed for a fine-grained
representation. Finally, they observed that not all
paraphrases are equally good (e.g., is made of is
arguably better than looks like or is dipped in for
MAKE), and thus proposed that the semantics of a
noun compound should be expressed as a distribu-
tion over multiple possible paraphrases. This line of
research was later adopted by SemEval-2010 Task 9
(Butnariu et al., 2010).

It easily follows that the semantics of abstract re-
lations such as MAKE that can hold between the
nouns in an NC can be represented in the same way:
as a distribution over paraphrasing verbs and prepo-
sitions. Note, however, that some NCs are para-
phrasable by more specific verbs that do not nec-
essarily support the target abstract relation. For ex-
ample, malaria mosquito, which expresses CAUSE,
can be paraphrased using verbs like carry, which do
not imply direct causation. Thus, while we will be
focusing on extracting NCs for a particular abstract
relation, we are interested in building semantic rep-
resentations that are specific for these NCs and do
not necessarily apply to all instances of that relation.

Traditionally, the semantics of a noun compound
have been represented as an abstract relation drawn
from a small closed set. Unfortunately, no such set is
universally accepted, and mapping between sets has
proven challenging (Girju et al., 2005). Moreover,
being both abstract and limited, such sets capture
only part of the semantics; often multiple meanings
are possible, and sometimes none of the pre-defined
ones suits a given example. Finally, it is unclear
how useful these sets are since researchers have of-
ten fallen short of demonstrating practical uses.

Arguably, verbs have more expressive power and
are more suitable for semantic representation: there
is an infinite number of them (Downing, 1977), and
they can capture fine-grained aspects of the mean-
ing. For example, while both wrinkle treatment and
migraine treatment express the same abstract rela-
tion TREATMENT-FOR-DISEASE, fine-grained dif-
ferences can be revealed using verbs, e.g., smooth
can paraphrase the former, but not the latter.

In many theories, verbs play an important role in
NC derivation (Levi, 1978). Moreover, speakers of-
ten use verbs to make the hidden relation between
the noun in a noun compound overt. This allows for
simple extraction and for straightforward use in NLP
tasks like textual entailment (Tatu and Moldovan,
2005) and machine translation (Nakov, 2008a).

Finally, a single verb is often not enough, and
the meaning is better approximated by a collection
of verbs. For example, while malaria mosquito ex-
presses CAUSE (and is paraphrasable using cause),
further aspects of the meaning can be captured with
more verbs, e.g., carry, spread, be responsible for,
be infected with, transmit, pass on, etc.

650



4 Method

We harvest noun compounds expressing some target
abstract semantic relation (in the experiments below,
this is Levi’s MAKE2), starting from a small number
of initial seed patterns: paraphrasing verbs and/or
prepositions. Optionally, we might also be given
a small number of noun compounds that instanti-
ate the target abstract relation. We then learn more
noun compounds and patterns for the relation by al-
ternating between the following two bootstrapping
steps, using the Web as a corpus. First, we extract
more noun compounds that are paraphrasable with
the available patterns (see Section 4.1). We then
look for new patterns that can paraphrase the newly-
extracted noun compounds (see Section 4.2). These
two steps are repeated until no new noun compounds
can be extracted or until a pre-determined number of
iterations has been reached. A schematic description
of the algorithm is shown in Figure 1.

(+ H/M of NCs)
Patterns

Query Generation

NC Extraction

Pattern
Filtering
Rules

Filtering
NC

Rules

repeat

collected NCs^

Query Generation

w/ NCs^
collected Patterns

stop
if newNCs = 0
or
Iteration limit exceeded

Snippet by Yahoo!

Pattern Extraction

Snippet by Yahoo!

Figure 1: Our bootstrapping algorithm.

4.1 Bootstrapping Step 1: Noun Compound
Extraction

Given a list of patterns (verbs and/or prepositions),
we mine the Web to extract noun compounds that
match these patterns. We experiment with the fol-
lowing three bootstrapping strategies for this step:

• Loose bootstrapping uses the available pat-
terns and imposes no further restrictions.

• Strict bootstrapping requires that, in addition
to the patterns themselves, some noun com-
pounds matching each pattern be made avail-
able as well. A pattern is only instantiated in
the context of either the head or the modifier of
a noun compound that is known to match it.

• NC-only strict bootstrapping is a stricter ver-
sion of strict bootstrapping, where the list of
patterns is limited to the initial seeds.

Below we describe each of the sub-steps of the NC
extraction process: query generation, snippet har-
vesting, and noun compound acquisition & filtering.

4.1.1 Query Generation
We generate generalized exact-phrase queries to

be used in a Web search engine (we use Yahoo!):
"* that PATTERN *" (loose)

"HEAD that PATTERN *" (strict)
"* that PATTERN MOD" (strict)

where PATTERN is an inflected form of a verb, MOD
and HEAD are inflected forms the modifier and the
head of a noun compound that is paraphrasable by
the pattern, that is the word that, and * is the
search engine’s star operator.

We use the first pattern for loose bootstrapping
and the other two for both strict bootstrapping and
NC-only strict bootstrapping.

Note that the above queries are generalizations of
the actual queries we use against the search engine.
In order to instantiate these generalizations, we fur-
ther generate the possible inflections for the verbs
and the nouns involved. For nouns, we produce sin-
gular and plural forms, while for verbs, we vary not
only the number (singular and plural), but also the
tense (we allow present, past, and present perfect).
When inflecting verbs, we distinguish between ac-
tive verb forms like consist of and passive ones like
be made from and we treat them accordingly. Over-
all, in the case of loose bootstrapping, we generate
about 14 and 20 queries per pattern for active and
passive patterns, respectively, while for strict boot-
strapping and NC-only strict bootstrapping, the in-
stantiations yield about 28 and 40 queries for active
and passive patterns, respectively.
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For example, given the seed be made of, we could
generate "* that were made of *". If we
are further given the NC orange juice, we could also
produce "juice that was made of *" and
"* that is made of oranges".

4.1.2 Snippet Extraction
We execute the above-described instantiations of

the generalized queries against a search engine as
exact phrase queries, and, for each one, we collect
the snippets for the top 1,000 returned results.

4.1.3 NC Extraction and Filtering
Next, we process the snippets returned by the

search engine and we acquire potential noun com-
pounds from them. Then, in each snippet, we look
for an instantiation of the pattern used in the query
and we try to extract suitable noun(s) that occupy the
position(s) of the *.

For loose bootstrapping, we extract two nouns,
one from each end of the matched pattern, while
for strict bootstrapping and for NC-only strict boot-
strapping, we only extract one noun, either preced-
ing or following the pattern, since the other noun
is already fixed. We then lemmatize the extracted
noun(s) and we form NC candidates from the two
arguments of the instantiated pattern, taking into ac-
count whether the pattern is active or passive.

Due to the vast number of snippets we have to
process, we decided not to use a syntactic parser or a
part-of-speech (POS) tagger1; thus, we use heuristic
rules instead. We extract “phrases” using simple in-
dicators such as punctuation (e.g., comma, period),
coordinating conjunctions2 (e.g., and, or), preposi-
tions (e.g., at, of, from), subordinating conjunctions
(e.g., because, since, although), and relative pro-
nouns (e.g., that, which, who). We then extract the
nouns from these phrases, we lemmatize them using
WordNet, and we form a list of NC candidates.

While the above heuristics work reasonably well
in practice, we perform some further filtering, re-
moving all NC candidates for which one or more of
the following conditions are met:

1In fact, POS taggers and parsers are unreliable for Web-
derived snippets, which often represent parts of sentences and
contain errors in spelling, capitalization and punctuation.

2Note that filtering the arguments using such indicators indi-
rectly subsumes the pattern "X PATTERN Y and" proposed
in (Kozareva and Hovy, 2010).

1. the candidate NC is one of the seed examples
or has been extracted on a previous iteration;

2. the head and the modifier are the same;

3. the head or the modifier are not both listed as
nouns in WordNet (Fellbaum, 1998);

4. the candidate NC occurs less than 100 times in
the Google Web 1T 5-gram corpus3;

5. the NC is extracted less than N times (we tried
5 and 10) in the context of the pattern for all
instantiations of the pattern.

4.2 Bootstrapping Step 2: Pattern Extraction

This is the second step of our bootstrapping algo-
rithm as shown on Figure 1. Given a list of noun
compounds, we mine the Web to extract patterns:
verbs and/or prepositions that can paraphrase each
NC. The idea is to turn the NC’s pre-modifier into
a post-modifying relative clause and to collect the
verbs and prepositions that are used in such clauses.
Below we describe each of the sub-steps of the NC
extraction process: query generation, snippet har-
vesting, and NC extraction & filtering.

4.2.1 Query Generation

The process of extraction starts with exact-phrase
queries issued against a Web search engine (again
Yahoo!) using the following generalized pattern:

"HEAD THAT? * MOD"

where MOD and HEAD are inflected forms of NC’s
modifier and head, respectively, THAT? stands for
that, which, who or the empty string, and * stands
for 1-6 instances of search engine’s star operator.

For example, given orange juice, we could gen-
erate queries like "juice that * oranges",
"juices which * * * * * * oranges",
and "juices * * * orange".

4.2.2 Snippet Extraction

The same as in Section 4.1.2 above.

3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2006T13
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4.2.3 Pattern Extraction and Filtering
We split the extracted snippets into sentences, and

filter out all incomplete ones and those that do not
contain (a possibly inflected version of) the target
nouns. We further make sure that the word sequence
following the second mentioned target noun is non-
empty and contains at least one non-noun, thus en-
suring the snippet includes the entire noun phrase.
We then perform shallow parsing, and we extract all
verb forms, and the following preposition, between
the target nouns. We allow for adjectives and partici-
ples to fall between the verb and the preposition but
not nouns; we further ignore modal verbs and aux-
iliaries, but we retain the passive be, and we make
sure there is exactly one verb phrase between the tar-
get nouns. Finally, we lemmatize the verbs to form
the patterns candidates, and we apply the following
pattern selection rules:

1. we filter out all patterns that were provided as
initial seeds or were extracted previously;

2. we select the top 20 most frequent patterns;

3. we filter out all patterns that were extracted less
than N times (we tried 5 and 10) and with less
than M NCs per pattern (we tried 20 and 50).

5 Target Relation and Seed Examples

As we mentioned above, we use the inventory of
abstract relations proposed in the popular theoreti-
cal linguistics theory of Levi (1978). In this theory,
noun compounds are derived from underlying rel-
ative clauses or noun phrase complement construc-
tions by means of two general processes: predicate
deletion and predicate nominalization. Given a two-
argument predicate, predicate deletion removes that
predicate, but retains its arguments to form an NC,
e.g., pie made of apples → apple pie. In contrast,
predicate nominalization creates an NC whose head
is a nominalization of the underlying predicate and
whose modifier is either the subject or the object of
that predicate, e.g., The President refused General
MacArthur’s request. → presidential refusal.

According to Levi, predicate deletion can be ap-
plied to abstract predicates, whose semantics can be
roughly approximated using five paraphrasing verbs
(CAUSE, HAVE, MAKE, USE, and BE) and four
prepositions (IN, FOR, FROM, and ABOUT).

Typically, in predicate deletion, the modifier is
derived from the object of the underlying relative
clause; however, the first three verbs also allow for
it to be derived from the subject. Levi expresses the
distinction using indexes. For example, music box is
MAKE1 (object-derived), i.e., the box makes music,
while chocolate bar is MAKE2 (subject-derived),
i.e., the bar is made of chocolate (note the passive).

Due to time constraints, we focused on one re-
lation of Levi’s, MAKE2, which is among the most
frequent relations an NC can express and is present
in some form in many relation inventories (Warren,
1978; Barker and Szpakowicz, 1998; Rosario and
Hearst, 2001; Nastase and Szpakowicz, 2003; Girju
et al., 2005; Girju et al., 2007; Girju et al., 2009;
Hendrickx et al., 2010; Tratz and Hovy, 2010).

In Levi’s theory, MAKE2 means that the head of
the noun compound is made up of or is a product of
its modifier. There are three subtypes of this relation
(we do not attempt to distinguish between them):

(a) the modifier is a unit and the head is a configu-
ration, e.g., root system;

(b) the modifier represents a material and the head
is a mass or an artefact, e.g., chocolate bar;

(c) the head represents human collectives and
the modifier specifies their membership, e.g.,
worker teams.

There are 20 instances of MAKE2 in the appendix
of (Levi, 1978), and we use them all as seed NCs.
As seed patterns, we use a subset of the human-
proposed paraphrasing verbs and prepositions cor-
responding to these 20 NCs in the dataset in (Nakov,
2008b), where each NC is paraphrased by 25-30 an-
notators. For example, for chocolate bar, we find
the following list of verbs (the number of annotators
who proposed each verb is shown in parentheses):

be made of (16), contain (16), be made from
(10), be composed of (7), taste like (7), con-
sist of (5), be (3), have (2), melt into (2), be
manufactured from (2), be formed from (2),
smell of (2), be flavored with (1), sell (1), taste
of (1), be constituted by (1), incorporate (1),
serve (1), contain (1), store (1), be made with
(1), be solidified from (1), be created from (1),
be flavoured with (1), be comprised of (1).

653



Seed NCs: bronze statue, cable network, candy cigarette, chocolate bar, concrete desert, copper coin, daisy chain, glass eye,
immigrant minority, mountain range, paper money, plastic toy, sand dune, steel helmet, stone tool, student committee,
sugar cube, warrior castle, water drop, worker team
Seed patterns: be composed of, be comprised of, be inhabited by, be lived in by, be made from, be made of, be made up of,
be manufactured from, be printed on, consist of, contain, have, house, include, involve, look like, resemble, taste like

Table 1: Our seed examples: 20 noun compounds and 18 verb patterns.

As we can see, the most frequent patterns are of
highest quality, e.g., be made of (16), while the less
frequent ones can be wrong, e.g., serve (1). There-
fore, we filtered out all verbs that were proposed less
than five times with the 20 seed NCs. We further re-
moved the verb be, which is too general, thus ending
up with 18 seed patterns. Note that some patterns
can paraphrase multiple NCs: the total number of
seed NC-pattern pairs is 84.

The seed NCs and patterns are shown in Table 1.
While some patterns, e.g., taste like do not express
the target relation MAKE2, we kept them anyway
since they were proposed by several human anno-
tators and since they do express the fine-grained se-
mantics of some particular instances of that relation;
thus, we thought they might be useful, even for the
general relation. For example, taste like has been
proposed 8 times for candy cigarette, 7 times for
chocolate bar, and 2 times for sugar cube, and thus
it clearly correlates well with some seed examples,
even if it does not express MAKE2 in general.

6 Experiments and Evaluation

Using the NCs and patterns in Table 1 as initial
seeds, we ran our algorithm for three iterations of
loose bootstrapping and strict bootstrapping, and
for two iterations of NC-only strict bootstrapping.
We only performed up to three iterations because
of the huge number of noun compounds extracted
for NC-only strict bootstrapping (which we only ran
for two iterations) and because of the low number of
new NCs extracted by loose bootstrapping on itera-
tion 3. While we could have run strict bootstrapping
for more iterations, we opted for a comparable num-
ber of iterations for all three methods.

Examples of noun compounds that we have ex-
tracted are bronze bell (be made of, be made from)
and child team (be composed of, include). Exam-
ple patterns are be filled with (cotton bag, water cup)
and use (water sculpture, wood statue).

Limits Extracted & Retained
(see 4.2.3) NCs Patterns Patt.+NC
Loose Bootstrapping
N=5, M=50 1,662 / 61.67 12 / 65.83 1,337
N=10, M=20 590 / 61.52 9 / 65.56 316
Strict Bootstrapping
N=5, M=50 25,375 / 67.42 16 / 71.43 9,760
N=10, M=20 16,090 / 68.27 16 / 78.98 5,026
NC-only Strict Bootstrapping
N=5 205,459 / 69.59 – –
N=10 100,550 / 70.43 – –

Table 2: Total number and accuracy in % for NCs, pat-
terns and NC-pattern pairs extracted and retained for each
of the three methods over all iterations.

Tables 2 and 3 show the overall results. As we
mentioned in section 4.2.3, at each iteration, we fil-
tered out all patterns that were extracted less than N
times or with less than M NCs. Note that we only
used the 10 most frequent NCs per pattern as NC
seeds for NC extraction in the next iteration of strict
bootstrapping and NC-only strict bootstrapping. Ta-
ble 3 shows the results for two value combinations
of (N ;M ): (5;50) and (10;20). Note also that if
some NC was extracted by several different patterns,
it was only counted once. Patterns are subject to
particular NCs, and thus we show (1) the number
of patterns extracted with all NCs, i.e., unique NC-
pattern pairs, (2) the accuracy of these pairs,4 and
(3) the number of unique patterns retained after fil-
tering, which will be used to extract new noun com-
pounds on the second step of the current iteration.

4One of the reviewers suggested that evaluating the accuracy
of NC-pattern pairs could potentially conceal some of the drift
of our algorithm. For example, while water cup / be filled with
is a correct NC-pattern pair, water cup is incorrect for MAKE2;
it is probably an instance of Levi’s FOR. Thus, the same boot-
strapping technique evaluated against a fixed set of semantic re-
lations (which is the more traditional approach) could arguably
show bootstrapping going “off the rails” more quickly than what
we observe here. However, our goal, as stated in Section 3, is to
find NC-specific paraphrases, and our evaluation methodology
is more adequate with respect to this goal.
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Limits Seeds Iteration 1 Iteration 2 Iteration 3
(see 4.2.3) Patt. NCs Patt. NCs Patterns NCs Patterns NCs
Loose Bootstrapping
N=5, M=50 – 18 – 1,144 / 63.11 1,136 / 64.44 / 9 390 / 58.72 201 / 70.00 / 3 128 / 57.03
N=10, M=20 – 18 – 502 / 61.55 294 / 62.50 / 8 78 / 60.26 22 / 90.00 / 1 10 / 70.00
Strict Bootstrapping
N=5, M=50 20 18 – 7,011 / 70.65 5,312 / 74.00 / 10 11,214 / 67.15 4,448 / 60.00 / 6 7,150 / 64.69
N=10, M=20 20 18 – 4,826 / 71.26 2,838 / 79.38 / 10 7,371 / 67.26 2,188 / 78.33 / 6 3,893 / 66.48
NC-only Strict Bootstrapping
N=5 20 18 – 7,011 / 70.65 – 198,448 / 69.55 – –
N=10 20 18 – 4,826 / 71.26 – 95,524 / 70.59 – –

Table 3: Evaluation results for up to three iterations. For NCs, we show the number of unique NCs extracted and
their accuracy in %. For patterns, we show the number of unique NC-pattern pairs extracted, their accuracy in %, and
the number of unique patterns retained and used to extract NCs on the second step of the current iteration. The first
column shows the pattern filtering thresholds used (see Section 4.2.3 for details).

The above accuracies were calculated based on
human judgments by an experienced, well-trained
annotator. We also hired a second annotator for a
small subset of the examples.

For NCs, the first annotator judged whether each
NC is an instance of MAKE2. All NCs were judged,
except for iteration 2 of NC-only strict bootstrap-
ping, where their number was prohibitively high and
only the most frequent noun compounds extracted
for each modifier and for each head were checked:
9,004 NCs for N=5 and 4,262 NCs for N=10.

For patterns, our first annotator judged the cor-
rectness of the unique NC-pattern pairs, i.e., whether
the NC is paraphrasable with the target pattern.
Given the large number of NC-pattern pairs, the an-
notator only judged patterns with their top 10 most
frequent NCs. For example, if there were 5 patterns
extracted, then the NC-pattern pairs to be judged
would be no more than 5 × 10 = 50.

Our second annotator judged 340 random exam-
ples: 100 NCs and 20 patterns with their top 10 NCs
for each iteration. The Cohen’s kappa (Cohen, 1960)
between the two annotators is .66 (85% initial agree-
ment), which corresponds to substantial agreement
(Landis and Koch, 1977).

7 Discussion

Tables 2 and 3 show that fixing one of the two nouns
in the pattern, as in strict bootstrapping and NC-only
strict bootstrapping, yields significantly higher ac-
curacy (χ2 test) for both NC and NC-pattern pair
extraction compared to loose bootstrapping.

The accuracy for NC-only strict bootstrapping is
a bit higher than for strict bootstrapping, but the ac-
tual differences are probably smaller since the eval-
uation of the former on iteration 2 was done for the
most frequent NCs, which are more accurate.

Note that the number of extracted NCs is much
higher with the strict methods because of the higher
number of possible instantiations of the generalized
query patterns. For NC-only strict bootstrapping,
the number of extracted NCs grows exponentially
since the number of patterns does not diminish as
in the other two methods. The number of extracted
patterns is similar for the different methods since we
select no more than 20 of them per iteration.

Overall, the accuracy for all methods decreases
from one iteration to the next since errors accumu-
late; still, the degradation is slow. Note also the ex-
ception of loose bootstrapping on iteration 3.

Comparing the results for N=5 and N=10, we
can see that, for all three methods, using the latter
yields a sizable drop in the number of extracted NCs
and NC-pattern pairs; it also tends to yield a slightly
improved accuracy. Note, however, the exception
of loose bootstrapping for the first two iterations,
where the less restrictive N=5 is more accurate.

As a comparison, we implemented the method
of Kim and Baldwin (2007), which generates new
semantically interpreted NCs by replacing either
the head or the modifier of a seed NC with suit-
able synonyms, hypernyms and sister words from
WordNet, followed by similarity filtering using
WordNet::Similarity (Pedersen et al., 2004).
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Rep. Iter. 1 Iter. 2 Iter. 3 All
Syn. 11/81.81 3/66.67 0 14/78.57
Hyp. 27/85.19 35/77.14 33/66.67 95/75.79
Sis. 381/82.05 1,736/69.33 17/52.94 2,134/75.12
All 419/82.58 1,774/71.68 50/62.00 2,243/75.47

Table 4: Number of extracted noun compounds and ac-
curacy in % for the method of Kim and Baldwin (2007).
The abbreviations Syn., Hyp., and Sis. indicate using syn-
onyms, hypernyms, and sister words, respectively.

The results for three bootstrapping iterations us-
ing the same list of 20 initial seed NCs as in our pre-
vious experiments, are shown in Table 4. We can see
that the overall accuracy of their method is slightly
better than ours. Note, however, that our method ac-
quired a much larger number of NCs, while allow-
ing more variety in the NC semantics. Moreover, for
each extracted noun compound, we also generated a
list of fine-grained paraphrasing verbs.

8 Error Analysis

Below we analyze the errors of our method.
Many problems were due to wrong POS assign-

ment. For example, on Step 2, because of the omis-
sion of that in “the statue has such high quality gold
(that) demand is ...”, demand was tagged as a noun
and thus extracted as an NC modifier instead of gold.
The problem also arose on Step 1, where we used
WordNet to check whether the NC candidates were
composed of two nouns. Since words like clear,
friendly, and single are listed in WordNet as nouns
(which is possible in some contexts), we extracted
wrong NCs such as clear cube, friendly team, and
single chain. There were similar issues with verb-
particle constructions since some particles can be
used as nouns as well, e.g., give back, break down.

Some errors were due to semantic transparency
issues, where the syntactic and the semantic head of
a target NP were mismatched (Fillmore et al., 2002;
Fontenelle, 1999). For example, from the sentence
“This wine is made from a range of white grapes.”,
we would extract range rather than grapes as the po-
tential modifier of wine.

In some cases, the NC-pattern pair was correct,
but the NC did not express the target relation, e.g.,
while contain is a good paraphrase for toy box, the
noun compound itself is not an instance of MAKE2.

There were also cases where the pair of extracted
nouns did not make a good NC, e.g., worker work or
year toy. Note that this is despite our checking that
the candidate NC occurred at least 100 times in the
Google Web 1T 5-gram corpus (see Section 4.1.3).
We hypothesized that such bad NCs would tend to
have a low collocation strength. We tested this hy-
pothesis using the Dice coefficient, calculated using
the Google Web 1T 5-gram corpus. Figure 2 shows a
plot of the NC accuracy vs. collocation strength for
strict bootstrapping with N=5, M=50 for all three
iterations (the results for the other experiments show
a similar trend). We can see that the accuracy im-
proves slightly as the collocation strength increases:
compare the left and the right ends of the graph (the
results are mixed in the middle though).
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Figure 2: NC accuracy vs. collocation strength.

9 Conclusion and Future Work

We have presented a framework for building a very
large dataset of noun compounds expressing a given
target abstract semantic relation. For each extracted
noun compound, we generated a corresponding fine-
grained semantic interpretation: a frequency distri-
bution over suitable paraphrasing verbs.

In future work, we plan to apply our frame-
work to the remaining relations in the inventory of
Levi (1978), and to release the resulting dataset to
the research community. We believe that having a
large-scale dataset of noun compounds interpreted
with both fine- and coarse-grained semantic rela-
tions would be an important contribution to the de-
bate about which representation is preferable for dif-
ferent tasks. It should also help the overall advance-
ment of the field of noun compound interpretation.

656



Acknowledgments

This research is partially supported (for the sec-
ond author) by the SmartBook project, funded by
the Bulgarian National Science Fund under Grant
D002-111/15.12.2008.

We would like to thank the anonymous reviewers
for their detailed and constructive comments, which
have helped us improve the paper.

References

Ken Barker and Stan Szpakowicz. 1998. Semi-automatic
recognition of noun modifier relationships. In Pro-
ceedings of the 17th International Conference on
Computational Linguistics, pages 96–102.

Matthew Berland and Eugene Charniak. 1999. Finding
parts in very large corpora. In Proceedings of the 37th
Annual Meeting of the Association for Computational
Linguistics, ACL ’99, pages 57–64.

Cristina Butnariu and Tony Veale. 2008. A concept-
centered approach to noun-compound interpretation.
In Proceedings of the 22nd International Conference
on Computational Linguistics, COLING ’08, pages
81–88.

Cristina Butnariu, Su Nam Kim, Preslav Nakov, Diar-
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Abstract

In the last few years, the interest of the re-
search community in micro-blogs and social
media services, such as Twitter, is growing ex-
ponentially. Yet, so far not much attention has
been paid on a key characteristic of micro-
blogs: the high level of information redun-
dancy. The aim of this paper is to systemat-
ically approach this problem by providing an
operational definition of redundancy. We cast
redundancy in the framework of Textual En-
tailment Recognition. We also provide quan-
titative evidence on the pervasiveness of re-
dundancy in Twitter, and describe a dataset
of redundancy-annotated tweets. Finally, we
present a general purpose system for identify-
ing redundant tweets. An extensive quantita-
tive evaluation shows that our system success-
fully solves the redundancy detection task, im-
proving over baseline systems with statistical
significance.

1 Introduction

Micro-blogs and social media services, such as Twit-
ter, have experienced an exponential growth in the
last few years. The interest of the research commu-
nity and the industry in these services has followed
a similar trend. Web companies such as Google, Ya-
hoo, and Bing are integrating more and more social
content to their sites. At the same time, the compu-
tational linguistic community is getting increasingly
interested in studying social and linguistic proper-
ties of Twitter and other micro-blogs (Java et al.,
2007; Krishnamurthy et al., 2008; Kwak et al., 2010;
Zhao et al., 2007; Popescu and Pennacchiotti, 2010;

Petrović et al., 2010; Lin et al., 2010; Liu et al.,
2010; Ritter et al., 2010). Yet, so far, not much
attention has been paid on a key characteristic of
micro-blogs: the high level of information redun-
dancy. Users often post messages with the same, or
very similar, content, especially when reporting or
commenting on news and events. For example, the
following two tweets are part of a large set of redun-
dant tweets issued during the 2010 winter Olympics:

(example 1)

t1 : “Swiss ski jumper Simon Ammann takes first gold of
Vancouver”

t2 : “Swiss (Suisse) get the Gold on Normal Hill ski jump.
#Vancouver2010”

By performing an editorial study (described later in
the paper) we discovered that a large part of event-
related tweets are indeed redundant.

Detecting information redundancy is important
for various reasons. First, most applications based
on Twitter share the goal of providing tweets that
are bothinformativeanddiverse, with respect to an
initial user information need. For example, Twitter
search engines should ideally select the most infor-
mative and diverse set of tweets in return to a user
query. Similarly, a news web portal that attaches
tweets to a given news article should attach those
tweets that provide the broadest and most diverse
set of information, opinions, and updates about the
news item. To keep a high level of diversity, redun-
dant tweets should be removed from the set of tweets
displayed to the user. Figure 1 shows an example of
a Twitter search engine where redundant tweets are
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Figure 1: Twitter search: actual Twitter results and desired results after redundancy reduction.

present (left) and where they are discarded (right).
Also, from a computational linguistic point of

view, the high redundancy in micro-blogs gives the
unprecedented opportunity to study classical tasks
such as text summarization (Haghighi and Vander-
wende, 2009), textual entailment recognition (Da-
gan et al., 2006) and paraphrase detection (Dolan et
al., 2004) on very large corpora characterized by an
original and emerging linguistic style, pervaded with
ungrammatical and colloquial expressions, abbrevi-
ations, and new linguistic forms.

The aim of this paper is to formally define, for the
first time, the problem of redundancy in micro-blogs
and to systematically approach the task of automatic
redundancy detection. Note that we focus on lin-
guistic redundancy, i.e. tweets that convey the same
information with different wordings, and ignore the
more trivial issue of detecting retweets, which can
be considered the most basic expression of redun-
dancy.

The main contributions of this paper are the fol-
lowing:

• We formally define the problem of redundancy
detection in micro-blogs within the framework
of Textual Entailment theory;

• We report results from an editorial study and
provide quantitative evidence of the pervasive-
ness of redundancy in Twitter;

• We present a set of simple and effective ma-
chine learning models for solving the task of
redundancy detection;

• We provide promising experimental results that
show that these models outperform baseline ap-

proaches with statistical significance, and we
report a qualitative evaluation revealing the ad-
vantages of the proposed model.

The rest of the paper is organized as follows.
First, we shortly describe related work in Section 2.
Next, we provide our operational definition of re-
dundancy and introduce our editorial study and
dataset in Section 3. In Section 4 we describe our
models for redundancy detection. In Section 5 we
provide a quantitative and qualitative evaluation of
our models. In Section 6 we conclude the paper with
final observations and future work.

2 Related Work

So far, most research onTwitter has focused on
its network structure, the social behavior of its
users (Java et al., 2007; Krishnamurthy et al., 2008;
Kwak et al., 2010), ranking tweets by relevance for
web search (Ramage et al., 2010; Duan et al., 2010),
and the analysis of time series for extracting trending
news, events and facts (Zhao et al., 2007; Popescu
and Pennacchiotti, 2010; Petrović et al., 2010; Lin
et al., 2010). Only few studies have specifically fo-
cused on the linguistic content analysis of tweets,
e.g. (Davidov et al., 2010; Barbosa and Feng, 2010).
To date, our paper most closely relates to works on
semantic role labeling (SRL) on social media (Liu et
al., 2010) and conversation modeling (Ritter et al.,
2010).

Liu et al. (2010) present a self-learning SRL sys-
tem for news tweets, with the goal of addressing low
performance caused by the noise and the unstruc-
tured nature of the data. The authors first cluster
together tweets that refer to the same news. Then,
for each cluster, they identify the tweets that are
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well-formed (i.e. copy-pasted from news), and in-
duce role mappings between well-formed and noisy
tweets in the same cluster by performing word align-
ment. In our paper we are also interested in aligning
and grouping tweets, although our goal is to detect
redundancy, not to perform SRL.

On a different ground, Ritter et al. (2010) pro-
pose a probabilistic model to discover dialogue acts
in Twitter conversations and to classify tweets in a
conversation according to those acts. (A conversa-
tion is defined as a set of tweets in the same re-
ply thread.) The authors define 10 major dialogue
acts for Twitter, including status, question, response
and reaction, and automatically build a probabilis-
tic transition graph for such acts. In our paper, we
also aim at classifying tweets, but our interest is in
information redundancy instead of acts.

In the computational linguistic literature,redun-
dancy detectionis studied in multi-document sum-
marization, where the overall document is used
to select the most informative sentences or snip-
pets (Haghighi and Vanderwende, 2009). Since
tweets are short and tweet sets cannot be considered
documents, these methods are hard to apply. A more
convenient setting is paraphrase detection (Dolan et
al., 2004) and textual entailment recognition (Dagan
et al., 2006) (RTE).

In RTE the task is to recognize if a text called
the textT (typically one or two sentences long) en-
tails another text called thehypothesisH. Many ap-
proaches have been proposed for this task, mostly
based on machine learning. Three main classes
of features have been so far explored in RTE: dis-
tance/similarity feature spaces (Corley and Mihal-
cea, 2005; Newman et al., 2005; Haghighi et al.,
2005; Hickl et al., 2006), entailment trigger fea-
ture spaces (de Marneffe et al., 2006; MacCartney
et al., 2006), and pair content feature spaces (Zan-
zotto et al., 2009). Distance/similarity feature spaces
are more suitable to the paraphrase detection task
because they model the similarity between the two
texts. On the other hand, entailment trigger and con-
tent feature spaces model complex relations between
the texts, taking into account first-order entailment
rules, i.e. entailment rules with variables.

In this paper, one of our goals is to explore RTE
techniques and features that are usually used for
classical texts, and check if they can be successfully

adapted to the unstructured, and oftentimes ungram-
matical, Twitter language.

3 Redundancy in Twitter

We formally define two tweets asredundant if they
either convey the same information (paraphrase) or
if the information of one tweet subsumes the infor-
mation of the other (textual entailment). For exam-
ple, the pair in(example 1)is redundant. The first
tweet subsumes (i.e. ‘textually entails’) the other;
both tweets state that Switzerland won a Gold Medal
at the Vancouver winter Olympics, but the first one
also specifies the name of the athlete. The follow-
ing pair is, instead, non-redundant, because the two
tweets convey different information, and they do not
subsume each other:

(example 2)

t1 : “Goal! Iniesta scores for #ESP and they have one
hand on the #worldcup”

t2 : “this will be a hard final #Esp vs Ned #worldcup”

Our definition of redundancy is grounded on, and in-
spired by, the theory of Textual Entailment, to which
we refer the reader for further details (Dagan et al.,
2006).

3.1 Quantifying redundancy

How pervasive is redundancy in Twitter? In order to
answer this question we performed an initial edito-
rial study where human editors were asked to anno-
tate pairs of tweets as being either redundant or non-
redundant. The editorial study also serves as a test
bed for evaluating our redundancy detection models,
as discussed in Section 5.

In the study we focus on ‘informative’ tweets,
i.e. tweets that describe or comment on relevant
events/facts. Indeed, these are the types of tweets
for which redundancy is a critical issue, especially
in view of real applications, e.g. to present a diverse
set of tweets for a given news article. Other types of
tweets, such as status updates, self-promotions, and
personal messages are of less interest in this context.

Dataset extraction. The study is performed on
an automatically built dataset of informative tweets.
The most critical issue for extracting the dataset is
to pre-process tweets and to discard those that are
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not informative. This is not an easy task: a recent
study (Pear-Analytics, 2009) estimates that only 4%
of all tweets are factual news, and only 37% are con-
versations with content. The rest are spam, status
updates and other types of uninformative content.
In order to retain only informative tweets we first
extractbuzzy snapshots(Popescu and Pennacchiotti,
2010). A snapshot is defined as a set of tweets that
explicitly mention a specific topic within a speci-
fied time period. A buzzy snapshot is defined as a
snapshot with a large number of tweets, compared
to previous time periods. For example, given the
topic ‘Haiti earthquake’, the snapshot composed by
the tweets mentioning ‘Haiti earthquake’ on January
12th, 2010, will constitute a buzzy snapshot, since in
previous days the topic was not mentioned often.

We use two different topic lists: acelebrity list
containing about 104K celebrity names, crawled
from Wikipedia, including actors, musicians, politi-
cians, and athletes; and anevent listcomposed of
398 hashtags related to 8 major events that hap-
pened between January and July 2010, and listed
in Wikipedia: 1 the earthquake in Haiti, the winter
Olympics, the earthquake in Chile, the death of the
Polish president, the volcano eruption in Iceland, the
oil spill in the Gulf of Mexico, the Greek financial
crisis, and the FIFA world cup.

We extract buzzy snapshots for the above two
topic lists by following the method described
in (Popescu and Pennacchiotti, 2010): we consider
time periods of one day, and call buzzy the snapshots
that mention a given topicα times more than the av-
erage over the previous 2 days. We setα to 20 and 5
respectively for the celebrity list and the event list.
We further exclude irrelevant and spam snapshots
by removing those that have: fewer than 10 tweets;
more than 50% of tweets non-English; and an aver-
age token overlap between tweets of more than 80%,
usually corresponding to spam threads.

The extraction is performed on a Twitter corpus
containing all tweets posted between July 2009 and
August 2010. In all, we extract 972 snapshots for
the celebrity list, containing 205,885 tweets (i.e. av-
erage of 212 tweets per snapshot); and 674 snap-

1Hashtags are keywords prefixed by ‘#’, that are used by the
Twitter community to mark the topic of a tweet. We collected
our set of hashtags by semi-automatically inspecting the Twitter
stream in the days the major events happened.

redundant 367 (29.5%)
entailment 195 (15.7%)
paraphrase 172 (13.5%)

non-redundant 875 (70.5%)
related 541 (43.6%)
unrelated 334 (26.9%)

Table 1: Results of the redundancy editorial study.

shots for the event list, containing 393,965 tweets
(584 tweets per snapshot).

The above two final snapshot corpora (i.e. the 972
celebrities’ snapshots and 674 events’ snapshots)
can be considered a good representation of event de-
scriptions and comments on Twitter, thus forming
our initial set of ‘informative’ tweets. From these
two corpora, we extract the final tweet-pair dataset
by randomly sampling 1500 pairs of tweets con-
tained in the same snapshot. Tweet-pairs that con-
tain retweets are excluded.

Dataset annotation. The main editorial task con-
sisted of annotating tweet-pairs as either redundant
or non-redundant. We also asked editors to char-
acterize the specific linguistic relation between the
two tweets of a pair. We consider four relations:en-
tailment (the first tweet entails the second or vice
versa),paraphrase, contradiction (the tweets con-
tradict each other), andrelated(the tweets are about
the same topic, e.g. the Haiti earthquake, but are
in none of the previous relations). Tweets that were
about different topics were labeledunrelated. An-
notators were asked to base their decisions on the
parts of the tweets that contained information rel-
evant to the selected topic, e.g. the earthquake in
Haiti. These parts were marked in the corpus. Fo-
cusing on these parts is in line with potential appli-
cations of tweet redundancy detection as tweets are
firstly grouped around a topic. Note that pairs that
fall under the entailment or paraphrase relation are
redundant, while unrelated, related, and contradic-
tory tweets are non-redundant.

The annotation was performed in a three stage
process, since tweets are sometimes hard to under-
stand and hence to annotate (misspellings, usage of
slang and abbreviations, lack of discourse context).
In the first step, the 1500 pairs were independently
annotated by a pool of 20 trained editors, super-
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vised by an expert lead. In the second step, the an-
notations were checked by three highly trained ex-
perts with background in computational linguistics:
each pair was independently checked by two ex-
perts. Average kappa agreement in this second step
is kappa = 0.63 (corresponding to ‘good agree-
ment’). In a final step, discordances between the two
experts were resolved by the third expert. Unclear
and unresolved pairs after the three stages were dis-
carded from the dataset, leaving a final set of 1242
pairs.2

Annotation Results. Table 1 reports the results of
our study. Among the 1242 tweet-pairs, 367 (30%)
are redundant and 875 (70%) are non-redundant.
This shows that redundancy is indeed a pervasive
phenomenon in Twitter, and a critical issue that has
to be solved in order to provide clean and diverse
social content. Most cases of redundancy corre-
spond to tweets that report the same fact using differ-
ent wording, occasionally adding irrelevant personal
comments and sentiments (e.g. ‘Johnny Depp died’
vs. ‘OMG, I am so sad that Johnny Depp is dead’).

4 Redundancy detection models

The task ofredundancy detection in Twitter is a
tweet-pair classification problem. Given two tweets
t1 and t2, the goal is to classify the pair(t1, t2) as
being either redundant or non-redundant.

In this section we describe different models for
redundancy detection, inspired by existing work in
RTE. We adopt a machine learning approach where a
Support Vector Machine (SVM) is trained on a man-
ually annotated training set to classify incoming test
examples as either redundant or non-redundant. An
evaluation of the different models adopting for train-
ing and testing the dataset described in Section 3, is
presented in Section 5.

4.1 Bag-of-word model (BOW)

The bag-of-word model is the most simple approach
for detecting redundancy. It is used as abaselinein
our experiment. The simple intuition of the model
is that if two tweetst1 and t2 have a high lexical

2At this time, the TwitterTM Terms of Use do not allow
publication of the annotated dataset. Should the Terms of
Use change, the dataset will become available for download at
http://art.uniroma2.it/zanzotto/datasets.

overlap, then they are likely to express the same in-
formation – i.e. they are likely to be redundant. In
this model, the SVM is trained using a single fea-
ture that computes the cosine similarity between the
bag-of-word vectors of the two tweets. The bag-of-
word vector is built using a classicaltf*idf weighting
schema over the set of tokens of the pair. This a very
simple baseline as SVM is only learning thresholds
using this single feature.

The bag-of-word model is of course a naive ap-
proach, since in many cases redundant tweets can
have very different lexical content (e.g. the fol-
lowing two tweets: “Farrah Fawcett left out of Os-
car memorial”, “No Farrah Fawcett’s memory at
the Academy Awards”), and non-redundant tweets
can have similar lexical content (e.g. the tweets:
“Johnny Deep is dead”, “Johnny Deep is not dead”).

4.2 WordNet-based bag-of-word model
(WBOW)

The secondbaselinemodel was first defined in (Cor-
ley and Mihalcea, 2005) and since then has been
used by many RTE systems. The model extends
BOW by measuring similarity at the semantic level,
instead of the lexical level.

For example, consider the tweet pair: “Oscars
forgot Farrah Fawcett”, “Farrah Fawcett snubbed at
Academy Awards”. This pair is redundant, and,
hence, should be assigned a very high similar-
ity. Yet, BOW would assign a low score, since
many words are not shared across the two tweets.
WBOW fixes this problem by matching ‘Oscar’-
‘Academy Awards’ and ‘forgot’-‘snubbed’ at the se-
mantic level. To provide these matches,WBOW re-
lies on specific word similarity measures over Word-
Net (Miller, 1995), that allow synonymy and hyper-
onymy matches: in our experiments we specifically
use Jiang&Conrath similarity (Jiang and Conrath,
1997).

In practice, we implementWBOW by using the
text similarity measure defined in (Corley and Mi-
halcea, 2005) as the single feature in the SVM clas-
sifier that, as inBOW, learns the threshold on this
single feature.

4.3 Lexical content model (LEX)

This model and the next ones (SYNT and FOR) ex-
plicitly model the content of a tweet pairP =
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(t1, t2) as a whole. This is a radically different ap-
proach with respect to the similarity-based models
explored so far, where the content oft1 andt2 were
treated independently (i.e. each tweet with its own
bag of words), and the SVM used as the single fea-
ture the similarity between the two tweets.

In the LEX model we represent the content of the
tweet pair in a double bag-of-word vector space.
Each pairP = (t1, t2) is represented by two bag-
of-word vectors,(~t1, ~t2). Within this space, we can
then define a specific similarity measure between
pairs using a kernel function in the SVM learning
algorithm. Given two pairs of tweetsP (a) andP (b),
theLEX kernel function is defined as follows:

KLEX(P (a), P (b)) = cos(t
(a)
1 , t

(b)
1 ) + cos(t

(a)
2 , t

(b)
2 )

wherecos(·, ·) is the cosine similarity between the
two vectors. TheLEX feature space is simple and
can be extremely effective in modeling the content
of tweet pairs. Yet, in principle, it doesn’t model the
relations among words in the tweet. Different con-
tent feature spaces are then needed to capture these
relations.

4.4 Syntactic content model (SYNT)

The SYNT model represents a tweet pair using
pairs of syntactic tree fragments fromt1 and t2.
Each feature is a pair< fr1, fr2 >, wherefr1

and fr2 are syntactic tree fragments (see figure
below). As defined in (Collins and Duffy, 2002),
a syntactic tree fragmentfri is active in ti when
fri is a subtree of the syntactic interpretation of
ti. Therefore, these features represent ground rules
connecting the left-hand sides and the right-hand
sides of the tweet pair: each feature is active for a
pair (t1, t2) when the left-hand sidefr1 is activated
by the syntactic analysis oft1 and the right-hand
sidefr2 is activated byt2. As an example consider
the feature:

〈

S

NP VP

VBP

bought

NP

,

S

N VP

VBP

owns

NP

〉

This feature is active for the pair of tweets (“GM
bought Opel”,“ GM owns Opel”) since the syntac-
tic analysis of the pair matches the feature (given

that the two tweets are correctly syntactically ana-
lyzed). This feature space models the relations be-
tween words syntactically. Therefore it overcomes
the limitations of theLEX feature space. But it also
introduces a new limitation: the above feature is
in fact also active for the tweet pair (“GM bought
Opel”,“ Opel owns GM”). This pair is extremely dif-
ferent from the previous one, thus possibly mislead-
ing the classifier.

This feature space is not represented explicitly,
but it is encoded in a kernel function. Given two
pairs of tweetsP (a) andP (b), theSYNT kernel func-
tion is defined as follows:

KSY NT (P (a), P (b)) = K(t
(a)
1 , t

(b)
1 ) + K(t

(a)
2 , t

(b)
2 )

whereK(·, ·) is the tree kernel function described in
(Collins and Duffy, 2002).

4.5 Syntactic first-order rule content model
(FOR)

TheFOR model overcomes the limitations ofSYNT,
by enriching the space with features representing
first-order relations between the two tweets of a
pair. Each feature represents a rule with variables,
i.e. a first order rule that is activated by the tweet
pairs if the variables are unified. This feature space
has been introduced in (Zanzotto and Moschitti,
2006) and shown to improve over the ones above.
Each feature< fr1, fr2 > is a pair of syntactic tree
fragments augmented with variables. The feature
is active for a tweet pair(t1, t2) if the syntactic
interpretations oft1 and t2 can be unified with
< fr1, fr2 >. For example, consider the following
feature:

〈

S

NP X VP

VBP

bought

NP Y

,

S

NP X VP

VBP

owns

NP Y

〉

This feature is active for the pair (“GM bought
Opel”,“ GM owns Opel”), with the variable unifica-
tion X = “GM” and Y = “Opel”. On the contrary,
this feature is not active for the pair (“GM bought
Opel”,“ Opel owns GM”) as there is no possibility of
unifying the two variables. Efficient algorithms for
the computation of the related kernel functions can
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be found in (Moschitti and Zanzotto, 2007; Zanzotto
and Dell’Arciprete, 2009).

5 Experimental Evaluation

In this section we present an evaluation of the differ-
ent redundancy detection models. First, we define
the experimental setup in Section 5.1. Then, we an-
alyze the results of the experiments in Section 5.2.

5.1 Experimental Setup

We experiment with the redundancy detection
dataset described in Section 3. We randomly divide
the corpus into two sets: 50% for training and 50%
for testing. The training set contains 185 positive
tweet-pairs and 416 negative pairs. The test set con-
tains 182 positive pairs and 466 negatives.

We evaluate the performance of the SVM
models using the following feature combina-
tions: LEX+BOW, LEX+WBOW, SYNT+BOW,
SYNT+WBOW, FOR+BOW, FOR+WBOW. We com-
pare to the system baselinesBOW andWBOW. 3

The performance of the different models is com-
puted using the Area Under the ROC curve (AROC)
applied to the classification score returned by the
SVM. The ROC curve allows us to study the be-
havior of the classifier in detail, and also provides a
powerful way to compare among systems when the
dataset is unbalanced (as in our case).

To determine the statistical significance of the dif-
ference in the performance of the systems we ana-
lyzed, we use the model described in (Yeh, 2000) as
implemented in (Padó, 2006).

We pre-process the dataset with the following
tools: the Charniak Parser (Charniak, 2000) for
parsing sentences, the WordNet similarity pack-
age (Pedersen et al., 2004) for computingWBOW

and for linking the two tweets in a pair, and SVM-
light (Joachims, 1999), extended with the syntac-
tic first-order rule kernels described in (Moschitti
and Zanzotto, 2007) for creating theSYNT and the
FOR feature spaces. We used the Charniak syntactic
parser without any specific adaptation to the Twitter
language.

Model AROC

BOW 0.592
WBOW 0.578

LEX + BOW 0.725†

LEX + WBOW 0.728†

SYNT + BOW 0.736†

SYNT + WBOW 0.737†

FOR + BOW 0.739†

FOR + WBOW 0.747† ‡

Table 2: Experimental results of the different systems.†
indicates statistical significance (p < 0.01) with respect
to the two baseline methodsBOW andWBOW. ‡ indicates
statistical significance (p < 0.1) with respect toFOR +
BOW

5.2 Experimental Results

Table 2 reports the results of the experiment. The
first and most important result is that models using
content features (LEX, SYNT, andFOR) along with
similarity features (BOW andWBOW) outperform the
two baseline models using only similarity features
with statistical significance, up to more than 15%
AROC points.

At first glance, WordNet similarities are not use-
ful: the performance of theWBOW model is in-
deed comparable and statistically insignificant with
respect to the pure token based modelBOW. This
seems to be intuitive as the language of the tweets
can be far from proper English, i.e. it may contain
many out-of-dictionary words that are not present
in WordNet, thus impairing the similarity measure
used byWBOW.

This trend is also confirmed in the case of content-
based systems likeLEX and SYNT. Using BOW

or WBOW in combination with these features has
the same effect on the final performance. Only the
FOR features are positively affected by the WordNet-
based distance. This may be explained by the fact
that in theFOR+WBOW system, the WordNet sim-
ilarity is also used to link words in the two tweets
of a pair. This increases the possibility of finding
reasonable and useful first-order rules. In the quali-

3Note that other feature combinations would not add value,
as BOW and WBOW are interchangeable, and the same stands
for LEX, SYNT andFOR.
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tative analysis that follows, we show some examples
that support this intuition.

On the other hand, syntax plays a key role for de-
tecting redundancy. The two syntax based models
SYNT andFOR outperform the lexical based models
LEX between 1 and 2 AROC points. This is sur-
prising, since the Charniak parser used in the exper-
iments has not been adapted to the Tweet language,
and therefore could have produced many interpreta-
tion errors, thus impairing the use of syntax. This
seems to suggest that if the interpretations of the
part-of speech tags of the unknown words is correct,
the syntax of tweets is reasonably similar to the syn-
tax of the generic English language.

The best performing model isFOR+WBOW: first-
order rules successfully emerge in tweets and are
positively exploited by the learning system. In the
next section we report examples that support this ob-
servation.

5.3 Qualitative analysis

The experimental results reported in the previ-
ous section show that first-order syntactic rules in
combination with the WordNet-based bag-of-word
(FOR+WBOW) are highly effective in detecting re-
dundancy. In this section, we briefly analyze
some tweet pairs where the differences between this
model and theBOW andWBOW models are evident.

Table 3 reports examples of tweet pairs, along
with their ranking position in the test set, accord-
ing to the SVM score, with respect to different mod-
els. The first column represents the editorial gold
standard (gs) for the tweet pairs we considered: ei-
ther redundant (R) or non-redundant (N). Since we
feed the classifiers with ‘redundant’ as the positive
class4, a classifier is better than another if it ranks
redundant tweet pairs (R) higher than non-redundant
ones (N). The second, the third, and the fourth
columns represent the rank given byWBOW+FOR,
WBOW, andBOW respectively. The fifth column is
the tweet-pair identifier in our dataset (id). The last
two columns are the two tweets in each pair.

The table reports interesting examples where re-
dundant pairs have very little lexical similarity while
the non-redundant pairs have a high lexical similar-

4This is just a convention. Results would be the same by
taking non-redundant pairs as the positive class.

ity. These are all examples whereBOW andWBOW

should typically fail, whileFOR+WBOW could cap-
ture important syntactic first-order rules to overcome
the limitations of the pure similarity-based models.

As a first example, bothBOW and WBOW fail to
assign a high rank (i.e. low rank number) to the
redundant pairo165: in fact, ‘died’ does not lexi-
cally match ‘rip’, nor are these two words related in
WordNet. In contrast,FOR+WBOW assigns a high
rank to this pair, since it may be able to apply the
rule <X died, rip X> that was most probably ac-
quired from examples in the training set (the hoax
of somebody’s death is pervasive in Twitter, and it
is therefore likely to fire the abovementioned rule in
our dataset if enough examples are available).

The third and the fourth pairs (o130 and o21)
show some commonalities5 . According to the
WordNet similarity measure we used, ‘recognize’
and ‘snub’ are highly related as well as ‘forget’ and
‘snub’. Hence, the two tokens are linked as similar.
Foro130, the triggering syntactic rule is<(S (NPX)
(VP Y),(VP (V Y) (NPX)> whereX andY are vari-
ables. Foro21, the rule is:<(VP (V X) (NP Y),(VP
(V X) (NPY)>.

For the non-redundant pairs (N) at the bottom of
the table, the first-order rules are less intuitive. Yet,
it is clear why these pairs have high lexical simi-
larity (and therefore are ranked high byBOW and
WBOW): The two tweets in the pairoe387 share
‘volcanic’, ‘ash’, and the hashtag ‘#ashtag’. Tweets
in oe64share ‘Icelandic’ and ‘eruption’ but they are
describing different facts. Tweets in the pairoe43
are similar since they are sharing the three hashtags
‘#bpoil’, ‘#bp’, and ‘#oilspill’. This example shows
that hashtags alone are not very indicative and useful
for detecting redundancy in Twitter.

6 Conclusions

In this paper we introduced the notion of linguistic
redundancy in micro-blogs and the task of tweet re-
dundancy detection. We also presented an editorial
study showing that redundancy is pervasive in Twit-
ter, and that methods for its detection will be key in

5In o130, the common topic is ‘farrah fawcett’: “farrah
fawcett not recognized at the Oscars memorial?” and “snubbed
farrah fawcett. #oscars” are used by the annotators to make the
decision.
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id t1 t2

R 11 137 130 o165 “is that True that johnny depp died???” “Rip johnny depp? This cannot be True”

R 32 246 239 o942 “sad...jim carrey and jenny mccarthy have
called it quits...”

“jim carrey & jenny mccarthy broke up!
omg! bummer! they were the cutest crazy
couple ever.”

R 43 165 158 o130 “farrah fawcett & bea arthur not recognized
at the Oscars memorial? really?”

“i dont understand how they included
michael jackson in the memorial tribute as an
actor but snubbed farrah fawcett. #oscars”

R 101 632 641 o21 “Oscars forgot farrah fawcett??” “farrah fawcett snubbed at Oscars appeared
in a movie with best actor Jeff Bridges... dis-
gusting”

N 467 161 155 oe387 “We may die in volcanic ash today. Choose
your final pose soon to look cool for future
archaeologists. #ashtag”

“# Just heard about the Icelandic volcanic
ash thing, not really interested but it has the
best hashtag ever, #ashtag !”

N 572 96 92 oe43 “Many Endangered Turtles Dying On
Texas Gulf Coast http://ow.ly/1FbB8 via
@nprnews #bpoil #bp #oilspill”

“Species Most at Risk Because of the Oil
Spill http://ow.ly/1FcB7 #bpoil #bp #oil-
spill”

N 614 129 124 oe64 “http://bit.ly/d8W7Xw #ashtag IN PIC-
TURES: Icelandic volcanic eruption”

“So, who’s going to take a crack at pro-
nouncing the part of Iceland the eruption was
in? #ashtag”

Table 3: Ranks of some tweet pairs according to the scores of the different classifiers.

the future for the development of accurate Twitter-
based applications. In the second part of the pa-
per we presented some promising models for redun-
dancy detection that show encouraging results when
compared to typical lexical baselines. Even with the
ungrammaticalities used in tweets, syntactic feature
spaces are effective in modeling redundancy, espe-
cially when used in first-order rules.

In future work we plan to improve our system by
adapting existing linguistic tools and resources to
Twitter (e.g. syntactic parsers). We also plan to in-
vestigate the use of semantic roles and contextual in-
formation to improve the models. For example, the
tweets that other users post about the same topic of
the target-pair may be of some help. Finally, we are
investigating the integration of our models into real
applications such a the enrichment of news articles
with related anddiversecontent from social media.
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Abstract

We address the creation of cross-lingual tex-
tual entailment corpora by means of crowd-
sourcing. Our goal is to define a cheap and
replicable data collection methodology that
minimizes the manual work done by expert
annotators, without resorting to preprocess-
ing tools or already annotated monolingual
datasets. In line with recent works empha-
sizing the need of large-scale annotation ef-
forts for textual entailment, our work aims to:
i) tackle the scarcity of data available to train
and evaluate systems, and ii) promote the re-
course to crowdsourcing as an effective way
to reduce the costs of data collection without
sacrificing quality. We show that a complex
data creation task, for which even experts usu-
ally feature low agreement scores, can be ef-
fectively decomposed into simple subtasks as-
signed to non-expert annotators. The resulting
dataset, obtained from a pipeline of different
jobs routed to Amazon Mechanical Turk, con-
tains more than 1,600 aligned pairs for each
combination of texts-hypotheses in English,
Italian and German.

1 Introduction

Cross-lingual Textual Entailment (CLTE) has been
recently proposed by (Mehdad et al., 2010; Mehdad
et al., 2011) as an extension of Textual Entailment
(Dagan and Glickman, 2004). The task consists of
deciding, given a text (T) and an hypothesis (H) in
different languages, if the meaning of H can be in-
ferred from the meaning of T. As in other NLP appli-
cations, both for monolingual and cross-lingual TE,

the availability of large quantities of annotated data
is an enabling factor for systems development and
evaluation. Until now, however, the scarcity of such
data on the one hand, and the costs of creating new
datasets of reasonable size on the other, have repre-
sented a bottleneck for a steady advancement of the
state of the art.

In the last few years, monolingual TE corpora for
English and other European languages have been
created and distributed in the framework of sev-
eral evaluation campaigns, including the RTE Chal-
lenge1, the Answer Validation Exercise at CLEF2,
and the Textual Entailment task at EVALITA3. De-
spite the differences in the design of the tasks, all
the released datasets were collected through simi-
lar procedures, always involving expensive manual
work done by expert annotators. Moreover, in the
data creation process, large amounts of hand-crafted
T-H pairs often have to be discarded in order to re-
tain only those featuring full agreement, in terms of
the assigned entailment judgements, among multiple
annotators. The amount of discarded pairs is usually
high, contributing to increase the costs of creating
textual entailment datasets4.

The issues related to the shortage of datasets and
the high costs for their creation are more evident

1http://www.nist.gov/tac/2011/RTE/
2http://nlp.uned.es/clef-qa/ave/
3http://www.evalita.it/2009/tasks/te
4For instance, in the first five RTE Challenges, the aver-

age effort needed to create 1,000 pairs featuring full agreement
among 3 annotators was around 2.5 person-months. Typically,
around 25% of the original pairs had to be discarded during the
process, due to low inter-annotator agreement (Bentivogli et al.,
2009).
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in the CLTE scenario, where: i) the only dataset
currently available is an English-Spanish corpus ob-
tained by translating the RTE-3 corpus (Negri and
Mehdad, 2010), and ii) the application of the stan-
dard methods adopted to build RTE pairs requires
proficiency in multiple languages, thus significantly
increasing the costs of the data creation process.

To address these issues, in this paper we devise
a cost-effective methodology to create cross-lingual
textual entailment corpora. In particular, we focus
on the following problems:
(1) Is it possible to collect T-H pairs minimizing
the intervention of expert annotators? To address
this question, we explore the feasibility of crowd-
sourcing the corpus creation process. As a contri-
bution beyond the few works on TE/CLTE data ac-
quisition, we define an effective methodology that:
i) does not involve experts in the most complex (and
costly) stages of the process, ii) does not require pre-
processing tools, and iii) does not rely on the avail-
ability of already annotated RTE corpora.
(2) How can we guarantee good quality of the col-
lected data at a low cost? We address the quality
control issue through the decomposition of a com-
plex task (i.e. creating and annotating entailment
pairs) into smaller sub-tasks. Complex tasks are usu-
ally hard to explain in a simple way understandable
to non-experts, difficult to accomplish, and not suit-
able for the application of the quality-check mecha-
nisms provided by current crowdsourcing services.
Our “divide and conquer” solution represents the
first attempt to address a complex task involving
content generation and labelling through the defini-
tion of a cheap and reliable pipeline of simple tasks
which are easy to define, accomplish, and control.
(3) Can we adapt such methodology to collect
cross-lingual T-H pairs? We tackle this question
by separating the problem of creating and annotating
TE pairs from the issues related to the multilingual
dimension. Our solution builds on the assumption
that entailment annotations can be projected across
aligned T-H pairs in different languages. In this
case, a complex multilingual task is reduced to a se-
quence of simpler subtasks where the most difficult
one, the generation of entailment pairs, is entirely
monolingual. Besides ensuring cost-effectiveness,
our solution allows us to overcome the problem of
finding workers that are proficient in multiple lan-

guages. Moreover, since the core monolingual tasks
of the process are carried out by manipulating En-
glish texts, we are able to address the very large
community of English speaking workers, with a
considerable reduction of costs and execution time.
Finally, as a by-product of our method, the acquired
pairs are fully aligned for all language combinations,
thus enabling meaningful comparisons between sce-
narios of different complexity (monolingual TE, and
CLTE between close or distant languages).

We believe that, in the same spirit of recent works
promoting large-scale annotation efforts around en-
tailment corpora (Sammons et al., 2010; Bentivogli
et al., 2010), the proposed approach and the resulting
dataset5 will contribute to meeting the strong need
for resources to develop and evaluate novel solutions
for textual entailment.

2 Related Works

Crowdsourcing services, such as Amazon Mechan-
ical Turk6 (MTurk) and CrowdFlower7, have been
recently used with success for a variety of NLP ap-
plications (Callison-Burch and Dredze, 2010). The
idea is that the acquisition and annotation of large
amounts of data needed to train and evaluate NLP
tools can be carried out in a cost-effective manner
by defining simple Human Intelligence Tasks (HITs)
routed to a crowd of non-expert workers (aka “Turk-
ers”) hired through on-line marketplaces.

As regards textual entailment, the first work ex-
ploring the use of crowdsourcing services for data
annotation is described in (Snow et al., 2008), which
shows high agreement between non-expert annota-
tions of the RTE-1 dataset and existing gold standard
labels assigned by expert labellers.

Focusing on the actual generation of monolingual
entailment pairs, (Wang and Callison-Burch, 2010)
experiments the use of MTurk to collect facts and
counter facts related to texts extracted from an ex-
isting RTE corpus annotated with named entities.
Taking a step beyond the task of annotating exist-

5The CLTE corpora described in this paper will be made
freely available for research purposes through the website of
the funding EU Project CoSyne (http://www.cosyne.eu/).

6https://www.mturk.com/
7Although MTurk is directly accessible only to US citizens,

the CrowdFlower service (http://crowdflower.com/) provides an
interface to MTurk for non-US citizens.
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ing datasets, and showing the feasibility of involving
non-experts also in the generation of TE pairs, this
approach is more relevant to our objectives. How-
ever, at least two major differences with our work
have to be remarked. First, they still use avail-
able RTE data to obtain a monolingual TE corpus,
whereas we pursue the more ambitious goal of gen-
erating from scratch aligned CLTE corpora for dif-
ferent language combinations. To this aim, we do
not resort to already annotated data, nor language-
specific preprocessing tools. Second, their approach
involves qualitative analysis of the collected data
only a posteriori, after manual removal of invalid
and trivial generated hypotheses. In contrast, our
approach integrates quality control mechanisms at
all stages of the data collection/annotation process,
thus minimizing the recourse to experts to check the
quality of the collected material.

Related research in the CLTE direction is re-
ported in (Negri and Mehdad, 2010), which de-
scribes the creation of an English-Spanish corpus
obtained from the RTE-3 dataset by translating the
English hypotheses into Spanish. Translations have
been crowdsourced adopting a methodology based
on translation-validation cycles, defined as separate
HITs. Although simplifying the CLTE corpus cre-
ation problem, which is recast as the task of translat-
ing already available annotated data, this solution is
relevant to our work for the idea of combining gold
standard units and “validation HITS” as a way to
control the quality of the collected data at runtime.

3 Quality Control of Crowdsourced Data

The design of data acquisition HITs has to take into
account several factors, each having a considerable
impact on the difficulty of instructing the workers,
the quality and quantity of the collected data, the
time and overall costs of the acquisition. A major
distinction has to be made between jobs requiring
data annotation, and those involving content gener-
ation. In the former case, Turkers are presented with
the task of labelling input data referring to a fixed
set of possible values (e.g. making a choice between
multiple alternatives, assigning numerical scores to
rank the given data). In the latter case, Turkers are
faced with creative tasks consisting in the production
of textual material (e.g. writing a correct translation,

or a summary of a given text).

The ease of controlling the quality of the acquired
data depends on the nature of the job. For annotation
jobs, quality control mechanisms can be easily set up
by calculating Turkers’ agreement, by applying vot-
ing schemes, or by adding hidden gold units to the
data to be annotated8. In contrast, the quality of the
results of content generation jobs is harder to assess,
due to the fact that multiple valid results are accept-
able (e.g. the same content can be expressed, trans-
lated, or summarized in different ways). In such sit-
uations the standard quality control mechanisms are
not directly applicable, and the detection of errors
requires either costly manual verification at the end
of the acquisition process, or more complex and cre-
ative solutions integrating HITs for quality check.

Most of the approaches to content generation pro-
posed so far rely on post hoc verification to fil-
ter out undesired low-quality data (Mrozinski et al.,
2008; Mihalcea and Strapparava, 2009; Wang and
Callison-Burch, 2010). The few solutions integrat-
ing validation HITs address the translation of sin-
gle sentences, a task that is substantially different
from ours (Negri and Mehdad, 2010; Bloodgood and
Callison-Burch, 2010). Compared to sentence trans-
lation, the task of creating CLTE pairs is both harder
to explain without recurring to notions that are dif-
ficult to understand to non-experts (e.g. “seman-
tic equivalence”, “unidirectional entailment”), and
harder to execute without mastering these notions.
To tackle these issues the “divide and conquer” ap-
proach described in the next section consists in the
decomposition of a difficult content generation job
into easier subtasks that are: i) self-contained and
easy to explain, ii) easy to execute without any NLP
expertise, and iii) suitable for the integration of a va-
riety of runtime control mechanisms (regional qual-
ifications, gold units, “validation HITs”) able to en-
sure a good quality of the collected material.

8Both MTurk and CrowdFlower provide means to check
workers’ reliability, and weed out untrusted ones without money
waste. These include different types of qualification mecha-
nisms, the possibility of giving work only to known trusted
Turkers (only with MTurk), and the possibility of adding hid-
den gold standard units in the data to be annotated (offered as a
built-in mechanism only by CrowdFlower).
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4 CLTE Corpus Creation Methodology

Our approach builds on a pipeline of HITs routed to
MTurk’s workforce through the CrowdFlower inter-
face. The objective is to collect aligned T-H pairs
for different language combinations, reproducing an
RTE-like annotation style. However, our annotation
is not limited to the standard RTE framework, where
only unidirectional entailment from T to H is con-
sidered. As a useful extension, we annotate any pos-
sible entailment relation between the two text frag-
ments, including: i) bidirectional entailment (i.e.
semantic equivalence between T and H), ii) unidi-
rectional entailment from T to H, and iii) unidirec-
tional entailment from H to T. The resulting pairs
can be easily used to generate not only standard RTE
datasets9, but also general-purpose collections fea-
turing multi-directional entailment relations.

4.1 Data Acquisition and Annotation

We collect large amounts of CLTE pairs carrying out
the most difficult part of the process (the creation of
entailment-annotated pairs) at a monolingual level.
Starting from a set of parallel sentences in n lan-
guages, (e.g. L1, L2, L3), n entailment corpora are
created: one monolingual (L1/L1), and n-1 cross-
lingual (L1/L2, and L1/L3).

The monolingual corpus is obtained by modify-
ing the sentences only in one language (L1). Orig-
inal and modified sentences are then paired and an-
notated to form an entailment dataset for L1. The
CLTE corpora are obtained by combining the mod-
ified sentences in L1 with the original sentences in
L2 and L3, and projecting to the multilingual pairs
the annotations assigned to the monolingual pairs.

In principle, only two stages of the process re-
quire crowdsourcing multilingual tasks, but do not
concern entailment annotations. The first one, at the
beginning of the process, aims to obtain a set of par-
allel sentences to start with, and can be done in dif-
ferent ways (e.g. crowdsourcing the translation of
a set of sentences). The second one, at the end of
the process, consists of translating the modified L1
sentences into other languages (e.g. L2) in order to
extend the corpus to cover new language combina-

9With the positive examples drawn from bidirectional and
unidirectional entailments from T to H, and the negative ones
drawn from unidirectional entailments from H to T.

tions (e.g. L2/L2, L2/L3).
The execution of the two “multilingual” stages is

not strictly necessary but depends on: i) the avail-
ability of parallel sentences to start the process, and
ii) the actual objectives in terms of language combi-
nations to be covered10.

As regards the first stage, in this work we started
from a set of 467 English/Italian/German aligned
sentences extracted from parallel documents down-
loaded from the Cafebabel European Magazine11.
Concerning the second multilingual stage, we per-
formed only one round of translations from En-
glish to Italian to extend the 3 combinations ob-
tained without translations (ENG/ENG, ENG/ITA,
and ENG/GER) with the new language combina-
tions ITA/ITA, ITA/ENG, and ITA/GER.

STEP1:	
  Sentence	
  modifica2on	
  
(monolingual)	
  

STEP3:	
  Transla2on	
  
(mul2lingual)	
  

GER	
   ENG	
  

ENG1	
  

ITA	
  

ITA1	
   ITA	
  ENG	
   ENG1	
  

STEP2:	
  TE	
  annota2on	
  
(monolingual)	
  

Monolingual	
  
TE	
  corpus	
  

Cross-­‐lingual	
  
TE	
  corpus	
  

ENG1	
  GER	
  

ENG1	
  ITA	
  

TE	
  annota2ons	
  projec2on	
  	
  	
  

ITA1	
   GER	
  

ITA1	
   ENG	
  

Figure 1: Corpus creation process.

The main steps of our corpus creation process,
depicted in Figure 1, can be summarized as follows:

Step1: Sentence modification. The original
English sentences (ENG) are modified through
(monolingual) generation HITs asking Turkers to:
i) preserve the meaning of the original sentences
using different surface forms, or ii) slightly change
their meaning by adding or removing content. Our
assumption, in line with (Bos et al., 2009), is that

10Starting from parallel sentences in n languages, the n cor-
pora obtained without recurring to translations can be aug-
mented, by means of translation HITs, to create the full set of
language combinations. Each round of translation adds 1 mono-
lingual corpus, and n-1 CLTE corpora.

11http://www.cafebabel.com/
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another way to think about entailment is to consider
whether one text T1 adds new information to the
content of another text T: if so, then T is entailed by
T1.

The result of this phase is a set of texts (ENG1)
that can be of three types:

1. Paraphrases of the original ENG texts, that will
be used to create bidirectional entailment pairs
(ENG↔ENG1);

2. More specific sentences (the outcome of
content addition operations), used to create
ENG←ENG1 unidirectional entailment pairs;

3. More general sentences (the outcome of
content removal operations), used to create
ENG→ENG1 unidirectional entailment pairs.

Step2: TE Annotation. Entailment pairs com-
posed of the original sentences (ENG) and the modi-
fied ones (ENG1) are used as input of (monolingual)
annotation HITs asking Turkers to decide which of
the two texts contains more information. As a re-
sult, each ENG/ENG1 pair is annotated as an ex-
ample of uni-/bidirectional entailment, and stored in
the monolingual English corpus. Since the original
ENG texts are aligned with the ITA and GER texts,
the entailment annotations of ENG/ENG1 pairs can
be projected to the other language pairs and the
ITA/ENG1 and GER/ENG1 pairs are stored in the
CLTE corpus. The possibility of projecting TE an-
notations is based on the assumption that the seman-
tic information is mostly preserved during the trans-
lation process. This particularly holds at the deno-
tative level (i.e. regarding the truth values of the
sentence) which is crucial to semantic inference. At
other levels (e.g. lexical) there might be slight se-
mantic variations which, however, are very unlikely
to play a crucial role in determining entailment rela-
tions.

Step3: Translation. The modified sentences
(ENG1) are translated into Italian (ITA1) through
(multilingual) generation HITs reproducing the ap-
proach described in (Negri and Mehdad, 2010). As
a result, three new datasets are produced by au-
tomatically projecting annotations: the monolin-
gual ITA/ITA1, and the cross-lingual ENG/ITA1 and
GER/ITA1.

Since the solution adopted for sentence transla-
tion does not present novelty factors, the remainder
of this paper will omit further details on it. Instead,
the following sections will focus on the more chal-
lenging tasks of sentence modification and TE anno-
tation.

4.2 Crowdsourcing Sentence Modification and
TE Annotation

Sentence modification and TE annotation have been
decomposed into a pipeline of simpler monolingual
English sub-tasks. Such pipeline, depicted in Figure
2, involves several types of generation/annotation
HITs designed to be easily understandable to non-
experts. Each HIT consists of: i) a set of instruc-
tions for a specific task (e.g. paraphrasing a text),
ii) the data to be manipulated (e.g. an English sen-
tence), and iii) a test to check workers’ reliability.
To cope with the quality control issues discussed in
Section 3, such tests are realized using gold stan-
dard units, either hidden in the data to be annotated
(annotation HITs) or defined as test questions that
workers must correctly answer (generation HITs).
Moreover, regional qualifications are applied to all
HITs. As a further quality check, all the annotation
HITs consider Turkers’ agreement as a way to filter
out low quality results (only annotations featuring
agreement among 4 out of 5 workers are retained).
The six HITs defined for each subtask can be de-
scribed as follows:

1. Paraphrase (generation). Modify an En-
glish text (ENG), in order to produce a semantically
equivalent variant (ENG1). As a reliability test, be-
fore creating the paraphrase workers are asked to
judge if two English sentences contain the same in-
formation.

2. Grammaticality (annotation). Decide if an
English sentence is grammatically correct. This val-
idation HIT represents a quality check of the out-
put of each generation task (i.e. paraphrasing, and
add/remove information HITs).

3. Bidirectional Entailment (annotation). De-
cide whether two English sentences, the original
ENG and the modified ENG1, contain the same in-
formation (i.e. are semantically equivalent).

4a. Add Information (generation). Modify an
English text to create a more specific one by adding
content. As a reliability test, before generating the
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Figure 2: Sentence modification and TE annotation pipeline.

new sentence workers are asked to judge which of
two given English sentences is more detailed.

4b. Remove Information (generation). Mod-
ify an English text to create a more general one by
removing part of its content. As a reliability test, be-
fore generating the new sentence workers are asked
to judge which of two given English sentences is less
detailed.

5. Unidirectional Entailment (annotation). De-
cide which of two English sentences (the original
ENG, and a modified ENG1) provides more infor-
mation.

These HITs are combined in an iterative pro-
cess that alternates text generation, grammaticality
check, and entailment annotation steps. As a result,
for each original ENG text we obtain multiple ENG1
variants of the three types (paraphrases, more gen-
eral texts, and more specific texts) and, in turn, a set
of annotated monolingual (ENG/ENG1) TE pairs.

As described in Section 4.1, the resulting mono-
lingual English TE corpus (ENG/ENG1) is used to
create the following mono/cross-lingual TE corpora:

• ITA/ENG1, and GER/ENG1 (by projecting TE
annotations)

• ITA/ITA1, GER/ITA1, and ENG/ITA1 (by
translating the ENG1 texts into Italian, and pro-
jecting TE annotations)

5 The Resulting CLTE Corpora

This section provides a quantitative and qualita-
tive analysis of the results of our corpus creation
methodology, focusing on the collected ENG-ENG1
monolingual dataset. It has to be remarked that, as
an effect of the adopted methodology, all the obser-
vations and the conclusions drawn hold for the col-
lected CLTE corpora as well.

5.1 Quantitative Analysis

Table 1 provides some details about each step of the
pipeline shown in Figure 2. For each HIT the table
presents: i) the number of items (sentences, or pairs
of sentences) given in input, ii) the number of items
(sentences or annotations) produced as output, iii)
the number of items discarded when the agreement
threshold was not reached, iv) the number of entail-
ment pairs added to the corpus, v) the time (days and
hours) required by the MTurk workforce to complete
the job, and vi) the cost of the job.

In HIT-1 (Paraphrase) 1,414 paraphrases were
collected asking three different meaning-preserving
modifications of each of the 467 original sen-
tences12. From a practical point of view, such redun-
dancy aims to ensure a sufficient number of gram-
matically correct and semantically equivalent mod-
ified sentences. From a theoretical point of view,

12Often, crowdsourced jobs return a number of output items
that is slightly larger than required, due to the labour distribution
mechanism internal to MTurk.
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HIT # Input items # Output items # Discarded items # Pairs to corpus MTurk time Cost ($)
1. Paraphrase 467 1,414 5d+10.5h 45.48
2. Grammaticality 1,414 1,326 88 (6.22%) 1d+15h 56.88
3. Bidirectional Ent. 1,326 1,213 113 (8.52%) 301 3d+2h 53.47

(yes=1,205 no=8)
4a. Add Info 452 916 3d 37.02
4b. Remove Info 452 923 2d+22h 29.73
2. Grammaticality 1,839 1,749 90 (4.89%) 2d+5h 64.37
3. Bidirectional Ent. 1,749 1,438 311 (17.78%) 148 3d+20.5h 70.52

(yes=148 no=1,290)
5. Unidirectional Ent. 1,298 1,171 127 (9.78%) 1,171 8.5h 78.24

(491 + 680)
TOTAL 721 1,620 22d+11h 435.71

Table 1: The monolingual dataset creation pipeline.

collecting many variants of a small pool of origi-
nal sentences aims to create pairs featuring different
entailment relations with similar superficial forms.
This, in principle, should allow to obtain a dataset
which requires TE systems to focus more on deeper
semantic phenomena than on the surface realization
of the pairs.

The collected paraphrases were sent as input to
HIT-2 (Grammaticality). After this validation HIT,
the number of acceptable paraphrases was reduced
to 1,326 (with 88 discarded sentences, correspond-
ing to 6.22% of the total).

The retained paraphrases were paired with their
corresponding original sentences, and sent to HIT-3
(Bidirectional Entailment) to be judged for semantic
equivalence. The pairs marked as bidirectional en-
tailments (1,205) were divided in three groups: 25%
of the pairs (301) were directly stored in the final
corpus, while the ENG1 paraphrases of the remain-
ing 75% (904) were equally distributed to the next
modification steps.

In both HIT-4a (Add Information) and HIT-4b
(Remove information) two new modified sentences
were asked for each of the 452 paraphrases received
as input. The sentences collected in these generation
tasks were respectively 916 and 923.

The new modified sentences were sent back to
HIT-2 (Grammaticality) and HIT-3 (Bidirectional
Entailment). As a result 1,438 new pairs were cre-
ated; out of these, 148 resulted to be bidirectional
entailments and were stored in the corpus.

Finally, the 1,298 entailment pairs judged as non-
bidirectional in the two previously completed HIT-
3 (8+1,290) were given as input to HIT-5 (Unidi-

rectional Entailment). The pairs which passed the
agreement threshold were classified according to the
judgement received, and stored in the corpus as uni-
directional entailment pairs.

The analysis of Table 1 allows to formulate
some considerations. First, the percentage of dis-
carded items confirms the effectiveness of decom-
posing complex generation tasks into simpler sub-
tasks that integrate validation HITs and quality
checks based on non-experts’ agreement. In fact, on
average, around 9.5% of the generated items were
discarded without experts’ intervention13. Second,
the amount of discarded items gives evidence about
the relative difficulty of each HIT. As expected,
we observe lower rejection rates, corresponding to
higher inter-annotator agreement, for grammatical-
ity HITs (5.55% on average) than for more complex
entailment-related tasks (12.02% on average).

Looking at costs and execution time, it is hard
to draw definite conclusions due to several factors
that influence the progress of the crowdsourced jobs
(e.g. the fluctuations of Turkers’ performances, the
time of the day at which jobs are posted, the dif-
ficulty to set the optimal cost for a given HIT14).
On the one hand, as expected, the more creative
“Add Info” task proved to be more demanding than
the “Remove Info”: even though it was paid more,

13Moreover, it is worthwhile noticing that around 20% of the
collected items were automatically rejected (and not paid) due
to failures on the gold standard controls created both for gener-
ation and annotation tasks.

14The payment for each HIT was set on the basis of a pre-
vious feasibility study aimed at determining the best trade-off
between cost and execution time. However, replicating our ap-
proach would not necessarily result in the same costs.
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it still took little more time to be completed. On
the other hand, although the “Unidirectional Entail-
ment” task was expected to be more difficult and
thus rewarded more than the “Bidirectional Entail-
ment” one, in the end it took notably less time to
be completed. Nevertheless, the overall figures (435
USD, and about 22.5 days of MTurk work to com-
plete the process)15 clearly demonstrate the effec-
tiveness of the approach. Even considering the time
needed for an expert to manage the pipeline (i.e. one
week to prepare gold units, and to handle the I/O of
each HIT), these figures show that our methodology
provides a cheaper and faster way to collect entail-
ment data in comparison with the RTE average costs
reported in Section 1.

As regards the amount of data collected, the re-
sulting corpus contains 1,620 pairs with the fol-
lowing distribution of entailment relations: i) 449
bidirectional entailments, ii) 491 ENG→ENG1 uni-
directional entailments, and iii) 680 ENG←ENG1
unidirectional entailments.

It must be noted that our methodology does not
lead to the creation of pairs where some information
is provided in one text and not in the other, and vice-
versa, as Example 1 shows:

Example 1.
ENG: New theories were emerging in the field of psychology.
ENG1: New theories were rising, which announced a kind of
veiled racism.

These negative examples in both directions repre-
sent a natural extension of the dataset, relevant also
for specific application-oriented scenarios, and their
creation will be addressed in future work.

Besides the achievement of our primary objec-
tives, the adopted approach led to some interesting
by-products. First, the generated corpora are per-
fectly suitable to produce entailment datasets simi-
lar to those used in the traditional RTE evaluation
framework. In particular, considering any possible
entailment relation between two text fragments, our
annotation subsumes the one proposed in RTE cam-
paigns. This allows for the cost-effective genera-
tion of RTE-like annotations from the acquired cor-

15Although by projecting annotations the ENG1/ITA and
ENG1/GER CLTE corpora came for free, the ITA1/ITA,
ITA1/ENG, and ITA1/GER combinations created by crowd-
sourcing translations added 45 USD and approximately 5 days
to these figures.

pora by combining ENG↔ENG1 and ENG→ENG1
pairs to form 940 positive examples (449+491),
keeping the 680 ENG←ENG1 as negative exam-
ples. Moreover, by swapping ENG and ENG1 in the
unidirectional entailment pairs, 491 additional nega-
tive examples and 680 positive examples can be eas-
ily obtained.

Finally, the output of HITs 1-2-3 in Table 1 rep-
resents per se a valuable collection of 1,205 para-
phrases. This suggests the great potential of crowd-
sourcing for paraphrase acquisition.

5.2 Qualitative Analysis

Through manual verification of more than 50% of
the corpus (900 pairs), a total number of 53 pairs
(5.9%) were found incorrect. The different errors
were classified as follows:

Type 1: Sentence modification errors. Generation
HITs are a minor source of errors, being responsible
for 10 problematic pairs. These errors are either in-
troduced by generating a false statement (Example
2), or by forming a not fully understandable, awk-
ward, or non-natural sentence (Example 3).

Example 2.
ENG: Kosovo was the subject of major riots in 1989.
ENG1: The Russian city of Kosovo was the subject of ...

Example 3.
ENG: Balat is the Kurdish-Armenian district of Instanbul.
ENG1: Balat is a place, which is the Kurdish-Armenian ...

Type 2: TE annotation errors. The notion of con-
taining more/less information, used in the “Unidi-
rectional Entailment” HIT, can mostly be applied
straightforwardly to the entailment definition. How-
ever, the concept of “more/less detailed”, which gen-
erally works for factual statements, in some cases is
not applicable. In fact, the MTurk workers have reg-
ularly interpreted the instructions about the amount
of information as concerning the quantity of con-
cepts contained in a sentence. This is not always cor-
responding to the actual entailment relation between
the sentences. As a consequence, 43 pairs featur-
ing wrong entailment annotations were encountered.
These errors can be classified as follows:

a) 13 pairs, where the added/removed information
changes the meaning of the sentence. In these cases,
the modified sentence was judged more/less specific
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than the original one, leading to unidirectional en-
tailment annotation. On the contrary, in terms of
the standard entailment definition, the correct anno-
tation is “no entailment” (as in Example 4, which
was annotated as ENG→ENG1):
Example 4.
ENG: If you decide to live in Bulgaria, you have to like
difficulties because they are not difficulties, they are challenges.
ENG1: You have to like difficulties as they are not difficulties,
they are challenges.

b) 10 pairs where the incorrect annotation is due to
a coreference problem, as in:
Example 5.
ENG: John Smith is the new CEO of the company.
ENG1: He is the new CEO of the company.

These pairs were labelled as unidirectional entail-
ments (in the example above ENG→ENG1), under
the assumption that a proper name is more specific
and informative than a pronoun. However, adher-
ing to the TE definition, co-referring expressions are
equivalent, and their realization does not play any
role in the entailment decision. This implies that the
correct entailment annotation is “bidirectional”.

c) 9 pairs where the sentences are semantically
equivalent, but contain a piece of information which
is explicit in one sentence, and implicit in the other.
In these cases, Turkers judged the sentence contain-
ing the explicit mention as more specific, and thus
the pair was annotated as unidirectional entailment.
Example 6.
ENG: I hear the click of the trigger and the burst of bullets
reach me immediately.
ENG1: I hear the trigger and the burst of bullets reach me
instantly.

In Example 6, the expression “the trigger” in ENG1
implicitly means “the click of the trigger”, mak-
ing the two sentences equivalent, and the entailment
bidirectional (instead of ENG→ENG1).

d) 7 pairs where the information removed from or
added to the sentence is not relevant to the entail-
ment relation. In these cases, the modified sen-
tence was judged less/more specific than the origi-
nal one (and thus considered as unidirectional entail-
ment), even though the correct judgement is “bidi-
rectional”, as in:
Example 7.
ENG: At the same time, AKP is struggling with its approach to
the EU.

ENG1: AKP is struggling with its approach to the European
Union.

e) 4 pairs where the added/removed information
concerns universally quantified general statements,
about which the interpretation of “more/less spe-
cific” given by Turkers resulted in the wrong anno-
tation.
Example 8.
ENG: I think the success of multicultural couples depends on
the size of the cultural gap between the two partners
ENG1: I believe the success of the couples depends on the size
of the cultural gap between the 2 partners.

In Example 8, the additional information (“mul-
ticultural”) restricts the set to which it refers
(“couples”) making ENG entailed by ENG1, and
not vice versa as resulted from Turkers’ annotation.

In light of this analysis, we conclude that the sen-
tence modification methodology proved to be suc-
cessful, as the low number of Type 1 errors shows.
Considering that the most expensive phase in the
creation of a TE dataset is the generation of the
pairs, this is a significant achievement. Differently,
the entailment assessment phase appears to be more
problematic, accounting for the majority of errors.
As shown by Type 2 errors, this is due to a par-
tial misalignment between the instructions given in
our HITs, and the formal definition of textual en-
tailment. For this reason, further experimentation
will explore different ways to instruct workers (e.g.
asking to consider proper names and pronouns as
equivalent) in order to reduce the amount of errors
produced. As a final remark, considering that in the
creation of a TE dataset the manual check of the an-
notated pairs represents a minor cost, even the in-
volvement of experts to filter out wrong annotations
would not decrease the cost-effectiveness of the pro-
posed methodology.

6 Conclusions

There is an increasing need of annotated data to
develop new solutions to the Textual Entailment
problem, explore new entailment-related tasks, and
set up experimental frameworks targeting real-world
applications. Following the recent trends promot-
ing annotation efforts that go beyond the estab-
lished RTE Challenge framework (unidirectional en-
tailment between monolingual T-H pairs), in this
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paper we addressed the multilingual dimension of
the problem. Our primary goal was the creation of
large-scale collections of entailment pairs for differ-
ent language combinations. Besides that, we consid-
ered cost effectiveness and replicability as additional
requirements. To achieve our objectives, we devel-
oped a “divide and conquer” methodology based on
crowdsourcing. Our approach presents several key
innovations with respect to the related works on TE
data acquisition. These include the decomposition
of a complex content generation task in a pipeline
of simpler subtasks accessible to a large crowd of
non-experts, and the integration of quality control
mechanisms at each stage of the process. The result
of our work is the first large-scale dataset contain-
ing both monolingual and cross-lingual corpora for
several combinations of texts-hypotheses in English,
Italian, and German. Among the advantages of our
method it is worth mentioning: i) the full alignment
between the created corpora, ii) the possibility to
easily extend the dataset to new languages, and iii)
the feasibility of creating general-purpose corpora,
featuring multi-directional entailment relations, that
subsume the traditional RTE-like annotation.
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Abstract

Metaphor is ubiquitous in text, even in highly
technical text. Correct inference about tex-
tual entailment requires computers to distin-
guish the literal and metaphorical senses of
a word. Past work has treated this problem
as a classical word sense disambiguation task.
In this paper, we take a new approach, based
on research in cognitive linguistics that views
metaphor as a method for transferring knowl-
edge from a familiar, well-understood, or con-
crete domain to an unfamiliar, less understood,
or more abstract domain. This view leads to
the hypothesis that metaphorical word usage
is correlated with the degree of abstractness of
the word’s context. We introduce an algorithm
that uses this hypothesis to classify a word
sense in a given context as either literal (de-
notative) or metaphorical (connotative). We
evaluate this algorithm with a set of adjective-
noun phrases (e.g., indark comedy, the adjec-
tive dark is used metaphorically; indark hair,
it is used literally) and with the TroFi (Trope
Finder) Example Base of literal and nonliteral
usage for fifty verbs. We achieve state-of-the-
art performance on both datasets.

1 Introduction

Metaphor is a natural consequence of our ability
to reason by analogy (Gentner et al., 2001). It is
so common in our daily language that we rarely
notice it (Lakoff and Johnson, 1980). Identifying
metaphorical word usage is important for reasoning
about the implications of text.

Past work on the problem of distinguishing lit-
eral and metaphorical senses has approached it as

a classical word sense disambiguation (WSD) task
(Birke and Sarkar, 2006). Here, we take a differ-
ent approach to the problem. Lakoff and Johnson
(1980) argue that metaphor is a method for trans-
ferring knowledge from a concrete domain to an ab-
stract domain. Therefore we hypothesize that the de-
gree of abstractness in a word’s context is correlated
with the likelihood that the word is used metaphori-
cally. This hypothesis is the basis for our algorithm
for distinguishing literal and metaphorical senses.

Consider the following sentences:

L: Heshot downmy plane.
→ C1: Hefired atmy plane.
9 A1: He refutedmy plane.

M : Heshot downmy argument.
9 C2: Hefired atmy argument.
→ A2: He refutedmy argument.

The literal sense ofshot downin L invokes knowl-
edge from the domain of war. The metaphorical us-
age ofshot downin M transfers knowledge from
the concrete domain of war to the abstract domain
of debate (Lakoff and Johnson, 1980).

The entailments ofL and M depend on the in-
tended senses ofshot down. L entails the concrete
fired at in C1 (because, in order to literally shoot
something down, you must first fire at it) but not the
abstractrefutedin A1 (except perhaps as a joke). On
the other hand,M entailsrefutedin A2 but notfired
at in C2 (except perhaps as a novel metaphor).

In semiotics, Danesi (2003) argues that metaphor
transfersassociationsfrom the source domain to the
target domain. The metaphorical usage ofshot down
in M carries associations of violence and destruc-
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tion that are not conveyed byA2.
To make correct inferences about textual entail-

ment, computers must be able to distinguish the lit-
eral and metaphorical senses of a word. Since rec-
ognizing textual entailment (RTE) is a core problem
for NLP, with applications in Question Answering,
Information Retrieval, Information Extraction, and
Text Summarization, it follows that distinguishing
literal and metaphorical senses is a problem for a
wide variety of NLP tasks. The ability to recognize
metaphorical word usage is a core requirement in
the Intelligence Advanced Research Projects Activ-
ity (IARPA) Metaphor Program (Madrigal, 2011).1

Our approach to the problem of distinguishing lit-
eral and metaphorical senses is based on an algo-
rithm for calculating the degree of abstractness of
words. For instance,planein L is rated 0.36396 (rel-
atively concrete), whereasargumentin M is rated
0.64617 (relatively abstract), which suggests that the
verb shot downis used literally inL, whereas it is
used metaphorically inM . Our abstractness rating
algorithm is similar to Turney and Littman’s (2003)
algorithm for rating words according to their seman-
tic orientation.

To classify a word usage as literal or metaphori-
cal, based on the context, we use supervised learning
with logistic regression. The abstractness rating al-
gorithm is used to generate feature vectors from a
word’s context and training data is used to learn a
logistic regression model that relates degrees of ab-
stractness to the classesliteral andmetaphorical.

We evaluate our algorithm with three experi-
ments. The first experiment involves one hundred
adjective-noun phrases labeleddenotative(literal) or
connotative(metaphorical or nonliteral) by five an-
notators, according to the sense of the adjective.2

For instance,deep snowis labeleddenotativeand
deep appreciationis labeledconnotative. The algo-
rithm is able to predict the labels of the annotators
with an average accuracy of 79%.

The next two experiments use the TroFi (Trope
Finder) Example Base of literal and nonliteral usage
for fifty verbs.3 The fifty verbs occur in 3,737 sen-
tences from The 1987-89 Wall Street Journal (WSJ)
Corpus Release 1. In each sentence, the target verb

1See http://www.iarpa.gov/solicitationsmetaphor.html.
2The labeled phrases are available from Yair Neuman.
3Available at http://www.cs.sfu.ca/ anoop/students/jbirke/.

is labeledL (literal) or N (nonliteral), according to
the sense of the verb that is invoked by the sentence.
A subset of twenty-five of the fifty verbs was used
by Birke and Sarkar (2006).

In our second experiment, we duplicate the setup
of Birke and Sarkar (2006) so that we can com-
pare our results with theirs. In particular, a sepa-
rate model is learned for each individual verb. We
achieve an average f-score of 63.9%, compared to
Birke and Sarkar’s (2006) 64.9%.

In the third experiment, we train the algorithm
on the twenty-five new verbs that were not used by
Birke and Sarkar (2006) and then we test it on the
old verbs. That is, the algorithm is tested with verbs
that it has never seen before. The training verbs are
merged to build a single model, instead of building
a separate model for each individual verb. In this
experiment, the average f-score is 68.1%.

The next section presents our algorithm for calcu-
lating the degree of abstractness of words. In Sec-
tion 3, we review related work. The experiments are
described in Section 4. We discuss the results of the
experiments in Section 5 and conclude in Section 6.

2 Abstractness and Concreteness

Concrete words refer to things, events, and proper-
ties that we can perceive directly with our senses,
such astrees, walking, andred.4 Abstract words re-
fer to ideas and concepts that are distant from im-
mediate perception, such aseconomics, calculating,
anddisputable. In this section, we describe an algo-
rithm that can automatically calculate a numerical
rating of the degree of abstractness of a word on a
scale from 0 (highly concrete) to 1 (highly abstract).
For example, the algorithm ratespurveyas 1,donut
as 0, andimmodestlyas 0.5.

The algorithm is a variation of Turney and
Littman’s (2003) algorithm that rates words accord-
ing to their semantic orientation. Positive seman-
tic orientation indicates praise (honest, intrepid)
and negative semantic orientation indicates criticism
(disturbing, superfluous). The algorithm calculates
the semantic orientation of a given word by com-
paring it to seven positive words and seven nega-

4The wordred has an abstract political sense, but our ab-
stractness rating algorithm does not distinguish word senses.
The more frequent concrete sense ofred dominates, resulting
in an abstractness rating of 0.24984 (highly concrete).
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tive words that are used as paradigms of positive and
negative semantic orientation:

Positive paradigm words: good, nice, excellent,
positive, fortunate, correct,andsuperior.
Negative paradigm words:bad, nasty, poor, nega-
tive, unfortunate, wrong,andinferior.

Likewise, here we calculate the abstractness of
a given word by comparing it to twenty abstract
words and twenty concrete words that are used as
paradigms of abstractness and concreteness.

Turney and Littman (2003) experimented with
two measures of semantic similarity, pointwise mu-
tual information (PMI) (Church and Hanks, 1989)
and latent semantic analysis (LSA) (Landauer and
Dumais, 1997). These measures take a pair of words
as input and generate a numerical similarity rating as
output. The semantic orientation of a given word is
calculated as the sum of its similarity with the posi-
tive paradigm words minus the sum of its similarity
with the negative paradigm words. Likewise, here
we calculate the abstractness of a given word by the
sum of its similarity with twenty abstract paradigm
words minus the sum of its similarity with twenty
concrete paradigm words. We then use a linear nor-
malization to map the calculated abstractness value
to range from 0 to 1.

Our algorithm for calculating abstractness uses a
form of LSA to measure semantic similarity. This is
described in detail in Section 2.1. Although Turney
and Littman (2003) manually selected their fourteen
paradigm words, here we use a supervised learning
algorithm to choose our forty paradigm words, as
explained in Section 2.2.

The MRC Psycholinguistic Database Machine
Usable Dictionary (Coltheart, 1981) includes 4,295
words rated with degrees of abstractness by human
subjects in psycholinguistic experiments.5 The rat-
ings range from 158 (highly abstract) to 670 (highly
concrete). Table 1 gives some examples.

We used half of the 4,295 MRC words to train our
supervised learning algorithm and the other half to
validate the algorithm. On the testing set, the algo-
rithm attains a correlation of 0.81 with the dictionary
ratings. This indicates that the algorithm agrees well
with human judgements of the degrees of abstract-
ness of words.

5Available at http://ota.oucs.ox.ac.uk/headers/1054.xml.

Abstract Words Rating Concrete Words Rating
as 158 ape 654
of 180 grasshopper 660
apt 183 tomato 662
however 186 milk 670

Table 1: Examples of abstract and concrete words from
the MRC Dictionary (Coltheart, 1981).

2.1 Measuring Semantic Similarity

The variation of LSA that we use here is similar
to Rapp’s (2003) work. We modeled our similarity
measure on Rapp’s due to the high score of 92.5%
that he achieved on a set of 80 multiple-choice syn-
onym questions from the Test of English as a For-
eign Language (TOEFL). The core idea is to repre-
sent words with vectors and calculate the similarity
of two words by the cosine of the angle between the
two corresponding vectors. The values of the ele-
ments in the vectors are derived from the frequencies
of the words in a large corpus of text. This general
approach is known as a Vector Space Model (VSM)
of semantics (Salton et al., 1975).

We began with a corpus of5×1010 words (280 gi-
gabytes of plain text) gathered from university web-
sites by a webcrawler.6 We then indexed this cor-
pus with the Wumpus search engine (Büttcher and
Clarke, 2005).7 We selected our vocabulary from the
terms (words and phrases) in the WordNet lexicon.8

By querying Wumpus, we obtained the frequency of
each WordNet term in our corpus. We selected all
WordNet terms with a frequency of 100 or more in
our corpus. This resulted in a set of 114,501 terms.
Next we used Wumpus to search for up to 10,000
phrases per term, where a phrase consists of the
given term plus four words to the left of the term and
four words to the right of the term. These phrases
were used to build a word–context frequency matrix
F with 114,501 rows and 139,246 columns. A row
vector inF corresponds to a term in WordNet and
the columns inF correspond to contexts (the words
to the left and right of a given term in a given phrase)
in which the term appeared.

The columns inF are unigrams (single words)
in WordNet with a frequency of 100 or more in
the corpus. A given unigram is represented by two

6Collected by Charles Clarke at the University of Waterloo.
7Wumpus is available at http://www.wumpus-search.org/.
8WordNet is available at http://wordnet.princeton.edu/.
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columns, one markedleft and one markedright.
Supposer is the term corresponding to thei-th row
in F andc is the term corresponding to thej-th col-
umn inF. Let c be markedleft. Let fij be the cell
in thei-th row andj-th column ofF. The numerical
value in the cellfij is the number of phrases found
by Wumpus in which the center term wasr and c
was the unigram closest tor on the left side ofr.
That is,fij is the frequency with whichr was found
in the contextc in our corpus.

A new matrixX, with the same number of rows
and columns as inF, was formed by calculating
the Positive Pointwise Mutual Information (PPMI)
of each cell inF (Turney and Pantel, 2010). The
function of PPMI is to emphasize cells in which
the frequencyfij is statistically surprising, and
hence particularly informative. This matrix was then
smoothed with a truncated Singular Value Decom-
position (SVD), which decomposesX into the prod-
uct of three matricesUkΣkV

T
k . Finally, the terms

were represented by the matrixUkΣ
p
k, which has

114,501 rows (one for each term) andk columns
(one for each latent contextual factor). The semantic
similarity of two terms is given by the cosine of the
two corresponding rows inUkΣ

p
k. For more detail,

see Turney and Pantel (2010).
There are two parameters inUkΣ

p
k that need to

be set. The parameterk controls the number of la-
tent factors and the parameterp adjusts the weights
of the factors, by raising the corresponding singu-
lar values inΣp

k to the powerp. The parameterk is
well-known in the literature on LSA, butp is less fa-
miliar. The use ofp was suggested by Caron (2001).
Based on our past experience, we setk to 1000 and
p to 0.5. We did not explore any alternative settings
of these parameters for measuring abstractness.

2.2 Measuring Abstractness

Now that we haveUkΣ
p
k, all we need in order

to measure abstractness is some paradigm words.
We used the MRC Psycholinguistic Database Ma-
chine Usable Dictionary (Coltheart, 1981) to guide
our search for paradigm words. We split the 4,295
MRC words into 2,148 for training (searching for
paradigm words) and 2,147 for testing (evaluation
of the final set of paradigm words). We began
with an empty set of paradigm words and added
words from the 114,501 rows ofUkΣ

p
k, one word

at a time, alternating between adding a word to the
concrete paradigm words and then adding a word
to the abstract paradigm words. At each step, we
added the paradigm word that resulted in the high-
est Pearson correlation with the ratings of the train-
ing words. This is a form of greedy forward search
without backtracking. We stopped the search after
forty paradigm words were found, in order to pre-
vent overfitting of the training data.

Table 2 shows the forty paradigm words and the
order in which they were selected. At each step, the
correlation increases on the training set, but even-
tually it must decrease on the testing set. After
forty steps, the training set Pearson correlation was
0.8600. At this point, we stopped the search for
paradigm words and calculated the testing set Pear-
son correlation, which was 0.8064. This shows a
small amount of overfitting of the training data. The
testing set Spearman correlation was 0.8216.

For another perspective on the performance of the
algorithm, we measured its accuracy on the testing
set, by creating a binary classification task from the
testing data. We calculated the median of the rat-
ings of the 2,147 words in the test set. Every word
with an abstractness above the median was assigned
to the class 1 and every word with an abstractness
below the median was assigned to the class 0. We
then used the algorithm to guess the rating of each
word in the test set, calculated the median guess, and
likewise assigned the guesses to classes 1 and 0. The
guesses were 84.65% accurate.

After generating the paradigm words with the
training set and evaluating them with the testing
set, we then used them to assign abstractness rat-
ings to every term in the matrix. The result of this
is that we now have a set of 114,501 terms (words
and phrases) with abstractness ratings ranging from
0 to 1.9 Based on the testing set performance, we
estimate these 114,501 ratings would have a Pearson
correlation of 0.81 with human ratings and an accu-
racy of 85% on binary (abstractor concrete) classi-
fication.

We chose to limit the search to forty paradigm
words based on our past experience with semantic
orientation (Turney and Littman, 2003). To validate
this choice, we allowed the algorithm to continue

9The 114,501 rated terms are available from Peter Turney.
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Concrete Paradigm Words Abstract Paradigm Words
Order Word Correlation Order Word Correlation

1 donut 0.4447 2 sense 0.6165
3 antlers 0.6582 4 indulgent 0.6973
5 aquarium 0.7150 6 bedevil 0.7383
7 nursemaid 0.7476 8 improbable 0.7590
9 pyrethrum 0.7658 10 purvey 0.7762
11 swallowwort 0.7815 12 pigheadedness 0.7884
13 strongbox 0.7920 14 ranging 0.7973
15 sixth-former 0.8009 16 quietus 0.8067
17 restharrow 0.8089 18 regularisation 0.8123
19 recorder 0.8148 20 creditably 0.8188
21 sawmill 0.8212 22 arcella 0.8248
23 vulval 0.8270 24 nonproductive 0.8299
25 tenrecidae 0.8316 26 couth 0.8340
27 hairpiece 0.8363 28 repulsion 0.8400
29 sturnus 0.8414 30 palsgrave 0.8438
31 gadiformes 0.8451 32 goof-proof 0.8469
33 cobbler 0.8481 34 meshuga 0.8503
35 bullet 0.8521 36 dillydally 0.8538
37 dioxin 0.8550 38 reliance 0.8570
39 usa 0.8585 40 lumbus 0.8600

Table 2: The forty paradigm words and the Pearson correlation on the training set.

searching until one hundred paradigm words were
found. This resulted in a training set Pearson corre-
lation of 0.8963, but the testing set correlation was
only 0.8097, which shows a significant amount of
overfitting of the training data. Although the test-
ing set correlation is slightly higher with one hun-
dred paradigm words, we chose to base the follow-
ing experiments on the forty paradigm words, be-
cause the difference between 0.8064 and 0.8097 is
not significant, and the gap between the training and
testing correlation (0.8963 versus 0.8097) indicates
a problematic amount of overfitting. Furthermore,
the execution time of the algorithm increases as the
paradigm set increases.

We generated abstractness ratings for a large vo-
cabulary of 114,501 words in order to maximize the
variety of text genres and the range of applications
for which our list of abstractness ratings would be
useful. As a consequence of this large vocabulary,
many of the words in Table 2 are rare and obscure;
however, the measure of quality of the algorithm is
the correlation with the testing set (0.81), not the
familiarity of the words in the table. We include
the table here so that other researchers can exper-

iment with these paragidm words. The table may
give some insight into the internal functioning of the
algorithm, but the main output of the algorithm is
the list of 114,501 words with abstractness ratings,
not the list of paradigm words in Table 2.

3 Related Work

Here we discuss related work on metaphor and then
work on measuring abstractness. As far as we know,
our approach is the first in computational linguis-
tics to bring these two themes together, although
the connection is well-known in cognitive linguistics
(Lakoff and Johnson, 1980) and cognitive psychol-
ogy (Gentner et al., 2001).

3.1 Metaphor

The most closely related work is Birke and Sarkar’s
(2006) research on distinguishing literal and nonlit-
eral usage of verbs. A later paper (Birke and Sarkar,
2007) provides more detail on their active learn-
ing system, briefly mentioned in the earlier paper.
Birke and Sarkar (2006; 2007) treat the problem as
a classical word sense disambiguation task (Navigli,
2009). A model is learned for each verb indepen-
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dently from the other verbs. This approach cannot
handle a new verb without additional training.

Hashimoto and Kawahara (2009) discuss work
on a similar problem, distinguishing idiomatic us-
age from literal usage. They also approach this as
a classical word sense disambiguation task. Idioms
are somewhat different from metaphors, in that the
meaning of an idiom (e.g.,kick the bucket) is often
difficult to derive from the meanings of the compo-
nent words, unlike most metaphors.

Nissim and Markert (2003) use supervised learn-
ing to distinguish metonymic usage from literal us-
age. They take a classical WSD approach, learn-
ing a separate model for each target word. As with
Birke and Sarkar (2006; 2007) and Hashimoto and
Kawahara (2009), the core idea is to learn to clas-
sify word usage from similarity of context. Unlike
these approaches, our algorithm generalizes beyond
the specific semantic content of the context, paying
attention only to the degrees of abstractness of the
context.

Martin (1992) presents a knowledge-based ap-
proach to interpreting metaphors. This approach re-
quires complex hand-coded rules, which are specific
to a given domain (e.g., interpreting metaphorical
questions from computer users, such as, “How can
I kill a process?”, in an online help system). The
knowledge base cannot handle words that are not
hand-coded in its rules and a new set of rules must
be constructed for each new application domain.

Dolan (1995) describes an algorithm for extract-
ing metaphors from a dictionary. Some suggestive
examples are given, but the algorithm is not evalu-
ated in any systematic way.

Mason (2004) takes a corpus-based approach to
metaphor. His algorithm is based on a statistical
approach to discovering the selectional restrictions
of verbs. It then uses these restrictions to discover
metaphorical mappings, such as, “Money flows like
a liquid.” Although the system can discover some
metaphorical mappings, it was not designed to dis-
tinguish literal and metaphorical usages of words.

3.2 Abstractness

Changizi (2008) uses the hypernym hierarchy in
WordNet to calculate the abstractness of a word.
A word near the top of the hierarchy is consid-
ered abstract and a word near the bottom is con-

sidered concrete. It seems to us that the WordNet
hypernym hierarchy captures the general–specific
continuum, which might not be the same as the
abstract–concrete continuum. It would be interest-
ing to see how much correspondence there is be-
tween Changizi’s measure of abstractness and the
ratings in the MRC Psycholinguistic Database Ma-
chine Usable Dictionary (Coltheart, 1981). Also,
note that adjectives and adverbs are outside of Word-
Net’s hypernym hierarchy, and thus cannot be rated
by Changizi’s algorithm.

Xing et al. (2010) also use WordNet, but in a dif-
ferent way. They define theconcretenessof a word
sense (a WordNet synset) to be 1 if the given word
sense is a hyponym ofphysical entityin the Word-
Net hypernym hierarchy; otherwise theconcreteness
is 0. We believe that, although physical entities are
concrete, so arerednessandwalking, which are not
hyponyms ofphysical entity. The categoryphysical
entityonly partially captures concreteness.

4 Experiments

In the following experiments, we use the abstract-
ness ratings of Section 2.2 to generate features for
supervised machine learning. The learning algo-
rithm we apply is logistic regression (Le Cessie and
Van Houwelingen, 1992), as implemented in Weka
(Witten and Frank, 2005).10 In all experiments, we
used the Weka parameter settingsR = 0.2 (for ro-
bust ridge regression) andM = −1 (for unlimited
iterations).

4.1 Adjectives

For this experiment, we selected five adjectives,
dark, deep, hard, sweet,and warm. For each of
the five adjectives, we identified twenty word pairs
in which the first word is the adjective and the
second word is a noun. These pairs were identi-
fied through the Corpus of Contemporary American
English (COCA)11 (Davies, 2009) by seeking the
nouns that follow each adjective in the corpus and
sorting the candidate adjective-noun pairs by fre-
quency. We required a minimum pointwise mutual
information (PMI) of 3 between the adjective and
the noun. In some of the pairs, the adjective was

10Weka is available at http://www.cs.waikato.ac.nz/ml/weka/.
11Available at http://www.americancorpus.org/.
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used in a denotative (literal) sense (dark hair) and in
others it was used in a connotative (nonliteral) sense
(dark humor). Table 3 gives some examples.

Adjective-Noun Pairs Noun Abstractness
dark glasses 0.26826
dark chocolate 0.28211
dark energy 0.66207
dark mood 0.61858

Table 3: Some examples of adjective-noun pairs and the
abstractness rating of the noun.

In this experiment, we used the abstractness rat-
ing of the noun (the context) to predict whether the
adjective (the target) was used in a metaphorical or
literal sense. Table 3 supports this idea, but it is easy
to find counterexamples. Althoughdark moodis
metaphorical,bad moodis literal. The difference is
thatdark has an abstractness rating of 0.43356 (rel-
atively concrete), whereasbad has an abstractness
rating of 0.63326 (relatively abstract). Metaphor re-
sults when a concrete word is imported into an ab-
stract context (Lakoff and Johnson, 1980). Ideally,
we should be comparing the abstractness of the tar-
get to the abstractness of the context. However, in
our data, the target words are mostly concrete; thus
we can focus on the context and ignore the target.
We discuss this point further in Section 5.

Five judges, undergraduate students in psychol-
ogy, were asked to judge whether the use of the ad-
jective is a denotation or a connotation. The instruc-
tions were as follows:

Denotation is the most direct or specific
meaning of a word or expression while
connotationis the meaning suggested by
the word that goes beyond its literal mean-
ing. For instance, the meaning ofbitter is
denotative inbitter lemonand connotative
in bitter relations. In each of the following
pairs, you will be asked to judge whether
(1) the meaning of the first word isdenota-
tive or connotativeand (2) to what extent
it is denotative or connotative on a scale
ranging from 1 to 4.

The judges were blind to the research hypothe-
sis. Each judge received a booklet with the items
organized by the groups of adjectives and presented

in a random order. Overall, each subject was asked
to evaluate one hundred pairs. Interjudge reliability
was high, with Cronbach’s Alpha equal to 0.95.

Our feature vectors for each pair contained only
one element, the abstractness rating of the noun in
the pair. We used logistic regression with ten-fold
cross-validation to predict each judge’sdenotative
andconnotativelabels. The results are summarized
in Table 4. On average, we were able to predict a
judge’s labels with 79% accuracy.

Judge Accuracy Majority
1 0.730 0.590
2 0.810 0.570
3 0.840 0.560
4 0.790 0.510
5 0.780 0.520

Average 0.790 0.550

Table 4: The accuracy of logistic regression at predicting
the labels of each judge.

Table 4 also shows the size of the majority class
(the most common label) for each judge. For all
of the judges, the accuracy was significantly greater
than the size of the majority class (Fisher Exact test,
95% confidence level). The results support our hy-
pothesis that the abstractness of the context is pre-
dictive of whether an adjective is used in a literal or
metaphorical sense.

4.2 Known Verbs

For this experiment, we used the TroFi (Trope
Finder) Example Base of literal and nonliteral usage
for fifty verbs.12 To compare our results with Birke
and Sarkar’s (2006) results, we use the same subset
of twenty-five of the fifty verbs. These twenty-five
verbs appear in 1,965 sentences, manually labeled
L (literal) or N (nonliteral), according to the sense
of the target verb. The verbs also appeared in some
sentences labeledU (unannotated), but we ignored
these sentences (although they could be useful for
semi-supervised learning).

The labelnonliteral is intended to be a broad cat-
egory that includesmetaphoricalas a special case.
Other types of nonliteral usage includeidiomatic
andmetonymical, but it seems that most of thenon-
literal cases in TroFi are in factmetaphorical, and

12Available at http://www.cs.sfu.ca/ anoop/students/jbirke/.
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hence our hypothesis about the correlation of ab-
stract context with metaphorical sense is appropriate
for classifying the TroFi sentences.

Two examples of sentences from TroFi follow.
Both contain the target verbabsorb. The first sen-
tence isliteral and the second isnonliteral.

L: An Energy Department spokesman says the sul-
fur dioxide might be simultaneously recover-
able through the use of powdered limestone,
which tends toabsorbthe sulfur.

N: He said that MMWEC will have toabsorbonly
$4 million in additional annual costs now paid
by the Vermont utilities.

To generate feature vectors for the sentences, we
first applied the OpenNLP part-of-speech tagger to
the sentences.13 We then looked for each word in
our list of 114,501 abstractness ratings (Section 2.2).
If the word was not found in the list, we applied the
Morpha morphological analyzer to identify the stem
of the word (e.g., the stem ofmanagingis manage)
(Minnen et al., 2001).14 We then looked for the stem
in our list. If it was still not found, we skipped it.

For each sentence, we created a vector with five
features:

1. the average abstractness ratings of all nouns,
excluding proper nouns

2. the average abstractness ratings of all proper
nouns

3. the average abstractness ratings of all verbs, ex-
cluding the target verb

4. the average abstractness ratings of all adjectives
5. the average abstractness ratings of all adverbs

When there were no words for a given part of
speech, we set the average to a default value of 0.5.
Two examples of feature vectors follow, correspond-
ing to the two TroFi sentences above.

L: 〈0.3873, 0.5397, 0.6375, 0.2641, 0.5835〉
N: 〈0.6120, 0.3726, 0.6699, 0.5612, 0.5000〉

The intuition here is that the weight of each con-
text word, in predicting the class of the target verb,
may depend on the part of speech of the context

13Available at http://incubator.apache.org/opennlp/.
14Available at http://www.informatics.susx.ac.uk/research/

groups/nlp/carroll/morph.html.

word. We leave it to the logistic regression algo-
rithm to determine the appropriate weighting, based
on the training data. (See Table 7 in the next sec-
tion.)

Following Birke and Sarkar’s (2006) approach,
we treated each group of sentences for a given target
verb as a separate learning problem. For each verb,
we used ten-fold cross-validation to learn and test
logistic regression models. To measure the perfor-
mance of the models, we used three different scores,
macro-averaged accuracy and two forms of macro-
averaged f-score.

Birke and Sarkar (2006) explain their scoring as
follows:

Literal recall is defined as(correct literals
in literal cluster / total correct literals).
Literal precisionis defined as(correct lit-
erals in literal cluster / size of literal clus-
ter). If there are no literals,literal recall
is 100%;literal precision is 100% if there
are no nonliterals in the literal cluster and
0% otherwise. Thef-score is defined as
(2 · precision · recall) / (precision + re-
call). Nonliteral precision and recall are
defined similarly. Average precision is the
average of literal and nonliteral precision;
similarly for average recall. For overall
performance, we take the f-score of aver-
age precision and average recall.

The overall score is a macro-average, in which each
verb has equal weight, regardless of how many sen-
tences it appears in.

Every verb in TroFi has at least oneliteral usage
and onenonliteral usage, so there is no issue with
the definition of recall as 100% when there are no lit-
erals or no nonliterals. However, we believe that the
definition of precision as 100% when no sentence is
assigned to the literal or nonliteral cluster gives too
high a score to the trivial algorithm of always guess-
ing the majority class. The minority class will then
always have a precision of 100%. Therefore we use
a modified f-score in which the precision of a class
is 0% if the algorithm never guesses that class. We
refer to Birke and Sarkar’s (2006) score asf-score
(0/0 = 1) and to our own score asf-score (0/0 = 0).

Table 5 summarizes our results. Concrete-
Abstractrefers to our own algorithm.Birke-Sarkar
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refers to the best result reported by Birke and Sarkar
(2006), using a form of active learning.Majority
Classis the simple strategy of always guessing the
majority class.Probability Matchingis the strategy
of randomly guessing each class with a probability
equal to the size of the class.

Algorithm Accuracy F-score F-score
(0/0=0) (0/0=1)

Concrete-Abstract 0.734 0.631 0.639
Birke-Sarkar NA NA 0.649
Majority Class 0.697 0.408 0.629
Probability Matching 0.605 0.500 0.500

Table 5: The performance with known verbs.

We used a paired t-test to evaluate the statistical
significance of the results in Table 5. The num-
bers are in bold font when the performance of an
algorithm is significantly below the performance of
Concrete-Abstract. In no case is any score signifi-
cantly above the performance of Concrete-Abstract,
at the 95% confidence level.NA indicates scores that
were not calculated by Birke and Sarkar (2006).

4.3 Unknown Verbs

For the final experiment, we again used the TroFi
Example Base, but with a different experimental
setup. Instead of ten-fold cross-validation, we used
the twenty-five verbs in Birke and Sarkar (2006) for
testing (we call these theold verbs) and the other
twenty-five verbs (thenewverbs) for training. The
twenty-five old (testing) verbs appear in 1,965 sen-
tences and the twenty-five new (training) verbs ap-
pear in 1,772 sentences. For this experiment, we
no longer learn a separate logistic regression model
for each verb. All of the 1,772 training sentences
are used together to learn a single logistic regression
model, which is then evaluated on the testing sen-
tences.

Table 6 summarizes our results. Since the testing
set is exactly the same as in Section 4.2, we can com-
pare the performance directly with the performance
in the preceding section and with Birke and Sarkar’s
(2006) results.

Again, we used a paired t-test to evaluate the sta-
tistical significance of the results in Table 6. The
numbers are in bold font when the performance of
an algorithm is significantly below the performance

Algorithm Accuracy F-score F-score
(0/0=0) (0/0=1)

Concrete-Abstract 0.686 0.673 0.681
Birke-Sarkar NA NA 0.649
Majority Class 0.697 0.408 0.629
Probability Matching 0.605 0.500 0.500

Table 6: The performance with unknown verbs.

of Concrete-Abstract. In no case is any score signifi-
cantly above the performance of Concrete-Abstract,
at the 95% confidence level.

Table 7 shows the coefficients in the logistic re-
gression model that was learned on the training data.
The items numbered from 1 to 5 are the five features
described in Section 4.2. The sixth item is the con-
stant term in the regression equation. We see that the
abstractness of the nouns (excluding proper nouns)
has the largest weight in predicting whether the tar-
get verb is in classN.

Feature Coefficient
1 AvgNounAbs 11.4117
2 AvgPropAbs 0.7250
3 AvgVerbAbs -0.5528
4 AvgAdjAbs 1.1478
5 AvgAdvAbs -0.2013
6 Intercept -5.9436

Table 7: The logistic regression coefficients for classN.

5 Discussion

It is a strength of our approach that it can classify
verbs that it has never seen before, as we see in Sec-
tion 4.3. The feature vectors in all three experiments
are based only on the context; the target adjective or
verb is not used in the vectors. This avoids the need
for gathering training data on every verb or adjective
for which we want to determine whether it is being
used metaphorically or literally, since the algorithm
is not sensitive to the specific target word.

On the other hand, the performance might im-
prove if the target word were included in the fea-
ture vectors. If metaphor is a method for transfer-
ring knowledge from concrete domains to abstract
domains, then it follows that highly abstract target
words will tend to be used literally in most con-
texts. For instance, the highly abstract verbepito-
mize(with an abstractness rating of 0.85861) is per-
haps almost always used in a literal sense. There-
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fore it would seem that the abstractness rating of the
target word could be a useful clue for determining
whether the sense is literal or metaphorical.

We experimented with including the abstractness
rating of the target word as a feature, but the im-
pact on performance was not significant for either
the adjectives or the verbs. We hypothesize that this
may be due to the relatively narrow range in the ab-
stractness of the adjectives and verbs in our data.
The abstractness ratings of the adjectives vary from
0.43356 fordark to 0.56637 forhard. The abstract-
ness ratings of the fifty verbs range from 0.28756 for
plant to 0.71628 forlend, but 80% of the verbs lie
in the range from 0.41879 forfly to 0.59912 forrest.
It seems possible that the abstractness rating of the
target word would be useful with a dataset in which
the target’s abstractness varied substantially.

In future work, we would like to gather data for
target words with a wider range of abstractness. We
expect that such data would show some benefit to in-
cluding information on the abstractness of the target
word in the feature vector.

We also expect that a hybrid of classical word
sense disambiguation, such as Birke and Sarkar’s
(2006) algorithm, with abstractness ratings would
perform better than either approach alone. Abstract-
ness may provide a good rough estimate of whether
a word usage is literal or metaphorical, but it seems
likely that knowledge of the specific target word in
question will be required for a highly precise answer.
This is another worthwhile topic for future research.

Currently there is no algorithm that identifies
what kind of concepts and relations are grafted from
the source domain to the target domain by metaphor-
ical inference. The algorithm presented in this pa-
per may be used within a constraints-based model
of metaphor (Neuman and Nave, 2009) to address
this challenge.

Recently there has been some interest invisual-
ness, picturability, and imagability, the degree to
which a word is associated with visual imagery (De-
schacht and Moens, 2007). Although Xing et al.
(2010) use the termconcretenessin their work, their
research is concerned with predicting the difficulty
of queries for image retrieval. It could be argued that
Xing et al. should be trying to captureimagability,
not concreteness.

The MRC Psycholinguistic Database (Coltheart,

1981) includes words rated forimagability. Our al-
gorithm for rating the abstractness of words (Sec-
tion 2) could easily be trained with the MRC imaga-
bility ratings instead of the abstractness ratings. In
future work, it would be interesting to evaluate
imagability ratings on the TroFi Example Base. It
would also be worthwhile to see whether our algo-
rithm can be adapted for image retrieval (Xing et al.,
2010) and image annotation (Deschacht and Moens,
2007).

6 Conclusion

Metaphor is ubiquitous, yet recognizing textual
entailment is a challenge when words are used
metaphorically. An algorithm for distinguishing
metaphorical and literal senses of a word will facil-
itate correct textual inference, which will improve
the many NLP applications that depend on textual
inference.

We have introduced a new algorithm for measur-
ing the degree of abstractness of a word. Inspired by
research in cognitive linguistics (Lakoff and John-
son, 1980), we hypothesize that the degree of ab-
stractness of the context in which a given word ap-
pears is predictive of whether the word is used in
a metaphorical or literal sense. This hypothesis is
supported by three experiments.

A strength of this approach to the problem of dis-
tinguishing metaphorical and literal senses is that
it readily generalizes to new words, outside of the
training data. We do not claim that abstractness is
a complete solution to the problem, but it may be a
valuable component in any practical system for pro-
cessing metaphorical text.
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Abstract

Decision trees have been applied to a vari-
ety of NLP tasks, including language mod-
eling, for their ability to handle a variety of
attributes and sparse context space. More-
over, forests (collections of decision trees)
have been shown to substantially outperform
individual decision trees. In this work, we in-
vestigate methods for combining trees in a for-
est, as well as methods for diversifying trees
for the task of syntactic language modeling.
We show that our tree interpolation technique
outperforms the standard method used in the
literature, and that, on this particular task, re-
stricting tree contexts in a principled way pro-
duces smaller and better forests, with the best
achieving an 8% relative reduction in Word
Error Rate over an n-gram baseline.

1 Introduction

Language Models (LMs) are an essential part of
NLP applications that require selection of the most
fluent word sequence among multiple hypotheses.
The most prominent applications include Automatic
Speech Recognition (ASR) and Machine Transla-
tion (MT).

Statistical LMs formulate the problem as the
computation of the model’s probability to gener-
ate the word sequence w1, w2, . . . , wm (denoted as
wm1 ), assuming that higher probability corresponds
to more fluent hypotheses. LMs are often repre-
sented in the following generative form:

p(wm1 ) =

m∏

i=1

p(wi|wi−11 )

Note the context space for this function, wi−11 is ar-
bitrarily long, necessitating some independence as-
sumption, which usually consists of reducing the rel-
evant context to n−1 immediately preceding tokens:

p(wi|wi−11 ) ≈ p(wi|wi−1i−n+1) (1)

These distributions are typically estimated from ob-
served counts of n-grams wii−n+1 in the training
data. The context space is still far too large1; there-
fore, the models are recursively smoothed using
lower order distributions. For instance, in a widely
used n-gram LM, the probabilities are estimated as
follows:

p̃(wi|wi−1
i−n+1) = ρ(wi|wi−1

i−n+1) + (2)

γ(wi−1
i−n+1) · p̃(wi|wi−1

i−n+2)

where ρ is a discounted probability2.
Note that this type of model is a simple Markov

chain lacking any notion of syntax. It is widely
accepted that languages do have some structure.
Moreover, it has been shown that incorporating syn-
tax into a language model can improve its perfor-
mance (Bangalore, 1996; Heeman, 1998; Chelba
and Jelinek, 2000; Filimonov and Harper, 2009). A
straightforward way of incorporating syntax into a
language model is by assigning a tag to each word
and modeling them jointly; then to obtain the proba-

1O(|V |n−1) in n-gram model with typical order n =
3 . . . 5, and a vocabulary size of |V | = 104 . . . 106.

2We refer the reader to (Chen and Goodman, 1996) for a
survey of the discounting methods for n-gram models.
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bility of a word sequence, the tags must be marginal-
ized out:

p(wm
1 ) =

∑

t1...tm

p(wm
1 t

m
1 ) =

∑

t1...tm

m∏

i=1

p(witi|wi−1
1 ti−1

1 )

An independence assumption similar to Eq. 1 can be
made:

p(witi|wi−11 ti−11 ) ≈ p(witi|wi−1i−n+1t
i−1
i−n+1) (3)

A primary goal of our research is to build strong
syntactic language models and provide effective
methods for constructing them to the research com-
munity. Note that the tags in the context of the joint
model in Eq. 3 exacerbate the already sparse prob-
lem in Eq. 1, which makes the probability estima-
tion particularly challenging. We utilize decision
trees for joint syntactic language models to clus-
ter context because of their strengths (reliance on
information theoretic metrics to cluster context in
the face of extreme sparsity and the ability to in-
corporate attributes of different types3), and at the
same time, unlike log-linear models (Rosenfeld et
al., 1994), computationally expensive probability
normalization does not have to be postponed until
runtime.

In Section 2, we describe the details of the syntac-
tic decision tree LM. Construction of a single-tree
model is difficult due to the inevitable greediness
of the tree construction process and its tendency to
overfit the data. This problem is often addressed by
interpolating with lower order decision trees. In Sec-
tion 3, we point out the inappropriateness of backoff
methods borrowed from n-gram models for decision
tree LMs and briefly describe a generalized interpo-
lation for such models. The generalized interpola-
tion method allows the addition of any number of
trees to the model, and thus raises the question: what
is the best way to create diverse decision trees so that
their combination results in a stronger model, while
at the same time keeping the total number of trees in
the model relatively low for computational practical-
ity. In Section 4, we explore and evaluate a variety

3For example, morphological features can be very helpful
for modeling highly inflectional languages (Bilmes and Kirch-
hoff, 2003).

of methods for creating different trees. To support
our findings, we evaluate several of the models on
an ASR rescoring task in Section 5. Finally, we dis-
cuss our findings in Section 6.

2 Joint Syntactic Decision Tree LM

A decision tree provides us with a clustering func-
tion Φ(wi−1i−n+1t

i−1
i−n+1) → {Φ1, . . . ,ΦN}, where N

is the number of clusters, and clusters Φk are disjoint
subsets of the context space. The probability estima-
tion for a joint decision tree model is approximated
as follows:

p(witi|wi−1
i−n+1t

i−1
i−n+1) ≈ p(witi|Φ(wi−1

i−n+1t
i−1
i−n+1))

(4)

In the remainder of this section, we briefly describe
the techniques that we use to construct such a deci-
sion tree Φ and to estimate the probability distribu-
tion for the joint model in Eq. 4.

2.1 Decision Tree Construction

We use recursive partitioning to grow decision trees.
In this approach, a number of alternative binary
splits of the training data associated with a node are
evaluated using some metric, the best split is chosen,
checked against a stopping rule (which aims at pre-
venting overfitting to the training data and usually
involves a heldout set), and then the two partitions
become the child nodes if the stopping rule does not
apply. Then the algorithm proceeds recursively into
the newly constructed leaves.

Binary splits are often referred to as questions
about the context because a binary partition can
be represented by a binary function that decides
whether an element of context space belongs to one
partition or the other. We utilize univariate questions
where each question partitions the context on one
attribute, e.g., wi−2 or ti−1. The questions about
words and tags are constructed differently:

• The questions q about the words are in the form
q(x) ≡ wi+x ∈ S, where x is an integer be-
tween −n + 1 and −1, and S ⊂ V is a subset
of the word vocabulary V . To construct the set
S, we take the set of words So observed at the
offset x in the training data associated with the
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current node and split it into two complemen-
tary subsets S ∪ S̄ = So using the Exchange
algorithm (Martin et al., 1998). Because the
algorithm is greedy and depends on the initial-
ization, we construct 4 questions per word po-
sition using different random initializations of
the Exchange algorithm.

Since we need to account for words that were
not observed in the training data, we utilize
the structure depicted in Figure 1. To estimate
the probability at the backoff node (B in Fig-
ure 1), we can either use the probability from its
grandparent nodeA or estimate it using a lower
order tree (see Section 3), or combine the two.
We have observed no noticeable difference be-
tween these methods, which suggests that only
a small fraction of probability is estimated from
these nodes; therefore, for simplicity, we use
the probability estimated at the backoff node’s
grandparent.

• To create questions about tags we create a hi-
erarchical clustering of all tags in the form of
a binary tree. This is done beforehand, using
the Minimum Discriminating Information al-
gorithm (Zitouni, 2007) with the entire train-
ing data set. In this tree, each leaf is an in-
dividual tag and each internal node is associ-
ated with the subset of tags that the node dom-
inates. Questions about tags are constructed in
the form q(x, k) ≡ ti+x ∈ Tk, where k is a
node in the tag tree and Tk is the subset of tags
associated with that node. The rationale behind
constructing tag questions in this form is that
it enables a more efficient decoding algorithm
than standard HMM decoding (Filimonov and
Harper, 2009).

Questions are evaluated in two steps. First the
context attribute x is selected using a metric simi-
lar to information gain ratio proposed by (Quinlan,
1986):

M = 1− H(wi)−H(wi|x)

H(x)
= 1− I(x;wi)

H(x)

where x is one of the context attributes, e.g., wi−2
or ti−1. Then, among the questions about attribute

wi−2∈S

Backoff leaf

yes

yesno

no

A

B

wi−2∈S

Figure 1: A fragment of the decision tree with a backoff
node. S ∪ S̄ is the set of words observed in the training
data at the node A. To account for unseen words, we add
the backoff node B.

x, we select the question that maximizes the entropy
reduction.

Instead of dedicating an explicit heldout set for
the stopping criterion, we utilize a technique simi-
lar to cross validation: the training data set is par-
titioned into four folds, and the best question is re-
quired to reduce entropy on each of the folds.

Note that the tree induction algorithm can also be
used to construct trees without tags:

p(wi|wi−1i−n+1) ≈ p(wi|Φ(wi−1i−n+1))

We refer to this model as the word-tree model. By
comparing syntactic and word-tree models, we are
able to separate the effects of decision tree modeling
and syntactic information on language modeling by
comparing both models to an n-gram baseline.

2.2 In-tree Smoothing
A decision tree offers a hierarchy of clusterings that
can be exploited for smoothing. We can interpo-
late the observed distributions at leaves recursively
with their parents, as in (Bahl et al., 1990; Heeman,
1998):

p̃k(witi) = λkpML(witi) + (1− λk)p̃k′(witi) (5)

where pML is the observed distribution at node k
and k′ is the parent of k. The coefficients λk are
estimated using an EM algorithm.

We can also combine p(witi|Φ(wi−1i−n+1t
i−1
i−n+1))

with lower order decision trees, i.e.,
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p(witi|Φ(wi−1i−n+2t
i−1
i−n+2)), and so on up until

p(witi) which is a one-node tree (essentially a
unigram model). Although superficially similar to
backoff in n-gram models, lower order decision
trees differ substantially from lower order n-gram
models and require different interpolation methods.
In the next section, we discuss this difference and
present a generalized interpolation that is more
suitable for combining decision tree models.

3 Interpolation with Backoff Tree Models

In this section, for simplicity of presentation, we fo-
cus on the equations for word models, but the same
equations apply equally to joint models (Eq. 3) with
trivial transformations.

3.1 Backoff Property
Let us rewrite the interpolation Eq. 2 in a more
generic way:

p̃(wi|wi−1
1 ) = ρn(wi|Φn(wi−1

1 )) + (6)
γ(Φn(wi−1

1 )) · p̃(wi|BOn−1(wi−1
1 ))

where, ρn is a discounted distribution, Φn is a clus-
tering function of order n, and γ(Φn(wi−11 )) is the
backoff weight chosen to normalize the distribution.
BOn−1 is the backoff clustering function of order
n − 1, representing a reduction of context size. In
the case of an n-gram model, Φn(wi−11 ) is the set
of word sequences where the last n − 1 words are
wi−1i−n+1. Similarly, BOn−1(wi−11 ) is the set of se-
quences ending with wi−1i−n+2. In the case of a de-
cision tree model, the same backoff function is typ-
ically used, but the clustering function can be arbi-
trary.

The intuition behind Eq. 6 is that the backoff con-
text BOn−1(wi−11 ) allows for a more robust (but
less informed) probability estimation than the con-
text cluster Φn(wi−11 ). More precisely:

∀wi−1
1 ,W : W ∈ Φn(wi−11 )⇒W ∈ BOn−1(wi−11 )

(7)
that is, every word sequence W that belongs to a
context cluster Φn(wi−11 ), belongs to the same back-
off cluster BOn−1(wi−11 ) (hence has the same back-
off distribution). For n-gram models, Property 7

Φn

BOn−1 Contexts from the same Φ
n
 

belong to different BO
n-1

(a) Backoff Property satisfied (b) Backoff Property violated

context space context space

Figure 2: Backoff Property

trivially holds since BOn−1(wi−11 ) and Φn(wi−11 )
are defined as sets of sequences ending with wi−1i−n+2

andwi−1i−n+1, with the former clearly being a superset
of the latter. However, when Φ can be arbitrary, e.g.,
a decision tree, the property is not necessarily satis-
fied. Figure 2 illustrates cases when the Property 7
is satisfied (a) and violated (b).

Let us consider what happens when we have
two context sequences W and W ′ that belong to
the same cluster Φn(W ) = Φn(W ′) but differ-
ent backoff clusters BOn−1(W ) 6= BOn−1(W ′).
For example: suppose we have Φ(wi−2wi−1) =
({on}, {may,june}) and two corresponding backoff
clusters: BO′ = ({may}) and BO′′ = ({june}).
Following on, the word may is likely to be a month
rather than a modal verb, although the latter is
more frequent and will dominate in BO′. There-
fore we have much less faith in p̃(wi|BO′) than in
p̃(wi|BO′′) and would like a much smaller weight
γ assigned to BO′. However this would not be pos-
sible in the backoff scheme in Eq. 6, thus we will
have to settle on a compromise value of γ, resulting
in suboptimal performance.

Hence arbitrary clustering (an advantage of deci-
sion trees) leads to a violation of Property 7, which
is likely to produce a degradation in performance if
backoff interpolation Eq. 6 is used.

3.2 Generalized Interpolation

Recursive linear interpolation similar to Jelinek-
Mercer smoothing for n-gram models (Jelinek and
Mercer, 1980) has been applied to decision tree
models:
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p̃n(wi|wi−1
i−n+1) = λn(φn) · pn(wi|φn) + (8)

(1− λn(φn)) · p̃n−1(wi|wi−1
i−n+2)

where φn ≡ Φn(wi−1i−n+1), and λn(φn) ∈ [0, 1] are
assigned to each cluster and are optimized on a held-
out set using EM. pn(wi|φn) is the probability dis-
tribution at the cluster φn in the tree of order n. This
interpolation method is particularly useful as, un-
like count-based discounting methods (e.g., Kneser-
Ney), it can be applied to already smoothed distribu-
tions pn.

In (Filimonov and Harper, 2011), we observed
that because of the violation of Property 7 in deci-
sion tree models, the interpolation method of Eq. 8
is not appropriate for such models. Instead we pro-
posed the following generalized form of linear inter-
polation:

p̃n(wi|wi−1
i−n+1) =

∑n
m=1 λm(φm) · pm(wi|φm)∑n

m=1 λm(φm)
(9)

Note that the recursive interpolation of Eq. 8 can
be represented in this form with the additional con-
straint

∑n
m=1 λm(φm) = 1, which is not required in

the generalized interpolation of Eq. 9; thus, the gen-
eralized interpolation, albeit having the same num-
ber of parameters, has more degrees of freedom. We
also showed that the recursive interpolation Eq. 8 is
a special case of Eq. 9 that occurs when the Prop-
erty 7 holds.

4 From Backoff Trees to Forest

Note that, in Eq. 9, individual trees do not have ex-
plicit higher-lower order relations, they are treated
as a collection of trees, i.e., as a forest. Naturally,
to benefit from the forest model, its trees must differ
in some way. Different trees can be created based
on differences in the training data, differences in the
tree growing algorithm, or some non-determinism in
the way the trees are constructed.

(Xu, 2005) used randomization techniques to pro-
duce a large forest of decision trees that were com-
bined as follows:

p(wi|wi−1i−n+1) =
1

M

M∑

m=1

pm(wi|wi−1i−n+1) (10)

whereM is the number of decision trees in the forest
(he proposed M = 100) and pm is the m-th tree
model4. Note that this type of interpolation assumes
that each tree model is “equal” a priori and therefore
is only appropriate when the tree models are grown
in the same way (particularly, using the same order
of context). Note that Eq. 10 is a special case of
Eq. 9 when all parameters λ are equal.

(Xu, 2005) showed that, although each individual
tree is a fairly weak model, their combination out-
performs the n-gram baseline substantially. How-
ever, we find this approach impractical for online
application of any sizable model: In our experi-
ments, fourgram trees have approximately 1.8 mil-
lion leaves and the tree structure itself (without prob-
abilities) occupies nearly 200MB of disk space af-
ter compression. It would be infeasible to apply a
model consisting of more than a handful of such
trees without distributed computing of some sort.
Therefore, we pose the following question: If we
can afford to have only a handful of trees in the
model, what would be best approach to construct
those trees?

In the remainder of this section, we will describe
the experimental setup, discuss and evaluate differ-
ent ways of building decision tree forests for lan-
guage modeling, and compare combination methods
based on Eq. 9 and Eq. 10 (when Eq. 10 is applica-
ble).

4.1 Experimental Setup
To train our models we use 35M words of WSJ
94-96 from LDC2008T13. The text was converted
into speech-like form, namely numbers and abbrevi-
ations were verbalized, text was downcased, punctu-
ation was removed, and contractions and possessives
were joined with the previous word (i.e., they ’ll be-
comes they’ll). For the syntactic modeling, we used
tags comprised of the POS tags of the word and it’s
head. Parsing of the text for tag extraction occurred
after verbalization of numbers and abbreviations but

4Note that (Xu, 2005) used lower order models to estimate
pm.
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before any further processing; we used a latent vari-
able PCFG parser as in (Huang and Harper, 2009).
For reference, we include an n-gram model with
modified interpolated KN discounting. All mod-
els use the same vocabulary of approximately 50k
words.

Perplexity numbers reported in Tables 1, 2, 3,
and 4 are computed on WSJ section 23 (tokenized
in the same way)5.

In Table 1, we show results reported in (Filimonov
and Harper, 2011), which we use as the baseline for
further experiments. We constructed two sets of de-
cision trees (a joint syntactic model and a word-tree
model) as described in Section 2. Each set was com-
prised of a fourgram tree with backoff trigram, bi-
gram, and unigram trees. We combined these trees
using either Eq. 8 or Eq. 9. The λ parameters in
Eq. 8 were estimated using EM by maximizing like-
lihood of a heldout set (we utilized 4-way cross-
validation); whereas, the parameters in Eq. 9 were
estimated using L-BFGS because the denominator
in Eq. 9 makes the maximization step problematic.

4.2 Random Forest

(Xu, 2005) evaluated a variety of randomization
techniques that can be used to build trees. He used
a word-only model, with questions constructed us-
ing the Exchange algorithm, similar to our model.
He tried two methods of randomization: selecting
the positions in the history for question construction
by a Bernoulli trials6, and random initialization of
the Exchange algorithm. He found that when the
Exchange algorithm was initialized randomly, the
Bernoulli trial parameter did not matter; however,
when the Exchange algorithm was initialized deter-
ministically; lower values for the Bernoulli trial pa-
rameter r yielded better overall forest performance.
We implemented a similar method, namely, initial-
izing the Exchange algorithm randomly and using
r = 0.1 for Bernoulli trials7.

There is a key difference between the two ran-

5This section was not used for training the parser or for the
LM training.

6In this method, positions in the history are ignored with
probability 1− r, where r is the Bernoulli trials parameter.

7Note that because in the joint model, the question about
tags are deterministic, we use a lower value of r than (Xu, 2005)
to increase randomness.

domization methods. Since we do not have an a
priori preference for choosing initializations for the
Exchange algorithm, by using random initializations
it is hoped that due to the greedy nature of the al-
gorithm, the constructed trees, while being “unde-
graded,”8 will be sufficiently different so that their
combination improves over an individual tree. By
introducing Bernoulli trials, on the other hand, there
is a choice to purposely degrade the quality of in-
dividual trees in the hope that additional diversity
would enable their combination to compensate for
the loss of quality in individual trees.

Another way of introducing randomness to the
tree construction without apparent degradation of in-
dividual tree quality is through varying the data, e.g.,
using different folds of the training data (see Sec-
tion 2.1).

Let us take a closer look at the effect of differ-
ent types of randomization on individual trees and
their combinations. In the first set of experiments,
we compare the performance of a single undegraded
fourgram tree9 with forests of fourgram trees grown
randomly with Bernoulli trials. Having only same-
order trees in a forest allows us to apply interpola-
tion of Eq. 10 (used in (Xu, 2005)) and compare
with the interpolation method presented in Eq. 9. By
comparing forests of different sizes with the baseline
from Table 1, we are able to evaluate the effect of
randomization in decision tree growing and assess
the importance of the lower order trees.

The results are shown in Table 2. Note that, while
an undegraded syntactic tree is better than the word
tree, the situation is reversed when the trees are
grown randomly. This can be explained by the fact
that the joint model has a much higher dimensional-
ity of the context space, and therefore is much more
sensitive to the clustering method.

As we increase the number of random trees in the
forest, the perplexity decreases as expected, with the
interpolation method of Eq. 9 showing improvement
of a few percentile points over Eq. 10. Note that
in the case of the word-tree model, it takes 4 ran-
dom decision trees to reach the performance of a sin-
gle undegraded tree, while in the joint model, even

8Here and henceforth, by “undegraded” we mean “accord-
ing to the algorithm described in Section 2.”

9Since each tree has a smooth distribution based on Eq. 5,
lower order trees are not strictly required.
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Eq. 8 Eq. 9 (generalized)
order n-gram word-tree syntactic word-tree syntactic

2-gram 261.0 257.8 214.3 258.1 214.6
3-gram 174.3 (33.2%) 168.7 (34.6%) 156.8 (26.8%) 168.4 (34.8%) 155.3 (27.6%)
4-gram 161.7 (7.2%) 164.0 (2.8%) 156.5 (0.2%) 155.7 (7.5%) 147.1 (5.3%)

Table 1: Perplexity results on PTB WSJ section 23. Percentage numbers in parentheses denote the reduction of
perplexity relative to the lower order model of the same type.

word-tree syntactic
Eq. 10 Eq. 9 Eq. 10 Eq. 9

1 × undgr 204.9 189.1
1 × rnd 250.2 289.9
2 × rnd 229.5 221.5 244.6 240.9
3 × rnd 227.5 214.5 226.2 220.0
4 × rnd 219.5 205.0 219.5 212.2
5 × rnd 200.9 184.1 216.5 209.0
baseline N/A 155.7 N/A 147.1

Table 2: Perplexity numbers obtained using fourgram
trees only. Note that “undgr” and “rnd” denote unde-
graded and randomly grown trees with Bernoulli trials,
respectively, and the number indicates the number of
trees in the forest. Also “baseline” refers to the fourgram
models with lower order trees (from Table 1, Eq. 9).

5 trees are much worse than a single decision tree
constructed without randomization. Finally, com-
pare the performance of single undegraded fourgram
trees in Table 2 with fourgram models in Table 1,
which are constructed with lower order trees: both
word-tree and joint models in Table 1 have over
20% lower perplexity compared to the correspond-
ing models consisting of a single fourgram tree.

In Table 3, we evaluate forests of fourgram trees
produced using randomizations without degrading
the tree construction algorithm. That is, we use ran-
dom initializations of the Exchange algorithm and,
additionally, variations in the training data fold. All
forests in this table use the interpolation method
of Eq. 9. Note that, while these perplexity num-
bers are substantially better than trees produced with
Bernoulli trials in Table 2, they are still significantly
worse than the baseline model from Table 1.

These results suggest that, while it is beneficial
to combine different decision trees, we should in-
troduce differences to the tree construction process

word-tree syntactic
# trees Exchng. +data Exchng. +data

1 204.9 189.1
2 185.9 186.5 174.5 173.7
3 179.5 179.9 168.8 167.2
4 176.2 176.4 165.1 164.0
5 173.7 172.0 163.0 162.0

baseline 155.7 147.1

Table 3: Perplexity numbers obtained using fourgram
trees produced using random initialization of the Ex-
change algorithm (Exchng. columns) and, additionally,
variations in training data folds (+data columns). Note
that “baseline” refers to the fourgram models with lower
order trees (from Table 1). All models use the interpola-
tion method of Eq. 9.

without degrading the trees when introducing ran-
domness, especially for joint models. In addition,
lower order trees seem to play an important role for
high quality model combination.

4.3 Context-Restricted Forest

As we have mentioned above, combining higher and
lower order decision trees produces much better re-
sults. A lower order decision tree is grown from
a lower order context space, i.e., the context space
where we purposely ignore some attributes. Note
that in this case, rather than randomly ignoring con-
texts via Bernoulli trials at every node in the decision
tree, we discard some context attributes upfront in
a principled manner (i.e., most distant context) and
then grow the decision tree without degradation.

Since the joint model, having more context at-
tributes, affords a larger variety of different contexts,
we use this model in the remaining experiments.

In Table 4, we present the perplexity numbers for
our standard model with additional trees. We de-
note context-restricted trees by their Markovian or-
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Model size PPL
1w1t + 2w2t + 3w3t + 4w4t (*) 294MB 147.1
(*) + 4w3t + 3w2t 579MB 143.5
(*) + 4w3t + 3w4t 587MB 144.9
(*) + 4w3t + 3w4t + 3w2t + 2w3t 699MB 140.7
(*) + 1 × bernoulli-rnd 464MB 149.7
(*) + 2 × bernoulli-rnd 632MB 150.4
(*) + 3 × bernoulli-rnd 804MB 151.1
(*) + 1 × data-rnd 484MB 147.0
(*) + 2 × data-rnd 673MB 145.0
(*) + 3 × data-rnd 864MB 145.2

Table 4: Perplexity results using the standard syntactic
model with additional trees. “bernoulli-rnd” and “data-
rnd” indicate fourgram trees randomized using Bernoulli
trials and varying training data, respectively. The second
column shows the combined size of decision trees in the
forest.

ders (words w and tags t independently), so 3w2t
indicates a decision tree implementing the probabil-
ity function: p(witi|wi−1wi−2ti−1). The fourgram
joint model presented in Table 1 has four trees and
is labeled with the formula “1w1t + 2w2t + 3w3t +
4w4t” in Table 4. The randomly grown trees (de-
noted “bernoulli-rnd”) are grown utilizing the full
context 4w4t using the methods described in Sec-
tion 4.2. All models utilize the generalized interpo-
lation method described in Section 3.2.

As can be seen in Table 4, adding undegraded
trees consistently improves the performance of an
already strong baseline, while adding random trees
only increases the perplexity because their quality
is worse than undegraded trees’. Trees produced
by data randomization (denoted “data-rnd”) also im-
prove the performance of the model; however, the
improvement is not greater than that of additional
lower order trees, which are considerably smaller in
size.

5 ASR Rescoring Results

In order to verify that the improvements in perplex-
ity that we observe in Tables 1 and 4 are sufficient
for an impact on a task, we measure Word Error
Rate (WER) of our models on an Automatic Speech
Recognition (ASR) rescoring task using the Wall
Street Journal corpus (WSJ) for evaluation. The test
set consists of 4,088 utterances of WSJ0. We opti-

Model PPL WER
n-gram 161.7 7.81%
1w1t + 2w2t + 3w3t + 4w4t (Eq.8) 156.5 7.57%
1w1t + 2w2t + 3w3t + 4w4t (*) 147.1 7.32%
(*) + 4w3t + 3w4t + 3w2t + 2w3t 140.7 7.20%

Table 5: Perplexity and WER results. Note that the last
two rows are syntactic models using the interpolation
method of Eq. 9.

mized the weights for the combination of acoustic
and language model scores on a separate develop-
ment set comprised of 1,243 utterances from Hub2
5k closed vocabulary and the WSJ1 5k open vocab-
ulary sets.

The ASR system used to produce lattices is based
on the 2007 IBM Speech transcription system for the
GALE Distillation Go/No-go Evaluation (Chen et
al., 2006). The acoustic models are state-of-the-art
discriminatively trained models which are trained on
Broadcast News (BN) Hub4 acoustic training data.
Lattices were produced using a trigram LM trained
on the same data as the models we evaluate, then
1,000 best unique hypotheses were extracted from
the lattices. WER of the 1-best hypothesis on the
test set is 8.07% and the oracle WER is 3.54%.

In Table 5, we present WER results along with
the corresponding perplexity numbers from Ta-
bles 1 and 4 for our lowest perplexity syntactic
model, as well as the baselines (modified KN n-gram
model and standard decision tree models using in-
terpolation methods of Eq. 8 and Eq. 9). The in-
terpolation method of Eq. 9 substantially improves
performance over the interpolation method of Eq. 8,
reducing WER by 0.25% absolute (p < 10−5).
Adding four trees utilizing context restricted in dif-
ferent ways further reduces WER by 0.12%, which
is also a statistically significant (p < 0.025) im-
provement over the baseline models labeled (*). Al-
together, the improvements over the n-gram baseline
add up to 0.61% absolute (8% relative) WER reduc-
tion.

6 Conclusion

In this paper, we investigate various aspects of com-
bining multiple decision trees in a single language
model. We observe that the generalized interpola-
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tion (Eq. 9) for decision tree models proposed in
(Filimonov and Harper, 2011) is in fact a forest in-
terpolation method rather than a backoff interpola-
tion because, in Eq. 9, models do not have explicit
higher-lower order relation as they do in backoff in-
terpolation (Eq. 6). Thus, in this paper we investi-
gate the question of how to construct decision trees
so that their combination results in improved per-
formance (under the assumption that computational
tractability allows only a handful of decision trees
in a forest). We compare various techniques for
producing forests of trees and observe that methods
that diversify trees by introducing random degrada-
tion of the tree construction algorithm perform more
poorly (especially with joint models) than methods
in which the trees are constructed without degrada-
tion and with variability being introduced via param-
eters that are inherently arbitrary (e.g., training data
fold differences or initializations of greedy search
algorithms). Additionally, we observe that simply
restricting the context used to construct trees in dif-
ferent ways, not only produces smaller trees (be-
cause of the context reduction), but the resulting
variations in trees also produce forests that are at
least as good as forests of larger trees.
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Abstract

Augmented and alternative communication
(AAC) devices enable users with certain com-
munication disabilities to participate in every-
day conversations. Such devices often rely
on statistical language models to improve text
entry by offering word predictions. These
predictions can be improved if the language
model is trained on data that closely reflects
the style of the users’ intended communica-
tions. Unfortunately, there is no large dataset
consisting of genuine AAC messages. In this
paper we demonstrate how we can crowd-
source the creation of a large set of fictional
AAC messages. We show that these messages
model conversational AAC better than the cur-
rently used datasets based on telephone con-
versations or newswire text. We leverage our
crowdsourced messages to intelligently select
sentences from much larger sets of Twitter,
blog and Usenet data. Compared to a model
trained only on telephone transcripts, our best
performing model reduced perplexity on three
test sets of AAC-like communications by 60–
82% relative. This translated to a potential
keystroke savings in a predictive keyboard in-
terface of 5–11%.

1 Introduction

Users with certain communication disabilities
rely on augmented and alternative communication
(AAC) devices to take part in everyday conversa-
tions. Often these devices consist of a predictive
text input method coupled with text-to-speech out-
put. Unfortunately, the text entry rates provided by

AAC devices are typically low, between 0.5 and 16
words-per-minute (Trnka et al., 2009).

As a consequence, researchers have made nu-
merous efforts to increase AAC text entry rates by
employing a variety of improved language model-
ing techniques. Examples of approaches include
adapting the language model to recently used words
(Wandmacher et al., 2008; Trnka, 2008), using syn-
tactic information (Hunnicutt, 1989; Garay-Vitoria
and González-Abascal, 1997), using semantic in-
formation (Wandmacher and Antoine, 2007; Li
and Hirst, 2005), and modeling topics (Lesher and
Rinkus, 2002; Trnka et al., 2006). For a recent sur-
vey, see Garay-Vitoria and Abascal (2006).

While such language model improvement tech-
niques are undoubtedly helpful, certainly they can
all benefit from starting with a long-span language
model trained on large amounts of closely matched
data. For AAC devices this means closely modeling
everyday face-to-face communications. However,
a long-standing problem in the field is the lack of
good data sources that adequately model such AAC
communications. Due to privacy-reasons and other
ethical concerns, there is no large dataset consist-
ing of genuine AAC messages. Therefore, previous
research has used transcripts of telephone conversa-
tions or newswire text. However, these data sources
are unlikely to be an ideal basis for AAC language
models.

In this paper we show that it is possible to signif-
icantly improve conversational AAC language mod-
eling by first crowdsourcing the creation of a fic-
tional collection of AAC messages on the Amazon
Mechanical Turk microtask market. Using a care-
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fully designed microtask we collected 5890 mes-
sages from 298 unique workers. As we will see,
word-for-word these fictional AAC messages are
better at predicting AAC test sets than a wide-range
of other text sources. Further, we demonstrate that
Twitter, blog and Usenet data outperform telephone
transcripts or newswire text.

While our crowdsourced AAC data is better than
other text sources, it is too small to train high-quality
long-span language models. We therefore investi-
gate how to use our crowdsourced collection to in-
telligently select AAC-like sentences from Twitter,
blog and Usenet data. We compare a variety of
different techniques for doing this intelligent selec-
tion. We find that the best selection technique is the
recently proposed cross-entropy difference method
(Moore and Lewis, 2010). Using this method, we
build a compact and well-performing mixture model
from the Twitter, blog and Usenet sentences most
similar to our crowdsourced data.

We evaluate our mixture model on four different
test sets. On the three most AAC-like test sets, we
found substantial reductions in not only perplexity
but also in potential keystroke savings when used
in a predictive keyboard interface. Finally, to aid
other AAC researchers, we have publicly released
our crowdsourced AAC collection, word lists and
best-performing language models1.

2 Crowdsourcing AAC-like Messages

As we mentioned in the introduction, there are un-
fortunately no publicly available sources of gen-
uine conversational AAC messages. We conjectured
we could create surrogate data by asking workers
on Amazon Mechanical Turk to imagine they were
a user of an AAC device and having them invent
things they might want to say. While crowdsourcing
is commonly used for simple human computation
tasks, such as labeling images and transcribing au-
dio, it is an open research question whether we can
leverage workers’ creativity to invent plausible and
useful AAC-like messages. In this section, we de-
scribe our carefully constructed microtask and com-
pare how well our collected messages correspond to
communications from actual AAC users.

1http://www.aactext.org/imagine/

Figure 1: The interface for HITs of type 1 in our
crowdsourced data collection.

Figure 2: The interface for HITs of type 2 in our
crowdsourced data collection.

2.1 Collection Tasks

To collect our data, we used two different types
of human intelligence tasks (HITs). In type 1, the
workers were told to imagine that due to an accident
or medical condition they had to use a communica-
tion device to speak for them. Workers were asked
to invent a plausible communication. Workers were
prevented from pasting text. After several pilot ex-
periments, we arrived at the instructions shown in
figure 1.

In type 2, a worker first judged the plausibility
of a communication written by a previous worker
(figure 2). After judging, the worker was asked
to “invent a completely new communication” as if
the worker was the AAC user. Workers were pre-
vented from pasting text or typing the identical text
as the one just judged. The same communication
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was judged by three separate workers. In this work
we did not make use of these judgments.

2.2 Data Cleaning
While most workers produced plausible and often
creative communications, some workers entered ob-
vious garbage. These workers were identified by a
quick visual scan of the submitted communications.
We rejected the work of 9% of the workers in type
1 and 4% of the workers in type 2. After removing
these workers, we had 2481 communications from
type 1 and 4440 communications from type 2.

After combining the data from all accepted HITs,
we conducted further semi-automatic data clean-
ing. We first manually reviewed communications
sorted by worker. We removed workers whose text
was non-fluent English or not plausible (e.g. some
workers entered news headlines or proverbs). Iden-
tical communications from the same worker were
removed. We removed communications with an
out-of-vocabulary (OOV) rate of over 20% with re-
spect to a large word list of 330K words obtained
from human-edited dictionaries2. We also removed
communications that were all in upper case, con-
tained common texting abbreviations (e.g. “plz”,
“ru”, “2day”), communications over 80 characters,
and communications with excessive letter repeti-
tions (e.g. “yippeeee”). After cleaning, we had 5890
messages from 298 unique workers.

2.3 Results
Tables 1 and 2 show some example communications
obtained in each HIT type. Sometimes, but not al-
ways, type 2 resulted in the worker writing a similar
communication as the one judged. This is a mixed
blessing. While it may reduce the diversity of com-
munications, we found that workers were more ea-
ger to accept HITs of type 2. The average HIT com-
pletion time was also shorter, 24 seconds in type 2
versus 36 seconds in type 1. While we initially paid
$0.04/HIT for both types, we found in subsequent
rounds that we could pay $0.02/HIT for type 2. We
also had to reject less work in type 2 and qualita-
tively found the communications to be more AAC-
like. Since workers had to imagine themselves in a

2We combined Wiktionary, Webster’s dictionary provided
by Project Gutenberg, the CMU pronouncing dictionary and
GNU aspell.

Is the dog friendly?
Can I have some water please?
I need to start making a shopping list soon.
What I would really like right now is a plate of fruit.
Who will drive me to the doctor’s office tomorrow?

Table 1: Example communications from type 1.

Can you bring my slippers?
I am cold, is there another blanket.
How did Pam take the news?
Bring the fuzzy slippers here.

Did you have breakfast?
why are you so late?
I am pretty hungry, can we go eat?
I had bacon eggs and hashbrowns for breakfast.

Table 2: Example communications from type 2. The
text in bold is the message workers judged. It is fol-
lowed in plain text by the workers’ new messages.

very unfamiliar situation, it appears that providing a
concrete example was helpful to workers.

3 Comparison of Training Sources

In this section, we compare the predictive perfor-
mance of language models trained on our Turk AAC
data with models trained on other text sources. We
use the following training sets:

• NEWS – Newspaper articles from the CSR-III
(Graff et al., 1995) and Gigaword corpora (Graff,
2003). 60M sentences, 1323M words.

• WIKIPEDIA – Current articles and discussion
threads from a snapshot of Wikipedia (January 3,
2008). 24M sentences, 452M words.

• USENET – Messages from a Usenet corpus
(Shaoul and Westbury, 2009). 123M sentences,
1847M words.

• SWITCHBOARD – Transcripts of 2217 telephone
conversations from the Switchboard corpus (God-
frey et al., 1992). Due to its conversational style,
this corpus has been popular for AAC language
modeling (Lesher and Rinkus, 2002; Trnka et al.,
2009). 0.2M sentences, 2.6M words.

• BLOG – Blog posts from the ICWSM corpus
(Burton et al., 2009). 25M sentences, 387M
words.
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• TWITTER – We collected Twitter messages via
the streaming API between December 2010 and
March 2011. We used the free Twitter stream
which provides access to 5% of all tweets. Twit-
ter may be particularly well suited for modeling
AAC communications as tweets are short typed
messages that are often informal person-to-person
communications. Twitter has previously been
proposed as a candidate for modeling conversa-
tions, see for example Ritter et al. (2010). 7M
sentences, 55M words.

• TURKTRAIN – Communications from 80% of the
workers in our crowdsourced collection. 4981
sentences, 24860 words.

WIKIPEDIA, USENET, BLOG and TWITTER all
consisted of raw text that required significant filter-
ing to eliminate garbage, spam, repeated messages,
XML tags, non-English text, etc. Given the large
amount of data available, our approach was to throw
away any text that did not appear to be a sensible
English sentence. For example, we eliminated any
sentence having a large number of words not in our
330K word list.

3.1 Test Sets
We evaluated our models on the following test sets:

• COMM – Sentences written in response to hy-
pothetical communication situations collected by
Venkatagiri (1999). We removed nine sentences
containing numbers. This set is used throughout
the paper. 251 sentences, 1789 words.

• SPECIALISTS – Context specific phrases sug-
gested by AAC specialists3. This set is used
throughout the paper. 952 sentences, 3842 words.

• TURKDEV – Communications from 10% of the
workers in our crowdsourced collection (disjoint
from TURKTRAIN and TURKTEST). This set will
be used for initial evaluations and also to tune our
models. 551 sentences, 2916 words.

• TURKTEST – Communications from 10% of the
workers in our crowdsourced collection (disjoint
from TURKTRAIN and TURKDEV). This set is
used only in the final evaluation section. 563 sen-
tences, 2721 words.
3http://aac.unl.edu/vocabulary.html

Test set Sentence
COMM I love your new haircut.
COMM How many children do you have?
SPECIALISTS Are you sure you don’t mind?
SPECIALISTS I’ll keep an eye on that for you
SWITCHTEST yeah he’s a good actor though
SWITCHTEST what did she have like

Table 3: Examples from three of our test sets.

• SWITCHTEST – Transcripts of three Switchboard
conversations (disjoint from the SWITCHBOARD

training set). This is the same set used in Trnka et
al. (2009). We dropped one sentence containing a
dash. This set is only used in the final evaluation
section. 59 sentences, 508 words.

TURKDEV and TURKTEST contain text similar
to table 1 and 2. Table 3 shows some examples from
the other three test sets. Sentences in COMM tended
to be richer in vocabulary and subject matter than
those in SPECIALISTS. The SPECIALISTS sentences
tended to be general phrases that avoided mention-
ing specific situations, proper names, etc. Sentences
in SWITCHTEST exhibited phenomena typical of
human-to-human voice conversations (filler words,
backchannels, interruptions, etc).

3.2 Language Model Training

All language models were trained using the SRILM
toolkit (Stolcke, 2002). All models used interpo-
lated modified Kneser-Ney smoothing (Kneser and
Ney, 1995; Chen and Goodman, 1998). In this sec-
tion, we trained 3-gram language models with no
count-cutoffs. All text was converted to lowercase
and we removed punctuation except for apostrophes.
We believe punctuation would likely slow down a
user’s conversation for only a small potential advan-
tage (e.g. improving text-to-speech prosody).

All models used a vocabulary of 63K words in-
cluding an unknown word. We obtained our vocab-
ulary by taking all words occurring in TURKTRAIN

and all words occurring four or more times in the
TWITTER training set. We restricted our vocabu-
lary to words from our large list of 330K words.
This restriction prevented the inclusion of com-
mon misspellings prevalent in many of our train-
ing sets. Our 63K vocabulary resulted in low OOV
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(c) SPECIALISTS test set

Figure 3: Perplexity of language models trained on the same amount of data from different sources. The
perplexity is the average of 20 models trained on random subsets of the training data (one standard deviation
error bars).

rates for all test sets: COMM 0%, SPECIALISTS

0.05%, TURKDEV 0.1%, TURKTEST 0.07%, and
SWITCHTEST 0.8%.

3.3 Small Training Size Experiment
We trained language models on each dataset, vary-
ing the number of training words from 4K to 24K
(the limit of the TURKTRAIN set). For each dataset
and training amount, we built 20 different models by
choosing sentences from the full training set at ran-
dom. We computed the mean and standard deviation
of the per-word perplexity of the set of 20 models.

As shown in figure 3, word-for-word the TURK-
TRAIN data was superior for our three most AAC-
like test sets. Thus it appears our crowdsourcing pro-
cedure was successful at generating AAC-like data.
TWITTER was consistently the second best. BLOG,
USENET and SWITCHBOARD also performed well.

3.4 Large Training Size Experiment
The previous experiment used a small amount of
training data. We selected the best three datasets
having tens of millions of words of training data:
USENET, BLOG, and TWITTER. As in the previ-
ous experiment, we computed the mean and stan-
dard deviation of the per-word perplexity of a set
of 20 models. Increasing the amount of training
data substantially reduced perplexity compared to

our small TURKTRAIN collection (figure 4). Tweets
were clearly well suited for modeling AAC-like text
as 3M words of TWITTER data was better than 40M
words of BLOG data.

3.5 Comparison with Real AAC Data
Beukelman et al. (1984) analyzed the communica-
tions made by five nonspeaking adults over 14 days.
All users were experienced using a tape-typewriter
AAC device. Beukelman gives a ranked list of the
top 500 words, the frequency of the top 20 words,
and statistics calculated on the communications.

For the top 10 words in Beukelman’s AAC user
data, we computed the probability of each word in
our various datasets (figure 5). As shown, some
words such as “to” and “a” occur with similar fre-
quency across all datasets. Some words such as
“the” are overrepresented in data such as news text.
Other words such as “I” and “you” are much more
variable. Our Turk data has the closest matching
frequency for the most popular word “I”. Interest-
ingly, our Turk data shows a much higher probabil-
ity for “you” than the AAC data. We believe this re-
sulted from the situation we asked workers to imag-
ine (i.e. communicating via a letter-at-a-time scan-
ning interface). Workers presumed in such a situa-
tion they would need to ask others to do many tasks.
We observed many requests in the data such as “Can
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Figure 4: Perplexity of language models trained on increasing amounts of data from three different training
sources. Results on the TURKDEV, COMM and SPECIALISTS test sets.
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Figure 5: The unigram probabilities of the top 10 words reported by Beukelman et al. (1984).

you change my sheets?” and “Can you walk the dog
for me?”

Beukelman reports 33% of all communications
could be made using only the top 500 words. The
same 500 words allowed writing of 34% of our Turk
communications. Other datasets exhibited much
lower percentages. Note that this is at least partially
due to the longer sentences present in some datasets.
Unfortunately, Beukelman does not report the aver-
age communication length. Our Turk communica-
tions were 5.0 words on average. The next shortest
dataset was TWITTER with 7.5 words per communi-
cation. Despite their short average length, only 10%
of Tweets could be written using the top 500 words.

Beukelman reports that 80% of words in the AAC
users’ communications were in the top 500 words.
81% of the words in our crowdsourced data were in
this word list. For comparison, only 65% of words
in our TWITTER data were in the 500 word vocabu-
lary. While our TURKTRAIN set contains only 2141
unique words, this may in fact be good since it has

been argued that rare words have received too much
attention in AAC (Baker et al., 2000).

4 Using Large Datasets Effectively

In the previous section, we found our crowdsourced
data was good at predicting AAC-like test sets.
However, in order to build a good long-span lan-
guage model, we would require millions of such
communications. Crowdsourcing such a large col-
lection would be prohibitively expensive. There-
fore, we instead investigated how to use our crowd-
sourced data to intelligently select AAC-like data
from other large datasets. For large datasets, we
used TWITTER, BLOG and USENET as they were
both large and well-matched to AAC data.

4.1 Selecting AAC-like Data
For each training sentence, we calculated three val-
ues:

• WER – The minimum word error rate between
the training sentence and one of the crowdsourced
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Figure 6: Perplexity on TURKDEV using different data selection and pruning techniques.

communications. This is the minimum number of
words that must be inserted, substituted or deleted
to transform the training sentence into a TURK-
TRAIN sentence divided by the number of words
in the TURKTRAIN sentence. For example, the
training sentence “I didn’t sleep well Monday
night either” was given a WER of 0.33 because
two word-changes transformed it into a message
written by a worker: “I didn’t sleep well last
night”.

• Cross-entropy, in-domain – The average per-word
cross-entropy of the training sentence under a 3-
gram model trained on TURKTRAIN.

• Cross-entropy, background – The average per-
word cross-entropy of the training sentence un-
der a 3-gram model trained on a random portion
of the training set. The random portion was the
same size as TURKTRAIN.

We used these values to limit training to only
AAC-like sentences. We tried three different selec-
tion methods. In WER selection, only sentences be-
low a threshold on the word error rate were kept in
the training data. This tends to find variants of exist-
ing communications in our Turk collection.

In cross-entropy selection, we used only sen-
tences below a threshold on the per-word cross-
entropy with respect to a TURKTRAIN language
model. This is equivalent to placing a threshold on

the perplexity. Previously this technique has been
used to improve language models based on web data
(Bulyko et al., 2007; Gao et al., 2002) and to con-
struct domain-specific models (Lin et al., 1997).

In cross-entropy difference selection, a sentence’s
score is the in-domain cross-entropy minus the back-
ground cross-entropy (Moore and Lewis, 2010).
This technique has been used to supplement Euro-
pean parliamentary text (48M words) with newswire
data (3.4B words) (Moore and Lewis, 2010). We
were curious how this technique would work given
our much smaller in-domain set of 24K words.

4.2 Data Selection and Pruning

We built models selecting sentences below different
thresholds on the WER, in-domain cross-entropy, or
cross-entropy difference. For comparison, we also
pruned our models using conventional count-cutoff
and entropy pruning (Stolcke, 1998). During en-
tropy pruning, we used a Good-Turing estimated
model for computing the history marginals as the
lower-order Kneser-Ney distributions are unsuitable
for this purpose (Chelba et al., 2010).

We calculated the perplexity of each model on
three test sets. We also tallied the number of model
parameters (all n-gram probabilities plus all backoff
weights). On TURKDEV, cross-entropy difference
selection performed the best for all models sizes and
for all training sets (figure 6). We also found cross-
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Figure 7: Perplexity on TURKDEV varying the
cross-entropy difference threshold.

entropy difference was the best on COMM, reducing
perplexity by 10–20% relative compared to cross-
entropy selection. Results on SPECIALISTS showed
that WER and both forms of cross-entropy selection
performed similarly. All three data selection meth-
ods were superior to count-cutoff or entropy prun-
ing. We use cross-entropy difference selection for
the remainder of this paper.

4.3 Model Order and Optimal Thresholds

We created 2-gram, 3-gram and 4-gram models on
TWITTER, BLOG, and USENET using a range of
cross-entropy difference thresholds. 4-gram models
slightly outperformed 3-gram models (figure 7). The
optimal threshold for 4-gram models were as fol-
lows: TWITTER 0.0, BLOG -0.4, and USENET -0.7.
These thresholds resulted in using 20% of TWIT-
TER, 5% of BLOG, and 1% of USENET.

4.4 Mixture Model

We created a mixture model using linear interpo-
lation from the TWITTER, USENET and BLOG 4-
gram models created with each set’s optimal thresh-
old. The mixture weights were optimized with re-
spect to TURKDEV using SRILM. The final mix-
ture weights were: TWITTER 0.42, BLOG 0.29, and
USENET 0.29. Our final 4-gram mixture model had
43M total parameters and a compressed disk size of
316 MB.

5 Evaluation

In this section, we compare our mixture model
against baseline models. We show performance with

respect to usage in a typical AAC text entry interface
based on word prediction.

5.1 Predictive Text Entry
Many AAC communication devices use word pre-
dictions. In a word prediction interface users type
letters and the interface offers word completions
based on the prefix of the current word and often the
prior text. By selecting one of the predictions, the
user can potentially save keystrokes as compared to
typing out every letter of each word.

We assume a hypothetical predictive keyboard in-
terface that displays five word predictions. Our key-
board makes predictions based on up to three words
of prior context. Our keyboard predicts words even
before the first letter of a new word is typed. As
a user types letters, predictions are limited to words
consistent with the typed letters. If the system makes
a correct prediction, we assume it takes only one
keystroke to enter the word and any following space.

We only predict words in our 63K word vocab-
ulary (empty prediction slots are possible). We dis-
play a word even if it was already a proposed predic-
tion for a shorter prefix of the current word. The first
word in a sentence is conditioned on the sentence-
start pseudo-word. If an out-of-vocabulary word is
typed, the word is replaced in the language model’s
context with the unknown pseudo-word.

We evaluate our predictive keyboard using the
common metric of keystroke savings (KS):

KS =

(
1−

(
kp
ka

))
× 100%,

where kp is the number of keystrokes required with
word predictions and ka is the number of keystrokes
required without word prediction.

5.2 Predictive Performance Experiment
We compared our mixture model using cross-
entropy difference selection with three baseline
models trained on all of TWITTER, SWITCHBOARD

and TURKTRAIN. The baseline models were un-
pruned 4-gram models trained using interpolated
modified Kneser-Ney smoothing. They had 72M,
5M, and 129K parameters respectively.

As shown in table 4, our mixture model per-
formed the best on the three most AAC-like test
sets (COMM, SPECIALISTS, and TURKTEST). The
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LM Test set PPL KS
Mixture COMM 47.9 62.5%
Twitter COMM 55.9 60.9%
Switchboard COMM 151.1 54.4%
Turk COMM 165.9 52.7%
Mixture SPECIALISTS 25.7 63.1%
Twitter SPECIALISTS 27.3 61.9%
Switchboard SPECIALISTS 64.5 57.7%
Turk SPECIALISTS 85.9 52.8%
Mixture TURKTEST 31.2 62.0%
Twitter TURKTEST 42.3 59.3%
Switchboard TURKTEST 172.5 50.6%
Turk TURKTEST 51.0 57.6%
Mixture SWITCHTEST 174.3 52.8%
Twitter SWITCHTEST 142.6 54.9%
Switchboard SWITCHTEST 79.2 58.8%
Turk SWITCHTEST 642.5 42.9%

Table 4: Perplexity (PPL) and keystroke savings
(KS) of different language models on four test sets.
The bold line shows the best performing language
model on each test set.

mixture model provided substantial increases in
keystroke savings compared to a model trained
solely on Switchboard. The mixture model also per-
formed better than simply training a model on a
large amount of Twitter data. The model trained on
only 24K words of Turk data did surprisingly well
given its extremely limited training data.

Our Switchboard model performed the best on
SWITCHTEST with a keystroke savings of 58.8%.
For comparison, past work reported a keystroke sav-
ings of 55.7% on SWITCHTEST using a 3-gram
model trained on Switchboard (Trnka et al., 2009).
While our mixture model performed less well on
SWITCHTEST (52.8%), it is likely the other three
test sets better represent AAC communications.

5.3 Larger Mixture Model Experiment
Our mixture language model used the best thresh-
olds with respect to TURKDEV. This resulted in
throwing away most of the training data. This might
be suboptimal in practice if an AAC user’s com-
munications are somewhat different or more diverse
than the language generated by the Turk workers.

We trained a series of mixture models in which
we varied the cross-entropy difference thresholds
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Figure 8: Keystroke savings on mixture models
varying a constant added to the optimal thresholds
with respect to TURKDEV.

by adding a constant to all three thresholds. The
mixture weights for each new model were opti-
mized with respect to TURKDEV. Using somewhat
larger models did improve keystroke savings for all
test sets except for TURKTEST (figure 8). How-
ever, using too large thresholds eventually hurt per-
formance except on SWITCHTEST. Performance
on SWITCHTEST steadily increased from 52.8% to
56.6%. These gains however came at the cost of big-
ger models. The model using +1.0 of the optimal
thresholds had 384M parameters and a compressed
size of 3.0 GB.

6 Discussion

Given the ethical implications of collecting mes-
sages from actual AAC users, it is unlikely that a
large corpus of genuine AAC messages will ever be
available to researchers. An important finding in
this paper is that crowdsourcing can be an effective
way to obtain surrogate data for improving AAC lan-
guage models. Another finding is that Twitter pro-
vides a continuous stream of large amounts of very
AAC-like data. Twitter also has the advantage of al-
lowing models to be continually updated to reflect
current events, new vocabulary, etc.

6.1 Limitations and Implications

We collected data from a large number of workers,
some of whom may have written only a single com-
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munication. This may have resulted in more mes-
sages about simple situations and perceived needs
which could differ from true AAC usage.

Our data does not contain long-term two-sided
conversations. Thus it may not be as useful for eval-
uating techniques that adapt to past messages or that
use the conversation partner’s communications.

We asked workers to imagine they were using
a scanning-style AAC device. We believe this led
workers to presume they would require assistance
in many routine physical tasks. Our workers were
(presumably) without cognitive or language impair-
ments. Thus our collection is more representative
of one subgroup of AAC communicators (scanning
users with normal cognitive function and language
skills). By modifying the situation given to workers,
it is likely we can expand our collection to better rep-
resent other groups of AAC users, such as those us-
ing predictive keyboards or eye-trackers. However,
obtaining data representative of users with cognitive
or language impairments via crowdsourcing would
probably be difficult.

While we were unable to obtain real AAC mes-
sages for testing, we believe the COMM and SPE-
CIALIST test sets provide a good indication of the
real-world potential for our methods. Our collected
Turk data was compared with reported data from ac-
tual AAC users (though this comparison was neces-
sarily coarse-grained). We hope that by releasing
our data and models it may be possible for those
privy to real AAC communications to validate and
report about the techniques described in this paper.

We evaluated our models in terms of perplexity
and keystrokes savings within the auspices of a pre-
dictive keyboard. Further work is needed to inves-
tigate how our numeric gains translate to real-world
benefits to users. However, past work indicates more
accurate predictions do in fact yield improvements
in human performance (Trnka et al., 2009).

Finally, while the predictive keyboard is a com-
monly studied interface, it is not appropriate for all
AAC users. Eye-tracker users may prefer an in-
terface such as Dasher (Ward and MacKay, 2002).
Single-switch users may prefer an interface such as
Nomon (Broderick and MacKay, 2009). Any AAC
interface based on word- or letter-based predictions
stands to benefit from the methods described in this
paper.

7 Conclusions

In this paper we have shown how workers’ creativity
on a microtask crowdsourcing market can be used
to create fictional but plausible AAC communica-
tions. We have demonstrated that these messages
model conversational AAC better than the currently
used datasets based on telephone conversations or
newswire text. We used our new crowdsourced
dataset to intelligently select sentences from Twit-
ter, blog and Usenet data.

We compared a variety of different techniques for
intelligent training data selection. We found that
even for our small amount of in-domain data, the
recently proposed cross-entropy difference method
was consistently the best (Moore and Lewis, 2010).
Finally, compared to a model trained only on
Switchboard, our best performing model reduced
perplexity by 60-82% relative on three AAC-like test
sets. This translated to a potential keystroke savings
in a predictive keyboard interface of 5–11%.

In conclusion, we have shown how to create long-
span AAC language models using openly avail-
able resources. Our models significantly outperform
models trained on the commonly used data sources
of telephone transcripts and newswire text. To aid
other researchers, we have publicly released our
crowdsourced AAC collection, word lists and best-
performing models. We hope complementary tech-
niques such as topic modeling and language model
adaptation will provide additive gains to those ob-
tained by training models on large amounts of AAC-
like data. We plan to use our models to design and
test new interfaces that enable faster communication
for AAC users.
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Abstract

The last decade has seen many interesting ap-
plications of Question Answering (QA) tech-
nology. The Jeopardy! quiz show is certainly
one of the most fascinating, from the view-
points of both its broad domain and the com-
plexity of its language. In this paper, we study
kernel methods applied to syntactic/semantic
structures for accurate classification of Jeop-
ardy! definition questions. Our extensive em-
pirical analysis shows that our classification
models largely improve on classifiers based on
word-language models. Such classifiers are
also used in the state-of-the-art QA pipeline
constituting Watson, the IBM Jeopardy! sys-
tem. Our experiments measuring their impact
on Watson show enhancements in QA accu-
racy and a consequent increase in the amount
of money earned in game-based evaluation.

1 Introduction

Question Answering (QA) is an important research
area of Information Retrieval applications, which re-
quires the use of core NLP capabilities, such as syn-
tactic and semantic processing for a more effective
user experience. While the development of most
existing QA systems are driven by organized eval-
uation efforts such as TREC (Voorhees and Dang,
2006), CLEF (Giampiccolo et al., 2007), and NT-
CIR (Sasaki et al., 2007), there exist efforts that
leverage data from popular quiz shows, such as Who
Wants to be a Millionaire (Clarke et al., 2001; Lam
et al., 2003) and Jeopardy! (Ferrucci et al., 2010), to
demonstrate the generality of the technology.

Jeopardy! is a popular quiz show in the US which
has been on the air for 27 years. In each game, three
contestants compete for the opportunity to answer
60 questions in 12 categories of 5 questions each.
Jeopardy! questions cover an incredibly broad do-
main, from science, literature, history, to popular
culture. We are drawn to Jeopardy! as a test bed
for open-domain QA technology due to its broad do-
main, complex language, as well as the emphasis on
accuracy, confidence, and speed during game play.

While the vast majority of Jeopardy! questions
are factoid questions, we find several other types
of questions in the Jeopardy! data, which can ben-
efit from specialized processing in the QA system.
The additional processing in these questions com-
plements that of the factoid questions to achieve im-
proved overall QA performance. Among the various
types of questions handled by the system are defini-
tion questions shown in the examples below:

(1) GON TOMORROW: It can be the basket
below a hot-air balloon or a flat-bottomed
boat used on a canal (answer: gondola);

(2) I LOVE YOU, “MIN”: Overbearing (an-
swer: domineering);

(3) INVEST: From the Latin for “year”, it’s
an investment or retirement fund that pays
out yearly (answer: an annuity)

where the upper case text indicates the Jeop-
ardy! category for each question1.

Several characteristics of this class of questions
warrant special processing: first, the clue (question)

1A Jeopardy! category indicates a theme is common among
its 5 questions.
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often aligns well with dictionary entries, making
dictionary resources potentially effective. Second,
these clues often do not indicate an answer type,
which is an important feature for identifying cor-
rect answers in factoid questions (in the examples
above, only (3) provided an answer type, “fund”).
Third, definition questions are typically shorter in
length than the average factoid question. These dif-
ferences, namely the shorter clue length and the lack
of answer types, make the use of a specialized ma-
chine learning model potentially promising for im-
proving the overall system accuracy. The first step
for handling definitions is, of course, the automatic
separation of definitions from other question types,
which is not a simple task in the Jeopardy! domain.
For instance, consider the following example which
is a variation of (3) above:

(4) INVEST: From the Latin for “year”,
an annuity is an investment or retirement
fund that pays out this often (answer:
yearly)

Even though the clue is nearly identical to (3), the
clue does not provide a definition for the answer
yearly, although at first glance we may have been
misled. The source of complexity is given by the fact
that Jeopardy! clues are not phrased in interrogative
form as questions typically are. This complicates the
design of definition classifiers since we cannot di-
rectly use either typical structural patterns that char-
acterize definition/description questions, or previous
approaches, e.g. (Ahn et al., 2004; Kaisser and Web-
ber, 2007; Blunsom et al., 2006). Given the com-
plexity and the novelty of the task, we found it use-
ful to exploit the kernel methods technology. This
has shown state-of-the-art performance in Question
Classification (QC), e.g. (Zhang and Lee, 2003;
Suzuki et al., 2003; Moschitti et al., 2007) and it
is very well suited for engineering feature represen-
tations for novel tasks.

In this paper, we apply SVMs and kernel meth-
ods to syntactic/semantic structures for modeling
accurate classification of Jeopardy! definition ques-
tions. For this purpose, we use several levels of lin-
guistic information: word and POS tag sequences,
dependency, constituency and predicate argument
structures and we combined them using state-of-
the-art structural kernels, e.g. (Collins and Duffy,

2002; Shawe-Taylor and Cristianini, 2004; Mos-
chitti, 2006). The extensive empirical analysis of
several advanced models shows that our best model,
which combines different kernels, improves the F1
of our baseline model by 67% relative, from 40.37
to 67.48. Surprisingly, with respect to previous find-
ings on standard QC, e.g. (Zhang and Lee, 2003;
Moschitti, 2006), the Syntactic Tree Kernel (Collins
and Duffy, 2002) is not effective whereas the ex-
ploitation of partial tree patterns proves to be es-
sential. This is due to the different nature of Jeop-
ardy! questions, which are not expressed in the usual
interrogative form.

To demonstrate the benefit of our question clas-
sifier, we integrated it into our Watson by coupling
it with search and candidate generation against spe-
cialized dictionary resources. We show that in end-
to-end evaluations, Watson with kernel-based defi-
nition classification and specialized definition ques-
tion processing achieves statistically significant im-
provement compared to our baseline systems.

In the reminder of this paper, Section 2 describes
Watson by focusing on the problem of definition
question classification, Section 3 describes our mod-
els for such classifiers, Section 4 presents our exper-
iments on QC, whereas Section 5 shows the final im-
pact on Watson. Finally, Section 6 discusses related
work and Section 7 derives the conclusions.

2 Watson: The IBM Jeopardy! System

This section gives a quick overview of Watson and
the problem of classification of definition questions,
which is the focus of this paper.

2.1 Overview

Watson is a massively parallel probabilistic
evidence-based architecture for QA (Ferrucci et
al., 2010). It consists of several major stages for
underlying sub-tasks, including analysis of the
question, retrieval of relevant content, scoring and
ranking of candidate answers, as depicted in Figure
1. In the rest of this section, we provide an overview
of Watson, focusing on the task of answering
definitional questions.
Question Analysis: The first stage of the pipeline,
it applies several analytic components to identify
key characteristics of the question (such as answer
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Figure 1: Overview of Watson

type, question classes, etc.) used by later stages of
the Watson pipeline. Various general purpose NLP
components, such as a parser and named entity de-
tector, are combined with task-specific modules for
this analysis.

The task-specific analytics include several QC
components, which determine if the question be-
longs to one or more broad “question classes”.
These question classes can influence later stages of
the Watson pipeline. For instance, a question de-
tected as an abbreviation question can invoke spe-
cialized candidate generators to produce possible ex-
pansions of the abbreviated term in the clue. Simi-
larly, the question classes can impact the methods
for answer scoring and the machine learning mod-
els used for ranking candidate answers. The focus
of this paper is on the definition class, which is de-
scribed in the next section.

Hypothesis Generation: Following question anal-
ysis, the Watson pipeline searches its document col-
lection for relevant documents and passages that are
likely to contain the correct answer to the question.
This stage of the pipeline generates search queries
based on question analysis results, and obtains a
ranked list of documents and passages most relevant
to the search queries. A variety of candidate gen-
eration techniques are then applied to the retrieved
results to produce a set of candidate answers.

Information obtained from question analysis can
be used to influence the search and candidate gener-
ation processes. The question classes detected dur-
ing question analysis can focus the search towards
specific subsets of the corpus. Similarly, during can-
didate generation, strategies used to generate the set

of candidate answers are selected based on the de-
tected question classes.
Hypothesis and Evidence Scoring: A wide variety
of answer scorers are then used to gather evidence
supporting each candidate answer as the correct an-
swer to the given question. The scorers include both
context dependent as well as context independent
scorers, relying on various structured and unstruc-
tured resources for their supporting evidence.
Candidate Ranking: Finally, machine learning
models are used to weigh the gathered evidence and
rank the candidate answers. The models generate a
ranked list of answers each with an associated con-
fidence. The system can also choose to refrain from
answering a question if it has low confidence in all
candidates. This stage of the pipeline employs sev-
eral machine learning models specially trained to
handle various types of questions. These models are
trained using selected feature sets based on question
classes and candidate answers are “routed” to the
appropriate model according to the question classes
detected during question analysis.

2.2 Answering Definition Questions
Among the many question classes that Watson iden-
tifies and leverages for special processing, of partic-
ular interest for this paper is the class we refer to
as definition questions. These are questions whose
clue texts contain one or more definitions of the cor-
rect answer. For instance, in example (3), the main
clause in the question corresponds to a dictionary
definition of the correct answer (annuity). Looking
up this definition in dictionary resources could en-
able us to answer this question correctly and with
high confidence. This suggests that special process-
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ing of such definition questions could allow us to
hone in on the correct answer through processes dif-
ferent from those used for other types of questions.

This paper explores strategies for definition ques-
tion processing to improve overall question answer-
ing performance. A key challenge we have to ad-
dress is that of accurate recognition of such ques-
tions. Given an input question the Watson question
analysis stage uses a definition question recognizer
to detect this specific class of questions. We explore
several approaches for recognition, including a rule
based approach and a variety of statistical models.

Questions that are recognized as definition ques-
tions invoke search processes targeted towards
dictionary-like sources in our system. We use a va-
riety of such sources, such as standard English dic-
tionaries, Wiktionary, WordNet, etc. After gather-
ing supporting evidence for candidate answers ex-
tracted from these sources, our system routes the
candidates to definition-specific candidate ranking
models, which have been trained with selected fea-
ture sets.

The following sections present a description and
evaluation of our approach for identifying and an-
swering definition questions.

3 Kernel Models for Question
Classification

Previous work (Zhang and Lee, 2003; Suzuki et al.,
2003; Blunsom et al., 2006; Moschitti et al., 2007)
as shown that syntactic structures are essential for
QC. Given the novelty of both the domain and the
type of our classification items, we rely on kernel
methods to study and design effective representa-
tions. Indeed, these are excellent tools for auto-
matic feature engineering, especially for unknown
tasks and domains. Our approach consists of using
SVMs and kernels for structured data applied to sev-
eral types of structural lexical, syntactic and shallow
semantic information.

3.1 Tree and Sequence Kernels

Kernel functions are implicit scalar products be-
tween data examples (i.e. questions in our case)
in the very high dimensional space of substructures,
where each of the latter is a component of the im-
plicit vectors associated with the examples.
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Figure 3: Dependency Tree
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Figure 4: A tree encoding a Predicate Argument Structure Set

Although several kernels for structured data have
been developed (see Section 6), the main distinc-
tions in terms of feature spaces is given by the fol-
lowing three different kernels:
• Sequence Kernels (SK); we implemented the
discontinuous string kernels described in (Shawe-
Taylor and Cristianini, 2004). This allows for rep-
resenting a string of symbols in terms of its possi-
ble substrings with gaps, i.e. an arbitrary number of
symbols can be skipped during the generation of a
substring. The symbols we used in the sequential de-
scriptions of questions are words and part-of-speech
tags (in two separate sequences). Consequently, all
possible multiwords with gaps are features of the im-
plicitly generated vector space.
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• Syntactic Tree Kernel (STK) (Collins and Duffy,
2002) applied to constituency parse trees. This gen-
erates all possible tree fragments as features with
the conditions that sibling nodes from the original
trees cannot be separated. In other words, substruc-
tures are composed by atomic building blocks cor-
responding to nodes along with all their direct chil-
dren. These, in case of a syntactic parse tree, are
complete production rules of the associated parser
grammar2.
• Partial Tree Kernel (PTK) (Moschitti, 2006) ap-
plied to both constituency and dependency parse
trees. This generates all possible tree fragments, as
above, but sibling nodes can be separated (so they
can be part of different tree fragments). In other
words, a fragment is any possible tree path, from
whose nodes other tree paths can depart. Conse-
quently, an extremely rich feature space is gener-
ated. Of course, PTK subsumes STK but sometimes
the latter provides more effective solutions as the
number of irrelevant features is smaller as well.
When applied to sequences and tree structures, the
kernels discussed above produce many different
kinds of features. Therefore, the design of appro-
priate syntactic/semantic structures determines the
representational power of the kernels. Hereafter, we
show the models we used.

3.2 Syntactic Semantic Structures

We applied the above kernels to different structures.
These can be divided in sequences of words (WS)
and part of speech tags (PS) and different kinds of
trees. For example, given the non-definition Jeop-
ardy! question:

(5) GENERAL SCIENCE: When hit by elec-
trons, a phosphor gives off electromag-
netic energy in this form. (answer: light
or photons),

we use the following sequences:

WS: [when][hit][by][electrons][,][a][phosphor][gives]
[off][electromagnetic][energy][in][this][form]

PS: [wrb][vbn][in][nns][,][dt][nn][vbz][rp][jj][nn][in]
[dt][nn]

Additionally, we use constituency trees (CTs), see

2From here the name syntactic tree kernels

Figure 2 and dependency structures converted into
the dependency trees (DTs), e.g. shown in Figure
3. Note that, the POS-tags are central nodes, the
grammatical relation label is added as a father
node and all the relations with the other nodes are
described by means of the connecting edges. Words
are considered additional children of the POS-tag
nodes (in this case the connecting edge just serves
to add a lexical feature to the target POS-tag node).

Finally, we also use predicate argument structures
generated by verbal and nominal relations accord-
ing to PropBank (Palmer et al., 2005) and NomBank
(Meyers et al., 2004). Given the target sentence, the
set of its predicates are extracted and converted into
a forest, then a fake root node, PAS, is used to con-
nect these trees. For example, Figure 4 illustrates a
Predicate Argument Structures Set (PASS) encoding
two relations, give and hit, as well as the nominaliza-
tion energy along with all their arguments.

4 Experiments on Definition Question
Classification

In these experiments, we study the role of kernel
technology for the design of accurate classification
of definition questions. We build several classifiers
based on SVMs and kernel methods. Each classi-
fier uses advanced syntactic/semantic structural fea-
tures and their combination. We carry out an exten-
sive comparison in terms of F1 between the different
models on the Jeopardy! datasets.

4.1 Experimental Setup
Corpus: the data for our QC experiments consists
of a randomly selected set of 33 Jeopardy! games3.
These questions were manually annotated based on
whether or not they are considered definitional. This
resulted in 306 definition and 4964 non-definition
clues. Each test set is stored in a separate file con-
sisting of one line per question, which contains tab-
separated clue information and the Jeopardy! cate-
gory, e.g. INVEST in example (4).
Tools: for SVM learning, we used the SVMLight-
TK software4, which includes structural kernels in
SVMLight (Joachims, 1999)5. For generating con-

3Past Jeopardy! games can be downloaded from
http://www.j-archive.com.

4Available at http://dit.unitn.it/∼moschitt
5http://svmlight.joachims.org
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stituency trees, we used the Charniak parser (Char-
niak, 2000). We also used the syntactic–semantic
parser by Johansson and Nugues (2008) to gener-
ate dependency trees (Mel’čuk, 1988) and predicate
argument trees according to the PropBank (Palmer
et al., 2005) and NomBank (Meyers et al., 2004)
frameworks.
Baseline Model: the first model that we used as a
baseline is a rule-based classifier (RBC). The RBC
leverages a set of rules that matches against lexical
and syntactic information in the clue to make a bi-
nary decision on whether or not the clue is consid-
ered definitional. The rule set was manually devel-
oped by a human expert, and consists of rules that
attempt to identify roughly 70 different constructs
in the clues. For instance, one of the rules matches
the parse tree structure for ”It’s X or Y”, which will
identify example (1) as a definition question.
Kernel Models: we apply the kernels described
in Section 3 to the structures extracted from Jeop-
ardy! clues. In particular, we design the following
models: BOW, i.e. linear kernel on bag-of-words
from the clues; WSK, PSK and CSK, i.e. SK applied
to the word and POS-tag sequences from the clues,
and the word sequence taken from the question cat-
egories, respectively; STK-CT, i.e. STK applied to
CTs of the clue; PTK-CT and PTK-DT, i.e. PTK
applied to CTs and DTs of the clues, respectively;
PASS, i.e. PTK applied to the Predicate Argument
Structure Set extracted from the clues; and RBC, i.e.
a linear kernel applied to the vector only constituted
by the 1/0 output of RBC.
Learning Setting: there is no particular parameteri-
zation. Since there is an imbalance between positive
and negative examples, we used a Precision/Recall
trade-off parameter in SVM-Light-TK equal to 5.6

Measures: the performance is measured with Pre-
cision, Recall and F1-measure. We estimated them
by means of Leave-One-Out7 (LOO) on the question
set.

4.2 Results and Discussion
Table 1 shows the performance obtained using dif-
ferent kernels (feature spaces) with SVMs. We note

6We have selected 5 as a reasonable value, which kept bal-
anced Precision and Recall on a validation set.

7LOO applied to a corpus ofN instances consists in training
on N − 1 examples and testing on the single held-out example.
This process is repeated for all instances.

Kernel Space Prec. Rec. F1
RBC 28.27 70.59 40.38
BOW 47.67 46.73 47.20
WSK 47.11 50.65 48.82
STK-CT 50.51 32.35 39.44
PTK-CT 47.84 57.84 52.37
PTK-DT 44.81 57.84 50.50
PASS 33.50 21.90 26.49
PSK 39.88 45.10 42.33
CSK 39.07 77.12 51.86

Table 1: Kernel performance using leave-one-out cross-
validation.

that: first, RBC has good Recall but poor Precision.
This is interesting since, on one hand, these results
validate the complexity of the task: in order to cap-
ture the large variability of the positive examples,
the rules developed by a skilled human designer are
unable to be sufficiently precise to limit the recog-
nition to those examples. On the other hand, RBC,
being a rather different approach from SVMs, can be
successfully exploited in a joint model with them.

Second, BOW yields better F1 than RBC but it
does not generalize well since its F1 is still low.
When n-grams are also added to the model by
means of WSK, the F1 improves by about 1.5 ab-
solute points. As already shown in (Zhang and Lee,
2003; Moschitti et al., 2007), syntactic structures are
needed to improve generalization.

Third, surprisingly with respect to previous work,
STK applied to CT8 provides accuracy lower than
BOW, about 8 absolute points. The reason is due to
the different nature of the Jeopardy! questions: large
syntactic variability reduces the probability of find-
ing general and well formed patterns, i.e. structures
generated by entire production rules. This suggests
that PTK, which can capture patterns derived from
partial production rules, can be more effective. In-
deed, PTK-CT achieves the highest F1, outperform-
ing WSK also when used with a different syntactic
paradigm, i.e. PTK-DT.

Next, PSK and PASS provide a lower accuracy
but they may be useful in kernel combinations as
they can complement the information captured by
the other models. Interestingly, CSK alone is rather
effective for classifying definition questions. We be-

8Applying it to DT does not make much sense as already
pointed out in (Moschitti, 2006).
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Figure 5: Similarity according to PTK and STK

lieve this is because definition questions are some-
times clustered into categories such as 4-LETTER

WORDS or BEGINS WITH ”B”.
Moreover, we carried out qualitative error analy-

sis on the PTK and STK outcome, which supported
our initial hypothesis. Let us consider the bottom
tree in Figure 5 in the training set. The top tree is
a test example correctly classified by PTK but in-
correctly classified by STK. The dashed line in the
top tree contains the largest subtree matched by PTK
(against the bottom tree), whereas the dashed line in
the bottom tree indicates the largest subtree matched
by STK (against the top tree). As the figure shows,
PTK can exploit a larger number of partial patterns.

Finally, the above points suggest that different
kernels produce complementary information. It is
thus promising to experiment with their combina-
tions. The joint models can be simply built by
summing kernel functions together. The results are
shown in Table 2. We note that: (i) CSK comple-
ments the WSK information, achieving a substan-
tially better result, i.e. 62.95; (ii) PTK-CT+CSK
performs even better than WSK+CSK (as PTK out-
performs WSK); and (iii) adding RBC improves
further on the above combinations, i.e. 68.11 and
67.32, respectively. This evidently demonstrates
that RBC captures complementary information. Fi-
nally, more complex kernels, especially the overall
kernel summation, do not seem to improve the per-

Kernel Space Prec. Rec. F1
WSK+CSK 70.00 57.19 62.95
PTK-CT+CSK 69.43 60.13 64.45
PTK-CT+WSK+CSK 68.59 62.09 65.18
CSK+RBC 47.80 74.51 58.23
PTK-CT+CSK+RBC 59.33 74.84 65.79
BOW+CSK+RBC 60.65 73.53 66.47
PTK-CT+WSK+CSK+RBC 67.66 66.99 67.32
PTK-CT+PASS+CSK+RBC 62.46 71.24 66.56
WSK+CSK+RBC 69.26 66.99 68.11
ALL 61.42 67.65 64.38

Table 2: Performance of Kernel Combinations using
leave-one-out cross-validation.

formance. This is also confirmed by the PASS re-
sults derived in (Moschitti et al., 2007) on TREC
QC.

5 Experiments on the Jeopardy System

Since the kernel-based classifiers perform substan-
tially better than RBC, we incorporate the PTK-
CT+WSK+CSK model9 into Watson for definition
classification and evaluated the QA performance
against two baseline systems. For the end-to-end ex-
periments, we used Watson’s English Slot Grammar
parser (McCord, 1980) to generate the constituency
trees. The component level evaluation shows that
we achieved comparable performance as previously
discussed with ESG.

5.1 Experimental Setup

We integrated the classifier into the question analy-
sis module, and incorporated additional components
to search against dictionary resources and extract
candidate answers from these search results when a
question is classified as definitional. In the final ma-
chine learning models, a separate model is trained
for definition questions to enable scoring tailored to
the specific characteristics of those questions.

Based on our manually annotated gold standard,
less than 10% of Jeopardy! questions are classified
as definition questions. Due to their relatively low
frequency we conduct two types of evaluations. The
first is definition-only evaluation, in which we apply
our definition question classifier to identify a large

9Since we aim to compare a purely statistical approach to
the rule-based approach, we did not experiment with the model
that uses RBC as a feature in our end-to-end experiments.
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set of definition questions and evaluate the end-to-
end system’s performance on this large set of ques-
tions. These results enable us to draw statistically
significant conclusions about our approach to ad-
dressing definition questions.

The second type of evaluation is game-based
evaluation, which assesses the impact of our defi-
nition question processing on Watson performance
while preserving the natural distribution of these
question types in Jeopardy! data. Game-based eval-
uations situate the system’s performance on defini-
tion questions relative to other types of questions,
and enable us to gauge the component’s contribu-
tions in a game-based setting.

For both evaluation settings, three configurations
of Watson are used as follows:

• the NoDef system, in which Watson is config-
ured without definition classification and pro-
cessing, thereby treating all definition ques-
tions as regular factoid questions;

• the StatDef system, which leverages the sta-
tistical classifier and subsequent definition spe-
cific search and candidate generation compo-
nents as described above; and

• the RuleDef system, in which Watson adopts
RBC and employs the same additional defini-
tion search and candidate generation compo-
nents as the StatDef system.

For the definition-only evaluation, we selected all
questions recognized as definitional by the statistical
classifier from roughly 1000 unseen games (60000
questions), resulting in a test set of 1606 questions.
Due to the size of the initial set, it is impractical to
manually create a gold standard for measuring Pre-
cision and Recall of the classifier. Instead, we com-
pare the StatDef system against the NoDef on these
1606 questions using two metrics: accuracy, defined
as the percentage of questions correctly answered,
and p@70, the system’s Precision when answering
only the top 70% most confident questions. P@70 is
an important metric in Jeopardy! game play as well
as in real world applications where the system may
refrain from answering a question when it is not con-
fident about any of its answers. Since RBC identifies
significantly more definition questions, we started

NoDef StatDef NoDef RuleDef
# Questions 1606 1606 1875 1875
Accuracy 63.76% 65.57% 56.64% 57.51%
P@70 82.22% 84.53% 72.73% 74.87%

Table 3: Definition-Only Evaluation Results

with an initial set of roughly 300 games, from which
the RBC identified 1875 questions as definitional.
We compared the RuleDef system’s performance on
these questions against the NoDef baseline using the
accuracy and p@70 metrics.

For the game-based evaluation, we randomly se-
lected 66 unseen Jeopardy! games, consisting of
3546 questions after excluding audio/visual ques-
tions.10 We contrast the StatDef system perfor-
mance against that of NoDef and RuleDef along
several dimensions: accuracy and p@70, described
above, as well as earnings, the average amount of
money earned for each game.

5.2 Definition-Only Evaluation

For the definition-only evaluation, we compared the
StatDef system against the NoDef system on a set of
1606 questions that the StatDef system classified as
definitional. The results are shown in the first two
columns in Table 3. To contrast the gain obtained
by the StatDef system against that achieved by the
RuleDef system, we ran the RuleDef system over
the 1875 questions identified as definitional by the
rule-based classifier. We contrast the RuleDef sys-
tem performance with that of the NoDef system, as
shown in the last two columns in Table 3.

Our results show that based on both evaluation
metrics, StatDef improved upon the NoDef baseline
more than RuleDef improved on the same baseline
system. Furthermore, for the accuracy metric where
all samples are paired and independent, the differ-
ence in performance between the StatDef and NoDef
systems is statistically significant at p<0.05, while
that between the RuleDef and NoDef systems is not.

5.3 Game-Based Evaluation

The game-based evaluation was carried out on 66
unseen games (roughly 3500 questions). Of these

10Audio/visual questions are those accompanied by either an
image or an audio clip. The text portions of these questions are
often insufficient for identifying the correct answers.
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# Def Q’s Accuracy P@70 Earnings
NoDef 0 69.71% 86.79% $24,818
RuleDef 480 69.23% 86.31% $24,397
StatDef 131 69.85% 87.19% $25,109

Table 4: Game-Based Evaluation Results

questions, the StatDef system classified 131 of them
as definitional while the RuleDef system identified
480 definition questions. Both systems were com-
pared against the NoDef system using the accuracy,
p@70, and earnings metric computed over all ques-
tions, as shown in Table 4.

Our results show that even though in the
definition-only evaluation both the RuleDef and
StatDef systems outperformed the NoDef baseline,
in our game-based evaluation, the RuleDef system
performed worse than the NoDef baseline. The low-
ered performance is due to the fact that the Preci-
sion of the RBC is much lower than that of the sta-
tistical classifier, and the special definition process-
ing applied to questions that are erroneously clas-
sified as definitional was harmful. Our evaluation
of this false positive set showed that its accuracy
dropped by 6% compared to the NoDef system. On
the other hand, the StatDef system outperformed the
two other systems, and its accuracy improvement
upon the RuleDef system is statistically significant
at p<0.05.

6 Related Work
Our paper studies the use of advanced representa-
tion for QC in the Jeopardy! domain. As previously
mentioned Jeopardy! questions are stated as affir-
mative sentences, which are different from the typ-
ical QA questions. For the design of our models,
we have carefully taken into account previous work.
This shows that semantics and syntax are essential
to retrieve precise answers, e.g (Hickl et al., 2006;
Voorhees, 2004; Small et al., 2004).

We focus on definition questions, which typically
require more complex processing than factoid ques-
tions (Blair-Goldensohn et al., 2004; Chen et al.,
2006; Shen and Lapata, 2007; Bilotti et al., 2007;
Moschitti et al., 2007; Surdeanu et al., 2008; Echi-
habi and Marcu, 2003). For example, language mod-
els were applied to definitional QA in (Cui et al.,
2005) to learn soft pattern models based on bigrams.
Other related work, such as (Sasaki, 2005; Suzuki

et al., 2002), was also very tied to bag-of-words
features. Predicate argument structures have been
mainly used for reranking (Shen and Lapata, 2007;
Bilotti et al., 2007; Moschitti et al., 2007; Surdeanu
et al., 2008).

Our work and methods are similar to (Zhang and
Lee, 2003; Moschitti et al., 2007), which achieved
the state-of-the-art in QC by applying SVMs along
with STK-CT. The results were derived by experi-
menting with a TREC dataset11(Li and Roth, 2002),
reaching an accuracy of 91.8%. However, such data
refers to typical instances from QA, whose syntactic
patterns can be easily generalized by STK. In con-
trast, we have shown that STK-CT is not effective
for our domain, as it presents very innovative ele-
ments: questions in affirmative and highly variable
format. Thus, we employed new methods such as
PTK, dependency structures, multiple sequence ker-
nels including category information and many com-
binations.

Regarding the use of Kernel Methods, there is
a considerably large body of work in Natural Lan-
guage Processing, e.g. regarding syntactic parsing
(Collins and Duffy, 2002; Kudo et al., 2005; Shen
et al., 2003; Kudo and Matsumoto, 2003; Titov and
Henderson, 2006; Toutanova et al., 2004), named
entity recognition and chunking (Cumby and Roth,
2003; Daumé III and Marcu, 2004), relation extrac-
tion (Zelenko et al., 2002; Culotta and Sorensen,
2004; Bunescu and Mooney, 2005; Zhang et al.,
2005; Bunescu, 2007; Nguyen et al., 2009a), text
categorization (Cancedda et al., 2003), word sense
disambiguation (Gliozzo et al., 2005) and seman-
tic role labeling (SRL), e.g. (Kazama and Torisawa,
2005; Che et al., 2006a; Moschitti et al., 2008).

However, ours is the first study on the use of sev-
eral combinations of kernels applied to several struc-
tures on very complex data from the Jeopardy! do-
main.

7 Final Remarks and Conclusion
In this paper we have experimented with advanced
structural kernels applied to several kinds of syntac-
tic/semantic linguistic structures for the classifica-
tion of questions in a new application domain, i.e.
Jeopardy!. Our findings are summarized hereafter:

11Available at http://cogcomp.cs.illinois.
edu/Data/QA/QC/
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First, it should be noted that basic kernels, such
as STK, PTK and SK, when applied to new repre-
sentations, i.e. syntactic/semantic structures, con-
stitute new kernels. Thus structural representations
play a major role and, from this perspective, our pa-
per makes a significant contribution.

Second, the experimental results show that the
higher variability of Jeopardy! questions prevents us
from achieving generalization with typical syntactic
patterns even if they are derived by powerful meth-
ods such as STK. In contrast, partial patterns, such
as those provided by PTK applied to constituency
(or dependency) trees, prove to be effective.

In particular, STK has been considered as the best
kernel for exploiting syntactic information in con-
stituency trees, e.g. it is state-of-the-art in: QC
(Zhang and Lee, 2003; Moschitti et al., 2007; Mos-
chitti, 2008); SRL, (Moschitti et al., 2008; Mos-
chitti et al., 2005; Che et al., 2006b); pronominal
coreference resolution (Yang et al., 2006; Versley
et al., 2008) and Relation Extraction (Zhang et al.,
2006; Nguyen et al., 2009b). We showed that, in
the complex domain of Jeopardy!, STK surprisingly
provides low accuracy whereas PTK is rather ef-
fective and greatly outperforms STK. We have also
provided an explanation of such behavior by means
of error analysis: in contrast with traditional ques-
tion classification, which focuses on basic syntactic
patterns (e.g. ”what”, ”where”, ”who” and ”how”).
Figure 5 shows that PTK captures partial patterns
that are important for more complex questions like
those in Jeopardy!

Third, we derived other interesting findings for
NLP related to this novel domain, e.g.: (i) the im-
pact of dependency trees is similar to the one of
constituency trees. (ii) A simple computational rep-
resentation of shallow semantics, i.e. PASS (Mos-
chitti, 2008), does not work in Jeopardy!. (iii) Se-
quence kernels on category cues, i.e., higher level of
lexical semantics, improve question classification.
(iv) RBC jointly used with statistical approaches is
helpful to tackle the Jeopardy! complexity.

Next, our kernel models improve up to 20 abso-
lute percent points over n-grams based approaches,
reaching a significant accuracy of about 70%. Wat-
son, exploiting such a classifier, improved previ-
ous versions using RBC and no definition classifica-
tion both in definition-only evaluations and in game-

based evaluations.
Finally, we point out that:

• Jeopardy! has a variety of different special ques-
tion types that are handled differently. We focus on
kernel methods for definition question for two rea-
sons. First, their recognition relies heavily on parse
structures and is therefore more amenable to the ap-
proach proposed in the paper than the recognition
of other question types. Second, definition is by far
the most frequent special question type in Jeopardy!;
therefore, we can obtain sufficient data for training
and testing.

• We were unable to address the whole QC prob-
lem using a statistical model due to the lack of suffi-
cient training data for most special question classes.
Furthermore, we focused only on the definition clas-
sification and its impact on system performance due
to space reasons.

• Our RBC has a rather imbalanced trade-off be-
tween Precision and Recall. This may not be the
best operating point, but the optimal point is diffi-
cult to obtain empirically for an RBC, which is a
strong motivation of the work in this paper. We ex-
perimented with tuning the trade-off between Preci-
sion and Recall with the RBC, but since RBC uses
hand-crafted rules and does not have a parameter for
that, ultimately the statistical approach proved more
effective.

In future work, we plan to extend the current re-
search by investigating models capable of exploit-
ing predicate argument structures for question clas-
sification and answer reranking. The use of syntac-
tic/semantic kernels is a promising research direc-
tion (Basili et al., 2005; Bloehdorn and Moschitti,
2007a; Bloehdorn and Moschitti, 2007b). In this
perspective kernel learning is a very interesting re-
search line, considering the complexity of represen-
tation and classification problems in which our ker-
nels operate.
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Abstract

Multiword expressions (MWE), a known nui-

sance for both linguistics and NLP, blur the

lines between syntax and semantics. Previous

work on MWE identification has relied primar-

ily on surface statistics, which perform poorly

for longer MWEs and cannot model discontin-

uous expressions. To address these problems,

we show that even the simplest parsing mod-

els can effectively identify MWEs of arbitrary

length, and that Tree Substitution Grammars

achieve the best results. Our experiments show

a 36.4% F1 absolute improvement for French

over an n-gram surface statistics baseline, cur-

rently the predominant method for MWE iden-

tification. Our models are useful for several

NLP tasks in which MWE pre-grouping has

improved accuracy.

1 Introduction

Multiword expressions (MWE) have long been a

challenge for linguistic theory and NLP. There is

no universally accepted definition of the term, but

MWEs can be characterized as “idiosyncratic inter-

pretations that cross word boundaries (or spaces)”

(Sag et al., 2002) such as traffic light, or as “fre-

quently occurring phrasal units which are subject

to a certain level of semantic opaqueness, or non-

compositionality” (Rayson et al., 2010).

MWEs are often opaque fixed expressions, al-

though the degree to which they are fixed can vary.

Some MWEs do not allow morphosyntactic varia-

tion or internal modification (e.g., in short, but *in

shorter or *in very short). Other MWEs are “semi-

fixed,” meaning that they can be inflected or undergo

internal modification. The type of modification is of-

ten limited, but not predictable, so it is not possible

to enumerate all variants (Table 1).

French English

à terme in the near term

à court terme in the short term

à très court terme in the very short term

à moyen terme in the mediumterm

à long terme in the long term

à très long terme in the very long term

Table 1: Semi-fixed MWEs in French and English. The

French adverb à terme ‘in the end’ can be modified by

a small set of adjectives, and in turn some of these ad-

jectives can be modified by an adverb such as très ‘very’.

Similar restrictions appear in English.

Merging known MWEs into single tokens has

been shown to improve accuracy for a variety of

NLP tasks: dependency parsing (Nivre and Nilsson,

2004), constituency parsing (Arun and Keller, 2005),

sentence generation (Hogan et al., 2007), and ma-

chine translation (Carpuat and Diab, 2010). Most ex-

periments use gold MWE pre-grouping or language-

specific resources like WordNet. For unlabeled text,

the best MWE identification methods, which are

based on surface statistics (Pecina, 2010), suffer

from sparsity induced by longer n-grams (Ramisch

et al., 2010). A dilemma thus exists: MWE knowl-

edge is useful, but MWEs are hard to identify.

In this paper, we show the effectiveness of statis-

tical parsers for MWE identification. Specifically,

Tree Substitution Grammars (TSG) can achieve a

36.4% F1 absolute improvement over a state-of-the-

art surface statistics method. We choose French,

which has pervasive MWEs, for our experiments.

Parsing models naturally accommodate discontinu-

ous MWEs like phrasal verbs, and provide syntac-

tic subcategorization. By contrast, surface statistics

methods are usually limited to binary judgements for

contiguous n-grams or dependency bigrams.
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FTB (train) WSJ (train)

Sentences 13,449 39,832

Tokens 398,248 950,028

#Word Types 28,842 44,389

#Tag Types 30 45

#Phrasal Types 24 27

Per Sentence

Depth (µ/σ2) 4.03 / 0.360 4.18 / 0.730

Breadth (µ/σ2) 13.5 / 6.79 10.7 / 4.59

Length (µ/σ2) 29.6 / 17.3 23.9 / 11.2

Constituents (µ) 20.3 19.6

µ Constituents / µ Length 0.686 0.820

Table 2: Gross corpus statistics for the pre-processed FTB

(training set) and WSJ (sec. 2-21). The FTB sentences are

longer with broader syntactic trees. The FTB POS tag set

has 33% fewer types than the WSJ. The FTB dev set OOV

rate is 17.77% vs. 12.78% for the WSJ.

Type #Total #Single %Single %Total

MWN noun 9,680 2,737 28.3 49.7

MWADV adverb 3,852 449 11.7 19.8

MWP prep. 3,526 342 9.70 18.1

MWC conj. 814 73 8.97 4.18

MWV verb. 585 243 41.5 3.01

MWD det. 328 69 21.0 1.69

MWA adj. 324 126 38.9 1.66

MWPRO pron. 266 33 12.4 1.37

MWCL clitic 59 1 1.69 0.30

MWET foreign 24 18 0.75 0.12

MWI interj. 4 2 0.50 0.02

19,462 4,093 21.0% 100.0%

Table 3: Frequency distribution of the 11 MWE subcate-

gories in the FTB (training set). MWEs account for 7.08%

of the bracketings and 13.0% of the tokens in the treebank.

Only 21% of the MWEs occur once (“single”).

We first introduce a new instantiation of the

French Treebank that, unlike previous work, does not

use gold MWE pre-grouping. Consequently, our ex-

perimental results also provide a better baseline for

parsing raw French text.

2 French Treebank Setup

The corpus used in our experiments is the French

Treebank (Abeillé et al. (2003), version from June

2010, hereafter FTB). In French, there is a linguis-

tic tradition of lexicography which compiles lists

of MWEs occurring in the language. For exam-

ple, Gross (1986) shows that dictionaries contain

about 1,500 single-word adverbs but that French con-

tains over 5,000 multiword adverbs. MWEs occur

in every part-of-speech (POS) category (e.g., noun

trousse de secours ‘first-aid kit’; verb faire main-

basse [do hand-low] ‘seize’; adverb comme dans du

beurre [as in butter] ‘easily’; adjective ‘à part en-

tière’ ‘wholly’).

The FTB explicitly annotates MWEs (also called

compounds in prior work). We used the subset of

the corpus with functional annotations, not for those

annotations but because this subset is known to be

more consistently annotated. POS tags for MWEs

are given not only at the MWE level, but also inter-

nally: most tokens that constitute an MWE also have

a POS tag. Table 2 compares this part of the FTB to

the WSJ portion of the Penn Treebank.

2.1 Preprocessing

The FTB requires significant pre-processing prior to

parsing.

Tokenization We changed the default tokenization

for numbers by fusing adjacent digit tokens. For ex-

ample, 500 000 is tagged as an MWE composed of

two words 500 and 000. We made this 500000 and

retained the MWE POS, although we did not mark

the new token as an MWE. For consistency, we used

one token for punctuated numbers like “17,9”.

MWE Tagging We marked MWEs with a flat

bracketing in which the phrasal label is the MWE-

level POS tag with an “MW” prefix, and the preter-

minals are the internal POS tags for each terminal.

The resulting POS sequences are not always unique

to MWEs: they appear in abundance elsewhere in

the corpus. However, some MWEs contain normally

ungrammatical POS sequences (e.g., adverb à la va

vite ‘in a hurry’: P D V ADV [at the goes quick]), and

some words appear only as part of an MWE, such as

insu in à l’insu de ‘to the ignorance of’.

Labels We augmented the basic FTB label set—

which contains 14 POS tags and 19 phrasal tags—in

two ways. First, we added 16 finer-grained POS tags

for punctuation.1 Second, we added the 11 MWE

1Punctuation tag clusters—as used in the WSJ—did not im-

prove accuracy. Enriched tag sets like that of Crabbé and Can-

dito (2008) could also be investigated and compared to our re-

sults since Evalb is insensitive to POS tags.
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labels shown in Table 3, resulting in 24 total phrasal

categories.

Corrections Historically, the FTB suffered from

annotation errors such as missing POS and phrasal

tags (Arun and Keller, 2005). We found that this

problem has been largely resolved in the current re-

lease. However, 1,949 tokens and 36 MWE spans

still lacked tags. We restored the labels by first as-

signing each token its most frequent POS tag else-

where in the treebank, and then assigning the most

frequent MWE phrasal category for the resulting

POS sequence.2

Split We used the 80/10/10 split described by

Crabbé and Candito (2008). However, they used a

previous release of the treebank with 12,531 trees.

3,391 trees have been added to the present version.

We appended these extra trees to the training set, thus

retaining the same development and test sets.

2.2 Comparison to Prior FTB Representations

Our pre-processing approach is simple and auto-

matic3 unlike the three major instantiations of the

FTB that have been used in previous work:

Arun-Cont and Arun-Exp (Arun and Keller,

2005): Two instantiations of the full 20,000 sentence

treebank that differed principally in their treatment of

MWEs: (1) Cont, in which the tokens of each MWE

were concatenated into a single token (en moyenne

→ en_moyenne); (2) Exp, in which they were marked

with a flat structure. For both representations, they

also gave results in which coordinated phrase struc-

tures were flattened. In the published experiments,

they mistakenly removed half of the corpus, believ-

ing that the multi-terminal (per POS tag) annotations

of MWEs were XML errors (Schluter and Genabith,

2007).

MFT (Schluter and Genabith, 2007): Manual revi-

sion to 3,800 sentences. Major changes included co-

ordination raising, an expanded POS tag set, and the

273 of the unlabeled word types did not appear elsewhere

in the treebank. All but 11 of these were nouns. We manually

assigned the correct tags, but we would not expect a negative

effect by deterministically labeling all of them as nouns.
3We automate tree manipulation with Tregex/Tsurgeon

(Levy and Andrew, 2006). Our pre-processing package is avail-

able at http://nlp.stanford.edu/software/lex-parser.shtml.

correction of annotation errors. Like Arun-Cont,

MFT contains concatenated MWEs.

FTB-UC (Candito and Crabbé, 2009): An in-

stantiation of the functionally annotated section that

makes a distinction between MWEs that are “syn-

tactically regular” and those that are not. Syntacti-

cally regular MWEs were given internal structure,

while all other MWEs were concatenated into sin-

gle tokens. For example, nouns followed by ad-

jectives, such as loi agraire ‘land law’ or Union

monétaire et économique ‘monetary and economic

Union’ were considered syntactically regular. They

are MWEs because the choice of adjective is arbi-

trary (loi agraire and not *loi agricole, similarly to

‘coal black’ but not *‘crow black’ for example), but

their syntactic structure is not intrinsic to MWEs.

In such cases, FTB-UC gives the MWE a conven-

tional analysis of an NP with internal structure. Such

analysis is indeed sufficient to recover the mean-

ing of these semantically compositional MWEs that

are extremely productive. On the other hand, the

FTB-UC loses information about MWEs with non-

compositional semantics.

Almost all work on the FTB has followed Arun-

Cont and used gold MWE pre-grouping. As a result,

most results for French parsing are analogous to early

results for Chinese, which used gold word segmen-

tation, and Arabic, which used gold clitic segmenta-

tion. Candito et al. (2010) were the first to acknowl-

edge and address this issue, but they still used FTB-

UC (with some pre-grouped MWEs). Since the syn-

tax and definition of MWEs is a contentious issue,

we take a more agnostic view—which is consistent

with that of the FTB annotators—and leave them to-

kenized. This permits a data-oriented approach to

MWE identification that is more robust to changes

to the status of specific MWE instances.

To set a baseline prior to grammar development,

we trained the Stanford parser (Klein and Manning,

2003) with no grammar features, achieving 74.2%

labeled F1 on the development set (sentences ≤ 40

words). This is lower than the most recent results ob-

tained by Seddah (2010). However, the results are

not comparable: the data split was different, they

made use of morphological information, and more

importantly they concatenated MWEs. The focus of
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our work is on models and data representations that

enable MWE identification.

3 MWEs in Lexicon-Grammar

The MWE representation in the FTB is close to

the one proposed in the Lexicon-Grammar (Gross,

1986). In the Lexicon-Grammar, MWEs are classi-

fied according to their global POS tags (noun, verb,

adverb, adjective), and described in terms of the se-

quence of the POS tags of the words that constitute

the MWE (e.g., “N de N” garde d’enfant [guard of

child] ‘daycare’, pied de guerre [foot of war] ‘at the

ready’). In other words, MWEs are represented by a

flat structure. The Lexicon-Grammar distinguishes

between units that are fixed and have to appear as is

(en tout et pour tout [in all and for all] ‘in total’) and

units that accept some syntactic variation such as ad-

mitting the insertion of an adverb or adjective, or the

variation of one of the words in the expression (e.g.,

a possessive as in ‘from the top of one’s hat’). It also

notes whether the MWE displays some selectional

preferences (e.g., it has to be preceded by a verb or

by an adjective).

Our FTB instantiation is largely consistent with

the Lexicon-Grammar. Recall that we defined differ-

ent MWE categories based on the global POS. We

now detail three of the categories.

MWN The MWN category consists of proper

nouns (1a), foreign common nouns (1b), as well as

common nouns. The common nouns appear in sev-

eral syntactically regular sequences of POS tags (2).

Multiword nouns allow inflection (singular vs. plu-

ral) but no insertion.

(1) a. London Sunday Times, Los Angeles

b. week - end, mea culpa, joint - venture

(2) a. N A: corps médical ‘medical staff’, dette

publique ‘public debt’

b. N P N: mode d’emploi ‘instruction man-

ual’

c. N N: numéro deux ‘number two’, mai-

son mère [house mother] ‘headquarters’,

grève surprise ‘sudden strike’

d. N P D N: impôt sur le revenu ‘income

tax’, ministre de l’économie ‘finance

minister’

MWA Multiword adjectives appear with different

POS sequences (3). They include numbers such as

vingt et unième ‘21st’. Some items in (3b) allow in-

ternal variation: some adverbs or adjectives can be

added to both examples given (à très haut risque, de

toute dernière minute).

(3) a. P N: d’antan [from before] ‘old’, en

question ‘under discussion’

b. P A N: à haut risque ‘high-risk’, de

dernière minute [from the last minute]

‘at the eleventh hour’

c. A C A: pur et simple [pure and simple]

‘straightforward’, noir et blanc ‘black

and white’

MWV Multiword verbs also appear in several POS

sequences (4). All verbs allow number and tense in-

flections. Some MWVs containing a noun or an ad-

jective allow the insertion of a modifier (e.g., don-

ner grande satisfication ‘give great satisfaction’),

whereas others do not. When an adverb intervenes

between the main verb and its complement, the FTB

marks the two parts of the MWV discontinuously

(e.g., [MWV [V prennent]] [ADV déjà] [MWV [P en] [N

cause]] ‘already take into account’).

(4) a. V N: avoir lieu ‘take place’, donner sat-

isfaction ‘give satisfaction’

b. V P N: mettre en place ‘put in place’,

entrer en vigueur ‘to come into effect’

c. V P ADV: mettre à mal [put at bad]

‘harm’, être à même [be at same] ‘be

able’

d. V D N P N: tirer la sonnette d’alarme

‘ring the alarm bell’, avoir le vent en

poupe ‘to have the wind astern’

4 Parsing Models

We develop two parsers for French with the goal

of improving MWE identification. The first is a

manually-annotated grammar that we incorporate

into the Stanford parser. Manual annotation results in

human interpretable grammars that can inform future

treebank annotation decisions. Moreover, the gram-

mar can be used as the base distribution in our sec-

ond model, a Probabilistic Tree Substitution Gram-

mar (PTSG) parser. PTSGs learn parameters for tree
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Feature States Tags F1 ∆F1

— 4325 31 74.21

tagPA 4509 215 76.94 +2.73

markInf 4510 216 77.42 +0.48

markPart 4511 217 77.73 +0.31

markVN 5986 217 78.32 +0.59

markCoord 7361 217 78.45 +0.13

markDe 7521 233 79.11 +0.66

markP 7523 235 79.34 +0.23

markMWE 7867 235 79.23 −0.11

Table 4: Effects on grammar size and labeled F1 for each

of the manual state splits (development set, sentences ≤
40 words). markMWE decreases overall accuracy, but

increases both the number of correctly parsed trees (by

0.30%) and per category MWE accuracy.

fragments larger than basic CFG rules. PTSG rules

may also be lexicalized. This means that commonly

observed collocations—some of which are MWEs—

can be stored in the grammar.

4.1 Stanford Parser

We configure the Stanford parser with settings that

are effective for other languages: selective parent an-

notation, lexicon smoothing, and factored parsing.

We use the head-finding rules of Dybro-Johansen

(2004), which we find to yield an approximately

1.0% F1 development set improvement over those of

Arun (2004). Finally, we include a simple unknown

word model consisting entirely of surface features:

- Nominal, adjectival, verbal, adverbial, and plu-

ral suffixes

- Contains a digit or punctuation

- Is capitalized (except the first word in a sen-

tence)

- Consists entirely of capital letters

- If none of the above, add a one- or two-character

suffix

Combined with the grammar features, this unknown

word model yields 97.3% tagging accuracy on the

development set.

4.1.1 Grammar Development

Table 4 lists the symbol refinements used in our

grammar. Most of the features are POS splits as

many phrasal tag splits did not lead to any improve-

ment. Parent annotation of POS tags (tagPA) cap-

tures information about the external context. mark-

Inf and markPart accomplish a finite/nonfinite dis-

tinction: they respectively specify whether the verb

is an infinitive or a participle based on the type of

the grandparent node. markVN captures the notion

of verbal distance as in Klein and Manning (2003).

We opted to keep the COORD phrasal tag, and

to capture parallelism in coordination, we mark CO-

ORD with the type of its child (NP, AP, VPinf, etc.).

markDe identifies the preposition de and its variants

(du, des, d’) which is very frequent and appears in

several different contexts. markP identifies preposi-

tions which introduce PPs modifying a noun. Mark-

ing other kinds of prepositional modifiers (e.g., verb)

did not help. markMWE adds an annotation to sev-

eral MWE categories for frequently occuring POS

sequences. For example, we mark MWNs that occur

more than 600 times (e.g., “N P N” and “N N”).

4.2 DP-TSG Parser

A shortcoming of CFG-based grammars is that they

do not explicitly capture idiomatic usage. For exam-

ple, consider the two utterances:

(5) a. He [MWV kicked the bucket] .

b. He [VP kicked [NP the pail]] .

The examples in (5) may be equally probable and re-

ceive the same analysis under a PCFG; words are

generated independently. However, recall that in

our representation, (5a) should receive a flat analysis

as MWV, whereas (5b) should have a conventional

analysis of the verb kicked and its two arguments.

An alternate view of parsing is one in which new

utterances are built from previously observed frag-

ments. This is the original motivation for data ori-

ented parsing (DOP) (Bod, 1992), in which “id-

iomaticity is the rule rather than the exception”

(Scha, 1990). If we have seen the collocation kicked

the bucket several times before, we should store that

whole fragment for later use.

We consider a variant of the non-parametric PTSG

model of Cohn et al. (2009) in which tree fragments

are drawn from a Dirichlet process (DP) prior.4

The DP-TSG can be viewed as a DOP model with

Bayesian parameter estimation. A PTSG is a 5-tuple

〈V, Σ, R, ♦, θ〉 where c ∈ V are non-terminals;

4Similar models were developed independently by

O’Donnell et al. (2009) and Post and Gildea (2009).
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αc DP concentration parameter for each c ∈ V
P0(e|c) CFG base distribution

x Set of non-terminal nodes in the treebank

S Set of sampling sites (one for each x ∈ x)

S A block of sampling sites, where S ⊆ S
b = {bs}s∈S Binary variables to be sampled (bs = 1 →

frontier node)

z Latent state of the segmented treebank

m Number of sites s ∈ S s.t. bS = 1
n = {nc,e} Sufficient statistics of z
∆nS:m Change in counts by setting m sites in S

Table 5: DP-TSG model notation. For consistency, we

largely follow the notation of Liang et al. (2010). Note

that z = (b, x), and as such z = 〈c, e〉.

t ∈ Σ are terminals; e ∈ R are elementary trees;5

♦ ∈ V is a unique start symbol; and θc,e ∈ θ are

parameters for each tree fragment. A PTSG deriva-

tion is created by successively applying the substitu-

tion operator to the leftmost frontier node (denoted

by c+). All other nodes are internal (denoted by c−).

In the supervised setting, DP-TSG grammar ex-

traction reduces to a segmentation problem. We have

a treebank T that we segment into the set R, a pro-

cess that we model with Bayes’ rule:

p(R | T ) ∝ p(T | R) p(R) (1)

Since the tree fragments completely specify each

tree, p(T | R) is either 0 or 1, so all work is per-

formed by the prior over the set of elementary trees.

The DP-TSG contains a DP prior for each c ∈ V
(Table 5 defines further notation). We generate 〈c, e〉
tuples as follows:

θc|c, αc, P0(·|c) ∼ DP (αc, P0)

e|θc ∼ θc

The data likelihood is given by the latent state z and

the parameters θ: p(z|θ) =
∏

z∈z θ
nc,e(z)
c,e . Integrat-

ing out the parameters, we have:

p(z) =
∏

c∈V

∏
e(αcP0(e|c))nc,e(z)

α
nc,·(z)
c

(2)

where xn = x(x + 1) . . . (x + n − 1) is the rising

factorial. (§A.1 contains ancillary details.)

Base Distribution The base distribution P0 is the

same maximum likelihood PCFG used in the Stan-
5We use the terms tree fragment and elementary tree inter-

changeably.

NP+

PUNC-(1)

“

N+

Jacques

N-

Chirac

PUNC+(2)

“

Figure 1: Example of two conflicting sites of the same

type. Define the type of a site t(z, s)
def
= (∆ns:0, ∆ns:1).

Sites (1) and (2) above have the same type since t(z, s1) =
t(z, s2). However, the two sites conflict since the prob-

abilities of setting bs1
and bs2

both depend on counts for

the tree fragment rooted at NP. Consequently, sites (1) and

(2) are not exchangeable: the probabilities of their assign-

ments depend on the order in which they are sampled.

ford parser.6,7 After applying the manual state splits,

we perform simple right binarization, collapse unary

rules, and replace rare words with their signatures

(Petrov et al., 2006).

For each non-terminal type c, we learn a stop prob-

ability sc ∼ Beta(1, 1). Under P0, the probability of

generating a rule A+ → B− C+ composed of non-

terminals is

P0(A
+ → B− C+) = pMLE(A → B C)sB(1−sC)

(3)

For lexical insertion rules, we add a penalty propor-

tional to the frequency of the lexical item:

P0(c → t) = pMLE(c → t)p(t) (4)

where p(t) is equal to the MLE unigram probabil-

ity of t in the treebank. Lexicalizing a rule makes it

very specific, so we generally want to avoid lexical-

ization with rare words. Empirically, we found that

this penalty reduces overfitting.

Type-based Inference Algorithm To learn the pa-

rameters θ we use the collapsed, block Gibbs sam-

pler of Liang et al. (2010). We sample binary vari-

ables bs associated with each non-terminal node/site

in the treebank. The key idea is to select a block

of exchangeable sites S of the same type that do not

conflict (Figure 1). Since the sites in S are exchange-

able, we can set bS randomly so long as we know m,

the number of sites with bs = 1. Because this algo-

rithm is a not a contribution of this paper, we refer

the reader to Liang et al. (2010).

6The Stanford parser is a product model, so the results in §5.1

include the contribution of a dependency parser.
7Bansal and Klein (2010) also experimented with symbol re-

finement in an all-fragments (parametric) TSG for English.
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After each Gibbs iteration, we sample each sc di-

rectly using binomial-Beta conjugacy. We re-sample

the DP concentration parameters αc with the auxil-

iary variable procedure of West (1995).

Decoding We compute the rule score of each tree

fragment from a single grammar sample as follows:

θc,e =
nc,e(z) + αcP0(e|c)

nc,·(z) + αc
(5)

To make the grammar more robust, we also include

all CFG rules in P0 with zero counts in n. Scores for

these rules follow from (5) with nc,e(z) = 0.

For decoding, we note that the derivations of a

TSG are a CFG parse forest (Vijay-Shanker and Weir,

1993). As such, we can use a Synchronous Context

Free Grammar (SCFG) to translate the 1-best parse

to its derivation. Consider a unique tree fragment ei

rooted at X with frontier γ, which is a sequence of

terminals and non-terminals. We encode this frag-

ment as an SCFG rule of the form

[X → γ , X → i, Y1, . . . , Yn] (6)

where Y1, . . . , Yn is the sequence of non-terminal

nodes in γ.8 During decoding, the input is re-

written as a sequence of tree fragment (rule) indices

{i, j, k, . . . }. Because the TSG substitution operator

always applies to the leftmost frontier node, we can

deterministically recover the monolingual parse with

top-down re-writes of ♦.

The SCFG formulation has a practical benefit: we

can take advantage of the heavily-optimized SCFG

decoders for machine translation. We use cdec

(Dyer et al., 2010) to recover the Viterbi derivation

under a DP-TSG grammar sample.

5 Experiments

5.1 Standard Parsing Experiments

We evaluate parsing accuracy of the Stanford and

DP-TSG models (Table 6). For comparison, we also

include the Berkeley parser (Petrov et al., 2006).9

For the DP-TSG, we initialized all bs with fair coin

tosses and ran for 400 iterations, after which likeli-

hood stopped improving.

8This formulation is due to Chris Dyer.
9Training settings: right binarization, no parent annotation,

six split-merge cycles, and random initialization.

Leaf Ancestor Evalb

Corpus Sent LP LR F1 EX%

PA-PCFG 0.793 0.812 68.1 67.0 67.6 10.5

DP-TSG 0.823 0.842 75.6 76.0 75.8 15.1

Stanford 0.843 0.861 77.8 79.0 78.4 17.5

Berkeley 0.880 0.891 82.4 82.0 82.2 21.4

Table 6: Standard parsing experiments (test set, sentences

≤ 40 words). All parsers exceed 96% tagging accuracy.

Berkeley and DP-TSG results are the average of three in-

dependent runs.

We report two different parsing metrics. Evalb

is the standard labeled precision/recall metric.10

Leaf Ancestor measures the cost of transforming

guess trees to the reference (Sampson and Babar-

czy, 2003). It was developed in response to the non-

terminal/terminal ratio bias of Evalb, which penal-

izes flat treebanks like the FTB. The range of the

score is between 0 and 1 (higher is better). We report

micro-averaged (whole corpus) and macro-averaged

(per sentence) scores.

In terms of parsing accuracy, the Berkeley parser

exceeds both Stanford and DP-TSG. This is consis-

tent with previous experiments for French by Sed-

dah et al. (2009), who show that the Berkeley parser

outperforms other models. It also matches the or-

dering for English (Cohn et al., 2010; Liang et al.,

2010). However, the standard baseline for TSG mod-

els is a simple parent-annotated PCFG (PA-PCFG).

For English, Liang et al. (2010) showed that a similar

DP-TSG improved over PA-PCFG by 4.2% F1. For

French, our gain is a more substantial 8.2% F1.

5.2 MWE Identification Experiments

Table 7 lists overall and per-category MWE identifi-

cation results for the parsing models. Although DP-

TSG is less accurate as a general parsing model, it is

more effective at identifying MWEs.

The predominant approach to MWE identification

is the combination of lexical association measures

(surface statistics) with a binary classifier (Pecina,

2010). A state-of-the-art, language independent

package that implements this approach for higher

order n-grams is mwetoolkit (Ramisch et al.,

2010).11 In Table 8 we compare DP-TSG to both

10Available at http://nlp.cs.nyu.edu/evalb/ (v.20080701).
11Available at http://multiword.sourceforge.net/. See §A.2 for
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#gold Stanford DP-TSG Berkeley

MWET 3 0.0 0.0 0.0

MWV 26 64.0 57.7 50.7

MWA 8 26.1 32.2 29.8

MWN 456 64.1 67.6 67.1

MWD 15 70.3 65.5 70.1

MWPRO 17 73.7 78.0 76.2

MWADV 220 74.6 72.7 70.4

MWP 162 81.3 80.5 77.7

MWC 47 83.5 83.5 80.8

954 70.1 71.1 69.6

Table 7: MWE identification per category and overall re-

sults (test set, sentences ≤ 40 words). MWI and MWCL

do not occur in the test set.

Model F1

mwetoolkit All 15.4

PA-PCFG 32.6

mwetoolkit Filter 34.7

PA-PCFG+Features 63.1

DP-TSG 71.1

Table 8: MWE identification F1 of the best parsing model

vs. the mwetoolkit baseline (test set, sentences ≤ 40

words). PA-PCFG+Features includes the grammar fea-

tures in Table 4, which is the CFG from which the TSG is

extracted. For mwetoolkit, All indicates the inclusion

of all n-grams in the training corpus. Filter indicates pre-

filtering of the training corpus by removing rare n-grams

(see §A.2 for details).

mwetoolkit and the CFG from the which the TSG

is extracted. The TSG-based parsing model outper-

forms mwetoolkit by 36.4% F1 while providing

syntactic subcategory information.

6 Discussion

Automatic learning methods run the risk of produc-

ing uninterpretable models. However, the DP-TSG

model learns useful generalizations over MWEs. A

sample of the rules is given in Table 9. Some spe-

cific sequences like “[MWN [coup de N]]” are part of

the grammar: such rules can indeed generate quite

a few MWEs, e.g., coup de pied ‘kick’, coup de

coeur, coup de foudre ‘love at first sight’, coup de

main ‘help’, coup d’état, coup de grâce (note that

only some of these MWEs are seen in the training

configuration details.

MWN MWV MWP

sociétés de N sous - V de l’ordre de

prix de N faire N y compris

coup de N V les moyens au N de

N d’état V de N en N de

N de N V en N ADV de

N à N

Table 9: Sample of the TSG rules learned.

MWN

N

tour

P

de

N

passe

-

-

N

passe

(a) Reference

NP

N

tour

PP

P

de

NP

MWN

N

passe

-

-

N

passe

(b) DP-TSG

Figure 2: Example of an MWE error for tour de passe-

passe ‘magic trick’. (dev set)

data). For MWV, “V de N” as in avoir de cesse ‘give

no peace’, perdre de vue [lose from sight] ‘forget’,

prendre de vitesse [take from speed] ‘outpace’), is

learned. For prepositions, the grammar stores full

subtrees of MWPs, but can also generalize the struc-

ture of very frequent sequences: “en N de” occurs in

many multiword prepositions (e.g., en compagnie de,

en face de, en matière de, en terme de, en cours de,

en faveur de, en raison de, en fonction de). The TSG

grammar thus provides a categorization of MWEs

consistent with the Lexicon-Grammar. It also learns

verbal phrases which contain discontinuous MWVs

due to the insertion of an adverb or negation such as

“[VN [MWV va] [MWADV d’ailleurs] [MWV bon train]]”

[go indeed well], “[VN [MWV a] [ADV jamais] [MWV

été question d’]]” [has never been in question].

A significant fraction of errors for MWNs occur

with adjectives that are not recognized as part of the

MWE. For example, since établissements privés ‘pri-

vate corporation’ is unseen in the training data, it is

not found. Sometimes the parser did not recognize

the whole structure of an MWE. Figure 2 shows an

example where the parser only found a subpart of the

MWN tour de passe-passe ‘magic trick’.

Other DP-TSG errors are due to inconsistencies in

the FTB annotation. For example, sous prétexte que
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MWC

P

sous

N

prétexte

C

que

(a) Reference

PP

P

sous

NP

N

prétexte

Ssub

C

que

(b) Reference

Figure 3: Example of an inconsistent FTB annotation for

sous prétexte que ‘on the pretext of’.

‘on the pretext of’ is tagged as both MWC and as a

regular PP structure (Figure 3). However, the parser

always assigns a MWC structure, which is a better

analysis than the gold annotation. We expect that

more consistent annotation would help the DP-TSG

more than the CFG-based parsers.

The DP-TSG is not immune to false positives: in

Le marché national, fait-on remarquer, est enfin en

régression . . . ‘The national economy, people at last

note, is going down’ the parser tags marché national

as MWN. As noted, the boundary of what should and

should not count as an MWE can be fuzzy, and it is

therefore hard to assess whether or not this should be

an MWE. The FTB does not mark it as one.

There are multiple examples were the DP-TSG

found the MWE whereas Stanford (its base distribu-

tion) did not, such as in Figure 4. Note that the “N

P N” structure is quite frequent for MWNs, but the

TSG correctly identifies the MWADV in emplois à

domicile [jobs at home] ‘homeworking’.

7 Related Work

There is a voluminous literature on MWE identi-

fication. Here we review closely related syntax-

based methods.12 The linguistic and computa-

tional attractiveness of lexicalized grammars for

modeling idiosyncratic constructions in French was

identified by Abeillé (1988) and Abeillé and Sch-

abes (1989). They manually developed a small

Tree Adjoining Grammar (TAG) of 1,200 elemen-

tary trees and 4,000 lexical items that included

MWEs. The classic statistical approach to MWE

identification, Xtract (Smadja, 1993), used an in-

12See Seretan (2011) for a comprehensive survey of syntax-

based methods for MWE identification. For an overview of n-

gram methods like mwetoolkit, see Pecina (2010).

MWN

N

campagne

P

de

N

promotion

(a) DP-TSG

NP

N

campagne

PP

P

de

NP

N

promotion

(b) Stanford

NP

N

emplois

MWADV

P

à

N

domicile

(c) DP-TSG

NP

N

emplois

PP

P

à

NP

N

domicile

(d) Stanford

Figure 4: Correct analyses by DP-TSG. (dev set)

cremental parser in the third stage of its pipeline

to identify predicate-argument relationships. Lin

(1999) applied information-theoretic measures to

automatically-extracted dependency relations to find

MWEs. To our knowledge, Wehrli (2000) was the

first to use syntactically annotated corpora to im-

prove a parser for MWE identification. He pro-

posed to rank analyses of a symbolic parser based

on the presence of collocations, although details of

the ranking function were not provided.

The most similar work to ours is that of Nivre

and Nilsson (2004), who converted a Swedish cor-

pus into two versions: one in which MWEs were

left as tokens, and one in which they were merged.

On the first version, they showed that a deterministic

dependency parser could identify MWEs at 71.1%

F1, albeit without subcategory information. On

the second version—which simulated perfect MWE

identification—they showed that labeled attachment

improved by about 1%.

Recent statistical parsing work on French has in-

cluded Stochastic Tree Insertion Grammars (STIGs),

which are related to TAGs, but with a restricted ad-

junction operation.13 Seddah et al. (2009) and Sed-

dah (2010) showed that STIGs underperform CFG-

based parsers on the FTB. In their experiments,

MWEs were concatenated.

13TSGs differ from TAGs and STIGs in that they do not in-

clude an adjunction operator.
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8 Conclusion

The main result of this paper is that an existing sta-

tistical parser can achieve a 36.4% F1 absolute im-

provement for MWE identification over a state-of-

the-art n-gram surface statistics package. Parsers

also provide syntactic subcategorization, and do not

require pre-filtering of the training data. We have

also demonstrated that TSGs can capture idiomatic

usage better than a PCFG. While the DP-TSG, which

is a relatively new parsing model, still lags state-of-

the-art parsers in terms of overall labeling accuracy,

we have shown that it is already very effective for

other tasks like MWE identification. We plan to im-

prove the DP-TSG by experimenting with alternate

parsing objectives (Cohn et al., 2010), lexical rep-

resentations, and parameterizations of the base dis-

tribution. A particularly promising base distribution

is the latent variable PCFG learned by the Berkeley

parser. However, initial experiments with this distri-

bution were negative, so we leave further develop-

ment to future work.

We chose French for these experiments due to the

pervasiveness of MWEs and the availability of an an-

notated corpus. However, MWE lists and syntactic

treebanks exist for many of the world’s major lan-

guages. We will investigate automatic conversion of

these treebanks (by flattening MWE bracketings) for

MWE identification.

A Appendix

A.1 Notes on the Rising Factorial

The rising factorial—also known as the ascending

factorial or Pochhammer symbol—arises in the con-

text of samples from a Dirichlet process (see Prop.

3 of Antoniak (1974) for details). For a positive in-

teger n and a complex number x, the rising factorial

xn is defined14 by

xn = x(x + 1) . . . (x + n − 1)

=

n∏

j=1

(x + j − 1) (7)

The rising factorial can be generalized to a com-

plex number α with the gamma function:

xα =
Γ(x + α)

Γ(x)
(8)

14We adopt the notation of Knuth (1992).

where x0 ≡ 1.

In our type-based sampler, we computed (7) di-

rectly in a dynamic program. We found that (8) was

prohibitively slow for sampling.

A.2 mwetoolkit Configuration

We configured mwetoolkit15 with the four stan-

dard lexical features: the maximum likelihood esti-

mator, Dice’s coefficient, pointwise mutual informa-

tion (PMI), and Student’s t-score. We added the POS

sequence for each n-gram as a single feature. We re-

moved the web counts features to make the experi-

ments comparable. To compensate for the absence

of web counts, we computed the lexical features us-

ing the gold lemmas from the FTB instead of using

an automatic lemmatizer.

Since MWE n-grams only account for a small

fraction of the n-grams in the corpus, we filtered the

training and test sets by removing all n-grams that

occurred once. To further balance the proportion of

MWEs, we trained on all valid MWEs plus 10x ran-

domly selected non-MWE n-grams. This proportion

matches the fraction of MWE/non-MWE tokens in

the FTB. Since we generated a random training set,

we reported the average of three independent runs.

We created feature vectors for the training n-

grams and trained a binary Support Vector Machine

(SVM) classifier with Weka (Hall et al., 2009). Al-

though mwetoolkit defaults to a linear kernel,

we achieved higher accuracy on the development set

with an RBF kernel.

The FTB is sufficiently large for the corpus-based

methods implemented in mwetoolkit. Ramisch

et al. (2010)’s experiments were on Genia, which

contains 18k sentences and 490k tokens, similar to

the FTB. Their test set had 895 sentences, smaller

than ours. They reported 30.6% F1 for their task

against an Xtract baseline, which only obtained 7.3%

F1. These results are comparable in magnitude to our

FTB results.
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Abstract

We present the first algorithms to automat-
ically identify explicit discourse connectives
and the relations they signal for Arabic text.
First we show that, for Arabic news, most
adjacent sentences are connected via explicit
connectives in contrast to English, making the
treatment of explicit discourse connectives for
Arabic highly important. We also show that
explicit Arabic discourse connectives are far
more ambiguous than English ones, making
their treatment challenging. In the second
part of the paper, we present supervised al-
gorithms to address automatic discourse con-
nective identification and discourse relation
recognition. Our connective identifier based
on gold standard syntactic features achieves
almost human performance. In addition, an
identifier based solely on simple lexical and
automatically derived morphological and POS
features performs with high reliability, essen-
tial for languages that do not have high-quality
parsers yet. Our algorithm for recognizing dis-
course relations performs significantly better
than a baseline based on the connective sur-
face string alone and therefore reduces the am-
biguity in explicit connective interpretation.

1 Introduction

The automatic detection of discourse relations, such
as causal, contrast or temporal relations, is useful for
many applications such as automatic summarization
(Marcu, 2000), question answering (Girju, 2003),
sentiment analysis (Somasundaran et al., 2008) and
readability assessment (Pitler and Nenkova, 2008).
This task has recently seen renewed interest due to

the growing availability of large-scale corpora anno-
tated for discourse relations, such as the Penn Dis-
course Treebank (Prasad et al., 2008a).

In the Penn Discourse Treebank (PDTB), lo-
cal discourse relations (also called senses) such as
CAUSAL or CONTRAST are annotated. They hold
between two text segments (so-called arguments)
that express abstract entities such as events, facts and
propositions. Annotated discourse relations can be
signalled explicitly by so-called discourse connec-
tives (Marcu, 2000; Webber et al., 1999; Prasad et
al., 2008a) or hold implicitly between adjacent sen-
tences in the same paragraph, i.e. are not signalled
by a specific surface string. In Ex. 1, the connec-
tive while indicates an explicit CONTRAST between
the attitudes of John and Richard. In Ex. 2, the con-
nective while indicates an explicit TEMPORAL rela-
tion. In Ex. 3, an implicit CAUSAL relation between
the first and second sentence holds. We indicate dis-
course connectives and the two arguments they re-
late via annotated square brackets.

(1) [John liked adventure,]Arg2 [ while]DC[Richard
was cautious]Arg2

(2) [The children were crying
loudly]Arg1[while]DC,[their mother was
cooking]Arg2

(3) [I cannot eat any dessert.]Arg1 [I have eaten far
too much already.]Arg2

Although similar corpora for other languages are
being developed such as for Hindi (Prasad et al.,
2008b), Turkish (Zeyrek and Webber, 2008), Chi-
nese (Xue, 2005) and, by ourselves, for Arabic (Al-
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Saif and Markert, 2010), efforts in the automated
recognition of discourse connectives, arguments and
relations have so far almost exclusively centered on
English.

In contrast we present the first models for dis-
course relations for Arabic, focusing on explicit con-
nectives. This focus is partially justified by the fact
that this first study for a new language should cen-
ter on the superficially more straightforward case
and that no annotations for implicit relations are yet
available for Arabic. More importantly, however,
we make two essential claims (Section 4). Firstly,
Arabic discourse connectives are more ambiguous
than their English counterparts, i.e cases such as
while which can signal different relations dependent
on context (see Example 1 and 2) are far more fre-
quent. This makes their treatment more challenging.
Secondly, discourse relations between adjacent sen-
tences in Arabic tend to be expressed via an explicit
connective, at least for the news genre, i.e. cases
such as Example 3 are rarer. This makes the treat-
ment of explicit connectives essential.

We tackle two tasks for explicit Arabic connec-
tives in this paper, which are further discussed in
Section 2. Discourse connective recognition needs
to distinguish between discourse usage of potential
connectives and non-discourse usage (such as the
use of while as a noun). We show in Section 5 that
we can distinguish discourse- and non-discourse us-
age for potential connectives in Arabic with very
high reliability, even without parsed data, a fact that
is important for languages with fewer high quality
NLP tools available. We then present an algorithm
for relation identification in Section 6 that shows
small but significant gains over assigning the most
frequent relation for each connective. We discuss
future work and conclude in Section 7.

2 The Tasks

The handling of explicit connectives can be split into
three tasks (Pitler and Nenkova, 2009). The first task
of discourse connective recognition distinguishes
between the discourse usage and non-discourse us-
age of potential connectives. Whereas some poten-
tial connectives such as the Arabic connective 	áºË

/lkn/but almost always have discourse usage, this is

not true for all potential connectives.1 Thus, the dis-
course usage of Arabic �

éJ.
	
«P /rġbh/desire needs to

be distinguished from its use as a noun. Conjunc-
tions such as ð /w/and,ð@ /āw/or can have discourse
usage or just conjoin two non-abstract entities as in
èPA� ð QÔ« /↪mr w sārh/Omar and Sarah.

The second task is discourse connective interpre-
tation where a discourse connective in context is as-
signed a discourse relation. Again, some connec-
tives are largely unambiguous in this respect. For
example, 	áºË /lkn/but signals almost always a CON-
TRAST relation. However, there are connectives
where this is not the case, such as

	
Y

	
JÓ /mnd

¯
/since

which has a CAUSAL and a TEMPORAL sense.
The third task is argument identification which

identifies the arguments’ position and extent. In this
paper we tackle Task 1 and Task 2 for Arabic in a
supervised machine learning framework.

3 Related work

Annotated Discourse Corpora and Linguistic
Background. Discourse relations are widely stud-
ied in theoretical linguistics (Halliday and Hasan,
1976; Hobbs, 1985), where also different relation
taxonomies have been derived (Hobbs, 1985; Knott
and Sanders, 1998; Mann and Thompson, 1988;
Marcu, 2000). Different inventories have been used
in English corpora annotated for discourse relations
(Hobbs, 1985; Prasad et al., 2008a; Carlson et al.,
2002) which also differ in other respects (such as
whether they prescribe a tree structure for discourse
annotation). However, the annotation level of ex-
isting Arabic corpora has not yet included the dis-
course layer, making our work the first to address
this problem for Arabic on a larger scale.

Automatic discourse parsing: explicit relations.
There is no work on discourse connective recog-
nition, interpretation and argument assignment for
Arabic, so that we break entirely new ground here.
However, the two tasks we explore (discourse con-
nective recognition and discourse connective disam-
biguation) have been tackled for English.2 (Pitler

1Arabic examples contain in order: the Arabic right-to-left
script, the transliteration (standards ISO/R 233 and DIN 31635)
and the English translation (if possible).

2There is also substantial work on argument identification
(Wellner and Pustejovski, 2007; Elwell and Baldridge, 2008)
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and Nenkova, 2009) use gold standard syntactic fea-
tures as well as the connective surface string in a
supervised model for discourse connective recogni-
tion. They achieve very high results with this ap-
proach. We will (i) show that similar features work
well for Arabic (ii) take into account Arabic-specific
morphological properties that improve results fur-
ther and (iii) present a robust version of this ap-
proach that does not rely on full parsing or gold stan-
dard syntactic annotations.

With regard to discourse connective interpreta-
tion, (Miltsakaki et al., 2005) concentrate on disam-
biguating the three connectives since, while, when
only, using a very small set of features indicating
tense and temporal markers in arguments. They
achieve good improvements over a “most frequent
relation per connective” baseline. A more compre-
hensive study on all discourse connectives in the
PDTB (Pitler et al., 2008; Pitler and Nenkova, 2009)
reveals that most connectives are not ambiguous in
English. Using syntactic features of the connec-
tive, they achieve only a very small improvement
over a “most frequent relation per connective base-
line” for which significance tests are not given. We
will show that for Arabic, discourse connectives are
more highly ambiguous with regard to the relations
they convey. We will present a supervised learning
model that uses a wider feature set and that achieves
small but significant improvements over the most
frequent relation per connective baseline.

Automatic discourse parsing: implicit relations.
Implicit relations have excited substantial interest
for English. This includes work in the frame-
work of RST (Soricut and Marcu, 2003; duVerle
and Prendinger, 2009; Marcu and Echihabi, 2002),
SDRT (Baldridge and Lascarides, 2005), Graph-
Bank (Wellner et al., 2006), the PDTB (Blair-
Goldensohn et al., 2007; Pitler et al., 2009; Lin
et al., 2009; Wang et al., 2010; Zhou et al.,
2010; Louis and Nenkova, 2010) or framework-
independent (Sporleder and Lascarides, 2008).3 The
task is challenging as implicits behave substantially
differently from explicits (Sporleder and Lascarides,

but we do not discuss this work in depth here.
3Some work does not make the distinction between implicit

and explicit and/or treats them in a joint framework (Soricut and
Marcu, 2003; Wellner et al., 2006; Wang et al., 2010).

2008) and often need world knowledge (Lin et
al., 2009). However, features/approaches that have
shown improvement over a baseline are word pairs
(Sporleder and Lascarides, 2008), production rules
and syntactic trees (Wang et al., 2010; Lin et al.,
2009) as well as language modelling (Zhou et al.,
2010). As we only deal with explicit connectives
this work is not directly comparable to ours, al-
though we do explore some of the suggested features
for improving explicit connective disambiguation.

4 An Arabic Discourse Corpus

We annotate news articles from the Arabic Penn
Treebank (Part 1 v2.0) (Maamouri and Bies, 2004)
for explicitly marked discourse relations. This is the
first discourse-annotated corpus for Arabic, whose
initial development stages we have described in (Al-
Saif and Markert, 2010). We summarize this previ-
ous work and extend it by including agreement stud-
ies for arguments in Sections 4.1 and 4.2. In Sec-
tions 4.3, 4.4 and 4.5. we then present a corpus study
on the corpus which shows our major claim as to the
importance and high levels of ambiguity of Arabic
discourse connectives.

4.1 Annotation Principles

We overall follow the annotation principles in the
Penn Discourse Treebank for explicit connectives
(for example, arguments can occur at any distance
from the connectives). The relation set we use is
a more coarse-grained version of the PDTB rela-
tions with two relations added — BACKGROUND

and SIMILARITY — that we found in our Arabic
news texts. The final, hierarchically organized, re-
lation set of 17 discourse relations is shown in Fig 1.

Further adaptations necessary for Arabic are the
inclusion of clitics as connectives such as È /l/for, H.

/b/by,with and
	

¬ /f/then . In addition, differently to
English, prepositions were included as connectives
as these are frequently used to express discourse re-
lations in Arabic. In these cases, normally argument
2 is the so-called Al-Masdar.4 Typical examples are
Èñ�ð /ws. wl/arrival from the verb É�ð /ws. /to ar-
rive and �

éËðAm× /mh. āwlh/attempt from the verb ÈðAg

4The medieval Arabic grammar schools, the Basra and Kufa,
debated whether the noun (almasdar) or the verb is the most
basic element of language (Ryding, 2005).
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Figure 1: Discourse relations for Arabic

/h. āwl/to try. Al-Masdar is formed using morpho-
logical patterns well-known in the Arabic grammat-
ical tradition: major Arabic grammars list around 60
patterns although some other references also claim
that the patterns are many more as well as more un-
predictable (Abdl al latif et al., 1997; Wright, 2008;
Ryding, 2005). Al-Masdar forms do not fit into one
grammatical or morphological category in English:
they might correspond to a gerund, a nominalization
or a noun which is not a nominalization. Some ex-
amples are listed in Table 1.

Table 1: A list of Al-MaSdar patterns, examples and their
English correspondence

Root Pattern MaSdar Translation
iJ.� /sbh.

�
éËAª

	
¯ /f↩alh �

ékAJ.� /sbah. h swimming
	
Y

	
®

	
K /nfd

¯
ÉJ
ª

	
®

�
K /tf↪yl

	
YJ


	
®

	
J
�
K /tnfyd

¯
execution

©
	
¯X /df↪ ÈAª

	
¯ /f↪̄al ¨A

	
¯X /dfā↪ defence

¨P 	P /zr↪ �
éËAª

	
¯ /f↪̄alh �

é«@P 	P /zrā↪h agriculture

H. Qk /h. rb Éª
	
¯ /f↪l H. Qk /h. rb war

An example of Al-MaSdar as argument of a dis-
course relation is Ex. 4, where 	

©J
ÊJ.
�
K/tblyġ/informing

is the Al-MaSdar form of 	
©ÊK. /blġ/inform.

(4) 	
à@Y

�
®

	
¯ 	á«

	
©J
ÊJ.

�
J
�
Ë]DC[È] Arg1[

�
é£Qå

�
�Ë @ 	Q»QÓ úÍ@ A

	
JJ.ë

	
X]

Arg2[
�
éJ
ÖÞ

�QË @
�
é»Qå

�
�Ë @

�
�



KA

�
Kð

[d
¯

hbnā ’lā mrkz al-šrt.t.]Arg1[l]DC[ltblyġ ↪n fqdān
wt
¯
ā↩iq alšrkh alrsmyh]Arg2

[We went to the police station]Arg1 [for]DC [in-
forming about the loss of the company’s official
documents.]Arg2

4.2 Agreement Studies
The occurrences of a precompiled list of 107 po-
tential discourse connectives were annotated inde-
pendently by 2 native Arabic speakers on 537 news
texts. Agreement was measured for the distinction
of discourse vs. non-discourse usage, relation as-
signment and argument assignment.

Agreement for the classification tasks of dis-
course connective recognition and relation assign-
ment was measured using kappa (Siegel and Castel-
lan, 1956). Argument agreement was measured by
agr, a directional measure (Wiebe et al., 2005). It
measures the word overlap between the text spans
of two judges (ann1 and ann2). agr(ann1||ann2)
measures the proportion of words ann1 annotated
that were also annotated by ann2.

agr(ann1||ann2) =
|ann1 matching ann2|

|ann1|

Discourse connective recognition proved to be
highly reliable with percentage agreement of 0.95
and a kappa of 0.88 on the 23,331 occurrences of
the 107 potential discourse connectives. 5586 of the
potential connectives were agreed on by both anno-
tators to have discourse usage and agreement for re-
lations and argument assignment was measured on
these. As shown in Table 2, kappa on all 17 relations
was low with 0.57 — it turned out that this was due
to the frequent, almost rhetorical use of the connec-
tive ð /w/and at the beginning of paragraphs, which
is a genre convention for Arabic news that normally
does not convey a specific discourse relation. Disre-
garding such occurrences of ð /w/and, kappa rises to
good agreement: 0.69 for fine-grained relations and
0.75 when measuring agreement between the 4 ma-
jor relations EXPANSION, CONTINGENCY, COM-
PARISON and TEMPORAL.
Argument agreement on the 5586 agreed connec-
tives is shown in Table 3. We report high word over-
lap via agr (over 90%) for Arg2, which is the ar-
gument syntactically attached to the connective, and
lesser but still substantial agreement for Arg1.
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Table 2: Inter-annotator reliability for discourse relation
assignment

All connectives (5586)
Observed agreement 0.66
Kappa 0.57
Class level
Observed agreement 0.8
Kappa 0.67
Connectives excluding ð /w/and at BOP (3500)
Observed agreement 0.74
Kappa 0.69
Class level
Observed agreement 0.71
Kappa 0.75

Agreed disc. conn 5586
Arg1 Arg2

a) exact match
exact match =1 2361 (42%) 3803 (68%)
exact match =0 699 (13%) 18 (0.3%)
partial match 2526 (45%) 1765 (32%)
b) agr metric
agr(ann1||ann2) 78% 93%
agr(ann2||ann1) 74% 93%
Avr (agr) 76% 93%

Table 3: Inter-annotator reliability for arguments Arg1
and Arg2, using two different measurements (a) exact
match (b) agr

4.3 Gold standard

We produced a unified gold standard. First, we auto-
matically corrected easily made annotator mistakes.
With regard to argument extent, we automatically
corrected mistakes such as the erroneous inclusion
of punctuation marks at the end of clauses/sentences
or not including all obligatory complements in a
verb phrase argument. The latter relied on the syn-
tactic annotation in the ATB. Second, with regard to
discourse relation assignment, we automatically as-
signed EXPANSION.CONJUNCTION to all disagreed
instances of ð /w/and at BOP.5 A further disam-
biguation study is necessary for ð /w/and at BOP,
which is beyond the scope of this paper.

Finally, an adjudicator not initially involved in an-
notation reconciled the remaining disagreements at

5Other instances of ð /w/and are not treated this way.

all levels and included annotations for 5 new po-
tential discourse connective types not in our initial
connective list but commented on by the annotators
during annotation. 3 news files were removed from
the corpus — they contained no actual news reports
but just a list of headlines.

The final discourse treebank we use has 6328 an-
notated explicit connectives in 534 files. 68 connec-
tive types were found, rising to 80 connective types
if we include all modified forms of a connective as
distinct types such as 	áÓ Ñ

	
«QËAK. /bālrġm mn, 	

à@ Ñ
	
«P

/rġm ān as modified forms of Ñ
	
«P /rġm/although.

Most discourse connectives were only annotated
with a single relation but 5% were annotated with
two or more relations (as also allowed in the PDTB).
These statistics are summarised in Table 4.

Files 534
Total tagged tokens 126,046

(125KB)
Sentences 3607
Paragraphs 3312
Discourse connectives (tokens) 6328
Distinct connective (types) 68
including modifed form con-
nectives

80

Clitic discourse connectives (to-
kens)

4779
(76%)

Non-clitic discourse connec-
tives (tokens)

1549
(24%)

Relations types (17 single, 38
combined)

55

Single relations (tokens) 6039
(95%)

Combined relations (tokens) 289 (5%)

Table 4: Statistics of the final gold standard corpus

4.4 Importance of explicitly signalled relations

We compared the number of relations between 2
adjacent sentences that were explicitly signalled in
English vs. the ones that were explicitly signalled
in Arabic, using the PDTB and our corpus (both
containing texts of the news genre). Out of a total
44,470 adjacent sentence pairs in the PDTB, 5355
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(12%) were linked by an explicit connective.6 In
contrast, out of the 3073 adjacent sentence pairs in
our corpus, 2140 (70%) were linked by an explicit
connective, 948 (30%) were linked via non-wa con-
nectives. Thus, for our corpus, modeling of explicit
connectives is primary: intrasentential relations tend
to be marked by connectives anyway in both English
and Arabic, and our corpus shows that this is true for
most local intersentential relations as well.

4.5 Ambiguity for Arabic discourse connectives

We investigate the ambiguity of Arabic connectives
with regard to their sense at class level (4 relations)
as well as the more fine-grained level (all 17 rela-
tions). We restrict our investigation to the connec-
tive occurrences that were annotated with a single
relation (6039 tokens) and also exclude ð /w/and at
the beginning of paragraph, leaving 3813 tokens.7

Of 80 connective types, 52 were unambiguous at the
class level and 47 at the fine-grained level. However,
many of the most frequent connectives are highly
ambiguous. If we just assign the most frequent read-
ing to each of the 3813 connectives, we achieve an
accuracy of 82.7% at the class-level and 74.3% at
the more fine-grained level for relation assignment,
leaving a substantial error margin. This contrasts
with the English PDTB, where at the class-level 92%
can be achieved with this simple method and 85% at
the second-level.8

5 Discourse Connective Recognition

We distinguished discourse vs. non-discourse usage
for all potential connectives in the 534 gold stan-
dard files. As headers and footers in the news files
never contained true discourse connectives, we dis-
regarded these, leaving 20,312 potential discourse
connectives of which 6328 are actual connectives.

6Connections between subclauses or phrases in different,
adjacent sentences were included in the count.

7We automatically assigned CONJUNCTION to many occur-
rences of ð /w/and at BOP (Section 4.3) so that it is not sensible
to include these occurrences in a study of human-assigned am-
biguity.

8The second level in the PDTB with its 16 relations corre-
sponds approximately to our fine-grained inventory. This com-
parison can only be appropriate due to slight differences in the
lower-grained relation inventory.

5.1 Features
Apart from the surface string of the potential con-
nective Conn, we use the following features. Fea-
tures are either extracted from raw files tokenized
by white space only (M2) or from raw files tok-
enized by white space and tagged by the Stanford
tagger9 (Models M3, M4) or from the Arabic Tree-
bank (ATB) gold standard part-of-speech and parse
annotation (models M5-M9). The syntactic features
(Syn) are inspired by (Pitler and Nenkova, 2009).
Lexical/POS patterns of surrounding words, clitic
features and Al-Masdar are novel.

Surface Features (SConn). These include the po-
sition of the potential connective (sentence-initial,
medial or final). The type of the potential connective
is Simple when the potential connective is a single
token not attached to other tokens, PotClitic when
it is attached. Potential connectives containing more
than one token have MoreThanToken type.

Models where we use ATB or automated tagging
(M3-M9) distinguish further between potential cli-
tics that are assigned a POS and ones that are not.
Models that use ATB annotation also distinguish
between potential connectives that correspond to a
phrase in the ATB (MorethanToken Phrase) and
the ones that do not (MorethanToken NonPhrase).

Lexical features of surrounding words (Lex).
We encode the surface strings of the three words
before and after the connective, recording posi-
tion. These features are especially useful for lan-
guages where no accurate parser or tagger is avail-
able as lexical patterns can capture discourse and
non-discourse usage. For instance, if a potential
connective is followed by 	

à@ /ān/ it most likely has
a discourse function (see Ex. 5).

(5) DC[ ð ] Arg1[
�

�AëPBAK. @ñK. A��

	
à@] 	áºÖß
 ÈA

	
®£B@

	
à@

@ñÓA
	
JK
 ÕË @

	
X @

�
é�@PYË@ ÈC

	
g Arg2[�Aª

	
JËAK. @ðQª

�
��


	
à@]

@YJ
k.

[ ān ālāt.fāl ymkn [ān ys. ābwā bālārhā-
q]Arg1[w]DC[ān yš↪rwā bāln↪̄as]Arg2 h

˘
lāl āldrāsh

ād
¯

ā lm ynāmwā ǧydā
[Children might be tired]Arg1 [and]DC [feel
sleepy]Arg2 during school time if they did not sleep
well

9http://nlp.stanford.edu/software/tagger.shtml
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Part of Speech features (POS). We include
the pos tag of the potential connective via the
ATB/Stanford Tagger. For potential connectives that
consist of more than one token, we combined its
ordered POS tags. Thus, the potential connective
ÈAg ú




	
¯ /fy h. āl/in case with its tags (fy PREP)(Hal

NOUN)) will receive the pos PREP#NOUN. If a po-
tential connective does not receive a separate POS
tag in the ATB/tagger, the value ”NONE” is as-
signed. This allows to distinguish clitics from let-
ters at the start of a word. We also record the
POS of the three words before/after the connective
(ATB/Stanford Tagger). Similar to lexical patterns,
these can capture discourse and non-discourse us-
age. For instance, if a potential connective is soon
followed by a modal, it is more likely to have a dis-
course function.
Syntactic category of related phrases (Syn). We
record the syntactic category of the parent of the po-
tential connective in ATB. For example, it is rare
that cases where the parent of the potential connec-
tive is an adjective phrase, correspond to discourse-
usage. A typical example of a non-discourse usage
of ð /w/and ( �

éÊJ
Ô
g
.

ð
�
èQ�
J.»

�
é�PYÖÏ @ /ālmdrsh kbyrh w

ǧmylh/ the school is very large and beautiful) illus-
trates this. Unlike English, parents in Arabic often
are noun phrases as nominalisations are frequent ar-
guments of prepositional connectives. We also en-
code the Left sibling category and right sibling cat-
egory of the connective. For discourse connectives,
the right sibling is normally S, SBAR, VP or an NP
(if the connective is a preposition).

Al-Masdar feature. Potential connectives fol-
lowed by Al-Masdar are more likely to have dis-
course usage (see Section 4.1). Especially preposi-
tions with discourse usage are normally attached to
Al-masdar such as in �

é
�
KXAjÖÏ /lmh. ādt

¯
h/for contacting

or Z @Qk. AK. /bāǧrā↩/by processing. Al-Masdar informa-
tion is not included in the ATB so we constructed a
binary Al-Masdar feature from (tagged) text by ex-
amining the first noun after the potential connective.
We developed an algorithm to judge such a noun as
Al-Masdar or not. This algorithm uses a stemmer
for Arabic and then determines whether the stem is
al-Masdar by a combination of surface-based rules
to check whether the stem corresponds to one of the
known Al-Masdar patterns.

5.2 Results and Discussion

We used the implementation JRip of the rule-
based classifier Ripper in the machine learning tool
WEKA with its default settings. We used 10-fold
cross-validation throughout. Significance tests are
reported using the McNemar test at the significance
level of 1%. A most frequent category baseline
would assign all potential connectives as not connec-
tive, achieving an accuracy of 68.9% as only 6328 of
our potential 20,312 connectives actually have dis-
course usage. We built several models using differ-
ent features. The results are shown in Table 5.

A simple model M1 that only uses the connective
string improves significantly over the baseline with
75.7% accuracy but a kappa of only 0.48, showing
that this is not a reliable strategy. Models M2-M4
do not rely on gold standard annotation or parsing
(in contrast to the models for English in (Pitler and
Nenkova, 2009)). Using only surface and lexical
features that can be extracted from white-space to-
kenized raw files in addition to the connective string
(M2), gains a substantial improvement over using
the connective string alone. This is further improved
by using POS tags of connectives and surrounding
words with an automatic tagger (M3) and by includ-
ing the Al-Masdar feature (M4), thus making good
use of the morphological properties of Arabic. All
differences are statistically significant (M1 < M2 <
M3<M4). The final model is reliable (kappa 0.70),
an encouraging result given the absence of parsing
and important for resource-scarce languages.

With ATB gold standard tokenisation, tagging and
parsing, our models (not surprisingly) improve fur-
ther showing the same pattern of (M1<M5<M6<
M7) with all differences being significant. The final
best model achieves highly reliable results (accuracy
92.4%, kappa 0.82). We also conclude that syntac-
tic features are more useful than lexical patterns as
model M8 (syntax with no lexical patterns) achieves
equally good results as M6. Our models also man-
age to generalise well over individual connectives.
If we leave out the connective string (M9), we still
achieve a highly reliable result.

6 Discourse Relation Recognition

When disambiguating the relation that discourse
connectives signal, we assume that the arguments of
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Features Acurr K
Baseline (not conn) 68.9 0

M1 Conn only 75.7 0.48
Tokenization by white space + auto tagger
M2 Conn+ SConn+Lex 85.6 0.62
M3 Conn+ SConn+Lex+POS 87.6 0.69
M4 Conn+SConn+Lex+POS+Masdar 88.5 0.70
ATB-based features
M5 Conn+SConn+Lex 86.2 0.65
M6 Conn+SConn+Lex+Syn/POS 91.2 0.79
M7 Conn+SConn+Lex+Syn/POS+Masdar 92.4 0.82
M8 Conn+SConn+Syn 91.2 0.79
M9 SConn+Lex+Syn+Masdar 91.2 0.79

Table 5: Performance of different models for identifying discourse connectives.

the connective are known. This is well-established
for PDTB relation recognition (Wang et al., 2010;
Lin et al., 2009; Miltsakaki et al., 2005). Our mod-
els predict single relations on two datasets: (i) all
instances of connectives signalling single relations
(Set All, 6039 instances) (2) all instances apart from
the connective ð /w/and at beginning of paragraph
as they are affected by the auto-correction process
(Set no-wa-atBOP, 3813 instances). We use 10-fold
cross-validation and JRip as well as a McNemar test
at the 5% level for significance tests.

6.1 Features

Whereas some of the features we use have been used
for English implicit relation recognition (Lin et al.,
2009; Wang et al., 2010; Pitler et al., 2009) , they
are new for Arabic and not widely used for explicit
connectives. All features are extracted from the ATB
gold standard parses.
Connective features. This includes the connec-
tive string Conn. In addition, we also use the sur-
face connective features and POS of connective de-
scribed in Section 5. We also use the syntactic path
to the connective as a novel feature.
Words and POS of arguments. The words and
pos tags of the first three words in Arg1 and
Arg2 are used to catch patterns in arguments.
For example, when the first word of Arg2 is
Y

�
¯ /qd/might/may or 	

àA¿ /kān/had, the relation is
likely to be EXPANSION.BACKGROUND or EXPAN-
SION.CONJUNCTION. We also measure word over-

lap between the arguments, hoping to catch relations
such as COMPARISON.SIMILARITY.
Masdar. This feature states whether the first or
second word in Arg 2 is an Al-Masdar. Many prepo-
sitional connectives followed by an Al-Masdar indi-
cate a CONTINGENCY.CAUSE relation (see Ex. 4)
Tense and Negation. Each argument is assigned
its tense as one of perfect, imperfect, future or none.
We also indicate whether the tense of Arg1 or 2 are
the same and whether a negation is part of Arg 1
or 2. Inspired by (Miltsakaki et al., 2005), we stip-
ulate that tense is useful for recognizing temporal
and causal relations. For example, the arguments of
the relation TEMPORAL.SYNCHRONOUS are likely
to have the same tense. In contrast, arg1 tense is
more likely to be prior to arg2 tense for TEMPO-
RAL.ASYNCHRONOUS and CAUSE relations.
Length, Distance and Order Features. We use
the length of arguments (in words), word distance
between a connective and its arguments (-1; for ar-
guments in order Arg1 Conn Arg2 Arg1), tree dis-
tance of connective and arguments (0 if connective
and an argument are in the same tree) and a bi-
nary feature of whether Arg1 and Arg2 are in dif-
ferent sentences. A nominal feature encodes one of
the three orders Arg1 Conn Arg2, Conn Arg2 Arg1
and Arg1 Conn Arg2 Arg1, the latter being fre-
quent in Arabic for TEMPORAL.ASYNCHRONOUS

relations.
Argument Parent. We record the syntactic par-
ent of each Argument. However, not every argu-
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ment corresponds to a complete tree in the ATB —
in these cases we extract the category of the parent
shared by the first and last word in the argument.

Production Rules. We use all non-lexical produc-
tion rules that occur more than 10 times in the argu-
ments as binary features. This was inspired by (Lin
et al., 2009) who use production rules to good effect
for implicit relations in English.

6.2 Results

Table 6 shows the results for fine-grained (17 rela-
tions) classification. The baseline of assigning the
most frequent relation EXPANSION.CONJUNCTION

to every connective performs with an accuracy of
52.5% on Set All and 35% on set no-wa-atBOP. If
we use a model that relies on the discourse connec-
tive alone (M1) we achieve results of 77.2%/74.3%,
respectively. As noted in Section 4.5 this is substan-
tially lower than what the same model can achieve
for English. Including connective and argument fea-
tures (apart from production rules) in M2, leads to a
small but significant improvement.10 Further incor-
poration of production rules does not improve the
results (M3). In Table 7, we show the results at the
class-level (4 relations). Here using additional fea-
tures over the connective string does not lead to sig-
nificant improvements.

6.3 Discussion and Error Analysis

We concentrate our discussion on fine-grained clas-
sification excluding wa at BOP.

Our improvements in M2 over the connective-
only classifier (M1) are in two main areas. First, our
model performs generalisation, i.e. outputs some
rules that do not use the connective string at all.
These achieve a somewhat surprising improvement
of M2 over M1 for unambiguous connectives which
are too rare to classify via the connective string. In
those cases, they either (i) have not been seen in the
training data before and are therefore not classifiable
when seen first time in the test set or (ii) have been

10Our corpus includes some texts on similar topics where
some sentences are (almost) repeated in different texts. To
investigate whether our improvements are due to this repeti-
tion, we also performed an experiment excluding all repeated
instances of feature vectors from the corpus. The results are
almost the same and, most importantly, M2 again improves sig-
nificantly over M1.

Ref Features Acc K
All connectives (6039)

Baseline (CONJUNCTION) 52.5 0
M1 Conn only (1) 77.2 0.60
M2 Conn+Conn f+ Arg f (37) 78.8 0.66
M3 Conn+Conn f+ Arg f+ Pro-

duction rules (1237)
78.3 0.65

excluding wa at BOP (3813)
Baseline (CONJUNCTION) 35 0

M1 Conn only (1) 74.3 0.65
M2 Conn+Conn f+ Arg f (37) 77 0.69
M3 Conn+Conn f+ Arg f+ Pro-

duction rules (1237)
76.7 0.69

Table 6: Performance of different models for identifying
fine-grained discourse relations on two datasets.

Ref Features Acc K
All connectives (6039)

Baseline (EXPANSION) 62.4 0
M1 Conn only (1) 88.7 0.78
M2 Conn+Conn f+ Arg f (37) 88.7 0.78
excluding wa at BOP (3813)

Baseline (EXPANSION) 41.8 0
M1 Conn only (1) 82.7 0.74
M2 Conn+Conn f+ Arg f (37) 83.5 0.75

Table 7: Performance of different models for identifying
class-level discourse relations on two datasets.

seen in the training data too rarely for the rule-based
classifier to develop a rule judged to be more re-
liable than the default EXPANSION.CONJUNCTION

classification. Our data includes 47 unambiguous
connective types, accounting for 574 of the 3813
tokens. 30 of these 47 types are so rare that we
found mistakes in the connective-only classification,
including B@ /ālā/except (2), I.

�
®« /↪qb(2), AÖÏ A£ /t.ā-

lmā(2), Ñ
	
«QK. /brġm(1). For 14 of these 30 connec-

tives, model M2 was able to use generalised rules
to improve relation assignment.11 These rules in-
volve mainly connective surface and POS features.
Thus, sentence-start adverbials consisting of more
than one token such as 	

à@ YJ
K. /byd ān(6) and 	
à@ Q�


	
«

/ġyr ān(6) were correctly classified as CONTRAST.

11For the other 16 connectives neither of the models was able
to classify them correctly.
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This advantage of our model over the connective-
only model might disappear if in a larger corpus
more instances of those connectives are found
and are still unambiguous. Therefore, we are
more interested in how our classifier does on
truly ambiguous connectives (33 connective types
accounting for 3239 tokens of 3813 overall to-
kens). We conducted a separate significance test
on ambiguous connectives only and found that
M2 improves over M1 classification significantly
at the 1% level. How well we do on individual
connectives depends on their frequency and on their
level of ambiguity. If connectives are ambiguous
and of low frequency (ñË /lw, AÖ

	
ß @ /ānmā, ÈAg /h. āl/)

both M1 and M2 do perform badly on them. If
connectives are frequent (10 or more occurrences)
and have relatively low ambiguity (majority reading
accounts for more than 70% of instances), the
overall performance of M1 and M2 with regard to
accuracy is also similar, often both using just the
connective string. On the other hand, if connectives
are frequent and have high ambiguity (i.e. no such
clear majority reading), then M2 normally improves
(often substantially) on M1. Examples of such
connectives are AÒ» /kmā, AÒJ


	
¯ /fymāand Q

�
K@ /āt

¯
r.

Most of the successful rules use tense in some form,
either via part of speech of verbs or via comparing
the tense in the two arguments. This, for example,
led to a successful recognition of all 9 instances of
Similarity in the connective kmA (whose major-
ity relation is Expansion.Conjunction in 40 out
of 65 occurrences). The connective

	
¬ /f/then is dis-

tinguished into EXPANSION.EXEMPLIFICATION,
CONTINGENCY.CAUSE.RESULT and CONTIN-
GENCY.CAUSE.REASON readings, depending on
the lexemes around it, the parents of its arguments,
and whether its argument 2 is tensed or not. Thus,
nontensed arguments are most often nominalisations
leading to a reason reading, whereas a verb phrase
as argument 2 and a sentence as argument 1 often is
a result reading. However, it is worth reporting that
in cases of very high ambiguity, M2 is still far from
perfect such as for connectives f

	
¬ /fand Q

�
K@ /āt

¯
r.

Some improvements again come from gener-
alised rules: there are some very high-coverage
and high precision generalised rules that reduce
dependency on the connective string. For example,
clitic prepositions (such as È /l/for) can without

any further information be clearly classified as
Contingency.Cause.Reason.NonPragmatic
covering 494 occurrences with only 26 mistakes.
These are cases where the following argument is
normally Al-Masdar.

Our analysis leads us to the following strategy
for follow-on work. First of all, a larger corpus is
necessary to get more examples for low frequency
connectives. Secondly, experiments with different
classifiers are worthwhile to conduct to see how our
improvements generalise. Third, the most mileage
is in further improvements on frequent, ambiguous
connectives such as

	
¬ /f,

	
Y

	
JÓ /mnd

¯
and ð@ /āw. This

can be achieved with, on the one hand, training
connective-specific classifiers on larger data sets but
will, on the other hand, also need a wider feature
base. From our corpus study, we think that lexico-
semantic features such as word pairs and seman-
tic classes of verbal/nominalised arguments are the
most promising.

7 Conclusions and Future Work

We have presented the first study on the automatic
detection and disambiguation of Arabic discourse
connectives. A corpus study showed that these
are highly frequent and more ambiguous than their
English counterparts. Our automatic algorithms
achieve very good results on discourse connective
identification, using Arabic morphological proper-
ties to good effect. It is particular promising that we
do not need parsed data to identify discourse usage
of potential connectives reliably. Our algorithm for
discourse connective interpretation beats the chal-
lenging baseline of assigning the most frequent re-
lation per connective. In future, we will explore fur-
ther features for connective disambiguation as well
as connective-specific classification, combined with
semi-supervised algorithms to alleviate data sparse-
ness. We will also develop algorithms for argument
identification.
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Abstract

This research studies the text genre of mes-
sage board forums, which contain a mix-
ture of expository sentences that present fac-
tual information and conversational sentences
that include communicative acts between the
writer and readers. Our goal is to create
sentence classifiers that can identify whether
a sentence contains a speech act, and can
recognize sentences containing four different
speech act classes: Commissives, Directives,
Expressives, and Representatives. We con-
duct experiments using a wide variety of fea-
tures, including lexical and syntactic features,
speech act word lists from external resources,
and domain-specific semantic class features.
We evaluate our results on a collection of mes-
sage board posts in the domain of veterinary
medicine.

1 Introduction

In the 1990’s, the natural language processing com-
munity shifted much of its attention to corpus-based
learning techniques. Since then, most of the text cor-
pora that have been annotated and studied are collec-
tions of expository text (e.g., news articles, scientific
literature, etc.). The intent of expository text is to
present or explain information to the reader. In re-
cent years, there has been a growing interest in text
genres that originate from Web sources, such as we-
blogs and social media sites (e.g., tweets). These
text genres offer new challenges for NLP, such as
the need to handle informal and loosely grammatical
text, but they also pose new opportunities to study

discourse and pragmatic phenomena that are funda-
mentally different in these genres.

Message boards are common on the WWW as a
forum where people ask questions and post com-
ments to members of a community. They are typ-
ically devoted to a specific topic or domain, such as
finance, genealogy, or Alzheimer’s disease. Some
message boards offer the opportunity to pose ques-
tions to domain experts, while other communities
are open to anyone who has an interest in the topic.

From a natural language processing perspective,
message board posts are an interesting hybrid text
genre because they consist of both expository text
and conversational text. Most obviously, the conver-
sations appear as a thread, where different people
respond to each other’s questions in a sequence of
posts. Studying the conversational threads, however,
is not the focus of this paper. Our research addresses
the issue of conversational pragmatics within indi-
vidual message board posts.

Most message board posts contain both exposi-
tory sentences as well as speech acts. The person
posting a message (the “writer”) often engages in
speech acts with the readers. The writer may explic-
itly greet the readers (“Hi everyone!”), request help
from the readers (“Anyone have a suggestion?”), or
commit to a future action (“I promise I will report
back soon.”). But most posts contain factual infor-
mation as well, such as general knowledge or per-
sonal history describing a situation, experience, or
predicament.

Our research goals are twofold: (1) to distin-
guish between expository sentences and speech act
sentences in message board posts, and (2) to clas-
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sify speech act sentences into four types: Com-
missives, Directives, Expressives, and Representa-
tives, following Searle’s original taxonomy (Searle,
1976). Speech act classification could be useful
for many applications. Information extraction sys-
tems could benefit from filtering speech act sen-
tences (e.g., promises and questions) so that facts are
only extracted from the expository text. Identifying
Directive sentences could be used to summarize the
questions being asked in a forum over a period of
time. Representative sentences could be extracted
to highlight the conclusions and beliefs of domain
experts in response to a question.

In this paper, we present sentence classifiers that
can identify speech act sentences and classify them
as Commissive, Directive, Expressive, and Repre-
sentative. First, we explain how each speech act
class is manifested in message board posts, which
can be different from how they occur in spoken dia-
logue. Second, we train classifiers to identify speech
act sentences using a variety of lexical, syntactic,
and semantic features. Finally, we evaluate our sys-
tem on a collection of message board posts in the
domain of veterinary medicine.

2 Related Work

There has been relatively little work on applying
speech act theory to written text genres, and most
of the previous work has focused on email classi-
fication. Cohen et al. (2004) introduced the notion
of “email speech acts” defined as specific verb-noun
pairs following a pre-designed ontology. They ap-
proached the problem as a document classification
task. Goldstein and Sabin (2006) adopted this no-
tion of email acts (Cohen et al., 2004) but focused
on verb lexicons to classify them. Carvalho and
Cohen (2005) presented a classification scheme us-
ing a dependency network, capturing the sequential
correlations with the context emails using transition
probabilities from or to a target email. Carvalho and
Cohen (2006) later employed N-gram sequence fea-
tures to determine which N-grams are meaningfully
related to different email speech acts with a goal
towards improving their earlier email classification
based on the writer’s intention.

Lampert et al. (2006) performed speech act clas-
sification in email messages following a verbal re-

sponse modes (VRM) speech act taxonomy. They
also provided a comparison of VRM taxonomy with
Searle’s taxonomy (Searle, 1976) of speech act
classes. They evaluated several machine learning al-
gorithms using syntactic, morphological, and lexi-
cal features. Mildinhall and Noyes (2008) presented
a stochastic speech act model based on verbal re-
sponse modes (VRM) to classify email intentions.

Some research has considered speech act classes
in other means of online conversations. Twitchell
and Jr. (2004) and Twitchell et al. (2004) employed
speech act profiling by plotting potential dialogue
categories in a radar graph to classify conversa-
tions in instant messages and chat rooms. Nas-
tri et al. (2006) performed an empirical analysis of
speech acts in the away messages of instant mes-
senger services to achieve a better understanding of
the communication goals of such services. Ravi
and Kim (2007) employed speech act profiling in
online threaded discussions to determine message
roles and to identify threads with questions, answers,
and unanswered questions. They designed their own
speech act categories based on their analysis of stu-
dent interactions in discussion threads.

The work most closely related to ours is the re-
search of Jeong et al. (2009) on semi-supervised
speech act recognition in both emails and forums.
Like our work, their research also classifies indi-
vidual sentences, as opposed to entire documents.
However, they trained their classifier on spoken
telephone (SWBD-DAMSL corpus) and meeting
(MRDA corpus) conversations and mapped the la-
belled dialog act classes of these corpora to 12 di-
alog act classes that they found suitable for email
and forum text genres. These dialog act classes (ad-
dressed as speech acts by them) are somewhat differ-
ent from Searle’s original speech act classes. They
also used substantially different types of features
than we do, focusing primarily on syntactic subtree
structures.

3 Classifying Speech Acts in Message
Board Posts

3.1 Speech Act Class Definitions

Searle’s (Searle, 1976) early research on speech acts
was seminal work in natural language processing
that opened up a new way of thinking about con-

749



versational dialogue and communication. Our goal
was to try and use Searle’s original speech act def-
initions and categories as the basis for our work to
the greatest extent possible, allowing for some inter-
pretation as warranted by the WWW message board
text genre.

For the purposes of defining and evaluating our
work, we created detailed annotation guidelines for
four of Searle’s speech act classes that commonly
occur in message board posts: Commissives, Direc-
tives, Expressives, and Representatives. We omitted
the fifth of Searle’s original speech act classes, Dec-
larations, because we virtually never saw declara-
tive speech acts in our data set.1 The data set used in
our study is a collection of message board posts in
the domain of veterinary medicine. We designed our
definitions and guidelines to reflect language use in
the text genre of message board posts, trying to be as
domain-independent as possible so that these defini-
tions should also apply to message board texts rep-
resenting other topics. However, we give examples
from the veterinary domain to illustrate how these
speech act classes are manifested in our data set.

Commissives: A Commissive speech act oc-
curs when the speaker commits to a future course
of action. In conversation, common Commissive
speech acts are promises and threats. In message
boards, these types of Commissives are relatively
rare. However, we found many statements where the
main purpose was to confirm to the readers that the
writer would perform some action in the future. For
example, a doctor may write “I plan to do surgery on
this patient tomorrow” or “I will post the test results
when I get them later today”. We viewed such state-
ments as implicit commitments to the reader about
intended actions. We also considered decisions not
to take an action as Commissive speech acts (e.g., “I
will not do surgery on this cat because it would be
too risky.”). However, statements indicating that an
action will not occur because of circumstances be-
yond the writer’s control were considered to be fac-
tual statements and not speech acts (e.g., “I cannot
do an ultrasound because my machine is broken.”).

Directives: A Directive speech act occurs when

1Searle defines Declarative speech acts as statements that
bring about a change in status or condition to an object by virtue
of the statement itself. For example, a statement declaring war
or a statement that someone is fired.

the speaker expects the listener to do something as
a response. For example, the speaker may ask a
question, make a request, or issue an invitation. Di-
rective speech acts are common in message board
posts, especially in the initial post of each thread
when the writer explicitly requests help or advice re-
garding a specific topic. Many Directive sentences
are posed as questions, so they are easy to identify
by the presence of a question mark. However, the
language in message board forums is informal and
often ungrammatical, so many Directives are posed
as a question but do not end in a question mark (e.g.,
“What do you think.”). Furthermore, many Direc-
tive speech acts are not stated as a question but as
a request for assistance. For example, a doctor may
write “I need your opinion on what drug to give this
patient.” Finally, some sentences that end in ques-
tion marks are rhetorical in nature and do not repre-
sent a Directive speech act, such as “Can you believe
that?”.

Expressives: An Expressive speech act occurs in
conversation when a speaker expresses his or her
psychological state to the listener. Typical cases are
when the speaker thanks, apologizes, or welcomes
the listener. Expressive speech acts are common in
message boards because writers often greet readers
at the beginning of a post (“Hi everyone!”) or ex-
press gratitude for help from the readers (“I really
appreciate the suggestions.”). We also found Ex-
pressive speech acts in a variety of other contexts,
such as apologies.

Representatives: According to Searle, a Rep-
resentative speech act commits the speaker to the
truth of an expressed proposition. It represents the
speaker’s belief of something that can be evaluated
to be true or false. These types of speech acts were
less common in our data set, but some cases did ex-
ist. In the veterinary domain, we considered sen-
tences to be a Representative speech act when a
doctor explicitly confirmed a diagnosis or expressed
their suspicion or hypothesis about the presence (or
absence) of a disease or symptom. For example, if a
doctor writes that “I suspect the patient has pancre-
atitis.” then this represents the doctor’s own propo-
sition/belief about what the disease might be.

Many sentences in our data set are stated as fact
but could be reasonably inferred to be speech acts.
For example, suppose a doctor writes “The cat has
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pancreatitis.”. It would be reasonable to infer that
the doctor writing the post diagnosed the cat with
pancreatitis. And in many cases, that is true. How-
ever, we saw many posts where that inference would
have been wrong. For example, the following sen-
tence might say “The cat was diagnosed by a pre-
vious vet but brought to me due to new complica-
tions” or “The cat was diagnosed with it 8 years
ago as a kitten in the animal shelter”. Consequently,
we were very conservative in labelling sentences as
Representative speech acts. Any sentence presented
as fact was not considered to be a speech act. A sen-
tence was only labelled as a Representative speech
act if the writer explicitly expressed his belief.

3.2 Features for Speech Act Classification

To create speech act classifiers, we designed a vari-
ety of lexical, syntactic, and semantic features. We
tried to capture linguistic properties associated with
speech act expressions as well as discourse prop-
erties associated with individual sentences and the
message board post as a whole. We also incorpo-
rated speech act word lists that were acquired from
external resources, and used two types of seman-
tic features to represent semantic entities associated
with the veterinary domain. Except for the semantic
features, all of our features are domain-independent
so should be able to recognize speech act sentences
across different domains. We experimented with
domain-specific semantic features to test our hy-
pothesis that Commissive speech acts can be asso-
ciated with domain-specific semantic entities.

For the purposes of analysis, we partition the fea-
ture set into three groups: Lexical and Syntactic
(LexSyn) Features, Speech Act Clue Features, and
Semantic Features. Unless otherwise noted, all of
the features had binary values indicating the pres-
ence or absence of that feature.

3.2.1 Lexical and Syntactic Features
We designed a variety of features to capture lexical
and syntactic properties of words and sentences. We
described the feature set below, with the features cat-
egorized based on the type of information that they
capture.

Unigrams: We created bag-of-word features rep-
resenting each unigram in the training set. Numbers
were replaced with a special # token.

Personal Pronouns: We defined three features to
look for the presence of a 1st person pronoun, 2nd
person pronoun, and 3rd person pronoun. We in-
cluded the subjective, objective, and possessive form
of each pronoun (e.g., he, him, and his).

Tense: Speech acts such as Commissives can be
related to tense. We created three features to iden-
tify verb phrases that occur in the past, present, or
future tense. To recognize tense, we followed the
rules defined by Allen (1995).

Tense + Person: We created four features that re-
quire the presence of a first person subjective pro-
noun (I, we) within a two word window on the left of
a verb phrase matching one of four tense representa-
tions: past, present, future, and present progressive
(a subset of the more general present tense represen-
tation).

Modals: One feature indicates whether the sen-
tence contains a modal (may, must, shall, will,
might, should, would, could).

Infinitive VP: One feature looks for an infinitive
verb phrase (‘to’ followed by a verb) that is preceded
by a first person pronoun (I, we) within a three word
window on the left. This feature tries to capture
common Commissive expressions (e.g., “I definitely
plan to do the test tomorrow.”).

Plan Phrases: Commissives are often expressed
as a plan, so we created a feature that recognizes
four types of plan expressions: “I am going to”, “I
am planning to”, “I plan to”, and “My plan is to”.

Sentence contains Early Punctuation: One fea-
ture checks for the following punctuation marks
within the first three tokens of the sentence: , : ! This
feature was designed to recognize greetings, such as:
“Hi,” , or “Hiya everyone !”.

Sentence begins with Modal/Verb: One feature
checks if a sentence begins with a modal or verb.
The intuition is to capture interrogative and impera-
tive sentences, since they are likely to be Directives.

Sentence begins with WH Question: One fea-
ture checks if a sentence begins with a WH question
word (Who, When, Where, What, Which, What,
How).

Neighboring Question: One feature checks
whether the following sentence contains a question
mark ‘?’. We observed that in message boards, Di-
rectives often occur in clusters.

751



Sentence Position: Four binary features repre-
sent the relative position of the sentence in the post.
One feature indicates whether it is the first sentence,
one feature indicates whether it is the last sentence,
one feature indicates whether it is the second to last
sentence, and one feature indicates whether the sen-
tence occurs in the bottom 25% of the message. The
motivation for these features is that Expressives of-
ten occur at the beginning and end of the post, and
Directives tend to occur toward the end.

Number of Verbs: One feature represents the
number of verbs in the sentence using four possible
values: 0, 1, 2, >2. Some speech acts classes (e.g.,
Expressives) may occur with no verbs, and rarely
occur in long, complex sentences.

3.2.2 Speech Act Word Clues

We collected speech act word lists (mostly verbs)
from two external sources. In Searle’s original pa-
per (Searle, 1976), he listed words that he consid-
ered to be indicative of speech acts. We discarded
a few that we considered to be overly general, and
we added a few additional words. We also collected
a list of speech act verbs published in (Wierzbicka,
1987). The details for these speech act clue lists are
given below. Our system recognized all derivations
of these words.

Searle Keywords: We created one feature for
each speech act class. The Representative keywords
were: (hypothesize, insist, boast, complain, con-
clude, deduce, diagnose, and claim). We discarded 3
words from Searle’s list (suggest, call, believe) and
added 2 new words, assume and suspect. The Direc-
tive keywords were: (ask, order, command, request,
beg, plead, pray, entreat, invite, permit, advise,
dare, defy, challenge). We added the word please.
The Expressives keywords were: (thank, apolo-
gize, congratulate, condole, deplore, welcome). We
added the words appreciate and sorry. Searle did
not provide any hint on possible indicator words for
Commissives, so we manually defined five likely
Commissive keywords: (plan, commit, promise, to-
morrow, later).

Wierzbicka Verbs: We created one feature that
included 228 speech act verbs listed in the book
“English speech act verbs: a semantic dictionary”

(Wierzbicka, 1987)2.

3.2.3 Semantic Features
All of the previous features are domain-

independent and should be useful for identifying
speech acts sentences across many domains. How-
ever, we hypothesized that semantic entities may
correlate with speech acts within a particular do-
main. For example, consider medical domains. Rep-
resentative speech acts may involve diagnoses and
hypotheses regarding diseases and symptoms. Sim-
ilarly, Commissive speech acts may reveal a doc-
tor’s plan or intention regarding the administration
of drugs or tests. Thus, it may be beneficial for a
classifier to know whether a sentence contains cer-
tain semantic entities. We experimented with two
different sources of semantic information.

Semantic Lexicon: Basilisk (Thelen and Riloff,
2002) is a bootstrapping algorithm that has been
used to induce semantic lexicons for terrorist events
(Thelen and Riloff, 2002), biomedical concepts
(McIntosh, 2010), and subjective/objective nouns
for opinion analysis (Riloff et al., 2003). We
ran Basilisk over our collection of 15,383 veteri-
nary message board posts to create a semantic lex-
icon for veterinary medicine. As input, Basilisk
requires seed words for each semantic category.
To obtain seeds, we parsed the corpus using a
noun phrase chunker, sorted the head nouns by fre-
quency, and manually identified the 20 most fre-
quent nouns belonging to four semantic categories:
DISEASE/SYMPTOM, DRUG, TEST, and TREAT-
MENT.

However, the induced TREATMENT lexicon was
of relatively poor quality so we did not use it. The
DISEASE/SYMPTOM lexicon appeared to be of good
quality, but it did not improve the performance of
our speech act classifiers. We suspect that this is due
to the fact that diseases were not distinguised from
symptoms in our lexicon.3 Representative speech
acts are typically associated with disease diagnoses

2openlibrary.org/b/OL2413134M/English_
speech_act_verbs

3We induced a single lexicon for diseases and symptoms be-
cause it is difficult to draw a clear line between them seman-
tically. A veterinary consultant explained to us that the same
term (e.g., diabetes) may be considered a symptom in one con-
text if it is secondary to another condition (e.g., pancreatitis) but
a disease in a different context if it is the primary diagnosis.
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and hypotheses, rather than individual symptoms.
In the end, we only used the DRUG and TEST se-

mantic lexicon in our classifiers. We used all 1000
terms in the DRUG lexicon, but only used the top
200 TEST words because the quality of the lexicon
seemed questionable after that point.

Semantic Tags: We also used bootstrapped con-
textual semantic taggers (Huang and Riloff, 2010)
that had been previously trained for the domain of
veterinary medicine. These taggers assign seman-
tic class labels to noun phrase instances based on
the surrounding context in a sentence. The tag-
gers were trained on 4,629 veterinary message board
posts using 10 seed words for each semantic cate-
gory (see (Huang and Riloff, 2010) for details). To
ensure good precision, only tags that have a confi-
dence value ≥ 1.0 were used. Our speech act classi-
fiers used the tags associated with two semantic cat-
egories: DRUG and TEST.

3.3 Classification

To create our classifiers, we used the Weka (Hall et
al., 2009) machine learning toolkit. We used Sup-
port Vector Machines (SVMs) with a polynomial
kernel and the default settings supplied by Weka.
Because a sentence can include multiple speech acts,
we created a set of binary classifiers, one for each of
the four speech act classes. All four classifiers were
applied to each sentence, so a sentence could be as-
signed multiple speech act classes.

4 Evaluation

4.1 Data Set

Our data set consists of message board posts from
the Veterinary Information Network (VIN), which is
a web site (www.vin.com) for professionals in vet-
erinary medicine. Among other things, VIN hosts
message board forums where veterinarians and other
veterinary professionals can discuss issues and pose
questions to each other. Over half of the small an-
imal veterinarians in the U.S. and Canada use the
VIN web site.

We obtained 15,383 VIN message board threads
representing three topics: cardiology, endocrinol-
ogy, and feline internal medicine. We did basic
cleaning, removing html tags and tokenizing num-
bers. We then applied the Stanford part-of-speech

tagger (Toutanova et al., 2003) to each sentence to
obtain part-of-speech tags for the words. For our ex-
periments, we randomly selected 150 message board
threads from this collection. Since the goal of our
work was to study speech acts in sentences, and not
the conversational dialogue between different writ-
ers, we used only the initial post of each thread.
These 150 message board posts contained a total of
1,956 sentences, with an average of 13.04 sentences
per post. In the next section, we explain how we
manually annotated each sentence in our data set to
create gold standard speech act labels.

4.2 Gold Standard Annotations

To create training and evaluation data for our re-
search, we asked two human annotators to manually
label sentences in our message board posts. Iden-
tifying speech acts is not always obvious, even to
people, so we gave them detailed annotation guide-
lines describing the four speech act classes discussed
in Section 3.1. Then we gave them the same set of
50 message board posts from our collection to an-
notate independently. Each annotator was told to
assign one or more speech act classes to each sen-
tence (COM, DIR, EXP, REP), or to label the sen-
tence as having no speech acts (NONE). The vast
majority of sentences had either no speech acts or
at most one speech act, but a small number of sen-
tences contained multiple types of speech acts.

We measured the inter-annotator agreement of the
two human judges using the kappa (κ) score (Car-
letta, 1996). However, kappa agreement scores are
only applicable to labelling schemes where each in-
stance receives a single label. Therefore we com-
puted kappa agreement in two different ways to look
at the results from two different perspectives. In the
first scheme, we discarded the small number of sen-
tences that had multiple speech act labels and com-
puted kappa on the rest.4 This produced a kappa
score of .95, suggesting extremely high agreement.
However, over 70% of the sentences in our data set
have no speech act at all, so NONE was by far the
most common label. Consequently, this agreement
score does not necessarily reflect how consistently
the judges agreed on the four speech act classes.

4Of the 594 sentences in these 50 posts, only 22 sentences
contained multiple speech act classes.
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In the second scheme, we computed kappa for
each speech act category independently. For each
category C, the judges were considered to be in
agreement if both of them assigned category C to
the sentence or if neither of the judges assigned cat-
egory C to the sentence. Table 1 shows the κ agree-
ment scores using this approach.

Speech Act Kappa (κ) score
Expressive .97
Directive .94
Commissive .81
Representative .77

Table 1: Inter-annotator (κ) agreement

Inter-annotator agreement was very high for both
the Expressive and Directive classes. Agreement
was lower for the Commissive and Representative
classes, but still relatively good so we felt comfort-
able that we had high-quality annotations.

To create our final data set, the two judges adjudi-
cated their disagreements on this set of 50 posts. We
then asked each annotator to label an additional (dif-
ferent) set of 50 posts each. All together, this gave
us a gold standard data set consisting of 150 anno-
tated message board posts. Table 2 shows the distri-
bution of speech act labels in our data set. 71% of
the sentences did not include any speech acts. These
were usually expository sentences containing factual
information. 29% of the sentences included one or
more speech acts, so nearly 1

3 of the sentences were
conversational in nature. Directive and Expressive
speech acts are by far the most common, with nearly
26% of all sentences containing one of these speech
acts. Commissive and Representative speech acts
are less common, each occurring in less than 3% of
the sentences.5

4.3 Experimental Results

4.3.1 Speech Act Filtering
For our first experiment, we created a speech act

filtering classifier to distinguish sentences that con-
tain one or more speech acts from sentences that do
not contain any speech acts. Sentences labelled as

5These numbers do not add up to 100% because some sen-
tences contain multiple speech acts.

Speech Act # sentences distribution
None 1397 71.42%
Directive 311 15.90%
Expressive 194 9.92%
Representative 57 2.91%
Commissive 51 2.61%

Table 2: Speech act class distribution in our data set.

having one or more speech acts were positive in-
stances, and sentences labelled as NONE were neg-
ative instances. Speech act filtering could be useful
for many applications, such as information extrac-
tion systems that only seek to extract facts. For ex-
ample, information may be posed as a question (in
a Directive) rather than a fact, information may be
mentioned as part of a future plan (in a Commis-
sive) that has not actually happened yet, or informa-
tion may be stated as a hypothesis or suspicion (in a
Representative) rather than as a fact.

We performed 10-fold cross validation on our set
of 150 annotated message board posts. Initially, we
used all of the features defined in Section 3.2. How-
ever, during the course of our research we discov-
ered that only a small subset of the lexical and syn-
tactic features seemed to be useful, and that remov-
ing the unnecessary features improved performance.
So we created a subset of minimal lexsyn features,
which will be described in Section 4.3.2. For speech
act filtering, we used the minimal lexsyn features
plus the speech act clues and semantic features.6

Class P R F
Speech Act .86 .83 .84
No Speech Act .93 .95 .94

Table 3: Precision, Recall, F-measure for speech act fil-
tering.

Table 3 shows the performance for speech act
filtering with respect to Precision (P), Recall (R),
and F-measure score (F).7 The classifier performed
well, recognizing 83% of the speech act sentences
with 86% precision, and 95% of the expository (no

6This is the same feature set used to produce the results for
row E of Table 4.

7We computed an F1 score with equal weighting of preci-
sion and recall.
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Commissives Directives Expressives Representatives
Features P R F P R F P R F P R F

Baselines
Com baseline .45 .08 .14 - - - - - - - - -
Dir baseline - - - .97 .73 .83 - - - - - -
Exp baseline 1 - - - - - - .58 .18 .28 - - -
Exp baseline 2 - - - - - - .97 .86 .91 - - -
Rep baseline - - - - - - - - - 1.0 .05 .10

Classifiers
U Unigram .45 .20 .27 .87 .84 .85 .97 .88 .92 .32 .12 .18
A U+all lexsyn .52 .33 .40 .87 .84 .86 .98 .88 .92 .30 .14 .19
B U+minimal lexsyn .59 .33 .42 .87 .85 .86 .98 .88 .92 .32 .14 .20
C B+speechActClues .57 .31 .41 .86 .84 .85 .97 .91 .94 .33 .16 .21
D C+semTest .64 .35 .46 .87 .84 .85 .97 .91 .94 .33 .16 .21
E D+semDrug .63 .39 .48 .86 .84 .85 .97 .91 .94 .32 .16 .21

Table 4: Precision, Recall, F-measure for four speech act classes. The highest F score for each category appears in
boldface.

speech act) sentences with 93% precision.

4.3.2 Speech Act Categorization

BASELINES

Our next set of experiments focused on labelling
sentences with the four specific speech act classes:
Commissive, Directive. Expressive, and Represen-
tative. To assess the difficulty of identifying each
speech act category, we created several simple base-
lines using our intuitions about each category.

For Commissives, we created a heuristic to cap-
ture the most obvious cases of future tense (because
Commissive speech acts represent a writer’s com-
mitment toward a future course of action). For ex-
ample, the presence of the phrases ‘I will’ and ‘I
shall’ were hypothesized by Cohen et al. (2004) to
be useful bigram clues for Commissives. This base-
line looks for future tense verb phrases with a 1st
person pronoun within one or two words preceding
the verb phrase. The Com baseline row of Table 4
shows the results for this heuristic, which obtained
8% recall with 45% precision. The heuristic applied
to only 9 sentences in our test set, 4 of which con-
tained a Commissive speech act.

Directive speech acts are often questions, so we
created a baseline system that labels all sentences
containing a question mark as a Directive. The Dir
baseline row of Table 4 shows that 97% of sentences

with a question mark were indeed Directives.8 But
only 73% of the Directive sentences contained a
question mark. The remaining 27% of Directives
did not contain a question mark and generally fell
into two categories. Some sentences asked a ques-
tion but the writer ended the sentence with a period
(e.g., “Has anyone seen this before.”). And many di-
rectives were expressed as requests rather than ques-
tions (e.g., “Let me know if anyone has a sugges-
tion.”).

For Expressives, we implemented two baselines.
Exp baseline 1 simply looks for an exclamation
mark, but this heuristic did not work well (18% re-
call with 58% precision) because exclamation marks
were often used for general emphasis (e.g., “The
owner is frustrated with cleaning up urine!”). Exp
baseline 2 looks for the presence of four common
expressive words (appreciate, hi, hello, thank), in-
cluding morphological variations of appreciate and
thank. This baseline produced very good results,
86% recall with 97% precision. Obviously a small
set of common expressions account for most of the
Expressive speech acts in our corpus. However, the
word “hi” did produce some false hits because it was
used as a shorthand for “high”, usually when report-
ing test results (e.g., “hi calcium”).

8235 sentences contained a question mark, and 227 of them
were Directives.
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Finally, as a baseline for the Representative class
we simply looked for the words diagnose(d) and sus-
pect(ed). The Rep baseline row of Table 4 shows
that this heuristic was 100% accurate, but only pro-
duced 5% recall (matching 3 of the 57 Representa-
tive sentences in our test set).

CLASSIFIER RESULTS

The bottom portion of Table 4 shows the results
for our classifiers. As we explained in Section 3.3,
we created one classifier for each speech act cate-
gory, and all four classifiers were applied to each
sentence. So a sentence could receive anywhere
from 0-4 speech act labels indicating how many dif-
ferent types of speech acts appeared in the sentence.
We trained and evaluated each classifier using 10-
fold cross-validation on our gold standard data set.

The Unigram (U) row shows the performance of
classifiers that use only unigram features. For Di-
rectives, we see a 2% F-score improvement over the
baseline, which reflects a recall gain of 11% but
a corresponding precision loss of 10%. The uni-
grams are clearly helpful in identifying many Direc-
tive sentences that do not end in a question mark,
but at some cost to accuracy. For Expressives, the
unigram classifier achieves an F score of 92%, iden-
tifying slightly more Expressive sentences than the
baseline with the same level of precision. For Com-
missives and Representatives, the unigram classi-
fiers performed susbtantially better than their corre-
sponding baseline systems, but performance is still
relatively weak.

Row A (U+ all lexsyn) in Table 4 shows the re-
sults using unigram features plus all of the lexical
and syntactic features described in Section 3.2.1.
The lexical and syntactic features dramatically im-
prove performance on Commissives, increasing F
score from 27% to 40%, and they produce a 2% re-
call gain for Representatives but with a correspond-
ing loss of precision.

However, we observed that only a few of the lex-
ical and syntactic features had much impact on per-
formance. We experimented with different subsets
of the features and obtained even better performance
when using just 10 of them, which we will refer to as
the minimal lexsyn features. The minimal lexsyn fea-
ture set consists of the 4 Tense+Person features, the
Early Punctuation feature, the Sentence begins with

Modal/Verb feature, and the 4 Sentence Position fea-
tures. Row B shows the results using unigram fea-
tures plus only these minimal lexsyn features. Preci-
sion improves for Commissives by an additional 7%
and Representatives by 2% when using only these
lexical and syntactic features. Consequently, we use
the minimal lexsyn features for the rest of our exper-
iments.

Row C shows the results of adding the speech act
clue words (see Section 3.2.2) to the feature set used
in Row B. The speech act clue words produced an
additional recall gain of 3% for Expressives and 2%
for Representatives, although performance on Com-
missives dropped 2% in both recall and precision.

Rows D and E show the results of adding the se-
mantic features. We added one semantic category
at a time to measure the impact of them separately.
Row D adds two semantic features for the TEST cat-
egory, one from the Basilisk lexicon and one from
the semantic tagger. The TEST semantic features
produced an F-score gain of 5% for Commissives,
improving recall by 4% and precision by 7%. Row
E adds two semantic features for the DRUG category.
The DRUG features produced an additional F-score
gain of 2% for Commissives, improving recall by
4% with a slight drop in precision.

4.4 Analysis
Together, the TEST and DRUG semantic features dra-
matically improved the classifier’s ability to recog-
nize Commissive speech acts, increasing its F score
from 41% → 48%. This result demonstrates that
in the domain of veterinary medicine, some types
of semantic entities are associated with speech acts.
Our intuition behind this result is that commitments
are usually related to future actions. In veterinary
medicine, TESTS and DRUGS are associated with ac-
tions performed by doctors. Doctors help their pa-
tients by prescribing or administering drugs and by
conducting tests. So these semantic entities may
serve as a proxy to implicitly represent actions that
the doctor has done or may do. In future work, ex-
plicitly recognizing actions and events many be a
worthwhile avenue to further improve results.

We achieved good success at identifying both Di-
rectives and Expressives, although simple heuristics
also perform well on these categories. We showed
that training a Directive classifier can help to iden-
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tify Directive sentences that do not end with a ques-
tion mark, although at the cost of some precision.

The Commissive speech act class benefitted the
most from the rich feature set. Unigrams are clearly
not sufficient to identify Commissive sentences.
Many different types of clues seem to be important
for recognizing these sentences. The improvements
obtained from adding semantic features also sug-
gests that domain-specific semantics can be useful
for recognizing some speech acts. However, there is
still ample room for improvement, illustrating that
speech act classification is a challenging problem.

Representative speech acts were by far the most
difficult to recognize. We believe that there are
several reasons for their low performance. First,
Representatives were sparse in the data set, occur-
ring in only 2.91% of the sentences. Consequently,
the classifier had relatively few positive training
instances. Second, Representatives had the low-
est inter-annotator agreement, indicating that human
judges had difficulty recognizing these speech acts
too. The judges often disagreed about whether a
hypothesis or suspicion was the writer’s own belief
or whether it was stated as a fact reflecting general
medical knowledge. The message board text genre
is especially challenging in this regard because the
writer is often presumed to be expressing his/her be-
liefs even when the writer does not explicitly say so.
Finally, our semantic features could not distinguish
between diseases and symptoms. Access to a re-
source that can reliably identify disease terms could
potentially improve performance in this domain.

5 Conclusions

Our goal was to identify speech act sentences in
message board posts and to classify the sentences
with respect to four categories in Searle’s (1976)
speech act taxonomy. We achieved good results for
speech act filtering and the identification of Direc-
tive and Expressive speech act sentences. We found
that Representative and Commissive speech acts are
much more difficult to identify, although the per-
formance of our Commissive classifier substantially
improved with the addition of lexical, syntactic, and
semantic features. Except for the semantic class
information, our feature set is domain-independent
and could be used to recognize speech act sentences

in message boards for any domain. Furthermore, our
features only rely on part-of-speech tags and do not
require parsing, which is of practical importance for
text genres such as message boards that are littered
with ungrammatical text, typos, and shorthand nota-
tions.

In future work, we believe that segmenting sen-
tences into clauses may help to train classifiers more
precisely. Ultimately, we would like to identify
the speech act expressions themselves because some
sentences contain speech acts as well as factual in-
formation. Extracting the speech act expressions
and clauses from message boards and similar text
genres could provide better tracking of questions
and answers in web forums and be used for sum-
marization.
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Abstract

Information-oriented document labelingis a
special document multi-labeling task where
the target labels refer to a specific information
instead of the topic of the whole document.
These kind of tasks are usually solved by look-
ing up indicator phrases and analyzing their
local context to filter false positive matches.
Here, we introduce an approach for machine
learning local content shifterswhich detects
irrelevant local contexts using just the origi-
nal document-level training labels. We handle
content shifters in general, instead of learn-
ing a particular language phenomenon detec-
tor (e.g. negation or hedging) and form a sin-
gle system for document labeling and content
shift detection. Our empirical results achieved
24% error reduction – compared to supervised
baseline methods – on three document label-
ing tasks.

1 Introduction

There are special document multi-labeling tasks
where the target labels refer to a specific piece of
information extractable from the document instead
of the overall topic of the document. In these kinds
of tasks the target information is usually an attribute
or relation related to the target entity (usually a per-
son or an organisation) of the document in question,
but the task is to assign class labels at the document
(entity) level. For example, the smoking habits of
the patients are frequently discussed in the textual
parts of clinical notes (Uzuner et al., 2008). In this
case the task is to find specific information in the
text – i.e. the patient in question is a smoker, past

smoker, non-smoker – but at the end an applica-
tion has to assign labels to the documents(patients).
Similarly, the soccer club names where a sportsman
played for are document(sportman)-level labels in
Wikipedia articles expressed by the Wikipedia cat-
egories. The target information in these tasks is
usually just mentioned in the document and much
of the document is irrelevant for this information
request in contrast to standard document classifi-
cation tasks where the goal is to identify the top-
ics of the whole document. On the other hand,
they are not a standard information extraction task
as the task is to assign class labels to documents,
and the training dataset contains labels just at this
level. These special tasks lie somewhere between
information extraction and document classification
and require special approaches to solve them. We
will call them Information-oriented document label-
ing throughout this paper. There are several appli-
cation areas where information-oriented document
labels are naturally present in an enormous amount
like clinical records, Wikipedia categories and user-
generated tags of news.

Previous evaluation campaigns (Uzuner et al.,
2008; Pestian et al., 2007; Uzuner, 2009) demon-
strated that information-oriented document labeling
can be effectively performed by looking upindicator
phraseswhich can be gathered by hand, by corpus
statistics or in a hybrid way. However these cam-
paigns also highlighted that the analysis of thelocal
contextof the indicator phrases is crucial. For in-
stance, in the smoking habit detection task there are
a few indicator words (e.g.smokes, cigarette) and
the local context of their occurrences in texts should
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be analysed to see whether their semantic was rad-
ically changed (e.g. they are negated or in a past
tense), for instance:

The patient has a 20 pack-year smoking
history.

The patient denies any smoking history.

He has a greater than 100 pack year
smoking history and quit 9 to 10 years
ago.

We propose a simple but efficient approach for
information-oriented document labeling tasks by ad-
dressing the automatic detection of language phe-
nomena for a particular task which alters the sense
or information content of the indicator phrase’s oc-
currences. For example, they may be logical modi-
fiers (e.g. negation) or modal modifiers (e.g. auxil-
iaries likemightandcan); they may refer to a subject
which differs from the target entity of the task (e.g.
clinical notes usually contain information about the
family history of the patient); or the semantic con-
tent of the shifter may change the role of the tar-
get span of a text (e.g. a sportsman can playfor or
againsta particular team). We call these phenom-
enacontent shiftersand the task of identifying them
content shift detection (CSD).

Existing CSD approaches focus on a particular
class of language phenomena (especially negation
or hedging) and use hand-crafted rules (Chapman et
al., 2007) or a supervised learning approach that ex-
ploits corpora manually annotated at the token-level
for a particular type of content shifter (Morante et
al., 2009). Moreover higher level applications (like
document labeling and information extraction) use a
separate CSD module which is developed indepen-
dently from the target task. We argue that the nature
of content shifters is domain and task dependent, so
training corpora (at the token-level) are required for
content shifters which are important for a particular
task but the construction of such training corpora is
expensive. Here, we propose an alternative approach
which uses only document-level labels.

The input of our system is a training corpus la-
beled on the document level (e.g. a clinical dataset
consisting clinical notes and meta-data about pa-
tients). Our approach extracts indicator phrases and
trains a CSD jointly. We focus on local content

shifters and we analyse just the sentences of indi-
cator phrase occurrences. Our chief assumption is
that CSD can be learnt by exploiting the false pos-
itive occurrences of indicator phrases in the train-
ing dataset. We show that our method performs sig-
nificantly better than standard document classifiers
(which were designed for a slightly different task).

The chief contributions of our work are that (i)
we handle the CSD problem in general, so we de-
tect all content shifters instead of focusing on one
particular language phenomenon, (ii) we form a sin-
gle framework for joint CSD and document labeling,
(iii) moreover our approach does not require a dedi-
cated annotated training dataset for content shifters.

2 Related Work

Information-oriented document classification tasks
were first highlighted in the clinical domain where
medical reports contain useful information about the
patient in question, but labels are only available at
the document (patient) level. The field of clinical
NLP has been studied extensively since the 1990s
(Larkey and Croft, 1995), but the most recent results
are related to the shared task challenges organized
relatively recently (Pestian et al., 2007; Uzuner et
al., 2008; Uzuner, 2009). For example the first
I2B2 challenge in 2006 (Uzuner et al., 2008) fo-
cused on the smoking habits of the patient, the CMC
challenge in 2007 (Pestian et al., 2007) dealt with
the problem of automatically constructing ICD cod-
ing systems and the second I2B2 challenge (Uzuner,
2009) addressed the classification of discharge sum-
maries according to the question ”Who’s obese and
what co-morbidities do they have?”. These chal-
lenges were dominated by entirely or partly rule-
based systems that solved the tasks using indicator
phrase lookup and incorporated explicit mechanisms
for detecting speculation and negation.

Another domain for information-oriented docu-
ment classification might be Wikipedia, which con-
tains rich information about entities like persons,
places or organisations. Some items of information
are available about these entities in the form of cate-
gories and infoboxes assigned to articles. Automatic
document labeling methods can be trained based on
these assignments (Schönhofen, 2006), but these la-
bels do not refer to the main theme of the article but
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to a certain type of information.
Existing content shift detection approaches focus

on a particular class of language phenomena, espe-
cially on negation and hedge recognitions. Avail-
able tools work mainly on clinical and biological
domains. The first systems were fully hand-crafted
(Light et al., 2004; Friedman et al., 1994; Chapman
et al., 2007) without any empirical evaluation on a
dedicated corpus. Recently, there have been several
corpora published with manual sentence-, event- or
token-level annotation for negation, certainty and
factuality in the biological (Medlock and Briscoe,
2007; Vincze et al., 2008), newswire (Strassel et al.,
2008; Sauri and Pustejovsky, 2009) and encyclope-
dical (Farkas et al., 2010) domains.

Exploiting these corpora, machine learning mod-
els were also developed. Solving the sentence-
level task, Medlock and Briscoe (2007) used sin-
gle words as input features in order to classify sen-
tences from biological articles as speculative or non-
speculative. Szarvas (2008) extended their method-
ology to use n-gram features and a semi-supervised
selection of the keyword features. Ganter and Strube
(2009) proposed an approach for the automatic de-
tection of sentences containing uncertainty based
on Wikipedia weasel tags and syntactic patterns.
For in-sentence negation and speculation detection,
Morante et al. (2009) developed scope – i.e. con-
tent shifted text spans – detectors for negation and
speculation following a supervised sequence label-
ing approach, whilëOzgür and Radev (2009) devel-
oped a rule-based system that exploits syntactic pat-
terns. The goal of the CoNLL 2010 Shared Task
(Farkas et al., 2010) was to develop linguistic scope
detectors as well. The participants usually followed
a supervised sequence labeling approach or used a
rule-based system that exploits syntactic patterns.
The approach of classifying identified events into
whether they fall under negation or speculation was
followed by Sauri and Pustejovsky (2009) and the
participants of the BioNLP’09 Shared Task (Kim et
al., 2009). Here the systems investigated the syn-
tax path between the event trigger and a cue word
(which came from a small lexicon) (Kilicoglu and
Bergler, 2009; Aramaki et al., 2009).

Our approach differs from the previous works
fundamentally. We deal with the two tasks
(information-oriented document classification and

content shift detection) together and introduce a co-
learning approach for them. Our approach han-
dles content shifters in a data-driven and general-
ized way i.e. it is not specialized for a certain class
of language phenomena. Instead it tries to recog-
nize task-specific syntactic and semantic patterns
which are responsible for semantic changes or irrel-
evance. In addition, we have no access to a gold-
standard sentence-level or in-sentence-level annota-
tion but exploit document-level ones.

3 Tasks and Datasets

Before introducing our approach in detail we de-
scribe three tasks and datasets which were used in
our experiments in order to give an insight into the
challenges of the information-oriented document la-
beling tasks. Table 1 summarizes the key statistical
figures (the number of documents in the corpora, the
size of the label sets along with the average number
of tokens and label assignments per document) of
the datasets used for the experimental evaluations.

Table 1: The datasets used in our experiments.
CMC Obes Soccer

domain clinical clinical encycl.
|train| 978 730 4850
|eval| 976 507 1736
#token/d 25 1387 389
#labels 45 16 12
#label/d 1.24 4.37 1.23

The CMC ICD Coding Dataset was originally
prepared for a shared task challenge organized by
the Computational Medicine Center (CMC) in Cin-
cinatti, Ohio in 2007 (Pestian et al., 2007). It con-
tains radiology reports along with document-level
International Classification of Diseases (ICD) codes
given by three human experts. ICD is a coding of
diseases, signs, symptoms and abnormal findings. In
our experiments we used the train/evaluation split of
the shared task. The ICD coding guide states that
negative or uncertain diagnosis should not be coded
in any case.

The corpus contains very short documents. For
instance, the document

HISTORY: Left lower chest pain. Rule-out
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pneumonia. IMPRESSION: Normal chest.

has one label786.50 (cough)as486 (pneumonia)is
ruled out.

The main conclusion of the shared task in 2007
was that simple rule-based systems generally out-
perform bag-of-words-based machine learning mod-
els. The rules were extracted from ICD guidelines
and/or from the training corpus using simple sta-
tistical measures, then they were checked or ex-
tended manually. Several systems of the challenge
employed a negation and speculation detection sub-
module. The (manually highly fine-tuned) top sys-
tems of the CMC shared task achieved an F-measure
of 88-89 (Pestian et al., 2007; Farkas and Szarvas,
2008).

The I2B2 Obesity Dataset was also the subject
of a clinical natural language processing shared
task. The challenge in 2008 focused on analyzing
clinical discharge summary texts and addressed the
following question: ”Who is obese and what co-
morbidities do they have?” (Uzuner, 2009). Tar-
get diseases (document labels) included obesity and
its 15 most frequent co-morbidities exhibited by
patients. In our experiments, we used the same
train/evaluation split as that of the shared task. Here
a special aspect of the corpus is that the docu-
ments are semi-structured, i.e. they contain head-
ings like discharge medicationsandadmit diagno-
sis. By pasting the given heading to the beginning
of each sentence, we incorporated it into the local
context. The top performing systems of the shared
task employed mostly hand-crafted rules for indica-
tor selection and for negation and uncertainty detec-
tion as well. They achieved an F-measure1 of 96-97
(Uzuner, 2009; Solt et al., 2009).

Wikipedia Soccer Dataset. We constructed a cor-
pus based on Wikipedia articles and categories2.
The categories assigned to Wikipedia articles can be
regarded as labels (for example, the labels ofDavid
Beckhamin the Wikipedia areEnglish people, ex-
patriate soccer player, male modelandA.C. Milan
player, Manchester United player). Based on the

1Using the definitions of the challenge, the evaluation metric
applied here is the micro F-measure of the textual task on the
YES versus every other class.

2The dataset is available as the supplementary material.

categories of Wikipedia, classifiers can be trained to
tag unlabeled texts or even add missing category as-
signments to Wikipedia (Schönhofen, 2006).

For a case study we focused on learning En-
glish soccer clubs that a given sportsman played
for. Note that this task is an information-oriented
document labeling task as the clubs for which a
sportsman played are usually just mentioned (espe-
cially for smaller clubs) in the article of a player.
The Wikipedia categoryFootballers in England by
club contains 408 subcategories (for the present and
past). We selected the best known clubs (where the
category label for the club is assigned to more than
500 player pages). Each article referring to a player
having a category assignment to these clubs was
downloaded and the textual parts were extracted.
Then a random 3:1 train:evaluation split of the doc-
ument set was used.

4 Document-labeling with CSD

We introduce here an iterative solution which selects
indicator phrases and trains a content shift detec-
tor at the same time. Our focus will be onmulti-
label document classificationtasks where multiple
class labels can be assigned to a single document.
In this study we will not deal with the modeling of
inter-label dependencies, so binary (positive versus
negative) and multi-class document classifications
(where exactly one label has to be assigned to a sin-
gle document) can be regarded as special cases of
this multi-label classification problem. Our result-
ing multi-label model is then a set of binary classi-
fiers – ”assign a label” classifiers for each class label
– and the final prediction on a document is simply
the union of the labels forecasted by the individual
classifiers.

Our key assumption in the multi-label environ-
ment is that while indicator phrases have to be se-
lected on a per class basis, the content shifters can be
learnt in a class-independent (aggregated) way i.e.
we can assume that within one task, each class label
belongs to a given semantic domain (determined by
the task), thus the content shifters for their indicator
phrases are the same. This approach provides an ad-
equate amount of training samples for content shift
detector learning.
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Table 2: Example feature representation of local contexts of Arsenal. The prefix NP stands for the lemma features
from the deepest noun phrase; D,DR and DEP marks the lemmas, roles and their combination in the dependency path,
respectively; SUBJ and SUBJD denote the lemmas and dependency roles on the ”subject path”, respectively.

His brother, Paul had a long career at Newcastle. (sentenceId=1, indicator=Newcastle)
bag-of-word features syntax-based features

he, brother, Paul, have, NP#a, NP#long, NP#career, NP#at
a, long, career, at D#career, D#have, DR#prepat, DR#dobj, DEP#career#prepat, DEP#have#dobj

SUBJ#brother, SUBJ#Paul, SUBJ#he, SUBJD#he#poss
He was born in Gosforth, Newcastle and played for Arsenal. (sentenceId=2, indicator=Arsenal)

bag-of-word features syntax-based features
he, be, bear, in, Gosforth, D#play, DR#prepfor, DEP#play#prepfor
Newcastle, and, play, for SUBJ#he

4.1 Learning Content Shift Detectors

The key idea behind our approach is that a training
corpus for task-specific content shifter learning can
be automatically generated by exploiting the occur-
rences of indicators in various contexts. The local
context of an indicator is assumed to have altered if
it yields a false positive document-level prediction.
More precisely, a training dataset can be constructed
for learning a content shift detector in a way that the
instances are the local contexts of each occurrence of
indicator phrases in the training document set. The
instances of this content shifter training dataset are
then labeled asnon-altered when the indicated
label is among the gold-standard labels of the doc-
ument in question or is labeled asaltered other-
wise. On this dataset, arbitrary binary classification
models (S) can be trained.

As a feature representation of a local context of an
indicator phrase, the bag-of-words of the sentence
instance (excluding the indicator phrase itself) was
used at the beginning. Our preliminary experiments
showed that the tokens of the sentence after the indi-
cator played a negligible role, hence we represented
contexts just by tokens before the indicator.

Features concerning the syntactic context of the
given indicator were also investigated. For this, we
extended the feature set with features derived from
the constituent and dependency parses of the sen-
tence3. First, the deepest noun phrase which in-
cludes the indicator phrase was identified, then all

3We parse only the sentences which contain indicator phrase
which makes these features computable in reasonable time even
on bigger document sets.

lemmas from its subtree were gathered. From the
dependency parse, the lemmas and dependency la-
bels on the directed path from the indicator to the
root node (main path) were extracted. The directed
paths branching from this main path starting with
subject dependency were also used for feature
extraction (note that these walk in opposite direction
to that of the main path). The intuition of the latter
was that the subject of the given information – as it
can differ from the target entity of extraction – is of
great importance. We note that we recognize the in-
sentence subject and employing a co-reference mod-
ule would probably increase the value of these fea-
tures.

Table 2 exemplifies the feature representation of
local contexts of theNewcastleand Arsenal indi-
cators for the Wikipedia soccer task. In both sen-
tences, a naive system would extractNewcastleas
false positives. We want to learn content shifters
from them along with the true positive match of
Arsenal in sentence 2. From the first example the
CSD could learn even that the bag-of-word con-
tains brother or the SUBJ=brother. However, in
the second example, the bag-of-word representa-
tion is not sufficient to learn that the local context
of Newcastleis altered because it is the sub-
set of the bag-of-word representation ofArsenal’s
non-altered local context. In this case the syn-
tactic context representation can help and in our
CSD DEP=play#prepfor gets high weight for the
non-altered class.
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4.2 Co-learning of Indicator Selection and CSD

If document labels are available at training time,
an iterative approach can be used to learn the local
content shift detector and the indicator phrases as
well. The training phase of this procedure (see Al-
gorithm 1) has two outputs, namely the set of indica-
tor phrases for each labelI and the content shift de-
tectorS which is a binary function for determining
whether the sense of an indicator in a particular local
context is being altered. Good indicator phrases are
those that identify the class label in question when
they are present. In each step of the iteration we se-
lect indicator phrasesI[l] for each labell based on
the actual state of the document setD′. Using these
I[l]s we train a CSDS. Then we apply it to the orig-
inal datasetD and we delete each local context from
the documents which was predicted to be altered by
S.

Algorithm 1 Co-learning of labels and CSD
Input: L class labels,D labeled training documents

D′ ← D
repeat

for all l ∈ L do
I[l]← indicatorSelection(D′ , l)

end for
S ← learnCSD(D′, I)
D′ ← removeAlteredParts(D,S)

until convergence
return I, S

The indicator selection and content shifter learn-
ing phases can form an iterative process. The bet-
ter the selected indicators are, the better the content
shift detectors can be learnt. By applying the content
shift detector to each token of the documents, each
part of the texts lying within the scope of a content
shifter can be removed4. By using such a cleaned
training document set (D′), better indicators can be
selected. These steps can be repeated until some
convergence criterion is reached. In our experiments
we simply used a fixed iteration number to gain an
insight into the behavior of the approach.

4In our first experiments introduced here, we removed the
parts of the documents classified as altered. Instead of removing
these parts they may be marked and then different features may
be extracted from them.

Algorithm 2 Document labeling with CSD
Input: d document,I indicator sets,S CSD

pred← ∅
for all l ∈ L do

for all o ∈ occurrences(d, I[l]) do
if not altered(o, S) then

pred← pred∪ l
end if

end for
end for
return pred

The prediction procedure of the approach (see Al-
gorithm 2) then looks for occurrences of the indica-
tor phrases in the text and checks whether they are
altered in a certain local context. A non-altered indi-
cator directly assigns a class label without any global
consistency check on assigned labels.

We note here, that the local relationship among
tokens (i.e. the local context) may be taken into
account by incorporating this information directly
into the feature space of a document classifier (as
an alternative of our co-learning procedure), but
the number of features would exponentially increase
and submodels for each indicator phrases should be
learnt which would made such a classification task
intractable.

4.3 Indicator Phrase Selection

Indicator phrases are sequences of tokens whose
presence implies the positive class. We aimed to
extract phrases with the length of 1,2 or 3 (and we
used exact matching after lemmatisation). There are
several possible ways of developing indicator selec-
tion algorithms. One way is to treat it as a special
feature selection procedure where the goal is to se-
lect a set of features (uni-, bi-, trigrams of a bag-
of-word model) which achieves high recall along
with moderate precision as false positives are ex-
pected to be eliminated by the local CSD in our two-
step approach. Indicator selectors can be even de-
rived from most classifiers which are based on fea-
ture weighting (like MaxEnt and AvgPerceptron) or
feature ranking (like rule-based classifiers)5 as well.
However indicator selection is not the focus of this

5A derivation is more complicated or unfeasible for
example-based classifiers like SVMs.
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Table 3: Results obtained for local content shift detectionin a precision/recall/F-measure format.
CMC Obesity Soccer

Trained
BoW 90.7 / 60.7 / 72.7 82.1 / 35.4 / 49.4 75.0 / 70.6 / 72.7
BoW+syntactic 88.3 / 60.2 / 71.6 84.4 / 33.3 / 47.8 81.0 / 78.9 / 79.9

Hand-
crafted

CSSDB 94.7 / 53.3 / 68.2 42.0 / 57.9 / 48.7 36.8 / 9.8 / 15.5
in-sentence 80.7 / 65.2 / 72.2 70.5 / 40.5 / 51.5 N/A

work.
For our experiments, a feature evaluation-based

greedy algorithm was employed to select the set of
indicators from the pool of token uni- and bigrams.
The aim of the the indicator selection here is to cover
each positive documents while introducing a rela-
tively small amount of false positives. The greedy
algorithm iteratively selects the 1-best phrase ac-
cording to a feature evaluation metric based on the
actual state of covered documents and adds it to the
indicator phrase set. The process is iterated while
the score – in terms of the applied feature evaluation
metric – of the 1-best phrase is above a threshold
t. The quality of the selected indicator set is highly
dependent on the stopping thresholdt, but as indi-
vidual feature evaluation functions are very fast and
the number of good indicators is usually low (4-5),
the whole greedy indicator selection is fast, hencet
can be fine-tuned without overfitting on the training
sets employing a cross-validation procedure. As a
feature evaluation metric we employedp(+|f) the
probability of the positive class ”+” conditioned on
the presence of a featuref because preliminary ex-
periments did not show any significant advances for
more complex metrics.

5 Experiments

Experiments were carried out on the three datasets
introduced in Section 3 with local content shift de-
tection as an individual task and also to investigate
its added value to information-oriented document la-
beling.

In our experiments, we applied the sentence split-
ter and lemmatizer implementation of the Mor-
phAdorner package6 and the Stanford tokenizer
and lexicalized PCFG parser (Klein and Manning,
2003)7.

6morphadorner.northwestern.edu/
7The JAVA implementation of the entire framework and

5.1 Content Shifter Learning Results

In order to evaluate content shift detection as an indi-
vidual task, a set of indicator phrases have to be fixed
as an input to the CSD. We used manually collected
indicator phrases for each label for each dataset. We
utilized the terms of Farkas and Szarvas (2008) and
Farkas et al. (2009) collected for the CMC and Obe-
sity datasets, respectively and club names for the
Soccer dataset in our first branch of experiments.
Note that the clinical term sets here have been man-
ually fine-tuned as they were developed for partici-
pating systems of the shared tasks of the corpora.

Based on the occurrences of these fixed indicator
phrases, CSDtrain ing datasets were built from the
local contexts of the three datasets and binary clas-
sification was carried out by using MaxEnt. Table
3 shows the results achieved by the learnt CSDs us-
ing the bag-of-word feature representation (row 1)
along with the ones obtained by the feature set that
was extended with syntactic patterns (raw 2). Here,
the precision/recall/F-measure values measure how
many false positive matches of the indicator phrases
can be recognized (the F-measure of thealtered
class), i.e. here, the true positives are local contexts
of an indicator phrase which do not indicate a docu-
ment label in the evaluation set and the local content
shift detector predicted it to bealtered.

For comparison purposes, we employedmanu-
ally developed CSDswhich were fine-tuned for the
medical shared task datasets. Row 3 of Table 3 (we
refer to it ascontent shifted sentence detection base-
line (CSSDB)later on) shows the results archived
by the method which predicts every sentence to be
altered which contain anycue phrasesfor nega-
tion, modality and different experiencer. Note that
off-the-shelf tools are available just for these types
of content shifters. We collected cue phrases for
such a content shifted sentence detection from the

dataset adapters can be found as the supplementary material
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works of Chapman et al. (2007), Light et al. (2004)
and Vincze et al. (2008) and from the experiments of
Farkas and Szarvas (2008) and Farkas et al. (2009).

For the CMC and Obesity tasks, hand-crafted
in-sentence CSDs were also available (Farkas and
Szarvas, 2008; Farkas et al., 2009), i.e. they apply
heuristics – which usually tries to recognise clause
boundaries – for determining the scope of a nega-
ton/modality cue. This CSD is more fine-grained
than the sentence-level one as here a part of a sen-
tence can be detected asalteredwhile other parts
asnon-altered. The results of these detectors –
two different CSDs, both highly fine-tuned for the
corresponding shared task – are listed in the last row
of Table 3.

On the CMC dataset, our machine learning ap-
proach identified mostly negation and speculation
expressions ascontent shifters; the top weighted
features for the positive class of the MaxEnt model
wereno, without, mayandvs. They can filter out
false positive matches like

Hyperinflated without focal pneumonia..

On the Obesity dataset, similar content shifters
were learnt along with references to family mem-
bers (like the termsmotheranduncle, and thefam-
ily history header). The significance of these types
of content shifters may be illustrated by the follow-
ing sentence:

History of hypertension in mother and sis-
ter.

The soccer task highlighted totally different con-
tent shifters which is also the reason for the poor per-
formance of CSSDB. The mention of a club name
which the person in question did not play for (false
positives) is usually a rival club, club of an unsuc-
cessful negotiation or club which was managed by
the footballer after his retirement. For example:

His last game was against Chelsea at
Stamford Bridge.

He was a coach at United during his son’s
playing career.

Summing up, the machine learnt CSDs proved to
be competitive with the manually fine-tuned CSD
on the three datasets. Table 3 shows that learnt

CSDs were able to eliminate a significant amount
of false positive indicator phrase matches on each
of the three datasets. The hand-crafted CSDs de-
veloped for the medical texts certainly work poorly
(an F-score of 15.5) on the Soccer dataset as content
shifters different from negation, hedge and experi-
encer are useful there. On the other hand, the content
shifters could be learnt on this dataset by our CSD
approach (achieving F-score of 79.9). In the clinical
corpora, the features from the syntactic parses just
confused the system, but they proved to be useful
on the Soccer corpus. Here, the dependency parse
achieved improvements in terms of both precision
and recall (the number of true positives increased by
137) which can be mainly attributed to the preposi-
tions againstand over. The reason why it did not
advance on the clinical corpora is probably the do-
main difference between the training corpus of the
parsers and the target texts, i.e. the parsers trained
on the Wall Street Journal could not build adequate
dependency parses on clinical notes.

As a final comparison we investigated the manu-
ally annotated BioScope corpus (Vincze et al., 2008)
as a CSD. The CMC corpus is included in the Bio-
Scope corpus where text spans in the in-sentence
scope of speculation and negation were annotated.
We used this manual annotation as an oracle CSD
and got an F-measure of 75.2 (which is significantly
higher than the scores 72.2 and 72.7 archived by the
hand-crafted and trained CSD respectively). This
score can be regarded as an upper bound for the
amount of false positive indicator matches that can
be fixed by local speculation and negation detec-
tors. The remaining false positives are not covered
by the linguistically motivated annotations of Bio-
Scope, i.e. false positives recognizable by domain
knowledge (e.g. coding symptoms should be omit-
ted when a certain diagnosis that is connected with
the symptom in question is present in the document)
are not marked.

Our error analysis revealed that most of the er-
rors of the learnt CSDs is due to the lack of seman-
tic link between lexical units. For instance, on the
Soccer dataset it could learn that the tokencoach
occuring in the sentence in question indicates an
altered content, but it was not able to recognise
this for trainer. The reason for that is simple, the
ratio of occurrences oftrainer:coach is 5:95 in the
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Table 4: Results obtained by document multi-labeling algorithms in a precision/recall/F-measure format.
rowID CMC Obesity Soccer
1 SVM 87.7 / 76.7 / 81.8 90.0 / 81.3 / 85.4 92.2 / 75.1 / 82.8
2 Baseline MaxEnt with CSSDB 92.2 / 72.2 / 81.0 91.4 / 87.6 / 89.4 92.2 / 77.4 / 84.2
3 PART 83.9 / 80.6 / 82.2 87.3 / 86.4 / 86.8 81.2 / 77.0 / 79.0
4 without CSD 78.0 / 85.1 / 81.4 89.2 / 93.6 / 91.3 84.4 / 83.7 / 84.1
5 Indicator with CSSDB 79.0 / 84.1 / 81.4 94.8 / 86.6 / 91.1 85.2 / 85.5 / 85.3
6 Selection with learnt CSD 83.1 / 83.2 / 83.2 91.7 / 92.9 / 92.3 91.7 / 85.2 /88.3
7 after 3 iterations 82.4 / 86.8 /84.6 92.6 / 95.4 /94.0 92.5 / 84.0 / 88.0
8 after 10 iterations 82.4 / 86.8 / 84.6 92.7 / 95.4 / 94.0 92.5 / 84.0 / 88.0
9 Baseline MaxEnt with learnt CSD 89.9 / 77.0 / 83.0 91.9 / 90.4 / 91.1 95.0 / 78.7 / 86.1

training corpus. Increasing the training size may be
a simple way to overcome this shortcoming. Note
that increasing the number of labels (e.g. introduc-
ing more soccer clubs in the Soccer task) would also
directly increase the size of training dataset as we
use the occurrences of the indicator phrases belong-
ing to each of the labels for training a CSD. The so-
lution for the rare cases would require the explicit
handling of semantic relatedness (by utilising ex-
isting semantic resources or trying to automatically
identify task-specific relations).

5.2 Document Labeling Results

The second branch of experiments investigated the
added value of CSDs in information-oriented doc-
ument labeling tasks. Table 4 summarizes the re-
sults we got on the three datasets using the micro-
averaged Fβ=1 of assigned labels (positive class).

As baseline systems we trained binary SVMs
with a linear kernel, MaxEnts and PARTs – a rule-
learner classification algorithm (Frank and Witten,
1998) – for each label using the bag-of-word rep-
resentation of the documents (implementations of
SVMligth (Joachims, 1999), MALLET (McCallum,
2002) and WEKA (Witten and Frank, 1999) were
used). The first two learners are popular choices for
document classification, while the third is similar to
our simple indicator selection procedure. We did not
tuned the parameters of the classifiers, we used the
default ones everywhere.

To have a fair comparison, we applied to pre-
processing steps on dataset of these document clas-
sifiers. First, we removed from the training and
evaluation raw documents which were predicted to
bealtered by CSSDB. Second, as our indicator

selection phrase can be regarded as a special fea-
ture selection method, we carried out an Information
Gain-based feature selection (keeping the 500 best-
rated features proved to be the best solution) on the
bag-of-word representation of the documents. The
effect of these two preprocessing steps varied among
datasets. It improved the F-score of the MaxEnt
baseline document classifier by 20%, 2% and 3% on
the Obesity, CMC and Soccer datasets, respectively
(the F-measures of Table 4 are the values we got by
employing pre-processing).

The indicator selection results presented in the
rows 4-8 of Table 4 made use of thep(+|f)-based
indicator selector with a five-fold-cross-validated
stopping thresholdt (introduced in Section 4.3).
Row 4 contains the results of using the selected in-
dicators without any CSD. Indicator selection with
the CSSDB was applied for the 5th row. Rows 6-
8 of Table 4 show the results obtained after one,
three and ten iterations of the full learning algo-
rithm (see Algorithm 1). For training the CSD,
we employed MaxEnt as a binary classifier for de-
tecting altered local contexts and we used the
basic BoW feature representation for the clinical
tasks while the extended (BoW+syntactic) one for
the Soccer dataset.

In the final experiment (the last row of Table
4)) we investigated whether the learnt content shift
detector can be applied as a general ”document
cleaner” tool. For this, we trained the baseline Max-
Ent document classifier with feature selection on
documents from which the text spans predicted to
be altered by the learnt CSD in the tenth iter-
ation were removed. This means that the systems
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used in row 2 and row 9 differ only in the applied
document cleaner pre-processing steps (the first one
applied the CSSDB while the latter one employed
the the learnt CSD).

The difference between the best baseline and the
indicator selector with learnt CSD and between the
best baseline and the document classifier with learnt
CSD were statistically significant8 on each dataset.
The difference between the predictions after the 1st
and 3rd iterations were statistically significant on
the CMC and the Obesity corpora but not signifi-
cant on the Soccer dataset. The difference between
the 3th and 10th iterations were not significant in ei-
ther case. Our co-learning method which integrated
the document-labeling and CSD tasks significantly
outperformed the baseline approaches – which use
separate document cleaning and document labeling
steps – on the three datasets.

On the clinical domains the automatically se-
lected indicators were disease names, symptom
names (e.g.high blood pressure), their spelling vari-
ants, synonyms (likehypertension) and their abbre-
viations (e.ghtn). On the soccer domain club names,
synonyms (likeThe Saints) and stadium names (e.g.
Old Trafford) were selected. A label was indicated
by 3-4 indicator phrases.

Note that in these information-oriented docu-
ment multi-labeling tasks simple indicator selection-
based document labelers alone achieved results
comparable to the bag-of-words-based classifiers.
The learnt content shift detectors led to an average
improvement of 3.6% in the F-measure (i.e. a 24%
error reduction). The effect of further iterations is
various. As Table 4 shows, three iterations brought
an increase on the CMC and Obesity datasets but not
on the Soccer corpus. After a few iterations the set
of indicator phrases and the content shift detector
did not change substantially. The results achieved
by the MaxEnt document classifier employing the
”cleaned” training documents (last row of Table 4)
are significantly better (an average improvement of
1.9% in the F-measure and 12% error reduction)
than those by the CSSDB (row 2) but the indicator
selector approach performed even better.

8According to McNemar’s test with P-value of 0.001

6 Conclusions

In this paper, we dealt with information-oriented
document labeling tasks and investigated machine
learning approaches for local content shift detectors
from document-level labels. We demonstrated ex-
perimentally that a significant amount of false posi-
tive matches of indicator phrases can be recognized
by trained content shift detectors. Our trained CSD
does not use any task or domain specific knowledge
and exploits the false and true positive matches of in-
dicator phrases, i.e. it uses only document-level an-
notation. This task-independent approach achieved
competitive results with CSDs which were manually
fine-tuned for particular datasets. The empirical re-
sults also support the idea of generalized local CSD
(false positive removal) opposite to developing in-
dependent CSD for particular language phenomena
(like negation and speculation).

A co-learning framework for training local con-
tent shift detectors and indicator selection was in-
troduced as well. Our method integrates document
classification and CSD learning, which are tradi-
tionally used as independent submodules of appli-
cations. Experiments on three information-oriented
document-labeling datasets – from two application
areas – with simple indicator selection and syntactic
parse-based content shifter learning were performed
and the results show a clear improvement over the
bag-of-word-based document classification baseline
approaches.

However, the proposed content shift detec-
tor learning approach is tailored for information-
oriented document labeling tasks, i.e. it performs
well when not too many and reliable indicator
phrases are present. In the future, we plan to in-
vestigate and extend the framework for the general
document classification task where many indicators
with complex relationships among them determine
the labels of a document but local content shifters
can play an important role.
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Abstract

In this paper, we present a new ranking
scheme, collaborative ranking (CR). In con-
trast to traditional non-collaborative ranking
scheme which solely relies on the strengths
of isolated queries and one stand-alone rank-
ing algorithm, the new scheme integrates the
strengths from multiple collaborators of a
query and the strengths from multiple ranking
algorithms. We elaborate three specific forms
of collaborative ranking, namely, micro col-
laborative ranking (MiCR), macro collabora-
tive ranking (MaCR) and micro-macro collab-
orative ranking (MiMaCR). Experiments on
entity linking task show that our proposed
scheme is indeed effective and promising.

1 Introduction

Many natural language processing tasks can be for-
malized as a ranking problem, namely to rank a
collection of candidate “objects” with respect to a
“query”. For example, intensive studies were de-
voted to parsing in which multiple possible pars-
ing trees or forests are ranked with respect to a sen-
tence (Collins, 2000; Charniak and Johnson, 2005;
Huang, 2008), machine translation in which multi-
ple translation hypotheses are ranked with respect to
a source sentence (Och, 2002; Shen et al., 2005),
anaphora resolution in which multiple antecedents
are ranked with respect to an anaphora (Yang et
al., 2008), and question answering in which mul-
tiple possible answers are ranked with respect to a
question (Ravichandran et al., 2003). Previous stud-
ies mainly focused on improving the ranking perfor-
mance using one stand-alone learning algorithm on
isolated queries.

Although a wide range of learning algorithms (un-
supervised, supervised or semi-supervised) is avail-
able, each with its strengths and weaknesses, there

is not a learning algorithm that can work best on
all types of data. In such a situation, it would
be desirable to build a “collaborative” model by
integrating multiple models. Such an idea forms
the basis of ensemble methodology and it is well-
known that ensemble methods (e.g., bagging, boost-
ing) can improve the performance of many prob-
lems, in which classification is the most intensively
studied (Rokach, 2009). The other situation is re-
lated with isolated queries handled by learning al-
gorithms. The single query may not be formulated
with the best terms or the query itself may not con-
tain comprehensive information required for a high-
performance ranking algorithm. Therefore, tech-
niques of query expansion or query reformulation
can be introduced and previous research has shown
the effectiveness of those techniques in such applica-
tions as information retrieval and question answer-
ing (Manning et al., 2008; Riezler et al., 2007).
Nevertheless, previous research normally considers
query reformulation as a new query for the ranking
system, it would be more desirable to form a larger-
scale “collaborative” group for the query and make
a unified decision based on the group.

Inspired from human collaborative learning in
which two or more people form a group and ac-
complish work together, we propose a new ranking
scheme, collaborative ranking, which aims to imi-
tate human collaborative learning and enhance sys-
tem ranking performance. The main idea is to seek
collaborations for each query from two levels:

(1) query-level: search a group of query collabo-
rators, and make the joint decision from the group
together with the query using a stand-alone ranking
algorithm.

(2) ranker-level: design a group of multiple
rankers, and make the joint decision from the entire
group on a single query.
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(a) non-collaborative ranking (b) micro collaborative ranking (c) macro collaborative ranking (d) micro-macro collaborative ranking

Figure 1: Non-collaborative ranking and three collaborative ranking approaches.

Figure 1 presents an intuitive illustration of four
ranking approaches, including the traditional non-
collaborative ranking and three collaborative rank-
ing forms: micro collaborative ranking (MiCR),
macro collaborative ranking (MaCR), and micro-
macro collaborative ranking (MiMaCR).

Compared with the traditional non-collaborative
ranking that only leverages the information con-
tained in a single query and only applies one ranking
function (Figure 1 (a)), the three collaborative rank-
ing approaches have the following advantages:

(1)MiCR (corresponding to query-level collabo-
ration1) leverages the information contained in the
collaborators of a query. Figure 1 (b) demonstrates
that 6 query collaborators together with the query
form a query collaboration group.

(2)MaCR (corresponding to ranker-level collabo-
ration2) integrates the strengths from two or more
rankers. Figure 1 (c) demonstrates an example of 3
rankers.

(3)MiMaCR combines the advantages from
MiCR and MaCR as shown in Figure 1 (d).

In this paper, we will show the efficacy of collab-
orative ranking on the entity linking task defined in
the Knowledge Base Population (KBP) track (Ji et
al., 2010) at Text Analysis Conference (TAC). Each
query in the task is associated with a name string and
its context document. Traditional approaches for en-
tity linking only made use of the lexical or docu-
ment level information contained in the query, how-
ever, it may not be sufficient for the task. The intu-
ition why query-level collaboration may work is that
it leverages more comprehensive information about
the entity mention from multiple “collaborators” (re-

1Query is normally expressed by small-scale data structure,
so called micro.

2Ranker is normally implemented by large-scale algorithm,
so called macro.

lated documents containing the name string). Fur-
thermore, previous work on this task mainly focused
on comparing one ranking algorithm with the oth-
ers, however, each ranking algorithm has its own
strengths, and therefore, ranker-level collaboration
can potentially improve the performance. Last, the
combination of query-level and ranker-level collab-
oration can lead to further performance gains.

2 Non-collaborative Ranking

Let q denote a query. Let o(q) =
{

o
(q)
1 , . . . , o

(q)

n(q)

}

denote the object set associated with q, where n(q)

denotes the size of the o(q). The goal of non-
collaborative ranking is to seek a ranking function
f such that it computes ranking scores for the can-
didates in the object set, i.e., y(q) = f(o(q)) ={

y
(q)
1 , . . . , y

(q)

n(q)

}
.

Earlier studies on non-collaborative ranking
mainly explored unsupervised approaches, e.g., vec-
tor space model, link based algorithm such as
PageRank (Page et al., 1998). Unsupervised ap-
proaches are based on well-established statistical
and probability theory, nevertheless, they suffer
from some drawbacks, for example, it is hard to
tune parameters. Recently, supervised approaches
(named “learning to rank”) that automatically learn
ranking functions from training data become the fo-
cus of ranking research. In the literature, super-
vised approaches are categorized into three classes,
namely, pointwise, pairwise, and listwise. We sum-
marize a comparison of the three approaches in Ta-
ble 1. We use the following notations in the table.

Let Q = {q1, . . . , qN} denote the set of N queries
in the training data, each query qi is associated
with a set of objects o(qi) =

{
o
(qi)
1 , . . . , o

(qi)

n(qi)

}

and a set of ground-truth ranking scores y(qi) =
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loss function 

 

pointwise loss, e.g., square 

loss(Chen et al., 2009) 

pairwise loss, e.g., hinge loss(Zhang, 

2004), exponential loss(Bartlett et al., 

2003), logistic loss(Lin, 2002) 

listwise loss, e.g., cross 

entropy loss(Cao et al., 

2007),cosine loss(Qin et al., 

2007) 

 pros and 

cons 

pros: classification is well studied 

cons:1) only consider one object 

at a time ignoring relationship 

among objects  

pros: classification is well studied 

cons:1) only consider pairwise 

orders; 2) biased towards lists with 

more objects 

pros: fully consider 

relationship among objects 

cons: 1) less well studied in 

theory 

selected 

algorithms 

Discriminative model for IR 

(Nallapati, 2004); 

McRank (Li et al., 2007) 

SVM Ranking(Joachims, 2002); 

RankBoost(Freund et al., 2003); 

RankNet(Burges et al., 2005) 

ListNet (Cao et al., 2007); 

RankCosine(Qin et al., 2007); 

ListMLE (Xia et al., 2008) 

 Table 1: Comparison of pointwise, pairwise and listwise ranking approaches.
{

y
(qi)
1 , . . . , y

(qi)

n(qi)

}
. Let x

(qi)
j = φ(qi, o

(qi)
j ) denote

a feature vector associated with each query-object
pair (qi, o

(qi)
j ).

3 Collaborative Ranking

3.1 Micro Collaborative Ranking(MiCR)
Micro collaborative ranking is characterized by inte-
grating joint strengths from multiple query collabo-
rators and the query itself. It is based on the follow-
ing assumptions:

• Expandability: Query is expandable, that is, it
is able to find potential collaborators.

• Redundancy: Collaborators and query may
share redundant information.

• Diversity: Collaborators exhibit multifaceted
information that may complement the information
contained in the query.

• Robustness: Noisy collaborators are allowable,
and they could be put under control.

Let cq(q) = {cq1, . . . , cqk} be the k collabo-
rators of a query q. For each object o

(q)
j associ-

ated with q, we form k + 1 feature vectors x
(q)
j =

φ(q, o
(q)
j ), x

(cq1)
j = φ(cq1, o

(cq1)
j ), . . . , x

(cqk)
j =

φ(cqk, o
(cqk)
j ) . Let f be a ranking function which

is obtained by either an unsupervised or supervised
approach. There are two important steps that dis-
tinguish MiCR from traditional non-collaborative
ranking approaches:

• Step (1): searching the best k collaborators of q.
• Step (2): simulating the interaction of k collab-

orators at the ranking step.
Solutions for step (1) can vary from case to case.

In our case study presented later, we transform
the collaborator searching problem into a clustering
problem. Collaborators of a query are then formed
by members (excluding the query) in a cluster which
contains the query and k is the size of the cluster mi-
nus one.

We transform the problem of step (2) into solv-
ing a function g1 such that a ranking score y

(q)
j can

be computed for each object o
(q)
j . One approach

to computing g1 is to firstly compute the ranking
scores of collaborators and query using the ranking
function f and then combine those ranking scores
in some way (Formula 1). The other approach is to
learn a supervised ranking function f

′
which takes

collaborators and query as input (Formula 2).

y
(q)
j = g1(f

(
x

(q)
j

)
, f

(
x

(cq1)
j

)
, . . . , f

(
x

(cqk)
j

)
) (1)
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y
(q)
j = g1(•) = f

′ (
x

(q)
j , x

(cq1)
j , . . . , x

(cqk)
j

)
(2)

We present three specific forms of g1 in Formula
1, namely, max, min, and weighted. We can also
define a special case of weighted, called “average”
in which w0 = w1 . . . = wk = 1/(k + 1).

• max: y
(q)
j = max(f

(
x

(q)
j

)
, . . . , f

(
x

(cqk)
j

)
)

• min: y
(q)
j = min(f

(
x

(q)
j

)
, . . . , f

(
x

(cqk)
j

)
)

• weighted: y
(q)
j = w0f

(
x

(q)
j

)
+

k∑
i=1

wif
(
x

(cqi)
j

)

We will discuss three supervised versions of g1

(Formula 2) in section 4.4. A general algorithm for
MiCR is presented in Algorithm 1.
Algorithm 1 MiCR Algorithm.
Input:

a query q; a set of objects o(q); a function g1

Output:
a set of ranking scores y(q)

1: Search k collaborators of q:
cq(q) = {cq1, . . . , cqk}.

2: for j = 1; j <= n(q); j + + do
3: Form k + 1 feature vectors: x

(q)
j , x

(cq1)
j , . . . , x

(cqk)
j .

4: Compute function y
(q)
j = g1(•).

5: end for
6: return y(q)

3.2 Macro Collaborative Ranking(MaCR)

Macro collaborative ranking is characterized by in-
tegrating joint strengths from multiple rankers. It is
based on the following assumptions:

• Independence: Each ranker can make its own
ranking decisions.

• Diversity: Each ranker has its own strengths in
making ranking decisions.

• Collaboration: Rankers in the group could col-
laborate to make a consensus decision under some
mechanism.

Let x
(q)
j = φ(q, o

(q)
j ) be the feature vector formed

from the pair consisting of query q and an associated
object o

(q)
j . Let F∗ = {f1, . . . , fm} be m existing

ranking functions. We transform the computation of
collaboration among rankers into solving the follow-
ing composite function g2:

y
(q)
j = g2(f1

(
x

(q)
j

)
, . . . , fm

(
x

(q)
j

)
) (3)

Similar with MiCR, g2 can be expressed by max,
min, weighted (average) respectively:

• max: y
(q)
j = max{fi

(
x

(q)
j

)
}m

i=1

• min: y
(q)
j = min{fi

(
x

(q)
j

)
}m

i=1

• weighted: y
(q)
j =

m∑
i=1

wifi

(
x

(q)
j

)

It is worth noting that max and min can be use-
ful only if the ranking scores produced by various
rankers can be compared to each other directly, how-
ever, in practice, this can hardly be true.

A special form of ranking problem is that only
the best object is required as output. In this case, we
have another version of g2 which is called voting:

• voting: y
(q)
j =

m∑
i=1

sign(fi

(
x

(q)
j

)
)

in which sign(•) is an indicator function

sign(•) =

{
1 if fi outputs o

(q)
j as the best object

0 otherwise

A general algorithm for MaCR is presented in Al-
gorithm 2.
Algorithm 2 MaCR Algorithm.
Input:

a query q; a set of objects o(q); a set of m rank-
ing functions F∗; a composite function g2

Output:
a set of ranking scores y(q)

1: for j = 1; j <= n(q); j + + do
2: Form a feature vector x

(q)
j .

3: Compute ranking scores:f1(x
(q)
j ), . . . , fm(x

(q)
j ).

4: Compute composite function: y
(q)
j = g2(•).

5: end for
6: return y(q)

3.3 Micro-Macro Collaborative Ranking
(MiMaCR)

The above two ranking approaches can be further
integrated into a joint model which is named Micro-
Macro Collaborative Ranking (MiMaCR). In order
to compute query-level and ranker-level collabora-
tion jointly, we solve the following complex com-
posite function g3:

y
(q)
j = g2(g1(•)) (4)

in which, for each object o
(q)
j , firstly we compute m

micro-ranking scores using m ranking functions on
query-level collaborators:

774



m





g1(f1

(
x

(q)
j

)
, f1

(
x

(cq1)
j

)
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(q)
j

)
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(
x

(cq1)
j

)
, . . . , fm

(
x

(cqk)
j

)
)

and secondly, we compute a macro-ranking score
using g2.

We can similarly define g1 and g2 as those in
MiCR and MaCR. A general algorithm for MiMaCR
is presented in Algorithm 3.
Algorithm 3 MiMaCR Algorithm.
Input:

a query q; a set of objects o(q); a set of ranking
functions F∗; functions g1, g2

Output:
a set of ranking scores y(q)

1: Search k collaborators of q:
cq(q) = {cq1, . . . , cqk}.

2: for j = 1; j <= n(q); j + + do
3: Form k + 1 feature vectors: x

(q)
j , x

(cq1)
j , . . . , x

(cqk)
j .

4: Compute m micro-ranking scores using F∗ and g1.

5: Compute the macro-ranking score using g2.

6: end for
7: return y(q)

4 A Case Study on Entity Linking

To demonstrate the efficacy of our collaborative
ranking scheme, we apply it to the entity linking
task defined in the TAC-KBP2010 program (Ji et
al., 2010) because there is a large amount of train-
ing and evaluation data available and various non-
collaborative ranking approaches have been pro-
posed, as summarized in (McNamee and Dang,
2009; Ji et al., 2010).

4.1 Task Definition

The entity linking task aims to align a textual men-
tion of a named entity (person,organization or geo-
political) to an appropriate entry in a knowledge
base (KB), which may or may not contain the en-
tity. More formally, given a large corpus C, let q =
(q.id, q.string, q.text) denote a query in the task
which is a triple consisting of query id (q.id), name
string (q.string) and context document (q.text ∈
C). Let o(q) =

{
o
(q)
1 , . . . , o

(q)

n(q)

}
denote the candi-

date KB entries associated with the query. Each KB
entry is a tuple consisting of KB id, KB title, KB in-

fobox (a set of attribute-value pairs that summarize
or highlight the key features of the concept or sub-
ject of this entry) and KB text. The goal is to rank
the KB entries and determine whether the top en-
try id should be considered as the answer, otherwise
NIL should be returned.

A specific example of the task is as follows,
given a name string “Michael Jordan” and its con-
text document “...England Youth International goal-
keeper Michael Jordan...”. From the name string,
we retrieve a set of candidate KB entries includ-
ing “Michael Jordan (mycologist)”, “Michael Jor-
dan (footballer)”, etc. The entity linking system
should return the id of “Michael Jordan (footballer)”
as the answer, rather than the id of “Michael Jordan”
who is most well known as a basketball player.

4.2 General Framework

A general framework of entity linking consists of
two crucial components, one for candidate gener-
ation, the other for candidate ranking, as shown
in Figure 2. In this paper, we developed the first
component by following the procedures described
in (Chen et al., 2010) which extensively leveraged
resources mined from Wikipedia. The performance
of the first component is 96.8% measured by recall
(the percentage of queries in which the candidates
cover the true answer). We then focus on the second
component.

 

Knowledge 

Base 

Query Expansion &

Candidate Generation

Candidate Ranking

Answer

Query

Figure 2: A general framework of entity linking sys-
tem.

4.3 Baseline Rankers

We developed 8 baseline rankers, including 4 un-
supervised rankers (f1, f2, f3, f4) and 4 supervised
rankers(f5, f6, f7, f8).
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•Naive (f1): since the answer for each query can
either be a KB id or NIL, the naive ranker simply
outputs NIL for all queries.

•Entity (f2): f2 is defined as weighted combina-
tion of entity similarities in three types (person, or-
ganization and geo-political). Name entities are ex-
tracted from q.text and KB text respectively using
Stanford NER toolkit3. The formulas to compute en-
tity similarities are defined in (Yoshida et al., 2010).

•Tfidf (f3): f3 is defined as cosine similarity be-
tween q.text and KB text using tfidf weights.

•Profile (f4): f4 is defined as profile similarity
between q.text and KB text (Chen et al., 2010).
We used a slot filling toolkit (Chen et al., 2011) to
generate the profile (attribute-value pairs) for each
query.

•Maxent (f5): a pointwise ranker implemented
using OpenNLP Maxent toolkit4 which is based on
maximum entropy model.

•SVM (f6): a pointwise ranker implemented us-
ing SV M light (Joachims, 1999).

•SVM ranking (f7): a pairwise ranker imple-
mented using SV M rank (Joachims, 2006).

•ListNet (f8): a listwise ranker presented in (Cao
et al., 2007).

The four supervised rankers apply exactly the
same set of features except that SVM ranking (f7)
needs to double expand the feature vector. The fea-
tures are categorized into three levels, surface fea-
tures (Dredze et al., 2010; Zheng et al., 2010), doc-
ument features (Dredze et al., 2010; Zheng et al.,
2010), and profiling features (entity slots that are ex-
tracted by the slot filling toolkit (Chen et al., 2011)).

4.4 MiCR for Entity Linking

We convert the collaborator searching problem into
a clustering problem, i.e., for a given query q in the
task, we retrieve at most K = 300 documents from
the large corpus C, each of which contains q.string;
we then apply a clustering algorithm to generate
clusters over the documents, and form query collab-
orators (excluding q.text) from the cluster that con-
tains q.text.

We experimented the following two clustering ap-
proaches:

3http://nlp.stanford.edu/software/CRF-NER.shtml
4http://maxent.sourceforge.net/about.html

(1)agglomerative clustering: it iteratively merges
clusters from singleton documents until a stop
threshold is reached. Document similarity is de-
fined as cosine similarity using tfidf weights. We ap-
plied group-average linking strategy to merge clus-
ters (Manning et al., 2008).

(2)graph-based clustering: it iteratively partitions
clusters from one single cluster until a stop threshold
is reached. Document similarity is similarly defined
as agglomerative clustering. We selected normalized
spectral clustering as our clustering algorithm (Shi
and Malik, 2000).

We first selected f3 as our basic ranking func-
tion, and investigated whether the ranker can ben-
efit from query collaborators formed by either ag-
glomerative clustering or graph clustering. We im-
plemented three versions of composite function g1

(max, min and average), and experimented their per-
formance using three unsupervised rankers f2, f3, f4

respectively.
Last, we implemented three supervised versions

of g1 (Maxent, SVM and ListNet respectively) by
adding cluster-level features and retraining the mod-
els in three supervised rankers f5, f6, f8 respec-
tively. Cluster-level features include maximum,
minimum, average tfidf/entity similarities between
the candidate and the query collaboration group.

4.5 MaCR for Entity Linking
We implemented two versions of composite func-
tion g2, average and voting. Furthermore, we in-
vestigated how the performance can be affected by
incrementally adding more rankers into the ranker
set F∗. To do so, we first sorted the 8 rankers ac-
cording to their performance on the development set
from the highest to the lowest, and starting with the
highest performance ranker, we added one ranker at
a time, until we have all the 8 rankers. It is worth
noting that, when there are even number of rankers
in the set F∗, “ties” could take place using voting
function. In order to break the ties, we rank the
candidate higher if it is output as the answer from
a higher performance ranker.

4.6 MiMaCR for Entity Linking
We investigated how the final performance can be
boosted by jointly computing micro-ranking scores
and macro-ranking score.
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5 Experiments

5.1 Data and Evaluation Metric

We used TAC-KBP2009 evaluation data as our train-
ing (75%) and development set (25%), and used
TAC-KBP2010 evaluation data as our blind testing
set (shown in Table 2).

Corpus Queries 

PER ORG GPE Total 

Training&Dev 627 2710 567 3904 

Testing 750 750 750 2250 

 Table 2: Training, development and testing corpus.

The reference KB consists of 818,741 entries
which are extracted from an October 2008 dump of
English Wikipedia. The source text corpus (denoted
as C in section 4.1) consists of 1,777,888 documents
in 5 genres (mostly Newswire and Web Text).

We used the official evaluation metric for TAC-
KBP2010 entity linking task, that is, micro-averaged
accuracy. It is computed by

micro-averaged accuracy =
#correct answers

#queries

An answer is considered as correct if the system
output (either a KB entry id or NIL) exactly matches
the key.

5.2 Performance of 8 Baseline Rankers

Table 3 shows the performance of the 8 baseline
rankers in 4 columns: Overall for all queries, PER
for person queries, ORG for organization queries,
and GPE for geo-political queries. Each column
is further split into All, KB (for Non-NIL queries)
and NIL (for NIL queries). It shows that all the four
supervised rankers perform better than the four un-
supervised rankers. Naive ranker obtains the low-
est overall micro-average accuracy (54.5%) but the
highest NIL accuracy (100%). Among the four un-
supervised rankers, profile ranker performs the best,
which clearly shows that the extracted attributes of
entities are effective for disambiguating confusable
names. For example, our data analysis shows that
the attribute value of “per:alternative-name” from
the context document is particularly useful if a per-
son query is only mentioned by its last name. The
attribute “per:title” is another important indicator to
discriminate one person from the other. For geo-

political queries, if the query is a city name, at-
tribute “gpe:state” is useful to distinguish cities with
the same name but in different states or provinces.
Among the four supervised rankers, ListNet outper-
forms SVM ranking and then SVM ranking outper-
forms the two pointwise rankers. It may confirm
previous research findings that listwise ranking is
superior to pairwise ranking and pairwise ranking
is superior to pointwise ranking (Cao et al., 2007;
Zheng et al., 2010). The best baseline ranker (List-
Net) obtains an absolute overall accuracy gain of
26.6% over the naive ranker.

5.3 Impact of MiCR

To study the impact of MiCR, we first select f3

(tfidf ranker) as our ranking function. Figure 3
shows the performance of applying different query
collaborator searching strategies (graph or agglom-
erative clustering) and different versions of g1 (av-
erage, max and min respectively). We intention-
ally adjust the meaning of threshold (x-axis) for both
graph clustering and agglomerative clustering, such
that at threshold 0, both clustering algorithms gen-
erate the largest number of clusters (i.e., each doc-
ument is a cluster), and at threshold 1, they gen-
erate only one cluster. We now take the average
function (Figure 3 (a)) into considerations, as graph
clustering algorithm gradually partitions from one
cluster (corresponding to threshold 1) to more clus-
ters, the number of query collaborators gradually re-
duces, meanwhile, the accuracy gradually increases
and reaches the highest (73.6%) at threshold of 0.45,
which clearly shows that removing noisy collabora-
tors in the query collaboration group can improve
the performance. As the threshold continues drop-
ping below 0.45, the number of query collaborators
reduces and the performance significantly drops un-
til it reaches the baseline performance of tfidf ranker
(68.3%). It clearly shows that maintaining a control-
lable number of query collaborators can improve the
performance. For the agglomerative clustering, it is
the other story. As it continues merging from sin-
gleton clusters (corresponding to threshold 0) to one
single cluster, the performance continues increasing
until in the end it reaches the highest accuracy of
72.6%. However, unlike graph clustering, a peak
never appears in the middle which implies that ag-
glomerative clustering is inferior to graph clustering.
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 Overall (%) PER (%) ORG (%) GPE (%) 

All KB NIL All KB NIL All KB NIL All KB NIL 

Naive 54.5 0.0 100 70.8 0.0 100 59.7 0 100 33.0 0 100 

Entity 65.6 48.6 79.7 82.1 52.1 94.5 68.4 46.2 83.3 46.1 48.5 41.3 

Tfidf 68.3 45.0 87.7 83.6 54.3 95.7 66.2 45.9 80.0 54.9 40.3 84.6 

Profile 75.0 58.7 88.6 90.8 82.2 94.4 73.3 62.7 80.4 61.0 46.1 91.1 

Maxent 77.4 72.3 81.6 86.5 82.6 94.4 73.3 62.7 80.4 61.0 71.5 72.1 

SVM 78.1 73.0 82.3 91.1 81.7 94.9 78.7 70.0 84.6 64.4 71.1 51.0 

SVM Rank 80.3 66.7 91.7 91.3 76.3 97.6 77.3 59.7 89.1 72.3 66.7 83.8 

ListNet 81.1 69.7 90.6 90.8 77.6 96.2 79.0 64.0 89.1 73.5 69.7 81.4 

 Table 3: Comparison of 8 baseline rankers.
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Figure 3: MiCR: comparison of average, max, and min functions combined with Graph and Agglomerative
(Aggr)-based query collaborator searching strategies (tfidf ranker).

The max function (Figure 3 (b)) leverages the
strengths from the strongest collaborator in the
group, which can potentially improve KB accuracy,
but meanwhile hurt NIL accuracy. As shown in the
figure, as more collaborators join in the group, the
performance increases first for both graph and ag-
glomerative clustering, however, it starts to deterio-
rate when arriving at a threshold, and in the end, the
performance drops even lower than the baseline of
tfidf ranker.

The min function (Figure 3 (c)) leverages the
strengths from the weakest collaborator in the group,
which can potentially improve NIL accuracy, but
meanwhile hurt KB accuracy. Our data analysis
shows that the gain in NIL accuracy can not afford
the larger loss in non-NIL accuracy, therefore, the
performance continues dropping as the threshold in-
creases. Min function is a counter example showing
that searching query collaborators can not always
lead to benefits.

To summarize so far, the best strategy for tfidf
ranker in MiCR approach is graph-ave (applying
graph clustering and using average function) which
obtains overall accuracy gain of 5.3% over the base-

line (68.3%). We further validate the performance
of graph-ave using f2, f4 ranking functions, for en-
tity ranker, we obtain accuracy gain of 6.3%, and for
profile ranker, we obtain accuracy gain of 3.0%.

We then experiment the three supervised g1 func-
tions (ListNet, Maxent, and SVM respectively)
using graph clustering as the query collaborator
searching strategy. Figure 6 shows that ListNet,
Maxent, SVM rankers obtain accuracy gain of 1.4%,
4.6%, 4.2% respectively over the baselines (corre-
sponding to those points at threshold 0).

5.4 Impact of MaCR

Figure 4 shows that the MaCR approach obtains
absolute accuracy gain of 1.3% (voting function)
and 0.5% (average function) over the best baseline
ranker (81.1%) when we add the 7th ranker (entity
ranker). The improvement of voting function is sta-
tistically significant at a 99.6% confidence level by
conducting Wilcoxon Matched-Pairs Signed-Ranks
Test on the 10 folds of the testing set. However, the
improvement of average function is not significant at
the 0.05 level which implies that average is inferior
to voting. We observe that the performance drops
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when there are even number of rankers in the ranker
set using voting function, which implies that our tie
breaking strategy is not very effective.

We also experimented the voting function on the
top 10 KBP2009 entity linking systems (each sys-
tem performance is shown in the table embedded in
Figure 5, and experiment is similarly done as de-
scribed in section 4.5). Figure 5 shows that it can
obtain absolute accuracy gain of 4.7% over the top
entity linking system (82.2%). The reasons why we
achieve relative smaller gains using our own ranker
set are as follows: (1) we use the same candidate
object set for all rankers, while different KBP2009
systems may use their own set of objects. (2) our
top 4 supervised rankers apply almost the same set
of features, while different KBP2009 systems may
apply more diversified features. Therefore, diversity
is a highly important factor that makes MaCR ap-
proach effective.
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Figure 4: MaCR: comparison of voting and average.
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Figure 5: MaCR: applying voting function to the top
10 KBP2009 entity linking systems.

5.5 Impact of MiMaCR

We applied the following settings in our Mi-
MaCR approach: selecting graph clustering as the
query collaborator searching strategy, including five
rankers (tfidf, entity, Maxent, SVM and ListNet) in
the ranker set, using average function to compute
micro-ranking scores for the tfidf and entity ranker,
using the three corresponding supervised versions

of g1 to compute micro-ranking scores for Maxent,
SVM and ListNet respectively, and finally apply-
ing voting function to compute the macro-ranking
score. In Figure 6, the curve of “MiMaCR” shows
how the performance of MiMaCR is affected by
the threshold in graph clustering. We obtain the
best micro-average accuracy of 83.7% at threshold
0.3, which is 2.6 % higher than the best baseline
ranker (81.1%). The improvement is statistically
significant at a 98.6% confidence level by conduct-
ing Wilcoxon Matched-Pairs Signed-Ranks Test on
the 10 folds of the testing set. The score reported
here is on par with the second best in the KBP2010
evaluation.
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Figure 6: MiMaCR: Comparison of MiMaCR and
three supervised versions of g1 (ListNet, Maxent,
and SVM respectively).

6 Related Work

In the literature of information retrieval, query ex-
pansion is a useful technique that involves the pro-
cess of reformulating a query, and as a consequence,
is capable to extend the ability of a query and im-
prove the retrieval performance. Various approaches
for query expansion have been proposed, as summa-
rized in (Manning et al., 2008). The MiCR presented
in this paper is superior to query expansion in two
aspects, firstly, we leverage more information con-
tained in multiple query collaborators; secondly, we
place great emphasis on interactions among mem-
bers in the query collaboration group.

In the literature of machine learning, there
has been a considerable amount of research on
ensemble-based classification, which is to build a
predictive classification model by integrating multi-
ple classifiers. A comprehensive survey is presented
in (Rokach, 2009). In contrast, ensemble-based
ranking has only recently attracted research interests
(Hoi and Jin, 2008; Wei et al., 2010). Although the
MaCR presented here is in essence ensemble-based
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ranking, we extend it to MiMaCR which integrates
the strengths from both MiCR and MaCR.

It is worth noting that “collaborative ranking” pre-
sented here should be distinguished from “collabo-
rative filtering” in that “collaborative filtering” uses
the known preferences of a group of users to gen-
erate personalized recommendations while “collab-
orative ranking” leverages query collaborators and
ranker collaborators to enhance the overall ranking
performance.

There has been an increasing amount of research
on entity linking, especially through KBP2009 and
KBP2010. Various unsupervised or supervised ap-
proaches have been proposed, as summarized in
(McNamee and Dang, 2009; Ji et al., 2010). How-
ever, most of the previous research mainly fo-
cused on one or two ranking algorithms on isolated
queries. In this paper, we have extended the work
by systematically studying the possibility of perfor-
mance enhancement through query-level collabora-
tion and ranker-level collaboration.

7 Conclusions

We presented a new ranking scheme called collab-
orative ranking with three specific forms, MiCR,
MaCR and MiMaCR and demonstrated its effective-
ness on entity linking task. However, our scheme is
not restricted to this specific task and it is generally
applicable to many other other applications such as
question answering. In MiCR, effective searching
of query collaborators and active interplay among
members in the query collaboration group are two
key factors that make MiCR successful. In MaCR,
diversity is a highly important factor to make it suc-
cessful. Overall, MiMaCR can bootstrap the per-
formance to its maximum if integrating MiCR and
MaCR properly. However, the better performance is
at the expense of much more computations.
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Abstract

Disambiguating named entities in natural-
language text maps mentions of ambiguous
names onto canonical entities like people or
places, registered in a knowledge base such as
DBpedia or YAGO. This paper presents a ro-
bust method for collective disambiguation, by
harnessing context from knowledge bases and
using a new form of coherence graph. It unifies
prior approaches into a comprehensive frame-
work that combines three measures: the prior
probability of an entity being mentioned, the
similarity between the contexts of a mention
and a candidate entity, as well as the coherence
among candidate entities for all mentions to-
gether. The method builds a weighted graph of
mentions and candidate entities, and computes
a dense subgraph that approximates the best
joint mention-entity mapping. Experiments
show that the new method significantly outper-
forms prior methods in terms of accuracy, with
robust behavior across a variety of inputs.

1 Introduction

1.1 Motivation
Web pages, news articles, blog postings, and other
Internet data contain mentions of named entities such
as people, places, organizations, etc. Names are often
ambiguous: the same name can have many different
meanings. For example, given a text like “They per-
formed Kashmir, written by Page and Plant. Page
played unusual chords on his Gibson.”, how can we
tell that “Kashmir” denotes a song by Led Zeppelin
and not the Himalaya region (and that Page refers
to guitarist Jimmy Page and not to Google founder
Larry Page, and that Gibson is a guitar model rather
than the actor Mel Gibson)?

Establishing these mappings between the mentions
and the actual entities is the problem of named-entity
disambiguation (NED).

If the possible meanings of a name are known up-
front - e.g., by using comprehensive gazetteers such
as GeoNames (www.geonames.org) or knowledge
bases such as DBpedia (Auer07), Freebase (www.
freebase.com), or YAGO (Suchanek07), which
have harvested Wikipedia redirects and disambigua-
tion pages - then the simplest heuristics for name res-
olution is to choose the most prominent entity for a
given name. This could be the entity with the longest
Wikipedia article or the largest number of incoming
links in Wikipedia; or the place with the most inhab-
itants (for cities) or largest area, etc. Alternatively,
one could choose the entity that uses the mention
most frequently as a hyperlink anchor text. For the
example sentence given above, all these techniques
would incorrectly map the mention “Kashmir” to the
Himalaya region. We refer to this suite of methods
as a popularity-based (mention-entity) prior.

Key to improving the above approaches is to con-
sider the context of the mention to be mapped, and
compare it - by some similarity measure - to contex-
tual information about the potential target entities.
For the example sentence, the mention “Kashmir”
has context words like “performed” and “chords” so
that we can compare a bag-of-words model against
characteristic words in the Wikipedia articles of the
different candidate entities (by measures such as co-
sine similarity, weighted Jaccard distance, KL diver-
gence, etc.). The candidate entity with the highest
similarity is chosen. Alternatively, labeled training
data can be harnessed to learn a multi-way classifier,
and additional features like entire phrases, part-of-
speech tags, dependency-parsing paths, or nearby
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hyperlinks can be leveraged as well. These methods
work well for sufficiently long and relatively clean
input texts such as predicting the link target of a Wi-
kipedia anchor text (Milne08). However, for short or
more demanding inputs like news, blogs, or arbitrary
Web pages, relying solely on context similarity can-
not achieve near-human quality. Similarity measures
based on syntactically-informed distributional mod-
els require minimal context only. They have been
developed for common nouns and verbs (Thater10),
but not applied to named entities.

The key to further improvements is to jointly con-
sider multiple mentions in an input and aim for a col-
lective assignment onto entities (Kulkarni09). This
approach should consider the coherence of the re-
sulting entities, in the sense of semantic relatedness,
and it should combine such measures with the con-
text similarity scores of each mention-entity pair. In
our example, one should treat “Page”, “Plant” and
“Gibson” also as named-entity mentions and aim to
disambiguate them together with “Kashmir”.

Collective disambiguation works very well when a
text contains mentions of a sufficiently large number
of entities within a thematically homogeneous con-
text. If the text is very short or is about multiple, un-
related or weakly related topics, collective mapping
tends to produce errors by directing some mentions
towards entities that fit into a single coherent topic
but do not capture the given text. For example, a text
about a football game between “Manchester” and
“Barcelona” that takes place in “Madrid” may end up
mapping either all three of these mentions onto foot-
ball clubs (i.e., Manchester United, FC Barcelona,
Real Madrid) or all three of them onto cities. The
conclusion here is that none of the prior methods
for named-entity disambiguation is robust enough to
cope with such difficult inputs.

1.2 Contribution

Our approach leverages recently developed knowl-
edge bases like YAGO as an entity catalog and a
rich source of entity types and semantic relationships
among entities. These are factored into new measures
for the similarity and coherence parts of collectively
disambiguating all mentions in an input text. For
similarity, we also explore an approach that lever-
ages co-occurrence information obtained from large,
syntactically parsed corpora (Thater10).

We cast the joint mapping into the following graph
problem: mentions from the input text and candidate
entities define the node set, and we consider weighted
edges between mentions and entities, capturing con-
text similarities, and weighted edges among entities,
capturing coherence. The goal on this combined
graph is to identify a dense subgraph that contains
exactly one mention-entity edge for each mention,
yielding the most likely disambiguation. Such graph
problems are NP-hard, as they generalize the well-
studied Steiner-tree problem. We develop a greedy
algorithm that provides high-quality approximations,
and is customized to the properties of our mention-
entity graph model.

In addition to improving the above assets for the
overall disambiguation task, our approach gains in
robustness by using components selectively in a self-
adapting manner. To this end, we have devised the
following multi-stage procedure.

• For each mention, we compute popularity priors
and context similarities for all entity candidates
as input for our tests.

• We use a threshold test on the prior to decide
whether popularity should be used (for mentions
with a very high prior) or disregarded (for men-
tions with several reasonable candidates).

• When both the entity priors and the context simi-
larities are reasonably similar in distribution for
all the entity candidates, we keep the best candi-
date and remove all others, fixing this mention
before running the coherence graph algorithm.

We then run the coherence graph algorithm on all
the mentions and their remaining entity candidates.
This way, we restrict the coherence graph algorithm
to the critical mentions, in situations where the goal
of coherence may be misleading or would entail high
risk of degradation.

The paper makes the following novel contribu-
tions: 1) a framework for combining popularity pri-
ors, similarity measures, and coherence into a robust
disambiguation method; 2) new measures for defin-
ing mention-entity similarity; 3) a new algorithm
for computing dense subgraphs in a mention-entity
graph, which produces high-quality mention-entity
mappings; 4) an empirical evaluation on a demand-
ing corpus (based on additional annotations for the
dataset of the CoNLL 2003 NER task), with signifi-
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cant improvements over state-of-the-art opponents.

2 State of the Art

Recognizing named entities (NER tagging) in natural-
language text has been extensively addressed in NLP
research. The output is labeled noun phrases. How-
ever, these are not yet canonical entities, explicitly
and uniquely denoted in a knowledge repository.
Approaches that use Wikipedia for explicit disam-
biguation date back to (Bunescu06) and have been
further pursued by (Cucerzan07; Han09; Milne08;
Nguyen08; Mihalcea07). (Bunescu06) defined a sim-
ilarity measure that compared the context of a men-
tion to the Wikipedia categories of an entity candi-
date. (Cucerzan07; Milne08; Nguyen08) extended
this framework by using richer features for the simi-
larity comparison. (Milne08) additionally introduced
a supervised classifier for mapping mentions to en-
tities, with learned feature weights rather than using
the similarity function directly. (Milne08) introduced
a notion of semantic relatedness between a mention’s
candidate entities and the unambiguous mentions in
the textual context. The relatedness values are de-
rived from the overlap of incoming links in Wikipedia
articles. (Han09) considered another feature: the re-
latedness of common noun phrases in a mention’s
context, matched against Wikipedia article names.
While these features point towards semantic coher-
ence, the approaches are still limited to mapping each
mention separately. Nonetheless, this line of feature-
rich similarity-driven methods achieved very good
results in experiments, especially for the task of pre-
dicting Wikipedia link targets for a given href anchor
text. On broader input classes such as news articles
(called “wikification in the wild” in (Milne08)), the
precision was reported to be about 75 percent.

The first work with an explicit collective-learning
model for joint mapping of all mentions has been
(Kulkarni09). This method starts with a supervised
learner for a similarity prior, and models the pair-
wise coherence of entity candidates for two different
mentions as a probabilistic factor graph with all pairs
as factors. The MAP (maximum a posteriori) es-
timator for the joint probability distribution of all
mappings is shown to be an NP-hard optimization
problem, so that (Kulkarni09) resorts to approxima-
tions and heuristics like relaxing an integer linear

program (ILP) into an LP with subsequent round-
ing or hill-climbing techniques. The experiments in
(Kulkarni09) show that this method is superior to the
best prior approaches, most notably (Milne08). How-
ever, even approximate solving of the optimization
model has high computational costs.

Coreference resolution is the task of mapping
mentions like pronouns or short phrases to a pre-
ceding, more explicit, mention. Recently, interest
has arisen in cross-document coreference resolution
(Mayfield09), which comes closer to NED, but does
not aim at mapping names onto entities in a knowl-
edge base. Word sense disambiguation (McCarthy09;
Navigli09) is the more general task of mapping con-
tent words to a predefined inventory of word senses.
While the NED problem is similar, it faces the chal-
lenges that the ambiguity of entity names tends to be
much higher (e.g., mentions of common lastnames
or firstname-only).

Projects on automatically building knowledge
bases (Doan08) from natural-language text include
KnowItAll (Banko07), YAGO and its tool SOFIE
(Suchanek09; Nakashole11), StatSnowball (Zhu09),
ReadTheWeb (Carlson10), and the factor-graph work
by (Wick09). Only SOFIE maps names onto canon-
ical entities; the other projects produce output with
ambiguous names. SOFIE folds the NED into its
MaxSat-based reasoning for fact extraction. This ap-
proach is computationally expensive and not intended
for online disambiguation of entire texts.

3 Framework

Mentions and Ambiguity: We consider an input
text (Web page, news article, blog posting, etc.) with
mentions (i.e., surface forms) of named entities (peo-
ple, music bands, songs, universities, etc.) and aim
to map them to their proper entries in a knowledge
base, thus giving a disambiguated meaning to entity
mentions in the text. We first identify noun phrases
that potentially denote named entities. We use the
Stanford NER Tagger (Finkel05) to discover these
and segment the text accordingly.

Entity Candidates: For possible entities (with
unique canonical names) that a mention could denote,
we harness existing knowledge bases like DBpedia
or YAGO. For each entity they provide a set of short
names (e.g., “Apple” for Apple Inc. and para-
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phrases (e.g., “Big Apple” for New York City).
In YAGO, these are available by the means relation,
which in turn is harvested from Wikipedia disam-
biguation pages, redirects, and links.

Popularity Prior for Entities: Prominence or
popularity of entities can be seen as a probabilistic
prior for mapping a name to an entity. The most com-
mon way of estimating this are the Wikipedia-based
frequencies of particular names in link anchor texts
referring to specific entities, or number of inlinks.

Context Similarity of Mentions and Entities:
The key for mapping mentions onto entities are the
contexts on both sides of the mapping. We consider
two different approaches. First, for each mention,
we construct a context from all words in the entire
input text. This way, we can represent a mention
as a set of (weighted) words or phrases that it co-
occurs with. Second, we alternatively consider simi-
larity scores based on syntactically-parsed contexts,
based on (Thater10). On the entity side of the map-
ping, we associate each entity with characteristic
keyphrases or salient words, precomputed from Wi-
kipedia articles and similar sources. For example,
Larry Page would have keyphrases like “Stan-
ford”, “search engine”, etc., whereas Jimmy Page
may have keyphrases “Gibson guitar”, “hard rock”,
etc. Now we can define and compute similarity mea-
sures between a mention and an entity candidate,
e.g., the weighted word overlap, the KL divergence,
n-gram-based measures, etc. In addition, we may
use syntactic contextualization techniques, based on
dependency trees, that suggest phrases that are typi-
cally used with the same verb that appears with the
mention in the input text (Thater10).

Coherence among Entities: On the entity side,
each entity has a context in the underlying knowl-
edge base(s): other entities that are connected via
semantic relationships (e.g., memberOf) or have the
same semantic type (e.g., rock musician). An
asset that knowledge bases like DBpedia and YAGO
provide us with is the same-as cross-referencing to
Wikipedia. This way, we can quantify the coherence
between two entities by the number of incoming links
that their Wikipedia articles share. When we consider
candidate entities for different mentions, we can now
define and compute a notion of coherence among the
corresponding entities, e.g., by the overlap among
their related entities or some form of type distance.

Coherence is a key asset because most texts deal with
a single or a few semantically related topics such as
rock music or Internet technology or global warming,
but not everything together.

Overall Objective Function: To aim for the best
disambiguation mappings, our framework combines
prior, similarity, and coherence measures into a
combined objective function: for each mention mi,
i = 1..k, select entity candidates eji , one per men-
tion, such that

α ·
∑

i=1..k

prior(mi, eji)+

β ·
∑

i=1..k

sim(cxt(mi), cxt(eji))+

γ · coh(ej1 ∈ cnd(m1) . . . ejk ∈ cnd(mk)) = max!

where α + β + γ = 1, cnd(mi) is the set of pos-
sible meanings of mi, cxt( ) denotes the context of
mentions and entities, respectively, and coh( ) is the
coherence function for a set of entities.

Section 4 gives details on each of these three com-
ponents. For robustness, our solution selectively en-
ables or disables the three components, based on tests
on the mentions of the input text; see Section 5.

4 Features and Measures

4.1 Popularity Prior
As mentioned above, our framework supports multi-
ple forms of popularity-based priors, but we found a
model based on Wikipedia link anchors to be most
effective: For each surface form that constitutes an
anchor text, we count how often it refers to a partic-
ular entity. For each name, these counts provide us
with an estimate for a probability distribution over
candidate entities. For example, “Kashmir” refers to
Kashmir (the region) in 90.91% of all occurrences
and in 5.45% to Kashmir (Song).

4.2 Mention-Entity Similarity
Keyphrase-based Similarity: On the mention side,
we use all tokens in the document (except stopwords
and the mention itself) as context. We experimented
with a distance discount to discount the weight of
tokens that are further away, but this did not improve
the results for our test data.

On the entity side, the knowledge base knows au-
thoritative sources for each entity, for example, the
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corresponding Wikipedia article or an organizational
or individual homepage. These are the inputs for
an offline data-mining step to determine character-
istic keyphrases for each entity and their statistical
weights. We describe this only for Wikipedia as in-
put corpus, the approach extends to other inputs. As
keyphrase candidates for an entity we consider its
corresponding Wikipedia article’s link anchors texts,
including category names, citation titles, and external
references. We extended this further by considering
also the titles of articles linking to the entity’s article.
All these phrases form the keyphrase set of an entity:
KP (e).

For each word w that occurs in a keyphrase, we
compute a specificity weight with regard to the given
entity: the MI (mutual information) between the en-
tity e and the keyword w, calculating the joint proba-
bilities for MI as follows:

p(e, w) =

∣∣w ∈
(
KP (e) ∪⋃e′∈INe

KP (e′)
)∣∣

N

reflecting if w is contained in the keyphrase set of e
or any of the keyphrase sets of an entity linking to e,
IN(e), with N denoting the total number of entities.
The joint probabilities for the cases p(e, w̄), p(ē, w),
p(ē, w̄) are calculated accordingly.

Keyphrases may occur only partially in an input
text. For example, the phrase “Grammy Award win-
ner” associated with entity Jimmy Page may oc-
cur only in the form “Grammy winner” near some
mention “Page”. Therefore, our algorithm for the
similarity of mention m with regard to entity e com-
putes partial matches of e’s keyphrases in the text.
This is done by matching individual words and re-
warding their proximity in an appropriate score. To
this end we compute, for each keyphrase, the shortest
window of words that contains a maximal number
of words of the keyphrase. We refer to this window
as the phrase’s cover (cf. (Taneva11)). For example,
matching the text “winner of many prizes including
the Grammy” results in a cover length of 7 for the
keyphrase “Grammy award winner”. By this ratio-
nale, the score of partially matching phrase q in a text
is set to:

score(q) = z

(∑
w∈cover weight(w)∑
w∈q weight(w)

)2

where z = # matching words
length of cover(q) andweight(w) is either

the MI weight (defined above) or the collection-wide
IDF weight of the keyphrase word w. Note that the
second factor is squared, so that there is a superlinear
reduction of the score for each word that is missing
in the cover.

For the similarity of a mention m to candidate
entity e, this score is aggregated over all keyphrases
of e and all their partial matches in the text, leading
to the similarity score

simscore(m, e) =
∑

q∈KP (e)

score(q)

Syntax-based Similarity: In addition to surface
features of words and phrases, we leverage informa-
tion about the immediate syntactic context in which
an entity mention occurs. For example, in the sen-
tence “Page played unusual chords”, we can extract
the fact that the mention “Page” is the subject of the
verb “play”. Using a large text corpus for training,
we collect statistics about what kinds of entities tend
to occur as subjects of “play”, and then rank the can-
didate entities according to their compatibility with
the verb.

Specifically, we employ the framework of
(Thater10), which allows us to derive vector represen-
tations of words in syntactic contexts (such as being
the subject of a particular verb). We do not directly
apply this model to derive contextualized representa-
tions of entity mentions, as information about specific
proper names is very sparse in corpora like GigaWord
or Wikipedia. Instead, we consider a set of substi-
tutes for each possible entity e, which we take as its
context cxt(e). For this, we use the WordNet synsets
associated with the entity’s YAGO types and all their
hypernyms. For each substitute, we compute a stan-
dard distributional vector and a contextualized vector
according to (Thater10). Syntax-based similarity be-
tween cxt(e) and the context cxt(m) of the mention
is then defined as the sum of the scalar-product simi-
larity between these two vectors for each substitute.
This results in high similarity if the syntactic contex-
tualization only leads to small changes of the vectors,
reflecting the compatibility of the entity’s substitutes.

In our example, we compute a vector for “gui-
tarist” as subject of “play”, and another one for “en-
trepreneur” in the same context. The former is more
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compatible with the given context than the latter, lead-
ing to higher similarity for the entity Jimmy Page.

4.3 Entity-Entity Coherence

As all entities of interest are registered in a knowl-
edge base (like YAGO), we can utilize the semantic
type system, which is usually a DAG of classes. The
simples measure is the distance between two entities
in terms of type and subclassOf edges.

The knowledge bases also provide same-as cross-
referencing to Wikipedia, amd we quantify the coher-
ence between two entities by the number of incom-
ing links that their Wikipedia articles share. This
approach has been refined by Milne and Witten
(Milne08), taking into account the total number N of
entities in the (Wikipedia) collection:

mw coh(e1, e2) =

1− log (max(|INe1 |, |INe2 |))− log(|INe1 ∩ INe2 |)
log(|N |)− log (min(|INe1 |, |INe2 |))

if > 0 and else set to 0.

5 Graph Model and Algorithms

5.1 Mention-Entity Graph

From the popularity, similarity, and coherence mea-
sures discussed in Section 4, we construct a weighted,
undirected graph with mentions and candidate enti-
ties as nodes. As shown in the example of Figure 1,
the graph has two kinds of edges:

• A mention-entity edge is weighted with a similar-
ity measure or a combination of popularity and
similarity measure. Our experiments will use a
linear combination with coefficients learned from
withheld training data.

• An entity-entity edge is weighted based on
Wikipedia-link overlap, or type distance, or some
combination along these lines.

Our experiments will focus on anchor-based pop-
ularity, keyphrase-based and/or syntactic similarity,
and link-based coherence (mw coh). The mention-
entity graph is dense on the entities side and often has
hundreds or thousands of nodes, as the YAGO knowl-
edge base offers many candidate entities for common
mentions (e.g., country names that could also denote
sports teams, common lastnames, firstnames, etc.).

5.2 Graph Algorithm

Given a mention-entity graph, our goal is to com-
pute a dense subgraph that would ideally contain all
mention nodes and exactly one mention-entity edge
for each mention, thus disambiguating all mentions.
We face two main challenges here. The first is how
to specify a notion of density that is best suited for
capturing the coherence of the resulting entity nodes.
The seemingly most natural approach would be to
measure the density of a subgraph in terms of its total
edge weight. Unfortunately, this will not work ro-
bustly for the disambiguation problem. The solution
could be dominated by a few entity nodes with very
high weights of incident edges, so the approach could
work for prominent targets, but it would not achieve
high accuracy also for the long tail of less prominent
and more sparsely connected entities. We need to
capture the weak links in the collective entity set of
the desired subgraph. For this purpose, we define
the weighted degree of a node in the graph to be the
total weight of its incident edges. We then define the
density of a subgraph to be equal to the minimum
weighted degree among its nodes. Our goal is to
compute a subgraph with maximum density, while
observing constraints on the subgraph structure.

The second critical challenge that we need to face
is the computational complexity. Dense-subgraph
problems are almost inevitably NP-hard as they gen-
eralize the Steiner-tree problem. Hence, exact algo-
rithms on large input graphs are infeasible.

To address this problem, we adopt and extend an
approximation algorithm of (Sozio10) for the prob-
lem of finding strongly interconnected, size-limited
groups in social networks. The algorithm starts from
the full mention-entity graph and iteratively removes
the entity node with the smallest weighted degree.
Among the subgraphs obtained in the various steps,
the one maximizing the minimum weighted degree
will be returned as output. To guarantee that we
arrive at a coherent mention-entity mapping for all
mentions, we enforce each mention node to remain
connected to at least one entity. However, this con-
straint may lead to very suboptimal results.

For this reason, we apply a pre-processing phase to
prune the entities that are only remotely related to the
mention nodes. For each entity node, we compute the
distance from the set of all mention nodes in terms
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Figure 1: Mention-Entity Graph Example

of the sum of the corresponding squared shortest-
path distances. We then restrict the input graph to
the entity nodes that are closest to the mentions. An
experimentally determined good choice for the size
of this set is five times the number of the mention
nodes. Then the iterative greedy method is run on
this smaller subgraph. Algorithm 1 summarizes this
procedure, where an entity is taboo if it is the
last candidate for a mention it is connected to.

Algorithm 1: Graph Disambiguation Algorithm
Input: weighted graph of mentions and entities
Output: result graph with one edge per mention
begin

pre–processing phase;
foreach entity do

calculate distance to all mentions;
keep the closest (5× mentions count)
entities, drop the others;
main loop;
while graph has non-taboo entity do

determine non-taboo entity node
with lowest weighted degree, remove it
and all its incident edges;
if minimum weighted degree increased
then

set solution to current graph;

post–processing phase;
process solution by local search or full
enumeration for best configuration;

The output of the main loop would often be close
to the desired result, but may still have more than one
mention-entity edge for one or more mentions. At
this point, however, the subgraph is small enough to
consider an exhaustive enumeration and assessment
of all possible solutions. This is one of the options
that we have implemented as post-processing step.
Alternatively, we can perform a faster local-search
algorithm. Candidate entities are randomly selected
with probabilities proportional to their weighted de-
grees. This step is repeated for a prespecified number
of iterations, and the best configuration with the high-
est total edge-weight is used as final solution.

5.3 Robustness Tests

The graph algorithm generally performs well. How-
ever, it may be misled in specific situations, namely,
if the input text is very short, or if it is thematically
heterogeneous. To overcome these problems, we in-
troduce two robustness tests for individual mentions
and, depending on the tests’ outcomes, use only a
subset of our framework’s features and techniques.
Prior test: Our first test ensures that the popularity
prior does not unduly dominate the outcome if the
true entities are dominated by false alternatives. We
check, for each mention, whether the popularity prior
for the most likely candidate entity is above some
threshold ρ, e. g. above 90% probability. If this is not
the case, then the prior is completely disregarded for
computing the mention-entity edge weights. Other-
wise, the prior is combined with the context-based
similarity computation to determine edge weights.
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We never rely solely on the prior.
Coherence test: As a test for whether the coher-
ence part of our framework makes sense or not,
we compare the popularity prior and the similarity-
only measure, on a per-mention basis. For each
mention, we compute the L1 distance between the
popularity-based vector of candidate probabilities
and the similarity-only-based vector of candidate
probabilities:

∑

i=1..k

|prior(m, ei)− simscore(m, ei)|

This difference is always between 0 and 2. If it ex-
ceeds a specified threshold λ (e.g., 1), the disagree-
ment between popularity and similarity-only indi-
cates that there is a situation that coherence may be
able to fix. If, on the other hand, there is hardly any
disagreement, using coherence as an additional as-
pect would be risky for thematically heterogeneous
texts and should better be disabled. In that case, we
choose an entity for the mention at hand, using the
combination of prior and similarity. Only the win-
ning entity is included in the mention-entity graph, all
other candidates are omitted for the graph algorithm.
The robustness tests and the resulting adaptation of
our method are fully automated.

6 Experiments

6.1 Setup

System: All described methods are implemented in
a prototype system called AIDA (Accurate Online
Disambiguation of Named Entities). We use the Stan-
ford NER tagger (Finkel05) to identify mentions in
input texts, the YAGO2 knowledge base (Hoffart11)
as a repository of entities, and the English Wikipe-
dia edition (as of 2010-08-17) as a source of mining
keyphrases and various forms of weights. The graph
algorithm makes use of Webgraph (Boldi04).
Datasets: There is no established benchmark for
NED. The best prior work (Kulkarni09)) compiled
its own hand-annotated dataset, sampled from online
news. Unfortunately, this data set is fairly small (102
short news articles, about 3,500 proper noun men-
tions). Moreover, its entity annotations refer to an old
version of Wikipedia. To avoid unfair comparisons,
we created our own dataset based on CoNLL 2003

articles 1,393
mentions (total) 34,956
mentions with no entity 7,136
words per article (avg.) 216
mentions per article (avg.) 25
distinct mentions per article (avg.) 17
mentions with candidate in KB (avg.) 21
entities per mention (avg) 73
initial annotator disagreement (%) 21.1

Table 1: CoNLL Dataset Properties

data, extensively used in prior work on NER tagging
(Sang03).

This consists of proper noun annotations for 1393
Reuters newswire articles. We hand-annotated all
these proper nouns with corresponding entities in
YAGO2. Each mention was disambiguated by two
students and resolved by us in case of conflict. This
data set is referred to as CoNLL in the following
and fully available at http://www.mpi-inf.mpg.
de/yago-naga/aida/. Table 1 summarizes prop-
erties of the dataset.
Methods under comparison: Our framework in-
cludes many variants of prior methods from the lit-
erature. We report experimental results for some of
them. AIDA’s parameters were tuned by line-search
on 216 withheld development documents. We found
the following to work best:

• threshold for prior test: ρ = 0.9

• weights for popularity, similarity, coherence:
α = 0.43, β = 0.47, γ = 0.10

• initial number of entites in graph: 5 · #mentions

• threshold for coherence test: λ = 0.9

We checked the sensitivity of the hyper-parameter
settings and found the influence of variations to be
small, e. g. when varying λ within the range [0.5,1.3],
the changes in precision@1.0 are within 1%.

The baseline for our experiments is the collective-
inference method of (Kulkarni09), which outper-
forms simpler methods (such as (Milne08)). We
refer to this method as Kul CI. Since program code
for this method is not available, we re-implemented
it using the LP solver CPLEX for the optimization
problem with subsequent rounding, as described in
(Kulkarni09). In addition, we compare against (our
re-implementation of) the method of (Cucerzan07),
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Our Methods Competitors

sim-k prior
sim-k

prior
sim-s

sim-k
sim-s

r-prior
sim-k

r-prior
sim-k
coh

r-prior
sim-k
r-coh

prior Cuc Kul s Kul sp Kul CI

Macro P@1.0 76.53 75.75 71.43 76.40 80.71 80.73 81.91 71.24 43.74 58.06 76.74 76.74
Micro P@1.0 76.09 70.72 66.09 76.13 79.57 81.77 81.82 65.84 51.03 63.42 72.31 72.87
MAP 66.98 83.99 85.97 67.00 85.91 89.05 87.31 86.63 40.06 63.90 86.50 85.44

Table 2: Experimental results on CoNLL (all values in %)

referred to as Cuc. For all methods, weights for
combining components were obtained by training
a SVM classifier on 946 withheld CoNLL training
documents.
Performance measures: The key measures in our
evaluation are precision and recall. We consider
the precision-recall curve, as there is an inherent
trade-off between the two measures. Precision is the
fraction of mention-entity assignments that match
the ground-truth assignment. Recall is the fraction
of the ground-truth assignments that our method(s)
could compute. Both measures can aggregate over of
all mentions (across all texts) or over all input texts
(each with several mentions). The former is called
micro-averaging, the latter macro-averaging.

As we use a knowledge base with millions of enti-
ties, we decided to neglect the situation that a mention
may refer to an unknown entity not registered in the
knowledge base. We consider only mention-entity
pairs where the ground-truth gives a known entity,
and thus ignore roughly 20% of the mentions without
known entity in the ground-truth. This simplifies the
calculation of aggregated precision-recall measures
like (interpolated) MAP (mean average precision):

MAP =
1

m

∑

i=1..m

precision@
i

m

where precision@ i
m is the precision at a specific

recall level. This measure is equivalent to the area
under the precision-recall curve.

For constructing the precision-recall curve, we sort
the mention-entity pairs in descending order of con-
fidence, so that x% recall refers to the x% with the
highest confidence. We use each method’s mention-
entity similarity for the confidence values.

6.2 Results
The results of AIDA vs. the collective-inference
method of (Kulkarni09) and the entity disambigua-

tion method of (Cucerzan07) on 229 test documents
are shown in Table 21. The table includes variants
of our framework, with different choices for the sim-
ilarity and coherence computations. The shorthand
notation for the combinations in the table is as fol-
lows: prior: popularity prior; r-prior: popularity
prior with robustness test; sim-k: keyphrase based
similarity measure; sim-s: syntax-based similarity;
coh: graph coherence; r-coh: graph coherence with
robustness test.

The shorthand names for competitors are: Cuc:
(Cucerzan07) similarity measure; Kul s: (Kulka-
rni09) similarity measure only; Kul sp: Kul s com-
bined with plus popularity prior; Kul CI: Kul sp com-
bined with coherence. All coherence methods use
the Milne-Witten inlink overlap measure mw coh.

The most important measure is macro/micro preci-
son@1.0, which corresponds to the overall correct-
ness of the methods for all mentions that are assigned
to an entity in the ground-truth data. Our sim-k pre-
cision is already very good. Combining it with the
syntax-based similarity improves micro-averaged pre-
cision@1.0, but the macro-averaged results are a bit
worse. Thus, the more advanced configurations of
AIDA did not use syntax-based similarity. Uncondi-
tionally combining prior and sim-k degrades the qual-
ity, but including the prior robustness test (r-prior
sim-k) improves the results significantly. The preci-
sion for our best method, the prior- and coherence-
tested Keyphrase-based mention-entity similarity (r-
prior sim-k r-coh), significantly outperforms all com-
petitors (with a p-value of a paired t-test< 0.01). Our
macro-averaged precision@1.0 is 81.91%, whereas
Kul CI only achieves 76.74%. Even r-prior sim-
k, without any coherence, significantly outperforms

12 of the 231documents in the original test set could not be
processed by Kul CI due to memory limitations. All results are
given for the subset, for the sake of comparability. Results for
the complete set are available on our website.
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Figure 2: Experimental results on CoNLL: precision-recall curves

Kul CI (with coherence) with a p-value of < 0.01.
In micro-average precision@1.0, the differences are
even higher, showing that we perform better through-
out all documents.

The macro-averaged precision-recall curves in Fig-
ure 2 show that the best AIDA method performs
particularly well in the tail of high recall values. The
MAP underlines the robustness of our best methods.

The high MAP for the prior method is because
we rank by mention-entity edge weight; for prior
this is simply the prior probability. As the prior is
most probably correct for mentions with a very high
prior for their most popular entity (by definition), the
initial ranking of the prior is very good, but drops
more sharply. We believe that the main difficulty in
named entity disambiguation lies exactly in the “long
tail” of not-so-prominent entities.

We also tried the (Milne08) web service on a sub-
set of our test collection, but this was obviously
geared for Wikipedia linkage and performed poorly.

6.3 Discussion
Our keyphrase-based similarity measure performs
better than the Kul s measure, which is a combina-
tion of 4 different entity contexts (abstract tokens,
full text tokens, inlink anchor tokens, inlink anchor
tokens + surrounding tokens), 3 similarity measures
(Jaccard, dot product, and tf.idf cosine similarity),
and the popularity prior. Adding the prior to our
similarity measure by linear combination degrades
the performance. We found that our measure already
captures a notion of popularity because popular enti-
ties have more keyphrases and can thus accumulate
a higher total score. The popularity should only be
used when one entitiy has a very high probability, and
introducing the robustness test for the prior achieved
this, improving on both our similarity and Kul sp.

Unconditionally adding the notion of coherence
among entities improves the micro-average precision,

but not the macro-average. Investigating potential
problems, we found that the coherence can be led
astray when parts of the document form a coherent
cluster of entities, and other entities are then forced
to be coherent to this cluster. To overcome this is-
sue, we introduced the coherence robustness test,
and the results with r-coh show that it makes sense
to fix an entity for a mention when the prior and
similarity are in reasonable agreement. Adding this
coherence test leads to a signigicant (p-value < 0.05)
improvement over the non-coherence based measures
in both micro- and macro-average precision. Our ex-
periments showed that when adding this coherence
test, around 2

3 of the mentions are solved using local
similarity only and are assigned an entity before run-
ning the graph algorithm. In summary, we observed
that the AIDA configuration with r-prior, keyphrase-
based sim-k, and r-coh significantly outperformed all
competitors.

7 Conclusions and Future Work

The AIDA system provides an integrated NED
method using popularity, similarity, and graph-based
coherence, and includes robustness tests for self-
adaptive behavior. AIDA performed significantly bet-
ter than state-of-the-art baselines. The system is fully
implemented and accessible online (http://www.
mpi-inf.mpg.de/yago-naga/aida/). Our fu-
ture work will consider additional semantic proper-
ties between entities (types, memberOf/partOf, etc.)
for further enhancing the coherence algorithm.
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Abstract
Most NLP systems use tokenization as part
of preprocessing. Generally, tokenizers are
based on simple heuristics and do not recog-
nize multi-word units (MWUs) like hot dog
or black hole unless a precompiled list of
MWUs is available. In this paper, we propose
a new cascaded model for detecting MWUs
of arbitrary length for tokenization, focusing
on noun phrases in the physics domain. We
adopt a classification approach because – un-
like other work on MWUs – tokenization re-
quires a completely automatic approach. We
achieve an accuracy of 68% for recognizing
non-compositional MWUs and show that our
MWU recognizer improves retrieval perfor-
mance when used as part of an information re-
trieval system.

1 Introduction

Most NLP systems use tokenization as part of pre-
processing. Generally, tokenizers are based on sim-
ple heuristics and do not recognize multi-word units
(MWUs) like hot dog or black hole. Our long-term
goal is to build MWU-aware tokenizers that are used
as part of the standard toolkit for NLP preprocessing
alongside part-of-speech and named-entity tagging.

We define an MWU as a sequence of words that
has properties that cannot be inferred from the com-
ponent words (cf. e.g. Manning and Schütze (1999,
Ch. 5), Sag et al. (2002)). The most important
of these properties is non-compositionality, the fact
that the meaning of a phrase cannot be predicted
from the meanings of its component words. For ex-
ample, a hot dog is not a hot animal but a sausage in
a bun and a black hole in astrophysics is a region of
space with special properties, not a dark cavity.

The correct recognition of MWUs is an important
building block of many NLP tasks. For example, in
information retrieval (IR) the query hot dog should
not retrieve documents that only contain the words
hot and dog individually, outside of the phrase hot
dog.

In this study, we focus on noun phrases in the
physics domain. For specialized domains such as
physics, adaptable and reliable MWU recognition
is of particular importance because comprehensive
and up-to-date lists of MWUs are not available
and would have to be created by hand. We chose
noun phrases because domain-specific terminology
is commonly encoded in noun phrase MWUs; other
types of phrases – e.g., verb constructions – rarely
give rise to fixed domain-specific multi-word se-
quences that should be treated as a unit.

We cast the task of MWU tokenization as seman-
tic head recognition in this paper. The importance of
syntactic heads for many NLP tasks is generally ac-
cepted. For example, in coreference resolution iden-
tity of syntactic heads is predictive of coreference;
in parse disambiguation, the syntactic head of a noun
phrase is a powerful feature for resolving attachment
ambiguities. However, in all of these cases, the syn-
tactic head is only an approximation of the informa-
tion that is really needed; the underlying assumption
made when using the syntactic head as a substitute
for the entire phrase is that the syntactic head is rep-
resentative of the phrase. This is not the case when
the phrase is non-compositional.

We define the semantic head of a noun phrase as
the non-compositional part of a phrase. Semantic
heads would serve most NLP tasks better than syn-
tactic heads. For example, a coreference resolution
system is misled if it looks at syntactic heads to de-
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termine possible coreference of a hot dog . . . the dog
in I first ate a hot dog and then fed the dog. This is
not the case for a system that makes the decision
based on the semantic heads hot dog of a hot dog
and dog of the dog.

The specific NLP application we evaluate in this
paper is information retrieval. We will show that se-
mantic head recognition improves the performance
of an information retrieval system.

We introduce a cascaded classification framework
for recognizing semantic heads that allows us to treat
noun phrases of arbitrary length. We use a number
of previously proposed features for recognizing non-
compositionality and semantic heads. In addition,
we compare three features that measure contextual
similarity.

Our main contributions in this paper are as fol-
lows. First, we introduce the notion of semantic
head, in analogy to syntactic head, and propose se-
mantic head recognition as a new component of NLP
preprocessing. Second, we develop a cascaded clas-
sification framework for semantic head recognition.
Third, we investigate the utility of contextual simi-
larity for detecting non-compositionality and show
that it significantly enhances a baseline semantic
head recognizer. However, we also identify a num-
ber of challenges of using contextual similarity in
high-confidence semantic head recognition. Fourth,
we show that our approach to semantic head recog-
nition improves the performance of an IR system.

Section 2 discusses previous work. In Section 3
we introduce semantic heads and present our cas-
caded model for semantic head recognition. In Sec-
tion 4, we describe our data and three different mea-
sures of contextual similarity. Section 5 introduces
the classifier and its features. Section 6 presents
classification results and discussion. Section 7 de-
scribes the information retrieval experiments. In
Section 8 we present our conclusions.

2 Related Work

While there is a large number of publications on
MWUs and collocation extraction, the general prob-
lem of automatic MWU detection for the specific
purpose of tokenization has not been investigated
before to our knowledge.

The classic approach to identifying collocations

and MWUs is to apply statistical association mea-
sures (AMs) to n-grams extracted from a corpus
– often combined with various linguistic heuris-
tics and other filters, resulting in candidate lists.
Choueka (1988) and the XTRACT system (Smadja,
1993) are well-known examples of this approach.

More recent approaches such as Pecina (2010)
and Ramisch et al. (2010) combine classifiers with
association measures. Although our approach is
classification-based as well, our data set has a more
realistic size than Pecina (2010)’s (1 billion words
vs 1.5 million words) and we work on noun phrases
of arbitrary length (instead of just bigrams). The
mwetoolkit1 by Ramisch et al. (2010) aims to
be a software package for lexicographers and its
features are limited to a small set of association
measures that do not consider marginal frequencies.
Neither of these two studies includes evaluation in
the context of an application.

Lin (1999) defines a decision criterion for non-
compositional phrases based on the change in the
mutual information of a phrase when substituting
one word for a similar one based on an automatically
constructed thesaurus. The method reaches 15.7%
precision and 13.7% recall.

In terms of the extraction of domain-specific
MWUs, cross-language methods have been pro-
posed that make use of the fact that an MWU in one
language might be expressed as a single word in an-
other. Caseli et al. (2009) utilize word alignments
in a parallel corpus; Attia et al. (2010) exploit the
links between article names of different-language
Wikipedias to search for many-to-one translations.
We did not pursue a cross-language approach be-
cause we strive for a self-contained method of MWU
recognition that operates on a single textual re-
source.

Non-compositionality and distributional se-
mantics. In recent years, a number of studies have
investigated the relationship between distributional
semantics and non-compositionality. These studies
compute the similarity between words and phrases
represented as semantic vectors in a word space
model. A semantic vector of a word is the accumu-
lation of the particular contexts in which the word

1http://sourceforge.net/projects/
mwetoolkit/
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appears. The underlying idea is similar to Lin’s:
the meaning of a non-compositional phrase some-
how deviates from what one would expect given the
semantic vectors of parts of the phrase. The stan-
dard measure to compare semantic vectors is cosine
similarity. The questions that arise are (i) which
vectors to compare, (ii) how to combine the vectors
of the parts and (iii) from what point on a certain
dissimilarity indicates non-compositionality. To our
knowledge, there are no generally accepted answers
to these questions.

Regarding (i), Schone and Jurafsky (2001) com-
pare the semantic vector of a phrase p and the vec-
tors of its component words in two ways: one in-
cludes the contexts of p in the construction of the
semantic vectors of the parts and one does not. Re-
garding (ii), they suggest weighted or unweighted
sums of the semantic vectors of the parts.

Baldwin et al. (2003) investigate semantic decom-
posability of noun-noun compounds and verb con-
structions. They address (i) by comparing the se-
mantic vectors of phrases with the vectors of their
parts individually to detect meaning changes; e.g.,
they compare vice president to vice and president.

We propose a new method that compares phrases
with their alternative phrases, in the spirit of Lin
(1999)’s substitution approach (see Section 4.3).
Our rationale is that context features should be
based on contexts that are syntactically similar to the
phrase in question.

With respect to (iii), the above-mentioned studies
use ad hoc thresholds to separate compositional and
non-compositional phrases but do not offer a princi-
pled decision criterion.2 In contrast, we train a sta-
tistical classifier to learn a decision criterion.

There is a larger body of work concerning non-
compositionality which revolves around the prob-
lem of literal (compositional) vs. non-literal (non-
compositional) usage of idiomatic verb construc-
tions like to break the ice or to spill the beans.
Some studies approach the problem with semantic
vector comparisons in the style of Schone and Ju-
rafsky (2001), e.g Katz and Giesbrecht (2006) and
Cook et al. (2007). Other approaches use word-
alignment (e.g. Moirón and Tiedemann (2006)) or

2Lin (1999) uses a well-defined criterion but his approach is
not based on vector similarity.

a combination of heuristic and linguistic features
(e.g. Diab and Bhutada (2009), Li and Sporleder
(2010)). Even though there is some methodologi-
cal overlap between our approach and some of the
verb-oriented studies, we believe that verb construc-
tions have properties that are quite different from
noun phrases. For example, our definition of alter-
native vector relies on the fact that most noun phrase
MWUs are fixed and exhibit no syntactic variability.
In contrast, verb constructions are often discontinu-
ous.

The motivation for most work on MWU detec-
tion is lexicography, terminology extraction or the
creation of machine-readable dictionaries. Our mo-
tivation – tokenization in a preprocessing setting – is
different from this earlier work.

3 Semantic Heads and Cascaded Model

We cast the task of MWU tokenization as seman-
tic head recognition in this paper. We define the
semantic head of a noun phrase as the largest non-
compositional part of the phrase that contains the
syntactic head. For example, black hole is the se-
mantic head of unusual black hole and afterglow is
the semantic head of bright optical afterglow; in the
latter case syntactic and semantic heads coincide.

Semantic heads would serve most NLP tasks bet-
ter than syntactic heads. The attachment ambiguity
of the last noun phrase in he bought the hot dogs in a
packet can be easily resolved for the semantic head
hot dogs (food is often in a packet), but not as easily
for the syntactic head dogs (dogs are usually not in
packets). Indeed, we will show in Section 7 that se-
mantic head recognition improves the performance
of an IR system.

The semantic head is either a single noun or a non-
compositional noun phrase. In the latter case, the
modifier(s) introduce(s) a non-compositional, un-
predictable shift of meaning; hot shifts the mean-
ing of dog from live animal to food. In contrast,
the compositional meaning shift caused by small
in small dog is transparent. The semantic head al-
ways contains the syntactic head; for compositional
phrases, syntactic head and semantic head are iden-
tical.

To determine the semantic head of a phrase, we
use a cascaded classification approach. The cascade
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(1) neutron star
(2) unusual black hole
(3) bright optical afterglow
(4) small moment of inertia

Figure 1: Example phrases with modifiers. Peripheral
elements are set in italics, syntactic heads in bold.

comes into play in all aspects of our study: the rat-
ing experiments with human subjects, data extrac-
tion, feature design and classification itself.

We need a cascade because we want to recog-
nize the semantic head in noun phrases of arbitrary
length. The starting point is a phrase of length n:
p = w1 . . . wn. We distinguish between the syntac-
tic head of a phrase and the remaining words, the
modifiers. Figure 1 shows phrases of varying syn-
tactic complexity. The syntactic head is marked in
bold. The model accommodates pre-nominal modi-
fiers as in examples (1) through (3) and post-nominal
modifiers like PPs in example (4).

Among the modifiers, there is a distinguished ele-
ment, the peripheral element u (italicized in the ex-
amples). The remaining words are called the rest
v. We can now represent any phrase p as p = uv.3

The element u is always the outermost modifier. of -
PPs are treated as a single modifier and they take
precedence over pre-nominal modification because
this analysis is dominant in our gold standard data.
This means that in the phrase small moment of iner-
tia, small (and not of inertia) is the peripheral ele-
ment u.

Cascaded classification then operates as shown in
Figure 2. In each iteration, the classifier decides
whether the relation between the current peripheral
element u and the rest v is compositional (C) or non-
compositional (NC). If the relation is NC, process-
ing stops and uv is returned as the semantic head
of p. If the relation is compositional, u is discarded
and classification continues with v as the new input
phrase, which again is represented in the form u′v′.
In case there is no more peripheral element u, i.e.
the new v is a single word, it is returned as the se-
mantic head of p.

Table 1 shows two examples. For the fully com-
positional phrase bright optical afterglow, the pro-

3We use the abstract representation p = uv even though u
can appear after v in the surface form of p.

function recognize semantic head(p)
u← peripheral(p)
v ← rest(p)
while decision(u, v) 6= NC do
u← peripheral(v)
if u = ∅ then

return v
v ← rest(v)

return uv

Figure 2: Cascaded classification of p

step u v decision

1 bright optical afterglow C
2 optical afterglow C
3 ∅ afterglow

1 small moment of inertia C
2 of inertia moment NC

Table 1: Cascaded decision processes

cess runs all the way down to the syntactic head af-
terglow which is also the semantic head. In the sec-
ond case, the process stops earlier, in step 2, because
the classifier finds that the relation between moment
and of inertia is NC. This means that the semantic
head of small moment of inertia is moment of iner-
tia.

4 Corpus and Feature Definitions

4.1 Candidate phrases

As our corpus, we use the iSearch collection, a
one billion word collection of documents from the
physics domain (Lykke et al., 2010). We tokenized
the collection by splitting on white space and adding
sentence boundaries and part-of-speech tags to the
output. With part-of-speech information, the iden-
tification of MWU candidates is easy, fast and reli-
able.

We extracted all noun phrases from the collection
that consist of a head noun with up to four modifiers
– almost all domain-specific terminology in our col-
lection is captured by this pattern. The pre-nominal
modifiers can be nouns, proper nouns, adjectives or
cardinal numbers.

The baseline accuracy of a classifier that always
chooses compositionality is very high (> 90%) for
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V = v V 6= v

U = u O11 O12 = R1

U 6= u O21 O22 = R2

= C1 = C2 = N

Table 2: 2-by-2 contingency tables with observed and
marginal frequencies

phrases of the type [noun] of the/a [noun] (sg.)
(e.g. rest of the paper) and [noun] of [noun] (pl.)
(e.g. series of papers). We therefore restrict post-
nominal modifiers to prepositional phrases with the
word of followed by a non-modified, indefinite, sin-
gular noun, e.g., speed of light or moment of inertia.

Out of all phrases extracted with part-of-speech
patterns, we keep only the ones that appear more of-
ten than 50 times because it is hard to compute re-
liable features for less frequent phrases. All experi-
ments were carried out with lemmatized word forms.
We refer to lemmas as words if not noted otherwise.

4.2 Association measures

Statistical association measures are frequently used
for MWU detection and collocation extraction (e.g.
Schone and Jurafsky (2001), Evert and Krenn
(2001), Pecina (2010)).

We use all measures used by Schone and Jurafsky
(2001) that can be derived from a phrase’s contin-
gency table. These measures are Student’s t-score,
z-score, χ2, pointwise mutual information (MI),
Dice coefficient, frequency, log-likelihood (G2) and
symmetric conditional probability.

We define the AMs in Table 3 based on the no-
tation for the contingency table shown in Table 2
(cf. Evert (2004)). Oij is observed frequency and
Eij =

RiCj

N expected frequency.

The AMs are designed to deal with two random
variables U and V that traditionally represent single
words. In our model, we use U to represent periph-
eral elements u and V for rests v.

association measure formula

student’s t-score (amt) O11−E11√
O11

z-score (amz) O11−E11√
E11

chi-square (amχ2)
∑
i,j

(Oij−Eij)
2

Eij

pointwise mutual infor-
mation (amMI )

log O11
E11

Dice coefficient (amD) 2O11
R1+C1

frequency (amf ) O11

log-likelihood (amG2) 2
∑
i,j
Oij log

Oij

Eij

symmetric conditional
probability (amscp)

O11
2

R1C1

Table 3: Association measures

4.3 Word space model
As our baseline, we use two methods of compar-
ing semantic vectors: sj1 and sj2, both introduced
by Schone and Jurafsky (2001). They experimented
with variants of sj1 and sj2, but found no large differ-
ences. In addition, we introduce our own approach
alt.

Method sj1 compares the semantic vector of a
phrase p with the sum of the vectors of its parts.
Method sj2 is like sj1, except the contexts of p are
not part of the semantic vectors of the parts. Method
alt compares the semantic vector of a phrase with its
alternative vector. In the definitions below, s repre-
sents a vector similarity measure, w(p) a general se-
mantic vector of a phrase p and w∗(wi) the semantic
vector of a partwi of a phrase p that does not include
the contexts of occurrences of wi that were part of p
itself.

sj1 s(w(black hole), w(black) + w(hole))

sj2 s(w(black hole), w∗(black) + w∗(hole))

alt s(w(black hole),
∑
u
w(u, hole)); u 6= black

For the third comparison, we build the alternative
vector as follows. For a phrase p = uv with pe-
ripheral element u and rest v, we call the phrase
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p′ = u′v an alternative phrase if the rest v is the
same and u′ 6= u. E.g., giant star is an alternative
phrase of neutron star and isolated neutron star is
an alternative of young neutron star. The alterna-
tive vector of p is then the semantic vector that is
computed from the contexts of all of p’s alternative
phrases. The alternative vector is a representation
of the contexts of v except for those modified by u.
This technique bears resemblance to the substitution
approach of Lin (1999). The difference is that he
relies on a similarity thesaurus for substitution and
monitors the change in mutual information for each
substitution individually whereas we substitute with
general alternative modifiers and combine the alter-
native contexts into one vector for comparison.

Previous work has compared the semantic vector
of a phrase with the vectors of its components. Our
approach is more “head-centric” and only compares
phrases in the same syntactic configuration. Our
question is: Is the typical context of the head hole
if it occurs with a modifier that is not black different
from when it occurs with the modifier black?

We used a bag-of-words model and a window of
±10 words for contexts to create semantic vectors.
We only kept the content words in the window which
we defined as words that are tagged as either a noun,
verb, adjective or adverb. To add information about
the variability of syntactic contexts in which phrases
occur, we add the words immediately before and af-
ter the phrase with positional markers (−1 and +1,
respectively) to the vector. These words were not
subject to the content-word filter. The dimension-
ality of the vectors is then 3V where V is the size
of the vocabulary: V dimensions each for bag-of-
words, left and right syntactic contexts. We did not
include vectors for the stop word of for sj1 and sj2.

4.4 Non-compositionality judgments
Since the domain of the corpus is physics, highly
specialized vocabulary had to be judged. We em-
ployed domain experts as raters (one engineering
and two physics graduate students).

In line with the cascaded model, the raters where
asked to identify the semantic head of each candi-
date phrase. If at least two raters agreed on a seman-
tic head of a phrase we made this choice the seman-
tic head in the gold standard. The final gold standard
comprises 1560 phrases.

We computed raw agreement of each rater with
the gold standard as the percentage of correctly rec-
ognized semantic heads – this is the task that the
classifier addresses. Agreement is quite high at
86.5%, 88.3% and 88.5% for the three raters. In
addition, we calculated chance-corrected agreement
with Cohen’s κ on the first decision task against the
gold standard (see Section 6). As expected, agree-
ment decreases, but is still substantial at 74.0%,
78.2% and 71.8% for the three raters.

5 Classifier

We use the Stanford maximum entropy classifier for
our experiment.4 We randomly split the data into a
training set of 1300 and a held-out test set of 260
pairs.

We use the eight AMs and the cosine similari-
ties simsj1, simsj2 and simalt described in Sec-
tion 4.3 as features for the classifier. Cosine similar-
ity should be small if a phrase is non-compositional
and large if it is compositional. In other words, if the
contexts of the candidate phrase are too dissimilar to
the contexts of the sum of its parts or to the alterna-
tive phrases, then we suspect non-compositionality.

Feature values are binned into 5 bins. We ap-
plied a log transformation to the four AMs with large
values: amf , amG2 , amχ2 and amz . For our ap-
plication there is little difference between statistical
significance at p < .001 and p < .00001. The
log transformation reduces the large gap in magni-
tude between high significance and very high signif-
icance. If co-occurrence of u and v in uv is below
chance, then we set the association scores to 0 since
this is an indication of compositionality (even if it is
highly significant).

Since AMs have been shown to be correlated (e.g.
Pecina (2010)), we first perform feature selection on
the AM features. We tested accuracy of all 2r − 1
non-empty combinations of the r = 8 AM features
on the task of deciding whether the first decision
during the classification of a phrase was C or NC.
We then selected those AM features that were part
of at least one top 10 result in each fold. Those fea-
tures were amt, amf and amscp.

The main experiment combines these three se-

4http://nlp.stanford.edu/software/
classifier.shtml
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lected AM features with all possible subsets of con-
text features. We train on the 1300-element training
set and test on the 260-element test set.

6 Results and Discussion

We ran three evaluation modes: dec-1st, dec-all, and
semh. Mode dec-1st only evaluates the first deci-
sion for each phrase; the baseline in this case is .554
since 55.4% of the first decisions are C. In mode
dec-all, we evaluate all decisions that were made in
the course of recognizing the semantic head. This
mode emphasizes the correct recognition of seman-
tic heads in phrases where multiple correct decisions
in a row are necessary. We define the confidence
for multi-decision classification as the product of
the confidence values of all intermediate decisions.
There is no obvious baseline for dec-all because the
number of decisions depends on the classifier – a
classifier whose first decision on a four-word phrase
is NC makes one decision, another one may make
three. The mode semh evaluates how many semantic
heads were recognized correctly. This mode directly
evaluates the task of semantic head recognition. The
baseline for semh is the tokenizer that always returns
the syntactic head; this baseline is .488.5 Table 4
shows 8× 3 runs, corresponding to the three modes
tested on the AM features (amt, amf , and amscp)
and the eight possible subsets of the three context
features.

For all modes, the best result is achieved with base
AMs combined with the simalt feature; the accura-
cies are .692, .703 and .680. The improvements over
the baselines (for dec-1st and semh) are statistically
significant at p < .01 (binomial test, n = 260).

For semh, accuracy without any context features
is .603; this is significantly better than the .488 base-
line (p < .01). Performance with only the base AM
features is significantly lower than the best context
feature experiment (.680) at p < .01 and signifi-
cantly lower than the worst context feature exper-
iment (.653) at p < .1. However, the differences
between the context feature runs are not significant.

When the semantic head recognizer processes a
phrase, there are four possible results. Result rsemh:

5The baseline could be improved with simple heuristics, e.g.
“uv contains capital letter”→ NC. However, this feature only
results in a 2% improvement compared to the baseline.

type freq definition

rsemh 92 sem. head correct (6= synt. head)
rsynth 85 sem. head correct (= synt. head)
r+ 48 sem. head too long
r− 35 sem. head too short
all 260

Table 5: Distribution of result types

the semantic head is correctly recognized and it is
distinct from the syntactic head. Result rsynth: the
semantic head is correctly recognized and it is iden-
tical to the syntactic head. Result r+: the semantic
head is not correctly recognized because the cascade
was stopped too early, i.e., a compositional modifier
that should have been removed was kept. Result r−:
the semantic head is not correctly recognized be-
cause the cascade was stopped too late, i.e., a modi-
fier causing a non-compositional meaning shift was
removed. Table 5 shows the distribution of result
types. It shows that r+ is the more common error:
the classifier more often regards compositional rela-
tions as non-compositional than vice versa.

Table 6 shows the top 20 classifications where
the semantic head was not the same as the syntac-
tic head sorted by confidence in descending order.
In the third column “phrase . . . ” we list the candi-
dates with semantic heads in bold. The columns to
the right show the predicted semantic head and the
feature values. All five errors in the list are of type
r+.

Two r+ phrases are schematic view and many oth-
ers. The two phrases are clearly compositional and
the classifier failed even though the context feature
points in the direction of compositionality with a
value greater than .5. It can be argued that many oth-
ers is a trivial example that does not require complex
machinery to be identified as compositional, e.g. by
using a stop list. We included it in the analysis since
we want to be able to process arbitrary phrases with-
out additional hand-crafted resources.

Another incorrect classification occurs with the
phrase massive star birth6 for which star birth was
annotated as the semantic head. Here we have a case
where the peripheral element massive does not mod-

6i.e. the birth of a massive star, a certain type of star with
very high mass
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mode baseline context feature context feature subsets

simalt - • • • • - - -
simsj1 - - • – • • - •
simsj2 - - - • • - • •

dec-1st .554 .604 .692 .669 .685 .677 .654 .654 .662
dec-all - .615 .703 .681 .696 .688 .666 .669 .675
semh .488 .603 .680 .657 .673 .665 .653 .653 .661

Table 4: Performance for base AM features plus context feature subsets. A ’•’ indicates the use of the corresponding
context feature.

ify the syntactic head birth but massive star is itself
a complex modifier. In the test set, 5% of the phrases
exhibit structural ambiguities of this type. Our sys-
tem cannot currently deal with this phenomenon.

The remaining r+ phrases are peculiar velocity
and local group. However, Wikipedia lists both
phrases with an individual entry defining the former
as the true velocity of an object, relative to a rest
frame7 and the latter as the group of galaxies that
includes Earth’s galaxy, the Milky Way8. Both def-
initions provide evidence for non-compositionality
since the velocity is not peculiar (as in strange) and
the scope of local is not clear without further knowl-
edge. Arguably, in these cases our method chose a
justifiable semantic head, but the raters disagreed.9

For NLP preprocessing, it is acceptable to sacri-
fice recall and only make high-confidence decisions
on semantic heads. A tokenizer that reliably detects
a subset of MWUs is better than one that recognizes
none. However, our attempts to use the simalt rec-
ognizer (bold in Table 4) in this way were not suc-
cessful. Precision is .680 for confidence > .7 and
does not exceed .770 for higher confidence values.

To understand this effect, we analyzed the distri-
bution of simalt scores. Surprisingly, moderate sim-
ilarity between .4 and .6 is a more reliable indicator
for NC than low similarity < .3. Our intuition for
using distributional semantics in Section 2 was that
low similarity indicates non-compositionality. This

7http://en.wikipedia.org/wiki/Peculiar_
velocity

8http://en.wikipedia.org/wiki/Local_
group

9Further evidence that local group is non-compositional is
the fact that one of the domain experts annotated the phrase as
non-compositional but was overruled by the other two.

does not seem to hold for the lowest similarity val-
ues possibly because they are often extreme cases
in terms of distribution and frequency and then give
rise to unreliable decisions. This means that the con-
text features enhance the overall performance of the
classifier, but they are unreliable and do not support
the high-confidence decisions we need in NLP pre-
processing.

For comparison, the classifier that only uses AM
features achieves 90% precision at 14% recall with
confidence > .7 – although it has lower overall ac-
curacy than the simalt recognizer. We are still in
the process of analyzing these results and decided to
use the AM-only recognizer for the IR experiment
because it has more predictable performance.

In summary, the results show that, for the recogni-
tion of semantic heads, basic AMs offer a significant
improvement over the baseline. We have shown that
some wrong decisions are defensible even though
the gold standard data suggests otherwise. Context
features further increase performance significantly,
but surprisingly, they are not of clear benefit for
a high-confidence classifier that is targeted towards
recognizing a smaller subset of semantic heads with
high confidence.

7 Information Retrieval Experiment

Typically, IR systems do not process non-
compositional phrases as one semantic entity,
missing out on potentially important information
captured by non-compositionality. This section
illustrates one way of adjusting the retrieval process
so that non-compositional phrases are processed as
semantic entities that may enhance retrieval perfor-
mance. The underlying hypothesis is that, given
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c. type phrase (semantic head in bold) predicted semantic head amt amf amcp simalt

.99 rsemh ellipsoidal figure of equilibrium ellipsoidal figure of equilibrium 18.03 325 6.23e-01 .219

.99 rsemh point spread function point spread function 95.03 9056 2.33e-01 .529

.99 r+ massive star birth massive star birth 19.99 402 4.81e-03 .134

.98 rsemh high angular resolution imaging high angular resolution imaging 13.07 179 1.27e-03 .173

.98 rsemh integral field spectrograph integral field spectrograph 24.20 586 4.12e-02 .279

.98 r+ local group local group 153.54 24759 8.73e-03 .650

.98 rsemh neutral kaon system neutral kaon system 1.38 108 4.17e-03 .171

.97 rsemh IRAF task IRAF task 49.07 2411 2.96e-02 .517

.92 rsemh easy axis easy axis 44.66 2019 2.79e-03 .599

.89 r+ schematic view schematic view 40.56 1651 8.06e-03 .612

.87 rsemh differential resistance differential resistance 31.71 1034 6.38e-04 .548

.86 rsemh TiO band TiO band 36.84 1372 2.21e-03 .581

.86 r+ many others many others 97.76 9806 6.54e-03 .708

.86 rsemh VLBA observation VLBA observation 43.95 2004 9.35e-04 .648

.85 r+ peculiar velocity peculiar velocity 167.63 28689 2.37e-02 .800

.84 rsemh computation time computation time 43.80 1967 1.35e-03 .657

.83 rsemh Land factor Land factor 21.15 453 6.30e-04 .360

.83 rsemh interference filter interference filter 31.44 1002 1.27e-03 .574

.83 rsemh line formation calculations line formation calculations 14.20 203 1.96e-03 .381

.82 rsemh Wess-Zumino-Witten term Wess-Zumino-Witten term 9.60 94 8.12e-05 .291

Table 6: The 20 most confident classifications where the prediction is semantic head 6= syntactic head. “c.” = confi-
dence

a query that contains a non-compositional phrase,
boosting the retrieval weight of documents that
contain this phrase will improve overall retrieval
performance.

We do this boosting using Indri’s10 combination
of the language modeling and inference network
approaches (Metzler and Croft, 2004), which al-
lows assigning different degrees of belief to differ-
ent parts of the query. This belief can be drawn from
any suitable external evidence of relevance. In our
case, this source of evidence is the knowledge that
certain query terms constitute a non-compositional
phrase. Under this approach, and using the #weight
and #combine operators for combining beliefs, the
relevance of a documentD to a queryQ is computed
as the probability that D generates Q, P (Q|D):

P (Q|D) =
∏

t∈Q
P (t|D)

wt
W (W =

∑

t∈Q
wt) (1)

where t is a term and wt is the belief weight as-

signed to t. The higher wt is, the higher the rank
of documents containing t. In this work, we dis-

10http://www.lemurproject.org/

tinguish between two types of query terms: terms
occurring in non-compositional phrases (Qnc), and
the remaining query terms (Qc). Terms t ∈ Qnc
receive belief weight wnc and terms t ∈ Qc belief
weight wc, (wnc + wc = 1 and wnc, wc ∈ [0, 1]).
To boost the ranking of documents containing non-
compositional phrases, we increase wnc at the ex-
pense of wc. We estimate P (t|D) in Eq. 1 using
Dirichlet smoothing (Zhai and Lafferty, 2002).

We use Indri for indexing and retrieval without
removing stopwords or stemming. This choice is
motivated by two reasons: (i) We do not have a
domain-specific stopword list or stemmer. (ii) Base-
line performance is higher when keeping stopwords
and without stemming, rather than without stop-
words and with stemming.

We use the iSearch collection discussed in Sec-
tion 4. It comprises 453,254 documents and a
set of 65 queries with relevance assessments. To
match documents to queries without any treat-
ment of non-compositionality (baseline run), we
use the Kullback-Leibler language model with
Dirichlet smoothing (KL-Dir) (Zhai and Lafferty,
2002). We applied the preprocessing described
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run MAP REC P20

baseline 0.0663 770 0.1385
real NC 0.0718 844 0.1538
pseudo NC1 0.0664 788 0.1385
pseudo NC2 0.0658 782 0.1462
pseudo NC3 0.0671 777 0.1477
pseudo NC4 0.0681 807 0.1462
pseudo NC5 0.0670 783 0.1423

Table 7: IR performance without considering non-
compositionality (baseline), versus boosting real and
pseudo non-compositionality (real NC, pseudo NCi).

in Section 4 to the queries and identified non-
compositional phrases with the base AM classifier
from Section 5. Our approach for boosting the
weight of these non-compositional phrases uses
the same retrieval model enhanced with belief
weights as described in Eq. 1 (real NC run). In
addition, we include five runs that boost the weight
of pseudo non-compositional phrases that were
created randomly from the query text (pseudo NC
runs). These pseudo non-compositional phrases
have exactly the same length as the observed non-
compositional phrases for each query. We measure
retrieval performance in terms of mean average
precision (MAP), precision at 20 (P20), and recall
(REC, number of relevant documents retrieved
– total is 2878). For each evaluation measure
separately, we tune the following parameters and
report the best performance: (i) the smoothing
parameter µ of the KL-Dir retrieval model (µ ∈
{100, 500, 800, 1000, 2000, 3000, 4000, 5000, 8000,
10000}, following Zhai and Lafferty (2002)); (ii)
the belief weights wnc, wc ∈ {0.1, . . . , 0.9} in steps
of 0.1 while preserving wnc + wc = 1 at all times.

Table 7 displays retrieval performance of our
approach against the baseline and five runs with
pseudo non-compositional phrases. We see a 9.61%
improvement in the number of relevant retrieved
documents over the baseline. MAP and P20 also
show improvements. Our approach is better than
any of the 5 random runs on all three metrics – the
probability of getting such a good result by chance
is 1

25
< .05, and thus the improvements are statis-

tically significant. On doing a query-wise analysis
of MAP scores, we find that large improvements

over the baseline occur when a non-compositional
phrase aligns with what the user is looking for. The
system seems to retrieve more relevant documents
in that case. E.g., the improvement in MAP is
0.0977 for query #19. The user was looking for
“articles . . . on making tunable vertical cavity sur-
face emitting laser diodes” and laser diodes was
one of the non-compositional phrases recognized.
On the other hand, a decrease in MAP occurs for
non-compositional phrases unrelated to the infor-
mation need. In query #4 the user is looking for
“protein-protein interaction, the surface charge dis-
tribution of these proteins and how this has been in-
vestigated with Electrostatic Force Microscopy” and
though non-compositional phrases such as Force Mi-
croscopy are recognized, these do not reflect the core
information need “The proteins of interest are the
Avidin-Biotin and IgG-anti-IgG systems”.

8 Conclusion

We have presented an approach to improving to-
kenization in NLP preprocessing that is based on
the notion of semantic head. Semantic heads are
– in analogy to syntactic heads – the core meaning
units of phrases that cannot be further semantically
decomposed. To perform semantic head recogni-
tion for tokenization, we defined a novel cascaded
model and implemented it as a statistical classifier
that used previously proposed and new context fea-
tures. We have shown that the classifier significantly
outperforms the baseline and that context features
increase performance. We reached an accuracy of
68% and argued that even a semantic head recog-
nizer restricted to high-confidence decisions is use-
ful – because reliably recognizing a subset of se-
mantic heads is better than recognizing none. We
showed that context features increase the accuracy
of the classifier, but undermine the confidence as-
sessments of the classifier, a result we are still ana-
lyzing. Finally, we showed that even in its prelim-
inary current form the semantic head recognizer is
able to improve the performance of an IR system.
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Abstract

In this paper we present a novel approach
to entity linking based on a statistical lan-
guage model-based information retrieval with
query expansion. We use both local con-
texts and global world knowledge to expand
query language models. We place a strong
emphasis on named entities in the local con-
texts and explore a positional language model
to weigh them differently based on their dis-
tances to the query. Our experiments on
the TAC-KBP 2010 data show that incor-
porating such contextual information indeed
aids in disambiguating the named entities and
consistently improves the entity linking per-
formance. Compared with the official re-
sults from KBP 2010 participants, our system
shows competitive performance.

1 Introduction

When people read news articles, Web pages and
other documents online, they may encounter named
entities which they are not familiar with and there-
fore would like to look them up in an encyclope-
dia. It would be very useful if these entities could be
automatically linked to their corresponding encyclo-
pedic entries. This task of linking mentions of enti-
ties within specific contexts to their corresponding
entries in an existing knowledge base is called en-
tity linking and has been proposed and studied in the
Knowledge Base Population (KBP) track of the Text
Analysis Conference (TAC) (McNamee and Dang,
2009). Besides improving an online surfer’s brows-
ing experience, entity linking also has potential us-

age in many other applications such as normalizing
entity mentions for information extraction.

The major challenge of entity linking is to resolve
name ambiguities. There are generally two types of
ambiguities: (1) Polysemy: This type of ambigu-
ities refers to the case when more than one entity
shares the same name. E.g. George Bush may re-
fer to the 41st President of the U.S., the 43rd Presi-
dent of the U.S., or any other individual who has the
same name. Clearly polysemous names cause diffi-
culties for entity linking. (2) Synonymy: This type
of ambiguities refers to the case when more than
one name variation refers to the same entity. E.g.
Metro-Goldwyn-Mayer Inc. is often abbreviated as
MGM. Synonymy affects entity linking when the en-
tity mention in the document uses a name variation
not covered in the entity’s knowledge base entry.

Intuitively, to disambiguate a polysemous entity
name, we should make use of the context in which
the name occurs, and to address synonymy, exter-
nal world knowledge is usually needed to expand
acronyms or find other name variations. Indeed
both strategies have been explored in existing litera-
ture (Zhang et al., 2010; Dredze et al., 2010; Zheng
et al., 2010). However, most existing work uses
supervised learning approaches that require careful
feature engineering and a large amount of training
data. In this paper, we take a simpler unsupervised
approach using statistical language model-based in-
formation retrieval. We use the KL-divergence re-
trieval model (Zhai and Lafferty, 2001) and ex-
pand the query language models by considering both
the local contexts within the query documents and
global world knowledge obtained from the Web.
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Symbol Description
Q Query
DQ Query document
NQ Query name string
E KB entity node
NE KB entity name string
DE KB entity disambiguation text
SQ Set of alternate query name strings
N l,i

Q Local alternative name strings
Ng

Q Global alternative name strings
EQ Candidate KB entries for Q
θQ Query Language Model
θL

Q KB entry language model using local context from DQ

θG
Q KB entry language model using global knowledge

θL+G
Q KB entry language model using local context and global knowledge

θNE KB entry language model with named entities only
θNE+DE

KB entry language model with named entities and disambiguation text

Table 1: Notation

We evaluate our retrieval method with query ex-
pansion on the 2010 TAC-KBP data set. We find that
our expanded query language models can indeed
improve the performance significantly, demonstrat-
ing the effectiveness of our principled and yet sim-
ple techniques. Comparison with the official results
from KBP participants also shows that our system is
competitive. In particular, when no disambiguation
text from the knowledge base is used, our system can
achieve an overall 85.2% accuracy and 9.3% relative
improvement over the best performance reported in
KBP 2010.

2 Task Definition and System Overview

Following TAC-KBP (Ji et al., 2010), we define the
entity linking task as follows. First, we assume
the existence of a Knowledge Base (KB) of enti-
ties. Each KB entry E represents a unique entity
and has three fields: (1) a name string NE , which
can be regarded as the official name of the entity,
(2) an entity type TE , which is one of {PER, ORG,
GPE, UNKNOWN}, and (3) some disambiguation
text DE . Given a query Q which consists of a query
name string NQ and a query document DQ where
the name occurs, the task is to return a single KB
entry to which the query name string refers or Nil if
there is no such KB entry.

It is fairly natural to address entity linking by
ranking the KB entries given a query. In this section

we present an overview of our system, which con-
sists of two major stages: a candidate selection stage
to identify a set of candidate KB entries through
name matching, and a ranking stage to link the query
entity to the most likely KB entry. In both stages,
we consider the query’s local context in the query
document and world knowledge obtained from the
Web. It is important to note that the selection stage
is based on string matching where the order of the
word matters. It is different from the ranking stage
where a probabilistic retrieval model based on bag-
of-word representation is used. Our preliminary ex-
periments demonstrate that without the first candi-
date selection stage the linking process results in low
performance.

2.1 Selecting Candidate KB Entries

The first stage of our system aims to filter out irrel-
evant KB entries and select only a set of candidates
that are potentially the correct match to the query.
Intuitively, we determine whether two entities are
the same by comparing their name strings. We there-
fore need to compare the query name string NQ with
the name string NE of each KB entry. However,
because of the name ambiguity problem, we cannot
expect the correct KB entry to always have exactly
the same name string as the query. To address this
problem, we use a set of alternative name strings ex-
panded from NQ and select KB entries whose name

805



strings match at least one of them. These alterna-
tive name strings come from two sources: the query
document DQ and the Web.

First, we observe that some useful alternative
name strings come from the query document. For
example, a PER query name string may contain only
a person’s last name but the query document con-
tains the person’s full name, which is clearly a less
ambiguous name string to use. Similarly, a GPE
query name string may contain only the name of a
city or town but the query document contains the
state or province, which also helps disambiguate the
query entity. Based on this observation, we do the
following. Given query Q, let SQ denote the set of
alternative query name strings. Initially SQ contains
only NQ. We then use an off-the-shelf NER tagger
to identify named entities from the query document
DQ. For PER and ORG queries, we select named
entities in DQ that contain NQ as a substring. For
GPE queries, we select named entities that are of the
type GPE, and we then combine each of them with
NQ. We denote these alternative name strings as
{N l,i

Q }KQ

i=1, where l indicates that these name strings
come locally from DQ and KQ is the total number of
such name strings. {N l,i

Q } are added to SQ. Figure
1 and Figure 2 show two example queries together
with their SQ.

Sometimes alternative name strings have to come
from external knowledge. For example, one of the
queries we have contains the name string “AMPAS,”
and the query document also uses only this acronym
to refer to this entity. But the full name of the entity,
“Academy of Motion Pictures Arts and Sciences,” is
needed in order to locate the correct KB entry. To
tackle this problem, we leverage Wikipedia to find
the most likely official name. Given query name
string NQ, we check whether the following link ex-
ists: http://en.wikipedia.org/NQ. If NQ

is an abbreviation, Wikipedia will redirect the link
to the Wikipedia page of the corresponding entity
with its official name. So if the link exists, we use
the title of the Wikipedia page as another alternative
name string for NQ. We refer to this name string as
Ng

Q to indicate that it is a global name variant. Ng
Q is

also added to SQ. Figure 2 shows such an example.

For each name string N in SQ, we find KB entries
whose name strings match N . We take the union of

Query name string (NQ): Mobile
Query document (DQ): The site is near Mount Ver-
non in the Calvert community on the Tombigbee River,
some 25 miles (40 kilometers) north of Mobile. It’s on
a river route to the Gulf of Mexico and near Mobile’s
rails and interstates. Along with tax breaks and $400
million (euro297 million) in financial incentives, Al-
abama offered a site with a route to a Brazil plant that
will provide slabs for processing in Mobile.
Alternative Query Strings (SQ):
from local context: Mobile, Mobile Mount Vernon,
Mobile Calvert, Mobile River, Mobile Mexico, Mobile
Alabama, Mobile Brazil

Figure 1: An example GPE query from TAC 2010.

Query name string (NQ): Coppola
Query document (DQ): I had no idea of all these
semi-obscure connections, felicia! Alex Greenwald
and Claire Oswalt aren’t names I’m at all familiar
with, but Jason Schwartzman I’ve heard of. Isn’t he
Sophia Coppola’s cousin? I think I once saw a pic-
ture of him sometime ago
Alternative Query Strings (SQ):
from local context: Coppola, Sophia Coppola, Sofia
Coppola
from world knowledge(Wikipedia): Sofia Coppola

Figure 2: An example PER query from TAC 2010.

these sets of KB entries and refer to it as EQ. These
are the candidate KB entries for query Q.

2.2 Ranking KB Entries
Given the candidate KB entries EQ, we need to
decide which one of them is the correct match.
We adopt the widely-used KL-divergence retrieval
model, a statistical language model-based retrieval
method proposed by Lafferty and Zhai (2001).
Given a KB entry E and query Q, we score E based
on the KL-divergence defined below:

s(E,Q) = −Div(θQ∥θE) = −
∑

w∈V

p(w|θQ) log
p(w|θQ)

p(w|θE)
.

(1)
Here θQ and θE are the query language model and

the KB entry language model, respectively. A lan-
guage model here is a multinomial distribution over
words (i.e. a unigram language model). V is the
vocabulary and w is a single word.

To estimate θE , we follow the standard maxi-
mum likelihood estimation with Dirichlet smooth-
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ing (Zhai and Lafferty, 2004):

p(w|θE) =
c(w, E) + µp(w|θC)

|E| + µ
, (2)

where c(w, E) is the count of w in E, |E| is the
number of words in E, θC is a background lan-
guage model estimated from the whole KB, and µ
is the Dirichlet prior. Recall that E contains NE , TE

and DE . We consider using either NE only or both
NE and DE to obtain c(w,E) and |E|. We refer
to the former estimated θE as θNE

and the latter as
θNE+DE

.
To estimate θQ, typically we can use the empirical

query word distribution:

p(w|θQ) =
c(w, NQ)

|NQ| , (3)

where c(w,NQ) is the count of w in NQ and |NQ|
is the length of NQ. We call this model the original
query language model.

After ranking the candidate KB entries in EQ us-
ing Equation (1), we perform entity linking as fol-
lows. First, using an NER tagger, we determine the
entity type of the query name string NQ. Let TQ de-
note this entity type. We then pick the top-ranked
KB entry whose score is higher than a threshold τ
and whose TE is the same as TQ. The system links
the query entity to this KB entry. If no such entry
exists, the system returns Nil.

3 Query Expansion

We have shown in Section 2.1 that using the origi-
nal query name string NQ itself may not be enough
to obtain the correct KB entry, and additional words
from both the query document and external knowl-
edge can be useful. However, in the KB entry se-
lection stage, these additional words are only used
to enlarge the set of candidate KB entries; they have
not been used to rank KB entries. In this section, we
discuss how to expand the query language model θQ

with these additional words in a principled way in
order to rank KB entries based on how likely they
match the query entity.

3.1 Using Local Contexts
Let us look at the example from Figure 2 again.
During the KB entry ranking stage, if we use θQ

estimated from NQ, which contains only the word

“Coppola,” the retrieval function is unlikely to rank
the correct KB entry on the top. But if we include
the contextual word “Sophia” from the query doc-
ument when estimating the query language model,
KL-divergence retrieval model is likely to rank the
correct KB entry on the top. This idea of using
contextual words to expand the query is very sim-
ilar to (pseudo) relevance feedback in information
retrieval. We can treat the query document DQ as
our only feedback document.

Many different (pseudo) relevance feedback
methods have been proposed. Here we apply the
relevance model (Lavrenko and Croft, 2001), which
has been shown to be effective and robust in a re-
cent comparative study (Lv and Zhai, 2009). We
first briefly review the relevance model. Given a set
of (pseudo) relevant documents Dr, where for each
D ∈ Dr there is a document language model θD,
we can estimate a feedback language model θfb

Q as
follows:

p(w|θfb
Q) ∝

∑

D∈Dr

p(w|θD)p(θD)p(Q|θD). (4)

For our problem, since we have only a single feed-
back document DQ, the equation above can be sim-
plified. In fact, in this case the feedback language
model is the same as the document language model
of the only feedback document, i.e. θDQ

.
We then linearly interpolate the feedback lan-

guage model with the original query language model
to form an expanded query language model:

p(w|θL
Q) = αp(w|θQ) + (1 − α)p(w|θDQ), (5)

where α is a parameter between 0 and 1, to control
the amount of feedback. The larger α is, the less we
rely on the local context. L indicates that the query
expansion comes from local context. This θL

Q can
then replace θQ in Equation (1) to rank KB entries.

Special Treatment of Named Entities
Usually the document language model θDQ

is es-
timated using the entire text from DQ. For entity
linking, we suspect that named entities surrounding
the query name string in DQ are particularly useful
for disambiguation and thus should be emphasized
over other words. This can be done by weighting
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NE and non-NE words differently. In the extreme
case, we can use only NEs to estimate the document
language model θDQ

as follows:

p(w|θDQ
) =

1

KQ

KQ∑

i=1

c(w, N l,i
Q )

|N l,i
Q |

, (6)

where {N l,i
Q } are defined in Section 2.

Positional Model
Another observation is that words closer to the

query name string in the query document are likely
to be more important than words farther away. Intu-
itively, we can use the distance between a word and
the query name string to help weigh the word. Here
we apply a recently proposed positional pseudo rel-
evance feedback method (Lv and Zhai, 2010). The
document language model θDQ

now has the follow-
ing form:

p(w|θDQ
) =

1

KQ

KQ∑

i=1

f(pi, q) ·
c(w, N l,i

Q )

|N l,i
Q |

, (7)

where pi and q are the absolute positions of N l,i
Q

and NQ in DQ. The function f is Gaussian function
defined as follows:

f(p, q) =
1√

2πσ2
exp

(−(p − q)2

2σ2

)
. (8)

where variance σ controls the spread of the curve.

3.2 Using Global World Knowledge
Similar to the way we incorporate words from DQ

into the query language model, we can also con-
struct a feedback language model using the most
likely official name of the query entity obtained from
Wikipedia. Specifically, we define

p(w|θNg
Q
) =

c(w, Ng
Q)

|Ng
Q| . (9)

We can then linearly interpolate θNg
Q

with the orig-
inal query language model θQ to form an expanded
query language model θG

Q:

p(w|θG
Q) = αp(w|θQ) + (1 − α)p(w|θNg

Q
). (10)

Here G indicates that the query expansion comes
from global world knowledge.

Entity Type %Nil %non-Nil
GPE 32.8% 67.2 %
ORG 59.5% 40.5 %
PER 71.7% 28.3 %

Table 2: Percentages of Nil and non-Nil queries.

3.3 Combining Local Context and World
Knowledge

We can further combine the two kinds of additional
words into the query language model as follows:

p(w|θL+G
Q ) = αp(w|θQ) + (1 − α)

(
βp(w|θDQ)

+(1 − β)p(w|θNg
Q
)
)
. (11)

Note that here we have two parameters α and β to
control the amount of contributions from the local
context and from global world knowledge.

4 Experiments

4.1 Experimental Setup

Data Set: We evaluate our system on the TAC-KBP
2010 data set (Ji et al., 2010). The knowledge base
was constructed from Wikipedia with 818,741 en-
tries. The data set contains 2250 queries and query
documents come from news wire and Web pages.
Around 45% of the queries have non-Nil entries in
the KB. Some statistics of the queries are shown in
Table 2.
Tools: In our experiments, to extract named entities
within DQ and to determine TQ, we use the Stanford
NER tagger1. An example output of the NER tagger
is shown below:

<PERSON>Hugh Jackman<PERSON> is

Jacked!!

This piece of text comes from a query document
where the query name string is “Jackman.” We can
see that the NER tagger can help locate the full name
of the person.

We use the Lemur/Indri2 search engine for re-
trieval. It implements the KL-divergence retrieval
model as well as many other useful functionalities.
Evaluation Metric: We adopt the Micro-averaged
accuracy metric, which is the mean accuracy over
all queries. It was used in TAC-KBP 2010 (Ji et

1http://nlp.stanford.edu/software/CRF-NER.shtml
2http://www.lemurproject.org/indri.php
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al., 2010) as the official metric to evaluate the per-
formance of entity linking. This metric is simply
defined as the percentage of queries that have been
correctly linked.
Methods to Compare: Recall that our system con-
sists of a KB entry selection stage and a KB entry
ranking stage. At the selection stage, a set SQ of
alternative name strings are used to select candidate
KB entries. We first define a few settings where dif-
ferent alternative name string sets are used to select
candidate KB entries:

• Q represents the baseline setting which uses
only the original query name string NQ to se-
lect candidate KB entries.

• Q+L represents the setting where alternative
name strings obtained from the query docu-
ment DQ are combined with NQ to select can-
didate KB entries.

• Q+G represents the setting where the alterna-
tive name string obtained from Wikipedia is
combined with NQ to select candidate KB en-
tries.

• Q+L+G represents the setting as we described
in Section 2.1, that is, alternative name strings
from both DQ and Wikipedia are used together
with NQ to select candidate KB entries.

After selecting candidate KB entries, in the KB
entry ranking stage, we have four options for the
query language model and two options for the KB
entry language model. For the query language
model, we have (1) θQ, the original query language
model, (2) θL

Q, an expanded query language model
using local context from DQ, (3) θG

Q, an expanded
query language model using global world knowl-
edge, and (4) θL+G

Q , an expanded query language
model using both local context and global world
knowledge. For the KB entry language model, we
can choose whether or not to use the KB disam-
biguation text DE and obtain θNE

and θNE+DE
, re-

spectively.

4.2 Results and Discussion

First, we compare the performance of KB entry se-
lection stage for all four settings on non-Nil queries.
The performance measure recall is defined as

recall =

{
1, if E that refers to Q, exists in EQ

0, otherwise

The recall statistics in Table 3 shows that, Q+L+G
has the highest recall of the KB candidate entries.

Method Recall(%)
Q 67.1
Q+L 89.7
Q+G 94.9
Q+L+G 98.2

Table 3: Comparing the effect of candidate entry selec-
tion using different methods - KB entry selection stage
recall.

Before examining the effect of query expansion
in ranking, we now compare the effect of using dif-
ferent sets of alternative query name strings in the
candidate KB entry selection stage. For this set of
experiments, we fix the query language model to θQ

and the KB entry language model to θNE
in the rank-

ing stage.
Table 4 shows the performance of all the settings

in terms of micro-averaged accuracy. The results
shown in Tables 4, 5 and 6 are based on the opti-
mum parameter settings. We can see that in terms
of the overall performance, both Q+L and Q+G give
better performance than Q with a 7.7% and a 9.9%
relative improvement, respectively. Q+L+G gives
the best performance with a 12.8% relative improve-
ment over Q. If we further zoom into the results, we
see that for ORG and PER queries, when no correct
KB entry exists (i.e. the Nil case), the performance
of Q, Q+L, Q+G and Q+L+G is very close, indicat-
ing that the additional alternative query name strings
do not help. It shows that the alternative query name
strings are most useful for queries that do have their
correct entries in the KB.

We now further analyze the impact of the ex-
panded query language models θL

Q, θG
Q and θL+G

Q .
We first analyze the results without using the KB
disambiguation text, i.e. using θNE

. Table 5 shows
the comparison between θQ and other expanded
query language models in terms of micro-averaged
accuracy. The results reveal that the expanded query
language models can indeed improve the overall per-
formance (the both Nil and non-Nil case) under all
settings. This shows the effectiveness of using the
principled query expansion technique coupled with
KL-divergence retrieval model to rank KB entries.
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All Nil Non-Nil
Method ALL GPE ORG PER GPE ORG PER GPE ORG PER
Q 0.6916 0.5714 0.6533 0.8495 0.8618 0.9888 0.9963 0.4294 0.1612 0.4789
Q+L 0.7449 0.7156 0.6533 0.8655 0.9472 0.9888 0.9944 0.6024 0.1612 0.5399
Q+G 0.7604 0.7009 0.6893 0.8908 0.9431 0.9888 0.9944 0.5825 0.2500 0.6291
Q+L+G 0.7800 0.7583 0.6893 0.8921 0.9431 0.9888 0.9944 0.6680 0.2500 0.6338

Table 4: Comparing the performance of using different sets of query name strings for candidate KB entry selection.
θQ and θNE are used in KB entry ranking.

All Nil Non-Nil
Method QueryModel ALL GPE ORG PER GPE ORG PER GPE ORG PER

Q+L θQ 0.7449 0.7156 0.6533 0.8655 0.9472 0.9888 0.9944 0.6024 0.1612 0.5399
θL
Q 0.7689 0.7850 0.6533 0.8682 0.9309 0.9888 0.9944 0.7137 0.1612 0.5493

Q+G θQ 0.7604 0.7009 0.6893 0.8908 0.9431 0.9888 0.9944 0.5825 0.2500 0.6291
θG
Q 0.8160 0.7423 0.7867 0.9188 0.9106 0.9372 0.9796 0.6600 0.5658 0.7653

Q+L+G θQ 0.7800 0.7583 0.6893 0.8921 0.9431 0.9888 0.9944 0.6680 0.2500 0.6338
θL+G
Q 0.8516 0.8278 0.7867 0.9401 0.8821 0.9372 0.9814 0.8012 0.5658 0.8357

Table 5: Comparison between the performance of θQ and expanded query language models in terms of micro average
accuracy. θNE was used in ranking.

On the other hand, again we observe that the ef-
fects on the Nil and the non-Nil queries are differ-
ent. While in Table 4 the alternative name strings
do not affect the performance much for Nil queries,
now the expanded query language models actually
hurt the performance for Nil queries. It is not sur-
prising to see this result. When we expand the query
language model, we can possibly introduce noise,
especially when we use the external knowledge ob-
tained from Wikipedia, which largely depends on
what Wikipedia considers to be the most popular
official name of a query name string. With noisy
terms in the expanded query language model we in-
crease the chance to link the query to a KB entry
which is not the correct match. The challenge is that
we do not know when additional terms in the ex-
panded query language model are noise and when
they are not, because for non-Nil queries we do ob-
serve a substantial amount of improvement brought
by query expansion, especially with external world
knowledge. We will further investigate this research
question in the future.

We now further study the impact of using the KB
disambiguation text associated with each entry to es-
timate the KB entry language model used in the KL-
divergence ranking function. The results are shown
in Table 6 for all the methods on θNE

vs. θNE+DE

using the expanded query language models. We can
see that for all methods the impact of using the KB
disambiguation text is very minimal and is observed

only for GPE and ORG queries. Table 7 shows an
example of the KL-divergence scores for a query,
Mobile whose context is previously shown in the
Figure 1. Without the KB disambiguation text both
the KB entry Mobile Alabama and the entry Mobile
River are given the same score, resulting in inaccu-
rate linking in the θNE

case. But with θNE+DE
, Mo-

bile Alabama was scored higher, resulting in an ac-
curate linking. However, we observe that such cases
are very rare in the TAC 2010 query list and thus the
overall improvement observed is minimal.

KB Entry KB Name w/o text w/ text
E0583976 Mobile Alabama -6.28514 -6.3839
E0183287 Mobile River -6.28514 -6.69372

Table 7: The KL-divergence scores of KB entities for the
query Mobile.

Finally, we compare our performance with the
highest scores from TAC-KBP 2010 as shown in the
Table 8. It is important to note that the highest TAC
results shown in the table under each setting are not
necessarily obtained by the same team. We can see
that our overall performance when KB text is used is
competitive compared with the highest TAC score,
and is substantially higher than the TAC score when
KB text is not used. Lehmann et al. (2010) achieved
highest TAC scores. They used a variety of evidence
from Wikipedia like disambiguation pages, anchors,
expanded acronyms and redirects to build a rich fea-
ture set. But as we discussed, building a rich fea-
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All Nil Non-Nil
Method KB Text ALL GPE ORG PER GPE ORG PER GPE ORG PER

Q θNE
0.6916 0.5714 0.6533 0.8495 0.8618 0.9888 0.9963 0.4294 0.1612 0.4789

θNE+DE
0.6888 0.5607 0.6533 0.8495 0.8618 0.9888 0.9963 0.4135 0.1612 0.4789

Q+L θNE
0.7689 0.7850 0.6533 0.8682 0.9309 0.9888 0.9944 0.7137 0.1612 0.5493

θNE+DE
0.7707 0.7904 0.6533 0.8682 0.9390 0.9888 0.9944 0.7177 0.1612 0.5493

Q+G θNE
0.8160 0.7423 0.7867 0.9188 0.9106 0.9372 0.9796 0.6600 0.5658 0.7653

θNE+DE
0.8222 0.7450 0.7827 0.9387 0.8902 0.9372 0.9814 0.6740 0.5559 0.8310

Q+L+G θNE
0.8516 0.8278 0.7867 0.9401 0.8821 0.9372 0.9814 0.8012 0.5658 0.8357

θNE+DE
0.8524 0.8291 0.7880 0.9401 0.8740 0.9372 0.9814 0.8072 0.5691 0.8357

Table 6: Comparing the performance using KB text and without using KB text for all methods using expanded query
models in terms of micro average accuracy on 2250 queries. θNE+DE

represents method using KB text and θNE

represents methods without using KB text.

ture set is an expensive task. Their overall accu-
racy is 1.5% higher than our model. Table 8 shows
that the performance of ORG entities is lower when
compared with the TAC results when we used KB
text. In our analysis, we observed that, even though
some entities like AMPAS are linked correctly, the
entities like CCC (Consolidated Contractors Com-
pany) failed due to ambiguity in the title. Here, we
may benefit by leveraging more global knowledge,
i.e, we should expand the Ng

Q with Wikipedia global
context entities together with the title to fully benefit
from global knowledge. In particular, when KB text
is not used, our system outperforms the highest TAC
results for all three types of queries.

From the analysis by Ji et al. (2010), overall the
participating teams generally performed the best on
PER queries and the worst on GPE queries. With our
system, we can achieve good performance on GPE
queries.

KB Text Usage Type Our System TAC Highest

θNE+DE

All 0.8524 0.8680
GPE 0.8291 0.7957
ORG 0.7880 0.8520
PER 0.9401 0.9601

θNE

All 0.8516 0.7791
GPE 0.8278 0.7076
ORG 0.7867 0.7333
PER 0.9401 0.9001

Table 8: Comparison of the best configuration of our sys-
tem (Q+L+G with θL+G

Q ) with the TAC-KBP 2010 results
in terms of micro-averaged accuracy. θNE+DE

represents
the method using KB disambiguation text and θNE

repre-
sents the method without using KB disambiguation text.

4.3 Parameter Sensitivity
In all our experiments, we set the Dirichlet prior µ to
2500 following previous studies. For the threshold τ
we empirically set it to -12.0 in all the experiments
based on preliminary results. Recall that all the ex-
panded query language models also have a control
parameters α. The local context-based models θL

Q

and θL+G
Q have an additional parameter σ which

controls the proximity weighing. The θL+G
Q model

has another additional parameter β that controls the
balance between local context and world knowledge.
In this subsection, we study the sensitivity of these
parameters. We plot the sensitivity graphs for all the
methods that involve α (β set to 0.5) in Figure 3. As
we can see, all the curves appear to be stable and
α=0.4 appears to work well.
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Figure 3: Sensitivity of α in regard to micro-averaged
accuracy.

Similarly, we set α=0.4 and examine how β af-
fects micro averaged accuracy. We plot the sensi-
tivity curve for β for the Q+L+G setting with θL+G

Q

in Figure 5. As we can see, the best performance
is achieved when β=0.5. This implies that the local
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context and the global world knowledge are weighed
equally for aiding disambiguation and improving the
entity linking performance.
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Figure 5: Sensitivity of σ with respect to micro-averaged
accuracy.

Furthermore, we systematically test a fixed set of
σ values from 25 to 125 with an intervals of 25 and
examine how σ affects micro averaged accuracy. We
set α=0.4 and β=0.5, which is the best parameter
setting as discussed above. We plot the sensitivity
curves for the parameter σ for methods that utilize
the local context, i.e. θL

Q and θL+G
Q , in Figure 5. We

observe that all the curves are stable and 75 <= σ
<= 100 appears to work well. We set σ=100 for all
our experiments. Moreover, after 100, the graph be-
comes stable, which indicates that proximity has less
impact on the method from this point on. This im-
plies that an equal weighing scheme actually would
work the same for these experiments. Part of the
reason may be that by using only named entities in
the context rather than all words, we have effectively
picked the most useful contextual terms. Therefore,
positional feedback models do have exhibit much
benefit for our problem.

5 Related Work

Bunescu and Pasca (2006) and Cucerzan (2007) ex-
plored the entity linking task using Vector Space
Models for ranking. They took a classification ap-
proach together with the novel idea of exploiting
Wikipedia knowledge. In their pioneering work,
they used Wikipedia’s category information for en-
tity disambiguation. They show that using differ-
ent background knowledge, we can find efficient ap-
proaches for disambiguation. In their work, they
took an assumption that every entity has a KB en-
try and thus the NIL entries are not handled.

Similar to other researchers, Zhang et al. (2010)
took an approach of classification and used a two-
stage approach for entity liking. They proposed a
supervised model with SVM ranking to filter out the
candidates and deal with disambiguation effectively.
For entity diambiguation they used the contextual
comparisons between the Wikipedia article and the
KB article. However, their work ignores the possi-
bilities of acronyms in the entities. Also, the am-
biguous geo-political names are not handled in their
work.

Dredze et al. (2010) took the approach that large
number of entities will be unlinkable, as there is
a probability that the relevant KB entry is unavail-
able. Their algorithm for learning NIL has shown
very good results. But their proposal for handling
the alias name or stage name via multiple lists is not
scalable. Unlike their approach, we use the global
knowledge to handle the stage names and thus this
gives an optimized solution to handle alias names.
Similarly, for acronyms we use the global knowl-
edge that aids unabbreviating and thus entity dis-
ambiguation. Similar to other approaches, Zheng
et al. (2010) took a learning to rank approach and
compared list-wise rank model to the pair-wise rank
model. They achieved good results on the list-wise
ranking approach. They handled acronyms and dis-
ambiguity through wiki redirect pages and the an-
chor texts which is similar to others ideas.

Challenges in supervised learning includes care-
ful feature selection. The features can be selected in
ad hoc manner - similarity based or semantic based.
Also machine learning approach induces challenges
of handling heterogenous cases. Unlike their ma-
chine learning approach which requires careful fea-
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ture engineering and heterogenous training data, our
method is simple as we use simple similarity mea-
sures. At the same time, we propose a statistical
language modeling approach to the linking prob-
lem. Many researchers have proposed efficient ideas
in their works. We integrated some of their ideas
like world knowledge with our new techniques to
achieve efficient entity linking accuracy.

6 Conclusions

In this paper we proposed a novel approach to entity
linking based on statistical language model-based
information retrieval with query expansion using the
local context from the query document as well as
world knowledge from the Web. Our model is a sim-
ple unsupervised one that follows principled exist-
ing information retrieval techniques. And yet it per-
forms the entity linking task effectively compared
with the best performance achieved in the TAC-KBP
2010 evaluation.

Currently our model does not exploit world
knowledge from the Web completely. World knowl-
edge, especially obtained from Wikipedia, has
shown to be useful in previous studies. As our future
work, we plan to explore how to further incorporate
such world knowledge into our model in a principled
way.
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Abstract

We address the task of automatic discovery of
information extraction template from a given
text collection. Our approach clusters candi-
date slot fillers to identify meaningful tem-
plate slots. We propose a generative model
that incorporates distributional prior knowl-
edge to help distribute candidates in a docu-
ment into appropriate slots. Empirical results
suggest that the proposed prior can bring sub-
stantial improvements to our task as compared
to a K-means baseline and a Gaussian mixture
model baseline. Specifically, the proposed
prior has shown to be effective when coupled
with discriminative features of the candidates.

1 Introduction

Information extraction (IE) is the task of extract-
ing information from natural language texts to fill a
database record following a structure called a tem-
plate. Such templates are usually defined based
on the domain of interest. For example, the do-
main in the Sixth Message Understanding Confer-
ence (MUC-6, 1995) is management succession, and
the pre-defined template consists of the slots posi-
tion, the person leaving, the person joining, and the
organization.

Previous research on IE often requires the pre-
definition of templates. Template construction is
usually done manually by domain experts, and an-
notated documents are often created to facilitate su-
pervised learning approaches to IE. However, both
manual template construction and data annotation
are labor-intensive. More importantly, templates and
annotated data usually cannot be re-used in new do-
mains due to domain dependency. It is therefore nat-

ural to consider the problem of unsupervised tem-
plate induction and information extraction. This is
the topic of this paper.

There have been a few previous attempts to ad-
dress the unsupervised IE problem (Shinyama and
Sekine, 2006; Sekine, 2006; Rosenfeld and Feld-
man, 2006; Filatova et al., 2006). These approaches
have a commonality: they try to cluster candidate
slot fillers, which are often nouns and noun phrases,
into slots of the template to be constructed. How-
ever, most of them have neglected the following im-
portant observation: a single document or text seg-
ment tends to cover different slots rather than re-
dundantly fill the same slot. In other words, during
clustering, candidates within the same text segment
should be more likely to be distributed into different
clusters.

In this paper, we propose a generative model that
incorporates this distributional prior knowledge. We
define a prior distribution over the possible label
assignments in a document or a text segment such
that a more diversified label assignment is preferred.
This prior is based on the Poisson distribution. We
also compare a number of generative models for
generating slot fillers and find that the Gaussian mix-
ture model is the best. We then combine the Poisson-
based label assignment prior with the Gaussian mix-
ture model to perform slot clustering. We find that
compared with a K-means baseline and a Gaussian
mixture model baseline, our combined model with
the proposed label assignment prior substantially
performs better on two of the three data sets we use
for evaluation. We further analyze the results on the
third data set and find that the proposed prior will
have little effect if there are no good discriminative
features to begin with. In summary, we find that
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our Poisson-based label assignment prior is effective
when coupled with good discriminative features.

2 Related Work

One common approach to unsupervised IE is based
on automatic IE pattern acquisition on a cluster of
similar documents. For instance, Sudo et al. (2003)
and Sekine (2006) proposed different methods for
automatic IE pattern acquisition for a given domain
based on frequent subtree discovery in dependency
parse trees. These methods leveraged heavily on the
entity types of candidates when assigning them to
template slots. As a consequence, potentially dif-
ferent semantic roles of candidates having the same
entity type could become indistinguishable (Sudo et
al., 2003; Sekine, 2006). This problem is alleviated
in our work by exploiting distributional prior knowl-
edge about template slots, which is shown effective
when coupled with discriminative features of can-
didates. Filatova et al. (2006) also considered fre-
quent subtrees in dependency parse trees, but their
goal was to build templates around verbs that are
statistically important in a given domain. Our work,
in contrast, is not constrained to verb-centric tem-
plates. We aim to identify salient slots in the given
domain by clustering.

Marx et al. (2002) proposed the cross-component
clustering algorithm for unsupervised IE. Their al-
gorithm assigned a candidate from a document to
a cluster based on the candidate’s feature similarity
with candidates from other documents only. In other
words, the algorithm did not consider a candidate’s
relationships with other candidates in the same doc-
ument. Our work is based on a different perspec-
tive: we model label assignments for all candidates
in the same document with a distributional prior that
prefers a document to cover more distinct slots. We
show empirically that this prior improves slot clus-
tering results greatly in some cases.

Also related to our work is open domain IE, which
aims to perform unsupervised relation extraction.
TEXTRUNNER (Banko et al., 2007), for example,
automatically extracts all possible relations between
pairs of noun phrases from a given corpus. The main
difference between open domain IE and our work
is that open domain IE does not aim to induce do-
main templates, whereas we focus on a single do-

main with the goal of inducing a template that de-
scribes salient information structure of that domain.
Furthermore, TEXTRUNNER and related studies on
unsupervised relation extraction often rely on highly
redundant information on the Web or in large cor-
pus (Hasegawa et al., 2004; Rosenfeld and Feldman,
2006; Yan et al., 2009), which is not assumed in our
study.

We propose a generative model with a distribu-
tional prior for the unsupervised IE task, where
slot fillers correspond to observations in the model,
and their labels correspond to hidden variables we
want to learn. In the machine learning literature,
researchers have explored the use of similar prior
knowledge in the form of constraints through model
expectation. For example, Graça et al. (2007) pro-
posed to place constraints on the posterior proba-
bilities of hidden variables in a generative model,
while Druck et al. (2008) studied a similar problem
in a discriminative, semi-supervised setting. These
studies model constraints as features, and enforce
the constraints through expected feature values. In
contrast, we place constraints on label assignments
through a probabilistic prior on the distribution of
slots. The proposed prior is simple and easy to inter-
pret in a generative model. Nevertheless, it will be
interesting to explore how the proposed prior can be
implemented within the posterior constraint frame-
work.

3 Problem Overview

In this section, we first formally define our unsuper-
vised IE problem. We then provide an overview of
our solution, which is based on a generative model.

3.1 Problem Definition

We assume a collection of documents or short text
segments from a certain domain. These documents
or text segments describe different events or enti-
ties, but they are about the same topic or aspect of
the domain. Examples of such collections include
a collection of sentences describing the educational
background of famous scientists and a collection of
aviation incident reports. Our task is to automati-
cally discover an IE template from this collection.
The discovered template should contain a set of slots
that play different semantic roles in the domain.
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Input text:
Topic: Graduate Student Seminar Lunch
Dates: 13-Apr-95
Time: 12:00 PM - 1:30 PM
PostedBy: Edmund J. Delaney on 5-Apr-95 at 16:24 from andrew.cmu.edu
Abstract:
The last Graduate Student Seminar Series lunch will be held on Thursday, April 13 from noon-1:30 p.m. in room
207, Student Activities Center. Professor Sara Kiesler of SDS will speak on Carving A Successful Research Niche.

Output:

Slot Slot Filler(s)

Slot 1 (start time) 12:00PM
Slot 2 (end time) 1:30PM, 1:30 p.m.
Slot 3 (location) room 207, Student Activities Center
Slot 4 (speaker) Professor Sara Kiesler
Slot 4 (irrelevant information) Edmund J. Delaney

Figure 1: An input text from a seminar announcement collection and the discovered IE template. Note that the slots
are automatically discovered and the slot names are manually assigned.

To construct such a template, we start with identi-
fying candidate slot fillers, hereafter referred to as
candidates, from the input text. Then we cluster
these candidates with the aim that each cluster will
represent a semantically meaningful slot. Figure 1
gives an example of an input text from a collection
of seminar announcements and the resulting tem-
plate discovered from the collection. As we can see,
the template contains some semantically meaningful
slots such as the start time, end time, location and
speaker of a seminar. Moreover, it also contains a
slot that covers an irrelevant candidate. We call such
slots covering irrelevant candidates garbage slots.

We can make two observations on the mapping
from candidates to template slots from real data,
such as the text in Figure 1. Firstly, a template
slot may be filled by more than one candidate from
a single document, although this number has been
observed to be small. For example, the template
slot end time in Figure 1 has two slot fillers: “1:30
PM” from the semi-structured header and “1:30
p.m.” from within the abstract. Secondly, a docu-
ment tends to contain candidates that cover different
template slots. We believe that this observation is a
consequence of the fact that a document will tend to
convey as much information as possible. We further
exploit these observations in Section 4.

3.2 A General Solution
Recall that our general solution to the unsupervised
IE problem is to cluster candidate slot fillers in order
to identify meaningful slots. We leave the details of
how to extract the candidates to Section 7.1. In this
section, we assume that we have a set of candidates
x = {xi,j}, where xi,j is the j-th candidate from
the i-th document in the collection. We cluster these
candidates into K groups for a given K.

Let yi,j ∈ {1, . . . ,K} denote the cluster label for
xi,j and y denote the set of all the yi,j’s. Let xi and
yi denote the sets of all the xi,j’s and the yi,j’s in the
i-th document respectively. We assume a generative
model for x and y as follows. For the i-th document
in our collection, we assume that the number of can-
didates is known and we draw a label assignment yi

according to some distribution parameterized by Λ.
Then for the j-th candidate, we generate xi,j from
yi,j according to a generative model parameterized
by Θ. Since the labels y are hidden, the observed
log-likelihood of the parameters given the observa-
tions x is

L(Λ,Θ) = log p(x; Λ,Θ)

=
∑

i

log
∑

yi

p(xi,yi; Λ,Θ)

=
∑

i

log
∑

yi

p(yi; Λ)
∏

j

p(xi,j |yi,j ; Θ). (1)
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(a) A multinomial prior.
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(b) The proposed Poisson-based
prior.

Figure 2: Generative models with different label assign-
ment priors. D denotes the number of documents in the
given collection, ni denotes the number of candidates in
the i-th document, andK is the number of slots (clusters).

For a given functional form of p(yi; Λ) and
p(xi,j |yi,j ; Θ), the best model parameters can be es-
timated by maximizing Eq. (1). In the next section,
we detail two designs of the prior p(yi; Λ), followed
by different generative models for the distribution
p(xi,j |yi,j ; Θ) in Section 5. Then we describe the
estimation of model parameters in Section 6.

4 Label Assignment Prior

The label assignment prior, p(yi; Λ), models the
generation of labels for candidates in a document.
In this section, we first describe a commonly used
multinomial prior, and then introduce the proposed
Poisson-based prior for the unsupervised IE task.

4.1 A Multinomial Prior
Usually, one would assume that the labels for
the different candidates in the same document
are generated independently, that is, p(yi; Λ) =∏

j p(yi,j ; Λ). Under this model, we assume that
each yi,j is generated from a multinomial distribu-
tion parameterized byϕ, where ϕy denotes the prob-
ability of generating label y. Our objective function
in Eq. (1) then becomes:

L(Λ,Θ) = log p(x; Λ,Θ)

=
∑

i,j

log
∑

y

ϕyp(xi,j |y; Θ). (2)

Figure 2(a) depicts a generative model with this
multinomial prior in plate notation. Note that the in-
dependence assumption on label assignment in this
model does not capture our observation that candi-
dates in a document are likely to cover different se-
mantic roles.

4.2 The Proposed Poisson-based Prior

We propose a prior distribution that favors more
diverse label assignments. Our proposal takes
into consideration the following three observations.
Firstly, candidates in the same document are likely
to cover different semantic roles. The proposed prior
distribution should therefore assign higher probabil-
ity to a label assignment that covers more distinct
slots. Secondly, the same piece of information is not
likely to be repeated many times in a document. Our
design thus allows a slot to generate multiple fillers
in a document, up to a limited number of times.
Thirdly, there may exist candidates that do not be-
long to slots in the extracted template. Therefore, we
introduce a dummy slot or garbage slot to the label
set to collect such candidates. Yet, we shall not as-
sume any prior/domain knowledge about candidates
generated by the garbage slot as they are essentially
irrelevant in the given domain.

We now detail the prior that exploits the above
observations. First, we fix the K-th slot (or cluster)
in the label set to be the garbage slot. For each of
the non-garbage slot k = 1, . . . ,K − 1, we also fix
the maximum number of fillers that can be gener-
ated, which we denote by λk. There is no λK for the
garbage slot because the number of fillers is not con-
strained for this slot. This allows all candidates in a
document to be generated by the garbage slot. Let
ni be the number of candidates in the i-th document.
Given K, {λk}K−1

k=1 and ni, the set of possible label
assignments for the i-th document can be generated.
We illustrate this with an example. Let K = 2 and
λ1 = 1. The label set is {1, 2}, where 2 represents
the garbage slot. Let the number of candidates be
ni = 2. The possible label assignments within this
setting are (1, 2), (2, 1) and (2, 2).

The set of possible label assignments for the i-
th document is the sample space on which we place
the prior distribution p(yi; Λ). We need a prior that
gives a higher probability to a more diverse label
assignment. For a given yi for the i-th document,
let ni,k be the number of candidates in the docu-
ment that have been assigned to slot k. That is,
ni,k

def=
∑ni

j=1 1(yi,j = k), where 1(·) is the indica-
tor variable. We propose the following distribution
based on the Poisson distribution:
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p(yi; Λ) def= Z−1
i

K−1∏

k=1

Poisson(ni,k; τk), (3)

where Zi is the normalizing constant, and τk is the
mean parameter of the k-th Poisson distribution,
k = 1, . . .K − 1. The absence of a factor that
depends on ni,K reflects the lack of prior knowl-
edge on the number of garbage slot fillers. Fig-
ure 2(b) depicts the proposed generative model with
the Poisson-based prior in plate notation.

5 Generating Slot Fillers

Different existing generative models can be used to
model the generation of a slot filler given a label, that
is, p(x|y; Θ). We explore four of them for our task,
namely, the naive Bayes model, the Bernoulli mix-
ture model, the Gaussian mixture model, and a lo-
cally normalized logistic regression model proposed
by Berg-Kirkpatrick et al. (2010).

5.1 Multinomial Naive Bayes

In the multinomial naive Bayes model, features of
an observation x are assumed to be independent and
each generated from a multinomial distribution. We
first introduce some notations. Let f denote a fea-
ture (e.g. entity type) and Vf denote the set of possi-
ble values for f . Let xf ∈ Vf be the value of feature
f in x (e.g. person). For a given label y, feature f
follows a multinomial distribution parameterized by
ψy,f , where ψy,f,v denotes the probability of feature
f taking the value v ∈ Vf given label y. The func-
tional form of the conditional probability of x given
a label y is then

p(x|y; Θ) =
∏

f

p(xf |y; Θ) =
∏

f

ψy,f,xf . (4)

5.2 Bernoulli Mixture Model

In the naive Bayes model our features are defined
to be categorical. For the Bernoulli mixture model,
as well as the Gaussian mixture model and the lo-
cally normalized logistic regression model in the
next subsections, we first convert each observation
x into a binary feature vector x ∈ {0, 1}F where F

is the number of binary features. An example of a
binary features is “the entity type is person”.

We assume that, for a given label y, observations
are generated from a multivariate Bernoulli distribu-
tion parameterized byφy,f , whereφy,f,v denotes the
probability of feature f taking the value v ∈ {0, 1}
given label y. The conditional probability of x given
y can then be written as

p(x|y; Θ) =
∏

f

p(xf = 1|y; Θ)xf · p(xf = 0|y; Θ)1−xf

=
∏

f

φy,f,xf . (5)

5.3 Gaussian Mixture Model

In the Gaussian mixture model, we assume that a
given label y generates observations with a mul-
tivariate Gaussian distribution N (µy,Σy), where
µy ∈ RF is the mean and Σy ∈ RF×F is the co-
variance matrix of the Gaussian. If we assume that
the different feature dimensions are independent and
have the same variance, that is, Σy = σ2

yI , where I
is the identity matrix, then the conditional density of
x given y is

p(x|y; Θ) =
1

(2πσ2
y)F/2

exp

(
−∥x − µy∥2

2σ2
y

)
. (6)

5.4 Locally Normalized Logistic Regression

Berg-Kirkpatrick et al. (2010) proposed a method
for incorporating features into generative models for
unsupervised learning. Their method models the
generation of x given y as a logistic function param-
eterized by a weight vector wy, defined as follows:

p(x|y; Θ) =
exp⟨x,wy⟩∑
x′ exp⟨x′,wy⟩ . (7)

⟨x,w⟩ denotes the inner product between x and w.
The denominator considers all data points x′ in the
data set, thus Eq. (7) gives a probability distribution
over data points for a given y.
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6 Parameter Estimation

We can apply the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) to maximize
the log-likelihood functions under both multinomial
prior in Eq. (2) and the proposed Poisson-based prior
in Eq. (1). For the multinomial prior, there are stan-
dard closed form solutions for the naive Bayes, the
Bernoulli mixture and the Gaussian mixture models.
For locally normalized logistic regression, model
parameters can also be learned via EM, but with
a gradient-based M-step (Berg-Kirkpatrick et al.,
2010). We leave out the details here and focus on pa-
rameter estimation in the proposed generative model
with the Poisson-based prior.

We assume that in the Poisson-based prior, the
parameters {λk}K−1

k=1 and {τk}K−1
k=1 are fixed rather

than learned in this work. For the distribution
p(x|y; Θ), let Θ(t−1) and Θ(t) denote parameter es-
timates from two consecutive EM iterations. At the
t-th iteration, the E-step updates the responsibilities
of each label assignment yi for each document:

αi,yi
= p(yi|xi; Λ,Θ

(t−1))

=
p(yi; Λ)p(xi|yi; Θ

(t−1))∑
y′

i
p(y′

i; Λ)p(xi|y′
i; Θ

(t−1))
, (8)

where αi is a distribution over all possible label as-
signments yi’s for the i-th document. The M-step
updates the estimates of Θ(t) based on the current
values of αi’s and Θ(t−1). This is done by maximiz-
ing the following objective function:

∑

i

∑

yi

αi,yi
log

(
p(yi; Λ)

∏

j

p(xi,j |yi,j ; Θ
(t−1))

)
. (9)

The exact formulas used in the M-step for
updating Θ depend on the functional form of
p(xi,j |yi,j ; Θ). As an example, we give the formulas
for the Gaussian mixture model, in which Θ contains
the set of means {µ(t)

k }K
k=1 and variances {σ(t)

k }K
k=1.

Taking the derivatives of Eq. (9) with respect to µk

and to σk, and then setting the derivations to zero,
we can solve for µk and for σk to get:

µ
(t)
k =

∑
i

∑
yi
αi,yi

∑
j 1(yi,j = k)xi,j∑

i

∑
yi
αi,yi

∑
j 1(yi,j = k)

, (10)

σ
(t)
k =

∑
i

∑
yi
αi,yi

∑
j 1(yi,j = k)||xi,j − µ

(t)
k ||2

F
∑

i

∑
yi
αi,yi

∑
j 1(yi,j = k)

, (11)

where 1(·) is the indicator variable. We skip the
derivations here due to space limit.

Closed form solutions also exist for the naive
Bayes and the Bernoulli mixture models. For lo-
cally normalized logistic regression, parameters can
be learned with a gradient-based M-step as in the
multinomial prior setting. Existing optimization al-
gorithms, such as L-BFGS, can be used for optimiz-
ing model parameters in the M-step as discussed in
(Berg-Kirkpatrick et al., 2010).

7 Experiments

In this section, we first describe the data sets we used
in our experiments, detailing the target slots and can-
didates in each data set, as well as features we ex-
tract for the candidates. We then describe our evalu-
ation metrics, followed by experimental results.

7.1 Data Sets

We use three data sets for evaluating our unsuper-
vised IE task. Note that to speed up computation,
we only include documents or text segments con-
taining no more than 10 candidates in our experi-
ments. The first data set contains a set of seminar an-
nouncements (Freitag and McCallum, 1999), anno-
tated with four slot labels, namely stime (start time),
etime (end time), speaker and location. We used as
candidates all strings labeled in the annotated data
as well as all named entities found by the Stanford
NER tagger for CoNLL (Finkel et al., 2005). There
are 309 seminar announcements with 2262 candi-
dates in this data set.

The second data set is a collection of para-
graphs describing aviation incidents, taken from the
Wikipedia article on “List of accidents and incidents
involving commercial aircraft” (Wikipedia, 2009).
Each paragraph in the article contains one to a few
sentences describing an incident. In this domain, we
take each paragraph as a separate document, and all
hyperlinked phrases in the original Wikipedia arti-
cle as candidates. For evaluation, we manually an-
notated the paragraphs of incidents from 2006 to
2009 with five slot labels: the flight number (FN),
the airline (AL), the aircraft model (AC), the exact
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location (LO) of the incident (e.g. airport name),
and the country (CO) where the incident occurred.
The entire data set consists of 564 paragraphs with
2783 candidates. The annotated portion consists of
74 paragraphs with 395 candidates.

The third data set comes from the management
succession domain used in the Sixth Message Un-
derstanding Conference (MUC-6, 1995). We extract
from the original data set all sentences that were
tagged with a management succession event, and use
as candidates all tagged strings in those sentences.
This domain has four target slots, namely PersonIn
(the person moving into a new position), PersonOut
(the person leaving a position), Org (the corpora-
tion’s name) and Post (the position title). Sentences
containing candidates with multiple labels (candi-
dates annotated as both PersonIn and PersonOut) are
discarded. The extracted data set consists of 757
sentences with 2288 candidates.

7.2 Features

To extract features for candidates, we first normal-
ize each word to its lower-case, with digits replaced
by the token digit. We extract the following fea-
tures for every candidate: the candidate phrase it-
self, its head word, the unigram and bigram be-
fore and after the candidate in the sentence where
it appeared, its entity type (person, location, or-
ganization, and date/time), as well as features de-
rived from dependency parse trees. Specifically, we
first apply the Stanford lexical parser to our data
(de Marneffe et al., 2006). Then for each candi-
date, we follow its dependencies in the correspond-
ing dependency parse tree until we find a relation
r ∈ {nsubj, csubj, dobj, iobj, pobj} in which the
candidate is the dependent. We then construct a fea-
ture (r, v) where v is governor of the relation.

7.3 Evaluation Baseline and Method

We use the standard K-means algorithm (Macqueen,
1967) as a non-generative baseline, since K-means is
commonly used for clustering. To evaluate cluster-
ing results, we match each slot in the labeled data to
the cluster that gives the best F1-measure when eval-
uated for the slot. We report the precision (P), re-
call (R) and F1-measure for individual slot labels, as
well as the macro- and micro- average results across
all labels for each experiment. We conduct 10 trials

of experiment on each model and each data set with
different random initializations. We report the trials
that give the smallest within-cluster sum-of-squares
(WCSS) distance for K-means, and those that give
the highest log-likelihood of data for all other mod-
els. Experimental trials are run until the change in
WCSS/log-likelihood between two EM iterations is
smaller than 1 × 10−6. All trials converged within
30 minutes.

All models we evaluate involve a parameter K,
which is the number of values that y can take on.
The value of K is manually fixed in this study. As
noted, we use a garbage slot to capture irrelevant
candidates, thus the value of K is set to the number
of target slots plus 1 for each data set. We empir-
ically set the adjustable parameters in the proposed
prior, and the weight of the regularization term in the
locally normalized logistic regression model (Berg-
Kirkpatrick et al., 2010), denoted by β. Exact set-
tings are given in the next subsection. Note that the
focus of our experiments is on evaluating the effec-
tiveness of the proposed prior. We leave the task of
learning the various parameter values to future work.

7.4 Results

Evaluation on existing generative models

We first evaluate the existing generative models
described in Section 5 with the multinomial prior.
Table 1 summarizes the performance of Naive Bayes
(NB), the Bernoulli mixture model (BMM), the
Gaussian mixture model (GMM), the locally nor-
malized logistic regression (LNLR) model, and K-
means. We only show the F1 measures in the table
due to space limit.

We first observe that NB does not perform well
for our task. LNLR, which is an interesting contri-
bution in its own right, does not seem to be suitable
for our task as well. While NB and LNLR are infe-
rior to K-means for all three data sets, BMM shows
mixed results. Specifically, BMM outperforms K-
means for aviation incidents, but performs poorly
for seminar announcements. GMM and K-means
achieve similar results, which is not surprising be-
cause K-means can be viewed as a special case of
the spherical GMM we used (Duda et al., 2001).

Overall speaking, results show that GMM is the
best among the four generative models for the distri-
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(a) Results on seminar announcements. No macro- and micro-average result is reported
for NB and BMM as they merged the etime cluster with the stime cluster. Numbers in
brackets are the respective measures of the stime cluster when evaluated for etime.

Model stime etime speaker location Macro-avg Micro-avg Parameter

NB 0.558 (0.342) 0.276 0.172 — — Nil
BMM 0.822 (0.440) 0.412 0.402 — — Nil
GMM 0.450 0.530 0.417 0.426 0.557 0.455 Nil
LNLR 0.386 0.239 0.200 0.208 0.264 0.266 β = .0005
K-means 0.560 0.574 0.335 0.426 0.538 0.452 Nil

(b) Results on aviation incidents. Target slots are airline (AL) , flight number (FN), aircraft
model (AC), location (LO) and country (CO).

Model AL FN AC LO CO Macro-avg Micro-avg Parameter

NB 0.896 0.473 0.676 0.504 0.533 0.618 0.628 Nil
BMM 0.862 0.794 0.656 0.695 0.614 0.741 0.724 Nil
GMM 0.859 0.914 0.635 0.576 0.538 0.730 0.692 Nil
LNLR 0.597 0.352 0.314 0.286 0.291 0.379 0.396 β = .0005
K-means 0.859 0.936 0.661 0.576 0.538 0.729 0.701 Nil

(c) Results on management succession events. Target slots are person joining (PersonIn),
person leaving (PersonOut), organization (Org), and position (Post).

Model PersonIn PersonOut Org Post Macro-avg Micro-avg Parameter

NB 0.545 0.257 0.473 0.455 0.459 0.437 Nil
BMM 0.550 0.437 0.800 0.767 0.650 0.648 Nil
GMM 0.583 0.432 0.813 0.803 0.679 0.676 Nil
LNLR 0.419 0.245 0.319 0.399 0.351 0.346 β = .0002
K-means 0.372 0.565 0.835 0.814 0.645 0.665 Nil

Table 1: Performance summary of the different generative models and K-means in terms of F1.

Data set Parameter Value

Seminar announcements {λk}4
k=1 {2}4

k=1

{τk}4
k=1 {1}4

k=1

Aviation incidents {λk}5
k=1 {1}5

k=1

{τk}5
k=1 {1}5

k=1

Management succession {λk}4
k=1 {1,2,2,2}

{τk}4
k=1 {1,2,2,2}

Table 2: Parameter settings for p(yi; Λ).

bution p(x|y; Θ). We proceed with incorporating the
proposed prior into GMM for further explorations.

Effectiveness of the proposed prior
We evaluate the effectiveness of the proposed

prior by combining it with GMM. Specifically, the
combined model follows Eq. (1), with p(yi; Λ) com-
puted using the Poisson-based formula in Eq. (3) and
p(xi,j |yi,j ; Θ) following Eq. (6) as in GMM.

We empirically determine the parameters used in
p(yi; Λ) to maximize data’s log-likelihood as noted.
Table 2 reports the values of {λk}K−1

k=1 and {τk}K−1
k=1

for different data sets. Recall that λk specifies the

maximum number of candidates that the k-th slot can
generate, and its value is observed to be small in real
data. τk specifies the expected number of candidates
that the k-th slot will generate.

Table 3 reports the performance of the combined
model (“GMM with prior”) on the three data sets,
along with results of GMM and K-means for easy
comparison. The combined model improves over
both GMM and K-means for seminar announce-
ments and aviation incidents, as can be seen from the
models’ macro- and micro-average performance.

The advantages brought by the proposed prior are
mainly reflected in slots that are difficult to clus-
ter under GMM and K-means. Taking seminar an-
nouncements as an example, GMM and K-means
achieve high precision but low recall for stime, and
low precision but high recall for etime. When exam-
ining the clusters produced by these two models, we
found one small cluster that contains mostly stime
fillers (thus high precision but low recall), and an-
other much larger cluster that contains mostly etime
fillers together with most of the remaining stime
fillers (thus low precision but high recall for etime).
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(a) Results on seminar announcements.

Model Metric stime etime speaker location Macro-avg Micro-avg

GMM with Prior P 0.964 0.983 0.232 0.253 0.608 0.416
R 0.680 0.932 0.952 0.481 0.761 0.738
F1 0.798 0.957 0.374 0.331 0.676 0.532

GMM P 1.000 0.362 0.300 0.436 0.524 0.407
R 0.291 0.984 0.686 0.416 0.594 0.518
F1 0.450 0.530 0.417 0.426 0.557 0.455

K-means P 0.890 0.434 0.222 0.436 0.496 0.389
R 0.408 0.847 0.679 0.416 0.588 0.541
F1 0.560 0.574 0.335 0.426 0.538 0.452

(b) Results on aviation incidents.

Model Metric AL FN AC LO CO Macro-avg Micro-avg

GMM with Prior P 1.000 1.000 1.000 0.741 0.833 0.915 0.908
R 0.753 0.877 0.465 0.588 0.727 0.682 0.673
F1 0.859 0.935 0.635 0.656 0.777 0.782 0.773

GMM P 1.000 1.000 1.000 0.563 0.433 0.799 0.724
R 0.753 0.842 0.465 0.588 0.709 0.672 0.664
F1 0.859 0.914 0.635 0.576 0.538 0.730 0.692

K-means P 1.000 0.981 0.830 0.563 0.433 0.761 0.711
R 0.753 0.895 0.549 0.588 0.709 0.699 0.691
F1 0.859 0.936 0.661 0.576 0.538 0.729 0.701

(c) Results on management succession events.

Model Metric PersonIn PersonOut Org Post Macro-avg Micro-avg

GMM with Prior P 0.458 0.610 0.720 0.774 0.640 0.642
R 0.784 0.352 0.969 0.846 0.738 0.731
F1 0.578 0.447 0.826 0.809 0.686 0.683

GMM P 0.464 0.605 0.725 0.792 0.647 0.648
R 0.782 0.336 0.925 0.815 0.715 0.707
F1 0.583 0.432 0.813 0.803 0.679 0.676

K-means P 0.382 0.515 0.733 0.839 0.607 0.639
R 0.363 0.625 0.969 0.791 0.687 0.693
F1 0.372 0.565 0.835 0.814 0.645 0.665

Table 3: Comparison between the combined model (GMM with the proposed prior), GMM and K-means.

This shows that GMM, when used with the multi-
nomial prior, and K-means have difficulties sepa-
rating candidates from these two slots. In contrast,
the combined model improves the recall of stime to
68%, as compared to 29.1% achieved by GMM with
the multinomial prior and 40.8% by K-means, with-
out sacrificing precision. It also improves the preci-
sion of etime from 36.2% to 98.3%.

For aviation incidents, the advantage of the pro-
posed prior is reflected in the location (LO) and
country (CO) slots, which may confuse the various
models as they both belong to the entity type loca-
tion. The proposed prior improves the precision of
these two slots greatly by trying to distribute them
into appropriate slots in the clustering process.

The three models achieve very similar perfor-
mance on management succession events as Ta-
ble 3(c) shows. Surprisingly, incorporating the
Poisson-based prior into GMM does not seem useful
in separating PersonIn and PersonOut slot fillers. To
investigate the possible reasons for this, we exam-
ine feature values in the centriods of the two clusters
learned by the three models.

Tables 4 and 5 respectively list the top-10 features
in the PersonIn cluster and the PersonOut cluster
learned by the combined model1, and their corre-
sponding values in the centriods of the two clusters.
The two clusters share 3 of the top-5 features, some

1We made similar observations from centriods learned in
GMM and K-Means, which are therefore not reported here.
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Values in the centriod of:

Top-10 features PersonIn PersonOut

type:⟨person⟩ 0.9985 1
unigram after:, 0.7251 0.3404
unigram before:⟨s⟩ 0.2705 0
bigram after:, ⟨digits⟩ 0.2105 0.1879
bigram after:, who 0.1404 0.0567
unigram before:, 0.1067 0.0035
dobj:succeeds 0.0906 0
unigarm before:succeeds 0.0892 0
nsubj:resigned 0.0746 0.0284
unigram before:said 0.0673 0

Table 4: Top-10 features in the PersonIn cluster, as
learned by GMM with the proposed prior.

of them being general context features that might not
help characterizing candidates from different slots
(e.g. the unigram after the candidate is a comma).
Both lists also contain features from dependency
parse trees. Note that the “dobj:succeeds” feature
in the PersonIn cluster is in fact contributed by Per-
sonOut slot fillers, while the “nsubj:succeeds” fea-
ture in the PersonOut cluster is contributed by Per-
sonIn slot fillers. Although listed among the top-
10, these features have relatively low values in the
learned centriods (about 0.1). These observations
may suggest that the management succession data
set lacks strong, discriminative features for all mod-
els to effectively distinguish between PersonIn and
PersonOut candidates in an unsupervised manner.

To conclude, the proposed prior is effective in as-
signing different but confusing candidate slot fillers
into appropriate slots, when there exist reasonable
features that can be exploited in the label assign-
ment process. This is evident by the improvements
the proposed prior brings to GMM in the seminar
announcement and aviation incident data sets.

8 Conclusions

We propose a generative model that incorporates
distributional prior knowledge about template slots
in a document for the unsupervised IE task. Specifi-
cally, we propose a Poisson-based prior that prefers
label assignments to cover more distinct slots in the
same document. The proposed prior also allows a
slot to generate multiple fillers in a document, up to
a certain number of times depending on the domain
of interest.

We experimented with four existing generative

Values in the centriod of:

Top-10 features PersonOut PersonIn

type:⟨person⟩ 1 0.9985
unigram before:mr. 0.9894 0
bigram before:⟨s⟩ mr. 0.5213 0
unigram after:, 0.3404 0.7251
bigram after:, ⟨digits⟩ 0.1879 0.2105
unigram after:was 0.1667 0.0556
nsubj:president 0.1667 0.0117
nsubj:succeeds 0.1028 0.0102
bigram before:, mr. 0.0957 0
unigram after:’s 0.0745 0.0073

Table 5: Top-10 features in the PersonOut cluster, as
learned by GMM with the proposed prior.

models for the task of clustering slot fillers with
a multinomial prior, which assumes that labels are
generated independently in a document. We then
evaluate the effectiveness of the proposed prior by
incorporating it into the Gaussian mixture model
(GMM), which is shown to be the best among the
four existing models in our experiments. By incor-
porating the proposed prior into GMM, we can ob-
tain significantly better clustering results on two out
of three data sets.

Further improvements to this work are possible.
Firstly, we assume that some adjustable parameters
in the proposed prior can be manually fixed, such as
the number of template slots in the output and the
maximum numbers of fillers that can be generated
by different slots. We are looking into methods for
automatically learning such parameters. This will
help improve the applicability of our work to differ-
ent domains as an unsupervised model. Secondly,
we currently consider in the prior a probability dis-
tribution over all possible label assignments for ev-
ery document. This can be computationally expen-
sive if input documents are long, or when we aim
to discover large templates with large values of K.
An alternative is to consider an approximate solution
that evaluates, for instance, only the top few label as-
signments that are likely to maximize the likelihood
of our observations. This remains as an interesting
future work of this study.
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Abstract

This paper proposes a semi-supervised rela-
tion acquisition method that does not rely on
extraction patterns (e.g. “X causes Y” for
causal relations) but instead learns a combi-
nation of indirect evidence for the target re-
lation — semantic word classes and partial
patterns. This method can extract long tail
instances of semantic relations like causality
from rare and complex expressions in a large
Japanese Web corpus — in extreme cases, pat-
terns that occur only once in the entire cor-
pus. Such patterns are beyond the reach of cur-
rent pattern based methods. We show that our
method performs on par with state-of-the-art
pattern based methods, and maintains a rea-
sonable level of accuracy even for instances
acquired from infrequent patterns. This abil-
ity to acquire long tail instances is crucial for
risk management and innovation, where an ex-
haustive database of high-level semantic rela-
tions like causation is of vital importance.

1 Introduction

Pattern based relation acquisition methods rely on
lexico-syntactic patterns (Hearst, 1992) for extract-
ing relation instances. These are templates of natu-
ral language expressions such as “X causes Y ” that
signal an instance of some semantic relation (i.e.,
causality). Pattern based methods (Agichtein and
Gravano, 2000; Pantel and Pennacchiotti, 2006b;
Paşca et al., 2006; De Saeger et al., 2009) learn many

∗ This work was done when all authors were at the National
Institute of Information and Communications Technology.

such patterns to extract new instances (word pairs)
from the corpus.

However, since extraction patterns are learned us-
ing statistical methods that require a certain fre-
quency of observations, pattern based methods fail
to capture relations from complex expressions in
which the pattern connecting the two words is rarely
observed. Consider the following sentence:

“Curing hypertension alleviates the deteriora-
tion speed of the renal function, thereby lower-
ing the risk of causing intracranial bleeding”

Humans can infer that this sentence expresses a
causal relation between the underlined noun phrases.
But the actual pattern connecting them, i.e., “Cur-
ing X alleviates the deterioration speed of the re-
nal function, thereby lowering the risk of causing
Y ”, is rarely observed more than once even in a 108

page Web corpus. In the sense that the term pat-
tern implies a recurring event, this expression con-
tains no pattern for detecting the causal relation be-
tween hypertension and intracranial bleeding. This
is what we mean by “long tail instances” — words
that co-occur infrequently, and only in sparse extrac-
tion contexts.

Yet an important application of relation extraction
is mining the Web for so-called unknown unknowns
— in the words of D. Rumsfeld, “things we don’t
know we don’t know” (Torisawa et al., 2010). In
knowledge discovery applications like risk manage-
ment and innovation, the usefulness of relation ex-
traction lies in its ability to find many unexpected
remedies for diseases, causes of social problems,
and so on. To give an example, our relation extrac-
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tion system found a blog post mentioning Japanese
automaker Toyota as a hidden cause of Japan’s de-
flation. Several months later the same connection
was made in an article published in an authoritative
economic magazine.

We propose a semi-supervised relation extraction
method that does not rely on direct pattern evidence
connecting the two words in a sentence. We argue
that the role of binary patterns can be replaced by a
combination of two types of indirect evidence: se-
mantic class information about the target relation
and partial patterns, which are fragments or sub-
patterns of binary patterns. The intuition is this: if
a sentence like the example sentence above contains
some word X belonging to the class of medical con-
ditions and another word Y from the class of trau-
mas, and X matches the partial pattern “. . . causing
X”, there is a decent chance that this sentence ex-
presses a causal relation between X and Y . We
show that just using this combination of indirect
evidence we can pick up semantic relations with
roughly 50% precision, regardless of the complexity
or frequency of the expression in which the words
co-occur. Furthermore, by combining this idea with
a straightforward machine learning approach, the
overall performance of our method is on par with
state-of-the-art pattern based methods. However,
our method manages to extract a large number of
instances from sentences that contain no pattern that
can be learned by pattern induction methods.

Our method is a two-stage system. Figure 1
presents an overview. In Stage 1 we apply a state-
of-the-art pattern based relation extractor to a Web
corpus to obtain an initial batch of relation instances.
In Stage 2 a supervised classifier is built from vari-
ous components obtained from the output of Stage
1. Given the output of Stage 1 and access to a
Web corpus, the Stage 2 extractor is completely
self-sufficient, and the whole method requires no
supervision other than a handful of seed patterns
to start the first stage extractor. The whole proce-
dure is therefore minimally supervised. Semantic
word classes and partial patterns play a crucial role
throughout all steps of the process.

We evaluate our method on three relation acqui-
sition tasks (causation, prevention and material re-
lations) using a 600 million Japanese Web page cor-

Figure 1: Proposed method: data flow.

pus (Shinzato et al., 2008) and show that our sys-
tem can successfully acquire relations from both
frequent and infrequent patterns. Our system ex-
tracted 100,000 causal relations with 84.6% preci-
sion, 50,000 prevention relations with 58.4% preci-
sion and 25,000 material relations with 76.1% preci-
sion. In the extreme case, we acquired several thou-
sand word pairs co-occurring only in patterns that
appear once in the entire corpus. We call such pat-
terns single occurrence (SO) patterns. Word pairs
that co-occur only with SO patterns represent the
theoretical limiting case of relations that cannot be
acquired using existing pattern based methods. In
this sense our method can be seen as complemen-
tary with pattern based approaches, and merging our
method’s output with that of a pattern based method
may be beneficial.

2 Stage 1 Extractor

This section introduces our Stage 1 extractor: the
pattern based method from (De Saeger et al., 2009),
which we call CDP for “class dependent patterns”.
We give a brief overview below, and refer the reader
to the original paper for a more comprehensive ex-
planation.

CDP takes a set of seed patterns as input, and au-
tomatically learns new class dependent patterns as
paraphrases of the seed patterns. Class dependent
patterns are semantic class restricted versions of or-
dinary lexico-syntactic patterns. Existing methods
use class independent patterns such as “X causes
Y ” to learn causal relations between X and Y . Class
dependent patterns however place semantic class re-
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strictions on the noun pairs they may extract, like
“Yaccidents causes Xincidents”. The accidents and
incidents subscripts specify the semantic class of the
X and Y slot fillers.

These class restrictions make it possible to distin-
guish between multiple senses of highly ambiguous
patterns (so-called “generic” patterns). For instance,
given the generic pattern “Y by X”, if we restrict
Y and X in to the semantic classes of injuries and
accidents (as in “death by drowning”), the class de-
pendent pattern “Yinjuries by Xaccidents” becomes a
valid paraphrase of “X causes Y ” and can safely be
used to extract causal relations, whereas other class
dependent versions of the same generic pattern (e.g.,
“Yproducts by Xcompanies”, as in “iPhone by Apple”)
may not.

CDP ranks each noun pair in the corpus accord-
ing to a score that reflects its likelihood of being
a proper instance of the target relation, by calcu-
lating the semantic similarity of a set of seed pat-
terns to the class dependent patterns this noun pair
co-occurs with. The output of CDP is a list of noun
pairs ranked by score, together with the highest scor-
ing class dependent pattern each noun pair co-occurs
with. This list becomes the input to Stage 2 of our
method, as shown in Figure 1. We adopted CDP as
Stage 1 extractor because, besides having generally
good performance, the class dependent patterns pro-
vide the two fundamental ingredients for Stage 2 of
our method — the target semantic word classes for a
given relation (in the form of the semantic class re-
strictions attached to patterns), and partial patterns.

To obtain fine-grained semantic word classes we
used the large scale word clustering algorithm from
(Kazama and Torisawa, 2008), which uses the EM
algorithm to compute the probability that a word w
belongs to class c, i.e., P (c|w). Probabilistic cluster-
ing defines no discrete boundary between members
and non-members of a semantic class, so we simply
assume w belongs to c whenever P (c|w) ≥ 0.2. For
this work we clustered 106 nouns into 500 classes.

Finally, we adopt the structural representation of
patterns introduced in (Lin and Pantel, 2001). All
sentences in our corpus are dependency parsed, and
patterns consist of words on the path of dependency
relations connecting two nouns.

3 Stage 2 Extractor

We use CDP as our Stage 1 extractor, and the top
N noun pairs along with the class dependent pat-
terns that extract them are given as input to Stage 2,
which represents the main contribution of this work.
As shown in Figure 1, Stage 2 consists of three mod-
ules: a candidate generator, a training data gener-
ator and a supervised classifier. The training data
generator builds training data for the classifier from
the top N output of CDP and sentences retrieved
from the Web corpus. This classifier then scores and
ranks the candidate relations generated by the can-
didate relation generator. We introduce each module
below.

Candidate Generator This module generates
sentences containing candidate word pairs for the
target relation from the corpus. It does so using the
semantic class restrictions and partial patterns ob-
tained from the output of CDP. The set of all seman-
tic class pairs obtained from the class dependent pat-
terns that extracted the top N results become the tar-
get semantic class pairs from which new candidate
instances are generated. We extract all sentences
containing a word pair belonging to one of the target
class pairs from the corpus.

From these sentences we keep only those that con-
tain a trace of evidence for the target semantic re-
lation. For this we decompose the class dependent
patterns from the Stage 1 extractor into partial pat-
terns. As mentioned previously, patterns consist of
words on the path of dependency relations connect-
ing the two target words in a syntactic tree. To obtain
partial patterns we split this dependency path into its
two constituent branches, each one leading from the
leaf word (i.e. variable) to the syntactic head of the

pattern. For example, “X
subj←− causes

obj−→ Y ” is

split into two partial patterns “X
subj←− causes” and

“causes
obj−→ Y ”. These partial patterns capture the

predicate structures in binary patterns.1 We discard
partial patterns with syntactic heads other than verbs
or adjectives.

The candidate genarator retrieves all sentences
from the corpus in which two nouns belonging to
one of the target semantic classes co-occur and

1 In Japanese, case information is encoded in post-positions
attached to the noun.
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where at least one of the nouns matches a partial pat-
tern. As shown in Figure 1, these sentences and the
candidate noun pairs they contain (called (noun pair,
sentence) triples hereafter) are submitted to the clas-
sifier for scoring. Restricting candidate noun pairs
by this combination of semantic word classes and
partial pattern matching proved to be quite powerful.
For instance, in the case of causal relations we found
that close to 60% of the (noun pair, sentence) triples
produced by the candidate generator were correct
(Figure 6).

Training Data Generator As shown in Figure 1,
the (noun pair, sentence) triples used as training data
for the SVM classifier were generated from the top
results of the Stage 1 extractor and the corpus. We
consider the noun pairs in the top N output of the
Stage 1 extractor as true instances of the target re-
lation (even though they may contain erroneous ex-
tractions), and retrieve from the corpus all sentences
in which these noun pairs co-occur and that match
one of the partial patterns mentioned above. In our
experiments we set N to 25, 000. We randomly se-
lect positive training samples from this set of (noun
pair, sentence) triples.

Negative training samples are also selected ran-
domly, as follows. If one member of the target noun
pair in the positive samples above matches a partial
pattern but the other does not, we randomly replace
the latter by another noun found in the same sen-
tence, and generate this new (noun pair, sentence)
triple as a negative training sample. In the causal
relation experiments this approach had about 5%
chance of generating false negatives — noun pairs
contained in the top N results of the Stage 1 extrac-
tor. Such samples were discarded. Our experimen-
tal results show that this scheme works quite well in
practice. We randomly sample M positive and neg-
ative samples from the autogenerated training data
to train the SVM. M was empirically set to 50,000
in our experiments.

SVM Classifier We used a straightforward fea-
ture set for training the SVM classifier. Because
our classifier will be faced with sentences contain-
ing long and infrequent patterns where the distance
between the two target nouns may be quite large,
we did not try to represent lexico-syntactic patterns
as features but deliberately restricted the feature set

to local context features of the candidate noun pair
in the target sentence. Concretely, we looked at bi-
grams and unigrams surrounding both nouns of the
candidate relation, as the local context around the
target words may contain many telling expressions
like “increase in X” or “X deficiency” which are use-
ful clues for causal relations. Also, in Japanese case
information is encoded in post-positions attached to
the noun, which is captured by the unigram features.

In addition to these base features, we include the
semantic classes to which the candidate noun pair
belongs, the partial patterns they match in this sen-
tence, and the infix words inbetween the target noun
pair. Note that this feature set is not intended to
be optimal beyond the actual claims of this paper,
and we have deliberately avoided exhaustive fea-
ture engineering so as not to obscure the contribu-
tion of semantic classes and partial pattern to our
approach. Clearly an optimal classifier will incorpo-
rate many more advanced features (see GuoDong et
al. (2005) for a comprehensive overview), but even
without sophisticated feature engineering our clas-
sifier achieved sufficient performance levels to sup-
port our claims. An overview of the feature set is
given in Table 1. The relative contribution of each
type of features is discussed in section 4. In prelim-
inary experiments we found a polynomial kernel of
degree 3 gave the best results, which suggests the ef-
fectiveness of combining different types of indirect
evidence.

The SVM classifier outputs (noun pair, sentence)
triples, ranked by SVM score. To obtain the final
output of our method we assign each unique noun
pair the maximum score from all (noun pair, sen-
tence) triples it occurs in, and discard all other sen-
tences for this noun pair. In section 4 below we eval-
uate the acquired noun pairs in the context of the
sentence that maximizes their score.

4 Evaluation

We demonstrate the effectiveness of semantic word
classes and partial pattern matching for relation ex-
traction by showing that the method proposed in this
paper performs at the level of other state-of-the-art
relation acquisition methods. In addition we demon-
strate that our method can successfully extract re-
lation instances from infrequent patterns, and we
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Feature type Description Number of features
Morpheme features Unigram and bigram morphemes surrounding both target words. 554,395
POS features Coarse- and fine-grained POS tags of the noun pair and morpheme features. 2,411
Semantic features Semantic word classes of the target noun pair. 1000 (500 classes ×2)
Infix word features Morphemes found inbetween the target noun pair. 94,448
Partial patterns Partial patterns matching the target noun pair. 86

Table 1: Feature set used in the Stage 2 classifier, and their number for the causal relation experiments.

explore several criteria for what constitutes an in-
frequent pattern — including the theoretical limit-
ing case of patterns observed only once in the en-
tire corpus. These instances are impossible to ac-
quire by pattern based methods. The ability to ac-
quire relations from extremely infrequent expres-
sions with decent accuracy demonstrates the utility
of combining semantic word classes with partial pat-
tern matching.

4.1 Experimental Setting

We evaluate our method on three semantic relation
acquisition tasks: causality, prevention and mate-
rial. Two concepts stand in a causal relation when
the source concept (the “cause”) is directly or indi-
rectly responsible for the subsequent occurrence of
the target concept (its “effect”). In a prevention rela-
tion the source concept directly or indirectly acts to
avoid the occurrence of the target concept, and in a
material relation the source concept is a material or
ingredient of the target concept.

For our experiments we used the latest version
of the TSUBAKI corpus (Shinzato et al., 2008),
a collection of 600 million Japanese Web pages
dependency parsed by the Japanese dependency
parser KNP2. In our implementation of CDP, lexico-
syntactic patterns consist of words on the path con-
necting two nouns in a dependency parse tree. We
discard patterns from dependency paths longer than
8 constituent nodes. Furthermore, we estimated pat-
tern frequencies in a subset of the corpus (50 million
pages, or 1/12th of the entire corpus) and discarded
patterns that co-occur with less than 10 unique noun
pairs in this smaller corpus. These restrictions do
not apply to the proposed method, which can extract
noun pairs connected by patterns of arbitrary length,
even if found only once in the corpus. For our pur-

2 http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp.html

pose we treat dependency paths whose observed fre-
quency is below this threshold as insufficiently fre-
quent to be considered as “patterns”. This threshold
is of course arbitrary, but in section 4 we show that
our results are not affected by these implementation
details.

We asked three human judges to evaluate ran-
dom (noun pair, sentence) triples, i.e. candidate
noun pairs in the context of some corpus sentence
in which they co-occur. If the judges find the sen-
tence contains sufficient evidence that the target re-
lation holds between the candidate nouns, they mark
the noun pair correct. To evaluate the performance
of each method we use two evaluation criteria: strict
(all judges must agree the candidate relation is cor-
rect) and lenient (decided by the judges’ majority
vote). Over all experiments the interrater agreement
(Kappa) ranged between 0.57 and 0.82 with an aver-
age of 0.72, indicating substantial agreement (Lan-
dis and Koch, 1977).

4.1.1 Methods Compared
We compare our results to two pattern based

methods: CDP (the Stage 1 extractor) and Espresso
(Pantel and Pennacchiotti, 2006a).

Espresso is a popular bootstrapping based method
that uses a set of seed instances to induce extraction
patterns for the target relation and then acquire new
instances in an iterative bootstrapping process. In
each iteration Espresso performs pattern induction,
pattern ranking and selection using previously ac-
quired instances, and uses the newly acquired pat-
terns to extraction new instances. Espresso com-
putes a reliability score for both instances and pat-
terns based on their pointwise mutual information
(PMI) with the top-scoring patterns and instances
from the previous iteration.3 We refer to (Pantel and

3 In our implementation of Espresso we found that, despite
the many parameters for controlling the bootstrapping process,
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Figure 2: Precision of acquired relations (causality). L
and S denote lenient and strict evaluation.

Pennacchiotti, 2006a) for a more detailed descrip-
tion.

For all methods compared we rank the acquired
noun pairs by their score and evaluated 500 random
samples from the top 100,000 results. For noun pairs
acquired by CDP and Espresso we select the pattern
that extracted this noun pair (in the case of Espresso,
the pattern with the highest PMI for this noun pair),
and randomly select a sentence in which the noun
pair co-occurs with that pattern from our corpus. For
the proposed method we evaluate noun pairs in the
context of the (noun pair, sentence) triple with the
highest SVM score.

4.2 Results and Discussion

The performance of each method on the causality,
prevention and material relations are shown in Fig-
ures 2, 3 and 4 respectively. In the causality exper-
iments (Figure 2) the proposed method performs on
par with CDP for the top 25,000 results, both achiev-
ing close to 90% precision. But whereas CDP’s per-
it remains very difficult to prevent semantic drift (Komachi et
al., 2008) from occurring. One small adjustment to the al-
gorithm stabilized the bootstrapping process considerably and
gave overall better results. In the pattern induction step (sec-
tion 3.2 in (Pantel and Pennacchiotti, 2006a)), Espresso com-
putes a reliability score for each candidate pattern based on the
weighted PMI of the pattern with all instances extracted so far.
As the number of extracted instances increases this dispropor-
tionally favours high frequency (i.e. generic) patterns, so in-
stead of using all instances for computing pattern reliability we
only use the m most reliable instances from the previous iter-
ation, which were used to extract the candidate patterns of the
current iteration (m = 200, like the original).
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Figure 3: Precision of acquired relations (prevention). L
and S denote lenient and strict evaluation.
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Figure 4: Precision of acquired relations (material). L
and S denote lenient and strict evaluation.

formance drops from there our method maintains
the same high precision throughout (84.6%, lenient).
Both our method and CDP outperform Espresso by
a large margin.

For the prevention relation (Figure 3), precision
is considerably lower for all methods except the top
10,000 of CDP (82% precision, lenient). The pro-
posed method peaks at around 20,000 results (67%
precision, lenient) and performance remains more or
less constant from there on. The proposed method
overtakes CDP’s performance around the top 45,000
mark, which suggests that combining the results of
both methods may be beneficial.

In the material relations the proposed method
slightly outperforms both pattern based methods
in the top 10,000 results (92% precision, lenient).
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However for this relation our method produced only
35,409 instances. The reason is that the top 25,000
results of CDP were all extracted by just 12 patterns,
and these contained many patterns whose syntactic
head is not a verb or adjective (like “Y rich in X” or
“Y containing X”). Only 12 partial patterns were ob-
tained, which greatly reduced the output of the pro-
posed method. Taking into account the high perfor-
mance of CDP for material relations, this suggests
that for some relations our method’s N and M pa-
rameters could use some tuning. In conclusion, in
all three relations our method performs at a level
comparable to state-of-the-art pattern based meth-
ods, which is remarkable given that it only uses in-
direct evidence.

Dealing with Difficult Extractions How does our
method handle noun pairs that are difficult to ac-
quire by pattern based methods? The graphs marked
“Prop. w/o CDP” (Proposed without CDP) in Fig-
ures 2 , 3 and 4 show the number and precision of
evaluated samples from the proposed method that do
not co-occur in our corpus with any of the patterns
that extracted the top N results of the first stage ex-
tractor. These graphs show that our method is not
simply regenerating CDP’s top results but actually
extracts many noun pairs that do not co-occur in pat-
terns that are easily learned. Figure 2 shows that
roughly two thirds of the evaluated samples are in
this category, and that their performance is not sig-
nificantly worse than the overall result. The same
conclusion holds for the prevention results (Figure
3), where over 80% of the proposed method’s sam-
ples are noun pairs that do not co-occur with eas-
ily learnable patterns. Their precision is about 5%
worse than all samples from the proposed method.
For material relations (Figure 4) about half of all
evaluated samples are in this category, but their pre-
cision is markedly worse compared to all results.

For genuinely infrequent patterns, the graphs
marked “Prop. w/o pattern” (Proposed without pat-
tern) in Figures 2 , 3 and 4 show the number and
precision of noun pairs evaluated for the proposed
method that were acquired from sentences without
any discernible pattern. As explained in section 4
above, these constitute noun pairs co-occurring in a
sentence in which the path of dependency relations
connecting them is either longer than 8 nodes or can
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Figure 5: Frequencies of patterns in the evaluation data
(causation).

extract fewer than 10 noun pairs in 50 million Web
pages. Note that in theory it is possible that these
noun pairs could not be acquired by pattern based
methods due to this threshold — patterns must be
able to extract more than 10 different noun pairs in
a subset of our corpus, while the proposed method
does not have this constraint. So at least in the-
ory, pattern based methods might be able to acquire
all noun pairs obtained by our method by lowering
this threshold. To see that this is unlikely to be the
case, consider Figure 5, which shows the pattern fre-
quency of the patterns induced by CDP and Espresso
for the causality experiment. The x-axis represents
pattern frequency in terms of the number of unique
noun pairs a pattern co-occurs with in our corpus (on
a log scale), and the y-axis shows the percentage of
samples that was extracted by patterns of a given fre-
quency.4 Figure 5 shows that for the pattern based
methods, the large majority of noun pairs was ex-
tracted by patterns that co-occur with several thou-
sand different noun pairs. Extrapolating the original
frequency threshold of 10 nounpairs to the size of
our entire corpus roughly corresponds to about 120
distinct noun pairs (10 times in 1/12th of the entire
corpus). In Figure 5, the histograms for the pattern
based methods CDP and Espresso start around 1000
noun pairs, which is far above this new lowerbound.

4 In the case of CDP we ignore semantic class restrictions
on the patterns when comparing frequencies. For Espresso, the
most frequent pattern (“Y by X” at the 24,889,329 data point
on the x-axis) extracted up to 53.8% of the results, but the graph
was cut at 20% for readability.
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⟨カテコラミン ⟩が心拍数の急上昇をもたらすことから、血管内の血行状態の変化が血管内障害につながり、[血栓形成]を促進する。
Because ⟨catecholamine⟩ causes a rapid increase of heart rate, the change of circulation inside the blood vessels leads to blood vessel
disorders and promotes [thrombus generation].
⟨頻脈発作 ⟩が始まってキシロカインを静注したところ、患者さんが突然意識をなくして [全身痙攣]を起こしたということです。
When we injected Xylocaine during a ⟨tachycardia seizure⟩, the patient suddenly lost consciousness and fell into a fit of [convulsions].
その理由としては ⟨動物性たんぱく質 ⟩を多く取ることで [わきが]の原因物質が増加するからです。
(. . . ) The reason is that by taking a lot of ⟨animal proteins⟩ the causative agents of [tragomaschalia] increase.
*抗酸化機能を高め、老化や ⟨生活習慣病 ⟩の原因となる活性化酸素を消去する作用がある [ラドン]。
* [Radon] heightens the (body’s) antioxidative function and is effective for eliminating activated oxygen, which is a cause of aging and
⟨lifestyle-related⟩ diseases.
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マグロのトロ、中トロの部分には、ＤＨＡや ⟨ＥＰＡ ⟩が豊富に含まれているので、[神経痛]の予防食材として有効です。
Because the fatty meat of tuna contains DHA and ⟨EPA⟩ in abundance, it is effective for preventing [neuralgia].
空気の代わりに ⟨窒素ガス ⟩を使用すれば [粉塵爆発]の予防になります。
If you use ⟨nitrogen gas⟩ instead of air you may prevent [dust explosions].
ヨーロッパでは古くから ⟨クミスクチン ⟩のお茶は「やせるお茶である」といわれ中性脂肪や [成人病]の予防に良いそうです。
In ancient Europe ⟨orthosiphon aristatus⟩ tea was called a “diet tea”, and supposedly it helps preventing triglycerides and [adult diseases].
* ⟨幌 ⟩の収納時にスクリーンの間に挟んで、スクリーンの [スリキズ]を防ぐものです。
* (It) is something that prevents [scratches] on the screen if the ⟨calash⟩ gets stuck between the screens during storage.

Table 2: Causality and Prevention relations acquired from Single Occurrence (SO) patterns. ⟨X⟩ and [Y] indicate the
relation instance’s source and target words, and “*” indicates erroneous extractions.

Thus, pattern based methods naturally tend to induce
patterns that are much more frequent than the range
of patterns our method can capture, and it is unlikely
that this is a result of implementation details like pat-
tern frequency threshold.

The precision of noun pairs in the category “Prop.
w/o pattern” is clearly lower than the overall re-
sults, but the graphs demonstrate that our method
still handles these difficult cases reasonably well.
The 500 samples evaluated contained 155 such in-
stances for causality, 403 for prevention and 276 for
material. For prevention, the high ratio of these noun
pairs helps explain why the overall performance was
lower than for the other relations.

Finally, the theoretical limiting case for pattern
based algorithms consists of patterns that only co-
occur with a single noun pair in the entire corpus
(single occurrence or SO patterns). Pattern based
methods learn new patterns that share many noun
pairs with a set of reliable patterns in order to extract
new relation instances. If a noun pair that co-occurs
with a SO pattern also co-occurs with more reliable
patterns there is no need to learn the SO pattern. If
that same noun pair does not co-occur with any other
reliable pattern, the SO pattern is beyond the reach
of any pattern induction method. Thus, SO patterns
are effectively useless for pattern based methods.

For the 500 samples evaluated from the causality
and prevention relations acquired by our method we
found 7 causal noun pairs that co-occur only in SO
patterns and 29 such noun pairs for prevention. The
precision of these instances was 42.9% and 51.7%
respectively. In total we found 8,716 causal noun
pairs and 7,369 prevention noun pairs that co-occur
only with SO patterns. Table 2 shows some example
relations from our causality and prevention experi-
ments that were extracted from SO patterns. To con-
clude, our method is able to acquire correct relations
even from the most extreme infrequent expressions.

Semantic Classes, Partial Patterns or Both? In
the remainder of this section we look at how the
combination of semantic word classes and partial
patterns benefits our method. For each relation we
evaluated 1000 random (noun pair, sentence) triples
satisfying the two conditions from section 3 —
matching semantic class pairs and partial patterns.
Surprisingly, the precision of these samples was
59% for causality, 40% for prevention and 50.4%
for material, showing just how compelling these two
types of indirect evidence are in combination.

To estimate the relative contribution of each
heuristic we compared our candidate generation
method against two baselines. The first baseline
evaluates the precision of random noun pairs from

832



 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000

pr
ec

is
io

n 
(%

)

(noun pair, sentence) triples ranked by score

Base features only
All minus semantic classes

All minus infix words
All minus partial patterns

All features

Figure 6: Contribution of feature sets (causality).

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000

pr
ec

is
io

n 
(%

)

(noun pair, sentence) triples ranked by score

Base features only
All minus semantic classes

All minus infix words
All minus partial patterns

All features

Figure 7: Contribution of feature sets (prevention).

the target semantic classes that co-occur in a sen-
tence. The second baseline does the same for the
second heuristic, selecting random sentences con-
taining a noun pair that matches some partial pat-
tern. Evaluating 100 samples for causality and pre-
vention, we found the precision of the semantic class
baseline was 16% for causality and 5% for preven-
tion. The pattern fragment baseline gave 9% for
causality and 22% for prevention. This is consid-
erably lower than the precision of random samples
that satisfy both the semantic class and partial pat-
tern conditions, showing that the combination of se-
mantic classes and partial patterns is more effective
than either one individually.

Finally, we investigated the effect of the various
feature sets used in the classifier. Figures 6, 7 and
8 show the results for the respective semantic re-
lations. The “Base features” graph shows the per-
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Figure 8: Contribution of feature sets (material).

formance the unigram, bigram and part-of-speech
features. “All features” uses all features in Table
1. The other graphs show the effect of removing
one type of features. These graphs suggest that the
contribution of the individual feature types (seman-
tic class information, partial patterns or infix words)
to the classification performance is relatively minor,
but in combination they do give a marked improve-
ment over the base features, at least for some rela-
tions like causation and material. In other words,
the main contribution of semantic word classes and
partial patterns to our method’s performance lies not
in the final classification step but seems to occur at
earlier stages of the process, in the candidate and
training data generation steps.

5 Related Work

Using lexico-syntactic patterns to extract semantic
relations was first explored by Hearst (Hearst, 1992),
and has inspired a large body of work on semi-
supervised relation acquisition methods (Berland
and Charniak, 1999; Agichtein and Gravano, 2000;
Etzioni et al., 2004; Pantel and Pennacchiotti,
2006b; Paşca et al., 2006; De Saeger et al., 2009),
two of which were used in this work.

Some researchers have addressed the sparse-
ness problems inherent in pattern based methods.
Downey et al. (2007) starts from the output of
the unsupervised information extraction system Tex-
tRunner (Banko and Etzioni, 2008), and uses lan-
guage modeling techniques to estimate the reliabil-
ity of sparse extractions. Paşca et al. (2006) alle-
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viates pattern sparseness by using infix patterns that
are generalized using classes of distributionally sim-
ilar words. In addition, their method employs clus-
tering based semantic similarities to filter newly ex-
tracted instances in each iteration of the bootstrap-
ping process. A comparison with our method would
have been instructive, but we were unable to imple-
ment their method because the original paper con-
tains insufficient detail to allow replication.

There is a large body of research in the super-
vised tradition that does not use explicit pattern rep-
resentations — kernel based methods (Zelenko et
al., 2003; Culotta, 2004; Bunescu and Mooney,
2005) and CRF based methods (Culotta et al., 2006).
These approaches are all fully supervised, whereas
in our work the automatic generation of candi-
dates and training data is an integral part of the
method. An interesting alternative is distant super-
vision (Mintz et al., 2009), which trains a classi-
fier using an existing database (Freebase) containing
thousands of semantic relations, with millions of in-
stances. We believe our method is more general, as
depending on external resources like a database of
semantic relations limits both the range of seman-
tic relations (i.e., Freebase contains only relations
between named entities, and none of the relations
in this work) and languages (i.e., no resource com-
parable to Freebase exists for Japanese) to which
the technology can be applied. Furthermore, it is
unclear whether distant supervision can deal with
noisy input such as automatically acquired relation
instances.

Finally, inference based methods (Carlson et al.,
2010; Schoenmackers et al., 2010; Tsuchida et al.,
2010) are another attempt at relation acquisition that
goes beyond pattern matching. Carlson et al. (2010)
proposed a method based on inductive logic pro-
gramming (Quinlan, 1990). Schoenmackers et al.
(2010) takes relation instances produced by Tex-
tRunner (Banko and Etzioni, 2008) as input and in-
duces first-order Horn clauses, and new instances are
infered using a Markov Logic Network (Richardson
and Domingo, 2006; Huynh and Mooney, 2008).
Tsuchida et al. (2010) generated new relation hy-
potheses by substituting words in seed instances
with distributionally similar words. The difference
between these works and ours lies in the treatment
of evidence. While the above methods learn infer-

ence rules to acquire new relation instances from in-
dependent information sources scattered across dif-
ferent Web pages, our method takes the other option
of working with all the clues and indirect evidence a
single sentence can provide. In the future, a combi-
nation of both approaches may prove beneficial.

6 Conclusion

We have proposed a relation acquisition method that
is able to acquire semantic relations from infrequent
expressions by focusing on the evidence provided by
semantic word classes and partial pattern matching
instead of direct extraction patterns. We experimen-
tally demonstrated the effectiveness of this approach
on three relation acquisition tasks, causality, preven-
tion and material relations. In addition we showed
our method could acquire a significant number of
relation instances that are found in extremely infre-
quent expressions, the most extreme case of which
are single occurrence patterns, which are beyond
the reach of existing pattern based methods. We be-
lieve this ability is of crucial importance for acquir-
ing valuable long tail instances. In future work we
will investigate whether the current framework can
be extended to acquire inter-sentential relations.
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Abstract

We propose an architecture for expressing
various linguistically-motivated features that
help identify multi-word expressions in nat-
ural language texts. The architecture com-
bines various linguistically-motivated clas-
sification features in a Bayesian Network.
We introduce novel ways for computing
many of these features, and manually de-
fine linguistically-motivated interrelationships
among them, which the Bayesian network
models. Our methodology is almost en-
tirely unsupervised and completely language-
independent; it relies on few language re-
sources and is thus suitable for a large num-
ber of languages. Furthermore, unlike much
recent work, our approach can identify ex-
pressions of various types and syntactic con-
structions. We demonstrate a significant im-
provement in identification accuracy, com-
pared with less sophisticated baselines.

1 Introduction

Multi-word Expressions (MWEs) are lexical items
that consist of multiple orthographic words (e.g.,
ad hoc, by and large, New York, kick the bucket).
MWEs are numerous and constitute a significant
portion of the lexicon of any natural language (Jack-
endoff, 1997; Erman and Warren, 2000; Sag et
al., 2002). They are a heterogeneous class of con-
structions with diverse sets of characteristics, dis-
tinguished by their idiosyncratic behavior. Mor-
phologically, some MWEs allow some of their con-
stituents to freely inflect while restricting (or pre-
venting) the inflection of other constituents. In
some cases MWEs may allow constituents to un-
dergo non-standard morphological inflections that

they would not undergo in isolation. Syntactically,
some MWEs behave like words while other are
phrases; some occur in one rigid pattern (and a fixed
order), while others permit various syntactic trans-
formations. Semantically, the compositionality of
MWEs is gradual, ranging from fully compositional
to idiomatic (Bannard et al., 2003).

Because of their prevalence and irregularity,
MWEs must be stored in lexicons of natural lan-
guage processing applications. Correct handling of
MWEs has been proven beneficial for various ap-
plications, including information retrieval, building
ontologies, text alignment, and machine translation.

We propose a novel architecture for identifying
MWEs of various types and syntactic categories in
monolingual corpora. Unlike much existing work,
which focuses on a particular syntactic construction,
our approach addresses MWEs of all types by focus-
ing on the general idiosyncratic properties of MWEs
rather than on specific properties of each sub-class
thereof. While we only evaluate our methodol-
ogy on bi-grams, it can in principle be extended
to longer MWEs. The architecture uses Bayesian
Networks (BN) to express multiple interdependent
linguistically-motivated features.

First, we automatically generate a small (training)
set of MWE and non-MWE bi-grams (positive and
negative instances, respectively). We then define a
set of linguistically-motivated features that embody
observed characteristics of MWEs. We augment
these by features that reflect collocation measures.
Finally, we define dependencies among these fea-
tures, expressed in the structure of a Bayesian Net-
work model, which we then use for classification.
This is a directed graph, whose nodes express the
features used for classification, and whose edges de-
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fine causal relationships among these features. In
this architecture, learning does not result in a black
box, expressed solely as feature weights. Rather, the
structure of the BN allows us to learn the impact of
different MWE features on the classification. The
result is a new unsupervised method for identifying
MWEs of various types in text corpora. It com-
bines statistics with a large array of linguistically-
motivated features, organized in an architecture that
reflects interdependencies among the features.

The contribution of this work is manifold. First,
we show how to generate training material (al-
most) automatically, so the method is almost com-
pletely unsupervised. The methodology we advo-
cate is thus language-independent, requiring rela-
tively few language resources, and is therefore op-
timal for medium-density languages (Varga et al.,
2005). Second, we propose several linguistically-
motivated features that can be computed from data
and that are demonstrably productive for improv-
ing the accuracy of MWE identification. These fea-
ture focus on the expression of linguistic idiosyn-
crasies of various types, a phenomenon typical of
MWEs. We propose novel computational model-
ing of many of these features; in particular, we ac-
count for the morphological idiosyncrasy of MWEs
using a histogram of the number of inflected forms,
in a technique that draws from image processing.
Third, we advocate the use of Bayesian Networks
as a mechanism for expressing manually-crafted de-
pendencies among features; the use of BN signifi-
cantly improves the classification accuracy. Finally,
we demonstrate the utility of our methodology by
applying it to Hebrew.1 Our evaluation shows that
the use of linguistically-motivated features results in
reduction of 23% of the errors compared with a col-
location baseline; organizing the knowledge in a BN
reduces the error rate by additional 8.7%.

After discussing related work in the next section,
we describe in Section 3 the methodology we pro-
pose, including a detailed discussion of the features
and their implementation. Section 4 provides a thor-
ough evaluation of the results. We conclude with
suggestions for future research.

1To facilitate readability we use a transliteration of Hebrew
using Roman characters; the letters used, in Hebrew lexico-
graphic order, are abgdhwzxTiklmns‘pcqršt.

2 Related Work

Early approaches to MWEs identification concen-
trated on their collocational behavior (Church and
Hanks, 1990). Pecina (2008) compares 55 differ-
ent association measures in ranking German Adj-
N and PP-Verb collocation candidates. He shows
that combining different collocation measures using
standard statistical classification methods improves
over using a single collocation measure. Other re-
sults (Chang et al., 2002; Villavicencio et al., 2007)
suggest that some collocation measures (especially
PMI and Log-likelihood) are superior to others for
identifying MWEs.

Soon, however, it became clear that mere co-
occurrence measurements are not enough to identify
MWEs, and their linguistic properties should be ex-
ploited as well (Piao et al., 2005). Hybrid methods
that combine word statistics with linguistic informa-
tion exploit morphological, syntactic and semantic
idiosyncrasies to extract idiomatic MWEs.

Ramisch et al. (2008) evaluate a number of asso-
ciation measures on the task of identifying English
Verb-Particle Constructions and German Adjective-
Noun pairs. They show that adding linguistic infor-
mation (mostly POS and POS-sequence patterns) to
the association measure yields a significant improve-
ment in performance over using pure frequency.

Several works address the lexical fixedness or syn-
tactic fixedness of (certain types of) MWEs in order
to extract them from texts. An expression is con-
sidered lexically fixed if replacing any of its con-
stituents by a semantically (and syntactically) sim-
ilar word generally results in an invalid or literal
expression. Syntactically fixed expressions prohibit
(or restrict) syntactic variation. For example, Van de
Cruys and Villada Moirón (2007) use lexical fixed-
ness to extract Dutch Verb-Noun idiomatic com-
binations (VNICs). Bannard (2007) uses syntac-
tic fixedness to identify English VNICs. Another
work uses both the syntactic and the lexical fixed-
ness of VNICs in order to distinguish them from
non-idiomatic ones, and eventually to extract them
from corpora (Fazly and Stevenson, 2006).

While these approaches are in line with ours, they
require lexical semantic resources (e.g., a database
that determines semantic similarity among words)
and syntactic resources (parsers) that are unavail-
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able for Hebrew (and many other languages). Our
approach only requires morphological processing
and a bilingual dictionary, which are more readily-
available for several languages. Note also that
these approaches target a specific syntactic construc-
tion, whereas ours is adequate for various types of
MWEs.

Several properties of Hebrew MWEs are de-
scribed by Al-Haj (2010); Al-Haj and Wintner
(2010) use them in order to construct an SVM-based
classifier that can distinguish between MWE and
non-MWE noun-noun constructions in Hebrew. The
features of the SVM reflect several morphological
and morpho-syntactic properties of such construc-
tions. The resulting classifier performs much bet-
ter than a naı̈ve baseline, reducing over one third of
the errors. We rely on some of these insights, as
we implement more of the linguistic properties of
MWEs. Again, our methodology is not limited to a
particular construction: indeed, we demonstrate that
our general methodology, trained on automatically-
generated, general training data, performs almost as
well as the noun-noun-specific approach of Al-Haj
and Wintner (2010) on the very same dataset.

Recently, Tsvetkov and Wintner (2010b) intro-
duced a general methodology for extracting MWEs
from bilingual corpora, and applied it to Hebrew.
The results were a highly accurate set of Hebrew
MWEs, of various types, along with their English
translations. A major limitation of this work is that
it can only be used to identify MWEs in the bilingual
corpus, and is thus limited in its scope. We use this
methodology to extract both positive and negative
instances for our training set in the current work; but
we extrapolate the results much further by extend-
ing the method to monolingual corpora, which are
typically much larger than bilingual ones.

Bayesian Networks have only scarcely been used
for classification in natural language applications.
For example, BN were used for POS tagging of un-
known words (Peshkin et al., 2003); dependency
parsing (Savova and Peshkin, 2005); and docu-
ment classification (Lam et al., 1997; Calado et al.,
2003; Denoyer and Gallinari, 2004). Very recently,
Ramisch et al. (2010) have used BN for Portuguese
MWE identification. The features used for classi-
fication were of two kinds: (1) various collocation
measures; (2) bi-grams aligned together by an auto-

matic word aligner applied to a parallel (Portuguese-
English) corpus. A BN was used to combine the pre-
dictions of the various features on the test set, but
the structure of the network is not described. The
combined classifier resulted in a much higher accu-
racy than any of the two methods alone. However,
the BN does not play any special role in this work,
and its structure does not reflect any insights or intu-
itions on the structure of the problem domain or on
interdependencies among features.

We, too, acknowledge the importance of combin-
ing different types of knowledge in the hard task of
MWE identification. In particular, we also believe
that collocation measures are highly important for
this task, but cannot completely solve the problem:
linguistically-motivated features are mandatory in
order to improve the accuracy of the classifier. In
this work we focus on various properties of different
types of MWEs, and define general features that may
accurately apply to some, but not necessarily all of
them. An architecture of Bayesian Networks is op-
timal for this task: it enables us to define weighted
dependencies among features, such that certain fea-
tures are more significant for identifying some class
of MWEs, whereas others are more prominent in
identifying other classes. As we show below, this ar-
chitecture results in significant improvements over a
more naı̈ve combination of features.

3 Methodology

3.1 Motivation

The task we address is identification of MWEs, of
various types and syntactic constructions, in mono-
lingual corpora.2 Several properties of MWEs make
this task challenging: MWEs exhibit idiosyncrasies
on a variety of levels, orthographic, morphological,
syntactic and of course semantic (Al-Haj, 2010).
They are also extremely diverse: for example, on
the semantic dimension alone, MWEs cover an en-
tire spectrum, ranging from frozen, fixed idioms to
free combinations of words (Bannard et al., 2003).

Such a complex task calls for a combination of
multiple approaches, and much research indeed sug-
gests “hybrid” approaches to MWE identification

2For simplicity, we focus on bi-grams of tokens (MWEs of
length 2) in this work; the methodology, however, is easily ex-
tensible to longer n-grams.
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(Duan et al., 2009; Weller and Fritzinger, 2010;
Ramisch et al., 2010; Hazelbeck and Saito, 2010).
We believe that Bayesian Networks provide an op-
timal architecture for expressing various pieces of
knowledge aimed at MWE identification, for the fol-
lowing reasons (Heckerman, 1995):

• In contrast to many other classification meth-
ods, BN can learn (and express) causal relation-
ships between features. This facilitates better
understanding of the problem domain.

• BN can encode not only statistical data, but also
prior domain knowledge and human intuitions,
in the form of interdependencies among fea-
tures. We do indeed use this possibility here.

3.2 Linguistically-motivated Features
Based on the observations of Al-Haj (2010), we
define several linguistically-motivated features that
are aimed at capturing some of the unique proper-
ties of MWEs. While many idiosyncratic properties
of MWEs have been previously studied, we intro-
duce novel ways to express those properties as com-
putable features informing a classifier. Note that
many of the features we describe below are com-
pletely language-independent; others are applicable
to a wide range of languages, while few are specific
to morphologically-rich languages, and can be ex-
hibited in different ways in different languages. The
methodology we advocate, however, is completely
universal.

A common theme for all these features is idiosyn-
cracy: they are all aimed at locating some linguis-
tic property on which MWEs may differ from non-
MWEs. Below we detail these properties, along
with the features that we define to reflect them. In
all cases, the feature is applied to a candidate MWE,
defined here as a bi-gram of tokens (all possible bi-
grams are potential candidates). To compute the fea-
tures, we use a 46M-token monolingual Hebrew cor-
pus (Itai and Wintner, 2008), which we pre-process
as in Tsvetkov and Wintner (2010b). All statistics
are computed from this large corpus. Likewise, we
compute these features on a small training corpus,
which we generate automatically (see Section 3.4).

Orthographic variation Sometimes, MWEs are
written with dashes instead of inter-token spaces.

We define a binary feature, DASH, whose value is 1
iff the dash character appears in some surface form
of the candidate MWE. For example, xd-cddi (one
sided ) “unilateral”.

Hapax legomena MWEs sometimes include con-
stituents that have no usage outside the particular
expression, and are hence not included in lexicons.
We define a feature, HAPAX, whose value is a binary
vector with 1 in the i-th place iff the i-th word of the
candidate is not in the lexicon, and does not occur
in other bi-grams at the same location. For exam-
ple, hwqws pwqws “hocus-pocus”. In order to filter
out potential errors, candidates must occur at least 5
times in the corpus in order for this feature to fire.

Frozen form MWE constituents sometimes occur
in one fixed, frozen form. We define a feature,
FROZEN, whose value is a binary vector with 1 in the
i-th place iff the i-th word of the candidate never in-
flects in the context of this expression. Example: bit
xwlim (house-of sick-people) “hospital”; the noun
xwlim must be in the plural in this MWE.

Partial morphological inflection In some cases,
MWE constituents undergo a (strict but non-empty)
subset of the full inflections that they would undergo
in isolation. We capture this property with a tech-
nique that has been proven useful in the area of im-
age processing (Jain, 1989, Section 7.3). We com-
pute a histogram of the distribution in the corpus of
all the possible surface forms of each constituent of
an MWE candidate. Such histograms can compactly
represent distributional information on morphologi-
cal behavior, in the same way that histograms of the
distribution of gray levels in a picture are used to
represent the picture itself.

Our assumption is that the inflection histograms
of non-MWEs are more uniform than the histograms
of MWEs, in which some inflections may be more
frequent and others may be altogether missing. Of
course, restrictions on the histogram may stem from
the part of speech of the expression; such constraints
are captured by dependencies in the BN structure.

Since each MWE is idiosyncratic in its own
way, we do not expect the histograms of MWEs to
have some specific pattern, except non-uniformity.
We therefore sort the columns of each histogram,
thereby losing information pertaining to the specific
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inflections, and retaining only information about the
idiosyncrasy of the histogram. Offline, we compute
the average histogram for positive and negative ex-
amples: The average histogram of MWEs is shorter
and less uniform than the average histogram of non-
MWEs. We define as feature, HIST, the L1 (Manhat-
tan) distance between the histogram of the candidate
and the closest average histogram.

For example, the MWE bit mepv (house-of law)
“court” occurs in the following inflected forms:
bit hmepv “the court” (75%); bit mepv “a court”
(15%); bti hmepv “the courts” (8%); and bti mepv
“courts” (2%). The histogram for this candidate
is thus (75, 15, 8, 2). In contrast, the non-MWE
txwm mepv (domain-of law) “domain of the law”,
which is syntactically identical, occurs in nine dif-
ferent inflected forms, and its sorted histogram is
(59, 14, 7, 7, 5, 2, 2, 2, 2).

Context We hypothesize that MWEs tend to con-
strain their (semantic) context more strongly than
non-MWEs. We expect words that occur imme-
diately after MWEs to vary less freely than words
that immediately follow other expressions. One mo-
tivation for this hypothesis is the observation that
MWEs tend to be less polysemous than free com-
binations of words, thereby limiting the possible se-
mantic context in which they can occur.

We define a feature, CONTEXT, as follows. We
first compute a histogram of the frequencies of
words following each candidate MWE. We trim the
tail of the histogram by removing words whose fre-
quency is lower than 0.1% (the expectation is that
non-MWEs would have a much longer tail). Off-
line, we compute the same histograms for positive
and negative examples and average them as above.
The value of CONTEXT is 1 iff the histogram of the
candidate is closer (in terms of L1 distance) to the
positive average.

For example, the histogram of bit mepv “court”
includes 15 values, dominated by bit mepv yliwn
“supreme court” (20%) and bit mepv mxwzi “dis-
trict court” (13%), followed by contexts whose fre-
quency ranges between 5% and 0.6%. In con-
trast, the non-MWE txwm mepv “domain-of law”
has a much shorter histogram, namely (12, 11, 6):
over 70% of the words following this expression oc-
cur less than 0.1% and are hence in the trimmed tail.

Syntactic diversity MWEs can belong to various
part of speech categories. We define as feature, POS,
the category of the candidate, with values obtained
by selecting frequent tuples of POS tags. For exam-
ple, Noun-Noun, PropN-PropN, Noun-Adj, etc.

Translational equivalents Since MWEs are of-
ten idiomatic, they tend to be translated in a non-
literal way, sometimes to a single word. We use
a dictionary to generate word-by-word translations
of candidate MWEs to English, and check the num-
ber of occurrences of the English literal translation
in a large English corpus.3 Due to differences in
word order between the two languages, we create
two variants for each translation, corresponding to
both possible orders. We expect non-MWEs to have
some literal translational equivalent (possibly with
frequency that correlates with their frequency in He-
brew), whereas for MWEs we expect no (or few) lit-
eral translations. We define a binary feature, TRANS,
whose value is 1 iff some literal translation of the
candidate occurs more than 5 times in the corpus.

For example, the MWE htxtn ym (marry with )
“marry” is literally translated as with marry, marry
with, together marry and marry together, none of
which occurs in the corpus.

Collocation As a baseline, statistical association
measure, we use a heuristic variant of pointwise mu-
tual information (PMI), promoting also collocations
whose constituents are frequent (Tsvetkov and Wint-
ner, 2010b). We define a binary feature, PMI, with
values (low and high) reflecting the threshold that
maximizes the accuracy of MWE classification in
Tsvetkov and Wintner (2010b).

3.3 Feature Interdependencies Expressed as a
Bayesian Network

A Bayesian Network (Jensen and Nielsen, 2007) is
organized as a graph whose nodes are random vari-
ables and whose edges represent interdependencies
among those variables. We use a particular type
of BN, known as causal networks, in which di-
rected edges lead to a variable from each of its direct
causes. This facilitates the expression of domain
knowledge (and intuitions, beliefs, etc.) as struc-
tural properties of the network. We use the BN as

3We use a 120M-token newspaper corpus.
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a classification device: training amounts to comput-
ing the joint probability distribution of the training
set, whereas classification maximizes the posterior
probability of the particular node (variable) being
queried.

For MWE identification we define a BN whose
nodes correspond to the features described in Sec-
tion 3.2. In addition, we define a node MWE for
the complete classification task. Over these nodes
we impose the structure depicted graphically in Fig-
ure 1. This structure, which we motivate below, is
manually defined: it reflects our understanding of
the problem domain and is a result of thorough ex-
perimentations. That said, it can of course be mod-
ified in various ways, and in particular, new nodes
can be easily added to reflect additional features.

MWE

HAPAXDASH CNTXT

POS

HIST

PMI

TRANS

FRZN

Figure 1: Bayesian Network for MWE identification

All nodes depend on MWE, as all are affected
by whether or not the candidate is a MWE. The
POS of an expression influences its morphological
inflection, hence the edges from POS to HIST and
to FROZEN. For example, Hebrew noun-noun con-
structions allow their constituents to undergo the full
inflectional paradigm, but when such a construction
is a MWE, inflection is severely constrained (Al-Haj
and Wintner, 2010); similarly, when one of the con-
stituents of a MWE is a conjunction, the entire ex-
pression is very likely to be frozen.

Hapaxes clearly affect all statistical metrics,
hence the edge from HAPAX to PMI, and also the
existence of literal translation, since if a word is not
in the lexicon, it does not have a translation, hence
the edge from HAPAX to TRANS. Also, we assume
that there is a correlation between the frequency (and
PMI) of a candidate and whether or not a literal
translation of the expression exists, hence the edge
from PMI to TRANS. The edges from PMI and HIST

to CONTEXT are justified by the correlation between
the frequency and variability of an expression and
the variability of the context in which it occurs.

Once the structure of the network is established,
the conditional probabilities of each dependency
have to be determined. We compute the conditional
probability tables from our training data (see below)
using Weka (Hall et al., 2009), and obtain values
for P (X | X1, . . . , Xk) for each variable X and all
variables Xi, 1 ≤ i ≤ k, such that the graph in-
cludes an edge from Xi to X (parents of X). We
then perform inference on the network in order to
compute P (Xmwe | X1, . . . , Xk), where Xmwe
corresponds to the node MWE, and X1, . . . , Xk are
the variables corresponding to all other nodes in the
network. Using Bayes Rule,

P (Xmwe | X1, . . . , Xk) ∝
P (X1, . . . , Xk | Xmwe)× P (Xmwe)

We define the prior, P (Xmwe), to be 0.41:
this is the percentage of MWEs in WordNet 1.7
(Fellbaum, 1998). The conditional probabilities
P (X1, . . . , Xk | Xmwe) are determined by Weka
from the conditional probability tables:

P (X1, . . . , Xk | Xmwe) = Πk
i=1P (Xi | pai)

where k is the number of nodes in the BN (other than
Xmwe) and pai is the set of parents of Xi.

3.4 Automatic Generation of Training Data
For training we need samples of positive and nega-
tive instances of MWEs, each associated with a vec-
tor of the values of all features discussed in Sec-
tion 3.2. We generate this training material auto-
matically. We use a small Hebrew-English bilin-
gual corpus (Tsvetkov and Wintner, 2010a). We
word-align the corpus with Giza++ (Och and Ney,
2003), and then apply the (completely unsupervised)
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algorithm of Tsvetkov and Wintner (2010b), which
extracts MWE candidates from the aligned corpus
and re-ranks them using statistics computed from a
large monolingual corpus. The core idea behind this
method is that MWEs tend to be translated in non-
literal ways; in a parallel corpus, words that are 1:1
aligned typically indicate literal translations and are
hence unlikely constituents of MWEs.

The result is a set of 134,001 Hebrew bi-gram
types (from the bilingual corpus), classified as either
1:1 aligned (implying they are likely not MWEs)
or unaligned (in which case they may or may not
be MWEs). In addition, for each bi-gram we
have a PMI score; naturally, higher PMI scores
are indicative of MWEs. We thus divide the set
into four classes: aligned bi-grams with high PMI
score, aligned bi-grams with low PMI score, mis-
aligned with high PMI and misaligned with low
PMI. Aligned bi-grams, independently of their PMI
score, are more likely non-MWEs; high-PMI mis-
aligned bi-grams are very likely MWEs; and the sta-
tus of low-PMI misaligned bi-grams is unclear, and
must be further investigated. This is summarized in
Table 1.

Misaligned Aligned
High PMI MWE non-MWE
Low PMI unclear non-MWE

Table 1: Classification of bi-grams

We set the threshold that separates low PMI from
high PMI as in Tsvetkov and Wintner (2010b). The
results of this classification is depicted in Table 2.

Misaligned Aligned Total
High PMI 2,203 493 2,696
Low PMI 61,314 69,991 131,305
Total 63,517 70,484 134,001

Table 2: Statistics of the sample space from which the
training set is generated

We assume that all bi-grams in the ‘Aligned’ col-
umn are non-MWEs. Additionally, we assume that
the 2,203 misaligned bi-grams with high PMI scores
are likely MWEs. As for the set of over 61,000 mis-
aligned low-PMI bi-grams, certainly many of them
are non-MWEs, but some may be MWEs, and we

are interested in including them as positive examples
of MWEs with low PMI scores. We therefore manu-
ally annotate a sample of 50 MWEs from this partic-
ular set (we had to manually go over a few thousands
of bi-grams to select this sample). This is the only
supervision provided in this work.

The remaining question is how to determine the
sizes of samples from each of the other three classes.
We use two guidelines: first, we would like the ra-
tio of MWEs to non-MWEs in the training set to be
41 : 59, reflecting the ratio in WordNet (the prior
MWE probability). Second, we would like classifi-
cation by PMI score only to yield a reasonable base-
line; the baseline is defined as the ratio of the sum of
high-PMI MWEs plus low-PMI non-MWEs to the
size of the training set. We choose 67%, the PMI
baseline reported by Al-Haj and Wintner (2010). As
a result of these two considerations, we end up with
training sets whose sizes are depicted in Table 3. We
randomly select from the sample space this many in-
stances for each class. Since much of the procedure
of preparing training data is automatic, the results
may be somewhat noisy. As Bayesian Network are
known to be robust to noisy data, we expect the BN
to compensate for this problem.

MWE non-MWE Total
High PMI 300 232 532
Low PMI 50 272 322
Total 350 504 854

Table 3: Sizes of each training set

4 Results and Evaluation

We use the training set described above for train-
ing and evaluation: we perform 10-fold cross vali-
dation experiments, reporting Precision, Recall, Ac-
curacy and F-measure in three setups: one (SVM)
in which we train an SVM classifier4 with the
features described in Section 3.2; one (BN-auto)
in which we train a BN but let Weka determine
its structure (using the K2 algorithm); and one
(BN) in which we train a Bayesian Network whose
structure reflects manually-crafted linguistically-
motivated knowledge, as depicted in Figure 1. The

4We use Weka SMO with the PolyKernel setup; experimen-
tation with several other kernels yielded worse results.
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results, along with the PMI baseline figures, are
listed in Table 4.

Accuracy Prec. Recall F-score
PMI 66.98% 0.73 0.67 0.67
BN-auto 71.19% 0.71 0.71 0.71
SVM 74.59% 0.75 0.75 0.75
BN 76.82% 0.77 0.77 0.77

Table 4: 10-fold cross validation evaluation results

The linguistically-motivated features defined in
Section 3.2 are clearly helpful in the classification
task: the accuracy of the SVM, informed by these
features, is close to 75%, reducing the error rate
of the PMI baseline by 23%. The contribution
of the Bayesian Network is also highly significant,
reducing almost 7% more errors (8.7% of the er-
rors made by the SVM classifier), or a total of al-
most 30% error-rate reduction with respect to the
baseline. Interestingly, a BN whose structure does
not reflect prior knowledge, but is rather learned au-
tomatically, performs poorly. It is the combination
of linguistically-motivated features with feature in-
terdependencies reflecting domain knowledge that
contribute to the best performance.

As a further demonstration of the utility of our
approach, we evaluate the algorithm on an addi-
tional test set that was used for evaluation in the past
(Tsvetkov and Wintner, 2010b; Al-Haj and Wintner,
2010). This is a small annotated corpus, NN, of He-
brew noun-noun constructions. The corpus consists
of 413 high-frequency bi-grams of the same syntac-
tic construction; of those, 178 are tagged as MWEs
(in this case, noun compounds) and 235 as non-
MWEs. This corpus consolidates the annotation of
three annotators: only instances on which all three
agreed were included. Since it includes both posi-
tive and negative instances, this corpus facilitates a
robust evaluation of precision and recall.

We train a Bayesian Network on the training set
described in Section 3.4 and use it to classify the set
NN. We compare the results of this classifier with a
PMI baseline (using the same threshold as above),
and also with the classification results reported by
Al-Haj and Wintner (2010) (AW); the latter reflects
10-fold cross-validation evaluation using the entire
set, so it should be considered an upper bound for

any classifier that uses a general training corpus.
The results are depicted in Table 5. They clearly

demonstrate that the linguistically-motivated fea-
tures we define provide a significant improvement in
classification accuracy over the baseline PMI mea-
sure. Note that our F-score, 0.77, is very close to
the best result of 0.79 obtained by Al-Haj and Wint-
ner (2010) as the average of 10-fold cross valida-
tion runs, using only high-frequency noun-noun con-
structions for training. We interpret this result as a
further proof of the robustness of our architecture.

Accuracy Precision Recall F-score
PMI 71.43% 0.71 0.71 0.71
BN 77.00% 0.77 0.77 0.77
AW 80.77% 0.77 0.81 0.79

Table 5: Evaluation results: noun-noun constructions

Finally, we have used the trained BN to classify
the entire set of bi-grams present in the (Hebrew
side of the) parallel corpus described in Tsvetkov
and Wintner (2010a). Of the 134,000 candidates,
only 4,000 are classified as MWEs. We sort this
list of potential MWEs by the probability assigned
by the BN to the positive value of the variable
Xmwe. The resulting sorted list is dominated by
high-PMI bi-grams, especially proper names, all of
which are indeed MWEs. The first non-MWE (false
positive) occurs in the 50th place on the list; it is
crpt niqwla “France Nicolas”, which is obviously a
sub-sequence of the larger MWE, neia crpt niqwla
srqwzi “French president Nicolas Sarkozy”. Simi-
lar sub-sequences are also present, but only five are
in the top-100. Such false positives can be reduced
when longer MWEs are extracted, as it can be as-
sumed that a sub-sequence of a longer MWE does
not have to be identified. Other false positives in the
top-100 include some highly frequent expressions,
but over 85 of the top-100 are clearly MWEs.

While more careful evaluation is required in order
to estimate the rate of true positives in this list, we
trust that the vast majority of the positive results are
indeed MWEs.

5 Conclusions and future work

We presented a novel architecture for identifying
MWEs in text corpora. The main insights we em-
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phasize are sophisticated computational encoding of
linguistic knowledge that focuses on the idiosyn-
cratic behavior of such expressions. This is reflected
in two ways in our work: by defining computable
features that reflect different facets of irregulari-
ties; and by framing the features as part of a larger
Bayesian Network that accounts for interdependen-
cies among them. We also introduce a method for
automatically generating a training set for this task,
which renders the classification almost entirely un-
supervised. The result is a nearly-unsupervised,
language-independent classification method that can
identify MWEs of various lengths, types and con-
structions. Evaluation on Hebrew shows significant
improvement in the accuracy of the classifier com-
pared with the state of the art.

The modular architecture of BN facilitates easy
exploration with more features. We are currently in-
vestigating the contribution of various other sources
of information to the classification task. For exam-
ple, Hebrew lacks large-scale lexical semantic re-
sources. However, it is possible to literally trans-
late a MWE candidate to English and rely on the
English WordNet for generating synonyms of the lit-
eral translation. Such “literal synonyms” can then be
back-translated to Hebrew. The assumption is that
if a back-translated expression has a high PMI, the
original candidate is very likely not a MWE. While
such a feature may contribute little on its own, in-
corporating it in a well-structured BN may improve
performance.

While our methodology is applicable to MWEs
of any length, we have so far only evaluated it on bi-
grams. In the future, we intend to extend the evalu-
ation to longer n-grams. We also plan to apply the
methodology to languages other than Hebrew.
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Abstract

An A-C bilingual dictionary can be inferred
by merging A-B and B-C dictionaries using B
as pivot. However, polysemous pivot words
often produce wrong translation candidates.
This paper analyzes two methods for pruning
wrong candidates: one based on exploiting
the structure of the source dictionaries, and
the other based on distributional similarity
computed from comparable corpora. As
both methods depend exclusively on easily
available resources, they are well suited
to less resourced languages. We studied
whether these two techniques complement
each other given that they are based on
different paradigms. We also researched
combining them by looking for the best
adequacy depending on various application
scenarios.

1 Introduction

Nobody doubts the usefulness and multiple
applications of bilingual dictionaries: as the final
product in lexicography, translation, language
learning, etc. or as a basic resource in several fields
such as Natural Language Processing (NLP) or
Information Retrieval (IR), too. Unfortunately, only
major languages have many bilingual dictionaries.
Furthermore, construction by hand is a very tedious
job. Therefore, less resourced languages (as well as
less-common language pairs) could benefit from a
method to reduce the costs of constructing bilingual
dictionaries. With the growth of the web, resources
like Wikipedia seem to be a good option to extract
new bilingual lexicon (Erdmann et al., 2008), but
the reality is that a dictionary is quite different from

an encyclopedia. Wiktionary1 is a promising asset
more oriented towards lexicography. However, the
presence of less resourced languages in these kinds
of resources is still relative -in Wikipedia, too-.

Another way to create bilingual dictionaries is
by using the most widespread languages (e.g.,
English, Spanish, French...) as a bridge between
less resourced languages, since most languages
have some bilingual dictionary to/from a major
language. These pivot techniques allow new
bilingual dictionaries to be built automatically.
However, as the next section will show, it is no
small task because translation between words is
not a transitive relation at all. The presence of
polysemous or ambiguous words in any of the
dictionaries involved may produce wrong translation
pairs. Several techniques have been proposed
to deal with these ambiguity cases (Tanaka and
Umemura, 1994; Shirai and Yamamoto, 2001; Bond
et al., 2001; Paik et al., 2004; Kaji et al., 2008;
Shezaf and Rappoport, 2010). However, each
technique has different performance and properties
producing dictionaries of certain characteristics,
such as different levels of coverage of entries and/or
translations. The importance of these characteristics
depends on the context of use of the dictionary.
For example, a small dictionary containing the
most basic vocabulary and the corresponding most
frequent translations can be adequate for some
IR and NLP tasks, tourism, or initial stages of
language learning. Alternatively, a dictionary which
maximizes the vocabulary coverage is more oriented
towards advanced users or translation services.

This paper addresses the problem of pruning
1http://www.wiktionary.org/
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wrong translations when building bilingual
dictionaries by means of pivot techniques. We
aimed to come up with a method suitable for
less resourced languages. We analyzed two of
the approaches proposed in the literature which
are not very demanding on resources: Inverse
Consultation (IC) (Tanaka and Umemura, 1994) and
Distributional Similarity (DS) (Kaji et al., 2008),
their strong points and weaknesses, and proposed
that these two paradigms be combined. For this
purpose, we studied the effect the attributes of
the source dictionaries have on the performance
of IC and DS-based methods, as well as the
characteristics of the dictionaries produced. This
could allow us to predict the performance of each
method just by looking at the characteristics of the
source dictionaries. Finally, we tried to provide
the best combination adapted to various application
scenarios which can be extrapolated to other
languages.

The basis of the pivot technique is dealt with in
the next section, and the state of the art in pivot
techniques is reviewed in the third section. After
that, the analysis of the aforementioned approaches
and experiments carried out for that purpose are
presented, and a proposal for combining both
paradigms is included. The paper ends by drawing
some conclusions from the results.

2 Pivot Technique

The basic pivot-oriented construction method is
based on assuming the transitive relation of the
translation of a word between two languages. Thus:

if p (pivot word) is a translation of s (source
word) in the A-B dictionary and t (target word)
is a translation of p in the B-C dictionary, we
can say that t is therefore a translation of s, or
translationA,B(s) = p and translationB,C(p) =
t→ translationA,C(s) = t

This simplification is incorrect because it does
not take into account word senses. Translations
correspond to certain senses of the source words. If
we look at figure 1, t (case of t1 and t2) can be the
translation of p (p2) for a sense c (c3) different from
the sense for which p (p2) is the equivalent of s (c1).
This can happen when p pivot word is polysemous.

It could be thought that these causalities are

Figure 1: Ambiguity problem of the pivot technique.

not frequent, and that the performance of this
basic approach could be acceptable. Let us
analyze a real case. We merged a Basque-English
dictionary composed of 17,672 entries and 43,021
pairs with an English-Spanish one composed of
16,326 entries and 38,128 pairs, and obtained
a noised Basque-Spanish dictionary comprising
14,000 entries and 104,165 pairs. 10,000 (99,844
pairs) among all the entries have more than one
translation. An automatic evaluation shows that
80.32% of these ambiguous entries contain incorrect
translation equivalents (80,200 pairs out of 99,844).
These results show that a basic pivot-oriented
method is very sensitive to the ambiguity level of
the source dictionaries. The conclusion is that the
transitive relation between words across languages
can not be assumed, because of the large number of
ambiguous entries that dictionaries actually have. A
more precise statement for the transitive property in
the translation process would be:

if p (pivot word) is a translation of s with respect
to a sense c and t is a translation of p with
respect to the same sense c we can say that t is
a translation of s, or translationA,B(sc1) = p
and translationB,C(pc2) = t and c1 = c2 →
translationA,C(s) = t

Unfortunately, most dictionaries lack comparable
information about senses in their entries. So it is not
possible to map entries and translation equivalents
according to their corresponding senses. As an
alternative, most papers try to guide this mapping
according to semantic distances extracted from the
dictionaries themselves or from external resources
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such as corpora.
Another problem inherent in pivot-based

techniques consists of missing translations. This
consists of pairs of equivalents not identified in the
pivot process because there is no pivot word, or else
one of the equivalents is not present. We will not be
dealing with this issue in this work so that we can
focus on the translation ambiguity problem.

3 State of the Art

In order to reject wrong translation pairs, Tanaka
et al. (1994) worked with the structure of the
source dictionaries and introduced the IC method
which measures the semantic distance between two
words according to the number of pivot-words
they share. This method was extended by using
additional information from dictionaries, such as
semantic classes and POS information in (Bond et
al., 2001; Bond and Ogura, 2007). Sjöbergh (2005)
compared full definitions in order to detect words
corresponding to the same sense. However, not all
the dictionaries provide this kind of information.
Therefore, external knowledge needs to be used
in order to guide mapping according to sense.
István et al. (2009) proposed using WordNet, only
for the pivot language (for English in their case),
to take advantage of all the semantic information
that WordNet can provide. Mausam et. al.
(2009) researched the use of multiple languages as
pivots, on the hypothesis that the more languages
used, the more evidences will be found to find
translation equivalents. They used Wiktionary for
building a multilingual lexicon. Tsunakawa et al.
(2008) used parallel corpora to estimate translation
probabilities between possible translation pairs.
Those reaching a minimum threshold are accepted
as correct translations to be included in the target
dictionary. However, even if this strategy achieves
the best results in the terminology extraction field,
it is not adequate when less resourced languages are
involved because parallel corpora are very scarce.

As an alternative, (Kaji et al., 2008; Gamallo
and Pichel, 2010) proposed methods to eliminate
spurious translations using cross-lingual context or
distributional similarity calculated from comparable
corpora. In this line of work, (Shezaf and
Rappoport, 2010) propose a variant of DS, and show

how it outperforms the IC method. In comparison,
our work focuses on analyzing the strong and weak
points of each technique and aims to combine the
benefits of each of them.

Other characteristics of the merged dictionaries
like directionality (Paik et al., 2004) also influence
the results.

4 Experimental Setup

This work focuses on adequate approaches for less
resourced languages. Thus, the assumption for the
experimentation is that few resources are available
for both source and target languages. The resources
for building the new dictionary are two basic (no
definitions, no senses) bilingual dictionaries (A-B,
B-C) including source (A), target (C) and a pivot
language (B), as well as a comparable corpus for
the source-target (A-C) language pair. We explored
the IC (Tanaka and Umemura, 1994) and DS (Kaji
et al., 2008; Gamallo and Pichel, 2010) approaches.
In our experiments, the source and target languages
are Basque and Spanish, respectively, and English is
used for pivot purposes. In any case, the experiments
could be conducted with any other language set, so
long the required resources are available.

It must be noted that the proposed task is not
a real problem because there is a Basque-Spanish
dictionary already available. Resources like
parallel corpora for that language pair are also
available. These dictionaries and pivot language
were selected in order to be able to evaluate the
results automatically. During the evaluation we
also used frequency information extracted from a
parallel corpus, but then again, this corpus was not
used during the dictionary building process, and
therefore, it would not be used in a real application
environment.

4.1 Resources

In order to carry out the experiments we used three
dictionaries. The two dictionaries mentioned in
the previous section (Basque-English Deu→en and
English-Spanish Den→es) were used to produce a
new Basque-Spanish Deu→en→es dictionary. In
addition, we used a Basque-Spanish Deu→es
dictionary for evaluation purposes. Its broad
coverage is indicative of its suitability as a reference
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dictionary. Table 1 shows the main characteristics of
the dictionaries. We can observe that the ambiguity
level of the entries (average number of translations
per source word) is significant. This produces more
noise in the pivot process, but it also benefits IC due
to the increase in pivot words. As for the directions
of source dictionaries, English is taken as target.
Like Paik et al. (2004) we obtained the best coverage
of pairs in that way.

Dictionary #entries #pairs ambiguity
level

Deu→en 17,672 43,021 2.43
Den→es 16,326 38,128 2.33
Deu→es(reference) 57,334 138,579 2.42
Deu→en→es(noisy) 14,601 104,172 7.13

Table 1: Characteristics of the dictionaries.

Since we were aiming to merge two general
dictionaries, the most adequate strategy was to use
open domain corpora to compute DS. The domain
of journalism is considered to be close to the open
domain, and so we constructed a Basque-Spanish
comparable corpus composed of news articles (see
Table 2). The articles were gathered from the
newspaper Diario Vasco (Hereinafter DV) for the
Spanish part and from the Berria newspaper for the
Basque part. Both publications focus on the Basque
Country. In order to achieve a higher comparability
degree, some constraints were applied:

• News in both languages corresponded to the
same time span, 2006-2010.

• News corresponding to unrelated categories
between newspapers were discarded.

Corpus #words #docs
Berria(eu) 40Mw 149,892
DV(es) 77Mw 306,924

Table 2: Characteristics of the comparable corpora.

In addition, as mentioned above, we extracted
the frequencies of translation pairs from a
Basque-Spanish parallel corpus. The corpus
had 295,026 bilingual segments (4 Mw in Basque
and 4.7 Mw in Spanish) from the domain of
journalism.

5 Pruning Methods

IC and DS a priori suffer different weak points. IC
depends on the structure of the source dictionaries.
On the other hand, DS depends on a good
comparable corpus and translation process. DS is
measured more precisely between frequent words
because context representation is richer.

The conditions for good performance of both IC
and DS are analyzed below. These conditions will
then be linked to the required characteristics for the
initial dictionaries. In addition, we will measure
how divergent the entries solved for each method
are.

5.1 Inverse consultation

IC uses the structure of the Da−b and Db−c
source dictionaries to measure the similarity of
the meanings between source word and translation
candidate. The description provided by Tanaka et
al. (1994) is summarized as follows. To find
suitable equivalents for a given entry, all target
language translations of each pivot translation are
looked up (e.g., Db→c(Da→b(s))). This way, all
the “equivalence candidates” (ECs) are obtained.
Then, each one is looked up in the inverse direction
(following the previous example, Dc→b(t)) to create
a set of words called “selection area” (SA). The
number of common elements of the same language
between SA and the translations or equivalences (E)
obtained in the original direction (Da→b(s)) is used
to measure the semantic distance between entries
and corresponding translations. The more matches
there are, the better the candidate is. If only one
inverse dictionary is consulted, the method is called
“one time inverse consultation” or IC1. If n inverse
dictionaries are consulted, the method is called “n
time inverse consultation”. As there is no significant
difference in performance, we simply implemented
IC1. Assuming that each element (x) of these two
sets (SA,E) has a weight that is determined by the
number of times it appears in the set that belongs
(X), this weight is denoted as δ(X,x). In the same
way, the number of common elements between SA
and E is denoted as follows:

δ(E,SA) =
∑

x∈SA
δ(E, x) (1)
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IC asks for more than one pivot word between
source word s and translation candidate t. In our
example:

δ(Da→b(s), Dc→b(t)) > 1 (2)

In general, this condition guarantees that pivot
words belong to the same sense of the source word
(e.g. iturri→tap→grifo, iturri→faucet→grifo).
Consequently, source word and target word also
belong to the same sense.

Conceptually, the IC method is based on the
confluence of two evidences. Let us take
our dictionaries as examples. If two or more
pivot words share a translation t in the Des→en
dictionary (|tr(tc, Des→en| > 1) (e.g. grifo→tap,
grifo→faucet) we could hypothesize that they
are lexical variants belonging to a unique sense
c. If an entry s includes those translations
(|tr(sc, Deu→en)| > 1) (e.g. iturri→tap,
iturri→faucet)) in the Deu→en dictionary, we could
also hypothesize the same. We can conclude that
entry s and candidate t are mutual translations
because the hypothesis that “faucet” and “tap” are
lexical variants of the same sense c is contrasted
against two evidences. This makes IC highly
dependant on the number of lexical variants.
Specifically, IC needs several lexical variants in
the pivot language per each entry sense in both
dictionaries. Assuming that wrong pairs cannot
fulfill this requirement (see Formula 2) we can
estimate the probabilities of the conditions for
solving an ambiguous pair (s, t) where s and t ∈ c,
as follows:

(a) p(|tr(sc, Da→b)| > 1): Estimated by
computing the average coverage of lexical
variants in the pivot language for each entry in
Da→b.

(b) p(|tr(tc, Dc→b)| > 1): Estimated by
computing the average coverage of lexical
variants in the pivot language for each entry in
Dc→b.

(c) p(|tr(sc, Da→b)
⋂
tr(tc, Dc→b)| > 1):

Convergence degree between translations of s
and t in Da→b and Dc→b corresponding to c.

So, in order to obtain a good performance with IC,
the dictionaries used need to provide a high coverage
of lexical variants per sense in the pivot language.
If we assume that variants of a sense do not vary
considerably between dictionaries, performance of
IC in terms of recall would be estimated as follows:

R = p(|tr(sc, Da→b)| > 1) ∗ p(|tr(tc, Dc→b)| > 1)
(3)

We estimated the adequacy of the different
dictionaries in the experimental setup according
to estimations (a) and (b). Average coverage of
lexical variants in the pivot language was calculated
for both dictionaries. It was possible because
lexical variants in the target language were grouped
according to senses in both dictionaries. Only
ambiguous entries were analyzed because they are
the set of entries which IC must solve. In the
Deu→en dictionary more than 75% of senses have
more than one lexical variant in the pivot language.
So, p(|tr(sc, Deu→en)| > 1) = 0.75. In
Des→en this percentage (23%) is much lower. So,
p(|tr(tc, Des→en)| > 1) = 0.23. Therefore,
Deu→en dictionary is more suited to the IC method
than Des→en. As the conditions must be met in
the maximum of both dictionaries, performance
according to Formula 3 would be: 0.75 ∗ 0.23 =
0.17. This means that IC alone could solve about
17% of ambiguous entries.

5.2 Distributional Similarity

DS has been used successfully for extracting
bilingual terminology from comparable corpora.
The underlying idea is to identify as translation
equivalents those words which show similar
distributions or contexts across two corpora of
different languages, assuming that this similarity
is proportional to the semantic distance. In
other words, establishing an equivalence between
cross lingual semantic distance and translation
probability. This technique can be used for pruning
wrong translations produced in a pivot-based
dictionary building process (Kaji et al., 2008;
Gamallo and Pichel, 2010).

We used the traditional approach to compute
DS (Fung, 1995; Rapp, 1999). Following the
“bag-of-words” paradigm, the contexts of a word w
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are represented by weighted collections of words.
Those words are delimited by a window (±5
words around w) and punctuation marks. The
context words are weighted with regard to w
according to the Log-likelihood ratio measure, and
the context vector ofw is formed. After representing
word contexts in both languages, the algorithm
computes for each source word the similarity
between its context vector and all the context vectors
corresponding to words in the target language by
means of the cosine measure. To be able to
compute the cross-lingual similarity, the context
vectors are put in the same space by translating
the vectors of the source words into the target
language. This is done by using a seed bilingual
dictionary. The problem is that we do not have that
bilingual dictionary, since that is precisely the one
we are trying to build. We propose that dictionaries
extracted from our noisy dictionary (Deu→en→es) be
used:

• Including the unambiguous entries only

• Including unambiguous entries and selecting
the most frequent candidates according to the
target language corpus for ambiguous entries

• The dictionary produced by the IC1 method

The second method performed better in the tests
we carried out. So, that is the method implemented
for the experiments in the next section.

DS calls for several conditions in order to perform
well. For solving an ambiguous translation t
of a source word s, both context representations
must be accurate. The higher their frequency in
the comparable corpus, the richer their context
representation will be. In addition to context
representation, the translation quality of contexts is
also a critical factor for the performance of DS.
Factors can be formulated as follows if we assume
big and highly comparable corpora:

(a) Precision of context representation: this can be
estimated by computing the frequency of the
words

(b) Precision of translation process: this can be
estimated by computing the quality of the seed
dictionary

6 Results

In order to evaluate the performance of each pruning
method, the quality of the translations was measured
according to the average precision and recall of
translations per entry with respect to the reference
dictionary. As we were not interested in dealing with
missing translations, the reference for calculating
recall was drawn up with respect to the intersection
between the merged dictionary (Deu→en→es) and
the reference dictionary (Deu→es). F-score is the
metric that combines both precision and recall.

We also introduced the frequency of use of both
entry and pair as an aspect to take into account in the
analysis of the results. It is better to deal effectively
with frequent words and frequent translations than
rare ones. Frequency of use of Basque words
and frequency of source-target translation equivalent
pairs were extracted respectively from the open
domain monolingual corpus and the parallel corpus
described in the previous section. Corpora were
lemmatized and POS tagged in both cases in order
to extract the frequency information of the lemmas.

Figure 2: Precision results according to the minimum
frequency of entries.

6.1 Inverse Consultation

Results show that IC precision is about 0.6 (See
Figure 2). This means that many wrong pairs
fulfill IC conditions. After analyzing the wrong
pairs by hand, we observed that some of them
corresponded to correct pairs not included in the
reference dictionary. They are not included in
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Figure 3: Recall results according to the minimum
frequency of entries.

Figure 4: F-score results according to the minimum
frequency of entries.

the reference because not all synonyms -or lexical
variants- are included in it, only the most common
ones. This is an inherent problem in automatic
evaluation, and affects all the experiments presented
throughout section 6 equally. Other wrong pairs
comprise translation equivalents which have the
same stem but different gramatical categories (e.g.,
’aldakuntza’ (noun) (change, shift) → ’cambiar’
(verb) (to change, to shift)). These wrong cases
could be filtered if POS information would be
available in the source dictionaries.

Precision is slightly better when dealing with
frequent words, a maximum of 0.62 is reached when
minimum frequency is between 150 and 2,000.
Precision starts to decline significantly when dealing

Figure 5: Recall results according to the minimum
frequency of translation pairs.

with those entries over a minimum frequency of
10,000. However, only very few entries (234) reach
that minimum frequency.

Recall is about 0.2 (See Figure 3), close to the
estimation computed in section 5.1. It presents a
more marked variability according to the frequency
of entries, improving the performance as the
frecuency increases. This could be due to the fact
that frequent entries tend to have more translation
variants (See Table 3). The fact that there are
too many candidates to solve would explain why
the recall starts to decline when dealing with very
frequent entries.

Global performance according to F-score reflects
the variability depending on frequency (See Figure
4).

Recall according to frequency of pairs provides
information about whether IC selects rare
translations or the most probable ones (See
Figure 5). It must be noted that this recall is
calculated with respect to the translation pairs of
the merged dictionary Deu→en→es which appear
in the parallel corpus (see section 4.1). Results
(See Figure 5) show that IC deals much better
with frequent translation pairs. However, recall
for pairs whose frequency is higher than 100 only
reaches 0.5. Even if the maximum recall is achieved
for pairs whose frequency is above 40,000, it is
not significant because they suppose a minimum
number (3 pairs). In short, we can conclude that IC
often does not find the most probable translation
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(e.g. ’usain’→’olor’ (smell), ’zulo’→’agujero’
(hole),...).

6.2 Distributional Similarity

DS provides an idea of semantic distance. However,
in order to determine whether a candidate is a
correct translation, a minimum threshold must
be established. It is very difficult to establish
a threshold manually because its performance
depends on the characteristics of the corpora and the
seed dictionaries. The threshold can be applied at a
global level, by establishing a numeric threshold for
all candidates, or at local level by selecting certain
top ranked candidates for each entry. The dictionary
created by IC or unambiguous pairs can be used
as a reference for tuning the threshold in a robust
way with respect to the evaluation score such as
F-score. In our experiments, thresholds estimated
against the dictionary created by IC are very close to
those calculated with respect to the whole reference
dictionary (see Figure 6).

Figure 6: Threshold parameter tuning comparison for
different Fn scores. Tuning against dictionary created by
IC vs. Reference dictionary.

There is not much variation in performance
between local and global thresholds. Precision
increases from 0.4 to 0.5 depending on the strictness
level of the threshold (See Figure 2), the stricter
the better. In all cases, precision is slightly better
when dealing with frequent words (frequency >
20). This improvement is more marked with
the strictest thresholds (TOP1, 0.1). However,
if global thresholds are used, performance starts
to decline significantly when dealing with words
whose frequency is above 1,000. So, it seems that
local thresholds (TOP3) perform more consistendly
with respect to the high frequencies of entries.

Recall (See Figure 3) goes from 0.5 to 0.7
depending on the strictness level of the threshold.
It starts declining when frequency is above 50

depending on the type of threshold. In this case,
global thresholds seem to perform better because
the most frequent entries are handled better. These
entries tend to have many translations. Therefore
thresholds based on top ranks are too rigid.

There is no significant difference between global
and local thresholds in terms of F-Score (See Figure
4). Each threshold type is more stable in precision or
recall. So the F-Score is similar for both. Variability
of F-Score according to frequency is lower than
in precision and recall. As performance peaks on
both measures at different points of frequency, the
variability is mitigated when measures are combined
by F-Score.

We have plotted the recall according to the
frequency of pairs calculated from a parallel corpus
in order to analyze the performance of DS when
dealing with frequent translation pairs (See Figure
5). The performance decreases when dealing with
pairs whose frequency is higher than 100. This
means that DSs performance is worse when dealing
with the most common translation pairs. So it is
clear that it is very difficult to represent the contexts
of very frequent words correctly.

The results show that DS rankings are worse
when dealing with some words above a certain
frequency threshold (e.g. ’on’ ’good’, ’berriz’
’again’, ’buru’ ’head’, ’orain’ ’now’...). Although
context representation of frequent words is based
on many evidences, high polysemy level related
to high frequency leads to a poorer representation.
Alternatively we found that some of those frequent
words are not very polysemous. Those words
do not have strong collocates, that is, they tend
to appear freely in contexts, which also leads to
poor representation. This low quality representation
hampers an accurate computation of semantic
distance.

6.3 Comparison between IC and DS
As for average precision, IC provides better results
than DS if all entries are taken into account.
However, DS tips the scales in its favor if only
entries with frequencies above 50 are considered and
strict thresholds are used (TOP1, 0.1).

DS clearly outperforms IC in terms of average
recall of translations. Even if strict thresholds
are used, DS outperforms IC for all entries whose
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frequency is lower than 640.
If average precision and recall are evaluated

together by means of F-score, DS outperforms IC
(Figure 4). Only when dealing with very frequent
entries (frequency > 8, 000) is ICs performance
close to DSs, but these entries make up a very small
group (234 entries).

In order to compare the recall with respect to
the frequency of translation pairs under the same
conditions, we have to select a threshold that
provides a similar precision to IC. TOP1 is the
most similar one (see figure 2). As Figure 5
shows, again DS is better than IC. Even if IC’s
recall clearly surpasses DS’s when dealing with
frequent translation pairs (frequency > 2, 560), it
only represents a minimal number of pairs (39).

6.4 Combining IC and DS according to
different scenarios

In order to see how the methods can complement
each other, we calculated the performance
for solving ambiguous entries obtained by
combining the results of both methods using
various alternatives:

• Union: IC ∪ DS: Pairs obtained by both
methods are merged. Duplicated pairs are
cleaned.

• Lineal combination (Lcomb): IC ∗ k +
DS ∗ (1 − k). Each method provides a
value representing the translation score. For
IC that value is the number of pivot words
(see Formula 1), and the context similarity
score in the case of DS. Those values are
linearly combined and applied over the noised
dictionary.

As mentioned in the first section, one of the goals
of the paper was to analyze which method and
which combination was best depending on the use
case. We have selected some measures which are a
good indicator of good performance for different use
cases:

• AvgF : Average F-score per entry.

• wAvgF : Average F-score per entry weighted
by the frequency of the entry. Higher frequency
increases the weight.

• AvgF2: Average F-score per entry where recall
is weighted higher.

• AvgF0.5: Average F-score per entry where
precision is weighted higher.

For the use cases presented in section 1, some
measures will provide richer information than
others. On the one hand, if we aim to build small,
accurate dictionaries, AvgF0.5 would be a better
indicator since it attaches more importance to high
precision. In addition, if we want the dictionaries
to cover the most common entries (e.g., in a basic
dictionary for language learners) it is also interesting
to look at wAvgF values because greater value is
given to finding translations for the most frequent
words. On the other hand, if our objective is to
build big dictionaries with a high recall, it would
be better to look at AvgF2 measure which attaches
importance to recall.

Method AvgF wAvgF AvgF2 AvgF0.5

IC 0.34 0.27 0.27 0.46
DS 0.47 0.44 0.64 0.46

Union 0.52 0.49 0.65 0.49
Lcomb 0.52 0.49 0.67 0.52

Table 3: Performance results of methods for ambiguous
entries according to different measures.

Table 3 shows the results for the different
combinations. The parameters of all methods
are optimized for each metric (as explained in
section 6.2, see figure 6). In all cases, the
combinations surpass the results of both methods
separately. There is a reasonable improvement over
DS (10.6% for AvgF ), and an even more startling
one over IC (52.9% for AvgF ). IC only gets
anywhere near the other methods when precision
is given priority (AvgF0.5). There is no significant
difference in terms of performance between the two
combinations, although Lcomb is slightly better.
wAvgF measure is stricter than the others since
it takes frequency of entries into account. This is
emphasised more in the case of IC where results
decrease notably compared with AvgF .
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7 Conclusions

This paper has analyzed IC and DS, for the
task of pruning wrong translations from bilingual
dictionaries built by means of pivot techniques.
After analyzing their strong and weak points we
have showed that IC requires high ambiguity level
dictionaries with several lexical variants per entry
sense. With an average ambiguity close to 2
translation candidates DS obtains better results. IC
is a high precision method, but contrary to our
expectations, it seems that it is not much more
precise than DS. In addition, DS offers much better
recall of translations and entries. As a result, DS
performs the best if both precision and recall are
taken into account by F-score.

Both methods prune most probable translations
for a significant number of frequent entries. DS
encounters a problem when dealing with very
frequent words due to the difficulty in representing
their context. The main reason behind this is the
high polysemy level of those words.

Our initial beliefs were that the translations
found by each method would diverge to a certain
extent. The results obtained when combining the
two methods show that although the performance
does not increase as much as expected (10.6%
improvement over DS), there is in fact some
divergence. As for the different use cases proposed,
combinations offer the best performance in all cases.
IC is indeed the poorer method, although it presents
competitive results when precision is given priority.

Future experiments include contrasting these
results with other dictionaries and language pairs.
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Abstract

Long-distance reordering remains one of the
biggest challenges facing machine translation.
We derive soft constraints from the source de-
pendency parsing to directly address the re-
ordering problem for the hierarchical phrase-
based model. Our approach significantly im-
proves Chinese–English machine translation
on a large-scale task by 0.84 BLEU points
on average. Moreover, when we switch the
tuning function from BLEU to the LRscore
which promotes reordering, we observe total
improvements of 1.21 BLEU, 1.30 LRscore
and 3.36 TER over the baseline. On aver-
age our approach improves reordering preci-
sion and recall by 6.9 and 0.3 absolute points,
respectively, and is found to be especially ef-
fective for long-distance reodering.

1 Introduction

Reordering, especially movement over longer dis-
tances, continues to be a hard problem in statistical
machine translation. It motivates much of the re-
cent work on tree-based translation models, such as
the hierarchical phrase-based model (Chiang, 2007)
which extends the phrase-based model (Koehn et al.,
2003) by allowing the so-called hierarchical phrases
containing subphrases.

The hierarchical phrase-based model captures the
recursiveness of language without relying on syntac-
tic annotation, and promises better reordering than
the phrase-based model. However, Birch et al.
(2009) find that although the hierarchical phrase-
based model outperforms the phrase-based model in

terms of medium-range reordering, it does equally
poorly in long-distance reordering due to constraints
to guarantee efficiency.

Syntax-based models that use phrase structure
constituent labels as non-terminals in their transfer
rules, exemplified by that of Galley et al. (2004),
produce smarter and syntactically motivated re-
ordering. However, when working with off-the-shelf
tools for parsing and alignment, this approach may
impose harsh limits on rule extraction and requires
serious efforts of optimization (Wang et al., 2010).

An alternative approach is to augment the general
hierarchical phrase-based model with soft syntactic
constraints. Here, we derive three word-based, com-
plementary constraints from the source dependency
parsing, including:

• A dependency orientation feature, trained with
maximum entropy on the word-aligned par-
allel data, which directly models the head-
dependent orientation for source words;

• An integer-valued cohesion penalty that com-
plements the dependency orientation feature,
and fires when a word is not translated with its
head. It measures derivation well-formedness
and is used to indirectly help reordering;

• An auxiliary unaligned penalty feature that mit-
igates search error given the other two features.

We achieve significant improvements in terms of
the overall translation quality and reordering behav-
ior. To our knowledge we are the first to use the
source dependency parsing to target the reordering
problem for hierarchical phrase-based MT.
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澳洲   是   与  北韩      有    邦交   的   少数   国家    之一  .

pobj dobj

prep

 Australia  is          with  North Korea    have       dipl. rels.  that      few           countries    one of    .    
 Aozhou    shi        yu     Beihan             you        bangjiao    de        shaoshu    guojia         zhiyi      .    

 Australia is one of the few countries that have diplomatic relations with North Korea. 

top

pobj

cpm nummod
nn

attr

punct

rcmod

  

Figure 1: Example dependency parsing generated by the Stanford Parser. The Chinese source sentence and its English
translation come from (Chiang, 2007).

2 Three Soft Dependency Constraints

Our features are based on the source dependency
parsing, as shown in Figure 1. The basic unit of de-
pendency parsing is a triple consisting of the depen-
dent word, the head word and the dependency rela-
tion that connects them. For example, in Figure 1,
an arrow labelled prep goes from the word yu (En-
glish with) to the word you (English have), showing
that yu is a prepositional modifier of you.

We use the Stanford Parser1 to generate depen-
dency parsing, which automatically extracts de-
pendency relations from phrase structure parsing
(de Marneffe et al., 2006).

2.1 Dependency Orientation

Based on the assumption that constituents generally
move as a whole (Quirk et al., 2005), we decompose
the sentence reordering probability into the reorder-
ing probability for each aligned source word with re-
spect to its head, excluding the root word at the top
of the dependency hierarchy which does not have a
head word. Similarly, Hayashi et al. (2010) also take
a word-based reordering approach for HPBMT, but
they model all possible pairwise orientation from
the source side as a general linear ordering prob-
lem (Tromble and Eisner, 2009).

To be more specific, we have a maximum entropy
orientation classifier that predicts the probability of
a source word being translated in a monotone or re-
versed manner with respect to its head. For example,

1http://nlp.stanford.edu/software/lex-parser.shtml

(a) (b)

S 1 S 2 S 3 S 1 S 2 S 3

T 1 T 1

T 2 T 2

T 3 T 3

T 4 T 4

ihead

idep idep

ihead

Figure 2: Word alignments to illustrate orientation clas-
sification. In (a), monotone (M); in (b), reversed (R).

given the alignment in Figure 2(a), with the align-
ment points (idep, jdep) for the source dependent
word and (ihead, jhead) for the source head word,
we define two orientation classes as:

c =

{
R if (jdep − jhead)(idep − ihead) < 0
M otherwise

(1)
When a source head or dependent word is aligned

to multiple target words, as shown in Figure 2(b),
we always take the first target word for orientation
classification.

The orientation classifier is trained on the large
word-aligned parallel corpus. Various features can
potentially be used, based on the source and target
context as well as syntactic and semantic analysis.
The orientation probability is evaluated in the fol-
lowing log-linear equation, where f is the source
context, d is the source dependency parsing, e∗ is
the target context produced so far, a∗ is the align-
ment produced so far and c is the orientation class:
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Word p(M) p(R)
Aozhou 0.81 0.19
shi NA NA
yu 0.45 0.55
Beihan 0.88 0.12
you 0.12 0.88
bangjiao 0.83 0.17
de 0.58 0.42
shaoshu 0.30 0.70
guojia 0.19 0.81
zhiyi 0.85 0.15
. 1.00 0.00

Table 1: The dependency orientation probabilities for
words of the Figure 1 sentence, in both monotone and
reversed cases.

p(c|f, d, e∗, a∗) =

exp(
∑N

n=1 λnhn(f, d, e∗, a∗, c))
∑

c′∈{M,R} exp(
∑N

n=1 λnhn(f, d, e∗, a∗, c′))

(2)

Currently, we only use two kinds of features: (1)
the concatenation of the source dependent word with
the dependency relation and (2) the concatenation of
the source head word with the dependency relation.
So for the word yu (English with) in Figure 1, we
extract these features for orientation classification:
prep DEP yu and prep HEAD you.

We define the dependency orientation feature
score for a translation hypothesis as the sum of the
log orientation probabilities for each source word.
This score is used as one feature in the log-linear
formulation of the hierarchical phrase-based model.

Table 1 shows the dependency orientation proba-
bilities for all words in the Figure 1 sentence. Most
interestingly, the orientation probabilities for you
(English have) strongly support global reordering of
one of the few countries with the relative clause that
have diplomatic relations with North Korea. We find
that it is a general trend for long-distance reordering
to gain stronger support, since it is often correlated
with prominent reordering patterns (such as relative
clause and preposition) as well as lexical evidences
(such as “... zhiyi” (English “one of ...”)) for which
the reversed orientation takes up the majority of the
training cases.

Consider the following rules (both terminals and
nonterminals are coindexed):

X → (yu1 Beihan2 you3 bangjiao4,

have3 dipl.4 rels.4 with1 North2 Korea2)
(3)

X → (yu1 Beihan2 you3 bangjiao4,

with1 North2 Korea2 have3 dipl.4 rels.4)
(4)

According to Table 1, the hypothesis that applies
Rule 3 receives a probability of 0.55 for yu getting
reversed with its head you, as well as 0.88 and 0.83
for translating Beihan and bangjiao in a monotone
manner with respect to their heads. Rule 4 is associ-
ated with probabilities 0.45, 0.88 and 0.83 for mono-
tone translation of yu, Beihan and bangjiao. Thus
our dependency orientation feature is able to trace
the difference in ordering the PP with North Korea
(as underlined) and the VP have dipl. rels. down to
the orientation of the preposition yu (English with)
with respect to its head you (English have), and pro-
mote Rule 3 which has the right word order.

The word you (English have) cannot be scored
in Rules 3 or 4, since its head word zhiyi (English
one of) is not covered. In this case, we say that
the word you is unresolved. We carry an unre-
solved word along in the derivation process until we
reach a terminator hypothesis which translates the
head word. Then the resulting dependency orien-
tation score is added to the terminator hypothesis.
This means that the dependency orientation feature
is “stateless”, i.e., hypotheses that cover the same
source span with the same orientation information
will receive the same feature score, regardless of the
derivation history. Therefore, Derivation 5 in the fol-
lowing will have the same dependency orientation
score as Derivation (Rule) 3, and Derivation 6 will
score the same as Derivation (Rule) 4.

5.1 X → (yu1, with1)

5.2 X → (Beihan1, North1 Korea1)

5.3 X → (X1 X2, X1 X2)

5.4 X → (X1 you2 bangjiao3,

have2 dipl.3 rels.3 X1)

(5)
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6.1 X → (Beihan1 you2, North1 Korea1 has2)

6.2 X → (X1 bangjiao2, X1 dipl.2 rels.2)

6.3 X → (yu1 X2, with1 X2)

(6)

2.2 Cohesion Penalty
When the dependency orientation for a word is
temporarily unavailable (“unresolved”), a cohesion
penalty fires. Cohesion penalty counts the total oc-
currences of unresolved words for a translation hy-
pothesis, which involve newly encountered unre-
solved words as well as old unresolved words car-
ried on from the derivation history. Therefore, the
cohesion penalty is “stateful”, i.e., an unresolved
word is repeatedly penalized until it gets resolved.
Under this definition, the most cohesive derivation
translates the entire sentence with one rule, where
every word is locally resolved. The least cohe-
sive derivation translates each word individually and
glues word translations together. Consulting Fig-
ure 1, the cohesion penalty in Derivation 5 is 4, since
the word yu (English with) is unresolved twice (in
5.1 and 5.3), and both Beihan (English North Ko-
rea) and you (English have) are unresolved once (in
5.2 and 5.4, respectively); the cohesion penalty in
Derivation 6 is 5: 2 from Beihan (English North
Korea) (in 6.1 and 6.2) and 3 from you (English
have). As a result, Derivation 5 gets promoted,
which echoes with human intuition since Deriva-
tion 5 translates syntactic constituents. To sum
up, our cohesion penalty provides an integer-valued
measure of derivation well-formedness in the hierar-
chical phrase-based MT. Same as dependency orien-
tation, the cohesion penalty is not applicable to the
root word of the sentence.

We propose the cohesion penalty in order to fur-
ther improve reordering, especially in long-distance
cases, since a well-formed derivation at an earlier
stage makes it more likely to explore hierarchical
rules that perform more reliable reordering. In this
respect, the cohesion penalty can be seen as an aid
to the glue rule penalty and as an alternative to
constituency-based constraints.

Specifically, the glue rule penalty (Chiang, 2007)
promotes hierarchical rules. Hierarchical rules
whose lexical evidence helps resolve words locally
will also be favored by our cohesion penalty feature.
However, ignorant of the syntactic structure, the

glue rule penalty may penalize a reasonably cohe-
sive derivation such as Derivation 5 and at the same
time promote a less cohesive hierarchical transla-
tion, such as Derivation 6.

Compared with constituency constraints based on
the phrase structure, our cohesion penalty derived
from the binary dependency parsing has two differ-
ent characteristics.

First, our cohesion penalty is by nature more tol-
erant to some meaningful noncontituent translations.
For example, constituency constraints in (Chiang,
2005; Marton and Resnik, 2008; Chiang et al., 2009)
would penalize Rule 7 below which is useful for
German–English translation (Koehn et al., 2003),
and Rule 8 which can be applied to the Figure 1
sentence. Fuzzy constituency constraints can solve
this problem with a combination of product cate-
gories and slash categories (Chiang, 2010). Yet
our cohesion penalty by nature admits these trans-
lations as cohesive (with no extra cost from es and
Aozhou since both are locally resolved). Admittedly,
our current implementation of the cohesion penalty
is blind to some other meaningful nonconstituent
collocations, such as neighbouring siblings of a
common uncovered head (regulated as the “floating
structure” in (Shen et al., 2008)). A concrete exam-
ple is Rule 9 which is useful for the Figure 1 sen-
tence. To address this problem, another feature can
be defined in the same manner to capture how each
head word is translated with its children.

X → (es1 gibt2, there1 is2) (7)

X → (Aozhou1 shi2, Australia1 is2) (8)

X → (shaoshu1 guojia2, few1 countries2) (9)

Second, our cohesion penalty can be by na-
ture more discriminative. Compared with the
constituency constraints, the cohesion penalty is
integer-valued, and can be made sensitive to the
depth of each word in the dependency hierarchy (see
Section 2.4). Inspired by (Marton and Resnik, 2008;
Chiang et al., 2009), the cohesion penalty could
also be made sensitive to the dependency relation
of each word. However, this drastically increases
the number of features and requires a tuning algo-
rithm which scales better to high-dimensional model
spaces, such as MIRA (Watanabe et al., 2007; Chi-
ang et al., 2008).
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Figure 3: Using 2 bins for the dependency parse tree of
the Figure 1 sentence.

2.3 Unaligned Penalty

The dependency orientation and cohesion penalty
cannot be applied to unaligned source words. This
may lead to search error, such as dropping (i.e., un-
aligning) key content words that are important for
lexical translation and reordering. The problem is
mitigated by an unaligned penalty applicable to all
words in the dependency hierarchy.

2.4 Grouping Words into Bins

Having defined dependency orientation, cohesion
penalty and unaligned penalty, we section the source
dependency tree uniformly by depth, group words at
different depths into bins and only add the feature
scores of a word into its respective bin. In this way
one feature is split into several sub-features and each
can be trained discriminatively by MERT.

There are two motivations for binning. The pri-
mary motivation is to distinguish long-distance re-
ordering which is still problematic for the hiero-
style model, since local reorderings generally op-
erate at low levels of the tree while high tree lev-
els tend to take more care of long-distance reorder-
ing. Parsing accuracy is another concern, yet its
impact on feature performance is intricate and our
MaxEnt-trained dependency orientation feature also
buffers against odd parsing. Using bins, we simply
let the tuning process decide how much to trust fea-
ture scores coming from different levels of parsing.

We experiment with 1, 2 and 3 bins. An example
of binning for the Figure 1 sentence can be found in
Figure 3. With 2 bins (hereafter “bin-2”), words at
Depth 1 and 2 are grouped into Bin 1, and words at
Depth 3, 4, 5 are grouped into Bin 2. As a simple
approach, binning does not take into account how

the tree levels spread out.

3 Experiments

3.1 General Settings

We used a parallel training corpus with 2.1 mil-
lion Chinese–English sentence pairs, aligned by
GIZA++. The Chinese side was parsed by the Stan-
ford Parser. Then we extracted 33.8 million exam-
ples from the parsed Chinese side to discriminatively
train 1.1 million features (using the MegaM soft-
ware2) for dependency orientation classification.

We trained three 5-gram language models with
modified Kneser-Ney smoothing (Kneser and Ney,
1995): one on the English half of the parallel cor-
pus, one on the Xinhua part of the Gigaword corpus,
one on the AFP part, and interpolated them for best
fit to the tuning set (Schwenk and Koehn, 2008).

We used NIST MT06 evaluation data (1664 lines)
as our tuning set, and tested on NIST MT02 (878
lines), MT05 (1082 lines) and MT08 (1357 lines).

Our baseline system was the Moses implemen-
tation of the hierarchical phrase-based model with
standard settings (Hoang et al., 2009). When only
1 bin was used, 3 additional features were added to
the baseline, one each from the soft dependency con-
straints. When we used 2 or 3 bins, the additional
feature counts doubled or tripled. We preserved ter-
minal alignment alongside nonterminal alignment
during the rule extraction and output word align-
ments together with translated strings. Since the fea-
tures we currently define are based entirely on the
source side, we used preprocessing to speed up de-
coding of our feature-augmented model. All experi-
ments were tuned with MERT (Och, 2003).

3.2 Using BLEU as the Tuning Metric

As a standard practice, we first used BLEU (Pap-
ineni et al., 2002) as the objective function for tun-
ing. Table 2 shows the results of the baseline model
as well as our complete feature-augmented model
with different bin numbers. With the “bin-2” setting,
we get substantial improvement of up to 1.03 BLEU
points (on MT02 data), and 0.84 BLEU points on
average. Using more than one bin (i.e., differentiat-
ing tree depths) is generally beneficial, although the

2http://www.umiacs.umd.edu/∼hal/megam/index.html
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Setting BLEU / LRscore / TER
MT02 MT05 MT08 Average

baseline 34.01 / 41.85 / 68.93 32.23 / 40.50 / 68.15 28.09 / 37.17 / 66.82 31.44 / 39.84 / 67.97
bin-2 35.04 / 43.07 / 65.58 33.18 / 41.62 / 65.59 28.63 / 38.12 / 65.36 32.28 / 40.94 / 65.51
baseline-lr 34.23 / 42.06 / 68.08 32.28 / 40.61 / 67.61 27.99 / 37.27 / 66.98 31.50 / 39.98 / 67.56
bin-2-lr 35.42 / 43.25 / 64.82 33.44 / 41.80 / 64.88 29.10 / 38.38 / 64.14 32.65 / 41.14 / 64.61

Table 4: Results for the baseline model and the complete feature-augmented model with 2 bins (“bin-2”), using BLEU
and LRscore (“-lr”) as the tuning function. The BLEU scores of “bin-2” and “bin-2-lr” are significantly better than
baseline (p < 0.05), computed by paired bootstrap resampling (Koehn, 2004).

Setting BLEU
MT02 MT05 MT08 Average

baseline 34.01 32.23 28.09 31.44
bin-1 34.20 32.13 28.41 31.58(+.14)
bin-2 35.04 33.18 28.63 32.28(+.84)
bin-3 34.35 32.79 28.37 31.84(+.40)

Table 2: Results of the baseline model as well as our
complete feature-augmented model with 1, 2 and 3 bins.
BLEU is the tuning function.

Setting BLEU
MT02 MT05 MT08 Average

baseline 34.01 32.23 28.09 31.44
dep 34.26 32.58 28.07 31.64(+.20)
dep+coP 34.47 32.81 28.61 31.96(+.52)
dep+coP+unP 35.04 33.18 28.63 32.28(+.84)

Table 3: Contributions of the three soft dependency con-
straints, with the “bin-2” setting

problem of overfitting sets in when we use 3 bins
(with slightly higher tuning BLEU, not shown here).

We also studied the effect of adding features in-
crementally onto the baseline with the “bin-2” set-
ting, as shown in Table 3. On average, all three fea-
tures seem to have similar contributions.

3.3 Using LRscore as the Tuning Metric

Since our features are proposed to address the re-
ordering problem and BLEU is not sensitive enough
to reordering (especially in long-distance cases), we
have also tried tuning with a metric that highlights
reordering, i.e., the LRscore (Birch and Osborne,
2010). LRscore is a linear interpolation of a lexi-
cal metric and a reordering metric. We interpolated
BLEU (as the lexical metric) with the Kendall’s
tau permutation distance (as the reordering metric).
The Kendall’s tau permutation distance measures the
relative word order difference between the transla-

tion output and the reference(s) and is particularly
sensitive to long-distance reordering. Testing re-
sults in terms of BLEU, LRscore and TER (Snover
et al., 2006) are shown in Table 4. Tuned with
the LRscore, our feature-augmented model achieves
further average improvements (compare “bin-2” and
“bin-2-lr”) of 0.20 LRscore as well as 0.37 BLEU
and 0.90 TER. Note that while the BLEU increase
can largely be seen as a projection of the LRscore
increase back into its lexical component, the consis-
tent TER drop confirms that our improvement is not
metric-specific3. Altogether the final improvement
is 1.21 BLEU, 1.30 LRscore and 3.36 TER on aver-
age over the baseline.

However, an important question is how our fea-
tures affect short, medium and long-distance re-
orderings. In the next section, we conduct quanti-
tative analysis on reordering precision and recall, as
well as qualitative analysis on translation examples.

4 Analysis

4.1 Precision and Recall of Reordering

The key to obtaining precision and recall for reorder-
ing is to investigate whether reorderings in the refer-
ences are reproduced in the translations. We calcu-
late precision as the number of reproduced reorder-
ings divided by the total number of reorderings in
the translation, and recall as the number of repro-
duced reorderings divided by the number of reorder-

3One of our reviewers points out that according to the in-
ductive learning theory, it is counter-intuitive to improve on
BLEU and TER if we optimize by the LRscore. Yet we do
observe some other papers reporting increased TER or other
metric scores when BLEU is used for tuning (Carpuat and Wu,
2007; Shen et al., 2008), suggesting that MT evaluation might
be too complicated to be characterized just with inductive learn-
ing. Similar results based on extensive experiments can also be
found in (Birch and Osborne, 2011).
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Setting MT02 MT05 MT08 Average
baseline 37.0 35.3 35.6 36.0
bin-2 42.7 40.8 38.7 40.7 (+4.7)
baseline-lr 37.3 35.0 34.2 35.5 (-0.5)
bin-2-lr 44.1 42.0 42.5 42.9 (+6.9)

Table 5: Overall precision for the test sets.

Setting MT02 MT05 MT08 Average
baseline 37.5 36.2 33.2 35.6
bin-2 36.8 35.9 31.8 34.8 (-0.8)
baseline-lr 37.0 35.6 32.2 34.9 (-0.7)
bin-2-lr 37.7 36.7 33.2 35.9 (+0.3)

Table 6: Overall recall for the test sets.

ings in the reference. Then we average the precision
and recall over all four reference translations.

Details of measuring reproduced reordering can
be found in Birch et al. (2008). An important dif-
ference in this work is in handling many-to-one and
one-to-many alignments, as we only retain the first
word alignment for any source or target word which
has multiple alignments. This is consistent with our
treatment in dependency orientation classification,
and results in more reorderings being extracted.

From Table 5 we can see that our features im-
prove precision by an average of 4.7 absolute points
when BLEU is used for tuning (“bin-2”). Switch-
ing from BLEU to the LRscore (“bin-2-lr”), we gain
2.2 points more and have a total improvement of 6.9
absolute points on average. This is a novel and im-
portant finding as we directly show that the quality
of reordering has been improved.

From Table 6, we observe a small but consistent
increase in recall with the “bin-2-lr” setting, averag-
ing 0.3 absolute points. However, the drop of recall
with the “bin-2” setting (by an average 0.8 points
from the baseline) is unexpected. It seems that when
applying our features alone, we are trading a small
drop in recall for a large gain in precision.

In Figure 4 we break down the precision and re-
call statistics in MT08 by the reordering width on
the source side. We find that our features con-
sistently help precision over all word ranges, with
more substantial improvement in the medium and
long word ranges. When recall is concerned, our
model does not help for short ranges of up to Width
4, but improves consistently for longer distance re-
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Figure 4: Precision and recall breakdown for the source-
side reordering width 2-15 for the NIST MT08 dataset.

orderings. Once again, it seems that the feature-
augmented model is able to benefit from tuning with
a metric that is more sensitive to reordering, as the
performance of “bin-2-lr” is the best in all reorder-
ing statistics.

4.2 Translation Examples
We observe a number of outputs with improved
word order and more cohesive derivation, as the one
in Figure 5. The baseline translation is fragmented
and requires more glue rule applications. Specifi-
cally, it fails to translate the boxed area as a whole
into “the relations between the palestinian national
authority (pna) and the european union (eu)”. The
key dependency orientation that controls the global
reordering is between the prepositional modifier dui
(English to) and its head word, the verb gandao (En-
glish feel). The baseline system translates dui (En-
glish to) as “of the” and misorders the sentence. In
contrast, the feature-augmented model “bin-2” cap-
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yucitongshi        ,   Abasi      dui

at the same time ,   Abbas     to with    EU            between

yu       Oumeng   zhijian

Palestinian Natl. Authority

Ba     minzu    quanli   jigou de     guanxi

DE    relations

与此同时    , 阿巴斯 对 巴  民族  权力  机构 与   欧盟    之间 的  关系 感到  满意     . 

gandao  manyi          .

feel        satisfaction  .

prep

baseline: [at the same time , abbas] [of the] [palestinian [national authority ( pna )]] [and] [is satisfied
with the [relations] [between [the european union ( eu )]]] [.]
bin-2: [at the same time , abbas] [expressed satisfaction with [the relations between the [palestinian
[national authority ( pna ) [and the european union ( eu )]]]] .]

Figure 5: Example translations from the NIST MT08 set, output by the baseline model and “bin-2” model. The “-lr”
version outputs are quite similar and not shown here. Translation outputs are in lower case.

tures the boxed area as a whole and uses Rule 10 to
perform the right global reordering.

X → (dui1 X2 gandao3 manyi4 .5 ,

expressed3 satisfaction4 with1 X2 .5 )
(10)

5 Related Work

In recent years, there has been a growing body of re-
search on using dependency for statistical machine
translation. Some directly encodes dependency in
the translation model (Ding and Palmer, 2005; Quirk
et al., 2005; Xiong et al., 2007; Shen et al., 2008; Mi
and Liu, 2010), while others use dependency as a
soft constraint (Cherry, 2008; Bach et al., 2009a,b;
Chang et al., 2009). Among them, Shen et al. (2008)
report that just filtering the phrase table by the so-
called well-formed target dependency structure does
not help, yet adding a target dependency language
model improves performance significantly. Our in-
tuitive interpretation is that the target dependency
language model capitalizes on two characteristics of
the dependency structure: it is based on words and it
directly connects head and child. Therefore, the tar-
get dependency language model makes good use of
the dependency representation as well as the target
side training data.

We follow the second line of research, and derive
three word-based soft constraints from the source
dependency parsing. Note that although we reuse
the word “cohesion” to name one of the constraints,
our work is different from (Cherry, 2008; Bach
et al., 2009a,b) which have successfully defined an-
other cohesion constraint from the source depen-

dency structure, with the aim of improving reorder-
ing in phrase-based MT.

To take a glance, Cherry (2008) and Bach et al.
(2009b) define cohesion as translating a source de-
pendency subtree contiguously into the target side
without interruption (span or subtree overlapping),
following Fox (2002). This span-based cohesion
constraint has a different criterion from our word-
based cohesion penalty and often leads to opposite
conclusions. Bach et al. (2009a) also use cohesion to
correlate with the lexicalized reordering model (Till-
man, 2004; Koehn et al., 2005), whereas we define
an orthogonal dependency orientation feature to ex-
plicitly model head-dependent reordering.

The fundamental difference, however, is rooted
in the translation model. Their span-based cohe-
sion constraint is implemented as an “interruption
check” to encourage finishing a subtree before trans-
lating something else. This check is very effective
for phrase-based decoding which searches over an
entire space within the distortion limit in order to
advance a hypothesis. In fact, it constrains reorder-
ing for the phrase-based model, as Cherry finds that
the cohesion constraint is used “primarily to prevent
distortion” and to provide “an intelligent estimate as
to when source order must be respected” (Cherry,
2008). However, since the hierarchical phrase-
based model already conducts principled reorder-
ing search with rules through the more constrained
chart-decoding, ill-formed derivations exhibit them-
selves more often as nonconstituent translation than
interrupted translation as defined in (Cherry, 2008;
Bach et al., 2009a,b) (They do have a non-empty in-
tersection, but neither subsumes the other). There-
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fore, our cohesion penalty is better suited for the hi-
erarchical phrase-based model.

To discourage nonconstituent translation, Chiang
(2005) has proposed a constituency feature to exam-
ine whether a source rule span matches the source
constituent as defined by phrase structure parsing.
Finer-grained constituency constraints significantly
improve hierarchical phrase-based MT when ap-
plied on the source side (Marton and Resnik, 2008;
Chiang et al., 2009), or on the target side in a
more tolerant fashion (Zollmann and Venugopal,
2006). Using both source and target syntax, but
relaxing on rule extraction and substitution enables
HPBMT to produce more well-formed and syntac-
tically richer derivations (Chiang, 2010). Softening
constituency matching with latent syntactic distribu-
tions proves to be helpful (Huang et al., 2010). Com-
pared to constituency-based approaches, our cohe-
sion penalty based on the dependency structure nat-
urally supports constituent translations as well as
some nonconstituent translations, if not all of them
(as discussed in Section 2.2).

Our dependency orientation feature is similar to
the order model within dependency treelet trans-
lation (Quirk et al., 2005). Yet instead of a
head-relative position number for each modifier
word, we simply predict the head-dependent ori-
entation which is either monotone or reversed.
Our coarser-grained approach is more robust from
a machine learning perspective, yet still captures
prominent and long-distance reordering patterns ob-
served in Chinese–English (Wang et al., 2007),
German–English (Collins et al., 2005), Japanese–
English (Katz-Brown and Collins, 2008) and trans-
lation from English to a group of SOV lan-
guages (Xu et al., 2009). Not committed to spe-
cific language pairs, we learn orientation classifi-
cation from the word-aligned parallel data through
maximum entropy training as Zens and Ney (2006)
and Chang et al. (2009) for phrase-based translation
and Xiong et al. (2006) for the BTG model (Wu,
1996). While Chang et al. (2009) also make use
of source dependency, their orientation classifica-
tion concerns two subsequent phrase pairs in the left-
to-right phrase-based decoding (as apposed to each
dependent word and its head) and is therefore less
linguistically-motivated.

6 Conclusion

We have derived three novel features from the source
dependency structure for hierarchical phrase-based
MT. They work as a whole to capitalize on two char-
acteristics of the dependency representation: it is di-
rectly based on words and it directly connects head
and child. The effectiveness of our approach has
been demonstrated by a final average improvement
of 1.21 BLEU, 1.30 LRscore and 3.36 TER. On av-
erage we improve reordering precision and recall by
6.9 and 0.3 absolute points, respectively, over the
baseline. Moreover, our approach is found to be es-
pecially effective for long-distance reodering.

As mentioned in Section 2.2, the cohesion penalty
can be extended to also account for how a head
word is translated with its children so that we are
not biased towards one form of cohesive noncon-
stituent translation. All our features can be made
sensitive to the dependency relations or even words.
This fine-grainedness is especially desirable when
we want to reward words for being unaligned or un-
resolved, such as punctuations and function words
in certain context. Word alignment quality is crucial
for the performance of our features as well as the
LRscore which uses word alignment to compute the
permutation distance. As an alternative to GIZA++,
we would like to experiment with syntactically in-
formed aligners that better handle function words
which often exhibit high alignment ambiguity due
to low cross-lingual correspondence.

Finally, since our soft dependency constraints
promote reordering without increasing model com-
plexity, further gains can be achieved when combin-
ing our approach with orthogonal studies to improve
the quantity and quality of hierarchical (reordering)
rules, such as relaxing hierarchical rule extraction
constraints (Setiawan and Resnik, 2010) and selec-
tively lexicalizing rules with function words (Seti-
awan et al., 2009).
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Abstract

Part-of-speech language modeling is com-
monly used as a component in statistical ma-
chine translation systems, but there is mixed
evidence that its usage leads to significant im-
provements. We argue that its limited effec-
tiveness is due to the lack of lexicalization.
We introduce a new approach that builds a
separate local language model for each word
and part-of-speech pair. The resulting mod-
els lead to more context-sensitive probabil-
ity distributions and we also exploit the fact
that different local models are used to esti-
mate the language model probability of each
word during decoding. Our approach is evalu-
ated for Arabic- and Chinese-to-English trans-
lation. We show that it leads to statistically
significant improvements for multiple test sets
and also across different genres, when com-
pared against a competitive baseline and a sys-
tem using a part-of-speech model.

1 Introduction

Language models are an important component of
current statistical machine translation systems. They
affect the selection of phrase translation candidates
and reordering choices by estimating the probability
that an application of a phrase translation is a flu-
ent continuation of the current translation hypoth-
esis. The size and domain of the language model
can have a significant impact on translation quality.
Brants et al. (2007) have shown that each doubling
of the training data from the news domain (used to
build the language model), leads to improvements of
approximately 0.5 BLEU points. On the other hand,

each doubling using general web data leads to im-
provements of approximately 0.15 BLEU points.

While large n-gram language models do lead
to improved translation quality, they still lack any
generalization beyond the surface forms (Schwenk,
2007). Consider example (1), which is a short sen-
tence fragment from the MT09 Arabic-English test
set, with the corresponding machine translation out-
put (1.b), from a phrase-based statistical machine
translation system, and reference translation (1.c).

(1) a. ÈYj. ÊË
�
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éJ
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Qå�
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�

�
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®Ê

	
g ...

... éË ÑêÓAî
�
E@ð

b. ... the background of press statements of
controversial and accused him ...

c. ... the background of controversial press
statements and accused him ...

Clearly, the adjective “controversial” should pre-
cede the nouns “press statement”, but since the AFP
and Xinhua portions of the Gigaword corpus, used
to build the language model for the translation sys-
tem, do not contain this surface n-gram, translations
with obviously ungrammatical constructions such as
(1.b) can result. For unseen n-grams, one would like
to model adjectives as being likely to precede nouns
in English, for example.

A straightforward approach to address this is to
exploit the part-of-speech (POS) tags of the tar-
get words during translation (Kirchhoff and Yang,
2005). Though models exploiting POS information
are not expressive enough to model long-distance
dependencies, they can account for locally ungram-
matical constructions such as (1.b). Several attempts
have been made to interpolate POS language models
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with surface models. Under constrained data condi-
tions, this can lead to improvements. But once larger
amounts of training data are used, the gains obtained
from adding POS language models decline substan-
tially. This raises the question of why POS language
models are not more effective. We argue that one of
the short-comings of previous approaches to using
POS language models is that these models are es-
timated globally, not lexically anchored, and hence
rather context insensitive.

In this paper, we introduce a novel approach that
builds and uses individual, local POS language mod-
els for each word in the vocabulary. Our experiments
show that it leads to statistically significant improve-
ments over a competitive baseline, using lexical-
ized reordering and a sizable 5-gram word language
model, as well as a standard 7-gram POS language
model approach.

2 Part-of-Speech Language Models

2.1 Background

Typically, POS language models are used like word-
based language models. N-grams are extracted from
a POS-tagged corpus and an n-gram language model
is built from that. While word-based models esti-
mate the probability of a string ofmwords by Equa-
tion 2, POS-based models estimate the probability of
string of m POS tags by Equation 3.

p(wm1 ) ∝
m∏

i=1

p(wi|wi−1
i−n+1) (2)

p(tm1 ) ∝
m∏

i=1

p(ti|ti−1
i−n+1) (3)

where, n is the order of the language model, and wji
refers to the sub-sequence of words (or tags) from
positions i to j.

Word language models can be built directly from
large text corpora, such as LDC’s Gigaword corpus,
but POS models require texts that are annotated with
POS tags. Ideally, one would use manually anno-
tated corpora such as the Penn Treebank (Marcus et
al., 1993), but since those tend to be small, most ap-
proaches rely on larger corpora which have been au-
tomatically annotated by a POS tagger or a parser
(Koehn et al., 2008). Though automated annotation

inevitably contains errors, it is assumed that this is
ameliorated by the increased size of annotated data.

The event space of a language models is of size
|V |n, where V is the vocabulary, and n is the order
of the language model. The vocabulary of POS mod-
els, (typically ranging between 40 and 100 tags), is
much smaller than the vocabulary of a word model,
which can easily approach a million words. Nev-
ertheless, most POS language modeling approaches
apply some form of smoothing to account for unseen
events (Bonneau-Maynard et al., 2007).

To deploy POS language models in machine
translation, translation candidates need to be anno-
tated with POS tags. Each target phrase ē in a phrase
pair (f̄ , ē) can be associated with a number of POS
tag sequences t̄ē. Heeman (1998) shows that using
the joint probability leads to improved perplexity for
POS models. For machine translation one can sum
over all possible tag sequences, as in Equation 4.

p(e|f) = arg maxe

∑

t

p(e, t|f) (4)

Summing over all possible tag sequences has the dis-
advantage that it requires one to keep this informa-
tion during decoding. Below, we opt for an approxi-
mate solution, where each target phrase is annotated
with the most likely POS tag sequence given the
source and target phrase: t̄ē = arg maxt̄ p(t̄|ē, f̄).

2.2 Effectiveness of POS Language Models

Reported results on the effectiveness of POS lan-
guage models for machine translation are mixed, in
particular when translating into languages that are
not morphologically rich, such as English. While
they rarely seem to hurt translation quality, there
does not seem to be a clear consensus that they sig-
nificantly improve quality either.

Koehn and Hoang (2007) have reported an in-
crease of 0.86 BLEU points for German-to-English
translation for small training data. After relaxing
phrase-matching to include lemma and morpholog-
ical information on the source side, POS language
models lead to a decrease of -0.42 BLEU points. Su-
pertagging encapsulates more contextual informa-
tion than POS tags and Birch et al. (2007) report
improvements when comparing a supertag language
model to a baseline using a word language model
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only. Once the baseline incorporates lexicalized dis-
tortion (Tillmann, 2004; Koehn et al., 2005), these
improvements disappear. Factored language mod-
els have not resulted in significant improvements ei-
ther. Kirchhoff and Yang (2005) report slight im-
provements when re-ranking the n-best lists of their
decoder, which word tri-grams. But these improve-
ments are less than those gained by re-ranking the
n-best lists with a 4-gram word language model.

The impact of POS language models depends
among other things on the size of the parallel cor-
pus, the size and order of the word language model,
and whether lexicalized distortion models are used.
To gauge the potential effectiveness of POS lan-
guage models without taking into consideration all
these factors, we isolate the contribution of the lan-
guage model by simulating machine translation out-
put using English data only (Al-Onaizan and Pap-
ineni, 2006; Post and Gildea, 2008). Taking a set
of POS-tagged reference translations of the MT04
Arabic-to-English test set, each English sentence is
randomly chunked into n-grams of average length
three. The chunks of each sentence, with their cor-
responding POS tags, are randomly reordered. This
is repeated 500 times for each sentence in the test
set. The smoothed sentence BLEU score (ignor-
ing brevity penalty) is computed for each reordered
sentence with respect to all reference translations.
The higher the BLEU score, the more well-formed
the reordering is. As each reordered sentence only
contains words from at least one of the reference
translations, the uni-gram precision is always 1.0.
The language model probability is then computed
for each reordering. Table 1 shows the average cor-
relations between language model probabilities and
BLEU scores.

We can see that the surface language model corre-
lates moderately well with BLEU, explaining about
49% (r2 = 0.49) of the variation, whereas the POS
language model does not correlate with BLEU at
all.1 On the other hand, local language models alone
(as introduced in Section 3) correlate with BLEU
only slightly worse than surface models. The high-
est correlation is seen when they are interpolated
with word models. The BLEU scores in Table 1

1Interpolating both models does not lead to further correla-
tion improvements.

LM Kendall’s τ Pearson r BLEU[%]
wordLM 0.53 0.71 80.20
POS 7gLM 0.01 0.01 48.44
locLM 0.45 0.62 76.03
λwordLM+(1−λ)locLM 0.54 0.73 80.98
(λ = 0.92)

Table 1: Correlation between randomly permuted English
reference translations and BLEU.

are computed using the 1-best sentences after re-
ranking. These system-agnostic correlation results
look promising for our local models and the end-
to-end translation results in Section 5 confirm these
initial findings.

3 Local Language Models

In this section, we introduce a novel approach to lan-
guage modeling that is more context-sensitive than
standard POS language models. Instead of using one
global POS language model that is built by using all
of a mono-lingual corpus in the target language, we
build individual models, or local models, for each
word-POS pair using the POS tags surrounding each
occurrence of that pair. This adds an aspect of lex-
icalization that is entirely absent in previous POS
language models. The effect is that the resulting n-
gram probability distributions of each local model
are more biased towards the contextual constraints
of each individual word-POS pair. This is similar to
the idea of cached language models (Kuhn, 1988),
but more fine-grained and with a tighter integration
of POS and lexical information.

3.1 Definition of Local Language Models
Each conditional probability of order n in a local
model for the word-POS pair w : t is of the form:

pw:t(tn, pn|t1 :p1, . . . , tn−1 :pn−1)

where ti refers to POS tags and pi to positions rel-
ative to an occurrence of the pair (w : t). For ex-
ample, consider the sentence fragment in Figure 1.
The conditional local n-gram probabilities (a–d) are
generated from the occurrence of the word told with
POS tag VBD. Probability (c) in Figure 1 estimates
that a word with POS tag NN occurs two positions
to the right of told, given the n-gram history that a
noun occurs to its left and a determiner to its right.
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position . . . 11 12 13 14 15 16 17 . . .
relative
position . . . -3 -2 -1 0 +1 +2 +3 . . .

word . . . the new mayor told the reporter to . . .
POS . . . DT JJ NN VBD DT NN TO . . .

(a) ptold:VBD(NN:-1|DT:-3 JJ:-2) (c) ptold:VBD(NN:+2|NN:-1 DT:+1)

(b) ptold:VBD(DT:+1|JJ:-2 NN:-1) (d) ptold:VBD(TO:+3|DT:+1 NN:+2)

Figure 1: Sentence fragment with the tri-gram probabilities (a–d) linked to told.

For each local model we use a sliding window con-
sidering all n-grams of length n starting n words to
the left and ending n words to the right of an occur-
rence of the word-POS pair of the model at hand.

All local model probabilities are smoothed us-
ing Witten-Bell smoothing and interpolation.2 POS
tags are annotated with positional information to
distinguish between lower-order estimates such as
ptold :VBD(NN+2) and ptold :VBD(NN+3) both of
which can arise when backing off during smooth-
ing. Without positional information, ptold :VBD(NN)
only estimates the probability of the tag NN occur-
ring within the proximity of told.3

A local model of order n contains the conditional
probabilities for words occurring at relative posi-
tions -1, +1, . . . +n. Therefore the probability of
a word occurrence is estimated by all local mod-
els covering this word’s position. Figure 2 shows
schematically how overlapping n-gram probabilities
interact. E.g., the probability of word wi+2 is based
on the probability of the local model for wi+1, wi,
wi−1, and wi−2 (the last two are not shown in Fig-
ure 2 for space reasons). Formally, the conditional
probability of a word-POS pair, given its word and
POS tag history is defined in Equation 5.

p(wi, ti |wi−1
i−n+1, t

i−1
i−n+1) =

pwi:ti(ti−1 : -1 | 〈ti−n : -n, . . . , ti−2 : -2〉)

·
n−1∏

j=0

pwi−n+j :ti−n+j (ti :n−j |Hi,n[j, ·]) (5)

2The smaller event space of local models often leads to in-
complete counts-of-counts, preventing the use of Kneser-Ney
smoothing (Chen and Goodman, 1999).

3Despite the notational similarities, our approach should not
be confused with projected POS models, which use source side
POS tags to model reordering (Och et al., 2004).

. . .

. . .

...w1 wi-3 wi-2 wi-1 wi wi+1wi+2wi+3 ... wm

n-gram history
predicted word
position of current
local model

Figure 2: Schema of overlapping local language model
applications.

where Hi,n is an n×n matrix specifying the history
of the word at position i. Each row j of Hi,n rep-
resents the history of the conditional probability be-
longing to the local model associated with position
i−n+j. Each entry Hi,n[j, k] is defined as follows:

Hi,n[j, k] =

{
ti−n+k :k − j if j 6= k

ε otherwise

where ti−n+k is the POS tag at position i − n + k
and k − j is the relative position with respect to the
diagonal of Hi,n, i.e., the position of the local lan-
guage model corresponding to row j. Hi,n[j, ·] is the
jth row vector from which the jth entry (the empty
element) has been removed. For instance, given the
example in Figure 1, H14,3 is

H14,3 =




ε JJ:+1 NN:+2
DT:-1 ε NN:+1
DT:-2 JJ:-1 ε




For convenience we assume that the row and col-
umn indices are 0-based, i.e., the upper-left entry of
a matrix is referred to by Hi,n[0, 0]. In this example,
H14,3[1, ·] = 〈DT:-1, NN:+1〉.
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position 0 1 2 3 4 5 6
token <s> cuba frees more dissidents . </s>

POS tag <s> NNP VBZ JJR NNS . </s>

p(cuba, NNP|w0
0, t

0
0) = pcuba:NNP(<s>:-1) · p<s>:<s>(NNP:+1)

p(frees, VBZ|w1
0, t

1
0) = pfrees:VBZ(NNP:-1|<s>:-2) · p<s>:<s>(VBZ:+2|NNP:+1)

·pcuba:NNP(VBZ:+1|<s>:-1)

p(more, JJR|w2
0, t

2
0) = pmore:JJR(VBZ:-1|NNP:-3 VBZ:-2) · p<s>:<s>(JJR:+3|NNP:+1 VBZ:+2)

·pcuba:NNP(JJR:+2|<s>:-1 VBZ:+1) · pfrees:VBZ(JJR:+1|<s>:-2 NNP:-1)

p(dissidents, NNS|w3
1, t

3
1) = pdissidents:NNS(JJR:-1|NNP:-3 VBZ:-2) · pcuba:NNP(NNS:+3|VBZ:+1 JJR:+2)

·pfrees:VBZ(NNS:+2|NNP:-1 JJR:+1) · pmore:JJR(NNS:+1|NNP:-2 VBZ:-1)

p(. , .|w4
2, t

4
2) = p.:.(NNS:-1|VBZ:-3 JJR:-2) · pfrees:VBZ(.:+3|JJR:+1 NNS:+2)

·pmore:JJR(.:+2|VBZ:-1 NNS:+1) · pdissidents:NNS(.:+1|VBZ:-2 JJR:-1)

p(</s>, </s>|w5
3, t

5
3) = p</s>:</s>(.:-1|JJR:-3 NNS:-2) · pmore:JJR(</s>:+3|NNS:+1 .:+2)

·pdissidents:NNS(</s>:+2|JJR:-1 .:+1) · p.:.(</s>:+1|JJR:-2 NNS:-1)

Figure 3: Language model probability computation for the sentence “Cuba frees more dissidents.” using our local
language modeling approach.

The example in Figure 3 shows word-by-word
how tri-gram local language models are used to
compute the probability of a whole sentence.

Our local language model approach also bears
some resemblance to statistical approaches to mod-
eling subcategorization frames (Manning, 1993).
While our approach is more general by considering
all words and not just focusing on verbal subcatego-
rization frames, it is also more shallow in the sense
that only part-of-speech categories are considered
which does not model any contextual relationships
on the phrase level.

3.2 Building Local Language Models
To build the local language models, we use the
SRILM toolkit (Stolcke, 2002), which is commonly
applied in speech recognition and statistical machine
translation. While SRILM collects n-gram statistics
from all n-grams occurring in a corpus to build a
single global language model, we build a language
model for each word-POS pair only using the n-
grams within the proximity of occurrences for that
word-POS pair in a POS-tagged corpus. This results
in separate n-gram count files, which are then pro-
cessed by SRILM to build the individual language
models.4 Charniak’s parser (Charniak, 2000) is used
to POS tag the corpus.

4The pre-processing scripts are available at http://www.
science.uva.nl/˜christof/locLM/.

3.3 Decoder Integration

Several approaches that integrate POS language
models have focused on n-best list re-ranking only
(Hasan et al., 2006; Wang et al., 2007). Often this
is due to the computational (and implementational)
complexities of integrating more complex language
models with the decoder, although it is expected that
a tighter integration with the decoder itself leads to
better improvements than n-best list re-ranking.

Integrating our local language modeling approach
with a decoder is straightforward. Our baseline
decoder already uses SRILM’s API for computing
word language model probabilities. Since SRILM
supports arbitrarily many language models, local
language models can be added using the same func-
tionalities of SRILM’s API. For the experiments dis-
cussed in Section 4, we add about 150,000 local
language models to the word model. All local lan-
guage model probabilities are coupled with the same
feature weight. Potentially, improvements could be
gained from using separate weights for individual
local models, but this would require an optimiza-
tion procedure such as MIRA (Chiang et al., 2009),
which can handle a larger number of features.

During decoding no POS tagging ambiguities are
resolved. Each target phrase is associated with its
most likely POS tag sequence, given the source and
target side of the phrase pair; see Section 2.1.
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4 Experimental Setup

Three approaches are compared in our experiments:
the baseline system is a phrase-based statistical ma-
chine translation system (Koehn et al., 2003), very
similar to Moses (Koehn et al., 2007), using a word-
based 5-gram language model. The second approach
extends the baseline by including a 7-gram POS-
based language model. The third approach repre-
sents the work described in this paper, extending the
baseline by including 4-gram local language models.

Translation quality is evaluated for two language
pairs: Arabic-to-English and Chinese-to-English.
NIST’s MT-Eval test sets are used for both pairs.
Only resources allowed under NIST’s constrained
data conditions are used to train the language, trans-
lation, and lexicalized distortion models.

To see whether our local language models result
in improvements over a competitive baseline, we
designed the baseline to use a large 5-gram word
language model and lexicalized distortion model-
ing, both of which are known to cancel-out improve-
ments gained from POS language models (Birch et
al., 2007; Kirchhoff and Yang, 2005). The 5-gram
word language model is trained on the Xinhua and
AFP sections of the Gigaword corpus (3rd edition,
LDC2007T40) and the target side of the bitext. We
removed from the training data all documents re-
leased during the periods that overlap with the pub-
lication dates of the documents included in our de-
velopment or test data sets. In total, 630 million to-
kens were used to build the word language model.
The language model was trained using SRILM with
modified Kneser-Ney smoothing and interpolation
(Chen and Goodman, 1999). It is common practice
not to include higher-order n-grams that occur fewer
than a predefined number of times. Here, we applied
rather conservative cut-offs, by ignoring 3-, 4-, and
5-grams that occurred only once. The 7-gram POS
and 4-gram local language models were both trained
on the POS tagged English side of the bitext and
10M sentences from Gigaword’s Xinhua and AFP
sections.

The data for building the translation models
were primarily drawn from the parallel news re-
sources distributed by the Linguistic Data Consor-
tium (LDC).5 The Arabic-English bitext consists

5LDC catalog numbers for Arabic-English: LDC2004E72,

of 11.4M source and 12.6M target tokens, and the
Chinese-English bitext of 10.6M source and 12.3M
target tokens. Word alignment was performed run-
ning GIZA++ in both directions and generating the
symmetric alignments using the ‘grow-diag-final-
and’ heuristics.

All three approaches, including the baseline, use
lexicalized distortion, distinguishing between mono-
tone, swap, and discontinuous reordering, all with
respect to the previous and next phrase (Koehn et
al., 2005). The distortion limit is set to 5 for Arabic-
to-English, and 6 for Chinese-to-English. For each
source phrase the top 30 translations are considered.

For tuning and testing we use NIST’s official MT-
Eval test sets. MT04 was used as the development
set for both language pairs. Testing was carried out
on MT05 to MT09 for Arabic-English and MT05
to MT08 for Chinese-English. NIST did not re-
lease a new Chinese-English test set for MT-Eval
2009. Parameter tuning of the decoder was done
with minimum error rate training (MERT) (Och,
2003), adapted to BLEU maximization.

As evaluation metrics we used NIST’s adapta-
tion of BLEU-4 (Papineni et al., 2001), version 13a,
where the brevity penalty is based on the reference
translation with the closest length, and translation
error rate (TER) version 0.7.25 (Snover et al., 2006).
All results reported here are case-insensitive. TER
scores are shown as 1-TER.

To see whether the differences between the ap-
proaches we compared in our experiments are sta-
tistically significant, we apply approximate random-
ization (Noreen, 1989); Riezler and Maxwell (2005)
have shown that approximate randomization is less
sensitive to Type-I errors, i.e., less likely to falsely
reject the null hypothesis, than bootstrap resampling
(Koehn, 2004) in the context of machine translation.

5 Results and Analysis

The Arabic-to-English results are shown in Ta-
ble 2, and the Chinese-to-English results in Ta-
ble 3. All results are subdivided by genre following
NIST’s genre classification. Note that MT06 con-

LDC2004T17, LDC2004T18, LDC2005E46, LDC2005E83,
LDC2006E25, LDC2006E34, LDC2006E85, LDC2006E92,
and LDC2007T08. For Chinese-English: LDC2002E18,
LDC2003E07, LDC2003E14, LDC2005E83, LDC2005T06,
LDC2006E34, LDC2006E85, and LDC2006E92.
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systems and MT04 MT05 MT06 MT08 MT09 MT05–09
improvements tune NW NW WB ALL NW WB ALL NW WB ALL NW WB ALL

BLEU[%]
1a wordLM 51.90 53.83 46.76 34.69 43.41 48.77 33.26 42.37 52.97 34.25 44.34 50.51 34.00 45.63
2a +posLM 51.92 54.29 47.02 34.44 43.51 48.81 33.30 42.31 53.52 34.04 44.36 50.89 33.87 45.70
3a > wordLM +0.02 +0.46N +0.26 −0.25 +0.10 +0.04 +0.04 −0.06 +0.55N −0.21 +0.02 +0.38N −0.13 +0.07

4a +locLM 52.65 55.08 47.24 35.17 43.88 49.61 33.67 42.92 54.39 34.40 44.82 51.57 34.33 46.22
5a > wordLM +0.75N +1.25N +0.48N +0.48M +0.47N +0.84N +0.41 +0.55N +1.42N +0.15 +0.48N +1.06N +0.33M +0.59N

6a > +posLM +0.73N +0.79N +0.22 +0.73N +0.37M +0.80N +0.37 +0.61N +0.87N +0.36 +0.46N +0.68N +0.46N +0.52N

1-TER[%]
1b wordLM 58.32 59.04 54.27 45.62 51.68 55.59 44.41 50.69 59.90 46.43 53.03 56.94 45.49 53.13
2b +posLM 58.54 59.72 54.90 45.67 52.14 55.75 44.64 50.89 60.49 46.72 53.47 57.46 45.70 53.55
3b > wordLM +0.22M +0.68N +0.63N +0.05 +0.46N +0.16 +0.23 +0.20M +0.59N +0.29M +0.44N +0.52N +0.21N +0.42N

4b +locLM 58.95 60.06 54.88 45.62 52.11 56.42 44.91 51.38 60.91 46.84 53.74 57.79 45.83 53.81
5b > wordLM +0.63N +1.02N +0.61N +0.00 +0.43N +0.83N +0.50N +0.69N +1.01N +0.41M +0.71N +0.85N +0.34N +0.68N

6b > +posLM +0.41N +0.34M −0.02 −0.05 −0.03 +0.67N +0.27 +0.49N +0.42M +0.12 +0.27M +0.33N +0.13 +0.26N

# segments 1,353 1,056 1,033 764 1,797 813 547 1,360 586 727 1,313 3,488 2,038 5,526

Table 2: Results for Arabic-to-English translation. Comparison of our approach (+locLM, rows 4a/b) to the baseline
using a word language model (wordLM, rows 1a/b) and a competing approach using a POS-based language model
(+posLM, rows 2a/b). Results are presented using BLEU[%] (rows 1a–6a) and 1-TER[%] (rows 1b–6b) and broken
down by genre: NW=newswire, WB=web, and ALL=NW∪WB. Rows 3a/b, 5a/b, and 6a/b show the relative improve-
ments over the system mentioned to the right of the > sign. Statistically significant improvements/declines (using
approximate randomization) at the p < .01 level are marked N/ H and M/ O at the p < .05 level.

tains the genres ‘broadcast news’ and ‘newsgroup’.
In both tables, the former has been classified under
‘newswire’ and the latter under ‘web’.

The first approach is the baseline system
‘wordLM’ (rows 1a/b in Tables 2 and 3), which uses
a 5-gram word-based language model. The next ap-
proach ‘+posLM’ extends the baseline by adding a
7-gram POS language model (rows 2a/b in both ta-
bles). Rows 3a/b show the relative improvements
over the baseline. The third approach ‘+locLM’
(rows 4a/b) uses local language models in addition
to the baseline’s word-based model. Note that +lo-
cLM does not use the 7-gram POS language model
as well. Rows 5a/b show the relative improvements
of the local modeling approach over the baseline and
rows 6a/b the improvements over the approach using
a POS language model.

Let us first take a closer look at the Arabic-to-
English results in Table 2. The approach using a
POS language model results in statistically signifi-
cant improvements for only one test set (MT05) and
the newswire documents of MT09. The average im-
provements across all sets and genres are negligible
(+0.07 BLEU). Our local language modeling ap-
proach achieves the highest BLEU scores for all test

sets and across all genres. In particular, the improve-
ments of +1.06 BLEU for newswire documents are
substantial. With the exception of MT08-WB and
MT09-WB all BLEU improvements over the base-
line are statistically significant.

When evaluating with 1-TER, local language
modeling also achieves the best results, with the ex-
ception of MT06, where the POS language model
approach performs slightly better.

Turning to the Chinese-English results in Table 3,
we see similar improvements in BLEU. The im-
provements of using a POS language model are neg-
ligible (+0.04 BLEU). Here as well, local language
modeling leads to the best results, with substantial
improvements of +0.88 BLEU for web documents.

The major difference between Arabic-English and
Chinese-English is the discrepancy between BLEU
score improvements and decreases in 1-TER. While
we cannot explain this discrepancy, it is worth not-
ing that similar discrepancies between BLEU and
TER and Arabic-to-English and Chinese-to-English
translation can be found in the literature. The results
described in Shen et al. (2009) show a strong cor-
relation between BLEU and 1-TER improvements6

6Shen et al. (2009) report TER rather than 1-TER scores.
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systems and MT04 MT05 MT06 MT08 MT05–08
improvements tune NW NW WB ALL NW WB ALL NW WB ALL

BLEU[%]
1a wordLM 37.32 32.55 33.33 23.40 31.16 28.67 17.57 24.03 31.93 19.82 29.30
2a +posLM 37.32 32.47 33.13 23.67 31.06 28.63 18.46 24.35 31.82 20.46 29.34
3a > wordLM +0.00 −0.08 −0.20 +0.27 −0.10 −0.04 +0.89N +0.32 −0.11 +0.64N +0.04

4a +locLM 38.15 33.05 33.33 24.62 31.42 29.52 18.24 24.79 32.36 20.70 29.82
5a > wordLM +0.83N +0.50M +0.00 +1.22N +0.26 +0.85N +0.67M +0.76N +0.43N +0.88N +0.52N

6a > +posLM +0.83N +0.58N +0.20 +0.95N +0.36M +0.89N −0.22 +0.44M +0.54N +0.24 +0.48N

1-TER[%]
1b wordLM 42.81 40.73 42.99 39.42 42.15 40.42 36.77 38.78 41.53 37.77 40.63
2b +posLM 42.50 40.60 42.75 38.87 41.84 39.76 36.75 38.41 41.23 37.55 40.34
3b > wordLM −0.31O −0.13 −0.24 −0.55 −0.31O −0.66H −0.02 −0.37O −0.30H −0.22 −0.29H

4b +locLM 42.77 40.49 42.62 39.40 41.86 40.00 36.11 38.26 41.20 37.35 40.27
5b > wordLM −0.04 −0.24 −0.37 −0.02 −0.29 −0.42 −0.66H −0.52H −0.33O −0.42O −0.36H

6b > posLM +0.27 −0.11 −0.13 +0.53 +0.02 +0.24 −0.64H −0.15 −0.03 −0.20 −0.07

# segments 1,788 1,082 1,181 483 1,664 691 666 1,357 2,954 1,149 4,103

Table 3: Comparison of our system for Chinese-to-English translation. See Table 2 for details on notation.

for Arabic-to-English on the MT06 and MT08 sets,
but for Chinese-to-English the correlation seems to
be much weaker and BLEU improvements of +0.75
can correspond to decreases of up to -0.80 in 1-TER.

One of the motivations of using POS language
models in general, and local language models in our
case, is to improve the fluency of translations, which
should be reflected in increased precision for higher-
order n-grams. Table 4 shows that this is the case
when comparing local modeling to both word and
POS language models for Arabic-to-English trans-
lation. The same trend, but to a somewhat weaker
degree can be observed for Chinese-to-English.

Prec-1 Prec-2 Prec-3 Prec-4 BP

Arabic-English (MT05–09)
wordLM 81.38 54.51 38.10 26.99 0.987
+posLM 81.81 54.82 38.34 27.17 0.983
+locLM 81.90 55.35 39.01 27.86 0.981

Chinese-English (MT05–08)
wordLM 75.03 40.56 22.55 12.93 0.955
+posLM 74.81 40.30 22.41 12.83 0.962
+locLM 74.24 40.70 22.83 13.19 0.966

Table 4: BLEU n-gram precision (1≤n≤4) and Brevity
Penalty (BP) scores over all test sets.

The effectiveness of a POS language model of-
ten diminishes with improved translation quality of
the base system to which it is added. Naturally,
we are interested in the extent that this diminish-
ing effect also holds for our local language mod-

els. A full experimental setup, varying all relevant
factors, such as language, translation, and distor-
tion model size, and the various meta-parameters,
is beyond the scope of this paper. Nevertheless,
we can gauge this by taking a closer look at the
distribution of improvements within our experi-
ments. Figure 4 shows performance improvements
in document-level BLEU for both language pairs.
The document-level BLEU score for the baseline
system is plotted on the x-axis and improvements are
plotted on the y-axis. The dotted line is the linear
fit (using least square regression). If the effective-
ness of either added model (POS or local) dimin-
ishes with increasing translation quality, we would
expect a declining regression line. This is not the
case for Arabic-to-English translation. Relative im-
provements for both added models increase as the
translation quality of the baseline increases. The
slope of both regression fits is almost identical, but
the y-intercept is larger for our local modeling ap-
proach. Note that the small slope is also due to dif-
ference in scale between full BLEU scores and rel-
ative improvements. We can observe the opposite
for Chinese-to-English translation, where the slope
is negative. Both models seem to help more for
documents with lower baseline translation quality.
For the POS model, the regression line intersects
with the neutral line (±0 improvement) at around
31 BLEU, which is close to the average BLEU score
and in line with its negligible improvements (see Ta-
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Figure 4: Correlation between baseline BLEU scores for individual documents and the relative, absolute improvements
achieved by +posLM (left) and +locLM (right). BLEU scores (and improvements) are computed at the document level.

ble 3). For the local language model, the regres-
sion line intersects with the neutral line at about
40 BLEU, suggesting that until translation quality
improves substantially, local language models could
still have a positive impact.

6 Related Work

The main goal of this paper is to show that by tying
POS language models to lexical items, we get more
accurate distributions for specific words. The work
on factored language models (Bilmes and Kirchhoff,
2003) is related to our work to the extent that it also
mixes POS tags with lexical information, albeit in
a very different manner. Factored language models
use more general representations, such as POS tags
or stems, only during back-off. Kirchhoff and Yang
(2005) applied factored language models to machine
translation but the improvements were negligible.

Collins et al. (2005) proposed a discriminative
language modeling approach that uses mixtures of
POS and surface information and showed that it
leads to a reduction in speech recognition word er-

ror rates. On the other hand, their approach seems
more suited for n-best list re-ranking and it is not
clear whether those improvements carry over to ma-
chine translation. Li and Khudanpur (2008) adapted
this discriminative approach to machine translation
re-ranking but used surface forms only.

Wang et al. (2007) and Zheng et al. (2008)
use elaborately enriched representations, called su-
per abstract role values (Wang and Harper, 2002),
which capture contextual dependencies using lexi-
cal categories, role labels, and dependency grammar
structures. So far their approach has been limited to
re-ranking n-best lists only.

7 Conclusion

Though POS language models do not lead to signif-
icant improvements over a competitive baseline, we
have shown that a competitive phrase-based baseline
system can benefit from using POS information by
building lexically anchored local models. Our local
model approach does not only lead to more context-
specific probability distributions, but also takes ad-
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vantage of the language model probability of each
word being based on all surrounding local models.
The evaluations for Arabic- and Chinese-to-English
show that local models lead to statistically signifi-
cant improvements across different test sets and gen-
res. Correlating the translation quality of the base-
line with the improvements that result from adding
local models, further suggests that these improve-
ments are sustainable and should carry over to im-
proved baseline systems.
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Abstract

Although discriminative training guarantees to
improve statistical machine translation by in-
corporating a large amount of overlapping fea-
tures, it is hard to scale up to large data due to
decoding complexity. We propose a new al-
gorithm to generate translation forest of train-
ing data in linear time with the help of word
alignment. Our algorithm also alleviates the
oracle selection problem by ensuring that a
forest always contains derivations that exactly
yield the reference translation. With millions
of features trained on 519K sentences in 0.03
second per sentence, our system achieves sig-
nificant improvement by 0.84 BLEU over the
baseline system on the NIST Chinese-English
test sets.

1 Introduction

Discriminative model (Och and Ney, 2002) can
easily incorporate non-independent and overlapping
features, and has been dominating the research field
of statistical machine translation (SMT) in the last
decade. Recent work have shown that SMT benefits
a lot from exploiting large amount of features (Liang
et al., 2006; Tillmann and Zhang, 2006; Watanabe
et al., 2007; Blunsom et al., 2008; Chiang et al.,
2009). However, the training of the large number
of features was always restricted in fairly small data
sets. Some systems limit the number of training ex-
amples, while others use short sentences to maintain
efficiency.

Overfitting problem often comes when training
many features on a small data (Watanabe et al.,

2007; Chiang et al., 2009). Obviously, using much
more data can alleviate such problem. Furthermore,
large data also enables us to globally train millions
of sparse lexical features which offer accurate clues
for SMT. Despite these advantages, to the best of
our knowledge, no previous discriminative training
paradigms scale up to use a large amount of training
data. The main obstacle comes from the complexity
of packed forests or n-best lists generation which
requires to search through all possible translations
of each training example, which is computationally
prohibitive in practice for SMT.

To make normalization efficient, contrastive esti-
mation (Smith and Eisner, 2005; Poon et al., 2009)
introduce neighborhood for unsupervised log-linear
model, and has presented positive results in various
tasks. Motivated by these work, we use a translation
forest (Section 3) which contains both “reference”
derivations that potentially yield the reference trans-
lation and also neighboring “non-reference” deriva-
tions that fail to produce the reference translation.1

However, the complexity of generating this transla-
tion forest is up to O(n6), because we still need bi-
parsing to create the reference derivations.

Consequently, we propose a method to fast gener-
ate a subset of the forest. The key idea (Section 4)
is to initialize a reference derivation tree with maxi-
mum score by the help of word alignment, and then
traverse the tree to generate the subset forest in lin-
ear time. Besides the efficiency improvement, such
a forest allows us to train the model without resort-

1Exactly, there are no reference derivations, since derivation
is a latent variable in SMT. We call them reference derivation
just for convenience.
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e1 r1 X ⇒ ⟨X1 bei X2, X1 was X2⟩
e2 r2 X ⇒ ⟨qiangshou bei X1,

the gunman was X1⟩
e3 r3 X ⇒ ⟨jingfang X1, X1 by the police⟩
e4 r4 X ⇒ ⟨jingfang X1, police X1 ⟩
e5 r5 X ⇒ ⟨qiangshou, the gunman⟩
e6 r6 X ⇒ ⟨jibi, shot dead⟩

Figure 1: A translation forest which is the running example throughout this paper. The reference translation is “the
gunman was killed by the police”. (1) Solid hyperedges denote a “reference” derivation tree t1 which exactly yields
the reference translation. (2) Replacing e3 in t1 with e4 results a competing non-reference derivation t2, which fails to
swap the order of X3,4. (3) Removing e1 and e5 in t1 and adding e2 leads to another reference derivation t3. Generally,
this is done by deleting a node X0,1.

ing to constructing the oracle reference (Liang et al.,
2006; Watanabe et al., 2007; Chiang et al., 2009),
which is non-trivial for SMT and needs to be deter-
mined experimentally. Given such forests, we glob-
ally learn a log-linear model using stochastic gradi-
ent descend (Section 5). Overall, both the generation
of forests and the training algorithm are scalable, en-
abling us to train millions of features on large-scale
data.

To show the effect of our framework, we globally
train millions of word level context features moti-
vated by word sense disambiguation (Chan et al.,
2007) together with the features used in traditional
SMT system (Section 6). Training on 519K sentence
pairs in 0.03 seconds per sentence, we achieve sig-
nificantly improvement over the traditional pipeline
by 0.84 BLEU.

2 Synchronous Context Free Grammar

We work on synchronous context free grammar
(SCFG) (Chiang, 2007) based translation. The el-
ementary structures in an SCFG are rewrite rules of
the form:

X ⇒ ⟨γ, α⟩
where γ and α are strings of terminals and nonter-
minals. We call γ and α as the source side and the
target side of rule respectively. Here a rule means a
phrase translation (Koehn et al., 2003) or a transla-
tion pair that contains nonterminals.

We call a sequence of translation steps as a
derivation. In context of SCFG, a derivation is a se-

quence of SCFG rules {ri}. Translation forest (Mi
et al., 2008; Li and Eisner, 2009) is a compact repre-
sentation of all the derivations for a given sentence
under an SCFG (see Figure 1). A tree t in the forest
corresponds to a derivation. In our paper, tree means
the same as derivation.

More formally, a forest is a pair ⟨V, E⟩, where V
is the set of nodes, E is the set of hyperedge. For
a given source sentence f = fn

1 , Each node v ∈ V
is in the form Xi,j , which denotes the recognition
of nonterminal X spanning the substring from the i
through j (that is fi+1...fj). Each hyperedge e ∈ E
connects a set of antecedent to a single consequent
node and corresponds to an SCFG rule r(e).

3 Our Translation Forest

We use a translation forest that contains both “ref-
erence” derivations that potentially yield the refer-
ence translation and also some neighboring “non-
reference” derivations that fail to produce the ref-
erence translation. Therefore, our forest only repre-
sents some of the derivations for a sentence given an
SCFG rule table. The motivation of using such a for-
est is efficiency. However, since this space contains
both “good” and “bad” translations, it still provides
evidences for discriminative training.

First see the example in Figure 1. The derivation
tree t1 represented by solid hyperedges is a reference
derivation. We can construct a non-reference deriva-
tion by making small change to t1. By replacing the
e3 of t1 with e4, we obtain a non-reference deriva-
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tion tree t2. Considering the rules in each derivation,
the difference between t1 and t2 lies in r3 and r4. Al-
though r3 has a same source side with r4, it produces
a different translation. While r3 provides a swap-
ping translation, r4 generates a monotone transla-
tion. Thus, the derivation t2 fails to move the sub-
ject “police” to the behind of verb “shot dead”, re-
sulting a wrong translation “the gunman was police
shot dead”. Given such derivations, we hope that
the discriminative model is capable to explain why
should use a reordering rule in this context.

Generally, our forest contains all the reference
derivationsRT for a sentence given a rule table, and
some neighboring non-reference derivations NT ,
which can be defined fromRT .

More formally, we call two hyperedges e1 and e2

are competing hyperedges, if their corresponding
rules r(e1) = ⟨γ1, α1⟩ and r(e2) = ⟨γ2, α2⟩ :

γ1 = γ2 ∧ α1 ̸= α2 (1)

This means they give different translations for a
same source side. We use C(e) to represent the set
of competing hyperedges of e.

Two derivations t1 = ⟨V 1, E1⟩ and t2 =
⟨V 2, E2⟩ are competing derivations if there exists
e1 ∈ E1 and e2 ∈ E2: 2

V 1 = V 2 ∧ E1 − e1 = E2 − e2

∧ e2 ∈ C(e1) (2)

In other words, derivations t1 and t2 only differ in
e1 and e2, and these two hyperedges are competing
hyperedges. We use C(t) to represent the set of com-
peting derivations of tree t, and C(t,e) to represent
the set of competing derivations of t if the competi-
tion occurs in hyperedge e in t.

Given a rule table, the set of reference derivations
RT for a sentence is determined. Then, the set of
non-reference derivations NT can be defined from
RT :

∪t∈RT C(t) (3)

Overall, our forest is the compact representation of
RT and NT .

2The definition of derivation tree is similar to forest, except
that the tree contains exactly one tree while forest contains ex-
ponentially trees. In tree, the hyperedge degrades to edge.

Algorithm 1 Forest Generation
1: procedure GENERATE(t)
2: list← t
3: for v ∈ t in post order do
4: e← incoming edge of v
5: append C(t, e) to list;
6: for u ∈ child(v) from left to right do
7: tn← OPERATE(t, u)
8: if tn ̸= t then
9: append tn to list

10: for e
′ ∈ tn ∧ e

′
/∈ t do

11: append C(tn,e
′
) to list

12: if SCORE(t) < SCORE(tn) then
13: t← tn
14: return t,list

4 Fast Generation

It is still slow to calculate the entire forest defined
in Section 3, therefore we use a greedy decoding for
fast generating a subset of the forest. Starting form
a reference derivation, we try to slightly change the
derivation into a new reference derivation. During
this process, we collect the competing derivations
of reference derivations. We describe the details of
local operators for changing a derivation in section
4.1, and then introduce the creation of initial refer-
ence derivation with max score in Section 4.2.

For example, given derivation t1, we delete the
node X0,1 and the related hyperedge e1 and e5. Fix-
ing the other nodes and edges, we try to add a new
edge e2 to create a new reference translation. In this
case, if rule r2 really exists in our rule table, we get
a new reference derivation t3. After constructing t3,
we first collect the new tree and C(t3, e2). Then, we
will move to t3, if the score of t3 is higher than t2.
Notably, if r2 does not exist in the rule table, we fail
to create a new reference derivation. In such case,
we keep the origin derivation unchanged.

Algorithm 1 shows the process of generation.3

The input is a reference derivation t, and the out-
put is a new derivation and the generated derivations.

3For simplicity, we list all the trees, and do not compress
them into a forest in practice. It is straight to extent the algo-
rithm to get a compact forest for those generated derivations.
Actually, instead of storing the derivations, we call the generate
function twice to calculate gradient of log-linear model.
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Figure 2: Lexicalize and generalize operators over t1 (part) in Figure 1. Although here only shows the nodes, we also
need to change relative edges actually. (1) Applying lexicalize operator on the non-terminal node X0,1 in (a) results a
new derivation shown in (b). (2) When visiting bei in (b), the generalize operator changes the derivation into (c).

The list used for storing forest is initialized with the
input tree (line 2). We visit the nodes in t in post-
order (line 3). For each node v, we first append the
competing derivations C(t,e) to list, where e is in-
coming edge of v (lines 4-5). Then, we apply oper-
ators on the child nodes of v from left to right (lines
6-13). The operators returns a reference derivation
tn (line 7). If it is new (line 8), we collect both the tn
(line 9), and also the competing derivations C(tn, e′)
of the new derivation on those edges e′ which only
occur in the new derivation (lines 10-11). Finally, if
the new derivation has a larger score, we will replace
the origin derivation with new one (lines 12-13).

Although there is a two-level loop for visiting
nodes (line 3 and 6), each node is visited only one
time in the inner loops. Thus, the complexity is
linear with the number of nodes #node. Consid-
ering that the number of source word (also leaf node
here) is less than the total number of nodes and is
more than ⌈(#node+1)/2⌉, the time complexity of
the process is also linear with the number of source
word.

4.1 Lexicalize and Generalize

The function OPERATE in Algorithm 1 uses two op-
erators to change a node: lexicalize and generalize.
Figure 2 shows the effects of the two operators. The
lexicalize operator works on nonterminal nodes. It
moves away a nonterminal node and attaches the
children of current node to its parent. In Figure 2(b),
the node X0,1 is deleted, requiring a more lexical-
ized rule to be applied to the parent node X0,4 (one
more terminal in the source side). We constrain the
lexicalize operator to apply on pre-terminal nodes
whose children are all terminal nodes. In contrast,
the generalize operator works on terminal nodes and

inserts a nonterminal node between current node and
its parent node. This operator generalizes over the
continuous terminal sibling nodes left to the current
node (including the current node). Generalizing the
node bei in Figure 2(b) results Figure 2(c). A new
node X0,2 is inserted as the parent of node qiang-
shou and node bei.

Notably, there are two steps when apply an oper-
ator. Suppose we want to lexicalize the node X0,1

in t1 of Figure 1, we first delete the node X0,1 and
related edge e1 and e5, then we try to add the new
edge e2. Since rule table is fixed, the second step
is a process of decoding. Therefore, sometimes we
may fail to create a new reference derivation (like
r2 may not exist in the rule table). In such case, we
keep the origin derivation unchanged.

The changes made by the two operators are local.
Considering the change of rules, the lexicalize oper-
ator deletes two rules and adds one new rule, while
the generalize operator deletes one rule and adds two
new rules. Such local changes provide us with a way
to incrementally calculate the scores of new deriva-
tions. We use this method motivated by Gibbs Sam-
pler (Blunsom et al., 2009) which has been used for
efficiently learning rules. The different lies in that
we use the operator for decoding where the rule ta-
ble is fixing.

4.2 Initialize a Reference Derivation

The generation starts from an initial reference
derivation with max score. This requires bi-parsing
(Dyer, 2010) over the source sentence f and the ref-
erence translation e. In practice, we may face three
problems.

First is efficiency problem. Exhaustive search
over the space under SCFG requires O(|f |3|e|3).
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To parse quickly, we only visit the tight consistent
(Zhang et al., 2008) bi-spans with the help of word
alignment a. Only visiting tight consistent spans
greatly speeds up bi-parsing. Besides efficiency,
adoption of this constraint receives support from the
fact that heuristic SCFG rule extraction only extracts
tight consistent initial phrases (Chiang, 2007).

Second is degenerate problem. If we only use
the features as traditional SCFG systems, the bi-
parsing may end with a derivation consists of some
giant rules or rules with rare source/target sides,
which is called degenerate solution (DeNero et al.,
2006). That is because the translation rules with rare
source/target sides always receive a very high trans-
lation probability. We add a prior score log(#rule)
for each rule, where #rule is the number of occur-
rence of a rule, to reward frequent reusable rules and
derivations with more rules.

Finally, we may fail to create reference deriva-
tions due to the limitation in rule extraction. We
create minimum trees for (f , e,a) using shift-reduce
(Zhang et al., 2008). Some minimum rules in the
trees may be illegal according to the definition of
Chiang (2007). We also add these rules to the rule
table, so as to make sure every sentence is reachable
given the rule table. A source sentence is reachable
given a rule table if reference derivations exists. We
refer these rules as added rules. However, this may
introduce rules with more than two variables and in-
crease the complexity of bi-parsing. To tackle this
problem, we initialize the chart with minimum par-
allel tree from the Zhang et al. (2008) algorithm,
ensuring that the bi-parsing has at least one path to
create a reference derivation. Then we only need to
consider the traditional rules during bi-parsing.

5 Training

We use the forest to train a log-linear model with a
latent variable as describe in Blunsom et al.(2008).
The probability p(e|f) is the sum over all possible
derivations:

p(e|f) =
∑

t∈△(e,f)

p(t, e|f) (4)

where △(e, f) is the set of all possible derivations
that translate f into e and t is one such derivation.4

4Although the derivation is typically represent as d, we de-
notes it by t since our paper use tree to represent derivation.

Algorithm 2 Training
1: procedure TRAIN(S)
2: Training Data S = {fn, en,an}Nn=1

3: Derivations T = {}Nn=1

4: for n = 1 to N do
5: tn ← INITIAL(fn, en,an)
6: i← 0
7: for m = 0 to M do
8: for n = 0 to N do
9: η ← LEARNRATE(i)

10: (∆L(wi, tn), tn)←GENERATE(tn)
11: wi ← wi + η ×∆L(wi, tn)
12: i← i + 1

13: return
∑MN

i=1 wi

MN

This model defines the conditional probability of
a derivation t and the corresponding translation e
given a source sentence f as:

p(t, e|f) =
exp

∑
i λihi(t, e, f)

Z(f)
(5)

where the partition function is

Z(f) =
∑

e

∑

t∈△(e,f)

exp
∑

i

λihi(t, e, f) (6)

The partition function is approximated by our for-
est, which is labeled as Z̃(f), and the derivations
that produce reference translation is approximated
by reference derivations in Z̃(f).

We estimate the parameters in log-linear model
using maximum a posteriori (MAP) estimator. It
maximizes the likelihood of the bilingual corpus
S = {fn, en}Nn=1, penalized using a gaussian prior
(L2 norm) with the probability density function
p0(λi) ∝ exp(−λ2

i /2σ2). We set σ2 to 1.0 in our
experiments. This results in the following gradient:

∂L
∂λi

= Ep(t|e,f)[hi]− Ep(e|f)[hi]−
λi

σ2
(7)

We use an online learning algorithm to train the
parameters. We implement stochastic gradient de-
scent (SGD) recommended by Bottou.5 The dy-
namic learning rate we use is N

(i+i0) , where N is the

5http://leon.bottou.org/projects/sgd
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number of training example, i is the training itera-
tion, and i0 is a constant number used to get a initial
learning rate, which is determined by calibration.

Algorithm 2 shows the entire process. We first
create an initial reference derivation for every train-
ing examples using bi-parsing (lines 4-5), and then
online learn the parameters using SGD (lines 6-12).
We use the GENERATE function to calculate the gra-
dient. In practice, instead of storing all the deriva-
tions in a list, we traverse the tree twice. The first
time is calculating the partition function, and the
second time calculates the gradient normalized by
partition function. During training, we also change
the derivations (line 10). When training is finished
after M epochs, the algorithm returns an averaged
weight vector (Collins, 2002) to avoid overfitting
(line 13). We use a development set to select total
epoch m, which is set as M = 5 in our experiments.

6 Experiments

Our method is able to train a large number of fea-
tures on large data. We use a set of word context
features motivated by word sense disambiguation
(Chan et al., 2007) to test scalability. A word level
context feature is a triple (f, e, f+1), which counts
the number of time that f is aligned to e and f+1 oc-
curs to the right of f . Triple (f, e, f−1) is similar ex-
cept that f−1 locates to the left of f . We retain word
alignment information in the extracted rules to ex-
ploit such features. To demonstrate the importance
of scaling up the size of training data and the effect
of our method, we compare three types of training
configurations which differ in the size of features
and data.

MERT. We use MERT (Och, 2003) to training 8
features on a small data. The 8 features is the same
as Chiang (2007) including 4 rule scores (direct and
reverse translation scores; direct and reverse lexi-
cal translation scores); 1 target side language model
score; 3 penalties for word counts, extracted rules
and glue rule. Actually, traditional pipeline often
uses such configuration.

Perceptron. We also learn thousands of context
word features together with the 8 traditional features
on a small data using perceptron. Following (Chiang
et al., 2009), we only use 100 most frequent words
for word context feature. This setting use CKY de-

TRAIN RTRAIN DEV TEST

#Sent. 519,359 186,810 878 3,789
#Word 8.6M 1.3M 23K 105K

Avg. Len. 16.5 7.3 26.4 28.0
Lon. Len. 99 95 77 116

Table 1: Corpus statistics of Chinese side, where Sent.,
Avg., Lon., and Len. are short for sentence, longest,
average, and length respectively. RTRAIN denotes the
reachable (given rule table without added rules) subset of
TRAIN data.

coder to generate n-best lists for training. The com-
plexity of CKY decoding limits the training data into
a small size. We fix the 8 traditional feature weights
as MERT to get a comparable results as MERT.

Our Method. Finally, we use our method to train
millions of features on large data. The use of large
data promises us to use full vocabulary of training
data for the context word features, which results mil-
lions of fully lexicalized context features. During
decoding, when a context feature does not exit, we
simply ignore it. The weights of 8 traditional fea-
tures are fixed the same as MERT also. We fix these
weights because the translation feature weights fluc-
tuate intensely during online learning. The main rea-
son may come from the degeneration solution men-
tioned in Section 4.2, where rare rules with very high
translation probability are selected as the reference
derivations. Another reason could be the fact that
translation features are dense intensify the fluctua-
tion. We leave learning without fixing the 8 feature
weights to future work.

6.1 Data
We focus on the Chinese-to-English translation task
in this paper. The bilingual corpus we use con-
tains 519, 359 sentence pairs, with an average length
of 16.5 in source side and 20.3 in target side,
where 186, 810 sentence pairs (36%) are reach-
able (without added rules in Section 4.2). The
monolingual data includes the Xinhua portion of
the GIGAWORD corpus, which contains 238M En-
glish words. We use the NIST evaluation sets of
2002 (MT02) as our development set, and sets of
MT03/MT04/MT05 as test sets. Table 2 shows the
statistics of all bilingual corpus.

We use GIZA++ (Och and Ney, 2003) to perform
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System #DATA #FEAT MT03 MT04 MT05 ALL
MERT 878 8 33.03 35.12 32.32 33.85

Perceptron 878 2.4K 32.89 34.88 32.55 33.76

Our Method
187K 2.0M 33.64 35.48 32.91* 34.41*
519K 13.9M 34.19* 35.72* 33.09* 34.69*

Improvement over MERT +1.16 +0.60 +0.77 +0.84

Table 2: Effect of our method comparing with MERT and perceptron in terms of BLEU. We also compare our fast
generation method with different data (only reachable or full data). #Data is the size of data for training the feature
weights. * means significantly (Koehn, 2004) better than MERT (p < 0.01).

word alignment in both directions, and grow-diag-
final-and (Koehn et al., 2003) to generate symmet-
ric word alignment. We extract SCFG rules as de-
scribed in Chiang (2007) and also added rules (Sec-
tion 4.2). Our algorithm runs on the entire training
data, which requires to load all the rules into the
memory. To fit within memory, we cut off those
composed rules which only happen once in the train-
ing data. Here a composed rule is a rule that can be
produced by any other extracted rules. A 4-grams
language model is trained by the SRILM toolkit
(Stolcke, 2002). Case-insensitive NIST BLEU4 (Pa-
pineni et al., 2002) is used to measure translation
performance.

The training data comes from a subset of the
LDC data including LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06. Since the rule ta-
ble of the entire data is too large to be loaded to
the memory (even drop one-count rules), we remove
many sentence pairs to create a much smaller data
yet having a comparable performance with the entire
data. The intuition lies in that if most of the source
words of a sentence need to be translated by the
added rules, then the word alignment may be highly
crossed and the sentence may be useless. We cre-
ate minimum rules from a sentence pair, and count
the number of source words in those minimum rules
that are added rules. For example, suppose the result
minimum rules of a sentence contain r3 which is an
added rule, then we count 1 time for the sentence. If
the number of such source word is more than 10%
of the total number, we will drop the sentence pair.

We compare the performances of MERT setting
on three bilingual data: the entire data that contains
42.3M Chinese and 48.2M English words; 519K

data that contains 8.6M Chinese and 10.6M En-
glish words; FBIS (LDC2003E14) parts that con-
tains 6.9M Chinese and 9.1M English words. They
produce 33.11/32.32/30.47 BLEU tested on MT05
respectively. The performance of 519K data is com-
parable with that of entire data, and much higher
than that of FBIS data.

6.2 Result

Table 3 shows the performance of the three different
training configurations. The training of MERT and
perceptron run on MT02. For our method, we com-
pare two different training sets: one is trained on
all 519K sentence pairs, the other only uses 186K
reachable sentences.

Although the perceptron system exploits 2.4K
features, it fails to produce stable improvements
over MERT. The reason may come from overfitting,
since the training data for perceptron contains only
878 sentences. However, when use our method to
learn the word context feature on the 519K data,
we significantly improve the performance by 0.84
points on the entire test sets (ALL). The improve-
ments range from 0.60 to 1.16 points on MT03-
05. Because we use the full vocabulary, the num-
ber of features increased into 13.9 millions, which is
impractical to be trained on the small development
set. These results confirm the necessity of exploiting
more features and learning the parameters on large
data. Meanwhile, such results also demonstrate that
we can benefits from the forest generated by our fast
method instead of traditional CKY algorithm.

Not surprisingly, the improvements are smaller
when only use 186K reachable sentences. Some-
times we even fail to gain significant improvement.
This verifies our motivation to guarantee all sentence
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Figure 3: Plot of training times (including forest genera-
tion and SGD training) versus sentence length. We ran-
domly select 1000 sentence from the 519K data for plot-
ting.

are reachable, so as to use all training data.

6.3 Speed

How about the speed of our framework? Our method
learns in 32 mlliseconds/sentence. Figure 3 shows
training times (including forest generation and SGD
training) versus sentence length. The plot confirms
that our training algorithm scales linearly. If we
use n-best lists which generated by CKY decoder
as MERT, it takes about 3105 milliseconds/sentence
for producing 100-best lists. Our method accelerates
the speed about 97 times (even though we search
twice to calculate the gradient). This shows the effi-
ciency of our method.

The procedure of training includes two steps. (1)
Bi-parsing to initialize a reference derivation with
max score. (2) Training procedure which generates
a set of derivations to calculate the gradient and up-
date parameters. Step (1) only runs once. The av-
erage time of processing a sentence for each step
is about 9.5 milliseconds and 30.2 milliseconds re-
spectively.

For simplicity we do not compress the generated
derivations into forests, therefore the size of result-
ing derivations is fairly small, which is about 265.8
for each sentence on average, where 6.1 of them are
reference derivations. Furthermore, we use lexical-
ize operator more often than generalize operator (the
ration between them is 1.5 to 1). Lexicalize operator
is used more frequently mainly dues to that the ref-
erence derivations are initialized with reusable (thus

small) rules.

7 Related Work

Minimum error rate training (Och, 2003) is perhaps
the most popular discriminative training for SMT.
However, it fails to scale to large number of features.
Researchers have propose many learning algorithms
to train many features: perceptron (Shen et al., 2004;
Liang et al., 2006), minimum risk (Smith and Eisner,
2006; Li et al., 2009), MIRA (Watanabe et al., 2007;
Chiang et al., 2009), gradient descent (Blunsom et
al., 2008; Blunsom and Osborne, 2008). The com-
plexity of n-best lists or packed forests generation
hamper these algorithms to scale to a large amount
of data.

For efficiency, we only use neighboring deriva-
tions for training. Such motivation is same as con-
trastive estimation (Smith and Eisner, 2005; Poon et
al., 2009). The difference lies in that the previous
work actually care about their latent variables (pos
tags, segmentation, dependency trees, etc), while
we are only interested in their marginal distribution.
Furthermore, we focus on how to fast generate trans-
lation forest for training.

The local operators lexicalize/generalize are use
for greedy decoding. The idea is related to “peg-
ging” algorithm (Brown et al., 1993) and greedy de-
coding (Germann et al., 2001). Such types of local
operators are also used in Gibbs sampler for syn-
chronous grammar induction (Blunsom et al., 2009;
Cohn and Blunsom, 2009).

8 Conclusion and Future Work

We have presented a fast generation algorithm for
translation forest which contains both reference
derivations and neighboring non-reference deriva-
tions for large-scale SMT discriminative training.
We have achieved significantly improvement of 0.84
BLEU by incorporate 13.9M feature trained on 519K
data in 0.03 second per sentence.

In this paper, we define the forest based on com-
peting derivations which only differ in one rule.
There may be better classes of forest that can pro-
duce a better performance. It’s interesting to modify
the definition of forest, and use more local operators
to increase the size of forest. Furthermore, since the
generation of forests is quite general, it’s straight to
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apply our forest on other learning algorithms. Fi-
nally, we hope to exploit more features such as re-
ordering features and syntactic features so as to fur-
ther improve the performance.
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Abstract

Models of word alignment built as sequences
of links have limited expressive power, but are
easy to decode. Word aligners that model the
alignment matrix can express arbitrary align-
ments, but are difficult to decode. We pro-
pose an alignment matrix model as a cor-
rection algorithm to an underlying sequence-
based aligner. Then a greedy decoding al-
gorithm enables the full expressive power of
the alignment matrix formulation. Improved
alignment performance is shown for all nine
language pairs tested. The improved align-
ments also improved translation quality from
Chinese to English and English to Italian.

1 Introduction

Word-level alignments of parallel text are crucial for
enabling machine learning algorithms to fully uti-
lize parallel corpora as training data. Word align-
ments appear as hidden variables in IBM Models 1-
5 (Brown et al., 1993) in order to bridge a gap be-
tween the sentence-level granularity that is explicit
in the training data, and the implicit word-level cor-
respondence that is needed to statistically model lex-
ical ambiguity and word order rearrangements that
are inherent in the translation process. Other no-
table applications of word alignments include cross-
language projection of linguistic analyzers (such as
POS taggers and named entity detectors,) a subject
which continues to be of interest. (Yarowsky et al.,
2001), (Benajiba and Zitouni, 2010)

The structure of the alignment model is tightly
linked to the task of finding the optimal alignment.

Many alignment models are factorized in order to
use dynamic programming and beam search for ef-
ficient marginalization and search. Such a factoriza-
tion encourages - but does not require - a sequential
(often left-to-right) decoding order. If left-to-right
decoding is adopted (and exact dynamic program-
ming is intractable) important right context may ex-
ist beyond the search window. For example, the link-
age of an English determiner may be considered be-
fore the linkage of a distant head noun.

An alignment model that jointly models all of the
links in the entire sentence does not motivate a par-
ticular decoding order. It simply assigns comparable
scores to the alignment of the entire sentence, and
may be used to rescore the top-N hypotheses of an-
other aligner, or to decide whether heuristic pertur-
bations to the output of an existing aligner constitute
an improvement. Both the training and decoding of
full-sentence models have presented difficulties in
the past, and approximations are necessary.

In this paper, we will show that by using an ex-
isting alignment as a starting point, we can make a
significant improvement to the alignment by propos-
ing a series of heuristic perturbations. In effect, we
train a model to fix the errors of the existing aligner.
From any initial alignment configuration, these per-
turbations define a multitude of paths to the refer-
ence (gold) alignment. Our model learns alignment
moves that modify an initial alignment into the ref-
erence alignment. Furthermore, the resulting model
assigns a score to the alignment and thus could be
used in numerous rescoring algorithms, such as top-
N rescorers.

In particular, we use the maximum entropy frame-
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work to choose alignment moves. The model is sym-
metric: source and target languages are interchange-
able. The alignment moves are sufficiently rich to
reach arbitrary phrase to phrase alignments. Since
most of the features in the model are not language-
specific, we are able to test the correction model
easily on nine language pairs; our corrections im-
proved the alignment quality compared to the input
alignments in all nine. We also tested the impact on
translation and found a 0.48 BLEU improvement on
Chinese to English and a 1.26 BLEU improvement
on English to Italian translation.

2 Alignment sequence models

Sequence models are the traditional workhorse for
word alignment, appearing, for instance, in IBM
Models 1-5. This type of alignment model is not
symmetric; interchanging source and target lan-
guages results in a different aligner. This parameter-
ization does not allow a target word to be linked to
more than one source word, so some phrasal align-
ments are simply not considered. Often the choice of
directionality is motivated by this restriction, and the
choice of tokenization style may be designed (Lee,
2004) to reduce this problem. Nevertheless, aligners
that use this parameterization internally often incor-
porate various heuristics in order to augment their
output with the disallowed alignments - for example,
swapping source and target languages to obtain a
second alignment (Koehn et al., 2007) with different
limitations. Training both directions jointly (Liang
et al., 2006) and using posterior probabilities dur-
ing alignment prediction even allows the model to
see limited right context. Another alignment combi-
nation strategy (Deng and Zhou, 2009) directly op-
timizes the size of the phrase table of a target MT
system.

Generative models (such as Models 1-5, and the
HMM model (Vogel et al., 1996)) motivate a narra-
tive where alignments are selected left-to-right and
target words are then generated conditioned upon
the alignment and the source words. Generative
models are typically trained unsupervised, from par-
allel corpora without manually annotated word-level
alignments.

Discriminative models of alignment incorporate
source and target words, as well as more linguisti-

cally motivated features into the prediction of align-
ment. These models are trained from annotated
word alignments. Examples include the maximum
entropy model of (Ittycheriah and Roukos, 2005) or
the conditional random field jointly normalized over
the entire sequence of alignments of (Blunsom and
Cohn, 2006).

3 Joint Models

An alternate parameterization of alignment is the
alignment matrix (Niehues and Vogel, 2008). For a
source sentence F consisting of words f1...fm, and
a target sentence E = e1...el, the alignment matrix
A = {σij} is an l × m matrix of binary variables.
If σij = 1, then ei is said to be linked to fj . If ei
is unlinked then σij = 0 for all j. There is no con-
straint limiting the number of source tokens to which
a target word is linked either; thus the binary ma-
trix allows some alignments that cannot be modeled
by the sequence parameterization. All 2lm binary
matrices are potentially allowed in alignment matrix
models. For typical l and m, 2lm � (m + 1)l, the
number of alignments described by a comparable se-
quence model. This parameterization is symmetric -
if source and target are interchanged, then the align-
ment matrix is transposed.

A straightforward approach to the alignment ma-
trix is to build a log linear model (Liu et al., 2005)
for the probability of the alignmentA. (We continue
to refer to “source” and “target” words only for con-
sistency of notation - alignment models such as this
are indifferent to the actual direction of translation.)
The log linear model for the alignment (Liu et al.,
2005) is

p(A|E,F ) =
exp (

∑
i λiφi(A,E, F ))

Z(E,F )
(1)

where the partition function (normalization) is given
by

Z(E,F ) =
∑

A

exp

(∑

i

λiφi(A,E, F )

)
. (2)

Here the φi(A,E, F ) are feature functions. The
model is parameterized by a set of weights λi, one
for each feature function. Feature functions are often
binary, but are not required to be. Feature functions
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may depend upon any number of components σij of
the alignment matrix A.

The sum over all alignments of a sentence pair
(2lm terms) in the partition function is computa-
tionally impractical except for very short sentences,
and is rarely amenable to dynamic programming.
Thus the partition function is replaced by an ap-
proximation. For example, the sum over all align-
ments may be restricted to a sum over the n-best
list from other aligners (Liu et al., 2005). This ap-
proximation was found to be inconsistent for small
n unless the merged results of several aligners were
used. Alternately, loopy belief propagation tech-
niques were used in (Niehues and Vogel, 2008).
Loopy belief propagation is not guaranteed to con-
verge, and feature design is influenced by consider-
ation of the loops created by the features. Outside
of the maximum entropy framework, similar models
have been trained using maximum weighted bipar-
tite graph matching (Taskar et al., 2005), averaged
perceptron (Moore, 2005), (Moore et al., 2006), and
transformation-based learning (Ayan et al., 2005).

4 Alignment Correction Model

In this section we describe a novel approach to word
alignment, in which we train a log linear (maximum
entropy) model of alignment by viewing it as correc-
tion model that fixes the errors of an existing aligner.
We assume a priori that the aligner will start from
an existing alignment of reasonable quality, and will
attempt to apply a series of small changes to that
alignment in order to correct it. The aligner naturally
consists of a move generator and a move selector.

The move generator perturbs an existing align-
ment A in order to create a set of candidate align-
ments Mt(A), all of which are nearby to A in the
space of alignments. We index the set of moves by
the decoding step t to indicate that we generate en-
tirely different (even non-overlapping) sets of moves
at different steps t of the alignment prediction. Typ-
ically the moves affect linkages local to a particular
word, e.g. the t’th source word.

The move selector then chooses one of the align-
ments At+1 ∈ Mt(At), and proceeds iteratively:
At+2 ∈ Mt+1(At+1), etc. until suitable termina-
tion criteria are reached. Pseudocode is depicted in
Fig. (1.) In practice, one move for each source and

Input: sentence pair E1 .. El, F1 .. Fm
Input: alignment A
Output: improved alignment Afinal

for t = 1→ l do
generate moves:Mt(At)
select move:
At+1 ← argmaxA∈Mt(At)p(A|At, E, F )

Afinal ← Al+1

{repeat for source words}

Figure 1: pseudocode for alignment correction

target word is sufficient.

4.1 Move generation

Many different types of alignment perturbations are
possible. Here we restrict ourselves to a very sim-
ple move generator that changes the linkage of ex-
actly one source word at a time, or exactly one target
word at a time. Many of our corrections are simi-
lar to those of (Setiawan et al., 2010), although our
motivation is perhaps closer to (Brown et al., 1993),
who used similar perturbations to approximate in-
tractable sums that arise when estimating the param-
eters of the generative models Models 3-5, and ap-
proach refined in (Och and Ney, 2003). We note that
our corrections are designed to improve even a high-
quality starting alignment; in contrast the model of
(Fossum et al., 2008) considers deletion of links
from an initial alignment (union of aligners) that is
likely to overproduce links.

From the point of view of the alignment ma-
trix, we consider changes to one row or one col-
umn (generically, one slice) of the alignment matrix.
At each step t, the move set Mt(At) is formed by
choosing a slice of the current alignment matrix At,
and generating all possible alignments from a few
families of moves. Then the move generator picks
another slice and repeats. The m + l slices are cy-
cled in a fixed order: the first m slices correspond to
source words (ordered according to a heuristic top-
down traversal of the dependency parse tree if avail-
able), and the remaining l slices correspond to target
words, similarly parse-ordered. For each slice we
consider the following families of moves, illustrated
by rows.

• add link to row i - for one j such that σij = 0,
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make σij = 1 (shown here for row i = 1.)

α β γ

a ◦ ◦ ◦
b ◦ • ◦
c ◦ ◦ ◦

=⇒

α β γ

a • ◦ ◦
b ◦ • ◦
c ◦ ◦ ◦

• remove one or more links from row i - for some
j such that σij = 1, make σij = 0 (shown here
for i = 3.)

α β γ

a • ◦ ◦
b ◦ • ◦
c ◦ ◦ •

=⇒

α β γ

a • ◦ ◦
b ◦ • ◦
c ◦ ◦ ◦

• move a link in row i - for one j and one j′ such
that σij = 1 and σij′ = 0, make σij = 0 and
σij′ = 1 (shown here for i = 1.)

α β γ

a ◦ • ◦
b ◦ • ◦
c ◦ ◦ ◦

=⇒

α β γ

a • ◦ ◦
b ◦ • ◦
c ◦ ◦ ◦

• leave row i unchanged

Similar families of moves apply to column slices
(source words.) In practice, perturbations are re-
stricted by a window (typically ±5 from existing
links.) If the given source word is unlinked, we
consider adding a link to each target word in a win-
dow (±5 from nearby links.) The window size re-
strictions mean that some reference alignments are
not reachable from the starting point. However, this
is unlikely to limit performance - an oracle aligner
achieves 97.6%F -measure on the Arabic-English
training set.

4.2 Move selection

A log linear model for the selection of the candidate
alignment at t+1 from the set of alignmentsMt(At)
generated by the move generator at step t takes the
form:

p(At+1|E,F,Mt(At)) =
e

P
i λiφi(At+1,E,F )

Z(E,F,Mt(At))
(3)

where the partition function is now given by

Z(E,F,M) =
∑

A∈M
e

P
i λiφi(A,E,F ) (4)

and At+1 ∈ Mt(At) is required for correct normal-
ization. This equation is notationally very similar
to equation (1), except that the predictions of the
model are restricted to a small set of nearby align-
ments. For the move generator considered in this pa-
per, the summation in Eq.(4) is similarly restricted,
and hence training the model is tractable. The set
of candidate alignmentsMt(At) typically does not
contain the reference (gold) alignment; we model
the best alignment among a finite set of alternatives,
rather than the correct alignment from among all
possible alignments. This is a key difference be-
tween our model and (Liu et al., 2005).

Note that if we extended our definition of pertur-
bation to the limiting case that the alignment set in-
cluded all possible alignments then we would clearly
recover the standard log linear model of alignment.

4.3 Training

Since the model is designed to predict perturbation
to an alignment, it is trained from a collection of
errorful alignments and corresponding reference se-
quences of aligner moves that reach the reference
(gold) alignment. We construct a training set from
a collection of sentence pairs and reference align-
ments for training (A∗n, En, Fn)Nn=1, as well as col-
lections of corresponding “first pass” alignmentsAn1
produced by another aligner. For each n, we form a
number of candidate alignment sets Mt(A

n
t ), one

for each source and target word. For training pur-
poses, the true alignment from the set is taken to be
the one identical withA∗n in the slice targeted by the
move generator at the current step. (A small number
of move sets do not have an exact match and are dis-
carded.) Then we form an objective function from
the log likelihood of reference alignment, smoothed
with a gaussian prior

L =
∑

n

Ln +
∑

i

(λi/γ)2 (5)
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where the likelihood of each training sample is

Ln =
∑

α

log p1(A
0
n|E,Fn;M(fα, A

0
n, E, Fn))

+
∑

β

log p1(A
0
n|E,Fn;M(eβ, A

0
n, E, Fn)) (6)

The likelihood has a term for each sentence pair
and for each decoder step. The model is trained
by gradient ascent using the l-BFGS method (Liu
and Nocedal, 1989), which has been successfully
used for training log linear models (Blunsom and
Cohn, 2006) in many natural language tasks, includ-
ing alignment.

5 Features

A wide variety of features were used in the model.
We group the features in three broad categories:
link-based, geometrical, and parse-based.

Link-based features are those which decompose
into a (linear) sum of alignment matrix elements σij .
An example link-based feature is one that fires if a
source language noun is linked to a target language
determiner. Note that this feature may fire more than
once in a given sentence pair: as with most fea-
tures in our model, it is an integer-valued feature
that counts the number of times a structure appears
in a sentence pair. These features do not capture any
correlation between different σij . Among the link-
based features are those based on Model 1 transla-
tion matrix parameters τ(ei|fj) and τ(fj |ei). We
bin the model 1 parameters, and form integer-valued
features for each bin that count the number of links
with τ0 < τ(ei|fj) < τ1.

Geometrical features are those which capture cor-
relation between different σij based on adjacency or
nearness. They capture the idea that nearby words
in one language link to nearby words in the other
language - the motivation of HMM-based models
of alignment. An example is a feature that counts
the number of times that the next word in the source
language is linked to the next word in the target lan-
guage:

φ(A,E, F ) =
∑

ij

σijσi+1,j+1 (7)

Parse-based features are those which capture cor-
relation between different σij , but use parsing to de-
termine links which are correlated - for example, if a

determiner links to the same word as its head noun.
As an example, if ei is the headword of ei′ , and fj is
the headword of fj′ , then

φ(A,E, F ) =
∑

ij

σijσi′j′ (8)

counts the number of times that a dependency rela-
tion in one language is preserved by alignment in the
other language. This feature can also be decorated,
either lexically, or with part-of-speech tags (as many
features in all three categories are.)

5.1 Unsupervised Adaptation

We constructed a heuristic phrase dictionary for un-
supervised adapatation. After aligning a large unan-
notated parallel corpus with our aligner, we enumer-
ate fully lexicalized geometrical features that can be
extracted from the resulting alignments - these are
entries in a phrase dictionary. These features are
tied, and treated as a single real-valued feature that
fires during training and decoding phases if a set of
hypothesized links matches the geometrical feature
extracted from the unannotated data. The value of
this real-valued feature is the log of the number of
occurrences of the identical (lexicalized) geometri-
cal feature in the aligned unannotated corpus.

6 Results

We design our experiments to validate that a cor-
rection model using simple features, mostly non-
language-specific, can improve the alignment accu-
racy of a variety of existing aligners for a variety of
language pairs; we do not attempt to exactly match
features between comparison aligners - this is un-
likely to lead to a robust correction model.

6.1 Arabic-English alignment results

We trained the Arabic-English alignment system
on 5125 sentences from Arabic-English treebanks
(LDC2008E61, LDC2008E22) that had been an-
notated for word alignment. Reference parses
were used during the training. Results are mea-
sured on a 500 sentence test set, sampled from
a wide variety of parallel corpora, including vari-
ous genres. During alignment, only automatically-
generated parses (based on the parser of (Rat-
naparkhi, 1999)) were available. Alignments on
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initial align correction model R (%) P (%) F (%) ∆F

GIZA++ 76 76 76
corr(GIZA++) 86 94 90 14∗

corr(ME-seq) 88 92 90 14∗

HMM 73 73 73
corr(HMM) 87 92 89 16∗

corr(ME-seq) 87 93 90 17∗

ME-seq 82 84 83
corr(HMM) 88 92 90 7∗

corr(GIZA++) 87 94 91 8∗

corr(ME-seq) 89 94 91 8∗

Table 1: Alignment accuracy for Arabic-English systems in percentage recall (R), precision(P), and F -measure. ∗

denotes statistical significance (see text.)

lang method R (%) P(%) F (%) ∆F

ZH→EN GIZA++ 55 67 61
ME-seq 66 72 69

corr(ME-seq) 74 76 75 6∗

Table 2: Alignment accuracy for Chinese(ZH)-English(EN) systems. ∗ denotes statistical significance

lang aligner R(%) P(%) F (%) ∆F

IT→ EN ME-seq 74 87 80
corr(ME-seq) 84 92 88 8∗

EN→IT ME-seq 75 86 80
corr(ME-seq) 84 92 88 8∗

PT→EN ME-seq 77 83 80
corr(ME-seq) 87 91 89 9†

EN→PT ME-seq 79 87 83
corr(ME-seq) 88 90 89 6†

JA→EN ME-seq 72 78 75
corr(ME-seq) 77 83 80 5∗

RU→EN ME-seq 81 85 83
corr(ME-seq) 82 92 87 4∗

DE→EN ME-seq 77 82 79
corr(ME-seq) 78 87 82 3∗

ES→EN ME-seq 93 86 90
corr(ME-seq) 92 88 90 0.6

FR→EN ME-seq 89 91 90
corr(ME-seq) 88 92 90 0.1

Table 3: Alignment accuracy for additional languages. ∗ denotes statistical significance; † statistical significance not
available. IT=Italian, PT=Portuguese, JA=Japanese, RU=Russian, DE=German, ES=Spanish, FR=French
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the training and test sets were decoded with three
other aligners, so that the robustness of the cor-
rection model to different input alignments could
be validated. The three aligners were GIZA++
(Och and Ney, 2003) (with the MOSES (Koehn
et al., 2007) postprocessing option -alignment
grow-diag-final-and) the posterior HMM
aligner of (Ge, 2004), a maximum entropy sequen-
tial model (ME-seq) (Ittycheriah and Roukos, 2005).
ME-seq is our primary point of comparison: it is
discriminatively trained (on the same training data,)
uses a rich set of features, and provides the best
alignments of the three. Three correction models
were trained: corr(GIZA++) is trained to correct
the alignments produced by GIZA++, corr(HMM)
is trained to correct the alignments produced by the
HMM aligner, and corr(ME-seq) is trained to correct
the alignments produced by the ME-seq model.

In Table (1) we show results for our system cor-
recting each of the aligners as measured in the usual
recall, precision, and F -measure.1 The resulting
improvements in F -measure of the alignments pro-
duced by our models over their corresponding base-
lines is statistically significant (p < 10−4, indicated
by a ∗.) Statistical significance is tested by a Monte
Carlo bootstrap (Efron and Tibshirani, 1986) - sam-
pling with replacement the difference in F -measure
of the two system’s alignments of the same sentence
pair. Both recall and precision are improved, but the
improvement in precision is somewhat larger. We
also show cross-condition results in which a correc-
tion model trained to correct HMM alignments is ap-
plied to correct ME-seq alignments. These results
show that our correction model is robust to different
starting aligners.

6.2 Chinese-English alignment results
Table (2) presents results for Chinese-English word
alignments. The training set for the corr(ME-
seq) model consisted of approximately 8000 hand-
aligned sentences sampled from LDC2006E93 and
LDC2008E57. The model was trained to correct
the output of the ME-seq aligner, and tested on
the same condition. For this language pair, refer-
ence parses were not available in our training set, so

1We do not distinguish sure and possible links in our anno-
tations - under this circumstance, alignment error rate(Och and
Ney, 2003) is 1− F .

automatically-generated parses were used for both
training and test sets. Results are measured on a 512
sentence test set, sampled from a wide variety of par-
allel corpora of various genres. We compare perfor-
mance with GIZA++, and with the ME-seq aligner.
Again the resulting improvement over the ME-seq
aligner is statistically significant. However, here the
improvement in recall is somewhat larger than the
improvement in precision.

6.3 Additional language pairs

Table (3) presents alignment results for seven other
language pairs. Separate alignment corrector mod-
els were trained for both directions of Italian ↔
English and Portuguese ↔ English. The training
and test data vary by language, and are sampled
uniformly from a diverse set of corpora of various
genres, including newswire, and technical manuals.
Manual alignments for training and test data were
annotated. We compare performance with the ME-
seq aligner trained on the same training data. As
with the Chinese results above, customization and
feature development for the language pairs was min-
imal. In general, machine parses were always avail-
able for the English half of the pair. Machine parses
were also available for French and Spanish. Ma-
chine part of speech tags were available for all lan-
guage (although character-based heuristic was sub-
stituted for Japanese.) Large amounts (up to 10 mil-
lion sentence pairs) of unaligned parallel text was
available for model 1 type features. Our model ob-
tained improved alignment F -measure in all lan-
guage pairs, although the improvements were small
for ES→EN and FR→EN, the language pairs for
which the baseline accuracy was the highest.

6.4 Analysis

Some of the improvement can be attributed to “look-
ahead” during the decoding. For example, the
English word “the”, which (during Arabic-English
alignment) should often be aligned to the same Ara-
bic words to which its headword is linked. The num-
ber of errors associated with “the” dropped from 383
(186 false alarms, 197 misses) in the ME-seq model
to 137 (60 false alarms and 77 misses) in the current
model.

In table 5, we show contributions to performance
resulting from various classes of features. The
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Zh-En Ar-En
method correct miss fa correct miss fa

hmm 147 256 300
GIZA++ 139 677 396 132 271 370
ME-seq 71 745 133 127 276 191

corr(ME-seq) 358 458 231 264 139 114

Table 4: Analysis of 2−1 alignments errors (misses and false alarms) for Zh-En and Ar-En aligners

largest contribution is noted by removing features
based on the Model 1 translation matrices. These
features contain a wealth of lexical information
learned from approximately 7 × 106 parallel sen-
tences - information that cannot be learned from
a relatively small amount of word-aligned train-
ing data. Geometrical features contribute more
than parse-based features, but the contribution from
parse-based features is important, and these are
more difficult to incorporate into sequential mod-
els. We note that all of the comparison aligners had
equivalent lexical information.

We show a small improvement from the unsuper-
vised adaptation - learning phrases from the parallel
corpus that are not captured by the lexical features
based on model 1. The final row in the table shows
the result of running the correction model on its own
output. The improvement is not statistically signif-
icant, but it is important to note the performance is
stable - a further indication that the model is robust
to a wide variety of input alignments, and that our
decoding scheme is a reasonable approach to find-
ing the best alignment.

In table 4, we characterize the errors based on the
fertility of the source and target words. We focus
on the case that exactly one target word is linked to
exactly two source words. These are the links that

feature R(%) P(%) F (%) Nexact

base 89 94 91 136
base-M1 82 88 85 89

base-geometric 83 90 86 92
base-parse 87 93 90 116

base+un.adapt 89 94 92 141
+iter2 90 94 92 141

Table 5: Importance of feature classes - ablation experi-
ments

corpus-level p90
alignment TER BLEU TER BLEU

ME-seq 56.06 32.65 64.20 21.31
corr(Me-seq) 56.25 33.10 63.47 22.02

both 56.07 33.13 63.41 22.14

Table 6: Translation results, Zh to En. BLEU=BLEUr4n4

alignment TER BLEUr1n4
ME-seq 35.02 69.94

corr(Me-seq ) 33.10 71.20

Table 7: Translation results, En to It

are poorly suited for the HMM and ME-seq mod-
els used in this comparison because of the chosen
directionality: the source (Arabic, Chinese) words
are the states and the target (English) words are the
observation. The HMM is able to produce these
links only by the use of posterior probabilities, rather
than viterbi decoding. The ME-seq model only pro-
duces these links because of language-specific post-
processing. GIZA++ has an underlying sequential
model, but uses both directionalities. The correc-
tion model improved performance across all three of
these links structures. The single exception is that
the number of 2−1 false alarms increased (Zh-En
alignments) but in this case, the first pass ME-seq
alignment produced few false alarms because it sim-
ply proposed few links of this form. It is also notable
that 1−2 links are more numerous than 2−1 links,
in both language pairs. This is consequence of the
choice of directionality and tokenization style.

6.5 Translation Impact

We tested the impact of improved alignments on
the performance of a phrase-based translation sys-
tem (Ittycheriah and Roukos, 2007) for three lan-
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guage pairs. Our alignment did not improve the
performance of a mature Arabic to English trans-
lation system, but two notable successes were ob-
tained: Chinese to English, and English to Italian.
It is well known that improved alignment perfor-
mance does not always improve translation perfor-
mance (Fraser and Marcu, 2007). A mature machine
translation system may incorporate alignments ob-
tained from multiple aligners, or from both direc-
tions of an asymmetric aligner. Furthermore, with
large amounts of training data (the Gale Phase 4
Arabic English corpus consisting of 8 × 106 sen-
tences,) a machine translation system is subject to
a saturation effect: correcting an alignment may
not yield a significant improvement because the the
phrases learned from the correct alignment have al-
ready been acquired in other contexts.

For the Chinese to English translation system (ta-
ble 6) the training corpus consisted of 11× 106 sen-
tence pairs, subsampled to 106. The test set was
NIST MT08 Newswire, consisting of 691 sentences
and 4 reference translations. Corpus-level perfor-
mance (columns 2 and 3) improved when measured
by BLEU, but not by TER. Performance on the
most difficult sentences (near the 90th percentile,
columns 4 and 5) improved on both BLEU and TER
(Snover et al., 2006), and the improvement in BLEU
was larger for the more difficult sentences than it
was overall. Translation performance further im-
proved, by a smaller amount, using both ME-seq and
corr(ME-seq) alignments during the training.

The improved alignments impacted the transla-
tion performance of the English to Italian transla-
tion system (table 7) even more strongly. Here the
training corpus consisted of 9.4×106 sentence pairs,
subsampled to 387000 pairs. The test set consisted
of 7899 sentences. Overall performance improved
as measured by both TER and BLEU (1.26 points.)

7 Conclusions

A log linear model for the alignment matrix is used
to guide systematic improvements to an existing
aligner. Our system models arbitrary alignment ma-
trices and allows features that incorporate such in-
formation as correlations based on parse trees in
both languages. We train models to correct the er-
rors of several existing aligners; we find the resulting

models are robust to using different aligners as start-
ing points. Improvements in alignment F -measure,
often significant improvements, show that our model
successfully corrects input alignments from existing
models in all nine language pairs tested. The result-
ing Chinese-English and English-Italian word align-
ments also improved translation performance, espe-
cially on the English-Italian test, and notably on the
particularly difficult subset of the Chinese sentences.
Future work will assess its impact on translation for
the other language pairs, as well as its impact on
other tasks, such as named entity projection.
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Abstract

State of the art Tree Structures Prediction
techniques rely on bottom-up decoding. These
approaches allow the use of context-free fea-
tures and bottom-up features. We discuss
the limitations of mainstream techniques in
solving common Natural Language Process-
ing tasks. Then we devise a new framework
that goes beyond Bottom-up Decoding, and
that allows a better integration of contextual
features. Furthermore we design a system that
addresses these issues and we test it on Hierar-
chical Machine Translation, a well known tree
structure prediction problem. The structure
of the proposed system allows the incorpora-
tion of non-bottom-up features and relies on
a more sophisticated decoding approach. We
show that the proposed approach can find bet-
ter translations using a smaller portion of the
search space.

1 Introduction

Tree Structure Prediction (TSP) techniques have
become relevant in many Natural Language Pro-
cessing (NLP) applications, such as Syntactic Pars-
ing, Semantic Role Labeling and Hierarchical Ma-
chine Translation (HMT) (Chiang, 2007). HMT
approaches have a higher complexity than Phrase-
Based Machine Translation techniques, but exploit
a more sophisticated reordering model, and can
produce translations with higher Syntactic-Semantic
quality.

TSP requires as inputs: a weighted grammar,G,
and a sequence of symbols or a set of sequences en-
coded as a Lattice (Chappelier et al., 1999). The

input sequence is often a sentence for NLP applica-
tions. Tree structures generating the input sequence
can be composed using rules,r, from the weighted
grammar,G. TSP techniques return as output a tree
structure or a set of trees (forest) that generate the
input string or lattice. The output forest can be rep-
resented compactly as a weighted hypergraph (Klein
and Manning, 2001). TSP tasks require finding the
tree, t, with the highest score, or the best-k such
trees. Mainstream TSP relies on Bottom-up Decod-
ing (BD) techniques.

With this paper we propose a new framework
as a generalization of the CKY-like Bottom-up ap-
proach. We also design and test an instantiation of
this framework, empirically showing that wider con-
textual information leads to higher accuracy for TSP
tasks that rely on non-local features, like HMT.

2 Beyond Bottom-up Decoding

TSP decoding requires scoring candidate trees,
cost(t). Some TSP tasks require only local features.
For these casescost(t) depends only on the local
score of the rules that composet :

cost(t) =
∑

ri∈t

cost(ri ) (1)

This is the case for Context Free Grammars. More
complex tasks need non-local features. Those fea-
tures can be represented by a non-local factor,
nonLocal(t), into the overallt score:

cost(t) =
∑

ri∈t

cost(ri ) + nonLocal(t) (2)
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For example, in HMT the Language Model (LM) is
a non-local fundamental feature that approximates
the adequacy of the translation with the sum of log-
probabilities of composingn-grams.

CKY-like BD approaches build candidate trees in
a bottom-up fashion, allowing the use of Dynamic
Programming techniques to simplify the search
space by mering sub-trees with the same state, and
also easing application of pruning techniques (such
as Cube Pruning, e.g. Chiang (2007), Gesmundo
(2010)). For clarity of presentation and follow-
ing HMT practice, we will henceforth restrict our
focus to binary grammars. Standard CKY works
by building objects known asitems (Hopkins and
Langmead, 2009). Each item,ι, corresponds to a
candidate sub-tree. Items are built linking a rule
instantiation, r, to two sub-items that represents
left context, ι1, and right context,ι2; formally:
ι ≡ 〈 ι1 ⋗ r ⋖ ι2 〉. An item is a triple that
contains aspan, apostcondition and acarry. The
span contains the indexes of the starting and end-
ing input words delimiting the continuous sequence
covered by the sub-tree represented by the item. The
postcondition is a string that representsr’s head non-
terminal label, telling us which rules may be applied.
The carry,κ, stores extra information required to
correctly score the non-local interactions of the item
when it will be linked in a broader context (for HMT
with LM the carry consists of boundary words that
will form new n-grams).

Items,ι ≡ 〈ι1 ⋗ r ⋖ ι2〉, are scored according to
the following formula:

cost(ι) = cost(r) + cost(ι1) + cost(ι2) (3)

+ interaction(r, κ1, κ2)

Where:cost(r) is the cost associated to the weighted
rule r; cost(ι1) andcost(ι2) are the costs of the two
sub-items computed recursively using formula (3);
interaction(r, κ1, κ2) is the interaction cost between
the rule instantiation and the two sub-items. In HMT
the interaction cost includes the LM score of newn-
grams generated by connecting the childrens’ sub-
spans with terminals ofr. Notice that formula (3) is
equal to formula (2) for items that cover the whole
input sequence.

In many TSP applications, the search space is
too large to allow an exhaustive search and there-

fore pruning techniques must be used. Pruning deci-
sions are based on the score of partial derivations.
It is not always possible to compute exactly non-
local features while computing the score of partial
derivations, since partial derivations miss part of the
context. Formula (3) accounts for the interaction be-
tweenr and sub-itemsι1 andι2, but it does not in-
tegrate the cost relative to the interaction between
the item and the surrounding context. Therefore the
item score computed in a bottom-up fashion is an
approximation of the score the item has in a broader
context. For example, in HMT the LM score forn-
grams that partially overlap the item’s span cannot
be computed exactly since the surrounding words
are not known.

Basing pruning decisions on approximated scores
can introduce search errors. It is possible to reduce
search errors using heuristics based on future cost
estimation. In general the estimation of the interac-
tion betweenι and the surrounding context is func-
tion of the carry,κ. In HMT it is possible to estimate
the cost ofn-grams that partially overlapι’s span
considering the boundary words. We can obtain the
heuristic cost for an item,ι, adding to formula (3)
the factor,est(κ), for the estimation of interaction
with missing context:

heuristicCost(ι) = cost(ι) + est(κ) (4)

And useheuristicCost(ι) to guide BD pruning de-
cisions. Anyway, even if a good interaction estima-
tion is available, in practice it is not possible to avoid
search errors while pruning.

More sophisticated parsing models allow the use
of non-bottom-up features within a BD framework.
Caraballo and Charniak (1998) present best-first
parsing with Figures of Merit that allows condition-
ing of the heuristic function on statistics of the input
string. Corazza et al. (1994), and Klein and Man-
ning (2003) propose an A* parsing algorithm that
estimates the upper bound of the parse completion
scores using contextual summary features. These
models achieve time efficiency and state-of-the-art
accuracy for PCFG parsing, but still use a BD frame-
work that doesn’t allow the application of a broader
class of non-bottom-up contextual features.

In HMT, knowing the sentence-wide context in
which a sub-phrase is translated is extremely impor-
tant. It is obviously important for word choice: as
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a simple example consider the translation of the fre-
quent English word “get” into Chinese. The choice
of the correct set of ideograms to translate “get” of-
ten requires being aware of the presence of particles
that can be at any distance within the sentence. In a
common English to Chinese dictionary we found 93
different sets of ideograms that could be translations
of “get”. Sentence-wide context is also important
in the choice of word re-ordering: as an example
consider the following translations from English to
German:

1. EN : I go home.
DE : Ich gehe nach Hause.

2. EN : I say, that I go home.
DE : Ich sage, dass ich nach Hause gehe.

3. EN :On Sunday I go home.
DE : Am Sonntag gehe ich nach Hause.

The English phrase “I go home” is translated in Ger-
man using the same set of words but with different
orderings. It is not possible to choose the correct
ordering of the phrase without being aware of the
context. Thus a bottom-up decoder without context
needs to build all translations for “I go home”, intro-
ducing the possibility of pruning errors.

Having shown the importance of contextual fea-
tures, we define a framework that overcomes the
limitations of bottom-up feature approximation.

3 Undirected-CKY Framework

Our aim is to propose a new Framework that over-
comes BD limitations allowing a better integration
of contextual features. The presented framework can
be regarded as a generalization of CKY.

To introduce the new framework let us focus on a
detail of CKY BD. The items are created and scored
in topological order. The ordering constraint can be
formally stated as:an item covering the span [i, j]
must be processed after items covering sub spans
[h, k]|h ≥ i, k ≤ j. This ordering constraint im-
plies that full yield information is available when
an item is processed, but information about ances-
tors and siblings is missing. Therefore non-bottom-
up context cannot be used because of the ordering
constraint. Now let us investigate how the decoding

algorithm could change if we remove the ordering
constraint.

Removing the ordering constraint would lead to
the occurrence of cases in which an item is pro-
cessed before all child items have been processed.
For example, we could imagine to create and score
an item,ι, with postconditionX and span[i, j], link-
ing the rule instantiationr : X→AB with only
the left sub-item,ιA, while information for the right
sub-item,ιB is still missing. In this case, we can
rely on local and partial contextual features to score
ι. Afterwards, it is possible to processιB using the
parent item,ι, as a source of additional informa-
tion about the parent context and siblingιA yield.
This approach can avoid search errors in cases where
pruning at the parent level can be correctly done us-
ing only local and partial yield context, while prun-
ing at the child level needs extra non-bottom-up con-
text to make a better pruning decision. For exam-
ple, consider the translation of the English sentence
“ I run” into French using the following synchronous
grammar:

r1 : S → X 1 X 2 | X 1 X 2

r2 : X → I | Je

r3 : X → run | course

r4 : X → run | courir

r5 : X → run | cours

r6 : X → run | courons
...

Where: r1 is a Glue rule and boxed indexes de-
scribe the alignment;r2 translates “I” in the cor-
responding French pronoun;r3 translates “run” as
a noun; remaining rules translate “run” as one of
the possible conjugations of the verb “courir”. Us-
ing only bottom-up features it is not possible to re-
solve the ambiguity of the word “run”. If the beam
is not big enough the correct translation could be
pruned. Anyway a CKY decoder would give the
highest score to the most frequent translation. In-
stead, if we follow a non bottom-up approach, as
described in Figure 1, we can: 1) first translate “I”;
2) Then create an item usingr1 with missing right
child; 3) finally choose the correct translation for
“run” using r1 to access a wider context. Notice
that with this undirected approach it is possible to
reach the correct translation using only beam size of
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Figure 1: Example of undirected decoding for HMT. The arrowspoint to the direction in which information is propa-
gated. Notice that the parent link at step 3 is fundamental tocorrectly disambiguate the translation for “run”.

1 and the LM feature.
To formalize Undirected-CKY, we define a gen-

eralized item calledundirected-item. Undirected-
items, ι̊, are built linking rule instantiations with
elements inL ≡ {left child, right child, parent};
for example: ι̊ ≡ 〈̊ι1 ⋗ r ∨̇ ι̊p〉, is built linking
r with left child, ι̊1, and parent,̊ιp. We denote
with L+

ι̊ the set of links for which the undirected-
item, ι̊, has a connection, and withL−

ι̊ the set
of missing links. An undirected-item is a triple
that contains a span, a carry and anundirected-
postcondition. The undirected-postcondition is a
set of strings, one string for each ofι̊’s missing links,
l ∈ L−

ι̊ . Each string represents the non-terminal re-
lated to one of the missing links available for expan-
sion. Bottom-up items can be considered specific
cases of undirected-items havingL+ = { left child,
right child} andL− = {parent}. We can formally
describe the steps of the example depicted in Figure
1 with:

1)
r2 : X → I|Je , terminal : [0, 1]

ι̊1 : [0, 1, {X p}, κ1]

2)
r1 : S → X 1X 2 |X 1X 2 , ι̊1 : [0, 1, {X p}, κ1]

ι̊2 : [0, 1, {X 2}, κ2)]

3)
r5 :X → run|cours,̊ ι2 : [· · · ] , terminal : [1, 2]

ι̊3 : [0, 2, {}, κ3 ]

The scoring function for undirected-items can be ob-
tained generalizing formula (3):

cost(̊ι) = cost(r)

+
∑

l∈L+

cost(̊ιl ) (5)

+ interaction(r ,L+)

In CKY, each span is processed separately in
topological order, and the best-k items for each span
are selected in sequence according to scoring func-
tion (4). In the proposed framework, the selec-
tion of undirected-items can be done in any order,
for example: in a first step selecting an undirected-
item for spans1, then selecting an undirected-item
for spans2, and in a third step selecting a second
undirected-item fors1, and so on. As in agenda
based parsing (Klein and Manning, 2001), all candi-
date undirected-items can be handled with an unique
queue. Allowing the system to decide decoding or-
der based on the candidates’ scores, so that candi-
dates with higher confidence can be selected earlier
and used as context for candidates with lower confi-
dence.

Having all candidates in the same queue intro-
duces comparability issues. In CKY, candidates are
comparable since each span is processed separately
and each candidate is scored with the estimation of
the yield score. Instead, in the proposed framework,
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the unique queue contains candidates relative to dif-
ferent nodes and with different context scope. To
ensure comparability, we can associate to candidate
undirected-items a heuristic score of the full deriva-
tion:

heuristicCost(̊ι) = cost(̊ι) + est(̊ι) (6)

Where est(̊ι) estimates the cost of the missing
branches of the derivation as a function ofι̊′s par-
tial structure and carry.

In this framework, the queue can be initialized
with a candidate for each rule instantiation. These
initializing candidates have no context information
and can be scored using only local features. A
generic decoding algorithm can loop selecting the
candidate undirected-item with the highest score,ι̊,
and then propagating its information to neighboring
candidates, which can update usingι̊ as context. In
this general framework the link to the parent node is
not treated differently from links to children. While
in CKY the information is always passed from chil-
dren to parent, in Undirected-CKY the information
can be propagated in any direction, and any decod-
ing order is allowed.

We can summarize the steps done to generalize
CKY into the proposed framework: 1) remove the
node ordering constraint; 2) define the scoring of
candidates with missing children or parent; 3) use
a single candidate queue; 4) handle comparability of
candidates from different nodes and/or with differ-
ent context scope; 5) allow information propagation
in any direction.

4 Undirected Decoding

In this section we propose Undirected Decod-
ing (UD), an instantiation of the Undirected-CKY
framework presented above. The generic framework
introduces many new degrees of freedom that could
lead to a higher complexity of the decoder. In our
actual instantiation we apply constraints on the ini-
tialization step, on the propagation policy, and fix a
search beam ofk. These constraints allow the sys-
tem to converge to a solution in practical time, al-
low the use of dynamic programming techniques to
merge items with equivalent states, and gives us the
possibility of using non-bottom-up features and test-
ing their relevance.

Algorithm 1 Undirected Decoding
1: function decoder (k) : out-forest
2: Q← LeafRules();
3: while |Q| > 0 do
4: ι̊← PopBest (Q);
5: if CanPop(̊ι) then
6: out-forest.Add(̊ι);
7: if ι̊.HasChildrenLinks()then
8: for all r ∈ HeadRules(̊ι) do
9: Ĉ← NewUndirectedItems(r ,̊ ι);

10: for all ĉ ∈ Ĉ do
11: if CanPop(̂c) then
12: Q.Insert(̂c);
13: end if
14: end for
15: end for
16: end if
17: end if
18: end while

Algorithm 1 summarizes the UD approach. The
beam size,k, is given as input. Atline 2 the queue
of undirected-item candidates,Q, is initialized with
only leafs rules. Atline 3 the loop starts, it will
terminate whenQ is empty. At line 4 the candi-
date with highest score,̊ι, is popped fromQ. line 5
checks if̊ι is within the beam width: if̊ι has a span
for which k candidates were already popped, thenι̊
is dropped and a new iteration is begun. Otherwise
ι̊ is added to the out-forest atline 6. From line 7
to line 10 the algorithm deals with the generation of
new candidate undirected-items.line 7 checks if̊ι
has both children links, if not a new decoding iter-
ation is begun.line 8 loops over the rule instantia-
tions,r, that can use̊ι as child. Atline 9, the set of
new candidates,̂C, is built linking r with ι̊ and any
context already available in the out-forest. Finally,
betweenline 10 and line 12, each element̂c in Ĉ
is inserted inQ after checking that̂c is within the
beam width: ifĉ has a span for whichk candidates
were already popped it doesn’t make sense to insert
it in Q since it will be surely discarded atline 5.

In more detail, the function
NewUndirectedItems(r,̊ ι) at line 9 creates new
undirected-items linkingr using: 1)̊ι as child; 2)
(optionally) as other child any other undirected-item
that has already been inserted in the out-forest and
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doesn’t have a missing child and matches missing
span coverage; 3) and using as parent context the
best undirected-item with missing child link that
has been incorporated in the out-forest and can
expand the missing child link usingr. In our current
method, only the best possible parent context is
used because it only provides context for ranking
candidates, as discussed at the end of this section.
In contrast, a different candidate is generated for
each possible other child in 2), as well as for
the case where no other child is included in the
undirected-item.

We can make some general observations on the
Undirected Decoding Algorithm. Notice that, the
if statement atline 7 and the way new undirected-
items are created atline 9, enforce that each
undirected-item covers a contiguous span. An
undirected-item that is missing a child link cannot
be used as child context but can be used as parent
context since it is added to the out-forest atline 6
before theif statement atline 7. Furthermore, the
if statements atline 5 and line 11 check that no
more thank candidates are selected for each span,
but the algorithm does not require the the selection
of exactlyk candidates per span as in CKY.

The queue of candidates,Q, is ordered according
to the heuristic cost of formula (6). The score of the
candidate partial structure is accounted for with fac-
tor cost(̊ι) computed according to formula (5). The
factorest(̊ι) accounts for the estimation of the miss-
ing part of the derivation. We compute this factor
with the following formula:

est(̊ι) =
∑

l∈L−
ι̊

(
localCost(̊ι, l) + contextEst(̊ι, l)

)

(7)
For each missing link,l ∈ L−

ι̊ , we estimate the cost
of the corresponding derivation branch with two fac-
tors: localCost(̊ι, l) that computes the context-free
score of the branch with highest score that could
be attached tol; andcontextEst(̊ι, l) that estimates
the contextual score of the branch and its interac-
tion with ι̊. Because our model is implemented in
the Forest Rescoring framework (e.g. Huang and
Chiang (2007), Dyer et al. (2010), Li et al. (2009)),
localCost(̊ι, l) can be efficiently computed exactly.
In HMT it is possible to exhaustively represent and
search the context-free-forest (ignoring the LM),

which is done in the Forest Rescoring framework be-
fore our task of decoding with the LM. We exploit
this context-free-forest to computelocalCost(̊ι, l):
for missing child links thelocalCost(·) is the In-
side score computed using the (max, +) semiring
(also known as the Viterbi score), and for missing
parent links thelocalCost(·) is the corresponding
Outside score. The factorcontextEst(·) estimates
the LM score of the words generated by the missing
branch and their interaction with the span covered
by ι̊. To compute the expected interaction cost we
use the boundary words information contained inι̊’s
carry as done in BD. To estimate the LM cost of the
missing branch we use an estimation function, con-
ditioned on the missing span length, whose parame-
ters are tuned on held-out data with gradient descent,
using the search score as objective function.

To show that UD leads to better results than BD,
the two algorithms are compared in the same search
space. Therefore we ensure that candidates em-
bedded in the UD out-forest would have the same
score if they were scored from BD. We don’t need
to worry about differences derived from the missing
context estimation factor,est(·), since this factor is
only considered while sorting the queue,Q, accord-
ing to theheuristicCost(·). Also, we don’t have to
worry about candidates that are scored with no miss-
ing child and no parent link, because in that case
scoring function (3) for BD is equivalent to scoring
function (5) for UD. Instead, for candidates that are
scored with parent link, we remove the parent link
factor from thecost(·) function when inserting the
candidate into the out forest. And for the candi-
dates that are scored with a missing child, we ad-
just the score once the link to the missing child is
created in the out-forest. In this way UD and BD
score the same derivation with the same score and
can be regarded as two ways to explore the same
search space.

5 Experiments

In this section we test the algorithm presented, and
empirically show that it produces better translations
searching a smaller portion of the search space.

We implemented UD on top of a widely-used
HMT open-source system, cdec (Dyer et al., 2010).
We compare with cdec Cube Pruning BD. The ex-
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Figure 2: Comparison of the quality of the translations.

periments are executed on the NIST MT03 Chinese-
English parallel corpus. The training corpus con-
tains 239k sentence pairs with 6.9M Chinese words
and 8.9M English words. We use a hierarchical
phrase-based translation grammar extracted using a
suffix array rule extractor (Lopez, 2007). The NIST-
03 test set is used for decoding, it has 919 sentence
pairs. The experiments can be reproduced on an
average desktop computer. Since we compare two
different decoding strategies that rely on the same
training technique, the evaluation is primarily based
on search errors rather than on BLEU. We compare
the two systems on a variety of beam sizes between
1 and 16.

Figure 2 reports a comparison of the translation
quality for the two systems in relation to the beam
size. The blue area represents the portion of sen-
tences for which UD found a better translation. The
white area represents the portion of sentences for
which the two systems found a translation with the
same search score. With beam 1 the two systems ob-
viously have a similar behavior, since both the sys-
tems stop investigating the candidates for a node af-
ter having selected the best candidate immediately
available. For beams 2-4, UD has a clear advan-
tage. In this range UD finds a better translation for
two thirds of the sentences. With beam 4, we ob-
serve that UD is able to find a better translation for
63.76% of the sentences, instead BD is able to find a
better translation for only 21.54% of the sentences.
For searches that employ a beam bigger than 8, we
notice that the UD advantage slightly decreases, and
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Figure 3: Search score evolution for BD and UD.

the number of sentences with equivalent translation
slowly increases. We can understand this behavior
considering that as the beam increases the two sys-
tems get closer to exhaustive search. Anyway with
this experiment UD shows a consistent accuracy ad-
vantage over BD.

Figure 3 plots the search score variation for dif-
ferent beam sizes. We can see that UD search leads
to an average search score that is consistently bet-
ter than the one computed for BD. Undirected De-
coding improves the average search score by0.411
for beam 16. The search score is the logarithm of
a probability. This variation corresponds to a rel-
ative gain of50.83% in terms of probability. For
beams greater than 8 we see that the two curves keep
a monotonic ascendant behavior while converging to
exhaustive search.

Figure 4 shows the BLEU score variation. Again
we can see the consistent improvement of UD over
BD. In the graph we report also the performance ob-
tained using BD with beam 32. BD reaches BLEU
score of 32.07 with beam 32 while UD reaches
32.38 with beam 16: UD reaches a clearly higher
BLEU score using half the beam size. The differ-
ence is even more impressive if we consider that UD
reaches a BLEU of32.19 with beam 4.

In Figure 5 we plot the percentage reduction of the
size of the hypergraphs generated by UD compared
to those generated by BD. The size reduction grows
quickly for both nodes and edges. This is due to the
fact that BD, using Cube Pruning, must selectk can-
didates for each node. Instead, UD is not obliged to
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pergraph produced by UD.

selectk candidates perf -node. As we can see from
Algorithm 1, the decoding loop terminates when the
queue of candidates is empty, and the statements at
line 5 andline 11 ensure that no more thank can-
didates are selected perf -node, but nothing requires
the selection ofk elements, and some bad candidates
may not be generated due to the sophisticated prop-
agation strategy. The number of derivations that a
hypergraph represents is exponential in the number
of nodes and edges composing the structure. With
beam 16, the hypergraphs produced by UD contain
on average4.6k fewer translations. Therefore UD
is able to find better translations even if exploring a
smaller portion of the search space.

Figure 6 reports the time comparison between
BD and UD with respect to sentence length. The
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Figure 6: Time comparison between BD and UD.

sentence length is measured with the number of
ideogram groups appearing in the source Chinese
sentences. We compare BD with beam of 16 and
UD with beam of 8, so that we compare two sys-
tems with comparable search score. We can notice
that for short sentences UD is faster, while for longer
sentences UD becomes slower. To understand this
result consider that for simple sentences UD can
rely on the advantage of exploring a smaller search
space. While, for longer sentences, the amount of
candidates considered during decoding grows ex-
ponentially with the size of the sentence, and UD
needs to maintain an unique queue whose size is not
bounded by the beam sizek, as for the queues used
in BD’s Cube Pruning. It may be possible to address
this issue with more efficient handling of the queue.

In conclusion we can assert that, even if explor-
ing a smaller portion of the search space, UD finds
often a translation that is better than the one found
with standard BD. UD’s higher accuracy is due to
its sophisticated search strategy that allows a more
efficient integration of contextual features. This set
of experiments show the validity of the UD approach
and empirically confirm our intuition about the BD’s
inadequacy in solving tasks that rely on fundamental
contextual features.

6 Future Work

In the proposed framework the link to the parent
node is not treated differently from links to child
nodes, the information in the hypergraph can be
propagated in any direction. Then the Derivation
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Hypergraph can be regarded as a non-directed graph.
In this setting we could imagine applying mes-
sage passing algorithms from graphical model the-
ory (Koller and Friedman, 2010).

Furthermore, considering that the proposed
framework lets the system decide the decoding or-
der, we could design a system that explicitly learns
to infer the decoding order at training time. Sim-
ilar ideas have been successfully tried: Shen et al.
(2010) and Gesmundo (2011) investigate the Guided
Learning framework, that dynamically incorporates
the tasks of learning the order of inference and train-
ing the local classifier.

7 Conclusion

With this paper we investigate the limitations of
Bottom-up parsing techniques, widely used in Tree
Structures Prediction, focusing on Hierarchical Ma-
chine Translation. We devise a framework that al-
lows a better integration of non-bottom-up features.
Compared to a state of the art HMT decoder the pre-
sented system produces higher quality translations
searching a smaller portion of the search space, em-
pirically showing that the bottom-up approximation
of contextual features is a limitation for NLP tasks
like HMT.
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Abstract 

Statistical machine translation systems are 
usually trained on a large amount of bilingual 
sentence pairs and translate one sentence at a 
time, ignoring document-level information. In 
this paper, we propose a cache-based approach 
to document-level translation. Since caches 
mainly depend on relevant data to supervise 
subsequent decisions, it is critical to fill the 
caches with highly-relevant data of a reasonable 
size. In this paper, we present three kinds of 
caches to store relevant document-level infor-
mation: 1) a dynamic cache, which stores bilin-
gual phrase pairs from the best translation 
hypotheses of previous sentences in the test 
document; 2) a static cache, which stores rele-
vant bilingual phrase pairs extracted from simi-
lar bilingual document pairs (i.e. source 
documents similar to the test document and 
their corresponding target documents) in the 
training parallel corpus; 3) a topic cache, which 
stores the target-side topic words related with 
the test document in the source-side. In particu-
lar, three new features are designed to explore 
various kinds of document-level information in 
above three kinds of caches. Evaluation shows 
the effectiveness of our cache-based approach 
to document-level translation with the perfor-
mance improvement of 0.81 in BLUE score 
over Moses. Especially, detailed analysis and 
discussion are presented to give new insights to 
document-level translation. 

1 Introduction 

During last decade, tremendous work has been 
done to improve the quality of statistical machine 
__________________ 
* Corresponding author. 

translation (SMT) systems. However, there is still 
a huge performance gap between the state-of-the-
art SMT systems and human translators. Bond 
(2002) suggested nine ways to improve machine 
translation by imitating the best practices of human 
translators (Nida, 1964), with parsing the entire 
document before translation as the first priority. 
However, most SMT systems still treat parallel 
corpora as a list of independent sentence-pairs and 
ignore document-level information.  

Document-level information can and should be 
used to help document-level machine translation. 
At least, the topic of a document can help choose 
specific translation candidates, since when taken 
out of the context from their document, some 
words, phrases and even sentences may be rather 
ambiguous and thus difficult to understand. Anoth-
er advantage of document-level machine transla-
tion is its ability in keeping a consistent translation.  

However, document-level translation has drawn 
little attention from the SMT research community.  
The reasons are manifold. First of all, most of pa-
rallel corpora lack the annotation of document 
boundaries (Tam, 2007). Secondly, although it is 
easy to incorporate a new feature into the classical 
log-linear model (Och, 2003), it is difficult to cap-
ture document-level information and model it via 
some simple features. Thirdly, reference transla-
tions of a test document written by human transla-
tors tend to have flexible expressions in order to 
avoid producing monotonous texts. This makes the 
evaluation of document-level SMT systems ex-
tremely difficult.  

Tiedemann (2010) showed that the repetition 
and consistency are very important when modeling 
natural language and translation. He proposed to 
employ cache-based language and translation 
models in a phrase-based SMT system for domain 
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adaptation. Especially, the cache in the translation 
model dynamically grows up by adding bilingual 
phrase pairs from the best translation hypotheses of 
previous sentences. One problem with the dynamic 
cache is that those initial sentences in a test docu-
ment may not benefit from the dynamic cache. 
Another problem is that the dynamic cache may be 
prone to noise and cause error propagation. This 
explains why the dynamic cache fails to much im-
prove the performance. 

This paper proposes a cache-based approach for 
document-level SMT using a static cache and a 
dynamic cache. While such a approach applies to 
both phrase-based and syntax-based SMT, this pa-
per focuses on phrase-based SMT. In particular, 
the static cache is employed to store relevant bilin-
gual phrase pairs extracted from similar bilingual 
document pairs (i.e. source documents similar to 
the test document and their target counterparts) in 
the training parallel corpus while the dynamic 
cache is employed to store bilingual phrase pairs 
from the best translation hypotheses of previous 
sentences in the test document. In this way, our 
cache-based approach can provide useful data at 
the beginning of the translation process via the 
static cache. As the translation process continues, 
the dynamic cache grows and contributes more and 
more to the translation of subsequent sentences. 

Our motivation to employ similar bilingual doc-
ument pairs in the training parallel corpus is simple: 
a human translator often collects similar bilingual 
document pairs to help translation. If there are 
translation pairs of sentences/phrases/words in 
similar bilingual document pairs, this makes the 
translation much easier. Given a test document, our 
approach imitates this procedure by first retrieving 
similar bilingual document pairs from the training 
parallel corpus, which has often been applied in 
IR-based adaptation of SMT systems (Zhao et 
al.2004; Hildebrand et al.2005; Lu et al.2007) and 
then extracting bilingual phrase pairs from similar 
bilingual document pairs to store them in a static 
cache. 

However, such a cache-based approach may in-
troduce many noisy/unnecessary bilingual phrase 
pairs in both the static and dynamic caches. In or-
der to resolve this problem, this paper employs a 
topic model to weaken those noisy/unnecessary 
bilingual phrase pairs by recommending the de-
coder to choose most likely phrase pairs according 
to the topic words extracted from the target-side 

text of similar bilingual document pairs. Just like a 
human translator, even with a big bilingual dictio-
nary, is often confused when he meets a source 
phrase which corresponds to several possible trans-
lations. In this case, some topic words can help 
reduce the perplexity. In this paper, the topic words 
are stored in a topic cache. In some sense, it has 
the similar effect of employing an adaptive lan-
guage model with the advantage of avoiding the 
interpolation of a global language model with a 
specific domain language model. 

The rest of this paper is organized as follows. 
Section 2 reviews the related work. Section 3 
presents our cache-based approach to document-
level SMT. Section 4 presents the experimental 
results. Session 5 gives new insights on cache-
based document-level translation. Finally, we 
conclude this paper in Section 6. 

2 Related work 

There are only a few studies on document-level 
SMT. Representative work includes Zhao et al. 
(2006), Tam et al. (2007), Carpuat (2009). 

Zhao et al. (2006) assumed that the parallel sen-
tence pairs within a document pair constitute a 
mixture of hidden topics and each word pair fol-
lows a topic-specific bilingual translation model. It 
shows that the performance of word alignment can 
be improved with the help of document-level in-
formation, which indirectly improves the quality of 
SMT.  

Tam et al. (2007) proposed a bilingual-LSA 
model on the basis of a parallel document corpus 
and built a topic-based language model for each 
language. By automatically building the corres-
pondence between the source and target language 
models, this method can match the topic-based 
language model and improve the performance of 
SMT. 

Carpuat (2009) revisited the “one sense per dis-
course” hypothesis of Gale et al. (1992) and gave a 
detailed comparison and analysis of the “one trans-
lation per discourse” hypothesis. However, she 
failed to propose an effective way to integrate doc-
ument-level information into a SMT system. For 
example, she simply recommended some transla-
tion candidates to replace some target words in the 
post-process stage.  

In principle, the cache-based approach can be 
well suited for document-level translation. Basical-
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ly, the cache is analogous to “cache memory” in 
hardware terminology, which tracks short-term 
fluctuation (Iyer et al., 1999). As the cache 
changes with different documents, the document-
level information should be capable of influencing 
SMT.  

Previous cache-based approaches mainly point 
to cache-based language modeling (Kuhn and Mori, 
1990), which uses a large global language model to 
mix with a small local model estimated from recent 
history data. However, applying such a language 
model in SMT is very difficult due to the risk of 
introducing extra noise (Raab, 2007).  

For cache-based translation modeling, Nepveu 
et al. (2004) explored user-edited translations in 
the context of interactive machine translation. Tie-
demann (2010) proposed to fill the cache with bi-
lingual phrase pairs from the best translation 
hypotheses of previous sentences in the test docu-
ment. Both Nepveu et al. (2004) and Tiedemann 
(2010) also explored traditional cache-based lan-
guage models and found that a cache-based lan-
guage model often contributes much more than a 
cache-based translation model. 

3 Cache-based document-level SMT 

Given a test document, our system works as fol-
lows:  
1) clears the static, topic and dynamic caches 

when switching to a new test document dx; 
2) retrieves a set of most similar bilingual docu-

ment pairs dds for dx from the training parallel 
corpus using the cosine similarity with tf-idf 
weighting; 

3) fills the static cache with bilingual phrase pairs 
extracted from dds;  

4) fills the topic cache with topic words extracted 
from the target-side documents of dds; 

5) for each sentence in the test document, trans-
lates it using cache-based SMT and conti-
nuously expands the dynamic cache with 
bilingual phrase pairs obtained from the best 
translation hypothesis of the  previous sen-
tences. 

In this way, our cache-based approach can pro-
vide useful data at the beginning of the translation 
process via the static cache. As the translation 
process continues, the dynamic cache grows and 
contributes more and more to the translation of 
subsequent sentences. Besides, the possibility of 

choosing noisy/unnecessary bilingual phrase pairs 
in both the static and dynamic caches is wakened 
with the help of the topic words in the topic cache. 
In particular, only the most similar document pair 
is used to construct the static cache and the topic 
cache unless specified. 

In this section, we first introduce the basic 
phrase-based SMT system and then present our 
cache-based approach to achieve document-level 
SMT with focus on constructing the caches (static, 
dynamic and topic) and designing their corres-
ponding features. 
3.1 Basic phrase-based SMT system 
It is well known that the translation process of 
SMT can be modeled as obtaining the best transla-
tion e of the source sentence f by maximizing fol-
lowing posterior probability (Brown et al., 1993): 

)()|(maxarg)|(maxarg ePefPfePe lm
ee

best ==  (1) 

where P(e|f) is a translation model and Plm is a lan-
guage model. 

Our system adopted Moses (a state-of-art 
phrase-based SMT system) as a baseline, which 
follows Koehn et al. (2003) and mainly adopts six 
groups of popular features: 1) two phrase transla-
tion probabilities (two directions): Pphr(e|f) and 
Pphr(f|e); 2) two word translation probabilities (two 
directions) : Pw(e|f) and Pw(f|e); 3) one language 
model (target language): LM(e); 4) one phrase pe-
nalty (target language): PP(f); 5) one word penalty 
(target language):WP(e); 6) a lexicalized reorder-
ing model. Besides, the log-linear model as de-
scribed in (Och and Ney, 2003) is employed to 
linearly interpolate these features for obtaining the 
best translation according to the formula (2): 

)},(max{arg
1

fehe m

M

m
mbest ∑

=

= λ   (2) 

where hm(e , f) is a feature function, and λm is the 
weight of hm(e , f)  optimized by a discriminative 
training method on a held-out development data. 

In principle, a phrase-based SMT system can 
provide the best phrase segmentation and align-
ment that cover a bilingual sentence pair. Here, a 
segmentation of a sentence into K phrases is de-
fined as: 

(f~e)≈  ∑ (f , e , ~)      (3) 
 

where tuple (f , e ) refers to a phrase pair, and ~ 
indicates corresponding alignment information.  
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3.2 Dynamic Cache 
Our dynamic cache is mostly inspired by Tiede-
mann (2010), which adopts a dynamic cache to 
store relevant bilingual phrase pairs from the best 
translation hypotheses of previous sentences in the 
test document. In particular, a specific feature is 
incorporated S      to capture useful document-
level information in the dynamic cache: 
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where ie−∂ is a decay factor to avoid the depen-
dence of the feature’s contribution on the cache 
size. Given <ec, fc> an existing phrase pair in the 
dynamic cache and <ei,fi> a phrase pair in a new 
hypothesis, if ( ei=ec ∧ fi=fc ) is true (i.e. full match-
ing), function I(.) returns 1 , otherwise 0.  

One problem with the dynamic cache in Tiede-
mann (2010) is that it continuously updates the 
weight of a phrase pair in the dynamic cache. This 
may cause noticeable computational burden with 
the increasing number of phrase pairs in the dy-
namic cache. In addition, as a source phrase (fc) 
may occur many times in the dynamic cache, the 
weights for related phrase pairs may degrade se-
verely and thus his decoder needs a decay factor, 
which is difficult to optimize. Finally, Tiedemann 
(2010) only allowed full matching. This largely 
lowers down the probability of hitting the dynamic 
cache and thus much affects its effectiveness. 

To overcome above problems, we only employ 
the bilingual phrase pairs in the dynamic cache to 
inform the decoder whether one bilingual phrase 
pair exists in the dynamic cache or not, which is 
slightly similar to (Nepveu et al, 2004) ,thus avoid-
ing extra computational burden and the fine-tuning 
of the decay factor.  In particular, following new 
feature is incorporated to better explore the dynam-
ic cache:   = ∑ dpairmatch(e , f )        (5) 
where dpairmatch(  ,  )  

  = ⎩⎪⎨
⎪⎧ 1   (e = e ∧ f = f )                       ∨  e  = e ∧ f  = f ∧∥ e ∥> 3    ∨  e = e  ∧ f = f  ∧∥ e ∥> 3 0    other                                               

Here, F  is called the dynamic cache feature. 
Assume (ec,fc ) is a phrase pair in the dynamic 
cache and (ei,fi) is a phrase pair candidate for a 
new hypothesis. Besides full matching, we intro-
duce a symbol of “^” for sub-phrase, such as e   for 

a sub-phrase of ei and  e   for a sub-phrase of e  , to 
allow partial matching. Finally, F  measures the 
overall value of a target candidate f  by summing 
over the scores of K phrase pairs. 

Obviously, F  rewards both full matching and 
partial matching. In order to avoid too much noise, 
we put some constraints on the number of words in 
the target phrase of <ec,fc> or <ei,fi>, such as ∥ e ∥> 3 , where " ∥∥ "  measures the number of 
non-blank characters in a phrase. For example, if 
phrase pair “, 减少||| and reduced” occurs in the 
cache, phrase pair “,|||and” is not rewarded because 
such shorter phrase pairs occur frequently and may 
largely degrade the effect of the cache. In accor-
dance, the dynamic cache only contains phrase 
pairs whose target phrases contain 4 or more non-
blank characters. 
3.3 Static Cache 
In Tiedemann (2010), initial sentences in a test 
document fail to benefit from the dynamic cache 
due to the lack of contents in the dynamic cache at 
the beginning of the translation process. To over-
come this problem, a static cache is included to 
store relevant bilingual phrase pairs extracted from 
similar bilingual document pairs in the training 
parallel corpus. In particular, a static cache feature F  is designed to capture useful information in the 
static cache in the same way as the dynamic cache 
feature, shown in Formula (5). 

For this purpose, all the document pairs in the 
training parallel corpus are aligned at the phrase 
level using 2-fold cross-validation. That is, we 
adopt 50% of the training parallel corpus to train a 
model using Moses and apply the model to enforce 
phrase alignment of the remaining training data, 
and vice versa. Here, the enforcement is done by 
guaranteeing the occurrence of the target phrase 
candidate of a source phrase in the sentence pair. 
Besides, all the words pairs trained on the whole 
training parallel corpus are included in both folds 
to ensure at least one possible translation. Finally, 
the phrase pairs in the best translation hypothesis 
of a sentence pair is retrieved from the decoder. In 
this way, we can extract a set of phrase pairs for 
each bilingual document pairs. 

Given a test document, we first find a set of sim-
ilar source documents by computing the Cosine 
similarity using the TF-IDF weighting scheme and 
their corresponding target documents, from the 
training parallel corpus. Then, the phrase pairs ex-
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tracted from these similar bilingual document pairs 
are collected into the static cache.  To avoid noise, 
we filter out those phrase pairs which occur less 
than two times in the training parallel corpus. 

 
出口 ||| exports 
放慢 ||| slowdown 
股市 ||| stock market 
现行 ||| leading 

汇率 ||| exchange 
活力 ||| vitality 
加快 ||| speed up the 
经济学家 ||| economists 

出口 增幅 ||| export growth 
多种 原因 ||| various reasons 
国家 著名 ||| a well-known international 
议会 委员会 ||| congressional committee 
不 乐观 的 预期 ||| pessimistic predictions 
保持 一定 的 增长 ||| maintain a certain growth 
美元 汇率 下跌 ||| a drop in the dollar exchange rate 
Table 1: Phrase pairs extracted from a document pair 

with an economic topic 

Similar to the dynamic cache, we only consider 
those phrase pairs whose target phrases contain 4 
or more non-blank characters to avoid noise. We 
do not deliberately remove long phrase pairs. It is 
possible to use these long phrase pairs if our test 
document is very similar to one training document 
pair.  Table 1 shows some bilingual phrase pairs 
extracted from a document pair, which reports a 
piece of news about “impact on slowdown in US 
economic growth”. Obviously, these phrase pairs 
are closely related to economics. 

3.4 Topic Cache 

Both the dynamic and static caches may still intro-
duce noisy/unnecessary bilingual phrase pairs even 
with constraints on the length of phrases and their 
occurrence frequency in the training parallel cor-
pus. In order to resolve this problem, this paper 
adopts a topic cache to store relevant topic words 
and employs a topic cache feature to weaken those 
noisy/unnecessary phrase pairs. 

Given w  is a topic word in the topic cache, the 
topic cache feature F  is designed as follows:   =  topicexist(e , f )          (6) 
where topicexist(e , f ) =   1   (w ∈ e )                                    0    other                                            
Here, the target phrase which contains a topic word w  will be rewarded. w  is derived by a topic mod-
el, LDA (Latent Dirichlet Allocation). This is dif-
ferent from the previous work (Tam, 2007), which 
mainly interpolated a topic language model with a 

general language model and added additional two 
adaptive lexicon probabilities in his phrase table. 

In principle, LDA is a probabilistic model of 
text data, which provides a generative analog of 
PLSA (Blei et al., 2003), and is primarily meant to 
reveal hidden topics in text documents. Like most 
of the text mining techniques, LDA assumes that 
documents are made up of words and the ordering 
of the words within a document is unimportant (i.e. 
the “bag-of-words” assumption).  

Figure 1 shows the principle of LDA, where α is 
the parameter of the uniform Dirichlet prior on the 
per-document topic distributions, β is the parame-
ter of the uniform Dirichlet prior on the per-topic 
word distribution, θi is the topic distribution for 
document i, zij is the topic for the jth word in doc-
ument i, and wij is the specific word. Among all 
variables, wij is the only observable variable with 
all the other variables latent. In particular, K de-
notes the number of topics considered in the model 
and φ is a K*V (V is the dimension of the vocabu-
lary) Markov matrix each line of which denotes the 
word distribution of a topic. The inner plate over z 
and w illustrates the repeated sampling of topics 
and words until N

 
words have been generated for 

document d. The plate surrounding θ
 
illustrates the 

sampling of a distribution over topics for each 
document d for a total of M documents. The plate 
surrounding φ

 
illustrates the repeated sampling of 

word distributions for each topic z until K topics 
have been generated. 

We use a LDA tool1 to build a topic model using 
the target-side documents in the training parallel 
corpus. Using LDA, we can obtain the topic distri-
bution of each word w, namely p(z|w) for topic z ϵK. Moreover, using the obtained word topic dis-
tributions, we can infer the topic distribution of a 
new document, namely p(z|d) for each topic z ϵK. 

Given a test document, we first find the most 
similar source document from the training data in 

                                                        
1 http://www.arbylon.net/projects/ 

Figure 1: LDA  
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the same way as done in the static cache. After that, 
we retrieve its corresponding target document. 
Then, the topic of the target document is deter-
mined by its major topic, with the maximum p(z|d). 
Finally, we load some topic words corresponding 
to this topic z into the topic cache. In particular, 
our LDA model deploy the setting of K=15, α=0.5 
and β=0.1. Besides, only top 1000 topic words are 
reserved for each topic. Table 2 shows top 10 topic 
words for five topics. 

 
Topic 1 Topic 2 Topic 3 Topic4 Topic5 
company  
corporation  
limited  
manager  
board  
branch  
companies  
ltd  
business  
personnel  

army  
armed  
military  
officers  
forces  
units  
troops  
force  
soldiers  
police  

party  
represents  
study  
theory  
leadership  
political  
cadres  
speech  
comrade  
central  

bush  
united  
adminis-
tration  
policy  
president  
clinton  
office  
secretary  
powell  
relations  

election  
olympic  
games  
votes  
bid  
gore  
presi-
dential  
party  
won  
speech 

Table 2: Topic words extracted from target-side doc-
uments  

 

4 Experimentation 

We have systematically evaluated our cache-based 
approach to document-level SMT on the Chinese-
English translation task. 

4.1 Experimental Setting 
Here, we use SRI language modeling toolkit to 
train a trigram general language model on English 
newswire text, mostly from the Xinhua portion of 
the Gigaword corpus (2007) and performed word 
alignment on the training parallel corpus using 
GIZA++(Och and Ney,2000) in two directions. For 
evaluation, the NIST BLEU script (version 13) 
with the default setting is used to calculate the 
Bleu score (Papineni et al. 2002), which measures 
case-insensitive matching of n-grams with n up to 
4. To see whether an improvement is statistically 
significant, we also conduct significance tests us-
ing the paired bootstrap approach (Koehn, 2004)2. 
In this paper, ‘***’, ‘**’, and ‘*’ denote 
p-values less than or equal to 0.01, in-between 
(0.01, 0.05), and bigger than 0.05, which mean 
significantly better, moderately better and slightly 
better, respectively. 
                                                        
2 http://www.ark.cs.cmu.edu/MT 

In this paper, we use FBIS as the training data, 
the 2003 NIST MT evaluation test data as the de-
velopment data, and the 2005 NIST MT test data 
as the test data. Table 3 shows the statistics of 
these data sets (with document boundaries anno-
tated). 

 
   Corpus Sentences Documents 
Role Name 
Train FBIS 239413 10353 
Dev NIST2003 919 100 
Test NIST2005 1082 100 

Table 3: Corpus statistics 

In particular, the sizes of the static, topic and 
dynamic caches are fine-tuned to 2000, 1000 and 
5000 items, respectively. For the dynamic cache, 
we only keep those most recently-visited items, 
while for the static cache; we always keep the most 
frequently-occurring items. 

4.2 Experimental Results 

Table 4 shows the contribution of various caches in 
our cache-based document-level SMT system. The 
column of “BLEU_W” means the BLEU score 
computed over the whole test set and “BLEU_D” 
corresponds to the average BLEU score over sepa-
rated documents. 
 

System BLEU on 
Dev(%) 

BLEU on Test(%) 
BLEU_W NIST BLEU_D 

Moses 29.87 25.76 7.784 25.08 
Fd 29.90 26.03 (*) 7.852 25.39 
Fd+Fs 30.29 26.30 (**) 7.884 25.86 
Fd+Ft 30.11 26.24 (**) 7.871 25.74 
Fd+Fs+Ft 30.50 26.42 (***) 7.896 26.11 
Fd+Fs+Ft 
with merg-
ing 

- 26.57 (***) 7.901 26.32 

Table 4: Contribution of various caches in our cache-
based document-level SMT system. Note that signific-

ance tests are done against Moses. 

Contribution of dynamical cache (Fd)  

Table 4 shows that the dynamic cache slightly im-
proves the performance by 0.27 (*) in BLEU_W. 
This is similar to Tiedemann (2010). However, 
detailed analysis indicates that the dynamic cache 
does have negative effect on about one third of 
documents, largely due to the instability of the dy-
namic cache at the beginning of translating a doc-
ument. Figure 2 shows the distribution of the 
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BLEU_D difference of 100 test documents (sorted 
by BLEU_D). It shows that about 55% of test 
documents benefit from the dynamic cache. 

Contribution of static cache (Fs) 
Table 4 shows that the combination of the static 
cache with the dynamic cache further improves the 
performance by 0.27(*) in BLEU_W. This sug-
gests the effectiveness of the static cache in elimi-
nating the instability of the dynamic cache when 
translating first few sentences of a test document. 
Together, the dynamic and static caches much im-
prove the performance by 0.54 (**) in BLEU_W 
over Moses.  Figure 3 shows the distribution of the 
BLEU_D difference of 100 test documents (sorted 
by BLEU_D), with more positive effect on those 
borderline documents, compared to Figure 2. 

Contribution of topic cache (Ft) 

Table 4 shows that the topic cache has comparable 
effect on improving the performance as the static 
cache when combined with the dynamic cache 
(0.48 vs. 0.54 in BLEU_W). Figure 4 shows the 

effectiveness of combining the dynamic and topic 
caches (sorted by BLEU_D). 

However, detailed analysis shows that the topic 
cache and the static cache are quite complementary 
by contributing on different test documents, largely 
due to that while the static cache tends to keep 
translation consistent, the topic cache plays like a 
document-specific language model. This is justi-
fied by Table 4 that the combination of the dynam-
ic, static and topic caches significantly improve the 
performance by 0.66 (***) in BLEU_W, and by 
Figure 5 that about 75% of test documents benefit 
from the combination of the three caches (sorted 
by BLEU_D). 

Contribution of merging phrase pairs of similar 
document pairs 

Here, the number of similar documents we adopt is 
different from previous experiments. In the pre-
vious experiments, we only cache bilingual phrase 
pairs extracted from the most similar document. 
Here, we merge phrase pairs for several most simi-
lar documents (5 at most) which have the same 
topic. 

Figure 2: Contribution of employing the dynamic 
cache on different test documents 
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Figure 3: Contribution of combining the dynamic and 

static cache on different test documents 
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Figure 4: Contribution of combining the dynamic 

and topic caches 
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Figure 5: Contribution of combining the three caches 
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 Table 4 shows that employing this trick can fur-
ther improve the performance by 0.15 in BLEU_W. 
As a result, the cache-based approach significantly 
improve the performance by 0.81 (***) in 
BLEU_W over Moses. 

5 Discussion 

In this section, we explore in more depth why the 
static cache can help the dynamic cache, some 
constrained factors which impact the effectiveness 
of our cache-based approach. 

Effectiveness of the static cache  

We investigate why the static cache affects the per-
formance. Basically, it is difficult for the dynamic 
cache to capture such similar information in the 
static cache. 

In principle, the static cache can both influence 
the initial and subsequent sentences; however sub-
sequent ones can be affected by multiple caches. In 
order to give an insight of the static cache, we eva-
luate its effectiveness on the first sentence for each 
test document. Figure 6 shows the contribution of 
the static cache on translating these first sentences 
(y-axis shows BLEU value of the first sentence for 
each test document). It notes that the most BLEU 
scores of them are zeros because of the length limi-
tation of first sentences. 

Furthermore, we count the hit (matching) fre-
quency of the static cache for each test documents. 
Since we use 1 or 0 for the static cache feature, it is 
easy to retrieve its effect for each test document. 
Our statistics shows that the hit frequency on static 
cache fluctuates between 5 and 18 for each test 
document. Without the static cache, the hit fre-

quency of the dynamic cache is 504 on whole test 
sets, this figure increases to 685 with the static 
cache. This means that the static cache significant-
ly enlarges the effectiveness of the dynamic cache 
by including more relevant phrase pairs to the dy-
namic cache, largely due to the positive impact of 
the static cache on the initial sentences of each test 
document. 

Size of topic cache  
Table 5 shows the impact of the topic cache when 
the number of the retained topic words for each 
topic increases from 500 to 2000. It shows that too 
more topic words actually harm the performance, 
due to the increase of noise. 1000 topic words 
seem a lot largely due to that we didn’t do stem-
ming for our topic modeling since we hope to in-
troduce some tense information of them in the 
future.  
 

Number of topic words BLEU_W 
500 26.27 
700 26.31 

1000 26.42 
1500 26.23 
2000 26.19 

Table 5: Impact of the topic cache size 

Influenced translations  

In order to explore how our cache-based system 
impacts on translation results, we manually in-
spected 5 documents respectively which is im-
proved or degraded in translation quality compared 
to the baseline Moses output. Those documents 
have 107 sentences in sum. 

The good effectiveness of each kind of cache 
can be observed by the example 1 and 2 showed in 
Table 6. Both the example 1 and 2 come from the 
same document whose “BLEU_D” score exceeds 
Moses with 8.4 point. The example 1 benefits from 
the topic cache which contains the item of “action”. 
The example 2 benefits from the static cache which 
contains a phrase pair of  “承诺 ||| promised to” 
while Moses use “commitment” for “承诺” , which 
may be the reason for  missing the part of “prime 
minister” in Moses output. Furthermore, due to the 
phrase pair of “停火 协议||| the ceasefire agree-
ment” existing in our static cache, our decoder 
keeps using “ceasefire” to translate “停火” in the 
whole document while Moses randomly use “cea-
sefire” or “cease-fire” for this translation.  

 
Figure 6: Contribution of the static cache on the first 

sentence of each test document  
(i.e. with empty dynamic cache)   
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1 官员 预测 “ 准备 工作 将 会 进行 到 七月 , 然后 再 展开 政治 动作 ” 

Moses: official forecasts said that preparatory work will be carried out in july and then launched a political maneuver . 
Ours:   official forecasts said that preparatory work will be carried out in july , then began a political action . 
Reference: officials expected that "preparations would take place until July, after which political action will begin".          

2 关于 这 一 点 , 中东新闻社 说 , 以色列 总理 夏隆 承诺 “ 只 要 巴勒斯坦 当局 尊重 停火 协议 , 控

制 好 它们 的 地方 , 以色列 将 会 停止 对 巴勒斯坦 人 的 军事 行动 ” 。 

Moses: on this point , said that israeli commitment to the palestinian authorities to respect the cease-fire agreement , 
where they are well under control , israel will stop its military actions against palestinians . 
Ours: on this point , said that israeli prime minister promised to respect the ceasefire agreement , the palestinian au-
thorities to properly control their areas and israel will stop its military actions against palestinians . 
Reference:For this point , MENA said Israeli Prime Minister Sharon has promised to " stop Israeli military operations 
against the Palestinians insofar as they continue to respect the ceasefire deal and control their territory . " 

3 17 日 晚 ，近 3000 多 名 市民 在 市中心 的 武器 广场 观看 了 由 市政府 举办 的 精彩纷呈 的 歌舞 

晚会 ，五颜六色 的 灯光 装扮 着 广场 周围 的 古老 建筑 ，著名 歌舞 艺术家 们 表演 了 不同 地区 

的 民族 歌舞 。 

Moses: on the evening , nearly 3,000 residents in the downtown square of the weapons held by the municipal govern-
ment , watched a song and dance soiree , having colorful lighting disguise of ancient buildings around the square , sing-
ing and dancing famous artists staged different regions of ethnic song and dance . 
Ours: later on, nearly 3,000 residents in the downtown square to watch the government of having a song and dance 
performances were held under the disguise of colorful lighting around the square , a famous ancient buildings and local 
artists of different ethnic song and dance . 
Reference: On the night of the 17th , nearly 3,000 residents watched a wonderful gala of songs and dances , organized 
by the municipal government , at Plaza da Armas . Colorful lights lighted up ancient architecture around the plaza . 
Famous artists including singers and dancers staged performances of national songs and dances of different regions . 

4 利马 的 城市 面积 已 从 建城 之 初 的 2.14 平方公里 发展 到 2600 多 平方公里 ， 而 人口 也 增加 

到 800万 左右 ， 约 占 全国 总人口 的 31% 。 
Moses: at lima 's urban area from the beginning of 2600 square to 2.14 million square kilometers , while the popula-
tion has increased to 8 percent of the country 's total , about 31% . 
Ours: lima , the urban area from the beginning of 2600 square kilometers to 2.14 million square kilometers , but also 
increased to about 8 million population , the country 's total population of about 31% . 
Reference: The area of Lima city has expanded to more than 2,600 square kilometers from the original 2.14 square ki-
lometers when the city was founded , while the population has increased to around 8 million , roughly accounting for 
31% of the nation's total . 

Table 6: Positive and negative examples  
The example 3 and 4 also come from the same 

document however whose performance degrades 
with 2.17 point.  We don’t think the translation 
quality for example 4 in our system is worse than 
Moses. However, the translation quality for exam-
ple 3 in our system is very bad and especially 
showed on “re-ordering”. We found this sentence 
did not match any item in our static cache and top-
ic cache. Although this phenomenon also happens 
in other documents, but this is the most typical 
negative example among these documents.  

Document-specific characteristics  
It seems that using the same weight for the whole 
test sets (all documents) is not very reasonable. 
Actually, if we can determine those negative doc-
uments which are not suitable for the cache-based 
approach, our cache-based approach may gain 
much improvement. Tiedemann (2010) explored 
the correlation to document length, baseline per-
formance and source document repetition. Howev-

er, it seems that there are no obvious rules to filter 
out those negative documents. Besides, there may 
be two more document-specific factors: repetition 
of the reference text and document style.  

Tiedemann (2010) only considered the repetition 
of the test text in the source side. Since BLEU 
score is computed against the reference text, the 
repetition in the reference text may greatly influ-
ence the performance of our cache-based approach 
to document-level SMT. As for document style, it 
is quite possible that a document may contain sev-
eral topics. Therefore, it may be useful to track 
such change over topics and refresh various caches 
when there is a topic change. We will leave the 
above issues to the future work. 

6 Conclusion 

We have shown that our cache-based approach 
significantly improves the performance with the 
help of various caches, such as the dynamic, static 
and topic caches, although the cache-based ap-
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proach may introduce some negative impact on 
BLEU scores for certain documents.  

In the future, we will further explore how to re-
flect document divergence during training and dy-
namically adjust cache weights according to 
different documents.  

There are many useful components in training 
documents, such as named entity, event and co-
reference. In this experiment, we only adopt the 
flat data in our cache. However, the structured data 
may improve the correctness of matching and thus 
effectively avoid noise. We will explore more ef-
fective ways to pick up various kinds of useful in-
formation from the training parallel corpus to 
expand our cache-based approach. Besides, we will 
resort to comparable corpora to enlarge our cache-
based approach to document-level SMT.  
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Abstract

Discriminative training for machine transla-
tion has been well studied in the recent past.
A limitation of the work to date is that it relies
on the availability of high-quality in-domain
bilingual text for supervised training. We
present an unsupervised discriminative train-
ing framework to incorporate the usually plen-
tiful target-language monolingual data by us-
ing a rough “reverse” translation system. Intu-
itively, our method strives to ensure that prob-
abilistic “round-trip” translation from a target-
language sentence to the source-language and
back will have low expected loss. Theoret-
ically, this may be justified as (discrimina-
tively) minimizing an imputed empirical risk.
Empirically, we demonstrate that augment-
ing supervised training with unsupervised data
improves translation performance over the su-
pervised case for both IWSLT and NIST tasks.

1 Introduction

Missing data is a common problem in statistics when
fitting the parameters θ of a model. A common strat-
egy is to attempt to impute, or “fill in,” the missing
data (Little and Rubin, 1987), as typified by the EM
algorithm. In this paper we develop imputation tech-
niques when θ is to be trained discriminatively.

We focus on machine translation (MT) as our ex-
ample application. A Chinese-to-English machine
translation system is given a Chinese sentence x and

∗ Zhifei Li is currently working at Google Research, and
this work was done while he was a PHD student at Johns Hop-
kins University.

asked to predict its English translation y. This sys-
tem employs statistical models pθ(y | x) whose pa-
rameters θ are discriminatively trained using bilin-
gual sentence pairs (x, y). But bilingual data for
such supervised training may be relatively scarce for
a particular language pair (e.g., Urdu-English), es-
pecially for some topics (e.g., technical manuals) or
genres (e.g., blogs). So systems seek to exploit ad-
ditional monolingual data, i.e., a corpus of English
sentences y with no corresponding source-language
sentences x, to improve estimation of θ. This is our
missing data scenario.1

Discriminative training of the parameters θ of
pθ(y | x) using monolingual English data is a cu-
rious idea, since there is no Chinese input x to trans-
late. We propose an unsupervised training approach,
called minimum imputed risk training, which is con-
ceptually straightforward: First guess x (probabilis-
tically) from the observed y using a reverse English-
to-Chinese translation model pφ(x | y). Then train
the discriminative Chinese-to-English model pθ(y |
x) to do a good job at translating this imputed x
back to y, as measured by a given performance met-
ric. Intuitively, our method strives to ensure that
probabilistic “round-trip” translation from a target-
language sentence to the source-language and back
again will have low expected loss.

Our approach can be applied in an application
scenario where we have (1) enough out-of-domain
bilingual data to build two baseline translation sys-
tems, with parameters θ for the forward direction,
and φ for the reverse direction; (2) a small amount

1Contrast this with traditional semi-supervised training that
looks to exploit “unlabeled” inputs x, with missing outputs y.
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of in-domain bilingual development data to discrim-
inatively tune a small number of parameters in φ;
and (3) a large amount of in-domain English mono-
lingual data.

The novelty here is to exploit (3) to discrimina-
tively tune the parameters θ of all translation model
components,2 pθ(y|x) and pθ(y), not merely train a
generative language model pθ(y), as is the norm.

Following the theoretical development below, the
empirical effectiveness of our approach is demon-
strated by replacing a key supervised discriminative
training step in the development of large MT sys-
tems — learning the log-linear combination of sev-
eral component model scores (viewed as features) to
optimize a performance metric (e.g. BLEU) on a set
of (x, y) pairs — with our unsupervised discrimina-
tive training using only y. One may hence contrast
our approach with the traditional supervised meth-
ods applied to the MT task such as minimum error
rate training (Och, 2003; Macherey et al., 2008), the
averaged Perceptron (Liang et al., 2006), maximum
conditional likelihood (Blunsom et al., 2008), min-
imum risk (Smith and Eisner, 2006; Li and Eisner,
2009), and MIRA (Watanabe et al., 2007; Chiang et
al., 2009).

We perform experiments using the open-source
MT toolkit Joshua (Li et al., 2009a), and show that
adding unsupervised data to the traditional super-
vised training setup improves performance.

2 Supervised Discriminative Training via
Minimization of Empirical Risk

Let us first review discriminative training in the su-
pervised setting—as used in MERT (Och, 2003) and
subsequent work.

One wishes to tune the parameters θ of some
complex translation system δθ(x). The function δθ,
which translates Chinese x to English y = δθ(x)
need not be probabilistic. For example, θ may be
the parameters of a scoring function used by δ, along
with pruning and decoding heuristics, for extracting
a high-scoring translation of x.

The goal of discriminative training is to mini-
mize the expected loss of δθ(·), under a given task-
specific loss function L(y′, y) that measures how

2Note that the extra monolingual data is used only for tuning
the model weights, but not for inducing new phrases or rules.

bad it would be to output y′ when the correct output
is y. For an MT system that is judged by the BLEU

metric (Papineni et al., 2001), for instance, L(y′, y)
may be the negated BLEU score of y′ w.r.t. y. To be
precise, the goal3 is to find θ with low Bayes risk,

θ∗ = argmin
θ

∑

x,y

p(x, y) L(δθ(x), y) (1)

where p(x, y) is the joint distribution of the input-
output pairs.4

The true p(x, y) is, of course, not known and,
in practice, one typically minimizes empirical risk
by replacing p(x, y) above with the empirical dis-
tribution p̃(x, y) given by a supervised training set
{(xi, yi), i = 1, . . . , N}. Therefore,

θ∗ = argmin
θ

∑

x,y

p̃(x, y) L(δθ(x), y)

= argmin
θ

1

N

N∑

i=1

L(δθ(xi), yi). (2)

The search for θ∗ typically requires the use of nu-
merical methods and some regularization.5

3 Unsupervised Discriminative Training
with Missing Inputs

3.1 Minimization of Imputed Risk

We now turn to the unsupervised case, where we
have training examples {yi} but not their corre-
sponding inputs {xi}. We cannot compute the sum-
mand L(δθ(xi), yi) for such i in (2), since δθ(xi)
requires to know xi. So we propose to replace

3This goal is different from the minimum risk training of
Li and Eisner (2009) in a subtle but important way. In both
cases, θ∗ minimizes risk or expected loss, but the expectation
is w.r.t. different distributions: the expectation in Li and Eisner
(2009) is under the conditional distribution p(y |x), while the
expectation in (1) is under the joint distribution p(x, y).

4In the terminology of statistical decision theory, p(x, y) is
a distribution over states of nature. We seek a decision rule
δθ(x) that will incur low expected loss on observations x that
are generated from unseen states of nature.

5To compensate for the shortcut of using the unsmoothed
empirical distribution rather than a posterior estimate of p(x, y)
(Minka, 2000), it is common to add a regularization term ||θ||22
in the objective of (2). The regularization term can prevent over-
fitting to a training set that is not large enough to learn all pa-
rameters.
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L(δθ(xi), yi) with the expectation
∑

x

pφ(x | yi) L(δθ(x), yi), (3)

where pφ(· | ·) is a “reverse prediction model” that
attempts to impute the missing xi data. We call the
resulting variant of (2) the minimization of imputed
empirical risk, and say that

θ∗ = argmin
θ

1

N

N∑

i=1

∑

x

pφ(x | yi) L(δθ(x), yi) (4)

is the estimate with the minimum imputed risk6.
The minimum imputed risk objective of (4) could

be evaluated by brute force as follows.

1. For each unsupervised example yi, use the re-
verse prediction model pφ(· | yi) to impute pos-
sible reverse translations Xi = {xi1, xi2, . . .},
and add each (xij , yi) pair, weighted by
pφ(xij | yi) ≤ 1, to an imputed training set .

2. Perform the supervised training of (2) on the
imputed and weighted training data.

The second step means that we must use δθ to
forward-translate each imputed xij , evaluate the loss
of the translations y′ij against the corresponding true
translation yi, and choose the θ that minimizes the
weighted sum of these losses (i.e., the empirical risk
when the empirical distribution p̃(x, y) is derived
from the imputed training set). Specific to our MT
task, this tries to ensure that probabilistic “round-
trip” translation, from the target-language sentence
yi to the source-language and back again, will have
a low expected loss.7

The trouble with this method is that the reverse
model pφ generates a weighted lattice or hyper-
graph Xi encoding exponentially many translations
of yi, and it is computationally infeasible to forward-
translate each xij ∈ Xi. We therefore investigate
several approximations to (4) in Section 3.4.

6One may exploit both supervised data {(xi, yi)} and unsu-
pervised data {yj} to perform semi-supervised training via an
interpolation of (2) and (4). We will do so in our experiments.

7Our approach may be applied to other tasks as well. For
example, in a speech recognition task, δθ is a speech recognizer
that produces text, whereas pφ is a speech synthesizer that must
produce a distribution over audio (or at least over acoustic fea-
tures or phone sequences) (Huang et al., 2010).

3.2 The Reverse Prediction Model pφ
A crucial ingredient in (4) is the reverse prediction
model pφ(·|·) that attempts to impute the missing xi.
We will train this model in advance, doing the best
job we can from available data, including any out-
of-domain bilingual data as well as any in-domain
monolingual data8 x.

In the MT setting, δθ and pφ may have similar pa-
rameterization. One translates Chinese to English;
the other translates English to Chinese.

Yet the setup is not quite symmetric. Whereas δθ
is a translation system that aims to produce a single,
low-loss translation, the reverse version pφ is rather
a probabilistic model. It is supposed to give an accu-
rate probability distribution over possible values xij
of the missing input sentence xi. All of these val-
ues are taken into account in (4), regardless of the
loss that they would incur if they were evaluated for
translation quality relative to the missing xi.

Thus, φ does not need to be trained to minimize
the risk itself (so there is no circularity). Ideally,
it should be trained to match the underlying condi-
tional distribution of x given y, by achieving a low
conditional cross-entropy

H(X |Y ) = −
∑

x,y

p(x, y) log pφ(x | y). (5)

In practice, φ is trained by (empirically) minimiz-
ing − 1

M

∑N
j=1 log pφ(xj | yj) + 1

2σ2 ‖φ‖22 on some
bilingual data, with the regularization coefficient σ2

tuned on held out data.
It may be tolerable for pφ to impute mediocre

translations xij . All that is necessary is that the (for-
ward) translations generated from the imputed xij
“simulate” the competing hypotheses that we would
see when translating the correct Chinese input xi.

3.3 The Forward Translation System δθ and
The Loss Function L(δθ(xi), yi)

The minimum empirical risk objective of (2) is
quite general and various popular supervised train-
ing methods (Lafferty et al., 2001; Collins, 2002;
Och, 2003; Crammer et al., 2006; Smith and Eisner,

8In a translation task from x to y, one usually does not make
use of in-domain monolingual data x. But we can exploit x to
train a language model pφ(x) for the reverse translation system,
which will make the imputed xij look like true Chinese inputs.
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2006) can be formalized in this framework by choos-
ing different functions for δθ and L(δθ(xi), yi). The
generality of (2) extends to our minimum imputed
risk objective of (4). Below, we specify the δθ and
L(δθ(xi), yi) we considered in our investigation.

3.3.1 Deterministic Decoding
A simple translation rule would define

δθ(x) = argmax
y

pθ(y |x) (6)

If this δθ(x) is used together with a loss function
L(δθ(xi), yi) that is the negated BLEU score9, our
minimum imputed risk objective of (4) is equivalent
to MERT (Och, 2003) on the imputed training data.

However, this would not yield a differentiable ob-
jective function. Infinitesimal changes to θ could re-
sult in discrete changes to the winning output string
δθ(x) in (6), and hence to the loss L(δθ(x), yi). Och
(2003) developed a specialized line search to per-
form the optimization, which is not scalable when
the number of model parameters θ is large.

3.3.2 Randomized Decoding
Instead of using the argmax of (6), we assume

during training that δθ(x) is itself random, i.e. the
MT system randomly outputs a translation y with
probability pθ(y |x). As a result, we will modify
our objective function of (4) to take yet another ex-
pectation over the unknown y. Specifically, we will
replace L(δθ(x), yi) in (4) with

∑

y

pθ(y |x) L(y, yi). (7)

Now, the minimum imputed empirical risk objective
of (4) becomes

θ∗ = argmin
θ

1

N

N∑

i=1

∑

x,y

pφ(x | yi) pθ(y |x) L(y, yi)

(8)
If the loss function L(y, yi) is a negated BLEU, this
is equivalent to performing minimum-risk training
described by (Smith and Eisner, 2006; Li and Eisner,
2009) on the imputed data.10

9One can manipulate the loss function to support other
methods that use deterministic decoding, such as Perceptron
(Collins, 2002) and MIRA (Crammer et al., 2006).

10Again, one may manipulate the loss function to support
other probabilistic methods that use randomized decoding, such
as CRFs (Lafferty et al., 2001).

The objective function in (8) is now differentiable,
since each coefficient pθ(y |x) is a differentiable
function of θ, and thus amenable to optimization
by gradient-based methods; we use the L-BFGS al-
gorithm (Liu et al., 1989) in our experiments. We
perform experiments with the syntax-based MT sys-
tem Joshua (Li et al., 2009a), which implements
dynamic programming algorithms for second-order
expectation semirings (Li and Eisner, 2009) to effi-
ciently compute the gradients needed for optimizing
(8).

3.4 Approximating pφ(x | yi)
As mentioned at the end of Section 3.1, it is com-
putationally infeasible to forward-translate each of
the imputed reverse translations xij . We propose
four approximations that are computationally feasi-
ble. Each may be regarded as a different approxima-
tion of pφ(x | yi) in equations (4) or (8).

k-best. For each yi, add to the imputed training set
only the k most probable translations {xi1, . . . xik}
according to pφ(x | yi). (These can be extracted
from Xi using standard algorithms (Huang and Chi-
ang, 2005).) Rescale their probabilities to sum to 1.

Sampling. For each yi, add to the training set k in-
dependent samples {xi1, . . . xik} from the distribu-
tion pφ(x | yi), each with weight 1/k. (These can be
sampled from Xi using standard algorithms (John-
son et al., 2007).) This method is known in the liter-
ature as multiple imputation (Rubin, 1987).

Lattice. 11 Under certain special cases it is be pos-
sible to compute the expected loss in (3) exactly
via dynamic programming. Although Xi does con-
tain exponentially many translations, it may use a
“packed” representation in which these translations
share structure. This representation may further-
more enable sharing work in forward-translation, so
as to efficiently translate the entire set Xi and ob-
tain a distribution over translations y. Finally, the
expected loss under that distribution, as required by
equation (3), may also be efficiently computable.

All this turns out to be possible if (a) the poste-
rior distribution pφ(x | yi) is represented by an un-

11The lattice approximation is presented here as a theoreti-
cal contribution, and we do not empirically evaluate it since its
implementation requires extensive engineering effort that is be-
yond the main scope of this paper.
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ambiguous weighted finite-state automaton Xi, (b)
the forward translation system δθ is structured in a
certain way as a weighted synchronous context-free
grammar, and (c) the loss function decomposes in a
certain way. We omit the details of the construction
as beyond the scope of this paper.

In our experimental setting described below, (b) is
true (using Joshua), and (c) is true (since we use a
loss function presented by Tromble et al. (2008) that
is an approximation to BLEU and is decomposable).
While (a) is not true in our setting because Xi is a
hypergraph (which is ambiguous), Li et al. (2009b)
show how to approximate a hypergraph representa-
tion of pφ(x | yi) by an unambiguous WFSA. One
could then apply the construction to this WFSA12,
obtaining an approximation to (3).

Rule-level Composition. Intuitively, the reason
why the structure-sharing in the hypergraphXi (gen-
erated by the reverse system) cannot be exploited
during forward translating is that when the forward
Hiero system translates a string xi ∈ Xi, it must
parse it into recursive phrases.

But the structure-sharing within the hypergraph of
Xi has already parsed xi into recursive phrases, in a
way determined by the reverse Hiero system; each
translation phrase (or rule) corresponding to a hy-
peredge. To exploit structure-sharing, we can use
a forward translation system that decomposes ac-
cording to that existing parse of xi. We can do that
by considering only forward translations that respect
the hypergraph structure of Xi. The simplest way to
do this is to require complete isomorphism of the
SCFG trees used for the reverse and forward trans-
lations. In other words, this does round-trip impu-
tation (i.e., from y to x, and then to y′) at the rule
level. This is essentially the approach taken by Li et
al. (2010).

3.5 The Log-Linear Model pθ
We have not yet specified the form of pθ. Following
much work in MT, we begin with a linear model

score(x, y) = θ · f(x, y) =
∑

k

θkfk(x, y) (9)

where f(x, y) is a feature vector indexed by k. Our
deterministic test-time translation system δθ simply

12Note that the forward translation of a WFSA is tractable by
using a lattice-based decoder such as that by Dyer et al. (2008).

outputs the highest-scoring y for fixed x. At training
time, our randomized decoder (Section 3.3.2) uses
the Boltzmann distribution (here a log-linear model)

pθ(y |x) =
eγ·score(x,y)

Z(x)
=

eγ·score(x,y)
∑

y′ e
γ·score(x,y′) (10)

The scaling factor γ controls the sharpness of the
training-time distribution, i.e., the degree to which
the randomized decoder favors the highest-scoring
y. For large γ, our training objective approaches
the imputed risk of the deterministic test-time sys-
tem while remaining differentiable.

In a task like MT, in addition to the input x and
output y, we often need to introduce a latent variable
d to represent the hidden derivation that relates x to
y. A derivation d represents a particular phrase seg-
mentation in a phrase-based MT system (Koehn et
al., 2003) and a derivation tree in a typical syntax-
based system (Galley et al., 2006; Chiang, 2007).
We change our model to assign scores not to an
(x, y) pair but to the detailed derivation d; in partic-
ular, now the function f that extracts a feature vector
can look at all of d. We replace y by d in (9)–(10),
and finally define pθ(y|x) by marginalizing out d,

pθ(y |x) =
∑

d∈D(x,y)

pθ(d |x) (11)

where D(x, y) represents the set of derivations that
yield x and y.

4 Minimum Imputed Risk vs. EM

The notion of imputing missing data is familiar
from other settings (Little and Rubin, 1987), particu-
larly the expectation maximization (EM) algorithm,
a widely used generative approach. So it is instruc-
tive to compare EM with minimum imputed risk.

One can estimate θ by maximizing the log-
likelihood of the data {(xi, yi), i = 1, . . . , N} as

argmax
θ

1

N

N∑

i=1

log pθ(xi, yi). (12)

If the xi’s are missing, EM tries to iteratively maxi-
mize the marginal probability:

argmax
θ

1

N

N∑

i=1

log
∑

x

pθ(x, yi). (13)
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The E-step of each iteration comprises comput-
ing

∑
x pθt(x | yi) log pθ(x, yi), the expected log-

likelihood of the complete data, where pθt(x | yi) is
the conditional part of pθt(x, yi) under the current
iterate θt, and the M-step comprises maximizing it:

θt+1 = argmax
θ

1

N

N∑

i=1

∑

x

pθt(x | yi) log pθ(x, yi).

(14)
Notice that if we replace pθt(x|yi) with pφ(x | yi)
in the equation above, and admit negated log-
likelihood as a loss function, then the EM update
(14) becomes identical to (4). In other words, the
minimum imputed risk approach of Section 3.1 dif-
fers from EM in (i) using an externally-provided and
static pφ, instead of refining it at each iteration based
on the current pθt , and (ii) using a specific loss func-
tion, namely negated log-likelihood.

So why not simply use the maximum-likelihood
(EM) training procedure for MT? One reason is
that it is not discriminative: the loss function (e.g.
negated BLEU) is ignored during training.

A second reason is that training good joint models
pθ(x, y) is computationally expensive. Contempo-
rary MT makes heavy use of log-linear probability
models, which allow the system designer to inject
phrase tables, linguistic intuitions, or prior knowl-
edge through a careful choice of features. Comput-
ing the objective function of (14) in closed form is
difficult if pθ is an arbitrary log-linear model, be-
cause the joint probability pθ(xi, yi) is then defined
as a ratio whose denominatorZθ involves a sum over
all possible sentence pairs (x, y) of any length.

By contrast, our discriminative framework will
only require us to work with conditional models.
While conditional probabilities such as pφ(x | y) and
pθ(y |x) are also ratios, computing their denomina-
tors only requires us to sum over a packed forest of
possible translations of a given y or x.13

In summary, EM would impute missing data us-
ing pθ(x | y) and predict outputs using pθ(y |x),
both being conditional forms of the same joint
model pθ(x, y). Our minimum imputed risk train-
ing method is similar, but it instead uses a pair of

13Analogously, discriminative CRFs have become more pop-
ular than generative HMMs because they permit efficient train-
ing even with a wide variety of log-linear features (Lafferty et
al., 2001).

separately parameterized, separately trained mod-
els pφ(x | y) and pθ(y |x). By sticking to condi-
tional models, we can efficiently use more sophis-
ticated model features, and we can incorporate the
loss function when we train θ, which should improve
both efficiency and accuracy at test time.

5 Experimental Results

We report results on Chinese-to-English translation
tasks using Joshua (Li et al., 2009a), an open-source
implementation of Hiero (Chiang, 2007).

5.1 Baseline Systems

5.1.1 IWSLT Task

We train both reverse and forward baseline sys-
tems. The translation models are built using the cor-
pus for the IWSLT 2005 Chinese to English trans-
lation task (Eck and Hori, 2005), which comprises
40,000 pairs of transcribed utterances in the travel
domain. We use a 5-gram language model with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998), trained on the English (resp. Chi-
nese) side of the bitext. We use a standard train-
ing pipeline and pruning settings recommended by
(Chiang, 2007).

5.1.2 NIST Task

For the NIST task, the TM is trained on about 1M
parallel sentence pairs (about 28M words in each
language), which are sub-sampled from corpora dis-
tributed by LDC for the NIST MT evaluation using a
sampling method implemented in Joshua. We also
used a 5-gram language model, trained on a data set
consisting of a 130M words in English Gigaword
(LDC2007T07) and the bitext’s English side.

5.2 Feature Functions

We use two classes of features fk for discriminative
training of pθ as defined in (9).

5.2.1 Regular Hiero Features

We include ten features that are standard in Hi-
ero (Chiang, 2007). In particular, these include
one baseline language model feature, three baseline
translation models, one word penalty feature, three
features to count how many rules with an arity of
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zero/one/two are used in a derivation, and two fea-
tures to count how many times the unary and binary
glue rules in Hiero are used in a derivation.

5.2.2 Target-rule Bigram Features
In this paper, we do not attempt to discrimina-

tively tune a separate parameter for each bilingual
rule in the Hiero grammar. Instead, we train several
hundred features that generalize across these rules.

For each bilingual rule, we extract bigram fea-
tures over the target-side symbols (including non-
terminals and terminals). For example, if a bilingual
rule’s target-side is “on the X1 issue of X2” where
X1 and X2 are non-terminals (with a position in-
dex), we extract the bigram features on the, the X ,
X issue, issue of, and of X . (Note that the posi-
tion index of a non-terminal is ignored in the fea-
ture.) Moreover, for the terminal symbols, we will
use their dominant POS tags (instead of the sym-
bol itself). For example, the feature the X becomes
DT X . We use 541 such bigram features for IWSLT
task (and 1023 such features for NIST task) that fire
frequently.

5.3 Data Sets for Discriminative Training

5.3.1 IWSLT Task
In addition to the 40,000 sentence pairs used to

train the baseline generative models (which are used
to compute the features fk), we use three bilingual
data sets listed in Table 1, also from IWSLT, for dis-
criminative training: one to train the reverse model
pφ (which uses only the 10 standard Hiero features
as described in Section 5.2.1),14 one to train the for-
ward model δθ (which uses both classes of features
described in Section 5.2, i.e., 551 features in total),
and one for test.

Note that the reverse model φ is always trained us-
ing the supervised data of Dev φ, while the forward
model θ may be trained in a supervised or semi-
supervised manner, as we will show below.

In all three data sets, each Chinese sentence xi
has 16 English reference translations, so each yi is
actually a set of 16 translations. When we impute
data from yi (in the semi-supervised scenario), we

14Ideally, we should train φ to minimize the conditional
cross-entropy (5) as suggested in section 3.2. In the present
results, we trained φ discriminatively to minimize risk, purely
for ease of implementation using well versed steps.

Data set Purpose
# of sentences

Chinese English
Dev φ training φ 503 503×16
Dev θ training θ 503∗ 503×16
Eval θ testing 506 506×16

Table 1: IWSLT Data sets used for discriminative
training/test. Dev φ is used for discriminatively training
of the reverse model φ, Dev θ is for the forward model,
and Eval θ is for testing. The star ∗ for Dev θ empha-
sizes that some of its Chinese side will not be used in the
training (see Table 2 for details).

actually impute 16 different values of xi, by using
pφ to separately reverse translate each sentence in
yi. This effectively adds 16 pairs of the form (xi, yi)
to the training set (see section 3.4), where each xi
is a different input sentence (imputed) in each case,
but yi is always the original set of 16 references.

5.3.2 NIST Task
For the NIST task, we use MT03 set (having 919

sentences) to tune the component parameters in both
the forward and reverse baseline systems. Addition-
ally, we use the English side of MT04 (having 1788
sentences) to perform semi-supervised tuning of the
forward model. The test sets are MT05 and MT06
(having 1082 and 1099 sentences, respectively). In
all the data sets, each source sentence has four refer-
ence translations.

5.4 Main Results

We compare two training scenarios: supervised and
semi-supervised. The supervised system (“Sup”)
carries out discriminative training on a bilingual data
set. The semi-supervised system (“+Unsup”) addi-
tionally uses some monolingual English text for dis-
criminative training (where we impute one Chinese
translation per English sentence).

Tables 2 and 3 report the results for the two tasks
under two training scenarios. Clearly, adding unsu-
pervised data improves over the supervised case, by
at least 1.3 BLEU points in IWSLT and 0.5 BLEU in
NIST.

5.5 Results for Analysis Purposes

Below, we will present more results on the IWSLT
data set to help us understand the behavior of the
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Training scenario Test BLEU

Sup, (200, 200×16) 47.6
+Unsup, 101×16 Eng sentences 49.0
+Unsup, 202×16 Eng sentences 48.9
+Unsup, 303×16 Eng sentences 49.7∗

Table 2: BLEU scores for semi-supervised training for
IWSLT task. The supervised system (“Sup”) is trained
on a subset of Dev θ containing 200 Chinese sentences
and 200×16 English translations. “+Unsup” means that
we include additional (monolingual) English sentences
from Dev θ for semi-supervised training; for each En-
glish sentence, we impute the 1-best Chinese translation.
A star ∗ indicates a result that is signicantly better than
the “Sup” baseline (paired permutation test, p < 0.05).

Training scenario
Test BLEU

MT05 MT06
Sup, (919, 919×4) 32.4 30.6

+Unsup, 1788 Eng sentences 33.0∗ 31.1∗

Table 3: BLEU scores for semi-supervised training for
NIST task. The “Sup” system is trained on MT03, while
the “+Unsup” system is trained with additional 1788 En-
glish sentences from MT04. (Note that while MT04 has
1788×4 English sentences as it has four sets of refer-
ences, we only use one such set, for computational ef-
ficiency of discriminative training.) A star ∗ indicates a
result that is signicantly better than the “Sup” baseline
(paired permutation test, p < 0.05).

methods proposed in this paper.

5.5.1 Imputation with Different Reverse
Models

A critical component of our unsupervised method
is the reverse translation model pφ(x | y). We
wonder how the performance of our unsupervised
method changes when the quality of the reverse sys-
tem varies. To study this question, we used two dif-
ferent reverse translation systems, one with a lan-
guage model trained on the Chinese side of the bi-
text (“WLM”), and the other one without using such
a Chinese LM (“NLM”). Table 4 (in the fully unsu-
pervised case) shows that the imputed Chinese trans-
lations have a far lower BLEU score without the lan-
guage model,15 and that this costs us about 1 English

15The BLEU scores are low even with the language model
because only one Chinese reference is available for scoring.

Data size
Imputed-CN BLEU Test-EN BLEU

WLM NLM WLM NLM
101 11.8 3.0 48.5 46.7
202 11.7 3.2 48.9 47.6
303 13.4 3.5 48.8 47.9

Table 4: BLEU scores for unsupervised training
with/without using a language model in the reverse
system. A data size of 101 means that we use only
the English sentences from a subset of Dev θ containing
101 Chinese sentences and 101×16 English translations;
for each English sentence we impute the 1-best Chinese
translation. “WLM” means a Chinese language model
is used in the reverse system, while “NLM” means no
Chinese language model is used. In addition to reporting
the BLEU score on Eval θ, we also report “Imputed-CN
BLEU”, the BLEU score of the imputed Chinese sentences
against their corresponding Chinese reference sentences.

BLEU point in the forward translations. Still, even
with the worse imputation (in the case of “NLM”),
our forward translations improve as we add more
monolingual data.

5.5.2 Imputation with Different k-best Sizes
In all the experiments so far, we used the reverse

translation system to impute only a single Chinese
translation for each English monolingual sentence.
This is the 1-best approximation of section 3.4.

Table 5 shows (in the fully unsupervised case)
that the performance does not change much as k in-
creases.16 This may be because that the 5-best sen-
tences are likely to be quite similar to one another
(May and Knight, 2006). Imputing a longer k-best
list, a sample, or a lattice for xi (see section 3.4)
might achieve more diversity in the training inputs,
which might make the system more robust.

6 Conclusions

In this paper, we present an unsupervised discrimi-
native training method that works with missing in-
puts. The key idea in our method is to use a re-
verse model to impute the missing input from the ob-
served output. The training will then forward trans-
late the imputed input, and choose the parameters of
the forward model such that the imputed risk (i.e.,

16In the present experiments, however, we simply weighted
all k imputed translations equally, rather than in proportion to
their posterior probabilities as suggested in Section 3.4.
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Training scenario Test BLEU

Unsup, k=1 48.5
Unsup, k=2 48.4
Unsup, k=3 48.9
Unsup, k=4 48.5
Unsup, k=5 48.4

Table 5: BLEU scores for unsupervised training with
different k-best sizes. We use 101×16 monolingual En-
glish sentences, and for each English sentence we impute
the k-best Chinese translations using the reverse system.

the expected loss of the forward translations with
respect to the observed output) is minimized. This
matches the intuition that the probabilistic “round-
trip” translation from the target-language sentence
to the source-language and back should have low ex-
pected loss.

We applied our method to two Chinese to English
machine translation tasks (i.e. IWSLT and NIST).
We showed that augmenting supervised data with
unsupervised data improved performance over the
supervised case (for both tasks).

Our discriminative model used only a small
amount of training data and relatively few features.
In future work, we plan to test our method in settings
where there are large amounts of monolingual train-
ing data (enabling many discriminative features).
Also, our experiments here were performed on a lan-
guage pair (i.e., Chinese to English) that has quite
rich bilingual resources in the domain of the test
data. In future work, we plan to consider low-
resource test domains and language pairs like Urdu-
English, where bilingual data for novel domains is
sparse.
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Abstract

Mapping documents into an interlingual rep-
resentation can help bridge the language bar-
rier of cross-lingual corpora. Many existing
approaches are based on word co-occurrences
extracted from aligned training data, repre-
sented as a covariance matrix. In theory, such
a covariance matrix should represent seman-
tic equivalence, andshouldbe highly sparse.
Unfortunately, the presence of noise leads to
dense covariance matrices which in turn leads
to suboptimal document representations. In
this paper, we explore techniques to recover
the desired sparsity in covariance matrices in
two ways. First, we explore word association
measures and bilingual dictionaries to weigh
the word pairs. Later, we explore different
selection strategies to remove the noisy pairs
based on the association scores. Our experi-
mental results on the task of aligning compa-
rable documents shows the efficacy of sparse
covariance matrices on two data sets from two
different language pairs.

1 Introduction

Aligning documents from different languages arises
in a range of tasks such as parallel phrase extrac-
tion (Gale and Church, 1991; Rapp, 1999), mining
translations for out-of-vocabulary words for statis-
tical machine translation (Daume III and Jagarla-
mudi, 2011) and document retrieval (Ballesteros and
Croft, 1996; Munteanu and Marcu, 2005). In this
task, we are given a comparable corpora and some
documents in one language are assumed to have a

comparable document in the other language and the
goal is to recover this hidden alignment. In this pa-
per, we address this problem by mapping the docu-
ments into a common subspace (interlingual repre-
sentation). This common subspace generalizes the
notion of vector space model for cross-lingual ap-
plications (Turney and Pantel, 2010).

Most of the existing approaches use manually
aligned document pairs to find a common subspace
in which the aligned document pairs are maximally
correlated. The sub-space can be found using ei-
ther generative approaches based on topic modeling
(Mimno et al., 2009; Jagarlamudi and Daumé III,
2010; Zhang et al., 2010; Vu et al., 2009) or dis-
criminative approaches based on variants of Princi-
pal Component Analysis (PCA) and Canonical Cor-
relation Analysis (CCA) (Susan T. Dumais, 1996;
Vinokourov et al., 2003; Platt et al., 2010; Haghighi
et al., 2008). Both styles rely on document level
term co-occurrences to find the latent representation.

The discriminative approaches capture essential
word co-occurrences in terms of two monolingual
covariance matrices and a cross-covariance matrix.
Subsequently, they use these covariance matrices to
find projection directions in each language such that
aligned documents lie close to each other (Sec. 2).
The strong reliance of these approaches on the co-
variance matrices leads to problems, especially with
the noisy data caused either by the noisy words
in a document or the noisy document alignments.
Noisy data is not uncommon and is usually the case
with data collected from community based resources
such as Wikipedia. This degrades performance of a
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variety of tasks, such as transliteration Mining (Kle-
mentiev and Roth, 2006; Hermjakob et al., 2008;
Ravi and Knight, 2009) and multilingual web search
(Gao et al., 2009).

In this paper, we address the problem of identi-
fying and removing noisy entries in the covariance
matrices. We address this problem in two stages.
In the first stage, we explore the use of word asso-
ciation measures such as Mutual Information (MI)
and Yule’sω (Reis and Judd, 2000) in computing
the strength of a word pair (Sec. 3.1). We also
explore the use of bilingual dictionaries developed
from cleaner resources such as parallel data. In the
second stage, we use the association strengths in fil-
tering out the noisy word pairs from the covariance
matrices. We pose this as a word pair selection prob-
lem and explore multiple strategies (Sec. 3.2).

We evaluate the utility of sparse covariance ma-
trices in improving the bilingual projections incre-
mentally (Sec. 4). We first report results on syn-
thetic multi-view data where the true correspon-
dences between features of different views are avail-
able. Moreover, this also lets us systematically ex-
plore the effect of noise level on the accuracy. Our
experimental results show a significant improvement
when the true correspondences are available. Later,
we report our experimental results on the document
alignment task on Europarl and Wikipedia data sets
and on two language pairs. We found that sparsify-
ing the covariance matrices helps in general, but us-
ing cleaner resource such bilingual dictionaries per-
formed best.

2 Canonical Correlation Analysis (CCA)

In this section, we describe how Canonical Correla-
tion Analysis is used to solve the problem of align-
ing bilingual documents. We mainly focus on repre-
senting the solution of CCA in terms of covariance
matrices. Since most of the existing discriminative
approaches are variants of CCA, showing the advan-
tage of recovering sparseness in CCA makes it appli-
cable to the other variants as well.

Given a training data ofn aligned document pairs,
CCA finds projection directions for each language,
so that the documents when projected along these di-
rections are maximally correlated (Hotelling, 1936).
Let X (d1×n) andY (d2×n) be the representation

of data in both the languages and further assume that
the data is centered (subtract the mean vector from
each documenti.e. xi←xi−µx andyi ← yi−µy).
Then CCA finds projection directionsa andb which
maximize:

aT XY Tb√
aT XXT a

√
bT Y Y Tb

s.t.aT XXT a = 1 & bT Y Y Tb = 1

The projection directions are obtained by solving the
generalized eigen system:

[
0 Cxy

Cyx 0

] [
a
b

]
=

[
(1-λ)Cxx+λI 0

0 (1-λ)Cyy+λI

] [
a
b

]
(1)

whereCxx = XXT , Cyy = Y Y T are the monolin-
gual covariance matrices,Cxy = XY T is the cross-
covariance matrix andλ is the regularization param-
eter. Using these eigenvectors as columns, we form
the projection matricesA andB. These projection
matrices are used to map documents in both the lan-
guages into interlingual representation.

Given any new pair of documents, their similarity
is computed by first mapping them into the lower di-
mensions space and computing the cosine similarity
between their projections. In general, using all the
eigenvectors is sub optimal and thus retaining top
eigenvectors leads to better generalizability.

3 Covariance Selection

As shown above, the underlying objective function
in most of the discriminative approaches is of the
form aT XY Tb. This can be rewritten as :

aTXY Tb =

n∑

k=1

〈xk,a〉〈yk,b〉

=

n∑

k=1

( d1∑

i=1

Xi,kai ·
d2∑

j=1

Yj,kbj

)

=

d1∑

i=1

d2∑

j=1

aibj

( n∑

k=1

Xi,kYj,k

)

=

d1,d2∑

i,j=1

aibjC
xy
ij (2)

Similarly, the constraints can also be rewritten as∑d1
i,j=1 aiajC

xx
ij = 1 and

∑d2
i,j=1 bibjC

yy
ij = 1.
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Maximizing this objective function, under the
constraints, involves a careful selection of the vec-
tors a andb such thataibj is high wheneverCxy

ij

is high. So, every non-zero entry of the cross-
covariance matrix restricts the choice of the pro-
jection directions. While this may not be a severe
problem when the training data is clean, but this is
very uncommon especially in the case of high di-
mensional data like text documents. Moreover, the
inherent ambiguity of natural languages increases
the chances of seeing a noisy word in any docu-
ment. Every occurrence of a noisy word will have a
non-zero contribution towards the covariance matrix
making it dense, which in turn prevents the selection
of appropriate projection directions.

In this section, we describe some techniques to
recover the sparsity by removing the noisy entries
from the covariance matrices. We break this task
into two sub problems: computing an association
score for every word pair and then using an appro-
priate strategy to identify the noisy pairs based on
their weights. We explore multiple ways to address
both the steps in the following two sections. For
the sake of convenience and clarity, we describe our
techniques in the context of cross-covariance ma-
trix between English and Spanish language pair. But
these techniques extend directly to monolingual co-
variance matrices, and to different language pairs as
well.

3.1 Computing Word Pair Association

The first step in filtering out the noisy word co-
occurrences is to use an appropriate measure to com-
pute the strength of word pairs (English and Span-
ish words). This is a well studied problem and sev-
eral association measures have been proposed in the
NLP literature (Dunning, 1993; Inkpen and Hirst,
2002; Moore, 2004). These association measures
can be divided into groups based on the statistics
they use (Hoang et al., 2009). Here we explore a few
of them for sparsifying the cross-covariance matrix.

3.1.1 Covariance

The first option is to use the cross-covariance
matrix itself. As noted above, when the data ma-
trix is centered, the cross-covariance of an English
word (ei) with a Spanish word (fj) is given by∑n

k=1 XikYjk. It measures the strength with which

two words co-occur together. This measure uses in-
formation about the occurrence of a word pair in
aligned documents and doesn’t use other statistics
such as ‘how often this pairdoesn’t co-occur to-
gether’ and so on.

3.1.2 Mutual Information

Association measures like covariance and Point-
wise Mutual Information, which only use the fre-
quency with which a word pair co-occurs, often
overestimate the strength of low frequent words
(Moore, 2004). On the other hand, measures
like Log-likelihood ratio (Dunning, 1993) and Mu-
tual Information (MI) use other statistics like the
marginal probabilities of each of the words.

For any two words,ei andfj, let n11, n10, n01

andn00 denote the number of documents in which
both the words co-occur, only English word occurs,
only Spanish word occurs and none of the words oc-
cur. Then the Mutual Information of this word pair
is given by:

MI (ei, fj) =
1

n

∑

i,j∈{0,1}
nij log

nij × n

ninj
(3)

whereni andnj denote the number of documents
in which the English and the Spanish word occurs
andn is the total number of documents. We treat
the occurrence of a word in a document slightly dif-
ferent from others, we treat a word as occurring in
a document if it has occurred more than its average
frequency in the corpus. Log-likelihood ratio and
the MI differ only in terms of the constant they use,
so we use only MI in our experiments.

3.1.3 Yule’sω

Yule’s ω is another popular association measure
used in psychology (Reis and Judd, 2000). It uses
same statistics used by Mutual Information but dif-
fers in the way in which they are combined. MI con-
verts the frequencies into probabilities before com-
puting the association measure where as Yule’sω
uses the observed frequencies directly, and doesn’t
make any assumptions about the underlying proba-
bility distributions. Given the same interpretation of
the variables as introduced in the previous section,
the Yule’sω is estimated as:

ω =

√
n00n11 −

√
n01n10√

n00n11 +
√

n01n10
(4)

932



This way of combining the frequencies bears simi-
larity with the log-odds ratio.

3.1.4 Bilingual Dictionary

The above three association measures use the
same training data that is available to compute the
covariance matrices in CCA. Thus, their utility in
bringing additional information, which is not cap-
tured by the covariance matrices, is arguable (our
experiments show that they are indeed helpful).
Moreover, they use document level co-occurrence
information which is coarse compared to the co-
occurrence at sentence level or the translational in-
formation provided by a bilingual dictionary. So,
we use bilingual dictionaries as our final resource to
weigh the word co-occurrences. Notice that, using
bilingual information brings in information gleaned
from an external corpus.

We use translation tables learnt using Giza++
(Och and Ney, 2003) on Europarl data set. Since the
translation tables are asymmetric, we combine trans-
lation tables from both the directions. We first use a
threshold on the conditional probability to filter out
the low probability ones and then convert them into
joint probabilities before combining. For each word
pair (ei, fj), we compute the score as:

1

2

(
P (ei|fj)P (fj) + P (fj|ei)P (ei)

)

While the first three association measures can also
be applied to monolingual data, bilingual dictionary
can’t be used for weighting monolingual word pairs.
So in this case, we use either of the above mentioned
techniques for weighting monolingual word pairs.

3.2 Selection Strategies

The next step after computing association measure
for all word pairs is to use them in selecting the pairs
that need to be retained. In this section, we describe
some approaches such as thresholding and matching
for the word pair selection.

3.2.1 Thresholding

A straight forward way to remove the noisy word
co-occurrences is to zero out the entries of the
cross-covariance matrix that are lower than a thresh-
old. To understand the motivation, consider the
rewritten objective function of CCA,aT XY Tb =

∑
ij Cxy

ij aibj. This is linear in terms of the individ-
ual components of the cross-covariance matrix. So,
if we want to remove some of the entries of the co-
variance matrix with minimal change in the value of
the objective function, then the optimal choice is to
sort the entries of the covariance matrix and filter out
the less confident word pairs.

3.2.2 Relative Thresholding

While the thresholding strategy described in the
above section is very simple, it is often biased by
the frequent words. Since a frequent word co-occurs
with other words often, it naturally tends to have
high association with most of the other words. As
a result, absolute thresholding tends to remove all
the less frequent word pairs while leaving the co-
occurrences of the frequent words untouched. Even-
tually, this may lead to zeroing out some of the rows
or the columns of the cross-covariance matrix.

To circumvent this, we try thresholding at word
level. For every English word, we choose a few
Spanish words that have high association and vice
versa. Since the nearest neighbour property is asym-
metric, we take the union of all the selected word
pairs. That is, we retain a word pair, if either the
Spanish word is in the top ranked list of the English
word or vice versa.

3.2.3 Maximal Matching

Though relative thresholding overcomes the prob-
lem of zeroing out entire rows or columns posed by
direct thresholding, it is still biased by the frequent
words. The high association measure of a frequent
English word with many Spanish words, makes it a
nearest neighbour for lot of Spanish words. One way
to prevent this is to discourage an already selected
English word from associating with a new Spanish
word. This requires a global knowledge of all the
selected pairs and can not be done by looking at the
individual words, as is the case with the greedy strat-
egy employed by the relative thresholding.

We use matching to solve this problem. We for-
mulate the selection of the word pairs as a network
flow problem (Jagarlamudi et al., 2011). The objec-
tive is to select word pairs that have high association
measure while constraining each word to be asso-
ciated with only a few words from other language.
Let Iij denote an indicator variable taking a value of
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0 or 1 depending on if the word pair (ei, fj) is se-
lected or not. We want each word to be associated
with k words from other language,i.e.

∑
j Iij = k

and
∑

i Iij = k. Moreover, we want word pairs
with high association score to be selected. We can
encode this objective and the constraints as the fol-
lowing optimization problem:

arg max
I

d1,d2∑

i,j=1

Cxy
ij Iij (5)

∀i
∑

j

Iij = k; ∀j
∑

i

Iij = k; ∀i, j Iij ∈ {0, 1}

If k = 1, then this problem reduces to a linear as-
signment problem and can be solved optimally us-
ing the Hungarian algorithm (Jonker and Volgenant,
1987). For other values ofk, this can be solved by
relaxing the constraintIij ∈ {0, 1} to 0 ≤ Iij ≤ 1.
The optimal solution of the relaxed problem can be
found efficiently using linear programming (Ravin-
dra et al., 1993). The uni-modular nature of the
constraints guarantees an integral solution (Schri-
jver, 2003), so relaxing the original integer problem
doesn’t introduce any error in the optimal solution.

3.2.4 Monolingual Augmentation

The above three selection strategies operate on the
covariance matrices independently. In this section
we propose to combine them. Specifically, we pro-
pose to augment the set of selected bilingual word
pairs using the monolingual word pairs. We first use
any of the above mentioned strategies to select bilin-
gual and monolingual word pairs. LetIxy, Ixx and
Iyy be the binary matrices that indicate the selected
word pairs based on the bilingual and monolingual
association scores. Then the monolingual augmen-
tation strategy updatesIxy in the following way:

Ixy ← Binarize(IxxIxyIyy)

i.e., we multiplyIxy with the monolingual selection
matrices and then binarize the resulting matrix. Our
monolingual augmentation is motivated by the fol-
lowing probabilistic interpretation:

P (x, y) =
∑

x′,y′
P (x|x′)P (y|y′)P (x′, y′)

which can be rewritten asP ← T xP (T y)T where
T x andT y are monolingual state transition matrices.

3.3 Our Approach

In this section we summarize our approach for the
task of finding aligned documents from a cross-
lingual comparable corpora. The training phase in-
volves finding projection directions for documents
of both the languages. We compute the covariance
matrices using the training data. Then we use any
of the word association measures (Sec. 3.1) along
with a selection criteria (Sec. 3.2) to recover the
sparseness in either only the cross-covariance or all
of the covariance matrices. LetIxy, Ixx and Iyy

be the binary matrices which represent the word
pairs that are selected based on the chosen sparsi-
fication technique. Now, we replace the covariance
matrices in Eq. 1 as follows:Cxx ← Cxx ⊗ Ixx,
Cyy ← Cyy ⊗ Iyy andCxy ← Cxy ⊗ Ixy where
⊗ denotes the element-wise matrix product. Subse-
quently, we solve the generalized eigenvalue prob-
lem shown in Eq. 1 to obtain the projection direc-
tions. LetA andB be the matrices formed with top
eigenvectors of Eq. 1 as the columns. These pro-
jection matrices are used to map documents into the
interlingual representation. Such an interlingual rep-
resentation is useful in many tasks like cross-lingual
text categorization (Bel et al., 2003) multilingual
web search (Gao et al., 2009) and so on.

During the testing, given an English documentx,
finding an aligned Spanish document involves solv-
ing:

arg max
y

xT
(
(ABT )⊗ Ixy

)
y

√
xT

(
(AAT )⊗ Ixx

)
x

√
yT

(
(BBT )⊗ Iyy

)
y

If the documents are normalized before hand, then
the above equation reduces to computing only the
numerator.

4 Experiments

4.1 Experimental Setup

We experiment with the task of finding aligned doc-
uments from a cross-lingual comparable corpora. In
this task, we are given comparable corpora consist-
ing of two document collections, each in a differ-
ent language. As the corpora are comparable, some
documents in one collection have a comparable doc-
ument in the other collection. The task is to recover
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this hidden alignment. The recovered alignment is
compared against the ground truth.

We evaluate our idea of sparsifying the covari-
ance matrices incrementally. We first evaluate the
effectiveness of our approach on synthetic data, as
it enables us to systematically study the effect of
noise. Subsequently, we evaluate each of the above
discussed sparsification strategies on real world data
sets. We have discussed four possible ways for
computing word association measure and three ap-
proaches for word pair selection. That leaves us 12
different ways for sparsifying the covariance matri-
ces, with each method having parameters to control
the amount of sparseness. We use a small amount of
development data for model selection and parameter
tuning and choose a few promising models. Finally,
we compare these selected models with state-of-the-
art baselines on two language pairs and on two dif-
ferent data sets.

In each case, we use the training data to learn
the projection directions. And then, for each of the
test documents, we find the aligned document from
other language. We report average accuracy of the
top ranked document and also the Mean Reciprocal
Rank (MRR) of the true aligned document.

4.2 Synthetic Data

We follow the generative story introduced in Bach
and Jordan (2005) to generate synthetic multi-view
data. Their method does not assume any correspon-
dence between the feature dimensions of both the
views. We modify their approach slightly so that
we know the actual correspondence between the fea-
tures. We use these true feature correspondences for
sparsification of the cross-covariance matrix.

We first generate ad dimensional vector in the
common latent space and then use the projection
matrices to map it into the individual feature spaces
as follows:

z ∼ N (0, Id)
x|z ∼ (W1z + µ1) + η N (0, Id1)
y|z ∼ (W1z + µ2) + η N (0, Id2)

Notice that we use the same projection matrixW1

for both the views, this ensures a one-to-one corre-
spondence between the features of both the spaces.
Moreover, we also introduce a parameterη which
controls the amount of noise in the data.
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Figure 1: Accuracy of CCA and our sparsified version
with the noise parameter.

We generate a total of 3000 pairs of points and use
2000 of them for training the models and the rest
for evaluation. We use the true feature correspon-
dences to form the cross-covariance selection ma-
trix Ixy (Sec. 3.3). For this experiment, we use the
full monolingual covariance matrices. We train both
CCA and our sparse version on the training data and
evaluate them on the test data. We repeat this mul-
tiple times and report the average accuracies. Fig. 1
shows the performance of CCA and our sparse CCA,
as we vary the noise parameterη from 1 to 4. It
is very clear that the sparse version performs sig-
nificantly better than CCA. As the noise increases,
the performance of CCA drops quickly. This exper-
iment demonstrates a significant performance gain
when the true correspondences are available. But
this information is not available in the case of real
world data sets, so we try to approximate it.

4.3 Model Selection

As we have discussed, there are several choices for
computing the association measure and for selecting
the word pairs to be retained. And each of them have
sparsity parameters, giving raise to many possible
models. For model selection, we use approximately
5000 document pairs collected from the Wikipedia
between English and Spanish. We use the cross-
language links provided as the ground truth. We to-
kenize the documents, retain only the most frequent
2000 words in each language and convert the docu-
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Figure 2: Comparison of the word association measures
along with different selection criteria. Thex-axis plots
the number of non-zero entries in the covariance matrices
and they-axis plots the accuracy of top-ranked document.

ments into TFIDF vectors. We use 60% of the data
for training different models and the rest for evaluat-
ing the models. We choose a few promising models
based on this development set results and evaluate
them on bigger data sets.

4.3.1 Selection Strategies

In the first experiment, we combine the three
association measures, Covariance (Cov), MI and
Yule’s ω, with the three selection criteria, Thresh-
old, Relative Threshold (RelThreshold) and Match-
ing (Match). Fig. 2 shows the performance of these
different combinations with varying levels of spar-
sity in the covariance matrices. The horizontal line
represents the performance of CCA on this data set.
We start with 2000 non-zero entries in the covari-
ance matrices and experiment up to 20,000 non-zero
entries. Since our data set has 2000 words in each
language, 2000 non-zero entries in a covariance ma-
trix implies that, on an average, every word is as-
sociated with only one word. This results in highly
sparse covariance matrices.

Overall, we observe that reducing the level of
sparsity ,i.e. selecting more number of elements in
the covariance matrices, increases the performance
slightly and then decreases again. From the figure, it

seems that sparsifying the covariance matrices might
help in improving the performance of the task. But
it is interesting to note that not all the models per-
form better than CCA. In fact, both the models that
achieve better scores use Matching as the selection
criteria. This suggests that, apart from the weighting
of the word pairs, appropriate selection of the word
pairs is also equally important. In the rest of the ex-
periments we mainly report results with Matching as
the selection criterion. From this figure, we observe
that Mutual Information and Yule’sω perform com-
petitively but they consistently outperform models
that use covariance as the association measure. So
in the rest of the experiments we report results with
MI or Yule’s ω.

4.3.2 Amount of Sparsity

In the previous experiment, we used same level
of sparsity for all the covariance matrices,i.e. same
number of associations were selected for each word
in all the three covariance matrices. In the following
experiment, we use different levels of sparsity for
the individual covariance matrices. Fig. 3 shows the
performance of Yule+Match and Dictionary+Match
combinations with different levels of sparsity. In
the Yule+Match combination, we use Yule’sω as-
sociation measure for weighting the word pairs and
use matching for selection. In the Dictionary+Match
combination, we use bilingual dictionary for sparsi-
fying cross-covariance matrix,i.e. we keep all the
word pairs whose conditional translation probabil-
ity is above a threshold. And for monolingual word
pairs, we use MI for weighting and matching for
word pair selection.

For each level of sparsity of the cross-covariance
matrix, we experiment with different levels of spar-
sity on the monolingual covariance matrices. ‘Only
XY’ indicates we use the full monolingual covari-
ance matrices. In ‘Match(k)’ runs, we allow each
word to be associated with a total ofk words (Eq. 5).
‘Aug’ indicates that we use monolingual augmen-
tation to refine the sparsity of the cross-covariance
matrix (Sec. 3.2.4).

From both the figures 3(a) and 3(b), we observe
that ‘Only XY’ run (dark blue) performs poorly
compared to the other runs, indicating that sparsify-
ing all the covariance matrices is better than spar-
sifying only the cross-covariance matrix. In the
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(a) Performance of Yule+Match combination. Thex-axis plots
the number of Spanish words selected per each English word
and vice versa. This determines the sparsity ofCxy. Matching
is used as selection criteria for all the covariance matrices.

(b) Performance of Dictionary+Match combination. Thex-axis
plots the threshold on bilingual translation probability and it deter-
mines the sparsity ofCxy. Matching is used to selectonly the mono-
lingual sparsity.

Figure 3: Comparison of Yule+Match and Dictionary+Match combination with different levels of sparsity for the
covariance matrices. In both the figures, thex-axis plots the sparsity of the cross-covariance matrix andfor each
value we try different levels of sparsity on the monolingualcovariance matrices (which are grouped together). The
description of these individual runs is provided in the relevant parts of the text. They-axis plots the accuracy of the
top-ranked document. CCA achieves 61% accuracy on this dataset.

Yule+Match combination, Fig. 3(a), all the runs
seem to be performing better when each English
word is allowed to associate with 2 or 3 Spanish
words and vice versa. Among different ways of se-
lecting the monolingual word pairs, Match(2)+Aug
performs better than the remaining runs. So we use
Match(2)+Aug combination for the Yule’sω mea-
sure.

Unlike the Yule+Match combinations, there is no
clear winner for Dictionary+Match combinations.
First of all, the performance increase as we increase
the translation probability threshold and then de-
creases again (indicated by the ‘Average’ perfor-
mance in Fig. 3(b)). On an average, all the sys-
tems perform better with a threshold of 0.01, which
we use in our final experiments. In this case, both
Match(1) and Match(2)+Aug runs (orange and green
bars respectively) perform competitively so we use
both of these models in our final experiments.

In both the above experiments, the performance
bars are very similar when we use MI instead of
Yule and vice versa for weighting monolingual word
pairs. Thus, to illustrate the main ideas we chose

Yule’s ω for the former combination and MI for the
latter combination.

4.3.3 Promising Models

Based on the above experiments, we choose the
following combinations for our final experiments.
Yule(l)+Match(k), wherel ∈ {2, 3} is the number
of Spanish words allowed for each English word
and vice versa andk=2 is the number of monolin-
gual word associations for each word. We also run
both these combinations with monolingual augmen-
tation, indicated by Yule(l)+Match(k)+Aug. For
dictionary based weighting, Dictionary+Match(k),
we choose a translation probability threshold of 0.01
and tryk ∈ {1, 2}. Again, we run these combina-
tions with monolingual augmentation identified by
Dictionary+Match(k)+Aug.

4.4 Results

For our final results, we choose data in two language
pairs (English-Spanish and English-German) from
two different resources, Europarl (Koehn, 2005) and
Wikipedia. For Europarl data sets, we artificially
make them comparable by considering the first half

937



Wikipedia Europarl
English-Spanish English-German English-Spanish English-German
Acc. MRR Acc. MRR Acc. MRR Acc. MRR

CCA 0.776 0.852 0.570 0.699 0.872 0.920 0.748 0.831
OPCA 0.781 0.856 0.570 0.700 0.870 0.920 0.748 0.831

Yule(2)+Match(2) 0.798∗ 0.866∗ 0.576 0.703 0.901∗ 0.939∗ 0.780∗ 0.853∗

Yule(2)+Match(2)+Aug 0.811∗ 0.876∗ 0.602∗ 0.723∗ 0.883 0.927 0.771∗ 0.847∗

Yule(3)+Match(2) 0.803∗ 0.870∗ 0.572 0.700 0.856 0.907 0.747 0.830
Yule(3)+Match(2)+Aug 0.793∗ 0.861∗ 0.610∗ 0.726∗ 0.878+ 0.925+ 0.763+ 0.843∗

Dictionary+Match(1) 0.811∗ 0.875∗ 0.656∗ 0.762∗ 0.928∗ 0.957∗ 0.874∗ 0.922∗

Dictionary+Match(2) 0.811∗ 0.876∗ 0.623∗ 0.736∗ 0.923∗ 0.955∗ 0.853∗ 0.907∗

Dictionary+Match(2)+Aug 0.825∗ 0.885∗ 0.630∗ 0.735∗ 0.897∗ 0.935∗ 0.866∗ 0.917∗

Table 1: Performance of our models in comparison with CCA andOPCA on English-Spanish and English-German
language pairs.∗ and+ indicate statistical significance measured by paired t-test atp=0.01 and0.05 levels respectively.
When an improvement is significant atp=0.01 it is automatically significant atp=0.05 and hence is not shown.

of English document and the second half of its
aligned foreign language document (Mimno et al.,
2009). For Wikipedia data set, we use the cross-
language link as the ground truth. For each of these
data sets, we choose approximately 5000 aligned
document pairs. We remove the stop words and keep
all the words that occur in at least five documents.
After the preprocessing, on an average, we are left
with 4700 words in each language. Subsequently we
convert the documents into their TFIDF representa-
tion.

In Plattet al. (2010), the authors compare differ-
ent systems on the comparable document retrieval
task and show that discriminative approaches work
better compared to their generative counter parts.
So, here we compare only with the state-of-the-
art discriminative systems such as CCA and OPCA
(Platt et al., 2010). For each of the systems, we re-
port the average results of five-fold cross validation.
We divide the data into 3:1:1 ratio for training, vali-
dation and test sets. The validation data set is used to
select the best number of dimensions of the common
sub space. For both CCA and our models, we set the
regularization parameterλ to 0.3 which we found
works well in a relevant but different experiments.
For OPCA, we manually tried different regulariza-
tion parameters ranging from 0.0001 to 1 and found
that a value of 0.001 worked best.

The results are shown in Table 1. On these data
sets, both CCA and OPCA performed competitively.

OPCA takes advantage of the common vocabulary
in both the languages. But in our data sets, vocab-
ulary of both the languages is treated differently, so
it is not surprising that they give almost the same
results. From the results, it is clear that sparsify-
ing the covariance matrices helps improving the ac-
curacies significantly. In all the four data sets, the
best performing method always used dictionary for
cross-lingual sparsity selection. This indicates that
using fine granular information such as a bilingual
dictionary gleaned from an external source is very
helpful in improving the accuracies. Among the
models that rely solely on the training data, models
that use monolingual augmentation performed bet-
ter on Wikipedia data set, while models that do not
use augmentation performed better on Europarl data
sets. This suggests that, when the aligned documents
are clean (closer to being parallel) the statistics com-
puted from cross-lingual corpora are trustworthy. As
the documents become comparable, we need to use
monolingual statistics to refine the bilingual statis-
tics. Moreover, these models achieve higher gains in
the case of Wikipedia data set compared to the gains
in Europarl. This conforms with our initial hunch
that, when the training data is clean the covariance
matrices tend to be less noisy.

5 Discussion

In this paper, we have proposed the idea of sparsi-
fyng covariance matrices to improve bilingual pro-
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jection directions. We are not aware of any NLP
research that attempts to recover the sparseness of
the covariance matrices to improve the projection
directions. Our work is different from the sparse
CCA (Hardoon and Shawe-Taylor, 2011; Rai and
Daumé III, 2009) proposed in the Machine Learning
literature. Their objective is to find projection di-
rections such that the original documents are repre-
sented as a sparse vectors in the common sub-space.
Another seemingly relevant but different direction
is the sparse covariance matrix selection research
(Banerjee et al., 2005). The objective in this work
is to find matrices such that theinverseof the co-
variance matrix is sparse which has applications in
Gaussian processes.

In this paper, we tried sparsification in the con-
text of CCA only but our technique is general and
can be applied to its variants like OPCA. Our ex-
perimental results show that using external informa-
tion such as bilingual dictionaries which is gleaned
from cleaner resources brings significant improve-
ments. Moreover, we also observe that computing
word pair association measures from the same train-
ing data along with an appropriate selection criteria
canalsoyield significant improvements. This is cer-
tainly encouraging and in future we would like to
explore more sophisticated techniques to recover the
sparsity based on the training data itself.
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Abstract

We discuss and analyze the problem of find-
ing a distribution that minimizes the relative
entropy to a prior distribution while satisfying
max-norm constraints with respect to an ob-
served distribution. This setting generalizes
the classical maximum entropy problems as
it relaxes the standard constraints on the ob-
served values. We tackle the problem by in-
troducing a re-parametrization in which the
unknown distribution is distilled to a single
scalar. We then describe a homotopy between
the relaxation parameter and the distribution
characterizing parameter. The homotopy also
reveals an aesthetic symmetry between the
prior distribution and the observed distribu-
tion. We then use the reformulated problem to
describe a space and time efficient algorithm
for tracking theentire relaxation path. Our
derivations are based on a compact geomet-
ric view of the relaxation path as a piecewise
linear function in atwo dimensional space
of the relaxation-characterization parameters.
We demonstrate the usability of our approach
by applying the problem to Zipfian distribu-
tions over a large alphabet.

1 Introduction

Maximum entropy (max-ent) models and its dual
counterpart, logistic regression, is a popular and ef-
fective tool in numerous natural language process-
ing tasks. The principle of maximum entropy was
spelled out explicitly by E.T. Jaynes (1968). Ap-
plications of maximum entropy approach to natural
language processing are numerous. A notable ex-
ample and probably one of the earliest usages and

generalizations of the maximum entropy principle
to language processing is the work of Berger, Della
Pietra×2, and Lafferty (Berger et al., 1996, Della
Pietra et al., 1997). The original formulation of
max-ent cast the problem as the task of finding the
distribution attaining the highest entropy subject to
equality constraints. While this formalism is aes-
thetic and paves the way to a simple dual in the form
of a unique Gibbs distribution (Della Pietra et al.,
1997), it does not provide sufficient tools to deal
with input noise and sparse representation of the
target Gibbs distribution. To mitigate these issues,
numerous relaxation schemes of the equality con-
straints have been proposed. A notable recent work
by Dudik, Phillips, and Schapire (2007) provided a
general constraint-relaxation framework. See also
the references therein for an in depth overview of
other approaches and generalizations of max-ent.
The constraint relaxation surfaces a natural param-
eter, namely, a relaxation value. The dual form of
this free parameter is the regularization value of pe-
nalized logistic regression problems. Typically this
parameter is set by experimentation using cross val-
idation technique. The relaxed maximum-entropy
problem setting is the starting point of this paper.

In this paper we describe and analyze a frame-
work for efficiently tracking the entire relaxation
path of constrained max-ent problems. We start in
Sec. 2 with a generalization in which we discuss the
problem of finding a distribution that minimizes the
relative entropy to a given prior distribution while
satisfying max-norm constraints with respect to an
observed distribution. In Sec. 3 we tackle the prob-
lem by introducing a re-parametrization in which the
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unknown distribution is distilled to a single scalar.
We next describe in Sec. 4 a homotopy between the
relaxation parameter and the distribution character-
izing parameter. This formulation also reveals an
aesthetic symmetry between the prior distribution
and the observed distribution. We use the reformu-
lated problem to describe in Secs. 5-6 space and time
efficient algorithms for tracking theentirerelaxation
path. Our derivations are based on a compact ge-
ometric view of the relaxation path as a piecewise
linear function in atwo dimensional space of the
relaxation-characterization parameters. In contrast
to common homotopy methods for the Lasso Os-
borne et al. (2000), our procedure for tracking the
max-ent homotopy results in an uncharacteristically
low complexity bounds thus renders the approach
applicable for large alphabets. We provide prelim-
inary experimental results with Zipf distributions in
Sec. 8 that demonstrate the merits of our approach.
Finally, we conclude in Sec. 9 with a brief discus-
sion of future directions.

2 Notations and Problem Setting

We denote vectors with bold face letters, e.g.v.
Sums are denoted by calligraphic letters, e.g.M =∑

j mj. We use the shorthand[n] to denote the set
of integers{1, . . . , n}. Then’th dimensional sim-
plex, denoted∆, consists of all vectorsp such that,∑n

j=1 pj = 1 and for allj ∈ [n], pj ≥ 0. We gen-
eralize this notion to multiplicity weighted vectors.
Formally, we say that a vectorp with multiplicity m
is in the simplex,(p,m) ∈ ∆, if

∑n
j=1 mjpj = 1,

and for allj ∈ [n], pj ≥ 0, andmj ≥ 0.
The generalized relaxed maximum-entropy prob-

lem is concerned with obtaining an estimatep, given
a prior distributionu and an observed distributionq
such that the relative entropy betweenp andu is as
small as possible whilep andq are within a given
max-norm tolerance. Formally, we cast the follow-
ing constrained optimization problem,

min
p

n∑

j=1

mjpj log

(
pj

uj

)
, (1)

such that(p,m) ∈ ∆ ; ‖p − q‖∞ ≤ 1/ν. The
vectorsu andq are dimensionally compatible with
p, namely,(q,m) ∈ ∆ and(u,m) ∈ ∆. The scalar

ν is a relaxation parameter. We use1/ν rather than
ν itself for reasons that become clear in the sequel.

We next describe the dual form of (1). We derive
the dual by introducing Lagrange-Legendre multi-
pliers for each of the constraints appearing in (1).
Let α+

j ≥ 0 denote the multiplier for the constraint

qj − pj ≤ 1/ν andα−
j ≥ 0 the multiplier for the

constraintqj − pj ≥ −1/ν. In addition, we useγ as
the multiplier for the constraint

∑
j mjpj = 1. fter

some routine algebraic manipulations we get that the
Lagrangian is,
∑n

j=1 mi

(
pj log

(
pj

uj

)
+ αj(qj − pj) +

|αj |
ν

)

+ γ
(∑n

j=1 mjpj − 1
)

. (2)

To find the dual form we take the partial derivative
of the Lagrangian with respect to eachpj, equate to

zero, and get thatlog
(

pj

uj

)
+1−αj +γ = 0, which

implies thatpj ∼ uje
αj . We now employ the fact

that(p,m) ∈ ∆ to get that the exact form forpj is

pj =
uje

αj

∑n
i=1 miuieαi

. (3)

Using (3) in the compact form of the Lagrangian we
obtain the following dual problem

max
α
−



log (Z)−

n∑

j=1

mjqjαj +
n∑

j=1

mj

ν
|αj |



 ,

(4)
whereZ =

∑n
j=1 mjuje

αj . We make rather little
use of the dual form of the problem. However, the
complementary slackness conditions that are neces-
sary for optimality to hold play an important role in
the next section in which we present a reformulation
of the relaxed maximum entropy problem.

3 Problem Reformulation

First note that the primal problem is a strictly con-
vex function over a compact convex domain. Thus,
its optimum exists and is unique. Let us now charac-
terize the form of the solution. We partition the set
of indices in[n] into three disjoint sets depending on
whether the constraint|pj − qj| ≤ 1/ν is active and
its form. Concretely, we define

I− = {1 ≤ j ≤ n | pj = qj − 1/ν}
I0 = {1 ≤ j ≤ n | |pj − qj| < 1/ν} (5)

I+ = {1 ≤ j ≤ n | pj = qj + 1/ν} .

942



F(1,1)

(-1,-1)

Figure 1: The capping functionF .

Recall that Z =
∑n

j=1 mjuje
αj . Thus, from

(3) we can rewritepj = uje
αj/Z. We next use

the complementary slackness conditions (see for in-
stance (Boyd and Vandenberghe, 2004)) to further
characterize the solution. For anyj ∈ I− we must
haveα−

j = 0 andα+
j ≥ 0 thereforeαj ≥ 0, which

immediately implies thatpj ≥ uj/Z. By definition
we have thatpj = qj − 1/ν for j ∈ I−. Combin-
ing these two facts we get thatuj/Z ≤ qj − 1/ν for
j ∈ I−. Analogous derivation yields thatuj/Z ≥
qj + 1/ν for j ∈ I+. Last, if the setI0 is not empty
then for eachj in I0 we must haveα+

j = 0 and
α−

j = 0 thusαj = 0. Resorting again to the def-
inition of p from (3) we get thatpj = uj/Z for
j ∈ I0. Since |pj − qj| < 1/ν for j ∈ I0 we
get that|uj/Z − qj| < 1/ν. To recap, there ex-
ists Z > 0 such that the optimal solution takes the
following form,

pj =





qj − 1/ν uj/Z ≤ qj − 1/ν
uj/Z |uj/Z − qj| < 1/ν
qj + 1/ν uj/Z ≥ qj + 1/ν

. (6)

We next introduce an key re-parametrization,
defining µ = ν/Z. We also denote byF (·) the
capping functionF (x) = max {−1,min {1, x}}. A
simple illustration of the capping function is given
in Fig. 1. Equipped with these definition we can
rewrite (6) as follows,

pj = qj +
1

ν
F (µuj − νqj) . (7)

Given u, q, andν, the value ofµ can be found by
using

∑
j mjpj =

∑
j mjqj = 1, which implies

G(ν, µ)
def
=

n∑

j=1

mjF (µuj − νqj) = 0 . (8)

We defer the derivation of the actual algorithm for
computingµ (and in turnp) to the next section. In
the meanwhile let us continue to explore the rich

structure of the general solution. Note thatµ,u are
interchangeable withν,q. We can thus swap the
roles of the prior distribution with the observed dis-
tribution and obtain an analogous characterization.
In the next section we further explore the depen-
dence ofµ on ν. The structure we reveal shortly
serves as our infrastructure for deriving efficient al-
gorithms for following the regularization path.

4 The function µ(ν)

In order to explore the dependency ofµ on ν let us
introduce the following sums

M =
∑

j∈I+

mj −
∑

j∈I−

mj

U =
∑

j∈I0

mj uj

Q =
∑

j∈I0

mj qj . (9)

Fixing ν and using (9), we can rewrite (8) as follows

µU − νQ+M = 0 . (10)

Clearly, so long as the partition of[n] into the sets
I+, I−, I0 is intact, there is a simple linear relation
betweenµ andν. The number of possible subsets
I−, I0, I+ is finite. Thus, the range0 < ν < ∞
decomposes into a finite number of intervals each
of which corresponds to a fixed partition of[n] into
I+, I−, I0. In each intervalµ is a linear function of
ν, unlessI0 is empty. Letν∞ be the smallestν value
for which I0 is empty. Letµ∞ be its corresponding
µ value. IfI0 is never empty for any finite value ofν
we defineν∞ = µ∞ =∞. Clearly, replacing(ν, µ)
with (κν, κµ) for any κ ≥ 1 and ν ≥ ν∞ yields
the same feasible solution asI+(κν) = I+(ν),
I−(αν) = I−(ν). Hence, as far as the original prob-
lem is concerned there is no reason to go pastν∞
during the process of characterizing the solution. We
recap our derivation so far in the following lemma.

Lemma 4.1 For 0 ≤ ν ≤ ν∞, the value ofµ as
defined by (7) is a unique. Further, the functionµ(ν)
is a piecewise linear continuous function inν. When
ν ≥ ν∞ letting µ = µ∞ν/ν∞ keeps (7) valid.

We established the fact thatµ(ν) is a piecewise lin-
ear function. The lingering question is how many

943



linear sub-intervals the function can attain. To study
this property, we take a geometric view of the plane
defined by(ν, µ). Our combinatorial characteriza-
tion of the number of sub-intervals makes use of the
following definitions of lines inR2,

ℓ+j = {(ν, µ) | ujµ− qjν = +1} (11)

ℓ−j = {(ν, µ) | ujµ− qjν = −1} (12)

ℓ0 = {(ν, µ) | µU − νQ+M = 0} , (13)

where−∞ < ν <∞ andj ∈ [n]. The next theorem
gives an upper bound on the number of linear seg-
ments the functionµ() may attain. While the bound
is quadratic in the dimension, for both artificial data
and real data the bound is way too pessimistic.

Theorem 4.2 The piecewise linear functionµ(ν)
consists of at mostn2 linear segments forν ∈ R+.

Proof Since we showed that thatµ(ν) is a piece-
wise linear function, it remains to show that it
has at mostn2 linear segments. Consider the
two dimensional functionG(ν, µ) from (8). The
(ν, µ) plane is divided by the2n straight lines
ℓ1, ℓ2, . . . , ℓn, ℓ−1, ℓ−2, . . . , ℓ−n into at most2n2+1
polygons. The latter property is proved by induc-
tion. It clearly holds forn = 0. Assume that it holds
for n − 1. Line ℓn intersects the previous2n − 2
lines at no more than2n − 2 points, thus splitting
at most2n − 1 polygons into two separate polygo-
nal parts. Lineℓ−n is parallel toℓn, again adding
at most2n − 1 polygons. Recapping, we obtain at
most2(n − 1)2 + 1 + 2(2n − 1) = 2n2 + 1 poly-
gons, as required per induction. Recall thatµ(ν) is
linear inside each polygon. The two extreme poly-
gons whereG(ν, µ) = ±∑n

j=1 mj clearly disallow
G(ν, µ) = 0, henceµ(ν) can have at most2n2 − 1
segments for−∞ < ν < ∞. Lastly, we use the
symmetryG(−ν,−µ) = −G(ν, µ) which implies
that forν ∈ R+ there are at mostn2 segments.

This result stands in contrast to the Lasso homotopy
tracking procedure (Osborne et al., 2000), where the
worst case number of segments seems to be expo-
nential inn. Moreover, when the prioru is uniform,
uj = 1/

∑n
j=1 mj for all j ∈ [n], the number of

segments is at mostn + 1. We defer the analysis of
the uniform case to a later section as the proof stems
from the algorithm we describe in the sequel.

0 20 40 60 80 100
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50
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µ

Figure 2: An illustration of the functionµ(ν) for a syn-
thetic3 dimensional example.
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Figure 3: An illustration of the functionG(µ) for a syn-
thetic4 dimensional example and aν = 17.

5 Algorithm for a Single Relaxation Value

Suppose we are givenu,q,m and a specific relax-
ation valueν̃. How can we findp? The obvious
approach is to solve the one dimensional monotoni-
cally nondecreasing equationG(µ)

def
= G(ν̃, µ) = 0

by bisection. In this section we present a more effi-
cient and direct procedure that is guaranteed to find
the optimal solutionp in a finite number of steps.
Clearly G(µ) is a piecewise linear function with
at most2n easily computable change points of the
slope. See also Fig. (5) for an illustration ofG(·).
In order to find the slope change points we need to
calculate the point(ν, µj) for all the linesℓ±j where
1 ≤ j ≤ n. Concretely, these values are

µj =
νq|j| + sign(j)

u|j|
. (14)

We next sort the above values ofµj and denote the
resulting sorted list asµπ1 ≤ µπ2 ≤ · · · ≤ µπ2n . For
any0 ≤ j ≤ 2n letMj ,Uj ,Qj be the sums, defined
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in (9), for the line segmentµπj−1 < µ < µπj (de-
noting µπ0 = −∞, µπ2n+1 = ∞). We compute
the sumsMj,Uj ,Qj incrementally, starting from
M0 = −∑n

i=1 mi, U0 = Q0 = 0. Once the
values ofj−1’th sums are known, we can compute
the next sums in the sequence as follows,

Mj = Mj−1 + m|πj|
Uj = Uj−1 − sign(πj)m|πj | u|πj |
Qj = Qj−1 − sign(πj)m|πj | q|πj| .

From the above sums we can compute the value of
the functionG(ν, µ) at the end point of the line seg-
ment (µπj−1 , µπj), which is the same as the start
point of the line segment(µπj , µπj+1),

Gj = Mj−1 + Uj−1 µj −Qj−1 ν

= Mj + Uj µj −Qj ν .

The optimal value ofµ resides in the line segment
for which G(·) attains0. Such a segment must exist
sinceG0 = M0 = −∑n

i=1 mi < 0 and G2n =
−M0 > 0. Therefore, there exists an index1 ≤
j < 2n, whereGj ≤ 0 ≤ Gj+1. Once we bracketed
the feasible segment forµ, the optimal value ofµ is
found by solving the linear equation (10),

µ = (Qj ν − Mj) /Uj . (15)

From the optimal value ofµ it is straightforward to
constructp using (7). Due to the sorting step, the al-
gorithm’s run time isO(n log(n)) and it takes linear
space. The number of operations can be reduced to
O(n) using a randomized search procedure.

6 Homotopy Tracking

We now shift gears and focus on the main thrust
of this paper, namely, an efficient characterization
of the entire regularization path for the maximum
entropy problem. Since we have shown that the
optimal solution p can be straightforwardly ob-
tained from the variableµ, it suffices to efficiently
track the functionµ(ν) as we traverse the plane
(ν, µ) from ν = 0 through the last change point
which we denoted as(ν∞, µ∞). In this section
we give an algorithm that traversesµ(ν) by lo-
cating the intersections ofℓ0 with the fixed lines
ℓ−n, ℓ−n+1, . . . , ℓ−1, ℓ1, . . . , ℓn and updatingℓ0 af-
ter each intersection.

More formally, the local homotopy tracking fol-
lows the piecewise linear functionµ(ν), segment by
segment. Each segment corresponds to a subset of
the lineℓ0 for agiventriplet (M,U ,Q). It is simple
to show thatµ(0) = 0, hence we start with

ν = 0, M = 0, U = Q = 1 . (16)

We now track the value ofµ asν increases, and the
relaxation parameter1/ν decreases. The character-
ization of ℓ0 remains intact untilℓ0 hits one of the
lines ℓj for 1 ≤ |j| ≤ n. To find the line intersect-
ing ℓ0 we need to compute the potential intersection
points(νj, µj) = ℓ0 ∩ ℓj which amounts to calculat-
ing ν−n, ν−n+1, . . . , ν−1, ν1, ν2, · · · , νn where

νj =
Mu|j| + Usign(j)

Qu|j| − Uq|j|
. (17)

The lines for which the denominator is zero cor-
respond to infeasible intersection and can be dis-
carded. The smallest valueνj which is larger than
the current traced value ofν corresponds to the next
line intersectingℓ0.

While the above description is mathematically
sound, we devised an equivalent intersection in-
spection scheme which is more numerically stable
and efficient. We keep track of partitionI−, I0, I1

through the vector,

sj =




−1 j ∈ I−

0 j ∈ I0

+1 j ∈ I+

.

Initially s1 = s2 = · · · = sn = 0. What kind of
intersection doesℓ0 have withℓj? Recall thatQU is
the slope ofℓ0 while

q|j|
u|j|

is the slope ofℓj. Thus
Q
U >

q|j|
u|j|

means that the|j|’th constraint is moving

“up” from I− to I0 or fromI0 to I+. WhenQ
U <

q|j|
u|j|

the|j|’th constraint is moving “down” fromI+ to I0

or from I0 to I−. See also Fig. 4 for an illustration
of the possible transitions between the sets. For in-
stance, the slope ofµ(ν) on the bottom left part of
the figure is larger than the slope the line it inter-
sects. Since this line defines the boundary between
I− and I0, we transition fromI− to I0. We need
only consider1 ≤ |j| ≤ n of the following types.
Moving “up” from I− to I0 requires

s|j| = −1 j < 0 Qu|j| − Uq|j| > 0 .
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Figure 4: Illustration of the possible intersections be-
tweenµ(ν) andℓj and the corresponding transition be-
tween the setsI±, I0.

Similarly, moving “down” fromI+ to I0 requires

s|j| = 1 j > 0 Qu|j| − Uq|j| < 0 .

Finally, moving “up” or “down” fromI0 entails

s|j| = 0 j(Qu|j| − Uq|j|) > 0 .

If there are no eligibleνj ’s, we have finished travers-
ing µ(). Otherwise let indexj belong to the the
smallest eligibleνj . Infinite accuracy guarantees
thatνj ≥ ν. In practice we perform the update

ν ← max(ν, νj)

M ← M+ sign(Qu|j| − Uq|j|)m|j|
U ← U +

(
2
∣∣s|j|

∣∣− 1
)

m|j| u|j|
Q ← Q+

(
2
∣∣s|j|

∣∣− 1
)

m|j| q|j|
sj ← sj + sign(Qu|j| − Uq|j|) .

We are done with the tracking process whenI0 is
empty, i.e. for allj sj 6= 0.

The local homotopy algorithm takesO(n) mem-
ory andO(nk) operations wherek is the number of
change points in the functionµ(ν). This algorithm
is simple to implement, and whenk is relatively
small it is efficient. An illustration of the tracking
result,µ(ν), along with the linesℓ±j , that provide a
geometrical description of the problem, is given in
Fig. 5.

7 Uniform Prior

We chose to denote the prior distribution asu to un-
derscore the fact that in the case of no prior knowl-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−4

−2

0

2

4
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8

10

ν

µ

Figure 5: The result of the homotopy tracking for a4
dimensional problem. The linesℓj for j < 0 are drawn in
blue and forj > 0 in red. The functionµ(ν) is drawn in
green and its change points in black. Note that although
the dimension is4 the number of change points is rather
small and does not exceed4 either in this simple example.

edgeu is theuniformdistribution,

u
def
= uj =

(
n∑

i=1

mi

)−1

.

In this case the objective function amounts to the
negative entropy and by flipping the sign of the ob-
jective we obtain the classical maximum entropy
problem. The fact that the prior probability is the
same for all possible observations infuses the prob-
lem with further structure which we show how to
exploit in this section. Needless to say though that
all the results we obtained thus far are still valid.

Let us consider a point(ν, µ) on the boundary be-
tweenI0 andI+, namely, there exist a lineℓ+i such
that,

µui − νqi = µu− νqi = 1 .

By definition, for anyj ∈ I0 we have

µuj − νqj = µu− νqj < 1 = µu− νqi .

Thus,qi < qj for all j ∈ I0 which implies that

mj u qj > mj u qi . (18)

Summing overj ∈ I0 we get that

Qu =
∑

j∈I0

mj qj u >
∑

j∈I0

mj u qi = Uqi ,

hence,
qi

ui
=

qi

u
<
Q
U
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and we must be moving “up” fromI0 to I+ when the
line ℓ0 hits ℓi. Similarly we must be moving “down”
from whenℓ0 hits on the boundary betweenI0 and
I−. We summarize these properties in the following
theorem.

Theorem 7.1 When the prior distributionu is uni-
form, I−(ν) and I+(ν) are monotonically nonde-
creasing andI0(ν) is monotonically nonincreasing
in ν > 0 . Further, the piecewise linear function
µ(ν) consists of at mostn + 1 line segments.

The homotopy tracking procedure when the prior
is uniform is particularly simple and efficient. In-
tuitively, there is a sole condition which controls
the order in which indices would enterI± from I0,
which is simply how “far” eachqi is fromu, the sin-
gle prior value. Therefore, the algorithm starts by
sortingq. Let qπ1 > qπ2 > · · · > qπn denote the
sorted vector. Instead of maintaining the vector of
set indicatorss, we merely maintain two indicesj−
andj+ which designate the size ofI− andI+ that
were constructed thus far. Due to the monotonic-
ity property of the setsI± asν grows, the two sets
can be written as,I− = {πj | 1 ≤ j < j−} and
I+ = {πj | j+ < j ≤ n}. The homotopy track-
ing procedure starts as before withν = 0,M = 0,
U = Q = 1. We also setj− = 1 andj+ = n which
by definition imply thatI± are empty andI0 = [n].
In each tracking iteration we need to compare only
two values which we compactly denote as,

ν± =
Mu ± U
Qu − Uqπj±

.

When ν− ≤ ν+ we just encountered a transition
from I0 to I− and as we encroachI− we perform
the updates,ν ← ν−, M ←M − mπj− , U ←
U −mπj− u, Q← Q−mπj− qπj− , j− ← j− + 1.
Similarly whenν− > ν+ we perform the updates
ν ← ν+, M←M + mπj+

, U ← U − mπj+
u,

Q← Q − mπj+
qπj+

, j+ ← j+ − 1.
The tracking process stops whenj− > j+ as we

exhausted the transitions out of the setI0 which be-
comes empty. Homotopy tracking for a uniform
prior takesO(n) memory andO(n log(n)) opera-
tions and is very simple to implement.

We also devised a global homotopy tracking algo-
rithms that requires a priority queue which facilitates
insertions, deletions, and finding the largest element
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Figure 6: The number of line-segments in the homotopy
as a function of the number of samples used to build the
observed distributionq.

in the queue inO(log(n)) time. The algorithm re-
quiresO(n) memory andO(n2 log(n)) operations.
Clearly, if the number of line segments constituting
µ(ν) is greater thann log(n) (recall that the upper
bound isO(n2)) then the global homotopy proce-
dure is faster than the local one. However, as we
show in Sec. 8, in practice the number of line seg-
ments is merely linear and it thus suffices to use the
local homotopy tracking algorithm.

8 Number of line segments in practice

The focus of the paper is the design and analysis
of a novel homotopy method for maximum entropy
problems. We thus left with relatively little space
to discuss the empirical aspects of our approach. In
this section we focus on one particular experimental
facet that underscores the usability of our apparatus.
We briefly discuss current natural language applica-
tions that we currently work on in the next section.

The practicality of our approach hinges on the
number of line segments that occur in practice. Our
bounds indicate that this number can scale quadrat-
ically with the dimension, which would render the
homotopy algorithm impractical when the size of the
alphabet is larger than a few thousands. We there-
fore extensively tested theactualnumber of line seg-
ments in the resulting homotopy whenu andq are
Zipf (1949) distributions. We used an alphabet of
size50, 000 in our experiments. The distributionu
was set to be the Zipf distribution with an offset pa-
rameter of2, that is,ui ∼ 1/(i + 2). We defined
a “mother” distribution forq, denotedq̄, which is
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a plain Zipf distribution without an offset, namely
q̄i ∼ 1/i. We then sampledn/2l letters according
to the distributionq̄ wherel ∈ −3, . . . , 3. Thus the
smallest sample wasn/23 = 6, 250 and the largest
sample wasn/3−3 = 40, 000. Based on the sample
we defined the observed distributionq such thatqi

is proportional to the number of times thei’th let-
ter appeared in the sample. We repeated the process
100 times for each sample size and report average
results. Note that when the sample is substantially
smaller than the dimension the observed distribution
q tends to be “simple” as it consists of many zero
components. In Fig. 6 we depict the average num-
ber line segments for each sample size. When the
sample size is one eighth of the dimension we aver-
age st most0.1n line segments. More importantly,
even when the size of the sample is fairly large, the
number of lines segments is linear in the dimension
with a constant close to one. We also performed
experiments with large sample sizes for which the
empirical distributionq is very close to the mother
distribution q̄. We seldom found that the number of
line segments exceeds4n and the mode is around
2n. These findings render our approach usable even
in the very large natural language applications.

9 Conclusions

We presented a novel efficient apparatus for tracking
the entire relaxation path of maximum entropy prob-
lems. We currently study natural language process-
ing applications. In particular, we are in the process
of devising homotopy methods for domain adapta-
tion Blitzer (2008) and language modeling based
on context tree weighting (Willems et al., 1995).
We also examine generalization of our approach in
which the relative entropy objective is replaced with
a separable Bregman (Censor and Zenios, 1997)
function. Such a generalization is likely to distill
further connections to the other homotopy methods,
in particular the least angle regression algorithm of
Efron et al. (2004) and homotopy methods for the
Lasso in general (Osborne et al., 2000). We also plan
to study separable Bregman functions in order to de-
rive entire path solutions for less explored objectives
such as the Itakura-Saito spectral distance (Rabiner
and Juang, 1993) and distances especially suited for
natural language processing.
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Abstract

In active dual supervision, not only informa-
tive examples but also features are selected for
labeling to build a high quality classifier with
low cost. However, how to measure the infor-
mativeness for both examples and feature on
the same scale has not been well solved. In
this paper, we propose a non-negative matrix
factorization based approach to address this is-
sue. We first extend the matrix factorization
framework to explicitly model the correspond-
ing relationships between feature classes and
examples classes. Then by making use of
the reconstruction error, we propose a unified
scheme to determine which feature or exam-
ple a classifier is most likely to benefit from
having labeled. Empirical results demonstrate
the effectiveness of our proposed methods.

1 Introduction

Active learning, as an effective paradigm to optimize
the learning benefit from domain experts’ feedback
and to reduce the cost of acquiring labeled examples
for supervised learning, has been intensively stud-
ied in recent years (McCallum and Nigam, 1998;
Tong and Koller, 2002; Settles, 2009). Traditional
approaches for active learning query the human ex-
perts to obtain the labels for intelligently chosen
data samples. However, in text classification where
the input data is generally represented as document-
word matrices, human supervision can be obtained
on both documents and words. For example, in sen-
timent analysis of product reviews, human labelers
can label reviews as positive or negative, they can

also label the words that elicit positive sentiment
(such as “sensational” and “electrifying”) as posi-
tive and words that evoke negative sentiment (such
as “depressed” and “unfulfilling”) as negative. Re-
cent work has demonstrated that labeled words (or
feature supervision) can greatly reduce the number
of labeled samples for building high-quality classi-
fiers (Druck et al., 2008; Zaidan and Eisner, 2008).
In fact, different kinds of supervision generally have
different acquisition costs, different degrees of util-
ity and are not mutually redundant (Sindhwani et
al., 2009). Ideally, effective active learning schemes
should be able to utilize different forms of supervi-
sion.

To incorporate the supervision on words and doc-
uments at same time into the active learning scheme,
recently an active dual supervision (or dual active
learning) has been proposed (Melville and Sind-
hwani, 2009; Sindhwani et al., 2009). Comparing
with traditional active learning which aims to select
the most “informative” examples (e.g., documents)
for domain experts to label, active dual supervi-
sion selects both the “informative” examples (e.g.,
documents) and features (e.g., words) for labeling.
For active dual supervision to be effective, there
are three important components: a) an underlying
learning mechanism that is able to learn from both
the labeled examples and features (i.e., incorporat-
ing supervision on both examples and features); b)
methods for estimating the value of information for
example and feature labels; and c) a scheme that
should be able to trade-off the costs and benefits of
the different forms of supervision since they have
different labeling costs and different benefits.
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In Sindhwani et al.’s initial work on active dual
supervision (Sindhwani et al., 2009), a transductive
bipartite graph regularization approach is used for
learning from both labeled examples and features.
In addition, uncertainty sampling and experimental
design are used for selecting informative examples
and features for labeling. To trade-off between dif-
ferent types of supervision, a simple probabilistic
interleaving scheme where the active learner prob-
abilistically queries the example oracle and the fea-
ture oracle is used. One problem in their method is
that the values of acquiring the feature labels and
the example labels are not on the same scale.

Recently, Li et al. (Li et al., 2009) proposed a
dual supervision method based on constrained non-
negative tri-factorization of the document-term ma-
trix where the labeled features and examples are
naturally incorporated as sets of constraints. Hav-
ing a framework for incorporating dual-supervision
based on matrix factorization, gives rise to the nat-
ural question of how to perform active dual super-
vision in this setting. Since rows and columns are
treated equally in estimating the errors of matrix fac-
torization, another question is can we address the
scaling issue in comparing the value of feature la-
bels and example labels.

In this paper, we study the problem of ac-
tive dual supervision using non-negative matrix tri-
factorization. Our work is based on the dual supervi-
sion framework using constrained non-negative tri-
factorization proposed in (Li et al., 2009). We first
extend the framework to explicitly model the corre-
sponding relationships between feature classes and
example classes. Then by making use of the recon-
struction error criterion in matrix factorization, we
propose a unified scheme to evaluate the value of
feature and example labels. Instead of comparing
the estimated performance increase of new feature
labels or example labels, our proposed scheme as-
sumes that a better supervision (a feature label or a
example label) should lead to a more accurate re-
construction of the original data matrix. In our pro-
posed scheme, the value of feature labels and ex-
ample labels is computed on the same scale. The
experiments show that our proposed unified scheme
to query selection (i.e., feature/example selection for
labeling) outperforms the interleaving schemes and
the scheme based on expected log gain.

The rest of this paper is organized as follows: the
related work is discussed in Section 2, and the dual
supervision framework based on non-negative ma-
trix tri-factorization is introduced in Section 3. We
extend non-negative matrix tri-factorization to active
learning settings in Section 4, and propose a unified
scheme for query selection in Section 5. Experi-
ments are presented in Section 6, and finally Section
7 concludes the paper.

2 Related Work

We point the reader to a recent report (Settles, 2009)
for an in-depth survey on active learning. In this
section, we briefly cover related work to position our
contributions appropriately.

Active Learning/Active Dual Supervision Most
prior work in active learning has focused on pooled-
based techniques, where examples from an unla-
beled pool are selected for labeling (Cohn et al.,
1994). With the study of learning from labeled fea-
tures, many research efforts on active learning with
feature supervision are also reported (Melville et al.,
2005; Raghavan et al., 2006). (Godbole et al., 2004)
proposed the notion of feature uncertainty and in-
corporated the acquired feature labels into learning
by creating one-term mini-documents. (Druck et al.,
2009) performed active learning via feature labeling
using several uncertainty reduction heuristics using
the learning model developed in (Druck et al., 2008).
(Sindhwani et al., 2009) studied the problem of ac-
tive dual supervision from examples and features
using a graph-based dual supervision method with
a simple probabilistic method for interleaving fea-
ture labels and example labels. In our work, we de-
velop our active dual supervision framework using
constrained non-negative tri-factorization and also
propose a unified scheme to evaluate the value of
feature and example labels. We note the very re-
cent work of (Attenberg et al., 2010), which pro-
poses a unified approach for the dual active learn-
ing problem using expected utility where the utility
is defined as the log gain of the classification model
with a new labeled document or word. Conceptu-
ally, our proposed unified scheme is a special case
of the expected utility framework where the utility
is computed using the matrix reconstruction error.
The utility based on the log gain of the classification
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model may not be reliable as small model changes
resulted from a single additional example label or
feature label may not be reflected in the classifica-
tion performance (Attenberg et al., 2010). The em-
pirical comparisons show that our proposed unified
scheme based on reconstruction error outperforms
the expected log gain.

Dual Supervision Note that a learning method
that is capable of performing dual supervision (i.e.,
learning from both labeled examples and features)
is the basis for active dual supervision. Dual su-
pervision is a relatively new area of research and
few methods have been developed for dual super-
vision. In (Sindhwani and Melville, 2008; Sind-
hwani et al., 2008), a bipartite graph regularization
model (GRADS) is used to diffuse label informa-
tion along both sides of the document-term matrix
and to perform dual supervision for semi-supervised
sentiment analysis. Conceptually, their model im-
plements a co-clustering assumption closely related
to Singular Value Decomposition (see also (Dhillon,
2001; Zha et al., 2001) for more on this perspec-
tive). In (Sandler et al., 2008), standard regulariza-
tion models are constrained using graphs of word co-
occurrences. In (Melville et al., 2009), Naive Bayes
classifier is extended, where the parameters, the con-
ditional word distributions given the classes, are es-
timated by combining multiple sources, e.g. docu-
ment labels and word labels. Our work is based on
the dual supervision framework using constrained
non-negative tri-factorization.

3 Learning with Dual Supervision via
Tri-NMF

Our dual supervision model is based on non-
negative matrix tri-factorization (Tri-NMF), where
the non-negative input document-word matrix is ap-
proximated by 3 factor matrices as X ≈ GSF T , in
which, X is an n×m document-term matrix, G is an
n × k non-negative orthogonal matrix representing
the probability of generating a document from a doc-
ument cluster, F is an m× k non-negative orthogo-
nal matrix representing the probability of generating
a word from a word cluster, and S is a k × k non-
negative matrix providing the relationship between
document cluster space and word cluster space.

While Tri-NMF is first applied in co-clustering, Li

et al. (Li et al., 2009) extended it to incorporate la-
beled words and documents as dual supervision via
two loss terms in the objective function of Tri-NMF
as following:

minF,G,S ‖X −GSF T ‖2
+α trace[(F − F0)

T C1(F − F0)]
+β trace[(G−G0)

T C2(G−G0)].
(1)

Here, α > 0 is a parameter which determines the
extent to which we enforce F ≈ F0 to its labeled
rows. C1 is a m × m diagonal matrix whose en-
try (C1)ii = 1 if the row of F0 is labeled, that is,
the class of the i-th word is known and (C1)ii = 0
otherwise. β > 0 is a parameter which determines
the extent to which we enforce G ≈ G0 to its la-
beled rows. C2 is a n × n diagonal matrix whose
entry (C2)ii = 1 if the row of G0 is labeled, that
is, the category of the i-th document is known and
(C2)ii = 0 otherwise. The squared loss terms ensure
that the solution for G,F in the otherwise unsuper-
vised learning problem be close to the prior knowl-
edge G0, F0. So the partial labels on documents and
words can be described using G0 and F0, respec-
tively.

4 Dual Supervision with Explicit Class
Alignment

4.1 Modeling the Relationships between Word
Classes and Document Classes

In the solution to Equation 1, we have S = GT XF ,
or

Slk = gT
l Xfk =

1

|Rl|1/2|Ck|1/2

∑

i∈Rl

∑

j∈Ck

Xij ,

(2)
where |Rl| is the size of the l-th document class, and
|Ck| is the size of the k-th word class (Ding et al.,
2006). Note that Slk represents properly normalized
within-class sum of weights (l = k) and between-
class sum of weights (l 6= k). So, S represents the
relationship between the classes over documents and
the classes over words. Under the assumption that
the i-th document class should correspond to the i-
th word class, S should be an approximate diago-
nal matrix, since the documents of i-th class is more
likely to contain the words of the i-th class. Note

951



that S is not an exact diagonal matrix, since a doc-
ument of one class apparently can use words from
other classes (especially G and F are required to be
approximately orthogonal, which means the classi-
fication is rigorous). However, in Equation 1, there
are no explicit constraints on the relationship be-
tween word classes and document classes. Instead,
the relationship is established and enforced implic-
itly using existing labeled documents and words.

In active learning, the set of starting labeled doc-
uments or words is small, and this may generate an
ill-formed S, leading to an incorrect alignment of
word classes and document classes. To explicitly
model the relationships between word classes and
document classes, we constrain the shape of S via
an extra loss term in the objective function as fol-
lows:

minF,G,S ‖X −GSF T ‖2
+α trace[(F − F0)

T C1(F − F0)]
+β trace[(G−G0)

T C2(G−G0)]
+γ trace[(S − S0)

T (S − S0)]
(3)

where S0 is a diagonal matrix.

How to Choose S0 If there is no orthogonal con-
straint on F,G and I-divergence is used as the ob-
jective function, it can been shown that the factors
of Tri-NMF have probabilistic interpretation (Ding
et al., 2008; Shen et al., 2011):

Fil = P (w = wi|zw = l),
Gjk = P (d = dj |zd = k),
Skl = P (zd = k, zw = l),

(4)

where w is word variable, d is document variable,
and zw, zd are random variables indicating word
class and document class respectively. F and G
represent posterior distributions for words and docu-
ments, and S represents the joint distribution of doc-
ument class and word class. With such an interpre-
tation, S0 can be easily decided in balanced classifi-
cation problems with each diagonal entry equals to
one over the number of classes.

However, in our setting of Tri-NMF, orthogonal
constraints are enforced on F, G and Euclidean dis-
tance is used as the objective function. To pre-
compute S0, one way is to first solve the optimiza-
tion problem Equation 1 with another constraint that

S should be diagonal. Alternatively, to keep it sim-
ple, we ignore the known label information and just
assume there exists a diagonal matrix S0 and two
orthogonal matrices G,F , that

GS0F
T ≈ X.

Then

trace[XXT ] ≈ trace[GS0F
T FST

0 GT ],
= trace[S0S

T
0 F T FGT G],

= trace[S0S
T
0 ],

=
∑

k(S0)
2
kk.

(5)

So if a classification problem is balanced with K
classes, S0 can be estimated as following:

(S0)kl =

{ √
trace[XXT ]

K l = k,

0 otherwise.
(6)

4.2 Computing Algorithm
This optimization problem can be solved using the
following update rules

Gjk ← Gjk
XFS+βC2G0

(GGT XFS+βGGT C2G)jk
,

Sjk ← Sjk
F T XT G+γS0

(F T FSGT G+γS)jk
,

Fjk ← Fjk
XT GST +αC1F0

(FF T XT GST +αC1F )jk
.

(7)

The algorithm consists of an iterative procedure us-
ing the above three rules until convergence.

Theorem 4.1 The above iterative algorithm con-
verges.

Theorem 4.2 At convergence, the solution satisfies
the Karuch-Kuhn-Tucker (KKT) optimality condi-
tion, i.e., the algorithm converges correctly to a lo-
cal optima.

Theorem 4.1 can be proved using the standard aux-
iliary function approach (Lee and Seung, 2001).

Proof of Theorem 4.2: Proof for the update rules
of G,F is the same as in (Li et al., 2009). Here we
focus on the update rule of S. We want to minimize

L(S) = ‖X −GSF T ‖2
+α trace[(F − F0)

T C1(F − F0)]
+β trace[(G−G0)

T C2(G−G0)]
+γ trace[(S − S0)

T (S − S0)].
(8)
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The gradient of L is

∂L

∂S
= 2F T FSGT G− 2F T XT G + 2γ(S − S0)

The KKT complementarity condition for the non-
negativity of Sjk gives

[2F T FSGT G−2F T XT G+2γ(S−S0)]jkSjk = 0.

This is the fixed point relation that local minima for
S must satisfy, which is equivalent with the update
rule of S in Equation 7.

5 A Unified Scheme for Query Selection
Using the Reconstruction Error

5.1 Introduction

An ideal active dual supervision scheme should be
able to evaluate the value of acquiring labels for doc-
uments and words on the same scale. In the initial
study of dual active supervision, different scores are
used for documents and words (e.g. uncertainty for
documents and certainty for words), and thus they
are not on the same scale (Sindhwani et al., 2009).
Recently, the framework of Expected Utility (Esti-
mated Risk Minimization) is proposed in (Attenberg
et al., 2010). At each step of the framework, the next
word or document selected for labeling is the one
that will result in the highest estimated improvement
in classifier performance as defined as:

EU(qj) =
K∑

k=1

P (qj = ck)U(qj = ck), (9)

where K is the class number, P (qj = ck) indicates
the probability that qj , j-th query (a word or docu-
ment), belongs to the k-th class, and the U(qj = ck)
indicates the utility that qj belongs to the k-th class.
However, the choice of the utility measure is still a
challenge.

5.2 Reconstruction Error

In our matrix factorization framework, rows and
columns are treated equally in estimating the errors
of matrix factorization, and the reconstruction error
is thus a natural measure of utility. Let the current
supervision knowledge be G0, F0. To select a new
unlabeled document/word for labeling, we assume

that a good supervision should lead to a good con-
strained factorization for the document-term matrix,
X ≈ GSF T . If the new query qj is a word and its
label is k, then the new factorization is

G∗
j=k, S

∗
j=k, F

∗
j=k

= arg minG,S,F ‖X −GSF T ‖2
+ α trace[(G−G0)

T C2(G−G0)]
+ β trace[(F − F0,j=k)

T C1(F − F0,j=k)]
+ γ trace[(S − S0)

T (S − S0)],
(10)

where F0,j=k is same as F0 except that
F0,j=k(j, k) = 1. In other words, we obtained
a new factorization using the labeled words. Sim-
ilarly, if the new query qj is a document, then the
new factorization is

G∗
j=k, S

∗
j=k, F

∗
j=k

= arg minG,S,F ‖X −GSF T ‖2
+ α trace[(G−G0,j=k)

T C2(G−G0,j=k)]
+ β trace[(F − F0)

T C1(F − F0)]
+ γ trace[(S − S0)

T (S − S0)],
(11)

where G0,j=k is same as G0 except that
G0,j=k(j, k) = 1. In other words, we obtained
a new factorization using the labeled documents.
Then the new reconstruction error is

RE(qj = k) = ‖X −G∗
j=kS

∗
j=kF

∗
j=k‖2. (12)

So the expected utility of a document or word label
query, qj , can be computed as

EU(qj) =

K∑

k=1

P (qj = k)∗ (−RE(qj = k)). (13)

To calculate the P (qj = k), which is the posterior
distribution for words or documents, probabilistic
interpretation of Tri-NMF is abused. When a query
qj is a word, P (qj = k) is

P (zw = k|w = wi)

∝ P (w = wi|zw = k)
∑K

j=1 P (zw = k, zd = j)

= Fik ∗
∑K

j=1 Skj ,
(14)

otherwise,

P (zd = k|d = di)

∝ P (d = di|zd = k)
∑K

j=1 P (zw = j, zd = k)

= Gik ∗
∑K

j=1 Sjk.
(15)
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5.3 Algorithm Description

Computational Improvement: It can be computa-
tionally intensive if the reconstruction error is com-
puted for all unknown documents and words. In-
spired by (Attenberg et al., 2010), we first select the
top 100 unknown words that the current model is
most certain about, and the top 100 unknown docu-
ments that the current model is most uncertain about.
Then we identify the words or documents in this
pool with the highest expected utility (reconstruc-
tion error). Equations 14 and 15 are used to perform
the initial selection of top 100 unknown words and
top 100 unknown documents.

Algorithm 1 Active Dual Supervision Algorithm
Based on Matrix Factorization
INPUT: X , document-word matrix; F0, current la-
beled words; G0, current labeled documents; O, the
oracle
OUTPUT: G, classification result for all documents
in X

1. Get base factorization of X: G,S, F .
2. Active dual supervision
repeat

D is the set of top 100 unlabeled documents
with most uncertainty;
W is the set of top 100 unlabeled words with
most certainty;
Q = D ∪W ;
for all q ∈ Q do

for k = 1 to K do
Get G∗

q=k, F
∗
q=k, S

∗
q=k by Equation 10 or

Equation 11 according to whether the
query q is a document or a word;

Calculate EU(q) by Equation 13;
q∗ = arg maxq EU(q);
Acquire new label of q∗, l from O;
G,F, S = G∗

q∗=l, F
∗
q∗=l, S

∗
q∗=l;

until stop criterion is met.

The overall algorithm procedure is described in
Algorithm 1. First we iteratively use the updat-
ing rules of Equation 7 to obtain the factoriza-
tion G,F, S based on initial labeled documents and
words. Then to select a new query, for each unla-
beled document or word in the pool and for each
possible class, we compute the reconstruction error

with new supervision (using the current factoriza-
tion results as initialization values). It is efficient to
compute a new factorization due to the sparsity of
the matrices. The document-term matrix is typically
very sparse with z � nm non-zero entries while k is
typically also much smaller than document number
n, and word number m. By using sparse matrix mul-
tiplications and avoiding dense intermediate matri-
ces, updating F, S, G each takes O(k2(m+n)+kz)
time per iteration which scales linearly with the di-
mensions and density of the data matrix (Li et al.,
2009). Empirically, the number of iterations that is
needed to compute the new factorization is usually
very small (less than 10).

6 Experiments

6.1 Experiments Settings

Three popular binary text classification datasets are
used in the experiments: ibm-mac (1937 examples),
baseball-hockey (1988 examples) and med-space
(1972 examples) datasets. All of them are drawn
from the 20-newsgroups text collection1 where the
task is to assign messages into the newsgroup in
which they appeared. Top 1500 frequent words in
each dataset are used as features in the binary vec-
tor representation. These datasets have labels for all
the documents. For a document query, the oracle re-
turns its label. We construct the word oracle in the
same manner as in (Sindhwani et al., 2009): first
compute the information gain of words with respect
to the known true class labels in the training splits of
a dataset, and then the top 100 words as ranked by
information gain are assigned the label which is the
class in which the word appears more frequently. To
those words with labels, the word oracle returns its
label; otherwise, the oracle returns a “don’t know”
response (no word label is obtained for learning, but
the word is excluded from the following query se-
lection).

Results are averaged over 10 random training-
test splits. For each split, 30% examples are used
for testing. All methods are initialized by a ran-
dom choice of 10 document labels and 10 word la-
bels. For simplicity, we follow the widely used cost
model (Raghavan and Allan, 2007; Druck et al.,

1http://www.ai.mit.edu/people/jrennie/
20_newsgroups/
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2008; Sindhwani et al., 2009) where features are
roughly 5 times cheaper to label than examples, so
we assume the cost is 1 for a word query and is 5 for
a document query. We set α = β = 5, γ = 1 for all
the following experiments2.
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Figure 1: Comparing the performance of dual supervision
via Tri-NMF w/ and w/o the constraint on S.

2We do not perform fine tuning on the parameters since the
main objective of the paper is to demonstrate the effectiveness
of matrix factorization based methods for dual active supervi-
sion. A vigorous investigation on the parameter choices is our
further work.

6.2 Experimental Results

Effect of Constraints on S in Constrained Tri-
NMF Figure 1 demonstrates the effectiveness of
dual supervision with explicit class alignment via
Tri-NMF as described in Section 4. When there
are enough labeled documents and words, the con-
straints on S have a relative small impact on the per-
formance of dual supervision. However, in the be-
ginning phase of active learning, the labeled dataset
can be small (such as 10 labeled documents and 10
labeled words). In this case, without the constraint
of S, the matrix factorization may generate incorrect
class alignment, thus lead to almost random classi-
fication results (around 50% accuracy), as shown in
Figure 1, and further make unreasonable the follow-
ing evaluation of queries.

Comparing Query Selection Approaches Figure
2 compares our proposed unified scheme (denoted as
Expected-reconstruction-error) with the following
baselines using Tri-NMF as the classifier for dual
supervision: (1). Interleaved-uncertainty which
first selects feature query by certainty and sample
query by uncertainty and then combines the two
types of queries using an interleaving scheme. The
interleaving probability (probability to select the
query as a document) is set as 0.2, 0.4, 0.6 and
0.8. (2). Expected-log-gain which selects feature
and sample query by maximizing the expected log
gain. Expected-reconstruction-error outperforms
interleaving schemes with all the different interleav-
ing probability values with which we experimented.
It also has a better performance than Expected-log-
gain. Although log gain is a finer-grained utility
measure of classifier performance than accuracy and
has a good performance in the setting with a large set
of starting labeled documents (e.g., 100 documents),
it is not reliable especially in the setting with a small
set of labeled data. Different from the Expected-log-
gain, Expected-reconstruction-error estimates the
utility using the matrix reconstruction error, making
use of information of all documents and words, in-
cluding those unlabeled.

Comparing Interleaving Scheme vs. the Uni-
fied Scheme To further demonstrate the benefit
of the proposed unified scheme , we compare it
with its interleaved version: Interleaved-expected-
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Figure 2: Comparing the different query selection approaches in active learning via Tri-NMF with dual supervision.

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0  100  200  300  400  500  600  700  800

A
cc

ur
ac

y

Labeling Cost

Interleaved-expected-reconstruction-error-0.2
Interleaved-expected-reconstruction-error-0.4
Interleaved-expected-reconstruction-error-0.6
Interleaved-expected-reconstruction-error-0.8

Expected-reconstruction-error

(a) baseball-hockey

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0  100  200  300  400  500  600  700  800

A
cc

ur
ac

y

Labeling Cost

Interleaved-expected-reconstruction-error-0.2
Interleaved-expected-reconstruction-error-0.4
Interleaved-expected-reconstruction-error-0.6
Interleaved-expected-reconstruction-error-0.8

Expected-reconstruction-error

(b) ibm-mac

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0  100  200  300  400  500  600  700  800

A
cc

ur
ac

y

Labeling Cost

Interleaved-expected-reconstruction-error-0.2
Interleaved-expected-reconstruction-error-0.4
Interleaved-expected-reconstruction-error-0.6
Interleaved-expected-reconstruction-error-0.8

Expected-reconstruction-error

(c) med-space

Figure 3: Comparing the unified and interleaving scheme based on reconstruction error.

construction-error which computes the utility of a
query using the reconstruction error, but uses inter-
leaving scheme to decide which type of query to
select. We experiment with different interleaving
probability values ranging from 0.2 to 0.8, which
lead to quite different performance results. From
Figure 3, the optimal interleaving probability value
varies on different datasets. For example, the proba-
bility value of 0.8 is among the optimal interleaving
probability values on baseball-hockey dataset but
performs poorly on ibm-mac dataset. This obser-
vation also illustrates the need for a unified scheme,
because of the difficulty in choosing the optimal in-
terleaving probability value. Although the proposed
unified scheme is not significantly better than its in-
terleaving counterparts for all interleaving probabil-
ity values on all datasets, it avoids the bad choices.

Figure 5 presents the sequence of different query
types selected by our unified scheme and it clearly
demonstrates the distribution patterns of different
query types. At the beginning phase of active learn-
ing, word queries have much higher probabilities to
be selected, which is consistent with the result of
previous work: feature labels can be more effec-
tive than examples in text classification (Druck et
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Figure 5: Example of query sequence.

al., 2008). And in the later learning phase, docu-
ments are more likely to be selected, since the num-
ber of words that can benefit the classification is
much smaller than the effective documents.

Reconstruction Error vs. Interleaving uncer-
tainty using GRADS It should be pointed out that
our unified scheme for query selection based on re-
construction error does not rely on the estimation
of model performance on training data and can be
easily integrated with other dual supervision mod-
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Figure 4: GRADS with reconstruction error and interleaving uncertainty.

els such as GRADS (Sindhwani et al., 2008). Fig-
ure 4 shows the comparison of GRADS using the
interleaved scheme with an interleaving probability
of 0.5, and using our unified scheme based on recon-
struction error. Among the 3 datasets we used, the
reconstruction error based approach outperforms the
interleaving scheme on baseball-hockey and ibm-
mac, and has similar performance with the interleav-
ing scheme on med-space.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  100  200  300  400  500  600  700  800

A
cc

ur
ac

y

Labeling Cost

GRADS-Interleaving-0.2
GRADS-Interleaving-0.4
GRADS-Interleaving-0.6
GRADS-Interleaving-0.8

Tri-NMF-Reconstruction-Error

Figure 6: Comparing active dual supervision using ma-
trix factorization with GRADS on sentiment analysis.

Comparing Active Dual Supervision Using Ma-
trix Factorization with GRADS on Sentiment
Analysis The sentiment analysis experiment is
conducted on the movies review dataset (Pang et al.,
2002), containing 1000 positive and 1000 negative
movie reviews. The results are shown in Figure 6.
The experimental results clearly demonstrate the ef-
fectiveness of our approach, denoted as Tri-NMF-
Reconstruction-Error.

7 Conclusions

In this paper, we study the problem of active dual
supervision, and propose a matrix tri-factorization
based approach to address the issue, how to evaluate
labeling benifit of different types of queries (exam-
ples or features) in the same scale. Following ex-
tending the nonnegative matrix tri-factorization to
the active dual supervision setting, we use the recon-
struction error to evaluate the value of feature and
example labels. Experimental results show that our
proposed approach outperforms existing methods.
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Abstract

Word boundaries within noun compounds are
not marked by white spaces in a number of
languages, unlike in English, and it is benefi-
cial for various NLP applications to split such
noun compounds. In the case of Japanese,
noun compounds made up of katakana words
(i.e., transliterated foreign words) are par-
ticularly difficult to split, because katakana
words are highly productive and are often out-
of-vocabulary. To overcome this difficulty,
we propose using monolingual and bilingual
paraphrases of katakana noun compounds for
identifying word boundaries. Experiments
demonstrated that splitting accuracy is sub-
stantially improved by extracting such para-
phrases from unlabeled textual data, the Web
in our case, and then using that information for
constructing splitting models.

1 Introduction

1.1 Japanese katakana words and noun
compound splitting

Borrowing is a major type of word formation
in Japanese, and numerous foreign words (proper
names or neologisms etc.) are continuously being
imported from other languages (Tsujimura, 2006).
Most borrowed words in modern Japanese are
transliterations1 from English and they are referred
to as katakana words because transliterated foreign
words are primarily spelled by using katakana char-
acters in the Japanese writing system.2 Compound-

1Some researchers use the term transcription rather than
transliteration (Breen, 2009). Our terminology is based on stud-
ies on machine transliteration (Knight and Graehl, 1998).

2The Japanese writing system has four character types: hi-
ragana, katakana, kanji, and Latin alphabet.

ing is another type of word formation that is com-
mon in Japanese (Tsujimura, 2006). In particu-
lar, noun compounds are frequently produced by
merging two or more nouns together. These two
types of word formation yield a significant amount
of katakana noun compounds, making Japanese a
highly productive language.

In Japanese as well as some European and Asian
languages (e.g., German, Dutch and Korean), con-
stituent words of compounds are not separated by
white spaces, unlike in English. In those languages,
it is beneficial for various NLP applications to split
such compounds. For example, compound splitting
enables SMT systems to translate a compound on a
word-by-word basis, even if the compound itself is
not found in the translation table (Koehn and Knight,
2003; Dyer, 2009). In the context of IR, decom-
pounding has an analogous effect to stemming, and
it significantly improves retrieval results (Braschler
and Ripplinger, 2004). In abbreviation recognition,
the definition of an abbreviation is often in the form
of a noun compound, and most abbreviation recogni-
tion algorithms assume that the definition is properly
segmented; see e.g., (Schwartz and Hearst, 2003;
Okazaki et al., 2008).

This has led NLP researchers to explore meth-
ods for splitting compounds, especially noun com-
pounds, in various languages (Koehn and Knight,
2003; Nakazawa et al., 2005; Alfonseca et al.,
2008a). While many methods have been presented,
they basically require expensive linguistic resources
to achieve high enough accuracy. For example, Al-
fonseca et al. (2008b) employed a word dictionary,
which is obviously useful for this task. Other stud-
ies have suggested using bilingual resources such as
parallel corpora (Brown, 2002; Koehn and Knight,

959



2003; Nakazawa et al., 2005). The idea behind those
methods is that compounds are basically split into
constituent words when they are translated into En-
glish, where the compounded words are separated
by white spaces, and hence splitting rules can be
learned by discovering word alignments in bilingual
resources.

The largest obstacle that makes compound split-
ting difficult is the existence of out-of-vocabulary
words, which are not found in the abovemen-
tioned linguistic resources. In the Japanese case,
it is known that katakana words constitute a large
source of out-of-vocabulary words (Brill et al., 2001;
Nakazawa et al., 2005; Breen, 2009). As we have
discussed, katakana words are very productive, and
thus we can no longer expect existent linguistic re-
sources to have sufficient coverage. According to
(Breen, 2009), as many as 20% of katakana words
in news articles, which we think include less out-of-
vocabulary words than Web and other noisy textual
data, are out-of-vocabulary. Those katakana words
often form noun compounds, and pose a substantial
difficulty for Japanese text processing (Nakazawa et
al., 2005).

1.2 Paraphrases as implicit word boundaries

To alleviate the errors caused by out-of-vocabulary
words, we explored the use of unlabeled textual
data for splitting katakana noun compounds. Since
the amount of unlabeled text available is generally
much larger than word dictionaries and other expen-
sive linguistic resources, it is crucial to establish a
methodology for taking full advantage of such eas-
ily available textual data. While several approaches
have already been proposed, their accuracies are still
unsatisfactory (section 2.1).

From a broad perspective, our approach can be
seen as using paraphrases of noun compounds. As
we will see in section 4 and 5, katakana noun com-
pounds can be paraphrased into various forms that
strongly indicate word boundaries within the origi-
nal noun compound. This paper empirically demon-
strates that splitting accuracy can be significantly
improved by extracting such paraphrases from un-
labeled text, the Web in our case, and then using that
information for constructing splitting models.

Specifically, two types of paraphrases are inves-
tigated in this paper. Section 4 explores monolin-

gual paraphrases that can be generated by inserting
certain linguistic markers between constituent words
of katakana noun compounds. Section 5, in turn,
explores bilingual paraphrases (specifically, back-
transliteration). Since katakana words are basically
transliterations from English, back-transliterating
katakana noun compounds is also useful for split-
ting. To avoid terminological confusion, mono-
lingual paraphrases are simply referred to as para-
phrases and bilingual paraphrases are referred to as
back-transliterations hereafter.

We did experiments to empirically evaluate our
method. The results demonstrated that both para-
phrase and back-transliteration substantially im-
proved the performance in terms of F1-score, and
the best performance was achieved when they
were combined. We also confirmed that our
method outperforms the previously proposed split-
ting methods by a wide margin. All these results
strongly suggest the effectiveness of paraphrasing
and back-transliteration for identifying word bound-
aries within katakana noun compounds.

2 Related Work

2.1 Compound splitting

A common approach to splitting compounds with-
out expensive linguistic resources is an unsuper-
vised method based on word or string frequen-
cies estimated from unlabeled text (Koehn and
Knight, 2003; Ando and Lee, 2003; Schiller, 2005;
Nakazawa et al., 2005; Holz and Biemann, 2008).
Amongst others, Nakazawa et al. (2005) also in-
vestigated ways of splitting katakana noun com-
pounds. Although the frequency-based method gen-
erally achieves high recall, its precision is not satis-
factory (Koehn and Knight, 2003; Nakazawa et al.,
2005). Our experiments empirically compared our
method with the frequency-based methods, and the
results demonstrate the advantage of our method.

Our approach can be seen as augmenting discrim-
inative models of compound splitting with large ex-
ternal linguistic resources, i.e., textual data on the
Web. In a similar spirit, Alfonseca et al. (2008b) pro-
posed the use of query logs for compound splitting.3

Their experimental results, however, did not clearly
3Although they also proposed using anchor text, this slightly

degraded the performance.
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demonstrate their method’s effectiveness. Without
the query logs, the accuracy is reported to drop
only slightly from 90.55% to 90.45%. In contrast,
our experimental results showed statistically signifi-
cant improvements as a result of using additional re-
sources. Moreover, we used only textual data, which
is easily available, unlike query logs.

Holz and Biemann (2008) proposed a method
for splitting and paraphrasing German compounds.
While their work is related to ours, their algorithm
is a pipeline model and paraphrasing result is not
employed during splitting.

2.2 Other research topics

Our study is closely related to word segmentation,
which is an important research topic in Asian lan-
guages including Japanese. Although we can use
existing word segmentation systems for splitting
katakana noun compounds, it is difficult to reach the
desired accuracy, as we will empirically demonstrate
in section 6. One reason for this is that katakana
noun compounds often include out-of-vocabulary
words, which are difficult for the existing segmen-
tation systems to deal with. See (Nakazawa et al.,
2005) for a discussion of this point. From a word
segmentation perspective, our task can be seen as
a case study focusing on a certain linguistic phe-
nomenon of particular difficulty. More importantly,
we are unaware of any attempts to use paraphrases
or transliterations for word segmentation in the same
way as we do.

Recent studies have explored using paraphrase
statistics for parsing (Nakov and Hearst, 2005a;
Nakov and Hearst, 2005b; Bansal and Klein, 2011).
Although these studies successfully demonstrated
the usefulness of paraphrases for improving parsers,
the connection between paraphrases and word seg-
mentation (or noun compound splitting) was not at
all discussed.

Our method of using back-transliterations for
splitting katakana noun compounds (section 5) is
closely related to methods for mining transliteration
from the Web text (Brill et al., 2001; Cao et al.,
2007; Oh and Isahara, 2008; Wu et al., 2009). What
most differentiates these studies from our work is
that their primary goal is to build a machine translit-
eration system or to build a bilingual dictionary it-
self; none of them explored splitting compounds.

Table 1: Basic features.
ID Feature Description

1 yi constituent word 1-gram
2 yi−1yi constituent word 2-gram
3 LEN(yi) #characters of yi (1, 2, 3, 4, or ≥5)
4 DICT(yi) true if yi is in the dictionary

3 Supervised Approach

The task we examine in this paper is splitting
a katakana noun compound x into its constituent
words, y = (y1, y2 . . . y|y|). Note that the output
can be a single word, i.e., |y| = 1. Since it is pos-
sible that the input is an out-of-vocabulary word, it
is not at all trivial to identify a single word as such.
A naive method would erroneously split an out-of-
vocabulary word into multiple constituent words.

We formalize our task as a structure prediction
problem that, given a katakana noun compound x,
predicts the most probable splitting y∗.

y∗ = argmax
y∈Y(x)

w · φ(y),

where Y(x) represents the set of all splitting options
of x, φ(y) is a feature vector representation of y,
and w is a weight vector to be estimated from la-
beled data.

Table 1 summarizes our basic feature set. Fea-
tures 1 and 2 are word 1-gram and 2-gram features,
respectively. Feature 3 represents the length of the
constituent word. LEN(y) returns the number of
characters of y (1, 2, 3, 4, or ≥5). Feature 4 indi-
cates whether the constituent word is registered in
an external dictionary (see section 6.1). DICT(y) re-
turns true if the word y is in the dictionary.

In addition to those basic features, we also employ
paraphrases and back-transliterations of katakana
noun compounds as features. The features are de-
tailed in sections 4 and 5, respectively.

We can optimize the weight vector w using an ar-
bitrary training algorithm. Here we adopt the aver-
aged perceptron algorithm for the sake of time effi-
ciency (Freund and Schapire, 1999). The perceptron
offers efficient online training, and it performs com-
paratively well with batch algorithms such as SVMs.
Since we use only factored features (see table 1, sec-
tion 4 and section 5), dynamic programming can be
used to locate y∗.
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Table 2: Paraphrase rules and examples. The first column represents the type of linguistic marker to be inserted, the
second column shows the paraphrase rules, and the last column gives examples.

Type Rule Example

Centered dot X1X2 → X1 ·X2 アンチョビパスタ
(anchovy pasta)

→アンチョビ・パスタ
(anchovy · pasta)

Possessive marker X1X2 → X1 の X2 アンチョビパスタ
(anchovy pasta)

→ アンチョビの
(with anchovy)

パスタ
(pasta)

Verbal suffix X1X2 → X1 する X2

X1X2 → X1した X2

ダウンロードファイル
(download file)

→ダウンロードした
(downloaded)

ファイル
(file)

Adjectival suffix X1X2 → X1 な X2

X1X2 → X1 的 X2

X1X2 → X1 的な X2

サプライズギフト
(surprise gift)

→サプライズな
(surprising)

ギフト
(gift)

4 Paraphrasing

In this section, we argue that paraphrases of
katakana noun compounds provides useful informa-
tion on word boundaries. Consequently, we propose
using paraphrase frequencies as features for training
the discriminative model.

4.1 Paraphrasing noun compounds

A katakana noun compound can be paraphrased into
various forms, some of which provide information
on the word boundaries within the original com-
pound.

(1) a. アンチョビパスタ
(anchovy pasta)

b. アンチョビ・パスタ
(anchovy · pasta)

c. アンチョビの
(with anchovy)

パスタ
(pasta)

These examples are paraphrases of each other. (1a)
is in the form of a noun compound, within which
the word boundary is ambiguous. In (1b), on the
other hand, a centered dot ・ is inserted between
the constituent words. In the Japanese writing sys-
tem, the centered dot is sometimes, but not always,
used to separate long katakana compounds for the
sake of readability. (1c) is the noun phrase gener-
ated from (1a) by inserting the possessive marker
‘の’, which can be translated as with in this context,
between the constituent words. If we observe para-
phrases of (1a) such as (1b) and (1c), we can guess
that a word boundary exists between ‘アンチョビ
(anchovy)’ and ‘パスタ (pasta)’.

4.2 Paraphrase rules

The above discussion led us to use paraphrase
frequencies estimated from Web text for splitting
katakana noun compounds. For this purpose, we
established the seven paraphrase rules illustrated in
Table 2. The rules are in the form of X1X2 →
X1MX2, where X1 and X2 represent nouns, and
M is a certain linguistic marker (e.g., the posses-
sive marker ‘の’). The left-hand term corresponds
to a compound to be paraphrased and the right-hand
term represents its paraphrase. For instance, X1 =
‘アンチョビ (anchovy)’, X2 = ‘パスタ (pasta)’, and
M = ‘の’. The paraphrase rules we use are based on
the rules proposed by Kageura et al. (2004) for ex-
panding complex terms, primarily noun compounds,
into their variants.

4.3 Web-based frequency as features

We introduce a new feature using the paraphrase
rules and Web text. As preprocessing, we use reg-
ular expressions to count the frequencies of all po-
tential paraphrases of katakana noun compounds on
the Web in advance.

(katakana)+・ (katakana)+
(katakana)+の (katakana)+
(katakana)+する (katakana)+
. . .

where (katakana) corresponds to one katakana char-
acter. Given a candidate segmentation y at test time,
we generate paraphrases of the noun compound by
setting X1 = yi−1 and X2 = yi, and applying the
paraphrase rules. We then use log(F + 1), where F
is the sum of the Web-based frequencies of the gen-
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erated paraphrases, as the feature of the boundary
between yi−1 and yi.

As the feature value, we use the logarithmic fre-
quency, rather than the raw frequency, for scaling.
Since the other features have binary value, we found,
in initial experiments, that the importance of this
feature is overemphasized if we use the raw fre-
quency. Note that we use log(F + 1) rather than
log F so as to avoid the feature value being zero
when F = 1.

5 Back-transliteration

Most katakana words are transliterations from En-
glish, where words are separated by white spaces.
It is, therefore, reasonable to think that back-
transliterating katakana noun compounds into En-
glish would provide information on word bound-
aries, in a similar way to paraphrasing.

This section presents a method for extracting
back-transliterations of katakana words from mono-
lingual Web text, and establishing word alignments
between those katakana and English words (Table
3). In what follows, the pair of katakana words
and its English back-transliteration is referred to as a
transliteration pair. If the transliteration pair is an-
notated with word alignment information as in Table
3, it is referred to as a word-aligned transliteration
pair.

Using word-aligned transliteration pairs extracted
from the Web text, we derive a binary feature in-
dicating whether katakana word yi corresponds to
a single English word. Additionally, we derive an-
other feature indicating whether a katakana word 2-
gram yi−1yi corresponds to an English word 2-gram.

5.1 Parenthetical expressions

In Japanese and other Asian languages, transliter-
ated words are sometimes followed by their English
back-transliterations inside parentheses:

(2) a. アメリカでは ‖ジャンク
(junk)

フード
(food)

(junk food)と...

b. トラックバック ‖ スパム
(spam)

(spam)を撃退する...

where the underline indicates the Japanese text
that is followed by English back-transliteration.
We extract word-aligned transliteration pairs from

Table 3: Word-aligned transliteration pairs. The number
indicates the word alignment.

Japanese English

ジャンク1フード 2 junk1 food2

スパム3 spam3

such parenthetical expressions by establishing the
correspondences between pre-parenthesis and in-
parenthesis words.

To accomplish this, we have to resolve three prob-
lems: (a) English words inside parenthesis do not
always provide a back-transliteration of the pre-
parenthesis text, (b) the left boundary of the pre-
parenthesis text, denoted as ‘‖’ in the example, has
to be identified, and (c) pre-parenthesis text, which
is a katakana noun compound in our case, has to be
segmented into words.

Although several studies have explored mining
transliterations from such parenthetical expressions
(Cao et al., 2007; Wu et al., 2009), the last problem
has not been given much attention. In the past stud-
ies, the pre-parenthesis text is assumed to be cor-
rectly segmented by, typically, using existent word
segmentation systems. This is, however, not appro-
priate for our purpose, because pre-parenthesis text
is a katakana noun compound, which is hard for ex-
isting systems to handle, and hence the alignment
quality is inevitably affected by segmentation errors.

To handle these three problems, we use the pho-
netic properties of the transliterations. For the pur-
pose of explanation, we shall first focus on problem
(c). Since transliterated katakana words preserve the
pronunciation of the original English words to some
extent (Knight and Graehl, 1998), we can discover
the correspondences between substrings of the two
languages based on phonetic similarity:

(3) a. [ジャン]1[ク]2[フー]3[ド ]4

b. [jun]1[k]2 [foo]3[d]4

Note that these are the pre-parenthesis and in-
parenthesis text in (2a). The substrings surrounded
by square brackets with the same number corre-
spond to each other. Given such a correspondence,
we can segment the pre-parenthesis text (3a) accord-
ing to its English counterpart (3b), in which words

963



Table 4: Example of the substring alignment A between
f =‘ジャンクフード ’ and e =‘junkfood’ (|A| = 4).

(fi, ei) log p(fi, ei)

(ジャン, jun) −10.767
(ク, k) −5.319
(フー, foo) −11.755
(ド , d) −5.178

are separated by white space. We can recognize that
the katakana string ‘ジャンク’, which is the con-
catenation of the first two substrings in (3a), forms
a single word because it corresponds to the English
word junk, and so on. Consequently, (3a) can be seg-
mented into two words, ‘ジャンク (junk)’ and ‘フー
ド (food)’. The word alignment is trivially estab-
lished.

For problems (a) and (b), we can also use the
phonetic similarity between pre-parenthesis and in-
parenthesis text. If the parenthetical expression does
not provide the transliteration, or if the left boundary
is erroneously identified, we can expect the phonetic
similarity to become small. Such situations thus can
be identified.

The remainder of this section details this ap-
proach. Section 5.2 presents a probabilistic model
for discovering substring alignment such as (3). Sec-
tion 5.3 shows how to extract word-aligned translit-
eration pairs by using the probabilistic model.

5.2 Phonetic similarity model

To establish the substring alignment between
katakana and Latin alphabet strings, we use the
probabilistic model proposed by (Jiampojamarn et
al., 2007). Let f and e be katakana and alphabet
strings, and A be the substring alignment between
them. More precisely, A is a set of corresponding
substring pairs (fi, ei) such that f = f1f2 . . . f|A|
and e = e1e2 . . . e|A|. The probability of such align-
ment is defined as

log p(f, e,A) =
∑

(fi,ei)∈A
log p(fi, ei).

Since A is usually unobservable, it is treated as a
hidden variable. Table 4 illustrates an example of
the substring alignment between f =‘ジャンクフー
ド ’ and e =‘junkfood’, and the likelihood of each
substring pair estimated in our experiment.

The model parameters are estimated from a set of
transliteration pairs (f, e) using the EM algorithm.
In the E-step, we estimate p(A|f, e) based on the
current parameters. In the parameter estimation, we
restrict both fi and ei to be at most three characters
long. Doing this not only makes the E-step compu-
tationally efficient but avoids over-fitting by forbid-
ding too-long substrings to be aligned. In the M-
step, the parameter is re-estimated using the result
of the E-step. We can accomplish this by using an
extension of the forward-backward algorithm. See
(Jiampojamarn et al., 2007) for details.

Given a new transliteration pair (f, e), we can de-
termine the substring alignment as

A∗ = argmax
A

log p(f, e,A).

In finding the substring alignment, a white space on
the English side is used as a constraint, so that the
English substring ei does not span a white space.

5.3 Extracting word-aligned transliteration
pairs

The word-aligned transliteration pairs are extracted
using the phonetic similarity model, as follows.

First, candidate transliteration pairs (f, e) are ex-
tracted from the parenthetical expressions. This is
done by extracting English words inside parenthe-
ses and pre-parenthesis text written in katakana. En-
glish words are normalized by lower-casing capital
letters.

Second, we determine the left boundary by using
the confidence score: 1

N log p(f, e,A∗), where N is
the number of English words. The term 1

N prevents
the score from being unreasonably small when there
are many words. We truncate f by removing the
leftmost characters one by one, until the confidence
score exceeds a predefined threshold θ. If f becomes
empty, the pair is regarded as a non-transliteration
and discarded.

Finally, for the remaining pairs, the Japanese side
is segmented and the word alignment is established
according to A∗. This results in a list of word-
aligned transliteration pairs (Table 3).

6 Experiments and Discussion

We conducted experiments to investigate how the
use of the paraphrasing and the back-transliteration
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improves the performance of the discriminative
model.

6.1 Experimental setting

To train the phonetic similarity model, we used
a set of transliteration pairs extracted from the
Wikipedia.4 Since person names are almost always
transliterated when they are imported from English
into Japanese, we made use of the Wikipedia arti-
cles that belong to the Living people category. From
the titles of those articles, we automatically ex-
tracted person names written in katakana, together
with their English counterparts obtainable via the
multilingual links provided by the Wikipedia. This
yielded 17,509 transliteration pairs for training. In
performing the EM algorithm, we tried ten differ-
ent initial parameters and selected the model that
achieved the highest likelihood.

The data for training and testing the percep-
tron was built using a Japanese-English dictionary
EDICT.5 We randomly extracted 5286 entries writ-
ten in katakana from EDICT and manually anno-
tated word boundaries by establishing word corre-
spondences to their English transliterations. Since
English transliterations are already provided by
EDICT, the annotation can be trivially done by na-
tive speakers of Japanese. Using this data set, we
performed 2-fold cross-validation for testing the per-
ceptron. The number of iterations was set to 20 in all
the experiments.

To compute the dictionary-based feature DICT(y)
in our basic feature set, we used NAIST-jdic.6 It is
the largest dictionary used for Japanese word seg-
mentation, and it includes 19,885 katakana words.

As Web corpora, we used 1.7 G sentences of
blog articles. From the corpora, we extracted
14,966,205 (potential) paraphrases of katakana noun
compounds together with their frequencies. We
also extracted 151,195 word-aligned transliteration
pairs. In doing this, we ranged the threshold θ in
{−10,−20, · · · − 150} and chose the value that per-
formed the best (θ = −80).

The results were evaluated using precision, recall,
F1-score, and accuracy. Precision is the number of
correctly identified words divided by the number of

4http://ja.wikipedia.org/
5http://www.csse.monash.edu.au/˜jwb/edict doc.html
6http://sourceforge.jp/projects/naist-jdic

all identified words, recall is the number of correctly
identified words divided by the number of all ora-
cle words, the F1-score is their harmonic mean, and
accuracy is the number of correctly split katakana
noun compounds divided by the number of all the
katakana noun compounds.

6.2 Baseline systems

We compared our system with three frequency-
based baseline system, two supervised baselines,
and two state-of-the-art word segmentation base-
lines. The first frequency-based baseline, UNI-
GRAM, performs compound splitting based on a
word 1-gram language model (Schiller, 2005; Al-
fonseca et al., 2008b):

y∗ = argmax
y∈Y(x)

∏

i

p(yi),

where p(yi) represents the probability of yi. The
second frequency-based baseline, GMF, outputs the
splitting option with the highest geometric mean fre-
quency of the constituent words (Koehn and Knight,
2003):

y∗ = argmax
y∈Y(x)

GMF(y) = argmax
y∈Y(x)

{∏

i

f(yi)
}1/|y|

,

where f(yi) represents the frequency of yi. The
third frequency-based baseline, GMF2, is a mod-
ification of GMF proposed by Nakazawa et al.
(2005). It is based on the following score instead
of GMF(y):

GMF2(y) =

⎧
⎪⎨
⎪⎩

GMF(y) (|y| = 1)

GMF(y)
C

Nl +α
(|y| ≥ 2),

where C , N , and α are hyperparameters and l is the
average length of the constituent words. Following
(Nakazawa et al., 2005), the hyperparameters were
set as C = 2500, N = 4, and α = 0.7. We estimated
p(y) and f(y) from the Web corpora.

The first supervised baseline, AP, is the aver-
aged perceptron model trained using only the ba-
sic feature set. The second supervised baseline,
AP+GMF2 is a combination of AP and GMF2,
which performed the best amongst the frequency-
based baselines. Following (Alfonseca et al.,
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Table 5: Comparison with baseline systems.
Type System P R F1 Acc

Frequency UNIGRAM 64.2 49.7 56.0 63.0
GMF 42.9 62.0 50.7 47.5
GMF2 67.4 76.0 71.5 72.5

Supervised AP 81.9 82.5 82.2 83.4
AP+GMF2 83.0 83.9 83.4 84.2
PROPOSED 86.4 87.4 87.1 87.6

Word seg. JUMAN 71.4 60.1 65.3 69.8
MECAB 72.4 73.7 67.8 71.6

2008b), GMF2 is integrated into AP as two bi-
nary features indicating whether GMF2(y) is larger
than any other candidates, and whether GMF2(y) is
larger than the non-split candidate. Although Alfon-
seca et al. (2008b) also proposed using (the log of)
the geometric mean frequency as a feature, doing so
degraded performance in our experiment.

Regarding the two state-of-the-art word segmen-
tation systems, one is JUMAN,7 a rule-based word
segmentation system (Kurohashi and Nagao, 1994),
and the other is MECAB,8 a supervised word seg-
mentation system based on CRFs (Kudo et al.,
2004). These two baselines were chosen in order to
show how well existing word segmentation systems
perform this task. Although the literature states that
it is hard for existing systems to deal with katakana
noun compounds (Nakazawa et al., 2005), no empir-
ical data on this issue has been presented until now.

6.3 Splitting result

Table 5 compares the performance of our system
(PROPOSED) with the baseline systems. First of all,
we can see that PROPOSED clearly improved the per-
formance of AP, demonstrating the effectiveness of
using paraphrases and back-transliterations.

Our system also outperformed all the frequency-
based baselines (UNIGRAM, GMF, and GMF2). This
is not surprising, since the simple supervised base-
line, AP, already outperformed the unsupervised
frequency-based ones. Indeed similar experimental
results were also reported by Alfonseca (2008a). An
interesting observation here is the comparison be-
tween PROPOSED and AP+GMF2. It reveals that
our approach improved the performance of AP more
than the frequency-based method did. These results

7http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman.html
8http://sourceforge.net/projects/mecab

indicate that paraphrasing and back-transliteration
are more informative clues than the simple fre-
quency of constituent words. We would like to
note that the higher accuracy of PROPOSED in com-
parison with the baselines is statistically significant
(p < 0.01, McNemar’s test).

The performance of the two word segmenta-
tion baselines (JUMAN and MECAB) is significantly
worse in our task than in the standard word segmen-
tation task, where nearly 99% precision and recall
are reported (Kudo et al., 2004). This demonstrates
that splitting a katakana noun compound is not at
all a trivial task to resolve, even for the state-of-the-
art word segmentation systems. On the other hand,
PROPOSED outperformed both JUMAN and MECAB

in this task, meaning that our technique can suc-
cessfully complement the weaknesses of the existing
word segmentation systems.

By analyzing the errors, we interestingly found
that some of the erroneous splitting results are still
acceptable to humans. For example, while ‘アップ
ロード (upload)’ was annotated as a single word in
the test data, our system split it into ‘アップ (up)’
and ‘ロード (load)’. Although the latter splitting
may be useful in some applications, it is judged as
wrong in our evaluation framework. This implies
the importance of evaluating the splitting results in
some extrinsic tasks. We leave it to a future work.

6.4 Investigation on out-of-vocabulary words

In our test data, 2681 out of the 5286 katakana noun
compounds contained at least one out-of-vocabulary
word that are not registered in NAIST-jdic. Table 6
illustrates the results of the supervised systems for
those 2681 and the remaining 2605 katakana noun
compounds (referred to as w/ OOV and w/o OOV
data, respectively). While the accuracy exceeds 90%
for w/o OOV data, it is substantially degraded for w/
OOV data. This is consistent with our claim that out-
of-vocabulary words are a major source of errors in
splitting noun compounds.

The three supervised systems performed almost
equally for w/o OOV data. This is because AP triv-
ially performs very well on this subset, and it is dif-
ficult to get any further improvement. On the other
hand, we can see that there are substantial perfor-
mance gaps between the systems for w/ OOV data.
This result reflects the effect of the additional fea-
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Table 6: Splitting results of the supervised systems for w/ OOV and w/o OOV data.
w/ OOV data w/o OOV data

System P R F1 Acc P R F1 Acc

AP 66.9 69.9 68.3 72.8 95.4 93.2 94.3 94.2
AP+GMF2 69.7 73.7 71.6 75.2 95.2 92.4 93.7 93.6
PROPOSED 76.8 79.3 78.0 80.9 95.3 94.2 94.8 94.5

tures more directly than is shown in table 5.

6.5 Effect of the two new features

To see the effect of the new features in more detail,
we looked at the performances of our system using
different feature sets (Table 7). The first column
represents the feature set we used: BASIC, PARA,
TRANS, and ALL represent the basic features, the
paraphrase feature, the back-transliteration feature,
and all the features. The results demonstrate that
adding either of the new features improved the per-
formance, and the best result was when they were
used together. In all cases, the improvement over
BASIC was statistically significant (p < 0.01, Mc-
Nemar’s test).

Next, we investigated the coverage of the features.
Our test data comprised 7709 constituent words,
4937 (64.0%) of which were covered by NAIST-
jdic. The coverage was significantly improved when
using the back-transliteration feature. We observed
that 6216 words (80.6%) are in NAIST-jdic or word-
aligned transliteration pairs extracted from the Web
text. This shows that the back-transliteration fea-
ture successfully reduced the number of out-of-
vocabulary words. On the other hand, we observed
that the paraphrase and back-transliteration features
were activated for 79.5% (1926/2423) and 15.5%
(376/2423) of the word boundaries in our test data.

Overall, we see that the coverage of these fea-
tures is reasonably good, although there is still room
for further improvement. It would be beneficial to
use larger Web corpora or more paraphrase rules,
for example, by having a system that automatically
learns rules from the corpora (Barzilay and McKe-
own, 2001; Bannard and Callison-Burch, 2005).

6.6 Sensitivity on the threshold θ

Finally we investigated the influence of the thresh-
old θ (Figure 1 and 2). Figure 1 illustrates the system
performance in terms of F1-score for different values

Table 7: Effectiveness of paraphrase (PARA) and back-
transliteration feature (TRANS).

Feature set P R F1 Acc

BASIC 81.9 82.5 82.2 83.4
BASIC+PARA 85.1 85.3 85.2 85.9
BASIC+TRANS 85.1 86.3 85.7 86.5
ALL 86.4 87.4 87.1 87.6

of θ. While the F1-score drops when the value of θ
is too large (e.g., −20), the F1-score is otherwise al-
most constant. This demonstrates it is generally easy
to set θ near the optimal value. More importantly,
the F1-score is consistently higher than BASIC irre-
spective of the value of θ. Figure 2 represents the
number of distinct word-aligned transliteration pairs
that were extracted from the Web corpora. We see
that most of the extracted transliteration pairs have
high confidence score.

7 Conclusion

In this paper, we explored the idea of using monolin-
gual and bilingual paraphrases for splitting katakana
noun compounds in Japanese. The experiments
demonstrated that our method significantly im-
proves the splitting accuracy by a large margin
in comparison with the previously proposed meth-
ods. This means that paraphrasing provides a sim-
ple and effective way of using unlabeled textual
data for identifying implicit word boundaries within
katakana noun compounds.

Although our investigation was restricted to
katakana noun compounds, one might expect that a
similar approach would be useful for splitting other
types of noun compounds (e.g., German noun com-
pounds), or for identifying general word boundaries,
not limited to those between nouns, in Asian lan-
guages. We think these are research directions worth
exploring in the future.
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Figure 1: Influence of the threshold θ (x-axis) on the F1-
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Figure 2: The number of distinct word-aligned transliter-
ations pairs that were extracted from the Web corpora for
different values of θ.
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Abstract

This paper investigates improving supervised
word segmentation accuracy with unlabeled
data. Both large-scale in-domain data and
small-scale document text are considered. We
present a unified solution to include features
derived from unlabeled data to a discrimina-
tive learning model. For the large-scale data,
we derive string statistics from Gigaword to
assist a character-based segmenter. In addi-
tion, we introduce the idea about transductive,
document-level segmentation, which is de-
signed to improve the system recall for out-of-
vocabulary (OOV) words which appear more
than once inside a document. Novel features1

result in relative error reductions of 13.8% and
15.4% in terms of F-score and the recall of
OOV words respectively.

1 Introduction

Chinese sentences are written in continuous se-
quence of characters without explicit delimiters such
as space characters. To find the basic language units,
i.e. words, segmentation is a necessary initial step
for Chinese language processing. Previous research
shows that word segmentation models trained on la-
beled data are reasonably accurate. In this paper,
we investigate improving supervised word segmen-
tation with unlabeled data.

We distinguish three types of unlabeled data,
namely large-scale in-domain data, out-of-domain
data and small-scale document text. Both large-scale

1You can download our derived features at
http://www.coli.uni-saarland.de/˜wsun/
semi-cws-feats-emnlp11.tgz.

in-domain and out-of-domain data is popular for en-
hancing NLP tasks. Learning from these two types
of unlabeled data normally involves semi-supervised
learning. The difference between them is that out-
of-domain data is usually used for domain adapta-
tion. For a number of NLP tasks, there are relatively
large amounts of labeled training data. In this sit-
uation, supervised learning can provide competitive
results, and it is difficult to improve them any further
by using extra unlabeled data. Chinese word seg-
mentation is one of this kind of tasks, since several
large-scale manually annotated corpora are publicly
available. In this work, we first exploit unlabeled in-
domain data to improve strong supervised models.
We leave domain adaptation for our future work.

We introduce the third type of unlabeled data with
a transductive learning, document-level view. Many
applications of word segmentation involve process-
ing a whole document, such as information retrieval.
In this situation, the text of the current document
can provide additional useful information to seg-
ment a sentence. Take the word “氨纶丝/elastane”
for example2. As a translated terminology word, it
lacks compositionality. Moreover, this word appears
rarely in general texts. As a result, if it does not ap-
pear in the training data, it is very hard for statis-
tical models to recognize this word. Nevertheless,
when we deal with an article discussing an elastane
company, this word may appear more than once in
this article, and the document information can help
recognize this word. This idea is closely related to
transductive learning in the sense that the segmen-
tation model knows something about the problem it

2This example is from an article indexed as chtb 0041 in the
Penn Chinese Treebank corpus.

970



is going to resolve. In this work, we are also con-
cerned with enhancing word segmentation with the
document information.

We present a unified “feature engineering” ap-
proach for learning segmentation models from both
labeled and unlabeled data. Our method is a simple
two-stage process. First, we use unannotated corpus
to extract string and document information, and then
we use these information to construct new statistics-
based and document-based feature mapping for a
discriminative word segmenter. We are relying on
the ability of discriminative learning method to iden-
tify and explore informative features, which play
central role to boost the segmentation performance.
This simple solution has been shown effective for
named entity recognition (Miller et al., 2004) and
dependency parsing (Koo et al., 2008). In their im-
plementations, word clusters derived from unlabeled
data are imported as features to discriminative learn-
ing approaches.

To demonstrate the effectiveness of our approach,
we conduct experiments on the Penn Chinese Tree-
bank (CTB) data. CTB is a collection of docu-
ments which are separately annotated. This anno-
tation style allows us to evaluate our transductive
segmentation method. Our experiments show that
both statistics-based and document-based features
are effective in the word segmentation application.
In general, the use of unlabeled data can be moti-
vated by two concerns: First, given a fixed amount
of labeled data, we might wish to leverage unla-
beled data to improve the performance of a super-
vised model. Second, given a fixed target perfor-
mance level, we might wish to use unlabeled data
to reduce the amount of annotated data necessary
to reach this target. We show that our approach
yields improvements for fixed data sets, even when
large-scale labeled data is available. The new fea-
tures result in relative error reductions of 13.8% and
15.4% in terms of the balanced F-score and the re-
call of out-of-vocabulary (OOV) words respectively.
By conducting experiments on data sets of varying
sizes, we demonstrate that for fixed levels of perfor-
mance, the new features derived from unlabeled data
can significantly reduce the need of labeled data.

The remaining part of the paper is organized as
follows. Section 2 describes the details of our sys-
tem, especially the design of the derived features.

B Current character is the start of a word con-
sisting of more than one character.

E Current character is the end of a word con-
sisting of more than one character.

I Current character is a middle of a word con-
sisting of more than two characters.

S Current character is a word consisting of
only one character.

Table 1: The start/end representation.

Section 3 presents experimental results and empir-
ical analysis. Section 4 reviews the related work.
Section 5 concludes the paper.

2 Method

2.1 Discriminative Character-based Word
Segmentation

The Character-based approach is a dominant word
segmentation solution for Chinese text process-
ing. This approach treats word segmentation as a
sequence tagging problem, assigning labels to the
characters indicating whether a character locates at
the beginning of, inside or at the end of a word. This
character-by-character method was first proposed
by (Xue, 2003), and a number of discriminative
sequential learning algorithms have been exploited,
including structured perceptron (Jiang et al., 2009),
the Passive-Aggressive algorithm (Sun, 2010),
conditional random fields (CRFs) (Tseng et al.,
2005), and latent variable CRFs (Sun et al., 2009).
In this work, we use the Start/End representation to
express the position information of every character.
Table 2.1 shows the meaning of each character
label. For example, the target label representation
of the book title “赵紫阳总理的秘密日记/The Se-
cret Journal of Premier Zhao Ziyang” is as follows.
赵 紫 阳 总 理 的 秘 密 日 记

B I E B E S B E B E
Key to our approach is to allow informative fea-

tures derived from unlabeled data to assist the seg-
menter. In our experiments, we employed three
different feature sets: a baseline feature set which
draws upon “normal” information from labeled
training data, a statistics-based feature set that uses
statistical information derived from a large-scale in-
domain corpus, and a document-based feature set
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that uses information encoded in the surrounding
text.

2.2 Baseline Features

In this work, to train a good traditional supervised
segmenter, our baseline feature templates includes
the ones described in (Sun et al., 2009; Sun, 2010).
These features are divided into two types: char-
acter features and word type features. Note that
the word type features are indicator functions that
fire when the local character sequence matches a
word uni-gram or bi-gram. Dictionary containing
word uni-grams and bi-grams is collected from the
training data. To conveniently illustrate, we de-
note a candidate character token ci with a context
...ci−1cici+1.... We use c[s:e] to express a string that
starts at the position s and ends at the position e.
For example, c[i:i+1] expresses a character bi-gram
cici+1. The character features are listed below.

• Character uni-grams: cs (i− 3 < s < i+ 3)

• Character bi-grams: cscs+1 (i−3 < s < i+3)

• Whether cs and cs+1 are identical, for i − 2 <
s < i+ 2.

• Whether cs and cs+2 are identical, for i − 4 <
s < i+ 2.

The word type features are listed as follows.

• The identity of the string c[s:i] (i− 6 < s < i),
if it matches a word from the list of uni-gram
words;

• The identity of the string c[i:e] (i < e < i+ 6),
if it matches a word; multiple features could be
generated.

• The identity of the bi-gram c[s:i−1]c[i:e] (i−6 <
s, e < i+6), if it matches a word bi-gram from
the list of uni-gram words.

• The identity of the bi-gram c[s:i]c[i+1:e] (i−6 <
s, e < i + 6), if it matches a word bi-gram;
multiple features could be generated.

Idiom In linguistics, idioms are usually presumed
to be figures of speech contradicting the principle of
compositionality. As a result, it is very hard to rec-
ognize out-of-vocabulary idioms for word segmen-
tation. Nonetheless, the lexicon of idioms can be
taken as a close set, which helps resolve the problem
well. In our previous work (Sun, 2011), we collect
12992 idioms from several free online Chinese dic-
tionaries. This linguistic resource is publicly avail-
able3. In this paper, we use this idiom dictionary to
derive the following feature.

• Does ci locate at the beginning of, inside or
at the end of an idiom? If the string c[s:i]
(s < i) matches an item from the idiom lexi-
con, the feature template receives a string value
“E-IDIOM”. Similarly, we can define when this
feature ought to be set to “B-IDIOM” or “I-
IDIOM”. Note that all idioms are larger than
one character, so there is no “S-IDIOM” fea-
ture here.

2.3 Statistics-based Features
In order to distill information from unlabeled data,
we borrow ideas from some previous research on
unsupervised word segmentation. The statistical in-
formation acquired from a relatively large amount
of unlabeled data are designed as features correlated
with the position where a character locates in a word
token. These features are based on three widely used
criteria.

2.3.1 Mutual Information
Empirical mutual information is widely used in

NLP. Informally, mutual information compares the
probability of observing x and y together with the
probabilities of observing x and y independently. If
there is a genuine association between x and y, the
I(x, y) = log p(x,y)

p(x)p(y) should be greater than 0.
Some previous work claimed that the larger

the mutual information between two consecutive
strings, the higher the possibility of the two strings
being combined together. We adopt this idea in our
character-based segmentation model. The empiri-
cal mutual information between two character bi-
grams is computed by counting how often they ap-
pear in the large-scale unlabeled corpus. Given a

3http://www.coli.uni-saarland.de/˜wsun/
idiom.txt.
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Chinese character string c[i−2:i+1], the mutual infor-
mation between substrings c[i−2:i−1] and c[i:i+1] is
computed as:

MI(c[i−2:i−1], c[i:i+1]) = log
p(c[i−2:i+1])

p(c[i−2:i−1])p(c[i:i+1])

For each character ci, we incorporate the MI of the
character bi-grams into our model. They include,

• MI(c[i−2:i−1], c[i:i+1]),

• MI(c[i−1:i], c[i+1:i+2]).

2.3.2 Accessor Variety
When a string appears under different linguistic

environments, it may carry a meaning. This prin-
ciple is introduced as the accessor variety criterion
for identifying meaningful Chinese words in (Feng
et al., 2004). This criterion evaluates how indepen-
dently a string is used, and thus how likely it is that
the string can be a word. Given a string s, which
consists of l (l ≥ 2) characters, we define the left
accessor variety of Llav(s) as the number of distinct
characters that precede s in a corpus. Similarly, the
right accessor variety Rlav(s) is defined as the num-
ber of distinct characters that succeed s.

We first extract all strings whose length are be-
tween 2 and 4 from the unlabeled data, and calculate
their accessor variety values. For each character ci,
we then incorporate the following information into
our model,

• Accessor variety of strings with length 4:
L4
av(c[i:i+3]), L4

av(c[i+1:i+4]), R4
av(c[i−3:i]),

R4
av(c[i−4:i−1]);

• Accessor variety of strings with length 3:
L3
av(c[i:i+2]), L3

av(c[i+1:i+3]), R3
av(c[i−2:i]),

R3
av(c[i−3:i−1]);

• Accessor variety of strings with length 2:
L2
av(c[i:i+1]), L2

av(c[i+1:i+2]), R2
av(c[i−1:i]),

R2
av(c[i−2:i−1]).

2.3.3 Punctuation as Anchor Words
Punctuation marks are symbols that indicate the

structure and organization of written language, as
well as intonation and pauses to be observed when
reading aloud. Punctuation marks can be taken as

perfect word delimiters, and can be used as anchor
words to harvest lexical knowledge. The preced-
ing and succeeding strings of punctuations carry ad-
ditional wordbreak information, since punctuations
should be segmented as a word. Note that such in-
formation is biased because not all words can appear
before or after punctuations. For example, punctua-
tions can not be followed by particles, such as “了”,
“着” and “过” which are indicators of aspects. Nev-
ertheless, our experiments will show this kind of in-
formation is still useful for word segmentation.

When a string appears many times preceding or
succeeding punctuations, there tends to be word-
breaks succeeding or preceding that string. To uti-
lize the wordbreak information provided by punctu-
ations, we extract all strings with length l(2 ≤ l ≤
4) which precede or succeed punctuations in the un-
labeled data. We define the left punctuation variety
of Llpv(s) as the number of times a punctuation pre-
cedes s in a corpus. Similarly, the right punctua-
tion variety Rlpv(s) is defined as the number of how
many times a punctuation succeeds s. These two
variables evaluate how likely a string can be sepa-
rated at its start or end positions.

We first gather all strings surrounding punctua-
tions in the unlabeled data, and calculate their punc-
tuation variety values. The length of each string is
also restricted between 2 and 4. For each charac-
ter ci, we import the following information into our
model,

• Punctuation variety of strings with length 4:
L4
pv(c[i:i+3]), R4

pv(c[i−3:i]);

• Punctuation variety of strings with length 3:
L3
pv(c[i:i+2]), R3

pv(c[i−2:i]);

• Punctuation variety of strings with length 2:
L2
pv(c[i:i+1]), R2

pv(c[i−1:i]).

Punctuations can be viewed as mark-up’s of Chi-
nese text. Our motivation to use the punctuation in-
formation to assist a word segmenter is similiar to
(Spitkovsky et al., 2010) in a way to explore “artifi-
cial” word (or phrase) break symbols. In their work,
four common HTML tags are successfully used as
raw phrase bracketings to improve unsupervised de-
pendency parsing.
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2.3.4 Binary or Numeric Features
The derived information introduced above is all

expressed as real values. The natural way to in-
corporate these statistics into a discriminative learn-
ing model is to directly use them as numeric fea-
tures. However, our experiments show that this sim-
ple choice does not work well. The reason is that
these statistics actually behave non-linearly to pre-
dict character labels. For each type of statistics, one
weight alone cannot capture the relation between its
value and the possibility that a string forms a word.
Instead, we represent these statistics as discrete fea-
tures.

For the mutual information, this is done by round-
ing down decimal number. The integer part of each
MI value is used as a string feature. For the ac-
cessor variety and punctuation variety information,
since their values are integer, we can directly use
them as string features. The accessor variety and
punctuation variety could be very large, so we set
thresholds to cut off large values to deal with the
data sparse problem. Specially, if an accessor va-
riety value is greater than 50, it is incorporated as
a feature “> 50”; if the value is greater than 30
but not greater than 50, it is incorporated as a fea-
ture “30 − 50”; else the value is individually in-
corporated as a string feature. For example, if the
left accessory variety of a character bi-gram c[i:i+1]

is 29, the binary feature “L2
av(c[i:i+1])=29” will be

set to 1, while other related binary features such as
“L2

av(c[i:i+1]) = 15” or “L2
av(c[i:i+1]) > 50” will

be set to 0. Similarly, we can discretize the punc-
tuation variety features. However, we only set one
threshold, 30, for this value. These thresholds can
be tuned by using held-out data.

2.4 Document-based Features

It is meaningless to derive statistics of a document
and use it for word segmentation, since most doc-
uments are relatively short, and values are statisti-
cally unreliable. Our experiments confirm this idea.
Instead, we propose the following binary features
which are based on the string count in the given doc-
ument that is simply the number of times a given
string appears in that document. For each character
ci, our document-based features include,

• Whether the string count of c[s:i] is equal to that

of c[s:i+1] (i − 3 ≤ s ≤ i). Multiple features
are generated for different string length.

• Whether the string count of c[i:e] is equal to that
of c[i−1:e] (i ≤ e ≤ i + 3). Multiple features
are generated for different string length.

The intuition is as follows. The string counts of
c[s:i] and c[s:i+1] being equal means that when c[s:i]
appears, it appears inside c[s:i+1]. In this case, c[s:i]
is not independently used in this document, and this
feature suggests the segmenter not assign a “S” or
“E” label to the character ci. Similarly, the string
counts of c[i:e] and c[i−1:e] being equal means c[i:e]
is not independently used in this document, and this
feature suggests segmenter not assign a “S” or “B”
label to ci. We do not directly use the string counts
to prevent a bias towards longer documents.

3 Experiments

3.1 Setting

The SIGHAN Bakeoffs provide several large-scale
labeled data for the research on Chinese word seg-
mentation. Although these data sets are labeled on
continuous run texts, they do not contain the docu-
ment boundary information. CTB is a segmented,
part-of-speech tagged, and fully bracketed corpus
in the constituency formalism. It is also an popu-
lar data set to evaluate word segmentation methods,
such as (Jiang et al., 2009; Sun, 2011). CTB is a
collection of documents which are separately anno-
tated. This annotation style allows us to calculate
the so-called document-based features and to further
evaluate our approach. In this paper, we use CTB 6.0
as our main corpus and define the training, develop-
ment and test sets according to the Chinese sub-task
of the CoNLL 2009 shared task4. Table 2 shows the
statistics of our experimental settings.

Data set # of sent. # of words # of char.
Training 22277 609060 1004266
Devel. 1763 49646 83710
Test 2557 73152 121008

Table 2: Training, development and test data on CTB 6.0

4We would like to thank Prof. Nianwen Xue for the help
with the division of the data
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Chinese Gigaword is a comprehensive archive
of newswire text data that has been acquired over
several years by the Linguistic Data Consortium
(LDC). The large-scale unlabeled data we use in
our experiments comes from the Chinese Gigaword
(LDC2005T14). We choose the Mandarin news text,
i.e. Xinhua newswire. This data covers all news
published by Xinhua News Agency (the largest news
agency in China) from 1991 to 2004, which contains
over 473 million characters.

F-score is used as the accuracy measure. Define
precision p as the percentage of words in the decoder
output that are segmented correctly, and recall r as
the percentage of gold standard output words that are
correctly segmented by the decoder. The (balanced)
F-score is 2pr/(p + r). We also report the recall of
OOV words. Note that, all idioms in our extra idiom
lexicon are added into the in-vocabulary word list.

CRFsuite (Okazaki, 2007) is an implementation
of Conditional Random Fields (CRFs) (Lafferty
et al., 2001) for labeling sequential data. It is a
speed-oriented implementation, which is written in
pure C. In our experiments, we use this toolkit to
learn global linear models for segmentation. We use
the stochastic gradient descent algorithm to resolve
the optimization problem, and set default values for
other learning parameters.

3.2 Main Results
Table 3 summarizes the segmentation results on the
development data with different configurations, rep-
resenting a few choices between baseline, statistics-
based and document-based feature sets. In this table,
the symbol “+” means features of current configura-
tion contains both the baseline features and new fea-
tures for semi-supervised or transductive learning.
From this table, we can clearly see the impact of fea-
tures derived from the large-scale unlabeled data and
the current document. Comparison between the per-
formance of the baseline and “+MI” shows that the
widely used mutual information is not helpful. Both
good segmentation techniques and valuable labeled
corpora have been developed, and pure supervised
systems can provide strong performance. It is not
a trial to design new features to enhance supervised
models.

There are significant increases when accessor va-
riety features and punctuation variety features are

Devel. P R Fβ=1 Roov

Baseline 95.41 95.52 95.46 77.68
+MI 95.50 95.48 95.49 77.98
+AV(2) 95.85 96.04 95.94 79.31
+AV(2,3) 95.95 96.19 96.07 80.61
+AV(2,3,4) 96.14 95.99 96.07 81.83
+PU(2) 95.86 96.07 95.97 79.70
+PU(2,3) 95.98 96.25 96.11 80.42
+PU(2,3,4) 96.00 96.19 96.10 80.53
+MI+AV(2,3,4)+PU(2,3,4)

96.17 96.22 96.19 80.42
+DOC 95.69 95.64 95.66 79.89
+MI+AV(2,3,4)+PU(2,3,4)+DOC

96.21 96.23 96.22 81.75

Table 3: Segmentation performance with different feature
sets on the development data. Abbreviations: MI=mutual
information; AV=accessor variety; PU=punctuation va-
riety; DOC=document features. The numbers in each
bracket pair are the lengths of strings. For example,
PU(2,3) means punctuation variety features of character
bi-grams and tri-grams are added.

separately added. Extending the length of neigh-
boring string helps a little from 2 to 3. Al-
though the OOV recall increases when the length
is extended from 3 to 4, there is no improve-
ment of the overall balanced F-score. The
line “+MI+AV(2,3,4)+PU(2,3,4)” shows the perfor-
mance when all statistics-based features are added.
The combination of the “AV” and “PU” features
gives further helps. This system can be seen as a
pure semi-supervised system. The line “+DOC” is
the result when document-based features are added.
In spite of its simplicity, the document-based fea-
tures can help the task. However, when we combine
statistics-based features with document-based fea-
tures, we cannot get further improvement in terms
of F-score.

Table 4 shows the segmentation perfor-
mance on the test data set. The final re-
sults of our system are achieved with the
“+MI+AV(2,3,4)+PU(2,3,4)+DOC” feature config-
uration. The new features result in relative error
reductions of 13.8% and 15.4% in terms of the
balanced F-score and the recall of OOV words
respectively.
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Figure 1: The learning curves of different models.
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Figure 2: Scatter plot of feature score against feature value. The left side shows is L2
pv(c[i:i+1] feature while the right

side is the R2
pv(c[i:i+1] feature.

Test P R Fβ=1 Roov

Baseline 95.21 94.90 95.06 75.52
Final 95.86 95.62 95.74 79.28

Table 4: Segmentation performance on the test data.

3.3 Learning Curves

We performed additional experiments to evaluate the
effect of the derived features as the amount of train-
ing data is varied. Figure 1 displays the F-score
and the OOV recall of systems with different feature
sets when trained on smaller portions of the labeled
data. Note that there is no change in the configura-
tion of the unlabeled data. We can clearly see that
the derived features obtain consistent gains regard-
less of the size of the training set. The improvement

is more significant when little labeled data is ap-
plied. Both statistics-based features and document-
based features can help improve the overall perfor-
mance. Especially, they can help to recognize more
unknown words, which is important for many appli-
cations. The F-score of semi-supervised models, i.e.
models trained with statistics-based features, does
not achieve further improvement when document-
based features are added. Nonetheless, the OOV re-
call obtains slightly improvements.

It is interesting to consider the amount by which
derived features reduce the need for supervised data,
given a desired level of accuracy. The change of
the F-score in Figure 1 suggests that derived fea-
tures reduce the need for supervised data by roughly
a factor of 2. For example, the performance of the
model with extra features trained on 500k characters
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is slightly higher than the performance of the model
with only baseline features trained on the whole la-
beled data.

3.4 Feature Analysis
We discussed the choice of using binary or numeric
features in Section 2.3.4. In our experiment, when
the accessor variety and punctuation variety infor-
mation are integrated as numeric features, they do
not contribute. To show the non-linear way that
these features contribute to the prediction problem,
we present the scatter plots of the score of each
feature (i.e. the weight multiply the feature value)
against the value of the feature. Figure 2 shows
the relation between the score and the value of
the punctuation variety features. For example, the
weight of the binary feature “L2

pu(c[i:i+1]) = 26
combined with the label “B” learned by the final
model is 0.815141, so the score of this combina-
tion is 0.815141 × 26 = 21.193666 and a point
(26, 21.193666) is drawn. These plots indicate the
punctuation variety features contribute to the final
model in a very complicated way. It is impossible
to use one weight to capture it. The accessor va-
riety features affect the model in the same way, so
we do not give detailed discussions. We only show
the same scatter plot of the L2

av(c[i:i+1]) feature tem-
plate in Figure 3.
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Figure 3: Scatter plot of feature score against feature
value for L2

av(c[i:i+1]).

4 Related Work

Xu et al. (2008) presented a Bayesian semi-
supervised approach to derive task-oriented word

segmentation for machine translation (MT). This
method learns new word types and word distribu-
tions on unlabeled data by considering segmentation
as a hidden variable in MT. Different from their con-
cern, our focus is general word segmentation.

The “feature-engineering” semi-supervised ap-
proach has been successfully applied to named en-
tity recognition (Miller et al., 2004) and depen-
dency parsing (Koo et al., 2008). These two papers
demonstrated the effectiveness of using word clus-
ters as features in discriminative learning. More-
over, Turian et al. (2010) compared different word
clustering algorithms and evaluated their effect on
both named entity recognition and text chunking.

As mentioned earlier, the feature design is in-
spired by some previous research on word segmen-
tation. The accessor variety criterion is proposed to
extract word types, i.e. the list of possible words,
in (Feng et al., 2004). Different from their work,
our method resolves the segmentation problem of
running texts, in which this criterion is used to de-
fine features correlated with the character position
labels. Li and Sun (2009) observed that punctuations
are perfect delimiters which provide useful informa-
tion for segmentation. Their method can be viewed
as a self-training procedure, in which extra punctu-
ation information is incorporated to filter out auto-
matically predicted samples. We use the punctua-
tion information in a different way. In our method,
the counts of the preceding and succeeding strings
of punctuations are incorporated directly as features
into a supervised model.

In machine learning, transductive learning is a
learning framework that typically makes use of un-
labeled data. The goal of transductive learning is
to only infer labels for the unlabeled data points in
the test set rather than to learn a general classifica-
tion function that can be applied to any future data
sets. This means that the test data is known as a
priori knowledge and can be used to construct bet-
ter hypotheses. Although the idea to explore the
document-level information in our work is similar
to transductive learning, we do not use state-of-the-
art transductive learning algorithms which involve
learning when they meet the test data. For real-world
applications, our approach is efficient by avoiding
re-training.
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5 Conclusion and Future Work

In this paper, we have presented a simple yet effec-
tive approach to explore unlabeled data for Chinese
word segmentation. We are concerned with large-
scale in-domain data and the document text. Ex-
periments show that our approach achieves substan-
tial improvement over a competitive baseline. Es-
pecially, the informative features derived from un-
labeled data lead to significant improvement of the
recall of unknown words. Our immediate concern
for future work is to exploit the out-of-domain data
to improve the robustness of current word segmen-
tation systems. The idea would be to extract do-
main information from unlabeled data and define
them as features in our unified approach. The word-
based approach is an alternative for word segmenta-
tion. This kind of segmenters sequentially predicts
whether the local sequence of characters make up a
word. A natural avenue for future work is the exten-
sion of our method to the word-based approach. The
word segmentation task is similar to constituency
parsing, in the sense of finding boundaries of lan-
guage units. Another interesting question is whether
our method can be adapted to resolve constituency
parsing.
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Abstract

Metonymic language is a pervasive phe-
nomenon. Metonymic type shifting, or ar-
gumenttype coercion, results in a selectional
restriction violation where the argument’s se-
mantic class differs from the class the predi-
cate expects. In this paper we present an un-
supervised method that learns the selectional
restriction of arguments and enables the de-
tection of argument coercion. This method
also generates an enhanced probabilistic reso-
lution of logical metonymies. The experimen-
tal results indicate substantial improvements
the detection of coercions and the ranking of
metonymic interpretations.

1 Introduction

Metonymic language is pervasive in today’s social
interactions. For example, it is typical to find ques-
tions that require metonymic resolution:

(Q1) Did you enjoy War and Peace?
(Q2) Does anyone have any advice on how to start

a bowling team?1

In order to process such questions and capture the
intention of the person that posed them, coercions
are needed. Question (Q1) is interpreted as whether
you enjoyedreading “War and Peace”, while (Q2)
is interpreted as asking for advice onorganizing,
forming, or registeringa bowling team. The qual-
ity of the answers therefore depends on the ability
to (1) recognize when metonymic language is used,
and (2) to produce coercions that capture the user’s
intention. One important step in this direction was

1Both questions taken from Yahoo Answers.

taken by SemEval-2010 Task 7, which focused on
the ability to recognize (a) an argument’s selectional
restriction for predicates such asarrive at, cancel,
or hear, and (b) the type of coercion that licensed
a correct interpretation of the metonymy. Details of
the task are reported in (Pustejovsky et al., 2010).
Approaches to metonymy based on this task are lim-
ited, however, because (a) the task is focused only on
semantically non-ambiguous predicates and (b) the
selectional restrictions of the arguments were cho-
sen from a pre-defined set of six semantic classes
(artifact, document, event, location, proposition, and
sound). However, metonymy coercion systems ca-
pable of providing the interpretations of questions
(Q1) and (Q2) clearly cannot operate with the sim-
plifications designed for this task.

Inspired by recent advances in modeling selec-
tional preferences with latent-variable models (Rit-
ter et al., 2010;Ó Séaghdha, 2010), we propose
an unsupervised model for learning selectional re-
strictions. The model assumes that (1) arguments
have a single selected class exemplified by the se-
lectional restriction, and (2) the selected class can
be inferred from the data, in part by modeling how
coercive each predicate is. The model is capable of
operating with both ambiguous and disambiguated
predicates, producing superior results for predicates
that have been disambiguated. The selectional re-
strictions and coercions detected by the model re-
ported in this paper can be used to enhance the logi-
cal metonymy approach reported in Lapata and Las-
carides (2003). The experimental results show a sig-
nificant improvement in the ranking of interpreta-
tions.
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The rest of this paper is organized as follows.
Section 2 discusses related work. Section 3 de-
tails unsupervised models that inform detection of
metonymies. Section 4 outlines a method for disam-
biguating ambiguous predicates. Section 5 describes
the enhanced interpretation of logical metonymies
when conventional constraints are known. Section 6
outlines our implementation and experimental de-
sign. Section 7 presents our experimental results in
three broad tasks: (i) semantic class induction, (ii)
coercion detection, and (iii) logical metonymy inter-
pretation. Section 8 summarizes the conclusions.

2 Previous Work

Lapata and Lascarides (2003) propose a probabilis-
tic ranking model for logical metonymies. They es-
timate these probabilities using co-occurrence fre-
quencies of predicate-argument pairs in a corpus.
Shutova (2009) extends this approach to provide
sense-disambiguated interpretations from WordNet
(Fellbaum, 1998) by using the alternative interpre-
tations to disambiguate polysemous words. Shutova
and Teufel (2009) extend this approach further by
clustering these sense-disambiguated interpretations
into distinct groups of meaning (e.g.,{read, browse,
look through} and {write, produce, work on} for
“enjoy book”). Not only do these approaches as-
sume logical metonymies have already been iden-
tified, but they are susceptible to providing interpre-
tations that are themselves logical metonymies (e.g.,
finish book). In this paper, we propose an enhance-
ment to resolving logical metonymies by ruling out
event-invoking predicates in order to provide more
semantically valid interpretations.

Recently, the resolution of several linguistic prob-
lems has benefited from Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) models.́O Séaghdha
(2010) examines several selectional preference mod-
els based on LDA in predicting human judgements
on predicate-argument plausibility. Both LDA and
an extension, ROOTH-LDA (based on Rooth et al.
(1999)), perform well at predicting plausibility on
unseen predicate-argument pairs. Inspired by these
results, we propose to extend selectional preference
models in order to learn selectional restrictions.

Alternatively, unsupervised algorithms exist that
both induce semantic classes (Rooth et al., 1999;
Lin and Pantel, 2001) and cluster predicates by their

selectional restrictions (Rumshisky et al., 2007) but
none of these provide a sufficient framework for de-
termining if a specific argument violates its predi-
cate’s selectional restriction.

3 Unsupervised Learning of Selectional
Restrictions

In predicate-argument structures, predicates impose
selectional restrictions in the form of semantic ex-
pectations on their arguments. Whenever the seman-
tic class of the argument meets these constraints a
selectionoccurs. For example, the predicate “hear”
imposes the semantics related to sound on the ar-
gument “voice”. Because the semantic class for
“voice” conforms to these constraints, we call its se-
mantic class theselected class. However, when the
semantic class of the argument violates these con-
straints, we follow Pustejovsky et al. (2010) and re-
fer to this as acoercion. In this case, we call the
argument’s semantic class thecoerced class. For ex-
ample, “hear speaker” is a coercion where the ar-
gument class, person, is implicitly coerced into the
voice of the speaker, a sound.

3.1 A Baseline Model
We consider the LDA-based selectional prefer-

ence model reported ińO Séaghdha (2010) as a
baseline for modeling selectional restrictions. For-
mally, we define our LDA baseline model as follows.
Let V be the predicate vocabulary size, letA be the
argument vocabulary size, and letK be the number
of argument classes. Letav

i be theith (non-unique)
argument realized by predicatev. Let cv

i be the class
for av

i . Let θv be the class distribution for predicate
v and φk be the argument distribution for classk.
The graphical model for this LDA is shown in Fig-
ure 1(a). The generative process for LDA is:

For each argument classk = 1..K:
1. Chooseφk ∼ Dirichlet(β)
For each unique predicatev = 1..V :
2. Chooseθv ∼ Dirichlet(α)

For every argumenti = 1..nv:
3. Choosecv

i ∼ Multinomial(θv)
4. Chooseav

i ∼ Multinomial(φcv
i )

Following Griffiths and Steyvers (2004), we col-
lapseθ andφ and estimate the model using Gibbs
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Figure 1: Graphical models for (a) LDA, and (b) coercion LDA (cLDA).

Sampling. This yields the update equation:

p(cv
i = k|av;α, β) ∝ fvk + α

fv + Kα

fak + β

fk + Aβ
(1)

Wherefak is the frequency of argumenta being as-
signed classk; fk is the frequency of classk being
assigned to any argument;fvk is the frequency of
predicatev having an argument of classk; andfv is
the total number of non-unique arguments for pred-
icatev.

3.2 A Coercion Model
We now incorporate our assumptions for selec-

tional restriction modeling. Namely: (1) there is
one selected class per predicate, and (2) the predi-
cate’s selected class can be chosen from the classes
of its arguments. To accomplish this, we must also
account for the coerciveness of each predicate. We
assign a latent variableτv for each predicatev that
controls how coercivev should be. The additional
hyper-parametersγ0 andγ1 act as priors onτv. The
generative process for this coercion LDA model,
which we denote cLDA, is:

For each argument classk = 1..K:
1. Chooseφk ∼ Dirichlet(β)
For each unique predicatev = 1..V :
2. Choosesv ∼ Uniform(1,K)
3. Chooseθv ∼ Dirichlet(α)2

4. Chooseτv ∼ Beta(γ0, γ1)
For every argumenti = 1..nv:
5. Choosecv

i ∼ Multinomial(θv)
6. Choosexv

i ∼ Bernoulli(τv)
7. If xv

i = 1, Chooseav
i ∼ Multinomial(φcv

i )
Else Chooseav

i ∼ Multinomial(φsv

)

The model variablesv represents the selected class
for predicatev. The coerced class is represented

2With the exception that the probability of drawing the se-
lected classsv is zero. This can be seen as drawing the multi-
nomialθv from a Dirichlet distribution withK-1 components.

for each argumenti by cv
i , wherexv

i chooses be-
tween the selected and coerced class. The variable
xv

i is similar to switching variables in other graph-
ical models such as Chemudugunta et al. (2007)
and Reisinger and Mooney (2010), where switch-
ing variables are used to choose between a back-
ground distribution and a document-specific distri-
bution. In this case, the switching variable chooses
between a specific class and a predicate-specific dis-
tribution. The graphical model for cLDA is shown
in Figure 1(b). Note that cLDA is virtually equiva-
lent to LDA whenτv is 1 andγ1 is small because the
selected class will be ignored. In this way, highly co-
ercive predicates have less of an impact on the argu-
ment clustering because they are more reliant on the
multinomial θ. We use Gibbs sampling to perform
model inference and collapseθ, φ, andτ , integrat-
ing them out using multinomial-Dirichlet conjugacy
(the Beta distribution used byτ is just a special case
of the Dirichlet with only two parameters).

The update formula for the selected classsv is:

p(sv = k|av, cv ,xv;α, β)

∝
nv∏

i

P (av
i |sv = k;β)

∝
∏

i∈Sv

fav
i k + β

fk + Aβ
(2)

Wherenv is the number of argument observations
for predicatev; Sv is the set of arguments ofv that
are selections; andfav

i k is the frequency of wordav
i

being assigned to classk for any predicate. We then
samplecv

i andxv
i jointly:

p(cv
i = k, xv

i = q|sv, cv
ī ,xv

ī ,av; α, β, γ)

∝ p(cv
i =k; α)p(xv

i =q; γ)p(av
i |sv, cv

ī ,xv
ī ,av; β)

∝ fvk + α

fv + Kα

fvq + γq

fv0 + γ0 + fv1 + γ1

faz + β

fz + Aβ
(3)
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Wherefvq, fv0, andfv1 is the frequency ofx values
that equalq, 0, and 1, respectively, for predicatev;
faz is the frequency of worda being in classz and
fz is the frequency all words being in classz, where
z is defined as being equal tok whenxv

i = 1, or sv

whenxv
i = 0.

Note that Equation (2) results in a sampling of
the selected class forv proportional to the number
of arguments in each class forv, fulfilling our sec-
ond assumption. Also note from Equation (3), the
second term corresponds to the coerciveness of the
predicate. When the predicate is very coercive, the
marginal probability associated withxv

i = 0 will be
very low. If all predicates become entirely coercive,
mostx values will become 1 and the cLDA will be-
come almost equivalent to an LDA model.

3.3 Coercion Detection

After the latent parameters have been estimated,
we still require a method to determine if a given
predicate-argument pair is a coercion or not. We
assign a score in[0, 1] instead of a binary value.
Higher scores (near 1) indicate high likelihood of
selection, while lower scores (near 0) indicate coer-
cion. The LDA model must rely on a scoring method
using the predicate-class and argument-class mix-
tures:

C1(v, a) =

K∑

k

P (k|v)P (a|k)

=
K∑

k

θv
kφk

a (4)

Whereθv
k represents the probability of any argument

of v being in the classk andφk
a represents the prob-

ability of the argumenta being in classk for any
predicate.C1 is also available as a scoring method
for cLDA by including the proportion of the selected
classsv in θ. Note that sinceθ andφ are integrated
out for both LDA and cLDA, we instead use their
frequencies smoothed withα and β, respectively,
which is their maximum likelihood estimate.

The cLDA model contains two useful parameters
that can identify selections and coercions: the se-
lected classs and the coercion indicatorx. This
yields two more coercion scoring metrics:

C2(v, a) = P (a|sv)

= φsv

a (5)

C3(v, a) = P (xv
a = 0|v, a)

= 1.0 −
∑

i∈Iv
a

xv
i

|Iv
a | (6)

Wheresv is the selected class for predicatev; Iv
a

is the set of predicate-argument instances for pred-
icatev and argumenta; andxv

i is 0 for a selection
and 1 for a coercion. Of the three metrics,C3 is the
most direct measure of a coercion as it represents
the average decision the model learned on the same
predicate-argument pair. However,C3 requires a
large sample of instances for a particular predicate
and argument, and so may be quite sparse. In prac-
tice, these different metrics have their own strengths
and weaknesses and the best performing method of-
ten depends on the final task.

4 Predicate Sense Induction

Our assumption of a single selected class per predi-
cate ignores predicate polysemy. However, the same
lexical item may have multiple meanings, each with
a separate selected class. We therefore propose a
method of partitioning a predicate’s arguments by
the induced senses of the predicate. This allows sep-
arate induced predicates to each select a separate ar-
gument class. Consider the verbfire, which has at
least two distinct common senses: (1) to shoot or
propel an object (e.g., to fire a gun), and (2) to lay
someone off (e.g., to fire an employee). The first
sense selects a weapon (e.g., gun, bullet, rocket),
while the second sense selects a person (e.g., em-
ployee, coach, apprentice).

Specifically, we employ tiered clustering
(Reisinger and Mooney, 2010) using the words
in the predicate’s context. Tiered clustering is a
discrete clustering method, as opposed to methods
such as (Brody and Lapata, 2009) that assign a
distribution of word senses to each word instance.
Tiered clustering has several advantages over
other discrete clustering approaches. First, tiered
clustering learns a background word distribution in
addition to the clusters. This reduces the impact that
words common to most senses have on the cluster-
ing process and allow clusters to form around only
the most salient words. Second, tiered clustering
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
(18,391) (16,651) (18,749) (11,833)

shots ball hire gun
gun puck letter imagination

Israeli hired Yeltsin grill
missiles owner minister laser
rockets shots workforce cells
officers coaches executives engine
soldiers net employee brain
rounds circle managers !
bullets Johnson hired engines

weapons Williams union fire

Table 1: Context word clusters resulting from tiered clus-
tering for the verbfire (includes the number of unique
words belonging to each cluster).

uses a Chinese Restaurant Process (CRP) prior to
control both the formation of new clusters (senses)
and the bias toward larger clusters (more common
senses). This conforms with our intuition of how
word senses are distributed: a few common senses
with a gradual transition to a long tail of rare senses.
When deciding which cluster to use for a given
predicate-argument pair, we use the cluster most
associated with the argument.

We use a 10-token window around the predicate
as features. The result of predicate induction on the
verbfire is shown in Table 4. The first three clusters
can be interpreted to be about (1) firing weapons, (2)
sport-related shots (e.g., “fired the puck”), and (3)
lay-offs. One must be careful in choosing the param-
eters for induction, however, as it is possible to par-
tition a unique word sense such that coercions and
selections are placed in a separate clusters. Section 6
discusses our parameter selection experiments.

5 Logical Metonymy Interpretation

Logical metonymies are a unique class of coercions
due to the fact that their eventive interpretation can
be derived from verbal predicates. For instance, for
the logical metonymy “enjoy book”, we know that
read is a good candidate interpretation because (1)
books are objects whose purpose is to be read and
(2) reading is an event that may be enjoyed. We
therefore expect to see many instances of both “read
book” and “enjoy reading” (Lapata and Lascarides,
2003). Conversely, for coercions with non-eventive
interpretations, such as “arrive at meeting”, the in-
terpretation (location of) is more dependent on the
predicate (arrive) than the function of its argument
(meeting).

In this section, we limit our discussion of logical
metonymy to the verb-object case, its correspond-
ing baseline for ranking interpretations, and our pro-
posed enhancements. However, similar baselines
exist for other types of logical metonymy, such as
adjective-noun and noun-noun. Since our enhance-
ment does not depend on any syntactic information
beyond the predicate-argument instances needed for
Section 3.2, it could easily be applied to those as
well.

Lapata and Lascarides (2003) propose a proba-
bilistic ranking model where the probability of an
interpretatione for a verb-object pair (v, o) is pro-
portional to the probability of all three in a verb-
interpretation-object pattern.3 For example, the
probability thatread is the correct interpretation of
“enjoy book” is proportional to the likelihood of see-
ing “enjoy reading book” expressed as a syntactic
dependency in a sufficiently large corpus. Due to
data sparsity, they approximate this likelihood of
seeing the object given the verb and interpretation
to simply the likelihood of seeing the object given
the interpretation. We denote this logical metonymy
ranking method asLMLL, formally defined as:

LMLL(e; v, o) = Pc(v, e, o)

= Pc(e)Pc(v|e)Pc(o|e, v)

≈ Pc(e)Pc(v|e)Pc(o|e)

≈ fc(v, e)fc(o, e)

Nfc(e)
(7)

WherePc andfc indicate probability and frequency,
respectively, derived from corpus counts. See Lap-
ata and Lascarides (2003) for a detailed explanation
of how these frequencies are obtained.

This model, which we consider our baseline, is
only partially correct as the corpus will contain co-
ercions that form invalid interpretations. Consider
the phrases “enjoy finishing a book” and “enjoy
discussing a book”. Both “finish book” and “dis-
cuss book” are coercions (and logical metonymies)
themselves, and do not form a valid interpretation.4

3They use two patterns: “v e-ing o” and “v to e o”, wheree
is tagged as a verb.

4For evidence of the frequency of these phrases, at the time
of this writing, “enjoy finishing a book” and “enjoy finishing
the book” have a combined 728 Google hits, while “enjoy dis-
cussing a book” and “enjoy discussing the book” have a com-
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Thus, when discovering interpretations for logical
metonymies, we must be aware of the selectional re-
strictions of candidate interpretations.

We propose to incorporate the coercion probabil-
ity learned by our cLDA model in order to rank only
those interpretations that are considered selections:

LM ′(e; v, o) = P (v, e, o, xe
o = 0) (8)

However, due to the approximations made to esti-
matePc(v, e, o), this probability cannot be directly
calculated as not all the frequencies reflect verb-
object counts. Instead, we can combine the corpus
probability Pc(v, e, o) with the probability that the
verb-object pair (e, o) is a coercion in our model.
We denote this probabilityPx(e, o), and it may be
derived from the scoring metrics in Equations (4),
(5), or (6) above. We further propose three methods
for enhancing theLMLL baseline usingPx(e, o) to
approximate Equation 8.

A naive method for including information from
our cLDA model is to consider the corpus prob-
ability, Pc(v, e, o) and the coercion probability,
Px(e, o), to be independent:

LMIND(e; v, o) = Pc(v, e, o)Px(e, o) (9)

In other words, the rank of an interpretation is dic-
tated by the unweighted combination of its corpus
probabilityPc and its coercion probabilityPx. How-
ever, these two quantities are not likely to be inde-
pendent. Most instances wheree is used with either
v or o are in fact selective.5 We therefore experiment
with two shallow learning methods for combining
these two quantities.

The first method is a filtering approach where a
threshold is learned forPx:

LMTH(e; v, o) =

{
Pc(v, e, o) if Px(e, o) ≥ δ

0 otherwise
(10)

Where the thresholdδ is learned from a development
set. We expect this model could suffer from noisyPx

values or to simply choose a threshold of zero due to
the prominence ofPc.

Finally, we include a weighted linear model to

bined 7,040 Google hits.
5For comparison, “enjoy reading a book” and “enjoy read-

ing the book” have a combined 6.5 million Google hits

discover the relative value ofPc andPx:

LMWT (e; v, o) = w1Pc(v, e, o)+w2Px(e, o) (11)

Where w1 and w2 are learned weights. We dis-
cuss how the parameters forLMTH andLMWT are
learned in the experimental setup below.

6 Experimental Setup

We use the NYT subsection of the English Gigaword
Fourth Edition (Parker et al., 2009) for a total of
1.8M newswire articles. The Stanford Dependency
Parser (de Marneffe et al., 2006) is used to extract
verb-object relations (dobj) that form the input to our
model. To reduce noise, we keep only verbs listed in
VerbNet (Kipper et al., 1998) with at least 100 ar-
gument instances, discardinghaveand say, which
are too semantically flexible to select from clear se-
mantic classes and so common they distort the class
distributions. This results in 4,145 unique verbs with
51M argument instances (388K unique arguments).
Additionally we use the dependency parser to ex-
tract open clausal complements of verbs (e.g., “like
to swim”) for use in logical metonymy interpreta-
tion. We believe this to be a more reliable alter-
native to the phrase chunk extraction patterns used
in Lapata and Lascarides (2003). We keep clausal
complements (xcomp) where the dependent is either
a gerund or infinitive in order to estimatePc(v|e) in
Equation (7).

For tiered clustering we use the same implemen-
tation as Reisinger and Mooney (2010)6 to partition
the surface form of the verb into one or more in-
duced forms. Instead of using a fixed number of
iterations, the clustering was run for 100 iterations
past the best recorded log-likelihood in order to find
the best possible fit to the data. We tuned the hyper-
parameters by maximizing the log-likelihood on a
small held-out set of 20 predicate-argument pairs
(10 selections, 10 coercions). The resulting parti-
tions were fairly conservative, yielding 12,332 in-
duced verbs or about 3 induced verb forms for every
surface form, with 305 verbs not being partitioned at
all.

We implemented both LDA and cLDA as de-
scribed in Sections 3.1 and 3.2. For theα and β

6Available at http://github.com/joeraii/UTML-Latent-
Variable-Modeling-Toolkit
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hyper-parameters, we used the MALLET (McCal-
lum, 2002) defaults of 1.0 and 0.1, respectively, for
both LDA and cLDA. We used the 20 predicate-
argument pairs mentioned above to tune theγ hyper-
parameters as well as the number of iterations. Both
γ0 and γ1 were set to 100. We observed that for
both LDA and cLDA, longer runs (in iterations) re-
sulted in improved model log-likelihood but infe-
rior results in terms of detecting coercions. It is
not uncommon in topic modeling for model likeli-
hood to not be completely correlated with the score
on the task for which the topic model was intended
(see Chang et al. (2009)). Both LDA and cLDA
were found to perform best at 50 iterations on this
data, after which their class distributions were less
“smooth” and became rigidly associated with just a
few classes, thus having a negative impact on coer-
cion detection. While further iterations hurt coer-
cion detection, only minor gains in model likelihood
are seen. We believe the small number of iterations
necessary for the model to converge is therefore a
function of the data. In traditional topic modeling,
documents are generally of similar size (i.e., within
an order of magnitude). But in our data, many pred-
icates have 10,000 times more instances than others.
We have not yet empirically explored the impact of
using a more uniform number of arguments for each
predicate. This issue also makes it difficult to take
multiple samples, which we experimented with un-
successfully.

Our a priori intuition was that as the number
of classes was increased, LDA would improve and
cLDA would degrade due to its assumption of a sin-
gle selected class. However, this did not always bear
out in the results for every task described below.
As such, instead of choosing a specific number of
classes for each model, we describe results for each
model withK = 10, 25, and 50.

For logical metonymy, bothLMTH andLMWT

require learned parameters.LMTH needs a learned
threshold whileLMWT needs two learned weights.
For both, we split the data set into two partitions,
learn the optimal threshold/weights on one partition,
and use it as the parameters for the other partition.
Both methods are trained on the final scoring metric,
described in Section 7.3. For threshold learning, this
involves finding the optimal cut-off to maximize the
score. For weight learning, we use an exhaustive

induced predicates? N Y
# classes 10 25 50 10 25 50

LDA

NMI .382 .448 .389 .435 .391 .383
Rand .717 .731 .721 .760 .723 .730
F1 .425 .319 .192 .543 .311 .205

B3 (C) .553 .513 .444 .525 .476 .341
B3 (E) .453 .351 .223 .521 .324 .234
MUC .545 .545 .531 .500 .532 .544

cLDA

NMI .446 .403 .360 .510 .430 .366
Rand .736 .719 .716 .788 .734 .711
F1 .448 .291 .183 .567 .329 .184

B3 (C) .575 .484 .312 .593 .495 .313
B3 (E) .473 .321 .205 .556 .346 .205
MUC .500 .521 .507 .595 .541 .571

Table 2: Clustering scores for induced classes.

search over the range{1.0, 0.9, . . . , 0.2, 0.1,10−2,
10−3, . . . ,10−14} for bothw1 andw2.

7 Results and Discussion

7.1 Semantic Class Induction
For the evaluation of the argument classes in-

duced by our method, we use a subset of the Word-
Net lexicographer files, which correspond to coarse-
grained semantic classes. We chose this form of
evaluation because, unlike a named entity corpus,
no sentential context is required and is therefore
more consistent with the information available to
our model. We use six of the larger, more seman-
tically coherent WordNet classes: artifact, person,
plant, animal, location, and food. We consider each
of these a cluster and compare them to clusters com-
posed of the top ten non-polysemous words (accord-
ing to WordNet) in each of the classes generated
by both the baseline (LDA) and our model (cLDA).
Words not in both sets of clusters are removed. The
result of this evaluation, compared with six cluster-
ing metrics, is shown in Table 2. For descriptions of
NMI, Rand, and cluster F-measure, see Manning et
al. (2008); for the B3 metrics (Cluster and Element),
see Bagga and Baldwin (1998); for the MUC met-
ric, see Vilain et al. (1995). Each metric has differ-
ent strengths and biases in regards to the number and
distribution of clusters, so all are provided to give a
general picture of class induction performance.

The best performing model on all metrics is cLDA
with induced predicates using 10 classes. However,
as the number of classes is increased and the gran-
ularity of the induced classes becomes more fine-
grained, LDA (predictably) outperforms cLDA on
most metrics. This is consistent with our intuition
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induced predicates? N Y
# classes 10 25 50 10 25 50

LDA C1 74.4 78.7 80.5 69.7 70.1 73.4

cLDA
C1 80.6 81.2 80.9 76.2 78.4 77.5
C2 75.4 75.9 78.9 73.5 68.3 80.8
C3 67.8 70.8 67.4 70.9 67.4 74.1

Table 3: Accuracy on SemEval-2010 Task 7 data.

that a single-class assumption degrades as the num-
ber of classes increases.

For this evaluation, predicate induction also im-
proved LDA for smaller numbers of classes, but not
to the degree that it improved cLDA. Without pred-
icate induction, LDA outperforms cLDA on all six
metrics for 25 and 50 classes. With predicate in-
duction, LDA outperforms cLDA on only one metric
for 25 classes and five metrics for 50 classes. Thus
the induced predicates do reduce the negative im-
pact caused by the single selected class assumption
for semantic class induction.

7.2 Coercion Detection
For the evaluation of coercion detection, we use

the SemEval-2010 Task 7 data (Pustejovsky et al.,
2010). This data uses the most common sense for
each of five predicates (arrive, cancel, deny, fin-
ish, and hear) with a total of 2,070 sentences an-
notated with the argument’s source type (the argu-
ment’s semantic class) and target type (the predi-
cate’s selected class for that argument). We ignore
the actual argument classes and evaluate on the coer-
cion type, which is a selection when the source and
target type match, and a coercion otherwise.

In order to evaluate unsupervised systems on this
data, we use the corresponding training set (1,031
examples) to learn a threshold for coercion detec-
tion. At test time, if the model output is below the
threshold, a coercion is inferred. Otherwise it is con-
sidered a selection. Therefore, the better a model
can rank selections over coercions, the more accu-
rate threshold it will learn. The results for this eval-
uation are shown in Table 3. The baseline for this
task (threshold = 0, or all selections) is 67.4.

The best overall model on this data is cLDA us-
ing theC1 coercion scoring method (Equation (4)).
This method consistently outperforms the baseline
LDA, especially for smaller numbers of classes, per-
forming best withK = 25. The second metric,C2,
was not as reliable. The third metric,C3, performed
poorly on the task. As discussed in Section 3.3,C3

is a direct result of the sampling for the predicate-
argument pair in question and can thus be expected
to perform poorly on rare predicate-argument pairs.
Given that many of the arguments in this data are
rare or unseen in the Gigaword data (e.g., “cancel
Renault”), C3’s poor performance is understandable.

The use of predicate sense induction based on
tiered clustering to overcome the single-class as-
sumption caused significant degradation in perfor-
mance on this task. Using automatically induced
predicates instead of the surface form caused an av-
erage degradation of 2.6 points across the twelve
tests. A potential explanation for this is that
the evaluated predicates have a single dominant
sense, meaning the single class assumption may be
valid for these predicates (the task-defined selected
classes are: location forarrive, event forcanceland
finish, proposition fordeny, and sound forhear).
Therefore it would be interesting to evaluate it on
a set of highly polysemous predicates with multi-
ple dominant senses. Furthermore, the introduction
of predicate sense induction was designed to help
cLDA, and the performance degradation for these
nine tests was not as large as it was for LDA. For
cLDA, C1 had an average degradation of 3.5 points
compared to LDA’sC1 average degradation of 6.5
points. cLDA’s C2 had an average degradation of
only 2.5 points andC3 was actually improved by 2.1
points. This suggests that there is value in assign-
ing different selected classes via sense induction, but
that the two-step approach is not beneficial for these
common predicates. This could be overcome by a
joint approach of inducing predicate classes while
simultaneously detecting coercions, as the presence
of many coercions would be an indicator that more
induced predicates are necessary.

7.3 Logical Metonymy Interpretation
For the evaluation of logical metonymy, we use

both an existing data set and a newly created data
set. Shutova and Teufel (2009) annotated 10 verb-
object logical metonymies from Lapata and Las-
carides (2003) with sense-disambiguated interpreta-
tions and organized the interpretations into clusters
representing different possible meanings. For evalu-
ation purposes we ignore the sense annotations and
clusters and consider all lexical matchings of one
of the annotated interpretations to be correct. The
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induced predicates? N Y
# classes 10 25 50 10 25 50

LMLL 0.381 0.365

LMIND

LDA C1 0.415 0.406 0.383 0.386 0.412 0.395

cLDA
C1 0.408 0.412 0.412 0.407 0.468 0.439
C2 0.415 0.447 0.419 0.414 0.415 0.434
C3 0.416 0.453 0.455 0.395 0.416 0.402

LMTH

LDA C1 0.599 0.568 0.588 0.479 0.520 0.551

cLDA
C1 0.571 0.644 0.751 0.497 0.620 0.708
C2 0.544 0.496 0.633 0.457 0.635 0.660
C3 0.601 0.677 0.767 0.472 0.622 0.571

LMWT

LDA C1 0.383 0.381 0.379 0.365 0.356 0.361

cLDA
C1 0.380 0.387 0.381 0.386 0.377 0.321
C2 0.317 0.342 0.350 0.338 0.340 0.345
C3 0.378 0.370 0.350 0.387 0.382 0.384

Table 4: Mean average precision (MAP) scores on the Shutova and Teufel (2009) data set. The bold items indicate the
best scores with/without induced predicates as well as using/not using a threshold-based interpretation method.

induced predicates? N Y
# classes 10 25 50 10 25 50

LMLL 0.274 0.248

LMIND

LDA C1 0.291 0.286 0.294 0.263 0.267 0.255

cLDA
C1 0.296 0.298 0.285 0.280 0.274 0.288
C2 0.291 0.287 0.288 0.283 0.271 0.285
C3 0.318 0.317 0.333 0.298 0.285 0.307

LMTH

LDA C1 0.478 0.534 0.534 0.414 0.495 0.479

cLDA
C1 0.449 0.504 0.541 0.391 0.495 0.513
C2 0.505 0.478 0.456 0.398 0.429 0.440
C3 0.449 0.496 0.577 0.382 0.439 0.446

LMWT

LDA C1 0.276 0.270 0.271 0.248 0.251 0.249

cLDA
C1 0.271 0.272 0.270 0.257 0.259 0.265
C2 0.274 0.274 0.266 0.250 0.259 0.261
C3 0.271 0.273 0.274 0.253 0.262 0.259

Table 5: Mean average precision (MAP) scores on 100 logical metonymies manually annotated with interpretations.
The bold items indicate the best scores with/without induced predicates as well as using/not using a threshold-based
interpretation method.

data contains an average of 11 interpretations per
metonymy and has a reported 70% recall.

In order to create a larger data set, we identified
100 verb-object logical metonymies, including those
used in Lapata and Lascarides (2003). Three anno-
tators were asked to provide up to five interpreta-
tions for each metonymy (they were not provided
with any verbs from which to choose, only the verb-
object pair). The annotators provided an average of
4.6 interpretations per metonymy. Because our goal
was recall, inter-annotator agreement was necessar-
ily low, and each logical metonymy had an average
of 11.7 unique interpretations. All annotators agreed
on at least one interpretation for 40 metonymies,
while for 14 they had no interpretations in common.7

Since logical metonymy interpretation is usually
evaluated as a ranking task, we score our methods

7 Data available at
http://www.hlt.utdallas.edu/∼kirk/data/lmet.zip

using mean average precision (MAP):

MAP =
1

Q

Q∑

q=1

∑N
n=1 prec(n) × rel(n)

interps(q)
(12)

WhereQ is the number of metonymies evaluated;
N is the number of interpretations ranked; prec(n)
is the precision at rankn; rel(n) = 1 if interpreta-
tion n is valid, 0 otherwise; and interps(q) is the
number of valid interpretations for the metonymyq.
We rank all 4,145 verbs as interpretations except for
those removed by the threshold technique, as they
have a score of zero. This can giveLMTH artifi-
cially high MAP scores since it may remove some
valid interpretations that are low-ranking. However,
since a smaller, higher precision list may be useful
for many applications we still consider MAP a valid
metric and indicate both the highest scoring method
and the highest scoring non-threshold method. The
results on the Shutova and Teufel (2009) data are
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shown in Table 4. The results on our own data are
shown in Table 5.

The scores reported in the Shutova and Teufel
(2009) data are noticeably higher than the data we
annotated. Since the metonymies in our data are a
super-set of those in their data, and since for those
metonymies our annotators provided approximately
the same number of interpretations (110 versus 120),
this likely indicates the remaining metonymies in
our data are more difficult.

In all cases the best reported scores use cLDA.
Unlike coercion detection on the SemEval data,C3

performs very well, achieving the highest scores
when no predicate sense induction is used. Also un-
like coercion detection, LDA scores do not increase
as the number of classes increase. We suspect both
these differences have to do with the fact that the ar-
guments in this data are far more common. Since
LDA is a selectional preference model and its co-
ercion scores correspond roughly to the plausibility
of seeing a predicate-argument pair, it is less able to
distinguish coercions in common arguments.

Of the logical metonymy ranking methods,
LMTH consistently produces the highest MAP
scores. However, as stated before, by using a cut-off
and removing low-ranking valid interpretations, the
MAP score is increased, which might not be applica-
ble to some applications. The best non-thresholded
ranking method isLMIND, which naively combines
the LMLL score with the coercion probability. In
almost every case this beats outLMWT . Upon in-
spection, we observed that the range of scale for the
LMLL scores are very inconsistent. This can make
it difficult to learn a linear model using these scores
as features, and as a result the learned weights were
forced to ignore the coercion score and rely entirely
on LMLL. We attempted other scaling methods,
such as a rank-based method, but these had poor re-
sults as well, so we leave the problem of the super-
vised learning these weights to future work.

Using induced senses did not result in the dras-
tic and consistent degradation in performance seen
on the SemEval data, and the highest non-threshold
result for the Shutova and Teufel (2009) data used
predicate induction. Both metonymy data sets were
limited to the verbs found in Lapata and Lascarides
(2003), which are still quite common (attempt, be-
gin, enjoy, expect, finish, prefer, start, survive, try,

want). However, the verbs used in our data set had a
greater number of WordNet senses attested in a cor-
pus than the SemEval data (an average of 4.4 senses
for our data versus 3.0 senses for the SemEval data).
This suggests the potential value of sense induction
for highly polysemous predicates and further moti-
vates the integration of sense induction within a se-
lectional restriction model.

8 Conclusion

We have presented a novel topic model that ex-
tends an unsupervised selectional preference model
(LDA) to an unsupervised selectional restriction
model (cLDA) using two assumptions. For the first
assumption, that each predicate has a single selected
class, we proposed a predicate induction method to
overcome predicate polysemy. This improved re-
sults for semantic class induction but proved harmful
for detecting coercions on common predicates with
a single, dominant sense. For the second assump-
tion, that the selected class can be inferred from the
data, we proposed a sampling method based on the
classes of the predicate’s arguments. Superior per-
formance on coercion detection shows the merit of
this assumption.

Additionally, we proposed methods for improving
an existing task, logical metonymy interpretation,
using the learned parameters of our model, showing
positive results.

It is clear that our model may be improved by
more accurate predicate sense induction. To this
end, we plan to develop a model that simultane-
ously induces predicates and learns coercions, using
knowledge of a predicate’s coerciveness to inform
the induction mechanism.
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Abstract 

Measuring semantic relatedness between 

words or concepts is a crucial process to 

many Natural Language Processing tasks. 

Exiting methods exploit semantic evidence 

from a single knowledge source, and are 

predominantly evaluated only in the 

general domain. This paper introduces a 

method of harnessing different knowledge 

sources under a uniform model for 

measuring semantic relatedness between 

words or concepts. Using Wikipedia and 

WordNet as examples, and evaluated in 

both the general and biomedical domains, it 

successfully combines strengths from both 

knowledge sources and outperforms state-

of-the-art on many datasets. 

1    Introduction 

Semantic relatedness (SR) measures how much 

two (strings of) words or concepts are related by 

encompassing all kinds of relations between them 

(Strube and Ponzetto, 2006). It is more general 

than semantic similarity. SR is often an important 

pre-processing step to many complex Natural 

Language Processing (NLP) tasks, such as Word 

Sense Disambiguation (Leacock and Chodorow, 

1998; Han and Zhao, 2010), and information 

retrieval (Finkelstein et al., 2002). In the 

biomedical domain, SR is an important technique 

for discovering gene functions and interactions 

(Wu et al., 2005; Ye et al., 2005).  

There is an abundant literature on measuring 

SR between words or concepts. Typically, these 

methods extract semantic evidence of words and 

concepts from a background knowledge source, 

with which their relatedness is assessed. The 

knowledge sources can be unstructured documents 

or (semi-)structured resources such as Wikipedia, 

WordNet, and domain specific ontologies (e.g., the 

Gene Ontology
1
).  

In this paper, we identify two issues that have 

not been addressed in the previous works. First, 

existing works typically employ a single 

knowledge source of semantic evidence. Research 

(Strube and Ponzetto, 2006; Zesch and Gurevych, 

2010; Zhang et al., 2010) has shown that the 

accuracy of an SR method differs depending on the 

choice of the knowledge sources, and there is no 

conclusion which knowledge source is superior to 

others. Zhang et al. (2010) argue that this indicates 

different knowledge sources may complement each 

other. Second, the majority of SR methods have 

been evaluated in general domains only, except a 

few earlier WordNet-based methods that have been 

adapted to biomedical ontologies and evaluated in 

that domain (Lord et al., 2003; Pedersen et al., 

2006; Pozo et al., 2008). Given the significant 

attention that SR has received in specific domains 

(Pesquita et al., 2007), evaluation of SR methods 

in specific domains is increasingly important.  

This paper addresses these issues by proposing 

a generic and uniform model for computing SR 

between words or concepts using multiple 

knowledge sources, and evaluating the proposed 

method in both general and specific domains. The 

method combines and integrates semantic evidence 

of words or concepts extracted from any 

knowledge source in a generic graph 

representation, with which the SR between 

concepts or words is computed. Using two of the 

most popular general-domain knowledge sources, 

                                                         
1 http://www.geneontology.org/, last retrieved in Mar. 2011 
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Wikipedia and WordNet as examples, the method 

is evaluated on 7 benchmarking datasets, including 

three datasets from the biomedical domain and 

four from the general domain. It has achieved 

excellent results: compared to the baselines that 

use each single knowledge sources, combining 

both knowledge sources has improved the accuracy 

on all datasets by 2~11%; compared to state-of-

the-art on the general domain datasets, the method 

achieves the best results on three datasets; and on 

the other three biomedical datasets, it obtains the 

best result in one case; and second and third best 

results on the other two among eight participating 

methods, where all other competitors exploit some 

domain-specific knowledge sources.  

The remainder of this paper is organized as 

follows. Section 2 discusses related work; Section 

3 presents the proposed method; Section 4 

describes the experiments and evaluation; Section 

5 discusses results and findings; Section 6 

concludes this paper. 

2    Related work 

2.1    SR methods 

Methods for computing SR can be classified into 

path based, Information Content (IC) based, 

statistical and hybrid methods. Path based 

methods (Hirst and St-Onge, 1998; Leacock and 

Chodorow, 1998; Pekar and Staab, 2002; Rada et 

al., 1989; Wu and Palmer, 1994) measure SR 

between words or concepts as a function of their 

distance in a semantic network, usually calculated 

based on the path connecting the words or concepts 

by certain semantic (typically is-a) links. IC based 

methods (Jiang and Conrath, 1997; Lin, 1998; 

Pirro et al., 2009; Resnik, 1995; Seco et al., 2004) 

assess relatedness between words or concepts by 

the amount of information they share, usually 

determined by a higher level concept that 

subsumes both concepts in a taxonomic structure. 

Statistical methods measure relatedness between 

words or concepts based on their distribution of 

contextual evidence. This can be formalized as co-

occurrence statistics collected from unstructured 

documents (Chen et al., 2006; Cilibrasi and 

Vitanyi, 2007; Matsuo et al., 2006), or 

distributional concept or word vectors with 

features extracted from either unstructured 

documents (Harrington, 2010; Wojtinnek and 

Pulman, 2011) or (semi-)structured knowledge 

resources (Agirre et al., 2009; Gabrilovich and 

Markovitch, 2007; Gouws et al., 2010; Zesch and 

Gurevych, 2007; Zhang et al., 2010). Hybrid 

methods combine different purebred methods in 

certain ways. For example Riensche et al. (2007) 

employ both an IC based method (Resnik, 1995) 

and a statistical method (cosine vector similarity) 

in their study. Pozo et al. (2008) derive a taxonomy 

of terms from unstructured documents by applying 

hierarchical clustering based on corpus statistics, 

then apply path based method on this taxonomy to 

compute SR. Han and Zhao (2010) use one IC 

based method and two statistical methods to 

compute SR, then derive an aggregated score.  

2.2    SR knowledge sources and domains 

Computing SR requires background knowledge 

about concepts or words, which can be extracted 

from unstructured corpora, semi-structured and 

structured knowledge resources. Unstructured 

corpora are easier to create and cheaper to 

maintain, however, semantic relations between 

words or concepts are implicit. Methods (Chen et 

al., 2006; Cilibrasi and Vitanyi 2007; Matsuo et al., 

2006) that exploit unstructured corpora typically 

depend on distributional statistics, and thus may 

ignore important semantic evidences present in 

(semi-)structured knowledge sources (Pan and 

Farrell, 2007). Recent studies (Harrington, 2010; 

Pozo et al., 2008; Wojtinnek and Pulman, 2011) 

propose to pre-process a corpus to learn a semantic 

network, with which SR is computed. This creates 

high pre-processing cost; also, the choice of corpus 

and its size often have a direct correlation with the 

accuracy of SR methods (Batet et al., 2010). 

(Semi-)Structured knowledge sources on the 

other hand, organize semantic knowledge about 

concepts and words explicitly and interlink them 

with semantic relations. They have been popular 

choices in the studies of SR, and they include 

lexical resources such as WordNet, Wiktionary, 

and (semi-)structured encyclopedic resources such 

as Wikipedia. WordNet has been used in earlier 

studies (Hirst and St-Onge, 1998; Jiang and 

Conrath, 1997; Lin, 1998; Leacock and Chodorow 

1998; Resnik, 1995; Seco et al., 2004; Wu and 

Palmer, 1994) and is still a preferred knowledge 

source in recent works (Agirre et al., 2009). 

However, its effectiveness may be hindered by its 

lack of coverage of specialized lexicons and 

domain specific concepts (Strube and Ponzetto, 
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2006; Zhang et al., 2010). Wikipedia and 

Wiktionary are collaboratively maintained know-

ledge sources and therefore may overcome this 

limitation. Wikipedia in particular, is found to have 

reasonable coverage of many domains (Holloway 

et al., 2007; Halavais, 2008). It has become 

increasingly popular in SR studies recently. 

However, research (Zesch and Gurevych, 2010) 

have shown that methods based on Wikipedia have 

no clear advantage over WordNet-based methods 

on some general domain datasets in terms of 

accuracy, while Zhang et al. (2010) argue that 

different knowledge sources may complement each 

other, and SR methods may benefit from 

harnessing different knowledge sources.  

Several studies (Lord et al., 2003; Pedersen et 

al., 2006; Petrakis et al., 2006; Pozo et al., 2008) 

have adapted state-of-the-art to domain specific 

knowledge sources (e.g., the Gene Ontology, the 

MeSH
2
) and evaluated them therein. Despite these 

efforts, a large proportion of state-of-the-art is still 

only evaluated in the general domain.  

2.3    SR methods similar to this work 

Few works have attempted at combining different 

knowledge sources in SR studies, especially (semi-

)structured knowledge sources. The closest studies 

are Han and Zhao (2010) and Tsang and Stevenson 

(2010). Han and Zhao firstly compute SR between 

words using three state-of-the-art SR methods 

separately. Next, one score is chosen subject to an 

arbitrary preference order, and used to create a 

connected graph of weighted edges between 

words. A recursive function is then applied to the 

graph to compute final SR scores between words. 

Essentially, each SR method is applied in isolation 

and features from different sources are used 

separately with each distinctive method. Although 

this retains advantages of each method, the 

limitations of them are also combined.  

Tsang and Stevenson (2010) combine WordNet 

and unstructured documents by weighing each 

word found in WordNet using its frequency 

observed in a large corpus. The frequencies 

however, are sensitive to the choice of corpus, thus 

different corpora may result in different accuracies. 

Furthermore, their method is only applicable to 

computing SR between pairs of sets of words or 

concepts.  

                                                         
2 http://www.nlm.nih.gov/mesh/ last retrieved in March 2011 

3    Methodology  

We define a set of requirements for SR methods 

that harness different knowledge sources: 

 It should improve over the same method 

based on a single knowledge source 

 It should be generic and applicable to any 

knowledge source 

 It should be robust in dealing with 

knowledge source specific features but 

also tolerate the quality and coverage 

issues of individual knowledge source 

Our method of harnessing different knowledge 

sources contains four steps. Firstly (Section 3.1), 

each word or word segment is searched in each 

knowledge source to identify their contexts that is 

specific to that knowledge source. We define a 

context as the representation of meaning or a 

concept for a word. In the following, we say that 

each context is associated with a distinct concept. 

Secondly (Section 3.2), for each concept of an 

input word, features are extracted from its context 

and a graph representation of each concept and 

their features is created. Thirdly (Section 3.3), 

cross-source contexts are mapped where they refer 

to the same concept, thus their features from 

different sources can be combined to derive an 

enriched representation. This creates a final, 

uniform graph representation where input words 

are connected by shared features of their 

underlying candidate concepts. Then (Section 3.4) 

the graph is submitted to a generic algorithm to 

compute SR between words. 

In the following, we discuss details with respect 

to different types of knowledge sources, while 

focusing on Wikipedia and WordNet in our 

experiments for two reasons. First, they are used 

by the majority of SR methods and are therefore 

most representative knowledge sources. Second, 

they have strongly distinctive and complementary 

characteristics, which make ideal testbeds for the 

requirements. On one hand, WordNet is a lexical 

resource containing rich and strict semantic 

relations between words, but lacks coverage of 

specialized vocabularies. On the other hand, 

Wikipedia is a semi-structured resource with good 

coverage of domains and named entities, but the 

semantic knowledge is organized in a looser way. 
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3.1    Context retrieval 

Given a pair of words or word segments, we firstly 

identify contexts representing the underlying 

meanings or concepts from each knowledge 

source. For lexical resources, this could be 

distinctive word senses. In WordNet (WN), a 

context corresponds to a single synset, which 

corresponds to a concept. We search each word in 

WordNet and extract all possible synsets. Let w be 

a word or word segment (e.g., “cat”), and   
   

    
      

      

    be the set of k concepts of w 

extracted from WordNet.  

Using Wikipedia (WK) as an example semi-

structured resource, the context can be an article 

that describes a unique concept. Thus we search 

for underlying articles that describe different 

concepts. Firstly, we search w in Wikipedia, where 

three situations may be anticipated. If a single non-

disambiguation page describing a concept is 

returned, the concept is selected and the retrieval is 

complete. In the second case, a disambiguation 

page linking to all possible concept pages may be 

returned. This page lists all underlying concepts 

and entities referenced by w as links and a short 

description with each link. In this case, we always 

keep the first concept page, which is found often to 

be the most common sense of the word; 

additionally, we select other concept pages whose 

short descriptions contain the word w. We do not 

select all linked pages because many of these in 

fact link to a concept relevant to w, but not 

necessarily a candidate sense of w. Thirdly, if no 

pages are returned for w, we search for the most 

relevant page using w as keyword(s) in an inverted 

index of all Wikipedia pages (e.g., via search 

engines). We denote concepts retrieved from 

Wikipedia as   
       

      
      

   .  

For unstructured sources such as documents, a 

simple approach could be defining a word context 

as a text passage around each occurrence of w, and 

grouping similar contexts of w as representation of 

its underlying meanings, or concepts. Alternatively, 

more complex approaches such as Pozo et al. 

(2008) and Harrington (2010) may be applied to 

extract a lexical network of words, whereby similar 

methods to WordNet can be applied. 

3.2 Feature extraction and representation 

Next, for each concept identified from a 

knowledge source, features are extracted from their 

corresponding contexts. In our case, for each 

    
  , we follow the work by Zhang et al. 

(2010) to extract four types of features from their 

corresponding Wikipedia pages. Figure 1 shows an 

example representation of a concept and its 

Wikipedia features: 

 Words from page titles and redirection 

links (can be considered as synonyms) 

 Words from categories, used as higher 

level hypernyms in some studies (Zesch et 

al., 2010; Strube and Ponzetto, 2006) 

 Words from outgoing links 

 Top n most frequent words from a page 

 

Figure 1. Representation of the concept “cat, the 

mammal” using different types of features 

extracted from Wikipedia. The shaded circle 

represents the concept; ovals represent feature 

values; edges connecting feature values to the 

concept and <labels> represent feature types 

 

For each     
  , we extract ten features from 

WordNet: hypernyms, hyponyms, meronyms, 

holonyms, synonyms, antonyms, attributes, “see 

also” words, “related” words, and gloss. These are 

also represented in the same way as in Figure 1.  

With unstructured sources, contextual words 

can be used as features. Alternatively, if a lexical 

network is extracted, features may be extracted in a 

similar way to those of WordNet. 

 

Additionally, with WordNet and Wikipedia, we 

also propose several intra-resource feature merging 

strategies to study the effect of feature 

diversification. This is because, while some 

approaches (such as Agirre et al., 2009; 

Harrington, 2010; Yeh et al., 2009) do not 

distinguish different feature types in graph 

construction, or adopt a bag-of-words feature 

representation (such as Zesch and Gurevych, 

2010), others (such as Yazdani and Popescu-Belis, 

2010; Zhang et al., 2010) have used differentiated 
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feature types and weights in their model. We 

therefore carry out studies to investigate this issue. 

Specifically, for the original four Wikipedia 

features, we create a bag-of-words feature that 

simply merges all feature types (i.e., all edges in 

Figure 1 will have the same label). For the original 

ten WordNet features, we propose two merged 

representations corresponding to that of Wikipedia, 

so as to support the studies of feature enrichment 

in the following section. We introduce a bag-of-

words feature that collapses all different feature 

types, and a four-feature representation as follow: 

 wn-synant merges WordNet synonyms and 

antonyms.  

 wn-hypoer merges WordNet hypernyms 

and hyponyms, collectively representing 

features by “is-a” semantic relation 

 wn-assc merges WordNet meronyms, 

holonyms, related and “see also”, which 

are features corresponding to associative 

relations  

 wn-dist merges WordNet gloss and 

attributes that generally describe a concept.  

3.3 Concept mapping and feature enrichment 

Our method essentially harnesses different 

knowledge sources by combining features 

extracted from different sources in a uniform 

model. This requires two sub-processes: cross-

source concept mapping and cross-source 

feature enrichment.  

In cross-source concept mapping, concepts 

extracted from different knowledge sources are 

mapped according to similar meanings such that 

cross-source features can be combined. To do so, 

we select the concepts from one knowledge source 

as the reference concept set; then concepts from 

other knowledge sources are mapped to reference 

concepts of similar meanings. There can be 

different criteria of choosing reference knowledge 

source concepts. Empirically, we found it 

necessary to choose the knowledge source with 

broader coverage and richer features. This will be 

discussed later in Section 5. Following this 

strategy, in our example,   
   is chosen as 

reference concepts, and for each   
     

  we 

select a   
     

   such that   
   and   

   refer to 

the same meaning. To do so, we apply a simple 

maximum set overlap metric to their feature 

values. Let F(c) be a function that returns all 

feature values of c as bag-of-words, then for each 

  
     

  , it is mapped to a   
   such that 

     
          

     is maximized among all 

  
     

  . The resulting concept candidates are 

denoted as   
    

, where   
    

=    
     

    is a 

mapped set of concepts potentially referring to the 

same meaning. If   
     then   

    
 

  
   

        
  . 

Next, cross-source feature enrichment creates 

a uniform feature representation for each mapped 

sets of concepts. The process can be considered as 

enriching the features from one knowledge source 

with others. The most straightforward approach is 

to simply collect features extracted from each 

knowledge source on to a single graph, retaining 

the diversity in feature types. For example, Figure 

2 shows a graph representation based on the 

collection of the four Wikipedia features and the 

four derived WordNet features. We refer to this 

approach as “feature combination”.  

 
Figure 2. Representation of “cat, the mammal” 

after concept mapping and feature combination 
 

On the other hand, cross-source features may be 

merged according to their semantics.  For example, 

WordNet and Wikipedia contain features based on 

synonyms of concepts; while Wikipedia and 

unstructured documents contain word distribution-

al features. Thus we define “feature integration” 

as merging feature types from different knowledge 

sources into single types of features based on their 

similarity in semantics.  With WordNet and Wiki-

pedia, we integrate features as below (Figure 3): 

 merged-synant merges Wikipedia page 

titles and redirection links with wn-synant 

 merged-hypoer merges merges Wikipedia 

categories with wn-hypoer 
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 merged-assc merges Wikipedia links with 

wn-assc. We consider Wikipedia links bear 

other associative relations and are 

therefore merged with features extracted 

by other WordNet relations 

 merged-dist merges Wikipedia frequent n 

words with wn-dist.  

 
Figure 3. Representation of “cat, the mammal” 

after concept mapping and feature integration 

 

Note that the difference between cross-source 

feature combination and integration is that the 

former introduces more types of features, whereas 

the latter retains same number of feature types but 

increases feature values for each type. Both have 

the effect of establishing additional path (via 

features) between concepts, but in different ways. 

 

With intra-resource feature diversification, cross-

source feature combination and feature 

integration, we create a total of nine intra- and 

cross-source feature representations to be tested 

with the uniform random walk model: 

 four types of Wikipedia features (wk-4F) 

 one type of Wikipedia features (wk-1F) 

 ten types of WordNet features (wn-10F) 

 four types of WordNet features (wn-4F) 

 one type of WordNet features (wn-1F) 

 wk-4F combines wn-4F: wk-4F+wn4F,C 

 wk-4F integrates wn-4F: wk-4F+wn4F,I 

 wk-1F combines wn-1F: wk-1F+wn1F,C 

 wk-1F integrates wn-1F: wk-1F+wn1F,I 

3.4 Computing SR using the graph 

The algorithm for computing SR using the graph is 

based on the idea of random walk. It formalizes the 

idea that taking successive steps along the paths in 

a graph, the “easier” it is to arrive at a target node 

starting from a source node, the more related the 

two nodes are. Following the previous steps, the 

feature representations of all candidate concepts 

relevant to the input word pairs are joined, which 

creates a single undirected, weighted, bi-partite 

graph. Let G = (V, E) be the graph, where V is the 

set of nodes (concepts and feature values); E is the 

set of edges (feature types) that connect concepts 

and features. As shown in Figure 4, different 

concepts are connected if they share same values 

of same types of features, namely, there exists a 

path that connects one concept to another.  

 
Figure 4. Paths are established between different 

concepts if they share values of same feature types 

<bold underlined> 

Using Figure 4 it is easier to comprehend the 

difference between feature combination and 

integration. Since concept nodes can only be 

connected by same types of edges (feature types), 

feature combination increases the chances of 

connectivity by adding in more types of edges, 

while integration merges similar types of edges 

across knowledge sources and increases the 

number of feature nodes connected by each type.  

From the graph, we start by building an 

adjacency matrix W of initial probability 

distribution: 



















 

otherwise

Eji
lilEi

lw

W Ll
k

k

ij
k

,0

),(,
|),(:),(|

)(
 [1] 

Where Wij is the ith
-line and jth

-column entry of W, 

indexed by V; l(i, j) is a function that returns the 

type of edge (i.e., type of feature) connecting 

nodes i and j; L is the set of all possible types; w(l) 

returns the weight for that type. Essentially, L is 

the collection of all feature types, and w(l) assigns 
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a weight to a particular feature type. Next, we 

compute the transition probability matrix P(t)(j|i) = 

[(D−1W)t]ij (Dii = ∑kWik), which returns the 

probability of reaching other nodes from a starting 

node on the graph after t steps. In this method, we 

follow the work by Rowe and Ciravegna (2010) to 

set t=2 in order to preserve locally connected 

nodes. Next, we extract the probability vectors 

corresponding to concept nodes from P, and 

compute pair-wise relatedness using the cosine 

function. Effectively, this formalizes the notion 

that two concepts related to a third concept is also 

semantically related, which is similar to the 

hypothesis proposed by Patwardhan and Pedersen 

(2006) in their method based on second-order 

context vectors. The final SR between the input 

word pair is the maximum pair-wise concept SR. 

4    Experiment and evaluation 

We evaluate the method based on correlation 

against human judgment (gold standard) on seven 

benchmarking datasets covering both general and 

technical domains. These include four general 

domain datasets: the Rubenstein and Goodenough 

(1965) dataset containing 65 pairs of nouns 

(RG65); the Miller and Charles (1991) dataset that 

is a subset of the RG-65 dataset and contains 30 

pairs (MC30); the Finkelstein et al. (2002) dataset 

with 353 pairs of words, including nouns, verbs, 

adjectives, as well as named entities. This contains 

two subsets, a set of 153 pairs (Fin153) and a set of 

200 (Fin200) pairs each annotated by a different 

groups of annotators. Zesch and Gurevych (2010) 

show largely varying Inter-Annotator-Agreement 

(IAA) between the two sets (Table 1), and argue 

that they should be treated as separate datasets. 

Three biomedical datasets are selected to evaluate 

domain-specific performance of the proposed 

method. These include a set of 36 MeSH term pairs 

in Petrakis et al. (2006) (MeSH36), 30 pairs of 

medical terms annotated by a group of physicians 

as in Pedersen et al. (2006) (Ped30-p) and the same 

set annotated by a different group of medical 

coders (Ped30-c). Table 1 shows statistics of the 

seven datasets.  

The correlation is computed using the 

Spearman rank order coefficient for two reasons. 

First, it is a better metric than other alternatives 

(Zesch and Gurevych, 2010). Second, it is 

consistent with the majority of studies such that 

results can be compared.  
 

Dataset Size Domain IAA 

MC30 30 General 0.9 

RG65 65 General 0.8 

Fin153 153 General 0.73 

Fin200 200 General 0.55 

Ped30-p 30 Biomedical 0.68 

Ped30-c 30 Biomedical 0.78 

MeSH36 36 Biomedical - 

Table 1: Information of benchmarking datasets 

 

We distribute feature weights w(l) across 

different feature types L evenly in each feature 

representation. Although Zhang et al. (2010) show 

that discriminated feature weights leads to 

improved accuracy; this is not the focus of this 

study. Since we aim to investigate the effects of 

harnessing different knowledge sources, we 

obtained baseline performances by applying the 

method to those feature representations based on 

single knowledge sources (i.e., wk-4F, wk-1F, wn-

10F, wn-4F, wn-1F). Tables 2 and 3 show the best 

results obtained with baselines and corresponding 

knowledge sources and feature representation.  

 

Dataset Corr. Feature Coverage (% pairs) 

MC30 0.77 wn-1F 77% 

RG65 0.71 wn-1F 65% 

Fin153 0.45 wn-4F 82% 

Fin200 0.35 wn-4F 76% 

Ped30-p 0.66 wn-4F 33% 

Ped30-c 0.8 wn-4F 33% 

MeSH36 0.49 wn-1F 50% 

Table 2: Correlation obtained using WordNet.  

Many word pairs are not covered due to sparse 

feature space and lack of coverage. Only covered 

pairs are accounted. 
 

Dataset Corr. Feature 

MC30 0.74 wk-1F 

RG65 0.67 wk-1F 

Fin153 0.7 wk-1F 

Fin200 0.51 wk-4F 

Ped30-p 0.53 wk-4F 

Ped30-c 0.58 wk-4F 

MeSH36 0.73 wk-4F 

Table 3: Correlation obtained using only 

Wikipedia. All word pairs are 100% covered. 
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Tables 4 – 6 show results obtained with 

enriched feature representation. 

 

 Combination (C) Integration (I) 

Dataset wn-4F + 

wk-4F 

wn-1F + 

wk-1F 

wn-4F + 

wk-4F 

wn-1F 

+ wk-1F 

MC30 0.77 0.8 0.8 0.79 

RG65 0.74 0.73 0.73 0.729 

Fin153 0.73 0.75 0.74 0.73 

Fin200 0.52 0.54 0.53 0.54 

Ped30-p 0.63 0.52 0.64 0.47 

Ped30-c 0.64 0.52 0.67 0.49 

MeSH36 0.7 0.694 0.75 0.7 

Table 4: Correlation obtained using both 

knowledge sources. Word pairs are 100% covered. 
 

 KS and # of feature types 

 WN WK WK+WN,C WK+WN, I  

MC30 1 1 1 4 

RG65 1 1 4 4 

Fin153 4 1 1 4 

Fin200 4 4 1 1 

Ped30-p 4 4 4 4 

Ped30-c 4 4 4 4 

MeSH36 1 4 4 4 

Table 5: Number of feature types with which best 

results are obtained on each dataset. KS: 

Knowledge Source 
 

 Single KS Multiple KS Impr. 

Dataset Best corr. Best corr. Strategy  

MC30 0.74 0.8 C/I 0.06 

RG65 0.67 0.74 C 0.07 

Fin153 0.7 0.75 C 0.05 

Fin200 0.51 0.54 C/I 0.03 

Ped30-p 0.53 0.64 I 0.11 

Ped30-c 0.58 0.67 I 0.09 

MeSH36 0.73 0.75 I 0.02 

Table 6: Improvement achieved by harnessing 

multiple KSs. Best correlation with single KS is 

based on Wikipedia, which provides 100% 

coverage of word pairs. 

 

 

Tables 7 and 8 compare our method against state-

of-the-art. For Table 8, figures for other state-of-

the-art systems can be found in corresponding 

publications; while we only list the best 

performing systems for comparison. 
 

 

 

 

 

 MC30 RG65 Fin153 Fin200 KS 

best of 

WN+WK  
0.8 0.74 0.75 0.54 Both 

Rad89* 0.75 0.79 0.33 0.24 WN 

LC98* 0.75 0.79 0.33 0.24 WN 

WP94* 0.77 0.78 0.38 0.24 WN 

HS98* 0.76 0.79 0.33 0.32 WN 

Res95* 0.72 0.74 0.35 0.26 WN 

JC97* 0.68 0.58 0.28 0.10 WN 

Lin98* 0.67 0.60 0.27 0.17 WN 

Zes07* 0.77 0.82 0.6 0.51 WK 

GM07* 0.67 0.75 0.69 0.51 WK 

Zha10 0.71 0.76 0.71 0.46 WK 

Table 7
3
: Comparison against state-of-the-art in the 

general domain. (* figures from Zesch and 

Gurevych, 2010) 
 

 Ped30-p Ped30-c MeSH36 KS 

best of 

WN+WK 

0.64 0.67 0.75 WN+

WK 

Pet06 best - - 0.74 MeSH 

Ped06 best 0.84 0.75 - GO, D 

Ped06 second 0.62 0.68 - GO, D 

Table 8
4
: Comparison against state-of-the-art in the 

biomedical domain. GO – Gene Ontology; D – 

document sets.  
 

Given the fact that some datasets (i.e., MC30, 

Ped30-p, Ped30-c, MeSH36) have a relatively low 

sample size, we cannot always be sure that 

correlation values are accurate or occurred by 

chance. Therefore, we measure the statistical 

significance of correlation by computing the p-

value for the correlation values reported for our 

system in Tables 7 and 8. For all cases, a p-value 

of less than 0.001 is obtained, which indicates that 

correlation values are statistically significant. 

                                                         
3 Rada (1989) (Rad89); Leacock and Chodorow (1998) 

(LC98); Wu and Palmer (1994) (WP04); Hirst and St-Onge 

(1998) (HS98); Resnik (1995) (Res95); Jiang and Conrath 
(1997) (JC97); Lin (1998) (Lin98); Zesch and Gurevych 

(2007) (ZG07); Gabrilovich and Markovitch (2007) (GM07); 

Zhang et al. (2010) (Zha10) 
4 Petrakis et al. (2006) (Pet06); Pedersen et al. (2006) (Ped06). 
Original participating systems can be found in these works. 
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5    Discussion  

Single v.s. multiple knowledge sources As shown 

in Table 6, considering the best performances 

across all feature enrichment strategies and feature 

sets, the proposed method successfully harnessed 

different knowledge sources and improved over the 

baselines using single knowledge sources by 0.02 

~ 0.11. The biggest improvement (0.11) is on a 

domain-specific dataset, on which the method 

based on single knowledge source performed 

poorly in terms of coverage and accuracy. The best 

enrichment strategy that has consistently improved 

the baselines is wk-4F+wn-4F, Integration (Table 

4 v.s. Table 3).  With features enriched from 

multiple knowledge sources, the method also 

consistently improved over their corresponding 

single-source features on all datasets, except 

MeSH36, on which wk-4F+wn-4F, Combination 

(Table 4) slightly reduced the accuracy obtained 

with wk-4F (Table 3) only.  

The large proportion of uncovered word pairs 

using WordNet is due to its lack of coverage of 

specialized lexicons, and sparser semantic content. 

For example, of all 115 distinctive terms in the 

Ped30 and MeSH36 datasets, 30% are not included 

in WordNet. And of all 447 distinctive words in all 

general domain datasets, only 69% have multiple 

synonyms. Features such as attributes and “see 

also” are present for less than 20 words. This is the 

reason that some approaches using WordNet (e.g., 

Agirre et al., 2009) require a graph of all WordNet 

lexicons to be built, thus intermediate words may 

“bridge” input words even if they do not connect 

directly by their features. Nevertheless, the 

improvement in accuracy and 100% coverage after 

harnessing both knowledge sources suggests that 

they complement each other well. On one hand, 

Wikipedia brings its strength in domain and 

content coverage; on the other hand, WordNet 

brings useful semantic evidences for words that are 

covered. 

Concept mapping and feature enrichment 

methods While the set overlap based method for 

cross-source concept mapping using the reference 

knowledge source concepts is simple and proved 

successful, the accuracy of mapping and its 

correlation with the accuracy of the SR method 

was not studied. This will be explored in the future. 

Also, alternative mapping methods will be 

investigated. For example, Toral and Muñoz (2006) 

describe a different method of mapping Wikipedia 

articles to WordNet synsets; one could also adopt a 

simple disambiguation process to select the best 

candidate concept from each knowledge source 

suited for the input word pairs, whereby cross-

source concept mapping becomes straightforward. 

In terms of feature enrichment strategies, there is 

no strong indication (Table 6) of which (feature 

combination v.s. integration) is more effective, 

although the system consistently outperforms the 

baselines (Table 4 v.s. Table 3) with the wk-

4F+wn-4F, Integration strategy. 

Feature diversification v.s. unification Table 

5 suggests that in most cases, differentiating 

feature types leads to better results than merging 

them uniformly, despite the knowledge sources 

used. This is consistent with the findings by Zhang 

et al. (2010). This can be understandable since 

although unifying feature types effectively 

increases possibility of sharing features, equally, 

this may also increase the proportion of noisy 

features. For example, consider the Wikipedia 

article of “Horse” (animal), which has a category 

label “livestock”; and the article “Famine”, which 

has an outgoing link “livestock” (in a sentence 

describing diseases that caused decline of livestock 

production). By differentiating the feature types 

“has_category” and “has_outlink”, the two 

concepts will not be connected even if they both 

have the same word “livestock” in their feature 

representation. However, using a bag-of-words 

representation where feature types are 

undistinguished, the strength of their relatedness is 

boosted by sharing this word, which may be 

uninteresting in this occasion. 

Compared against state-of-the-art, the 

proposed method has achieved promising results. 

Overall, by harnessing different knowledge sources, 

the method achieves, and in many cases, 

outperforms state-of-the-art. In the general domain, 

it outperforms state-of-the-art on three out of four 

datasets. It is worth noting that all methods based 

on WordNet generally have poor performance on 

the Fin153 and Fin200 datasets (Table 7). Despite 

the heterogeneity in these datasets, this may also 

relate to the quality of the feature space generated 

with WordNet. In fact methods using Wikipedia 

perform better on these datasets. With enriched 

features from both knowledge sources, the 

accuracies are further improved.   
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In the biomedical domain, the proposed method 

outperforms state-of-the-art on one dataset and 

produces competitive results on others. Note that 

all other methods exploit domain-specific 

ontologies and corpora. The Ped06 best and Ped06 

second methods also depend on a corpus of one 

million documents. These results further confirmed 

the benefits of our method: harnessing knowledge 

from general-purpose knowledge sources of 

limited domain coverage, it is possible to achieve 

results that rival methods based on well-curated 

and specially tailored domain-specific knowledge 

sources. This is an encouraging finding. Although 

there are abundant resources in the biomedical 

domain for this type of tasks, such resources may 

be scarce in other domains and are expensive to 

build. However, the results suggest that the 

proposed method offers a more affordable 

approach that provides reasonable coverage and 

quality, even if individual general knowledge 

sources may be limited in themselves. 

Generality of the method. The proposed 

method represents features extracted from different 

knowledge sources in a generic manner, which 

facilitates cross-source feature enrichment and 

requires generic algorithm computation. As 

discussed in Section 3, semantic evidence of words 

and concepts may be extracted from different 

knowledge sources in different ways, while 

harnessed in the generic model. In contrast, other 

methods using multiple knowledge sources (e.g., 

Han and Zhao, 2010; Tsang and Stevenson, 2010) 

introduce algorithms that are bound to the 

knowledge sources, which may limit their 

adaptability and portability. 

6    Conclusion  

This paper introduced a generic method of 

harnessing different knowledge sources to compute 

semantic relatedness. We have shown empirically 

that different knowledge sources contain 

complementary semantic evidence, which, when 

combined together under a uniform model, can 

improve the accuracy of SR methods. Moreover, 

we have demonstrated its robustness in dealing 

with knowledge sources of different quality and 

coverage. Several remaining issues will be studied 

in the future. First, additional knowledge sources 

will be studied, particularly unstructured corpora 

and domain-specific resources. The experiments 

have shown that although harnessing different 

knowledge sources achieved encouraging results 

on biomedical datasets, they are still far from being 

perfect. While it should be appreciated that the 

results are obtained using only general purpose 

knowledge sources, it would be interesting to 

investigate whether harnessing domain specific 

knowledge sources (where available) further 

improves the performance. Second, different 

methods of concept mapping will be studied. We 

will also design methods for assessing the quality 

of mapping, and analyze their correlations with the 

SR methods. Third, analyses will be carried out to 

uncover the differences between feature 

combination and integration that have led to 

different accuracies. 
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Abstract

We re-investigate the rationale for and the ef-
fectiveness of adopting the notions of depth
and density in WordNet-based semantic sim-
ilarity measures. We show that the intuition
for including these notions in WordNet-based
similarity measures does not always stand up
to empirical examination. In particular, the
traditional definitions of depth and density
as ordinal integer values in the hierarchical
structure of WordNet does not always corre-
late with human judgment of lexical semantic
similarity, which imposes strong limitations
on their contribution to an accurate similarity
measure. We thus propose several novel defi-
nitions of depth and density, which yield sig-
nificant improvement in degree of correlation
with similarity. When used in WordNet-based
semantic similarity measures, the new defini-
tions consistently improve performance on a
task of correlating with human judgment.

1 Introduction

Semantic similarity measures are widely used in
natural language processing for measuring distance
between meanings of words. There are currently
two mainstream approaches to deriving such mea-
sures, i.e., distributional and lexical resource-based
approaches. The former usually explores the co-
occurrence patterns of words in large collections
of texts such as text corpora (Lin, 1998) or the
Web (Turney, 2001). The latter takes advantage of
mostly handcrafted information, such as dictionar-
ies (Chodorow et al., 1985; Kozima and Ito, 1997)
or thesauri (Jarmasz and Szpakowicz, 2003).

Another important resource in the latter stream is
semantic taxonomies such as WordNet (Fellbaum,
1998). Despite their high cost of compilation and
limited availability across languages, semantic tax-
onomies have been widely used in similarity mea-
sures, and one of the main reasons behind this is that
the often complex notion of lexical semantic simi-
larity can be approximated with ease by the distance
between words (represented as nodes) in their hier-
archical structures, and this approximation appeals
much to our intuition. Even methods as simple as
“hop counts” between nodes (e.g., that of Rada et al.
1989 on the English WordNet) can take us a long
way. Meanwhile, taxonomy-based methods have
been constantly refined by incorporating various
structural features such as depth (Sussna, 1993; Wu
and Palmer, 1994), density (Sussna, 1993), type of
connection (Hirst and St-Onge, 1998; Sussna, 1993),
word class (sense) frequency estimates (Resnik,
1999), or a combination these features (Jiang and
Conrath, 1997). Most of these algorithms are fairly
self-contained and easy to implement, with off-the-
shelf toolkits such as that of Pedersen et al. (2004).

With the existing literature focusing on carefully
weighting these features to construct a better seman-
tic similarity measure, however, the rationale for
adopting these features in calculating semantic sim-
ilarity remains largely intuitive. To the best of our
knowledge, there is no empirical study directly in-
vestigating the effectiveness of adopting structural
features such as depth and density. This serves as
the major motivation for this study.

The paper is organized as follows. In Section
2 we review the basic rationale for adopting depth
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and density in WordNet-based similarity measures
as well as existing literature on constructing such
measures. In Section 3, we show the limitations of
the current definitions of depth and density as well as
possible explanations for these limitations.1 We then
propose new definitions to avoid such limitations in
Section 4. The effectiveness of the new definitions
is evaluated by applying them in semantic similar-
ity measures in Section 5 and conclusions made in
Section 6.

2 Related Work

The following are the current definitions of depth
and density which we aim at improving. Given a
node/concept c in WordNet, depth refers to the num-
ber of nodes between c and the root of WordNet,
(i.e., the root has depth zero, its hyponyms depth
one, and so on). There are more variations in the
definition of density, but it is usually defined as the
number of edges leaving c (i.e., its number of child
nodes) or leaving its parent node(s) (i.e., its number
of sibling nodes). We choose to use the latter since
it is used by most of the existing literature.

2.1 The Rationale for Depth and Density
The rationale for using the notions of depth and den-
sity in WordNet-based semantic similarity measures
is based on the following assumption:

Assumption 1 Everything else being equal, two
nodes are semantically closer if (a) they reside
deeper in the WordNet hierarchy, or (b) they are
more densely connected locally.

This is the working assumption for virtually all
WordNet-based semantic similarity studies using
depth and/or density. For depth, the intuition is
that adjacent nodes deep down the hierarchy are
likely to be conceptually close, since the differen-
tiation is based on finer details (Jiang and Conrath,
1997). Sussna (1993) termed the use of depth as
depth-relative scaling, claiming that “only-siblings
deep in a tree are more closely related than only-
siblings higher in the tree”. Richardson and Smeaton
(1995) gave an hypothetical example illustrating
this “only-siblings” situation, where plant–animal

1Since the works we review in this section have different
definitions of depth and density, we defer our formal definitions
to Section 3.

are the only two nodes under living things, and
wolfhound–foxhound under hound. They claimed
the reason that the former pair can be regarded as
conceptually farther apart compared to the latter is
related to the difference in depth.

As for the relation between density and similar-
ity, the intuition is that if the overall semantic mass
for a given node is constant (Jiang and Conrath,
1997), then the more neighboring nodes there are in
a locally connected subnetwork, the closer its mem-
bers are to each other. For example, animal, per-
son, and plant are more strongly connected with life
form than aerobe and plankton because the first three
words all have high density in their local network
structures (Richardson and Smeaton, 1995). Note
that the notion of density here is not to be con-
fused with the conceptual density used by Agirre
and Rigau (1996), which is essentially a semantic
similarity measure by itself.

In general, both observations on depth and density
conform to intuition and are supported qualitatively
by several existing studies. The main objective of
this study is to empirically examine the validity of
this assumption.

2.2 Semantic Similarity Measures Using Depth
and/or Density

One of the first examples of using depth and den-
sity in WordNet-based similarity measures is that of
Sussna (1993). The weight on an edge between two
nodes c1 and c2 with relation r in WordNet is given
as:

w(c1,c2) =
w(c1→r c2)+ w(c2→r c1)

2d

where d is the depth of the deeper of the two nodes.
As depth increases, weight decreases and similarity
in turn increases, conforming to Assumption 1. The
edge weight was further defined as

w(c1→r c2) = maxr−
maxr−minr

nr(c1)

where nr(X) is “the number of relations of type r
leaving node X”, which is essentially an implicit
form of density, and maxr and minr are the maxi-
mum and minimum of nr, respectively. Note that
this formulation of density contradicts Assumption
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1 since it is proportional to edge weight (left-hand-
side) and thus negatively correlated to similarity.

Wu and Palmer (1994) proposed a concept simi-
larity measure between two concepts c1 and c2 as:

sim(c1,c2) =
2 ·dep(c)

len(c1,c)+ len(c2,c)+ 2 ·dep(c)
(1)

where c is the lowest common subsumer (LCS) of c1
and c2, and len(·, ·) is the number of edges between
two nodes. The rationale is to adjust “hop count”
(the first two terms in the denominator) with the
depth of LCS: similarity between nodes with same-
level LCS is in negative proportion to hop counts,
while given the same hop count, a “deeper” LCS
pulls the similarity score closer to 1.

Jiang and Conrath (1997) proposed a hybrid
method incorporating depth and density information
into an information-content-based model (Resnik,
1999):

w(c, p) =(
dep(p)+ 1

dep(p)
)α

× [β +(1−β)
Ē

den(p)
]

× [IC(c)− IC(p)]T (c, p) (2)

Here, p and c are parent and child nodes in Word-
Net, dep(·) and den(·) denote the depth and den-
sity of a node, respectively, Ē is the average density
over the entire network of WordNet, and α and β are
two parameters controlling the contribution of depth
and density values to the similarity score. IC(·) is
the information content of a node based on proba-
bility estimates of word classes from a small sense-
tagged corpus (Resnik, 1999), and T (c, p) is a link-
type factor differentiating different types of relations
between c and p.

3 Limitations on the Current Definitions of
Depth and Density

To what extent do the notions of depth and density
help towards an accurate semantic similarity mea-
sure? Our empirical investigation below suggests
that more often than not, they fail our intuition.

A direct assessment of the effectiveness of us-
ing depth and density is to examine their correla-
tion with similarity. Empirical results in this section

Figure 1: Correlation between depth and similarity.

are achieved by the following experimental setting.
Depth is defined as the number of edges between the
root of the hierarchy and the lowest common sub-
sumer (LCS) of two nodes under comparison, and
density as the number of siblings of the LCS.2 Sim-
ilarity is measured by human judgment on similar-
ity between word pairs. Commonly used data sets
for such judgments include that of Rubenstein and
Goodenough (1965), Miller and Charles (1991), and
Finkelstein et al. (2001) (denoted RG, MC, and FG,
respectively). RG is a collection of similarity ratings
of 65 word pairs averaged over judgments from 51
human subjects on a scale of 0 to 4 (from least to
most similar). MC is a subset of 30 pairs out of the
RG data set. These pairs were chosen to have evenly
distributed similarity ratings in the original data set,
and similarity judgment was elicited from 38 human
judges with the same instruction as used for RG. FG
is a much larger set consisting of 353 word pairs,
and the rating scale is from 0 to 10. We combine the
RG and FG data sets in order to maximize data size.
Human ratings r on individual sets are normalized to
rn on 0 to 1 scale by the following formula:

rn =
r− rmin

rmax− rmin

where rmax and rmin are the maximum and minimum
of the original ratings, respectively. Correlation is
evaluated using Spearman’s ρ.

2We also tried several other variants of these definitions,
e.g., using the maximum or minimum depth of the two nodes
instead of the LCS. With respect to statistical significance tests,
these variants all gave the same results as our primary definition.
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Figure 2: Histogram of depth of WordNet noun synsets.

3.1 Depth

The distribution of similarity of the combined data
set over depth is plotted in Figure 1. For depth val-
ues under 5, similarity scores are fairly evenly dis-
tributed over depth, showing no statistical signifi-
cance in correlation. For depth 5 and above, the
shape of distribution resembles an upper-triangle,
suggesting that (1) correlation with similarity be-
comes stronger in this range of depth value, and (2)
data points with higher depth values tend to have
higher similarity scores, but the reverse of the claim
does not hold, i.e., word pairs with “shallower” LCS
can also be judged quite similar by humans.

There are many more data points with lower depth
values than with higher depth values in the com-
bined data set. In order to have a fair comparison of
statistical significance tests on the two value ranges
for depth, we randomly sample an equal number
(100) of data points from each value range, and the
correlation coefficient between depth and similarity
is averaged over 100 of such samplings. Correla-
tion coefficients for depth value under 5 versus 5 and
above are ρ = 0.0881, p ≈ 0.1 and ρ = 0.3779, p <
0.0001, respectively, showing an apparent difference
in degree of correlation.

Two interesting observations can be made from
these results. Firstly, the notion of depth is relative
to the distribution of number of nodes over depth
value. For example, depth 20 by itself is virtually
meaningless since it might be quite high if the ma-
jority of nodes in WordNet are of depth 10 or less,
or quite low if the majority depth value are 50 or
more. According to the histogram of depth values
in WordNet (Figure 2), the distribution of number of
nodes over depth value approximately conforms to a

normal distribution N (8,2). It is visually quite no-
ticeable that the actual quantity denoting how deep a
node resides in WordNet is conflated at depth values
below 5 or above 14. In other words, the distribution
makes it rather inaccurate to say, for instance, that a
node of depth 4 is twice as deep as a node of depth 2.
This might explain the low degree of correlation be-
tween similarity and depth under 5 in Figure 1 (man-
ifested by the long, vertical stripes across the entire
range of similarity scores (0 to 1) for depth 4 and
under), and also how the correlation increases with
depth value. Unfortunately, we do not have enough
data for depth above 14 to draw any conclusion on
this higher end of the depth spectrum.

Secondly, even on the range of depth values with
higher correlation with similarity, there is no defini-
tive sufficient and necessary relation between depth
and similarity (hence the upper triangle instead of
a sloped line or band). Particularly, semantically
more similar words are not necessarily deeper in the
WordNet hierarchy. Data analysis reveals that the
LCS of highly similar words can be quite close to
the hierarchical root. Examples include coast–shore,
which is judged to be very similar by humans (9 on
a scale of 0–10 in both data sets). The latter is a hy-
pernym of the former and thus the LCS of the pair,
yet it is only four levels below the root node entity
(via geological formation, object, and physical en-
tity). Another situation is when the human judges
confused relatedness with similarity, and WordNet
fails to capture the relatedness with its hierarchical
structure of lexical semantics: the pair software–
computer can only be related by the root node en-
tity as their LCS, although the pair is judged quite
“similar” by humans (8.5 on 0 to 10 scale).

The only conclusive claim that can be made here
is that word pairs with deeper LCS’s tend to be more
similar. However, since only word forms (rather
than senses) are available in these psycho-linguistic
experiments, the one similarity rating given by hu-
man judges sometimes fails to cover multiple senses
for polysemous words. In the pair stock–jaguar of
the FG set, for example, one sense of stock (live-
stock, stock, farm animal: any animals kept for use
or profit) is closely connected to jaguar through a
depth-10 LCS (placental, placental mammal, eu-
therian, eutherian mammal). However, the pair re-
ceived a low similarity rating (0.92 on 0–10), prob-
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Figure 3: Correlation between density and similarity.

MC RG FG
dep 0.7056*** 0.6909*** 0.3701***

den 0.2268 0.2660* 0.1023

Table 1: Correlation between depth/density and similar-
ity on individual data sets. Number of asterisks indicates
different confidence intervals (“*” for p< 0.05, “***” for
p< 0.0001).

ably because judges associated the word form stock
with its financial sense, especially when there was
an abundant presence of pairs indicating this particu-
lar sense of the word (e.g., stock–market, company–
stock).

3.2 Density

Comparing to depth, density exhibits much lower
correlation with similarity (Figure 3-a and 3-b). We
conducted correlation experiments between density
and similarity with the same setting as for depth and
similarity above. Data points with extremely high
density values (up to over 400) are mostly idiosyn-
cratic to the densely connected regions in WordNet
and are numerically quite harmful. We thus ex-
cluded outliers with density values above 100 in the
experiment.

Evaluation on the combined data set shows no
correlation between density and similarity. To con-
firm the result, we break the experiments down to the
three individual data sets, and the results are listed in
Table 1. The correlation coefficient between density
and similarity ranges from 0.10 to 0.27 There is no

statistical significance of correlation on two of the
three data sets (MC and FG), and the significance
on RG is close to marginal with p = 0.0366.

Data analysis suggests that density values are of-
ten biased by particular fine-grainedness of local
structures in WordNet. Qualitatively, Richardson
and Smeaton (1995) previously observed that “the
irregular densities of links between concepts results
in unexpected conceptual distance measures”. Em-
pirically, on the one hand, more than 90% of Word-
Net nodes have density values less than or equal to
3. This means that for 90% of the LCS’s, there are
only three integer values for density to distinguish
the varying degrees of similarity. In other words,
such a range might be too narrow to have any real
distinguishing power over similarity. On the other
hand, there are outliers with extreme density values
particular to the perhaps overly fine-grained subcat-
egorization of some WordNet concepts, and these
nodes can be LCS’s of word pairs of drastically dif-
ferent similarity. The node person, individual, for
example, can be the LCS of similar pairs such as
man–woman, as well as quite dissimilar ones such
as boy–sage, where the large density value does not
necessarily indicate high degree of similarity.

Another crucial limitation of the definition of den-
sity is the information loss on specificity. In the ex-
isting literature, density is often adopted as a proxy
for the degree of specificity of a concept, i.e., nodes
in densely connected regions in WordNet are taken
to be more specific and thus closer to each other.
This information of a given node should be inher-
ited by its hierarchical descendants, since specificity
should monotonically increase as one descends the
hierarchy. For example, the node piano has a den-
sity value of 15 under the node percussion instru-
ment. However, the density value of its hyponyms
Grand piano, upright piano, and mechanical piano,
is only 3. Due to the particular structure of this sub-
network in WordNet, the grand–upright pair might
be incorrectly regarded as less specific (and thus less
similar) than, say, between piano–gong, both as per-
cussion instruments.

4 New Definitions of Depth and Density

In this section, we formalize new definitions of
depth and density to correct for their current limi-
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MC RG FG
depu 0.7201*** 0.6798*** 0.3751***

denu 0.2268 0.2660* 0.1019
deni 0.7338*** 0.6751*** 0.3445***

Table 2: Correlation between new definitions of
depth/density and similarity.

tations discussed in Section 3.

4.1 Depth

The major problem with the current definition of
depth is its failure to take into account the uneven
distribution of number of nodes over the depth value.
As seen in previous examples, the distribution is
rather “flat” on both ends of depth value, which does
not preserve the linearity of using the ordinal values
of depth and thus introduces much inaccuracy.

To avoid this problem, we “re-curve” depth value
to the cumulative distribution. Specifically, if we
take the histogram distribution of depth value in Fig-
ure 2 as a probability density function, our approach
is to project cardinal depth values onto its cumula-
tive distribution function. The new depth is denoted
depu and is defined as:

depu(c) =
∑c′∈WN |{c′ : dep(c′)≤ dep(c)}|

|WN|

Here, dep(·) is the original depth value, and WN is
the set of all nodes in WordNet. The resulting depth
values not only reflect the flat ends, but also preserve
linearity for the depth value range in the middle. In
comparison with Table 1), correlation between depu
and similarity increases over the original depth val-
ues on two of the three data sets (first row in Table
2 and decreases on the RG set. Later, in Section 5,
we show how these marginal improvements translate
into better similarity measures with statistical signif-
icance.

4.2 Density

In theory, a procedure analogous to the above cumu-
lative definition can also be applied to density, i.e.,
by projecting the original values onto the cumula-
tive distribution function. However, due to the Zip-
fian nature of density’s histogram distribution (Fig-
ure 4, in contrast to Gaussian for depth in Figure
2), this is essentially to collapse most density values

Figure 4: Histogram of density in WordNet.

into a very small number of discrete values (which
correspond to the original density of 1 to 3). Ex-
periments show that it does not help in improving
correlation with similarity scores (second row in Ta-
ble 2 for denu): correlation remains the same on MC
and RG, and decreases slightly on FG.

We therefore resort to addressing the issue of in-
formation loss on specificity by inheritance. Intu-
itively, the idea is to ensure that a node be assigned
no less density mass than its parent node(s). In the
“piano” example (Section 3.2), the concept piano is
highly specific due to its large number of siblings
under the parent node percussion instruments. Con-
sequently, the density of its child nodes upright pi-
ano and grand piano should inherit its specificity on
top of their own.

Formally, we redefine density recursively as fol-
lows:

deni(r) = 0

deni(c) =
∑h∈hyper(c) deni(h)

|hyper(c)| + den(c)

where r is the root of WordNet hierarchy (with no
hypernym), and hyper(·) is the set of hypernyms of a
given concept. The first term is the inheritance part,
normalized over all hypernyms of c in case of mul-
tiple inheritance, and the second term is the original
value of density.

The resulting density values correlate signifi-
cantly better with similarity. As shown in row 3
in Table 2, the correlation coefficients are about
tripled on all three data sets with the new density
definition deni, and the significance of correlation
is greatly improved as well (from non-correlating or
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marginally correlating to strongly significantly cor-
relating on all three data sets).

5 Using the New Definitions in Semantic
Similarity Measures

In this section, we test the effectiveness of the new
definitions of depth and density by using them in
WordNet-based semantic similarity measures. The
two similarity measures we experiment with are that
of Wu and Palmer (1994) and Jiang and Conrath
(1997). The first one used depth only, and the second
one used both depth and density.

The task is to correlate the similarity measures
with human judgment on similarity between word
pairs. We use the same three data sets as in Section
3. despite the fact that MC is a subset of RG data
set, we include both in order to compare with exist-
ing studies.

Correlation coefficient is calculated using Spear-
man’s ρ, although results reported by some earlier
studies used parametric tests such as the Pearson
Correlation Coefficient. The reason for our choice
is that the similarity scores of the word pairs in
these data sets do not necessarily conform to nor-
mal distributions. Rather, we are interested in testing
whether the artificial algorithms would give higher
scores to pairs that are regarded closer in meaning
by human judges. A non-parametric test suits better
for this scenario. And this partly explains why our
re-implementations of the models have lower corre-
lation coefficients than in the original studies.

Note that there are other WordNet-based similar-
ity measures using depth and/or density that we opt
to omit for various reasons. Some of them were not
designed for the particular task at hand (e.g., that of
Sussna, 1993, which gives very poor correlation in
this task). Others use depth of the entire WordNet
hierarchy instead of individual nodes as a scaling
factor (e.g., that of Leacock and Chodorow, 1998),
which is unsuitable for illustrating the improvement
brought about by the new depth and density defini-
tions.

Parameterization of the weighting of depth and
density is a common practice to control their indi-
vidual contribution to the final similarity score (e.g.,
α and β in Equation (2)). Jiang and Conrath already
had separate weights in their original study. In or-

Best Average
MC RB GR MC RB GR

dep 0.7671 0.7824 0.3773 0.7612 0.7686 0.3660
depu 0.7824 0.7912 0.3946 0.7798 0.7810 0.3787

Table 3: Correlation between human judgment and simi-
larity score by Wu and Palmer (1994) using two versions
of depth.

Best Average
MC RB GR MC RB GR

dep,den 0.7875 0.8111 0.3720 0.7689 0.7990 0.3583
depu, den 0.8009 0.8181 0.3804 0.7885 0.8032 0.3669
dep,deni 0.7882 0.8199 0.3803 0.7863 0.8102 0.3689

depu,deni 0.8065 0.8202 0.3818 0.8189 0.8194 0.3715

Table 4: Correlation between human judgment and sim-
ilarity score by Jiang and Conrath (1997) using different
definitions of depth and density.

der to parameterize depth used by Wu and Palmer in
their similarity measure, we also modify Equation
(1) as follows:

sim(c1,c2) =
2 ·depα(c)

len(c1,c)+ len(c2,c)+ 2 ·depα(c)

where depth is raised to the power of α to vary its
contribution to the similarity score.

For a number of combinations of the weighting
parameters, we report both the best performance
and the averaged performance over all the param-
eter combinations. The latter number is meaningful
in that it is a good indication of numerical stability of
the parameterization. In addition, parameterization
is able to generate multiple correlation coefficients,
on which statistical tests can be run in order to show
the significance of improvement. We use the range
from 0 to 5 with step 1 for α and from 0 to 1 with
step 0.1 for β.

Table 3 and 4 list the experiment results. In both
models, the cumulative definition of depth depu con-
sistently improve the performance of the similarity
measures. In the Jiang and Conrath (1997) model,
where density is applicable, the inheritance-based
definition of density deni also results in better cor-
relation with human judgments. The optimal result
is achieved when combining the new definitions of
depth and density (row 4 in Table 4). For average
performance, the improvement of all the new def-
initions over the original definitions is statistically
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significant on all three data sets according to paired
t-test.

6 Conclusions

This study explored effective uses of depth and/or
density in WordNet-based similarity measures. We
started by examining how well these two structural
features correlate with human judgment on word
pair similarities. This direct comparison showed that
depth correlates with similarity only on certain value
ranges, while density does not correlate with human
judgment at all.

Further investigation revealed that the problem for
depth lies in the simplistic representation as its ordi-
nal integer values. The linearity in this representa-
tion fails to take into account the conflated quantity
of depth in the two extreme ends of the depth spec-
trum. For density, a prominent issue is the informa-
tion loss on specificity of WordNet concepts, which
gives an inaccurate density value that is biased by
the idiosyncratic constructions in densely connected
regions in the hierarchy.

We then proposed new definitions of depth and
density to address these issues. For depth, linear-
ity in different value ranges is realistically reflected
by projecting the depth value to its cumulative dis-
tribution function. The loss of specificity informa-
tion in density, on the other hand, is corrected by
allowing concepts to inherit specificity information
from their parent nodes. The new definitions show
significant improvement in correlation of semantic
similarity given by human judges. In addition, when
used in existing WordNet-based similarity measures,
they consistently improve performance and numeri-
cal stability of the parameterization of the two fea-
tures.

The notions of depth and density pertain to any
hierarchical structure like WordNet, which suggests
various extensions of this work. A natural next step
of the current work is to apply the same idea to se-
mantic taxonomies in languages other than English
with available similarity judgments are also avail-
able. Extrinsic tasks using WordNet-based semantic
similarity can potentially benefit from these refined
notions of depth and density as well.
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Abstract

This paper presents a novel method for the com-
putation of word meaning in context. We make
use of a factorization model in which words, to-
gether with their window-based context words
and their dependency relations, are linked to
latent dimensions. The factorization model al-
lows us to determine which dimensions are im-
portant for a particular context, and adapt the
dependency-based feature vector of the word
accordingly. The evaluation on a lexical substi-
tution task – carried out for both English and
French – indicates that our approach is able to
reach better results than state-of-the-art meth-
ods in lexical substitution, while at the same
time providing more accurate meaning repre-
sentations.

1 Introduction

According to the distributional hypothesis of meaning
(Harris, 1954), words that occur in similar contexts
tend to be semantically similar. In the spirit of this by
now well-known adage, numerous algorithms have
sprouted up that try to capture the semantics of words
by looking at their distribution in texts, and compar-
ing those distributions in a vector space model.

Up till now, the majority of computational ap-
proaches to semantic similarity represent the mean-
ing of a word as the aggregate of the word’s contexts,
and hence do not differentiate between the different
senses of a word. The meaning of a word, however, is
largely dependent on the particular context in which
it appears. Take for example the word work in sen-
tences (1) and (2).

(1) The painter’s recent work is a classic example
of art brut.

(2) Equal pay for equal work!

The meaning of work is quite different in both sen-
tences. In sentence (1), work refers to the product of a
creative act, viz. a painting. In sentence (2), it refers
to labour carried out as a source of income. The
NLP community’s standard answer to the ambiguity
problem has always been some flavour of word sense
disambiguation (WSD), which in its standard form
boils down to choosing the best-possible fit from a
pre-defined sense inventory. In recent years, it has
become clear that this is in fact a very hard task to
solve for computers and humans alike (Ide and Wilks,
2006; Erk et al., 2009; Erk, 2010).

With these findings in mind, researchers have
started looking at different methods to tackle lan-
guage’s ambiguity, ranging from coarser-grained
sense inventories (Hovy et al., 2006) and graded
sense assignment (Erk and McCarthy, 2009), over
word sense induction (Schütze, 1998; Pantel and Lin,
2002; Agirre et al., 2006), to the computation of indi-
vidual word meaning in context (Erk and Padó, 2008;
Thater et al., 2010; Dinu and Lapata, 2010). This
research inscribes itself in the same line of thought,
in which the meaning disambiguation of a word is
not just the assignment of a pre-defined sense; in-
stead, the original meaning representation of a word
is adapted ‘on the fly’, according to – and specifi-
cally tailored for – the particular context in which
it appears. To be able to do so, we build a factor-
ization model in which words, together with their
window-based context words and their dependency
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relations, are linked to latent dimensions. The factor-
ization model allows us to determine which dimen-
sions are important for a particular context, and adapt
the dependency-based feature vector of the word ac-
cordingly. The evaluation on a lexical substitution
task – carried out for both English and French – indi-
cates that our method is able to reach better results
than state-of-the-art methods in lexical substitution,
while at the same time providing more accurate mean-
ing representations.

The remainder of this paper is organized as follows.
In section 2, we present some earlier work that is
related to the research presented here. Section 3
describes the methodology of our method, focusing
on the factorization model, and the computation of
meaning in context. Section 4 presents a thorough
evaluation on a lexical substitution task, both for
English and French. The last section then draws
conclusions, and presents a number of topics that
deserve further exploration.

2 Related work

One of the best known computational models of se-
mantic similarity is latent semantic analysis — LSA

(Landauer and Dumais, 1997; Landauer et al., 1998).
In LSA, a term-document matrix is created, that con-
tains the frequency of each word in a particular doc-
ument. This matrix is then decomposed into three
other matrices with a mathematical factorization tech-
nique called singular value decomposition (SVD).
The most important dimensions that come out of the
SVD are said to represent latent semantic dimensions,
according to which nouns and documents can be rep-
resented more efficiently. Our model also applies
a factorization technique (albeit a different one) in
order to find a reduced semantic space.

The nature of a word’s context is a determining
factor in the kind of the semantic similarity that is in-
duced. A broad context window (e.g. a paragraph or
document) yields broad, topical similarity, whereas
a small context window yields tight, synonym-like
similarity. This has lead a number of researchers
(e.g. Lin (1998)) to use the dependency relations that
a particular word takes part in as context features.
An overview of dependency-based semantic space
models is given in Padó and Lapata (2007).

A number of researchers have exploited the no-

tion of context to differentiate between the different
senses of a word in an unsupervised way (a task la-
beled word sense induction or WSI). Schütze (1998)
proposed a context-clustering approach, in which
context vectors are created for the different instances
of a particular word, and those contexts are grouped
into a number of clusters, representing the different
senses of the word. The context vectors are rep-
resented as second-order co-occurrences (i.e. the
contexts of the target word are similar if the words
they in turn co-occur with are similar). Van de Cruys
(2008) proposed a model for sense induction based
on latent semantic dimensions. Using a factorization
technique based on non-negative matrix factorization,
the model induces a latent semantic space according
to which both dependency features and broad con-
textual features are classified. Using the latent space,
the model is able to discriminate between different
word senses. Our approach makes use of a simi-
lar factorization model, but we extend the approach
with a probabilistic framework that is able to adapt
the original vector according to the context of the
instance.

Recently, a number of models emerged that aim
to model the individual meaning of words in context.
Erk and Padó (2008, 2009) make use of selectional
preferences to express the meaning of a word in con-
text; the meaning of a word in the presence of an
argument is computed by multiplying the word’s vec-
tor with a vector that captures the inverse selectional
preferences of the argument. Thater et al. (2009) and
Thater et al. (2010) extend the approach based on se-
lectional preferences by incorporating second-order
co-occurrences in their model; their model allows
first-order co-occurrences to act as a filter upon the
second-order vector space, which allows for the com-
putation of meaning in context.

Erk and Padó (2010) propose an exemplar-based
approach, in which the meaning of a word in context
is represented by the activated exemplars that are
most similar to it. And Mitchell and Lapata (2008)
propose a model for vector composition, focusing on
the different functions that might be used to combine
the constituent vectors. Their results indicate that
a model based on pointwise multiplication achieves
better results than models based on vector addition.

Finally, Dinu and Lapata (2010) propose a proba-
bilistic framework that models the meaning of words
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as a probability distribution over latent dimensions
(‘senses’). Contextualized meaning is then mod-
eled as a change in the original sense distribution.
The model presented in this paper bears some resem-
blances to their approach; however, while their ap-
proach computes the contextualized meaning directly
within the latent space, our model exploits the latent
space to determine the features that are important
for a particular context, and adapt the original (out-
of-context) dependency-based feature vector of the
target word accordingly. This allows for a more pre-
cise and more distinct computation of word meaning
in context. Secondly, Dinu and Lapata use window-
based context features to build their latent model,
while our approach combines both window-based
and dependency-based features.

3 Methodology

3.1 Non-negative Matrix Factorization

Our model uses non-negative matrix factorization
(Lee and Seung, 2000) in order to find latent dimen-
sions. There are a number of reasons to prefer NMF

over the better known singular value decomposition
used in LSA. First of all, NMF allows us to mini-
mize the Kullback-Leibler divergence as an objec-
tive function, whereas SVD minimizes the Euclidean
distance. The Kullback-Leibler divergence is better
suited for language phenomena. Minimizing the Eu-
clidean distance requires normally distributed data,
and language phenomena are typically not normally
distributed. Secondly, the non-negative nature of
the factorization ensures that only additive and no
subtractive relations are allowed. This proves partic-
ularly useful for the extraction of semantic dimen-
sions, so that the NMF model is able to extract much
more clear-cut dimensions than an SVD model. And
thirdly, the non-negative property allows the resulting
model to be interpreted probabilistically, which is not
straightforward with an SVD factorization.

The key idea is that a non-negative matrix A is
factorized into two other non-negative matrices, W
and H

Ai×j ≈Wi×kHk×j (1)

where k is much smaller than i, j so that both in-
stances and features are expressed in terms of a few

components. Non-negative matrix factorization en-
forces the constraint that all three matrices must be
non-negative, so all elements must be greater than or
equal to zero.

Using the minimization of the Kullback-Leibler di-
vergence as an objective function, we want to find the
matrices W and H for which the Kullback-Leibler
divergence between A and WH (the multiplication
of W and H) is the smallest. This factorization is
carried out through the iterative application of update
rules. Matrices W and H are randomly initialized,
and the rules in 2 and 3 are iteratively applied – alter-
nating between them. In each iteration, each vector is
adequately normalized, so that all dimension values
sum to 1.

Haµ ← Haµ

∑
iWia

Aiµ

(WH)iµ∑
kWka

(2)

Wia ←Wia

∑
µHaµ

Aiµ

(WH)iµ∑
vHav

(3)

3.2 Combining syntax and context words
Using an extension of non-negative matrix factor-
ization (Van de Cruys, 2008), it is possible to
jointly induce latent factors for three different modes:
words, their window-based context words, and their
dependency-based context features. As input to
the algorithm, three matrices are constructed that
capture the pairwise co-occurrence frequencies for
the different modes. The first matrix contains co-
occurrence frequencies of words cross-classified
by dependency-based features, the second matrix
contains co-occurrence frequencies of words cross-
classified by words that appear in the word’s context
window, and the third matrix contains co-occurrence
frequencies of dependency-based features cross-
classified by co-occurring context words. NMF is
then applied to the three matrices, and the separate
factorizations are interleaved (i.e. the results of the
former factorization are used to initialize the factor-
ization of the next matrix). A graphical represen-
tation of the interleaved factorization algorithm is
given in figure 1.

When the factorization is finished, the three dif-
ferent modes (words, window-based context words
and dependency-based features) are all represented
according to a limited number of latent factors.
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Figure 1: A graphical representation of the interleaved
NMF

The factorization that comes out of the NMF model
can be interpreted probabilistically (Gaussier and
Goutte, 2005; Ding et al., 2008). More specifically,
we can transform the factorization into a standard
latent variable model of the form

p(wi, dj) =
K∑

z=1

p(z)p(wi|z)p(dj |z) (4)

by introducing two K ×K diagonal scaling matrices
X and Y, such that Xkk =

∑
iWik and Ykk =∑

j Hkj . The factorization WH can then be rewritten
as

WH = (WX−1X)(YY−1H)

= (WX−1)(XY)(Y−1H)
(5)

such that WX−1 represents p(wi|z), (Y−1H)T rep-
resents p(dj |z), and XY represents p(z). Using
Bayes’ theorem, it is now straightforward to deter-
mine p(z|wi) and p(z|dj).

p(z|wi) =
p(wi|z)p(z)

p(wi)
(6)

p(z|dj) =
p(dj |z)p(z)

p(dj)
(7)

3.3 Meaning in Context
3.3.1 Overview

Using the results of the factorization model de-
scribed above, we can now adapt a word’s feature vec-

tor according to the context in which it appears. Intu-
itively, the contextual features of the word (i.e. the
window-based context words or dependency-based
context features) pinpoint the important semantic di-
mensions of the particular instance, creating a proba-
bility distribution over latent factors. For a number of
context words of a particular instance, we determine
the probability distribution over latent factors given
the context, p(z|C), as the average of the context
words’ probability distributions over latent factors
(equation 8).

p(z|C) =

∑
wi∈C p(z|wi)
|C| (8)

The probability distribution over latent factors
given a number of dependency-based context features
can be computed in a similar fashion, replacing wi
with dj . Additionally, this step allows us to combine
both windows-based context words and dependency-
based context features in order to determine the latent
probability distribution (e.g. by taking a linear com-
bination).

The resulting probability distribution over latent
factors can be interpreted as a semantic fingerprint of
the passage in which the target word appears. Using
this fingerprint, we can now determine a new prob-
ability distribution over dependency features given
the context.

p(d|C) = p(z|C)p(d|z) (9)

The last step is to weight the original probability
vector of the word according to the probability vector
of the dependency features given the word’s context,
by taking the pointwise multiplication of probability
vectors p(d|wi) and p(d|C).

p(d|wi, C) = p(d|wi) · p(d|C) (10)

Note that this final step is a crucial one in our ap-
proach. We do not just build a model based on latent
factors, but we use the latent factors to determine
which of the features in the original word vector are
the salient ones given a particular context. This al-
lows us to compute an accurate adaptation of the
original word vector in context.

Also note the resemblance to Mitchell and Lap-
ata’s best scoring vector composition model which,
likewise, uses pointwise multiplication. However,
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the model presented here has two advantages. First
of all, it allows to take multiple context features into
account, each of which contributes to the probability
distribution over latent factors. Secondly, the target
word and its features do not need to live in the same
vector space (i.e. they do not need to be defined ac-
cording to the same features), as the connections and
the appropriate weightings are determined through
the latent model.

3.3.2 Example
Let us exemplify the procedure with an example.

Say we want to compute the distributionally similar
words to the noun record in the context of example
sentences (3) and (4).

(3) Jack is listening to a record.

(4) Jill updated the record.

First, we extract the context features for both in-
stances, in this case C1 = {listen−1prep(to)} for sen-

tence (3), and C2 = {update−1obj} for sentence (4).1

Next, we compute p(z|C1) and p(z|C2) – the proba-
bility distributions over latent factors given the con-
text – by averaging over the latent probability dis-
tributions of the individual context features.2 Using
these probability distributions over latent factors, we
can now determine the probability of each depen-
dency feature given the different contexts – p(d|C1)
and p(d|C2).

The former step yields a general probability dis-
tribution over dependency features that tells us how
likely a particular dependency feature is given the
context that our target word appears in. Our last step
is now to weight the original probability vector of
the target word (the aggregate of dependency-based
context features over all contexts of the target word)
according to the new distribution given the context
in which the target word appears. For the first sen-
tence, features associated with the music sense of
record (or more specifically, the dependency features
associated with latent factors that are related to the
feature {listen−1prep(to)}) will be emphasized, while

1In this example we use dependency features, but the compu-
tations are similar for window-based context words.

2In this case, the sets of context features contain only one
item, so the average probability distribution of the sets is just the
latent probability distribution of their respective item.

features associated with unrelated latent factors are
leveled out. For the second sentence, features that
are associated with the administrative sense of record
(dependency features associated with latent factors
that are related to the feature {update−1obj}) are em-
phasized, while unrelated features are played down.

We can now return to our original matrix A and
compute the top similar words for the two adapted
vectors of record given the different contexts, which
yields the results presented below.

1. recordN , C1: album, song, recording, track, cd

2. recordN , C2: file, datum, document, database,
list

4 Evaluation

In this section, we present a thorough evaluation of
the method described above, and compare it with
related methods for meaning computation in context.
In order to test the applicability of the method to
multiple languages, we present evaluation results for
both English and French.

4.1 Datasets

For English, we make use of the SEMEVAL 2007 En-
glish Lexical Substitution task (McCarthy and Nav-
igli, 2007; McCarthy and Navigli, 2009). The task’s
goal is to find suitable substitutes for a target word in
a particular context. The complete data set contains
200 target words (about 50 for each part of speech,
viz. nouns, verbs, adjectives, and adverbs). Each
target word occurs in 10 different sentences, which
yields a total of 2000 sentences. Five annotators pro-
vided suitable substitutes for each target word in the
different contexts.

For French, we developed a small-scale lexical sub-
stitution task ourselves, closely following the guide-
lines of the original English task. We manually se-
lected 10 ambiguous French nouns, and for each noun
we selected 10 different sentences from the FRWaC

corpus (Baroni et al., 2009). Four different native
French speakers were then asked to provide suitable
substitutes for the nouns in context.3

3The task is provided as supplementary material to this paper;
it is also available from the first author’s website.
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4.2 Implementational details

The model for English has been trained on part of the
UKWaC corpus (Baroni et al., 2009), covering about
500M words. The corpus has been part of speech
tagged and lemmatized with Stanford Part-Of-Speech
Tagger (Toutanova and Manning, 2000; Toutanova
et al., 2003), and parsed with MaltParser (Nivre et
al., 2006) trained on sections 2-21 of the Wall Street
Journal section of the Penn Treebank extended with
about 4000 questions from the QuestionBank4, so
that dependency triples could be extracted. The sen-
tences of the English lexical substitution task have
been tagged, lemmatized and parsed in the same way.
The model for French has been trained on the French
version of Wikipedia (± 100M words), parsed with
the FRMG parser (Villemonte de La Clergerie, 2010)
for French.

For English, we built different models for each
part of speech (nouns, verbs, adjectives and adverbs),
which yields four models in total. For each model, the
matrices needed for our interleaved NMF factoriza-
tion are extracted from the corpus. The noun model,
for example, was built using 5K nouns, 80K depen-
dency relations, and 2K context words5 (excluding
stop words) with highest frequency in the training
set, which yields matrices of 5K nouns × 80K de-
pendency relations, 5K nouns × 2K context words,
and 80K dependency relations × 2K context words.
The models for the three other parts of speech were
constructed in a similar vein. For French, we only
constructed a model for nouns, as our lexical substi-
tution task for French is limited to this part of speech.

The interleaved NMF model was carried out using
K = 600 (the number of factorized dimensions in
the model), and applying 100 iterations.6 The inter-
leaved NMF algorithm was implemented in Matlab;
the preprocessing scripts and scripts for vector com-
putation in context were written in Python. Cosine
was used as a similarity measure.

4http://maltparser.org/mco/english_
parser/engmalt.html

5We used a fairly large, paragraph-like window of four sen-
tences.

6We experimented with different values (in the range 300–
1500) for K, but the models did not seem to improve much
beyond K = 600; hence, we stuck with 600 factors, due to
speed and memory advantages of a lower number of factors.

4.3 Measures

Up till now, most researchers have interpreted the
lexical substitution task as a ranking problem, in
which the possible substitutes are given beforehand
and the goal is to rank the substitutes according to
their suitability in a particular context, so that sound
substitutes are given a higher rank than their non-
suitable counterparts. This means that all possible
substitutes for a given target word (extracted from the
gold standard) are lumped together, and the system
then has to produce a ranking for the complete set of
substitutes.

We also adopt this approach in our evaluation
framework, but we complement it with the original
evaluation measures of the lexical substitution task,
in which the system is not given a list of possible sub-
stitutes beforehand, but has to come up with the suit-
able candidates itself. This is a much harder task, but
we believe that such an approach is more compelling
in assessing the system’s ability to induce a proper
meaning representation for word usage in context.
We coin the former approach paraphrase ranking,
and the latter one paraphrase induction. In the next
paragraphs, we will describe the actual evaluation
measures that have been used for both approaches.

Paraphrase ranking Following Dinu and Lapata
(2010), we compare the ranking produced by our
model with the gold standard ranking using Kendall’s
τb (which is adjusted for ties). For reasons of com-
parison, we also compute general average precision
(GAP, Kishida (2005)), which was used by Erk and
Padó (2010) and Thater et al. (2010) to evaluate their
rankings. Differences between models are tested for
significance using stratified shuffling (Yeh, 2000),
using a standard number of 10000 iterations.

We compare the results for paraphrase ranking to
two different baselines. The first baseline is a ran-
dom one, in which the gold standard is compared
to an arbitrary ranking. The second baseline is a
dependency-based vector space model that does not
take the context of the particular instance into ac-
count (and thus returns the same ranking for each
instance of the target word). This is a fairly competi-
tive baseline, as noted by other researchers (Erk and
Padó, 2008; Thater et al., 2009; Dinu and Lapata,
2010).
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Paraphrase induction To evaluate the system’s
ability to come up with suitable substitutes from
scratch, we use the measures designed to evaluate
systems that took part in the original English lexical
substitution task (McCarthy and Navigli, 2007). Two
different measures were used, which were coined
best and out-of-ten (oot). The strict best measure
allows the system to give as many candidate substi-
tutes as it considers appropriate, but the credit for
each correct substitute is divided by the total number
of guesses. Recall is then calculated as the average
annotator response frequency of substitutes found by
the system over all items T.

Rbest =

∑
s∈M∩G f(s)

|M | ·∑s∈G f(s)
(11)

whereM is the system’s candidate list7,G is the gold-
standard data, and f(s) is the annotator response
frequency of the candidate.

The out-of-ten measure is more liberal; it allows
the system to give up to ten substitutes, and the credit
for each correct substitute is not divided by the total
number of guesses. The more liberal measure was
introduced to account for the fact that the lexical
substitution task’s gold standard is susceptible to a
considerate amount of variation, and there is only a
limited number of annotators.

P10 =

∑
s∈M∩G f(s)∑
s∈G f(s)

(12)

where M is the system’s list of 10 candidates, and
G and f(s) are the same as above. Because we only
use the best guess with Rbest, the two measures are
exactly the same except for the number of candidates
M .

4.4 Results
4.4.1 English

Table 1 presents the paraphrase ranking results of
our approach, comparing them to the two baselines
and to a number of previous approaches to meaning
computation in context.

The first two models represent our baselines. The
first baseline is the random baseline, where the can-
didate substitutes are ranked randomly (τb close to

7In our evaluations, we calculate best using the system’s best
guess only, so the candidate list contains only one item.

model τb GAP

random -0.61 29.98
vectordep 16.57 45.08

EP09 – 32.2 H

EP10 – 39.9 H

TFP – 45.94H

DL 16.56 41.68

NMFcontext 20.64?? 47.60??

NMFdep 22.49?? 48.97??

NMFc+d 22.59?? 49.02??

Table 1: Kendall’s τb and GAP paraphrase ranking scores
for the English lexical substitution task. Scores marked
with ‘H’ are copied from the authors’ respective papers.
Scores marked with ‘??’ are statistically significant with
p < 0.01 compared to the second baseline.

zero indicates that there is no correlation). The sec-
ond baseline is a standard dependency-based vector
space model, which yields the same ranking for all
instances of a target word. Note that the second base-
line is a rather competitive one.

The next four models represent previous ap-
proaches to meaning computation in context. EP09
is Erk and Pado’s (2009) selectional preference ap-
proach; EP10 is Erk and Pado’s (2010) exemplar-
based approach; TFP stands for Thater et al.’s (2010)
approach; and DL is Dinu and Lapata’s (2010) latent
modeling approach. The results are reproduced from
their respective papers, except for Dinu and Lapata’s
approach, which we reimplemented ourselves.8 Note
that the reproduced results (EP09, EP10 and TFP) are
not entirely comparable, because the authors only use
a subset of the lexical substitution task.

The last three models are instantiations of our ap-
proach: NMFcontext is a model that uses window-
based context features, NMFdep is a model that uses
dependency-based context features, and NMFc+d is
a model that uses a linear combination of window-
based and dependency-based context features, giving
equal weight to both.

The three instantiations of our approach reach bet-
ter results than all previous approaches. Moreover,
our approach is the only one able to significantly

8The original paper reports a slightly lower τb of 16.01 for
their best scoring model.
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beat our second (competitive) baseline of a stan-
dard dependency-based vector model. Comparing
our three instantiations, the model that combines
window-based context and dependency-based con-
text scores best, closely followed by the dependency-
based model. The model that only uses window-
based context gets the lowest score of the three, but
is still fairly competitive compared to the previous
approaches. The differences between the models are
statistically significant (p < 0.01), except for the
difference between NMFdep and NMFc+d.

model n v a r

vectordep 15.85 11.68 16.71 25.29

NMFcontext 20.58 16.24 21.00 27.22
NMFdep 21.96 17.33 24.57 28.16
NMFc+d 22.68 17.47 23.84 28.66

Table 2: Kendall’s τb paraphrase ranking scores for the
English lexical substitution task across different parts of
speech

Table 2 shows the performance of the three model
instantiations on paraphrase ranking across different
parts of speech. The results largely confirm tenden-
cies reported by other researchers (cfr. Dinu and
Lapata (2010)), viz. that verbs are the most difficult,
followed by nouns and adjectives. These parts of
speech also benefit the most from the use of a contex-
tualized model. Adverbs are easier, but there is less
to be gained from using contextualized models.

model Rbest P10

vectordep 8.78 30.21
DL 1.06 7.59

KU 20.65 46.15
IRST2 20.33 68.90

NMFcontext 8.81 30.49
NMFdep 7.73 26.92
NMFc+d 8.96 29.26

Table 3: Rbest and P10 paraphrase induction scores for
the English lexical substitution task

Table 3 shows the performance of the different
models on the paraphrase induction task. Note

once again that our baseline vectordep – a simple
dependency-based vector space model – is a highly
competitive one. NMFcontext and NMFc+d are able to
reach marginally better results, but the differences are
not statistically significant. However, all of our mod-
els are able to reach much better results than Dinu
and Lapata’s approach. The results indicate that our
approach, after vector adaptation in context, is still
able to provide accurate similarity calculations across
the complete word space. While other algorithms are
able to rank candidate substitutes at the expense of
accurate similarity calculations, our approach is able
to do both. This is one of the important advantages
of our approach.

For reasons of comparison, we also included the
scores of the best performing models that partici-
pated in the SEMEVAL 2007 lexical substitution task
(KU (Yuret, 2007) and IRST2 (Giuliano et al., 2007),
which got the best scores for Rbest and P10, respec-
tively). These models reach better scores compared
to our models. Note, however, that all participants
of the SEMEVAL 2007 lexical substitution task relied
on a predefined sense inventory (i.e. WordNet, or
a machine readable thesaurus). Our system, on the
other hand, induces paraphrases in a fully unsuper-
vised way. To our knowledge, this is the first time a
fully unsupervised system is tested on the paraphrase
induction task.

model n v a r

vectordep 31.66 23.53 29.91 38.43

NMFcontext 33.73?? 25.21? 28.58 36.45
NMFdep 31.40 25.97?? 20.56 31.48
NMFc+d 33.37? 25.99?? 24.20 35.81

Table 4: P10 paraphrase induction scores for the English
lexical substitution task across different parts of speech.
Scores marked with ‘??’ and ‘?’ are statistically significant
with respectively p < 0.01 and p < 0.05 compared to the
baseline.

Table 4 presents the results for paraphrase induc-
tion (oot) across the different parts of speech. The
results indicate that paraphrase induction works best
for nouns and verbs, with statistically significant im-
provements over the baseline. The differences among
the models themselves are not significant. Adjectives
and adverbs yield lower scores, indicating that their
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contextualization yields less precise vectors for mean-
ing computation. Note, however, that the NMFcontext
model is still quite apt for meaning computation,
yielding results that are only slightly lower than the
dependency-based vector space model.

4.4.2 French
This section presents the results on the French lex-

ical substitution task. Table 5 presents the results for
paraphrase ranking, while table 6 shows the models’
performance on the paraphrase induction task.

model Kendall’s τb GAP

vectordep 7.79 36.46
DL 17.99 41.73

NMFcontext 18.63 44.96
NMFdep 17.15 44.66
NMFc+d 18.40 43.14

Table 5: Kendall’s τb and GAP paraphrase ranking scores
for the French lexical substitution task

The results for paraphrase ranking in French (ta-
ble 5) show similar tendencies as the results for En-
glish: all of our models are able to improve signifi-
cantly over the dependency-based vector space base-
line. Note, however, thar our models generally score
a bit lower compared to the English results. This drop
in performance is not present for Dinu and Lapata’s
model. The difference might be due to the differ-
ence in corpora size: for the method to operate at full
power, we need to make a good estimate of the co-
occurrences of three modes (words, window-based
context words and dependency-based features), and
thus our methods requires a significant amount of
data. Nevertheless, our approach still yields the best
results, with NMFcontext as the best scoring model.

Finally, the results for paraphrase induction in
French (table 6) interestingly show a significant and
large improvement over the baseline. The improve-
ments indicate once again that the models are able
to carry out precise similarity computations over the
whole word space, while at the same time providing
an adequately adapted contextualized meaning vector.
Dinu and Lapata’s model, which performs similarity
calculations in the latent space, is not able to provide
accurate word vectors, and thus perform worse at the
paraphrase induction task.

model Rbest P10

vectordep 6.38 24.43
DL 0.50 5.34

NMFcontext 10.71 31.42
NMFdep 9.65 28.52
NMFc+d 10.64 35.32

Table 6: Rbest and P10 paraphrase induction scores for
the French lexical substitution task

5 Conclusion

In this paper, we presented a novel method for the
modeling of word meaning in context. We make use
of a factorization model based on non-negative ma-
trix factorization, in which words, together with their
window-based context words and their dependency
relations, are linked to latent dimensions. The factor-
ization model allows us to determine which particular
dimensions are important for a target word in a partic-
ular context. A key feature of the algorithm is that we
adapt the original dependency-based feature vector
of the target word through the latent semantic space.
By doing so, our model is able to make accurate simi-
larity calculations for word meaning in context across
the whole word space. Our evaluation shows that the
approach presented here is able to improve upon the
state-of-the art performance on paraphrase ranking.
Moreover, our approach scores well for both para-
phrase ranking and paraphrase induction, whereas
previous approaches only seem capable of improving
performance on the former task at the expense of the
latter.

During our research, a number of topics surfaced
that we consider worth exploring in the future. First
of all, we would like to further investigate the opti-
mal configuration for combining window-based and
dependency-based contexts. At the moment, the per-
formance of the combined model does not yield a
uniform picture. The results might improve further
if window-based context and dependency-based con-
text are combined in an optimal way. Secondly, we
would like to subject our approach to further evalu-
ation, in particular on a number of different evalua-
tion tasks, such as semantic compositionality. And
thirdly, we would like to transfer the general idea
of the approach presented in this paper to a tensor-
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based framework (which is able to capture the multi-
way co-occurrences of words, together with their
window-based and dependency-based context fea-
tures, in a natural way) and investigate whether such
a framework proves beneficial for the modeling of
word meaning in context.
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Abstract

Most previous research on verb clustering has
focussed on acquiring flat classifications from
corpus data, although many manually built
classifications are taxonomic in nature. Also
Natural Language Processing (NLP) applica-
tions benefit from taxonomic classifications
because they vary in terms of the granularity
they require from a classification. We intro-
duce a new clustering method called Hierar-
chical Graph Factorization Clustering (HGFC)
and extend it so that it is optimal for the task.
Our results show that HGFC outperforms the
frequently used agglomerative clustering on a
hierarchical test set extracted from VerbNet,
and that it yields state-of-the-art performance
also on a flat test set. We demonstrate how the
method can be used to acquire novel classifi-
cations as well as to extend existing ones on
the basis of some prior knowledge about the
classification.

1 Introduction

A variety of verb classifications have been built to
support NLP tasks. These include syntactic and se-
mantic classifications, as well as ones which in-
tegrate aspects of both (Grishman et al., 1994;
Miller, 1995; Baker et al., 1998; Palmer et al., 2005;
Kipper, 2005; Hovy et al., 2006). Classifications
which integrate a wide range of linguistic proper-
ties can be particularly useful for tasks suffering
from data sparseness. One such classification is
the taxonomy of English verbs proposed by Levin
(1993) which is based on shared (morpho-)syntactic

and semantic properties of verbs. Levin’s taxon-
omy or its extended version in VerbNet (Kipper,
2005) has proved helpful for various NLP applica-
tion tasks, including e.g. parsing, word sense disam-
biguation, semantic role labeling, information ex-
traction, question-answering, and machine transla-
tion (Swier and Stevenson, 2004; Dang, 2004; Shi
and Mihalcea, 2005; Zapirain et al., 2008).

Because verbs change their meaning and be-
haviour across domains, it is important to be able
to tune existing classifications as well to build novel
ones in a cost-effective manner, when required. In
recent years, a variety of approaches have been pro-
posed for automatic induction of Levin style classes
from corpus data which could be used for this pur-
pose (Schulte im Walde, 2006; Joanis et al., 2008;
Sun et al., 2008; Li and Brew, 2008; Korhonen
et al., 2008; Ó Séaghdha and Copestake, 2008; Vla-
chos et al., 2009). The best of such approaches
have yielded promising results. However, they have
mostly focussed on acquiring and evaluating flat
classifications. Levin’s classification is not flat, but
taxonomic in nature, which is practical for NLP pur-
poses since applications differ in terms of the gran-
ularity they require from a classification.

In this paper, we experiment with hierarchical
Levin-style clustering. We adopt as our baseline
method a well-known hierarchical method – ag-
glomerative clustering (AGG) – which has been pre-
viously used to acquire flat Levin-style classifica-
tions (Stevenson and Joanis, 2003) as well as hierar-
chical verb classifications not based on Levin (Fer-
rer, 2004; Schulte im Walde, 2008). The method has
also been popular in the related task of noun clus-
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tering (Ushioda, 1996; Matsuo et al., 2006; Bassiou
and Kotropoulos, 2011).

We introduce then a new method called Hierar-
chical Graph Factorization Clustering (HGFC) (Yu
et al., 2006). This graph-based, probabilistic cluster-
ing algorithm has some clear advantages over AGG

(e.g. it delays the decision on a verb’s cluster mem-
bership at any level until a full graph is available,
minimising the problem of error propagation) and it
has been shown to perform better than several other
hierarchical clustering methods in recent compar-
isons (Yu et al., 2006). The method has been applied
to the identification of social network communities
(Lin et al., 2008), but has not been used (to the best
of our knowledge) in NLP before.

We modify HGFC with a new tree extraction al-
gorithm which ensures a more consistent result, and
we propose two novel extensions to it. The first is a
method for automatically determining the tree struc-
ture (i.e. number of clusters to be produced for each
level of the hierarchy). This avoids the need to pre-
determine the number of clusters manually. The sec-
ond is addition of soft constraints to guide the clus-
tering performance (Vlachos et al., 2009). This is
useful for situations where a partial (e.g. a flat) verb
classification is available and the goal is to extend it.

Adopting a set of lexical and syntactic features
which have performed well in previous works, we
compare the performance of the two methods on test
sets extracted from Levin and VerbNet. When eval-
uated on a flat clustering task, HGFC outperforms
AGG and performs very similarly with the best flat
clustering method reported on the same test set (Sun
and Korhonen, 2009). When evaluated on a hierar-
chical task, HGFC performs considerably better than
AGG at all levels of gold standard classification. The
constrained version of HGFC performs the best, as
expected, demonstrating the usefulness of soft con-
straints for extending partial classifications.

Our qualitative analysis shows that HGFC is ca-
pable of detecting novel information not included in
our gold standards. The unconstrained version can
be used to acquire novel classifications from scratch
while the constrained version can be used to extend
existing ones with additional class members, classes
and levels of hierarchy.

2 Target classification and test sets

The taxonomy of Levin (1993) groups English verbs
(e.g. break, fracture, rip) into classes (e.g. 45.1
Break verbs) on the basis of their shared mean-
ing components and (morpho-)syntactic behaviour,
defined in terms of diathesis alternations (e.g. the
causative/inchoative alternation, where an NP frame
alternates with an intransitive frame: Tony broke the
window ↔ The window broke). It classifies over
3000 verbs in 57 top level classes, some of which
divide further into subclasses. The extended version
of the taxonomy in VerbNet (Kipper, 2005) classifies
5757 verbs. Its 5 level taxonomy includes 101 top
level and 369 subclasses. We used three gold stan-
dards (and corresponding test sets) extracted from
these resources in our experiments:

T1: The first gold standard is a flat gold standard
which includes 13 classes appearing in Levin’s orig-
inal taxonomy (Stevenson and Joanis, 2003). We in-
cluded this small gold standard in our experiments
so that we could compare the flat version of our
method against previously published methods. Fol-
lowing Stevenson and Joanis (2003), we selected 20
verbs from each class which occur at least 100 times
in our corpus. This gave us 260 verbs in total.

T2: The second gold standard is a large, hi-
erarchical gold standard which we extracted from
VerbNet as follows: 1) We removed all the verbs
that have less than 1000 occurrences in our cor-
pus. 2) In order to minimise the problem of pol-
ysemy, we assigned each verb to the class which,
according to VerbNet, corresponds to its predomi-
nant sense in WordNet (Miller, 1995). 3) In order
to minimise the sparse data problem with very fine-
grained classes, we converted the resulting classifi-
cation into a 3-level representation so that the classes
at the 4th and 5th level were combined. For exam-
ple, the sub-classes of Declare verbs (numbered as
29.4.1.1.{1,2,3}) were combined into 29.4.1. 4) The
classes that have fewer than 5 members were dis-
carded. The total number of verb senses in the re-
sulting gold standard is 1750, which is 33.2% of the
verbs in VerbNet. T2 has 51 top level, 117 second
level, and 133 third level classes.

T3: The third gold standard is a subset of T2
where singular classes (top level classes which do
not divide into subclasses) are removed. This gold
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standard was constructed to enable proper evalua-
tion of the constrained version of HGFC (introduced
in the following section) where we want to com-
pare the impact of constraints across several levels
of classification. T3 provides classification of 357
verbs into 11 top level, 14 second level, and 32 third
level classes.

For each verb appearing in T1-T3, we extracted
all the occurrences (up to 10,000) from the British
National Corpus (Leech, 1992) and North American
News Text Corpus (Graff, 1995).

3 Method

3.1 Features and feature extraction

Previous works on Levin style verb classification
have investigated optimal features for this task
(Stevenson and Joanis, 2003; Li and Brew, 2008;
Sun and Korhonen, 2009)). We adopt for our exper-
iments a set of features which have performed well
in recent verb clustering works:
A: Subcategorization frames (SCFs) and their rela-

tive frequencies with individual verbs.
B: A with SCFs parameterized for prepositions.
C: B with SCFs parameterized for subjects appear-

ing in grammatical relations associated with the
verb in parsed data.

D: B with SCFs parameterized for objects appear-
ing in grammatical relations associated with the
verb in parsed data.

These features are purely syntactic. Although
semantic features – verb selectional preferences –
proved the best (when used in combination with syn-
tactic features) in the recent work of Sun and Ko-
rhonen (2009), we left such features for future work
because we noticed that different levels of classifi-
cation are likely to require semantic features at dif-
ferent granularities.

We extracted the syntactic features using the sys-
tem of Preiss et al. (2007). The system tags, lemma-
tizes and parses corpus data using the RASP (Robust
Accurate Statistical Parsing toolkit (Briscoe et al.,
2006)), and on the basis of the resulting grammat-
ical relations, assigns each occurrence of a verb as
a member of one of the 168 verbal SCFs. We pa-
rameterized the SCFs as described above using the
information provided by the system.

3.2 Clustering

We introduce the agglomerative clustering (AGG)
and Hierarchical Graph Factorization Clustering
(HGFC) methods in the following two subsec-
tions, respectively. The subsequent two subsections
present our extensions to HGFC: (i) automatically
determining the cluster structure and (ii) adding soft
constraints to guide clustering performance.

3.2.1 Agglomerative clustering

AGG is a method which treats each verb as a
singleton cluster and then successively merges two
closest clusters until all the clusters have been
merged into one. We used the SciPy’s imple-
mentation (Oliphant, 2007) of the algorithm. The
cluster distance is measured using linkage criteria.
We experimented with four commonly used link-
age criteria: Single, Average, Complete and Ward’s
(Ward Jr., 1963). Ward’s criterion performed the
best and was used in all the experiments in this pa-
per. It measures the increase in variance after two
clusters are merged. The output of AGG tends to
have excessive number of levels. Cut-based meth-
ods (Wu and Leahy, 1993; Shi and Malik, 2000) are
frequently applied to extract a simplified view. We
followed previous verb clustering works and cut the
AGG hierarchy manually.

AGG suffers from two problems. The first is er-
ror propagation. When a verb is misclassified at a
lower level, the error propagates to all the upper lev-
els. The second is local pairwise merging, i.e. the
fact that only two clusters can be combined at any
level. For example, in order to group clusters rep-
resenting Levin classes 9.1, 9.2 and 9.3 into a sin-
gle cluster representing class 9, the method has to
produce intermediate clusters, e.g. 9.{1,2} and 9.3.
Such clusters do not always have a semantic inter-
pretation. Although they can be removed using a
cut-based method, this requires a pre-defined cut-off
value which is difficult to set (Stevenson and Joanis,
2003). In addition, a significant amount of informa-
tion is lost in pair-wise clustering. In the above ex-
ample, only the clusters 9.{1,2} and 9.3 are consid-
ered, while alternative clusters 9.{1,3} and 9.2 are
ignored. Ideally, information about all the possible
intermediate clusters should be aggregated, but this
is intractable in practice.
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3.2.2 Hierarchical Graph Factorization
Clustering

Our new method HGFC derives a probabilistic bi-
partite graph from the similarity matrix (Yu et al.,
2006). The local and global clustering structures are
learned via the random walk properties of the graph.

The method does not suffer from the above prob-
lems with AGG. Firstly, there is no error propagation
because the decision on a verb’s membership at any
level is delayed until the full bipartite graph is avail-
able and until a tree structure can be extracted from
it by aggregating probabilistic information from all
the levels. Secondly, the bipartite graph enables the
construction of a hierarchical structure without any
intermediate classes. For example, we can group
classes 9.{1,2,3} directly into class 9.

We use HGFC with the distributional similarity
measure Jensen-Shannon Divergence (djs(v, v′)).
Given a set of verbs, V = {vn}Nn=1, we
compute a similarity matrix W where Wij =
exp(−djs(v1, v2)). W can be encoded by a undi-
rected graph G (Figure 1(a)), where the verbs are
mapped to vertices and the Wij is the edge weight
between vertices i and j.

The graph G and the cluster structure can be rep-
resented by a bipartite graph K(V,U). V are the
vertices onG. U = {up}mp=1 represent the hiddenm
clusters. For example, looking at Figure 1(b), V on
G can be grouped into three clusters u1, u2 and u3.
The matrix B denotes the n ×m adjacency matrix,
with bip being the connection weight between the
vertex vi and the cluster up. Thus, B represents the
connections between clusters at an upper and lower
level of clustering. A flat clustering algorithm can
be induced by computing B.

The bipartite graph K also induces a similarity
(W ′) between vi and vj : w′ij =

∑m
p=1

bipbjp
λp

=

(BΛ−1BT )ij where Λ = diag(λ1, ..., λm). There-
fore,B can be found by approximating the similarity
matrix W of G using W ′ derived from K. Given a
distance function ζ between two similarity matrices,
B approximates W by minimizing the cost function
ζ(W,BΛ−1BT ). The coupling between B and Λ is
removed by setting H = BΛ−1:

min
H,Λ

ζ(W,HΛHT ), s.t.

n∑

i=1

hip = 1 (1)

We use the divergence distance: ζ(X,Y ) =∑
ij(xij log

xij
yij
−xij+yij). Yu et al. (2006) showed

that this cost function is non-increasing under the
update rule:

h̃ip ∝ hip
∑

j

wij

(HΛHT )ij
λphjp s.t.

∑

i

h̃ip = 1 (2)

λ̃p ∝ λp
∑

j

wij

(HΛHT )ij
hiphjp s.t.

∑

p

λ̃p =
∑

ij

wij (3)

wij can be interpreted as the probability of the di-
rect transition between vi and vj : wij = p(vi, vj),
when

∑
ij wij = 1. bip can be interpreted as:

p(up, uq) = p(up)p(up|uq) =

n∑

i=1

bipbiq
di

= (BTD−1B)pq (4)

D = diag(d1, ..., dn) where di =

m∑

p=0

bip

p(up, uq) is the similarity between the clusters. It
takes into account of a weighted average of contri-
butions from all the data. This is different from the
linkage method where only the data from two clus-
ters are considered.

Given the cluster similarity p(up, uq), we can con-
struct a new graphG1 (Figure 1(d)) with the clusters
U as vertices. The cluster algorithm can be applied
again (Figure 1(e)). This process can go on itera-
tively, leading to a hierarchical graph.

Algorithm 1 HGFC algorithm (Yu et al., 2006)
Require: N verbs V , number of clusters ml for L levels

Compute the similarity matrix W0 from V
Build the graph G0 from W0 , and m0 ← n
for l = 1, 2 to L do

FactorizeGl−1 to obtain bipartite graph Kl with the
adjacency matrix Bl (eq. 1, 2 and 3)
Build a graph Gl with similarity matrix Wl =
BT

l D
−1
l Bl according to equation 4

end for
return BL, BL−1...B1

Additional steps need to be performed in order to
extract a tree from the hierarchical graph. Yu et al.
(2006) performs the extraction via a propagation of
probabilities from the bottom level clusters. For a
verb vi, the probability of assigning it to cluster v(l)p
at level l is given by:
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Figure 1: (a) An undirected graph G representing the similarity matrix; (b) The bipartite graph showing three clusters
on G; (c) The induced clusters U ; (d) The new graph G1 over clusters U ; (e) The new bipartite graph over G1

p(v(l)
p |vi) =

∑

Vl−1

...
∑

V1

p(v(l)
p |v(l−1))...p(v(1)|vi)

= (D
(−1)
1 B1D

−1
2 B2D

−1
3 B3...D

−1
l Bl)ip (5)

This method might not extract a consistent tree
structure, because the cluster membership at the
lower level does not constrain the upper level mem-
bership. This prevented us from extracting a Levin
style hierarchical classification in our initial experi-
ments. For example, where two verbs were grouped
together at a lower level, they could belong to sepa-
rate clusters at an upper level. We therefore propose
a new tree extraction algorithm (Algorithm 2).

The new algorithm starts from the top level bipar-
tite graph, and generates consistent labels for each
level by taking into account of the tree constraints
set at upper levels.

Algorithm 2 Tree extraction algorithm for HGFC

Require: Given N , (Bl,ml) on each level for L levels
On the top level L, collect the labels TL (eq. 5)
Define C to be a (mL−1 ×mL) zero matrix, Cij ← 1,
where i, j = arg maxi,j{BL

ij}
for l = L− 1 to 1 do

for i = 1 to N do
Compute p(vlp|vi) for each cluster p (eq. 5)
tli = argmaxp{p(vlp|vi)|p = 1...ml, Cptl+1

i
6= 0}

end for
Redefine C to be a (ml−1×ml) zero matrix, Cij ←
1, where i, j = arg maxi,j{Bl

ij}
end for
return Tree consistent labels TL, TL−1...T 1

3.2.3 Automatically determining the number of
clusters for HGFC

HGFC needs the number of levels and clusters at
each level as input. However, this information is not
always available (e.g. when the goal is to actually
learn this information automatically). We therefore
propose a method for inferring the cluster structure
from data. As shown in figure 1, a similarity ma-
trix W models one-hop transitions that follow the
links from vertices to neighbors. A walker can also
go to other vertices via multi-hop transitions. Ac-
cording to the chain rule of the Markov process, the
multi-hop transitions indicate a decaying similarity
function on the graph (Yu et al., 2006). After t tran-
sitions, the similarity matrix (Wt) becomes:

Wt = Wt−1D
−1
0 W0

Yu et al. (2006) proved the correspondence be-
tween the HGFC levels (l) and the random walk time:
t = 2l−1. So the vertices at level l induce a sim-
ilarity matrix of verbs after t-hop transitions. The
decaying similarity function captures the different
scales of clustering structure in the data (Azran and
Ghahramani, 2006b). The upper levels would have
a smaller number of clusters which represent a more
global structure. After several levels, all the verbs
are expected to be grouped into one cluster. The
number of levels and clusters at each level can thus
be learned automatically.

We therefore propose a method that uses the de-
caying similarity function to learn the hierarchical
clustering structure. One simple modification to al-
gorithm 1 is to set the number of clusters at level l
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(ml) to be ml−1 − 1. m is denoted as the number
of clusters that have at least one member according
to eq. 5. We start by treating each verb as a cluster
at the bottom level. The algorithm stops when all
the data points are merged into one cluster. The in-
creasingly decaying similarity causes many clusters
to have 0 members especially at lower levels, which
are pruned in the tree extraction.

3.2.4 Adding constraints to HGFC
The basic version of HGFC makes no prior as-

sumptions about the classification. It is useful
for learning novel verb classifications from scratch.
However, when wishing to extend an existing clas-
sification (e.g. VerbNet) it may be desirable to guide
the clustering performance on the basis of informa-
tion that is already known. We propose a constrained
version of HGFC which makes uses of labels at the
bottom level to learn upper level classifications. We
do this by adding soft constraints to clustering, fol-
lowing Vlachos et al. (2009).

We modify the similarity matrix W as follows: If
two verbs have different labels (li 6= lj), the simi-
larity between them is decreased by a factor a, and
a < 1. We set a to 0.5 in the experiments. The re-
sulting tree is generally consistent with the original
classification. The influence of the underlying data
(domain or features) is reduced according to a.

4 Experimental evaluation

We applied the clustering methods introduced in
section 3 to the test sets described in section 2 and
evaluated them both quantitatively and qualitatively,
as described in the subsequent sections.

4.1 Evaluation methods

We used class based accuracy (ACC) and adjusted
rand index (Radj) to evaluate the results on the flat
test set T1 (see section 2 for details of T1-T3).

ACC is the proportion of members of dominant
clusters DOM-CLUSTi within all classes ci.

ACC =

∑C
i=1 verbs in DOM-CLUSTi

number of verbs

The formula of Radj is (Hubert and Arabie, 1985):

Radj =

∑
i,j

(
nij

2

)
−∑i

(
ni·
2

)∑
j

(
n·j
2

)
/
(
n
2

)

1
2 [
∑

i

(
ni·
2

)
+
∑

j

(
n·j
2

)
]−∑i

(
ni·
2

)∑
j

(
n·j
2

)
/
(
n
2

)

where nij is the size of the intersection between
class i and cluster j.

We used normalized mutual information (NMI)
and F-Score (F) to evaluate hierarchical clustering
results on T2 and T3. NMI measures the amount of
statistical information shared by two random vari-
ables representing the clustering result and the gold-
standard labels. Given random variables A and B:

NMI(A,B) =
I(A;B)

[H(A) +H(B)]/2

I(A,B) =
∑

k

∑

j

|(vk ∩ cj |
N

log
N |vk ∩ cj |
|vk||cj |

where |vk ∩ cj | is the number of shared member-
ship between cluster vk and gold-standard class cj .
The normalized variant of mutual information (MI)
enables the comparison of clustering with different
cluster numbers (Manning et al., 2008).

F is the harmonic mean of precision (P) and re-
call (R). P is calculated using modified purity – a
global measure which evaluates the mean precision
of clusters. Each cluster is associated with its preva-
lent class. The number of verbs in a cluster K that
take this class is denoted by nprevalent(K).

mPUR =

∑
nprevalent(ki)>2

nprevalent(ki)

number of verbs

R is calculated using ACC.

F =
2 ·mPUR · ACC
mPUR + ACC

F is not suitable for comparing results with dif-
ferent cluster numbers (Rosenberg and Hirschberg,
2007). Therefore, we only report NMI when the
number of classes in clustering and gold-standard is
substantially different.

Finally, we supplemented quantitative evaluation
with qualitative evaluation of clusters produced by
different methods.

4.2 Quantitative evaluation

We first evaluated AGG and the basic (uncon-
strained) HGFC on the small flat test set T1. The
main purpose of this evaluation was to compare the
results of our methods against previously published
results on the same test set. The number of clus-
ters (K) and levels (L) were inferred automatically
for HGFC as described in section 3.2.3. However, to
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make the results comparable with previously pub-
lished ones, we cut the resulting hierarchy at the
level of closest match (12 clusters) to the K (13) in
the gold-standard. For AGG, we cut the hierarchy at
13 clusters.

Method ACC Radj

HGFC 41.2 17.4
AGG (reproduced) 32.7 9.9
AGG (Stevenson and Joanis (2003) 31.0 9.0

Table 1: Comparison against Stevenson and Joanis
(2003)’s result on T1 (using similar features).

Table 1 shows our results and the results of
Stevenson and Joanis (2003) on T1 when employing
AGG using Ward as the linkage criterion. In this ex-
periment, we used the same feature set as Stevenson
and Joanis (2003) (set B, see section 3.1) and were
therefore able to reproduce their AGG result with a
difference smaller than 2%. When using this simple
feature set, HGFC outperforms the best performing
AGG clearly: 8.5% in ACC and 7.3% in Radj .

We also compared HGFC against the best reported
clustering method on T1 to date – that of spectral
clustering by Sun and Korhonen (2009). We used
the feature sets C and D which are similar to the
features (SCF parameterized by lexical prefences) in
their experiments. HGFC obtains F of 49.93% on T1
which is 5% lower than the result of Sun and Ko-
rhonen (2009). The difference comes from the tree
consistency requirement. When the HGFC is forced
to produce a flat clustering (a one level tree only), it
achieves the F of 52.55% which is very close to the
performance of spectral clustering.

We then evaluated our methods on the hierarchi-
cal test sets T2 and T3. In the first set of experi-
ments, we pre-defined the tree structure for HGFC

by setting L to 3 and K at each level to be the K
in the hierarchical gold standard. The hierarchy pro-
duced by AGG was cut into 3 levels according to Ks
in the gold standard. This enabled direct evaluation
of the results against the 3 level gold standards using
both NMI and F.

The results are reported in tables 2 and 3. In these
tables, Nc is the number of clusters in HGFC cluster-
ing while Nl is the number of classes in the gold
standard (the two do not always correspond per-
fectly because a few clusters have zero members).

Nc Nl
HGFC
unconstrained

AGG

NMI F NMI F
130 133 57.31 36.65 54.22 32.62
114 117 54.67 37.96 51.35 32.44
50 51 37.75 40.00 32.61 32.78

Table 2: Performance on T2 using a pre-defined tree
structure.

Nc Nl
HGFC
unconstrained

HGFC
constrained

AGG

NMI F NMI F NMI F
31 32 51.65 42.01 91.47 92.07 49.70 40.30
15 14 42.75 47.70 82.16 82.80 39.19 43.69
11 11 38.91 51.17 71.69 75.00 34.88 44.80

Table 3: Performance on T3 using a pre-defined tree
structure.

Table 2 compares the results of the unconstrained
version of HGFC against those of AGG on our largest
test set T2. As with T1, HGFC outperforms AGG

clearly. The benefit can now be seen at 3 different
levels of hierarchy. On average, the HGFC outper-
forms AGG 3.5% in NMI and 4.8% in F. The dif-
ference between the methods becomes clearer when
moving towards the upper levels of the hierarchy.

Table 3 shows the results of both unconstrained
and constrained versions of HGFC and those of
AGG on the test set T3 (where singular classes are
removed to enable proper evaluation of the con-
strained method). The results are generally gener-
ally better on this test set than on T2 – which is to be
expected since T3 is a refined subset of T21.

Recall that the constrained version of HGFC learns
the upper levels of classification on the basis of soft
constraints set at the bottom level, as described ear-
lier in section 3.2.4. As a consequence, NMI and F

are both greater than 90% at the bottom level and
the results at the top level are notably lower because
the impact of the constraints degrades the further
away one moves from the bottom level. Yet, the rela-
tively high result across all levels shows that the con-
strained version of HGFC can be employed a useful
method to extend the hierarchical structure of known
classifications.

1NMI is higher on T2, however, because NMI has a higher
baseline for larger number of clusters (Vinh et al., 2009). NMI

is not ideal for comparing the results of T2 and T3.
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T2 T3
Nc Nl HGFC Nc Nl HGFC

148 133 53.26 64 32 54.91
97 117 49.85 35 32 50.83
46 51 33.55 20 14 44.02
19 51 25.80 10 14 34.41
9 51 19.17 6 11 32.27
3 51 13.06

Table 4: NMI of unconstrained HGFC when trees for T2
and T3 are inferred automatically.

Finally, Table 4 shows the results for the uncon-
strained HGFC on T2 and and T3 when the tree struc-
ture is not pre-defined but inferred automatically as
described in section 3.2.3. 6 levels are learned for
T2 and 5 for T3. The number of clusters produced
ranges from 3 to 148 for T2 and from 6 to 64 for
T3. We can see that the automatically detected clus-
ter numbers distribute evenly across different levels.
The scale of the clustering structure is more com-
plete here than in the gold standards.

In the table, Nc indicates the number of clusters
in the inferred tree, while Nl indicates the closest
match to the number of classes in the gold stan-
dard. This evaluation is not fully reliable because
the match between the gold standard and the cluster-
ing is poor at some levels of hierarchy. However, it
is encouraging to see that the results do not drop dra-
matically until the match between the two is really
poor.

4.3 Qualitative evaluation
To gain a better insight into the performance of
HGFC, we conducted further qualitative analysis of
the clusters the two versions of this method pro-
duced for T3. We focussed on the top level of 11
clusters (in the evaluation against the hierarchical
gold standard, see table 3) as the impact of soft con-
straints is the weakest for the constrained method at
this level.

As expected, the constrained HGFC kept many in-
dividual verbs belonging to same Verbnet subclass
together (e.g. verbs enjoy, hate, disdain, regret, love,
despise, detest, dislike, fear for the class 31.2.1) so
that most clusters simply group lower level classes
and their members together. Three nearly clean clus-
ters were produced which only include sub-classes
of the same class (e.g. 31.2.0 and 31.2.1 which both

belong to 31.2 Admire verbs). However, the remain-
ing 8 clusters group together sub-classes (and their
members) belonging to unrelated parent classes. In-
terestingly, 6 of these make both syntactic and se-
mantic sense. For example, several such 37.7 Say
verbs and 29.5 Conjencture verbs are found together
which share the meaning of communication and
which take similar sentential complements.

In contrast, none of the clusters produced by
the unconstrained HGFC represent a single VerbNet
class. The majority represent a high number of
classes and fewer members per class. Yet many of
the clusters make syntactic and semantic sense. A
good example is a cluster which includes member
verbs from 9.7 Spray/Load verbs, 21.2 Carve verbs,
51.3.1 Roll verbs, and 10.4 Wipe verbs. The verbs
included in this cluster share the meaning of specific
type of motion and show similar syntactic behaviour.

Thorough Levin style investigation of especially
the unconstrained method would require looking at
shared diathesis alternations between cluster mem-
bers. We left this for future work. However,
the analysis we conducted confirmed that the con-
strained method could indeed be used for extend-
ing known classifications, while the unconstrained
method is more suitable for acquiring novel classi-
fications from scratch. The errors in clusters pro-
duced by both methods were mostly due to syntactic
idiosyncracy and the lack of semantic information in
clustering. We plan to address the latter problem in
our future work.

5 Discussion and conclusion

We have introduced a new graph-based method –
HGFC – to hierarchical verb clustering which avoids
some of the problems (e.g. error propagation, pair-
wise cluster merging) reported with the frequently
used AGG method. We modified HGFC so that it can
be used to automatically determine the tree struc-
ture for clustering, and proposed two extensions to
it which make it even more suitable for our task. The
first involves automatically determining the number
of clusters to be produced, which is useful when
this is not known in advance. The second involves
adding soft constraints to guide the clustering per-
formance, which is useful when aiming to extend
existing classification.
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The results reported in the previous section are
promising. On a flat test set (T1), the unconstrained
version of HGFC outperforms AGG and performs
very similarly with the best current flat clustering
method (spectral clustering) evaluated on the same
dataset. On the hierarchical test sets (T2 and T3),
the unconstrained and constrained versions of HGFC

outperform AGG clearly at all levels of classification.
The constrained version of HGFC detects the missing
hierarchy from the existing gold standards with high
accuracy. When the number of clusters and levels
is learned automatically, the unconstrained method
produces a multi-level hierarchy. Our evaluation
against a 3-level gold standard shows that such a hi-
erarchy is fairly accurate. Finally, the results from
our qualitative evaluation show that both constrained
and unconstrained versions of HGFC are capable of
learning valuable novel information not included in
the gold standards.

The previous work on Levin style verb classifica-
tion has mostly focussed on flat classifications us-
ing methods suitable for flat clustering (Schulte im
Walde, 2006; Joanis et al., 2008; Sun et al., 2008; Li
and Brew, 2008; Korhonen et al., 2008; Ó Séaghdha
and Copestake, 2008; Vlachos et al., 2009). How-
ever, some works have employed hierarchical clus-
tering as a method to infer flat clustering.

For example, Schulte im Walde and Brew (2002)
employed AGG to initialize the KMeans clustering
for German verbs. This gave better results than
random initialization. Stevenson and Joanis (2003)
used AGG for flat clustering on T1. They cut the hi-
erarchy at the number of classes in the gold standard
and found that it is difficult to automatically deter-
mine a good cut-off. Our evaluation in the previous
section shows that HGFC outperforms their imple-
mentation of AGG.

AGG was also used by Ferrer (2004) who per-
formed hierarchical clustering of 514 Spanish verbs.
The results were evaluated against a hierarchical
gold standard resembling that of Levin’s classifi-
cation in English (Vázquez et al., 2000). Radj of
0.07 was reported for a 15-way classification which
is comparable to the result of Stevenson and Joanis
(2003).

Hierarchical clustering has also been performed
for the related task of semantic verb classification.
For example, Basili et al. (1993) identified the prob-

lems of AGG, and applied a conceptual clustering al-
gorithm (Fisher, 1987) to Italian verbs. They used
semi-automatically acquired semantic roles and the
concept types as features. No quantitative results
were reported. The qualitative evaluation shows that
the resulting clusters are very fine-grained.

Schulte im Walde (2008) performed hierarchical
clustering of German verbs using human verb asso-
ciation as features and AGG as a method. They fo-
cussed on two small collections of 56 and 104 verbs
and evaluated the result against flat gold standard
extracted from GermaNet (Kunze and Lemnitzer,
2002) and German FrameNet (Erk et al., 2003), re-
spectively. They reported F of 62.69% for the 56
verbs, and F of 34.68% for the 104 verbs.

In the future, we plan to extend this research line
in several directions. First, we will try to deter-
mine optimal features for different levels of clus-
tering. For example, the general syntactic features
(e.g. SCF) may perform the best at top levels of a hi-
erarchy while more specific or refined features (e.g.
SCF+pp) may be optimal at lower levels. We also
plan to investigate incorporating semantic features,
like verb selectional preferences, in our feature set.
It is likely that different levels of clustering require
more or less specific selectional preferences. One
way to obtain the latter is hierarchical clustering of
relevant noun data.

In addition, we plan to apply the unconstrained
HGFC to specific domains to investigate its capabil-
ity to learn novel, previously unknown classifica-
tions. As for the constrained version of HGFC, we
will conduct a larger scale experiment on the Verb-
Net data to investigate what kind of upper level hi-
erarchy it can propose for this resource (which cur-
rently has over 100 top level classes).

Finally, we plan to compare HGFC to other hier-
archical clustering methods that are relatively new
to NLP but have proved promising in other fields,
including Bayesian Hierarchical Clustering (Heller
and Ghahramani, 2005; Teh et al., 2008) and the
method of Azran and Ghahramani (2006a) based on
spectral clustering.
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Abstract

A central topic in natural language process-
ing is the design of lexical and syntactic fea-
tures suitable for the target application. In this
paper, we study convolution dependency tree
kernels for automatic engineering of syntactic
and semantic patterns exploiting lexical simi-
larities. We define efficient and powerful ker-
nels for measuring the similarity between de-
pendency structures, whose surface forms of
the lexical nodes are in part or completely dif-
ferent. The experiments with such kernels for
question classification show an unprecedented
results, e.g. 41% of error reduction of the for-
mer state-of-the-art. Additionally, semantic
role classification confirms the benefit of se-
mantic smoothing for dependency kernels.

1 Introduction
A central topic in Natural Language Processing is
the design of lexical and syntactic features suitable
for the target application. The selection of effective
patterns composed of syntactic dependencies and
lexical constraints is typically a complex task.

Additionally, the availability of training data is
usually scarce. This requires the development of
generalized features or the definition of seman-
tic similarities between them, e.g. as proposed in
(Resnik, 1995; Jiang and Conrath, 1997; Schtze,
1998; Pedersen et al., 2004a; Bloehdorn and Mos-
chitti, 2007b; Davis et al., 2007) or in semi-
supervised settings, e.g. (Chapelle et al., 2006).
A semantic similarity can be defined at structural
level over a graph, e.g. (Freeman, 1977; Bunke and
Shearer, 1998; Brandes, 2001; Zhao et al., 2009), as
well as combining structural and lexical similarity

over semantic networks, e.g. (Cowie et al., 1992; Wu
and Palmer, 1994; Resnik, 1995; Jiang and Conrath,
1997; Schtze, 1998; Leacock and Chodorow, 1998;
Pedersen et al., 2004a; Budanitsky and Hirst, 2006).
More recent research also focuses on mechanisms
to define if two structures, e.g. graphs, are enough
similar, as explored in (Mihalcea, 2005; Zhao et al.,
2009; Fürstenau and Lapata, 2009; Navigli and La-
pata, 2010).

On one hand, previous work shows that there is
a substantial lack of automatic methods for engi-
neering lexical/syntactic features (or more in gen-
eral syntactic/semantic similarity). On the other
hand, automatic feature engineering of syntactic or
shallow semantic structures has been carried out
by means of structural kernels, e.g. (Collins and
Duffy, 2002; Kudo and Matsumoto, 2003; Cumby
and Roth, 2003; Cancedda et al., 2003; Daumé III
and Marcu, 2004; Toutanova et al., 2004; Shen et al.,
2003; Gliozzo et al., 2005; Kudo et al., 2005; Titov
and Henderson, 2006; Zelenko et al., 2002; Bunescu
and Mooney, 2005; Zhang et al., 2006). The main
idea of structural kernels is to generate structures
that in turn represent syntactic or shallow semantic
features. Most notably, the work in (Bloehdorn and
Moschitti, 2007b) encodes lexical similarity in such
kernels. This is essentially the syntactic tree ker-
nel (STK) proposed in (Collins and Duffy, 2002) in
which syntactic fragments from constituency trees
can be matched even if they only differ in the leaf
nodes (i.e. they have different surface forms). This
implies matching scores lower than 1, depending on
the semantic similarity of the corresponding leaves
in the syntactic fragments.

Although this kernel achieves state-of-the-art per-
formance in NLP tasks, such as Question Classifica-
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tion (Bloehdorn and Moschitti, 2007b) and Textual
Entailment (Mehdad et al., 2010), it offers clearly
possibility of improvement: (i) better possibility to
exploit semantic smoothing since, e.g., trivially STK
only matches the syntactic structure apple/orange
when comparing the big beautiful apple to a nice
large orange; and (ii) STK cannot be effectively ap-
plied to dependency structures, e.g. see experiments
and motivation in (Moschitti, 2006a). Additionally,
to our knowledge, there is no previous study that
clearly describes how dependency structures should
be converted in trees to be fully and effectively ex-
ploitable by convolution kernels. Indeed, although
the work in (Culotta and Sorensen, 2004) defines a
dependency tree also using node similarity, it is not
a convolution kernel: this results in a much poorer
feature space.

In this paper, we propose a study of convolution
kernels for dependency structures aiming at jointly
modeling syntactic and lexical semantic similarity.
More precisely, we define several dependency trees
exploitable by the Partial Tree Kernel (PTK) (Mos-
chitti, 2006a) and compared them with STK over
constituency trees. Most importantly, we define
an innovative and efficient class of kernels, i.e. the
Smoothed Partial Tree Kernels (SPTKs), which can
measure the similarity of structural similar trees
whose nodes are associated with different but re-
lated lexicals. Given the convolution nature of such
kernels any possible node path of lexicals provide
a contribution smoothed by the similarity accounted
by its nodes.

The extensive experimentation on two datasets of
question classification (QC) and semantic role label-
ing (SRL), shows that: (i) PTK applied to our depen-
dency trees outperforms STK, demonstrating that
dependency parsers are fully exploitable for feature
engineering based on structural kernels; (ii) SPTK
outperforms any previous kernels achieving an un-
precedented result of 41% of error reduction with re-
spect to the former state-of-the-art on QC; and (iii)
the experiments on SRL confirm that the approach
can be applied to different tasks without any tuning
and again achieving state-of-the-art accuracy.

In the reminder of this paper, Section 2 provides
the background for structural and lexical similar-
ity kernels. Section 3 introduces SPTK. Section 4
provides our representation models for dependency

trees. Section 5 presents the experimental evaluation
for QC and SRL. Section 6 derives the conclusions.

2 Kernel Background

In kernel-based machines, both learning and classi-
fication algorithms only depend on the inner prod-
uct between instances. This in several cases can be
efficiently and implicitly computed by kernel func-
tions by exploiting the following dual formulation:∑

i=1..l yiαiφ(oi)φ(o) + b = 0, where oi and o are
two objects, φ is a mapping from the objects to fea-
ture vectors ~xi and φ(oi)φ(o) = K(oi, o) is a ker-
nel function implicitly defining such mapping. In
case of structural kernels,K determines the shape of
the substructures describing the objects above. The
most general kind of kernels used in NLP are string
kernels, e.g. (Shawe-Taylor and Cristianini, 2004),
the Syntactic Tree Kernels (Collins and Duffy, 2002)
and the Partial Tree Kernels (Moschitti, 2006a).

2.1 String Kernels
The String Kernels (SK) that we consider count
the number of subsequences shared by two strings
of symbols, s1 and s2. Some symbols during the
matching process can be skipped. This modifies
the weight associated with the target substrings as
shown by the following SK equation:

SK(s1, s2) =
∑

u∈Σ∗

φu(s1) · φu(s2) =

∑

u∈Σ∗

∑

~I1:u=s1[~I1]

∑

~I2:u=s2[~I2]

λd(~I1)+d(~I2)

where, Σ∗ =
⋃∞
n=0 Σn is the set of all strings, ~I1 and

~I2 are two sequences of indexes ~I = (i1, ..., i|u|),
with 1 ≤ i1 < ... < i|u| ≤ |s|, such that u = si1 ..si|u| ,
d(~I) = i|u| − i1 + 1 (distance between the first and
last character) and λ ∈ [0, 1] is a decay factor.

It is worth noting that: (a) longer subsequences
receive lower weights; (b) some characters can be
omitted, i.e. gaps; (c) gaps determine a weight since
the exponent of λ is the number of characters and
gaps between the first and last character; and (c)
the complexity of the SK computation is O(mnp)
(Shawe-Taylor and Cristianini, 2004), where m and
n are the lengths of the two strings, respectively and
p is the length of the largest subsequence we want to
consider.
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2.2 Tree Kernels
Convolution Tree Kernels compute the number
of common substructures between two trees T1
and T2 without explicitly considering the whole
fragment space. For this purpose, let the set
F = {f1, f2, . . . , f|F|} be a tree fragment space and
χi(n) be an indicator function, equal to 1 if the
target fi is rooted at node n and equal to 0 oth-
erwise. A tree-kernel function over T1 and T2 is
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2), NT1

and NT2 are the sets of the T1’s and T2’s nodes,
respectively and ∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

The latter is equal to the number of common frag-
ments rooted in the n1 and n2 nodes. The ∆ func-
tion determines the richness of the kernel space and
thus different tree kernels. Hereafter, we consider
the equation to evaluate STK and PTK 1.

2.2.1 Syntactic Tree Kernels (STK)
To compute STK is enough to compute

∆STK(n1, n2) as follows (recalling that since
it is a syntactic tree kernels, each node can be
associated with a production rule): (i) if the
productions at n1 and n2 are different then
∆STK(n1, n2) = 0; (ii) if the productions at
n1 and n2 are the same, and n1 and n2 have
only leaf children then ∆STK(n1, n2) = λ; and
(iii) if the productions at n1 and n2 are the
same, and n1 and n2 are not pre-terminals then
∆STK(n1, n2) = λ

∏l(n1)
j=1 (1 + ∆STK(cjn1 , c

j
n2)),

where l(n1) is the number of children of n1 and cjn
is the j-th child of the node n. Note that, since the
productions are the same, l(n1) = l(n2) and the
computational complexity of STK is O(|NT1 ||NT2 |)
but the average running time tends to be linear,
i.e.O(|NT1 |+ |NT2 |), for natural language syntactic
trees (Moschitti, 2006a).

2.2.2 The Partial Tree Kernel (PTK)
The computation of PTK is carried out by the

following ∆PTK function: if the labels of n1
and n2 are different then ∆PTK(n1, n2) = 0; else
∆PTK(n1, n2) =

µ
(
λ2 +

∑

~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏

j=1

∆PTK(cn1
(~I1j), cn2

(~I2j))
)

1To have a similarity score between 0 and 1, a normalization
in the kernel space, i.e. TK(T1,T2)√

TK(T1,T1)×TK(T2,T2)
is applied.

where d(~I1) = ~I1l(~I1)−~I11+1 and d(~I2) = ~I2l(~I2)−
~I21 + 1. This way, we penalize both larger trees and
child subsequences with gaps. PTK is more general
than the STK as if we only consider the contribu-
tion of shared subsequences containing all children
of nodes, we implement the STK kernel. The com-
putational complexity of PTK is O(pρ2|NT1 ||NT2 |)
(Moschitti, 2006a), where p is the largest subse-
quence of children that we want consider and ρ is the
maximal outdegree observed in the two trees. How-
ever the average running time again tends to be lin-
ear for natural language syntactic trees (Moschitti,
2006a).

2.3 Lexical Semantic Kernel
Given two text fragments d1 and d2 ∈ D (the text
fragment set), a general lexical kernel (Basili et al.,
2005) defines their similarity as:

K(d1, d2) =
∑

w1∈d1,w2∈d2
(ω1ω2)× σ(w1, w2) (1)

where ω1 and ω2 are the weights of the words (fea-
tures) w1 and w2 in the documents d1 and d2, re-
spectively, and σ is a term similarity function, e.g.
(Pedersen et al., 2004b; Sahlgren, 2006; Corley and
Mihalcea, 2005; Mihalcea et al., 2005). Technically,
any σ can be used, provided that the resulting Gram
matrix, G = K(d1, d2) ∀d1, d2 ∈ D is positive
semi-definite (Shawe-Taylor and Cristianini, 2004)
(D is typically the training text set).

We determine the term similarity function through
distributional analysis (Pado and Lapata, 2007), ac-
cording to the idea that the meaning of a word can
be described by the set of textual contexts in which it
appears (Distributional Hypothesis, (Harris, 1964)).
The contexts are words appearing in a n-window
with target words: such a space models a generic
notion of semantic relatedness, i.e. two words
close in the space are likely to be either in paradig-
matic or syntagmatic relation as in (Sahlgren, 2006).
The original word-by-word context matrix M is de-
composed through Singular Value Decomposition
(SVD) (Golub and Kahan, 1965) into the product
of three new matrices: U , S, and V so that S is di-
agonal and M = USV T . M is approximated by
Ml = UlSlV

T
l in which only the first l columns of

U and V are used, and only the first l greatest singu-
lar values are considered. This approximation sup-
plies a way to project a generic term wi into the l-
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dimensional space using W = UlS
1/2
l , where each

row corresponds to the representation vectors ~wi.
Therefore, given two words w1 and w2, the term
similarity function σ is estimated as the cosine simi-
larity between the corresponding projections ~w1, ~w2,
i.e σ(w1, w2) = ~w1· ~w2

‖ ~w1‖‖ ~w2‖ . The latent semantic ker-
nels (Siolas and d’Alch Buc, 2000; Cristianini et al.,
2001) derive G by applying LSA, resulting in a valid
kernel.

Another methods to design a valid kernel is to rep-
resent words as word vectors and compute σ as their
scalar product between such vectors. For example,
in (Bloehdorn et al., 2006), bag of hyponyms and
hypernyms (up to a certain level of WordNet hierar-
chy) were used to build such vectors. We will refer
to such similarity as WL (word list).

3 Smoothing Partial Tree Kernel (SPTK)
Combining lexical and structural kernels provides
clear advantages on all-vs-all words similarity,
which tends to semantically diverge. Indeed syn-
tax provides the necessary restrictions to com-
pute an effective semantic similarity. Following
this idea, Bloedhorn & Moschitti (2007a) mod-
ified step (i) of ∆STK computation as follows:
(i) if n1 and n2 are pre-terminal nodes with
the same number of children, ∆STK(n1, n2) =

λ
∏nc(n1)
j=1 σ(lex(n1), lex(n2)), where lex returns

the node label. This allows to match fragments hav-
ing same structure but different leaves by assigning a
score proportional to the product of the lexical sim-
ilarities of each leaf pair. Although it is an inter-
esting kernel, the fact that lexicals must belong to
the leaf nodes of exactly the same structures limits
its applications. Trivially, it cannot work on depen-
dency trees. Hereafter, we define a much more gen-
eral smoothed tree kernel that can be applied to any
tree and exploit any combination of lexical similari-
ties, respecting the syntax enforced by the tree.

3.1 SPTK Definition
If n1 and n2 are leaves then ∆σ(n1, n2) =
µλσ(n1, n2); else

∆σ(n1, n2) = µσ(n1, n2)×
(
λ2 +

∑

~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏

j=1

∆σ(cn1
(~I1j), cn2

(~I2j))
)
, (2)

where σ is any similarity between nodes, e.g. be-
tween their lexical labels, and the other variables are
the same of PTK.

3.2 Soundness
A completely formal proof of the validity of the
Eq. 2 is beyond the purpose of this paper (mainly
due to space reason). Here we give a first sketch:
let us consider σ as a string matching between
node labels and λ = µ = 1. Each recursive
step of Eq. 2 can be seen as a summation of (1 +
∏l(~I1)
j=1 ∆STK(cn1(~I1j), cn2(~I2j))), i.e. the ∆STK

recursive equation (see Sec. 2.2.1), for all subse-
quences of children cn1(~I1j). In other words, PTK
is a summation of an exponential number of STKs,
which are valid kernels. It follows that PTK is a ker-
nel. Note that the multiplication by λ and µ elevated
to any power only depends on the target fragment.
Thus, it just gives an additional weight to the frag-
ment and does not violate the Mercer’s conditions.
In contrast, the multiplication by σ(n1, n2) does de-
pend on both comparing examples, i.e. on n1 and n2.
However, if the matrix

[
σ(n1, n2)

]
∀n1, n2 ∈ f ∈ F

is positive semi-definite, a decomposition exists
such that σ(n1, n2) = φ(n1)φ(n2) ⇒ ∆σ(n1, n2)

can be written as
∑|F|

i=1 φ(n1)χi(n1)φ(n2)χi(n2)

=
∑|F|

i=1 φσ(n1)φσ(n2) (see Section 2.2), which
proves SPTK to be a valid kernel.

3.3 Efficient Evaluation

We followed the idea in (Moschitti, 2006a) for effi-
ciently computing SPTK. We consider Eq. 2 evalu-
ated with respect to sequences of different length p;
it follows that

∆(n1, n2) = µσ(n1, n2)
(
λ2 +

m∑

p=1

∆p(cn1 , cn2)
)
,

where ∆p evaluates the number of common sub-
trees rooted in subsequences of exactly p children
(of n1 and n2) and m = min{l(cn1), l(cn2)}.
Given the two child sequences s1a = cn1 and
s2b = cn2 (a and b are the last children)

∆p(s1a, s2b) = ∆(a, b)×
|s1|∑

i=1

|s2|∑

r=1

λ|s1|−i+|s2|−r ×

×∆p−1(s1[1 : i], s2[1 : r])

where s1[1 : i] and s2[1 : r] are the child subse-
quences from 1 to i and from 1 to r of s1 and s2. If
we name the double summation term as Dp, we can
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Figure 1: Constituent Tree (CT)

rewrite the relation as:

∆p(s1a, s2b) =

{
∆(a, b)Dp(|s1|, |s2|) if σ(a, b) > 0;

0 otherwise.

Note that Dp satisfies the recursive relation:
Dp(k, l) = ∆p−1(s1[1 : k], s2[1 : l]) + λDp(k, l − 1)

+λDp(k − 1, l)− λ2Dp(k − 1, l − 1)
By means of the above relation, we can compute the
child subsequences of two sequences s1 and s2 in
O(p|s1||s2|). Thus the worst case complexity of the
SPTK is identical to PTK, i.e. O(pρ2|NT1 ||NT2 |),
where ρ is the maximum branching factor of the two
trees. The latter is very small in natural language
parse trees and we also avoid the computation of
node pairs with non similar labels.

We note that PTK generalizes both (i) SK, allow-
ing the similarity between sequences (node children)
structured in a tree and (ii) STK, allowing the com-
putation of STK over any possible pair of subtrees
extracted from the original tree. For this reason,
we do not dedicate additional space on the defini-
tion of the smoothed SK or smoothed STK, which
are in any case important corollary findings of our
research.

3.4 Innovative Features of SPTK
The most similar kernel to SPTK is the Syntactic
Semantic Tree Kernel (SSTK) proposed in (Bloe-
hdorn and Moschitti, 2007a; Bloehdorn and Mos-
chitti, 2007b). However, the following aspects show
the remarkable innovativeness of SPTK:

• SSTK can only work on constituency trees
and not on dependency trees (see (Moschitti,
2006a)).

• The lexical similarity in SSTK is only applied
to leaf nodes in exactly the same syntactic

constituents. Only complete matching of the
structure of subtrees is allowed: there is abso-
lutely no flexibility, e.g. the NP structure “ca-
ble television system” has no match with the
NP “video streaming system”. SPTK provides
matches between all possible relevant subparts,
e.g. ”television system” and ”video system” (so
also exploiting the meaningful similarity be-
tween “video” and “television”).

• The similarity in the PTK equation is added
such that SPTK still corresponds to a scalar
product in the semantic/structure space2.

• We have provided a fast evaluation of SPTK
with dynamic programming (otherwise the
computation would have required exponential
time).

4 Dependency Tree Structures
The feature space generated by the structural ker-
nels, presented in the previous section, obviously de-
pends on the input structures. In case of PTK and
SPTK different tree representations may lead to en-
gineer more or less effective syntactic/semantic fea-
ture spaces. The next two sections provide our repre-
sentation models for dependency trees and their dis-
cussion.

4.1 Proposed Computational Structures
Given the following sentence:

(s1) What is the width of a football field?

The representation tree for a phrase structure
paradigm leaves little room for variations as shown
by the constituency tree (CT) in Figure 1. We ap-
ply lemmatization to the lexicals to improve gener-
alization and, at the same time, we add a generalized
PoS-tag, i.e. noun (n::), verb (v::), adjective (::a), de-
terminer (::d) and so on, to them. This is useful to
measure similarity between lexicals belonging to the
same grammatical category.

In contrast, the conversion of dependency struc-
tures in computationally effective trees (for the
above kernels) is not straightforward. We need to
decide the role of lexicals, their grammatical func-
tions (GR), PoS-tags and dependencies. It is natural

2This is not trivial: for example if sigma is added in Eq. 2 by
only multiplying the λd1+d2 term, no valid space is generated.
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to associate edges with dependencies but, since our
kernels cannot process labels on the arcs, they must
be associated with tree nodes. The basic idea of our
structures is to use (i) one of the three kinds of infor-
mation above as central node, from which depen-
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Figure 5: Lexical Only Centered Tree (LOCT)
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Figure 6: Lexical and PoS-Tag Sequences Tree (LPST)
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Figure 7: Lexical Sequences Tree (LST)

dencies are drawn and (ii) all the other information
as features (in terms of additional nodes) attached to
the central nodes.

We define three main trees: the PoS-Tag Centered
Tree (PCT), e.g. see Figure 2, where the GR is added
as father and the lexical as a child; the GR Centered
Tree (GRCT), e.g. see Figure 3, where the PoS-Tags
are children of GR nodes and fathers of their associ-
ated lexicals; and the Lexical Centered Tree (LCT),
e.g. see Figure 4, in which both GR and PoS-Tag are
added as the rightmost children.
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Figure 8: Grammatical Relation Centered Tree of (s2)

4.2 Comparative Structures
To better study the role of the above dependency
structures, especially from a performance perspec-
tive, we define additional structures: the Lexical
Only Centered Tree (LOCT), e.g. see Figure 5,
which is an LCT only containing lexical nodes; the
Lexical and PoS-Tag Sequences Tree (LPST), e.g.
see Figure 6, which ignores the syntactic structure
of the sentence being a simple sequence of PoS-Tag
nodes, where lexicals are simply added as children;
and the Lexical Sequence Tree (LST), where only
lexical items are leaves of a single root node. PTK
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and PSTK applied to it simulates a standard SK and
an SK with smoothing, respectively.
4.3 Structural Features
Section 2 has already described the kind of features
generated by SK, STK and PTK. However, it is
interesting to analyze what happens when SPTK is
applied. For example, given the following sentence
syntactically and semantically similar to s1:

(s2) What is the dimension of an ice hockey goal?

Figure 8 shows the corresponding GRCT, whose
largest PTK fragment shared with the GRTC of s1
(Fig. 3) is: (ROOT (SBJ (WP (what::w))) (PRD (NMOD

(DT (the::d))) (NN) (NMOD (IN (of::i)) (PMOD (NMOD (DT))

(NMOD (NN)) (NN)))) (P (. (?::.)))). If smoothing is ap-
plied the matching is almost total, i.e. also the chil-
dren: width::n/dimension::n, football::n/hockey::n
and field::n/goal::n will be matched (with a smooth-
ing equal to the product of their similarities).

The matching using LCT is very interesting:
without smoothing, the largest subtree is: (be::v

(what::w (SBJ) (WP)) (ROOT)); when smoothing is used
only the fragment (NMOD (NN (ice::n)) will not be part
of the match. This suggests that LCT will probably
receive the major benefit from smoothing. Addition-
ally, with respect to all the above structures, LCT is
the only one that can produce only lexical fragments,
i.e. paths only composed by similar lexical nodes
constrained by syntactic dependencies. All the other
trees produce fragments in which lexicals play the
role of features of GR or PoS-Tag nodes.

5 Experiments
The aim of the experiments is to analyze different
levels of representation, i.e. structure, for syntactic
dependency parses. At the same time, we compare
with the constituency trees and different kernels to
derive the best syntactic paradigm for convolution
kernels. Most importantly, the role of lexical simi-
larity embedded in syntactic structures will be inves-
tigated. For this purpose, we first carry out extensive
experiments on coarse and fine grained QC and then
we verify our findings on a completely different task,
i.e. Argument Classification in SRL.

5.1 General experimental setup
Tools: for SVM learning, we extended the SVM-
LightTK software3 (Moschitti, 2006a) (which in-

3http://disi.unitn.it/moschitti/Tree-Kernel.htm

cludes structural kernels in SVMLight (Joachims,
2000)) with the smooth match between tree nodes.
For generating constituency trees, we used the Char-
niak parser (Charniak, 2000) whereas we applied
LTH syntactic parser (described in (Johansson and
Nugues, 2008a)) to generate dependency trees.
Lexical Similarity: we used the Eq. 1 with ω1 =
ω2 = 1 and σ is derived with both approaches de-
scribed in Sec. 2.3. The first approach is LSA-based:
LSA was applied to ukWak (Baroni et al., 2009),
which is a large scale document collection made by
2 billion tokens. More specifically, to build the ma-
trix M, POS tagging is first applied to build rows
with pairs 〈lemma, ::POS〉, or lemma::POS in brief.
The contexts of such items are the columns of M
and are short windows of size [−3,+3], centered on
the items. This allows for better capturing syntactic
properties of words. The most frequent 20,000 items
are selected along with their 20k contexts. The en-
tries of M are the point-wise mutual information be-
tween them. The SVD reduction is then applied to
M, with a dimensionality cut of l = 250. The sec-
ond approach uses the similarity based on word list
(WL) as provided in (Li and Roth, 2002).
Models: SVM-LightTK is applied to the different
tree representations discussed in Section 4. Since
PTK and SPTK are typically used in our experi-
ments, to have a more compact acronym for each
model, we associate the latter with the name of the
structure, i.e. this indicates that PTK is applied to
it. Then the presence of the subscript WL and LSA

indicates that SPTK is applied along with the corre-
sponding similarity, e.g. LCTWL is the SPTK ker-
nel applied to LCT structure, using WL similarity.
We experiment with multi-classification, which we
model through one-vs-all scheme by selecting the
category associated with the maximum SVM mar-
gin. The quality of such classification is measured
with accuracy. We determine the statistical signi-
cance by using the model described in (Yeh, 2000)
and implemented in (Padó, 2006).
The parameterization of each classifier is carried on
a held-out set (30% of the training) and concerns
with the setting of the trade-off parameter (option -
c) and the Leaf Weight (LeW ) (see Sec. 5.2), which
is used to linearly scale the contribution of the leaf
nodes. In contrast, the cost-factor parameter of the
SVM-LightTK is set as the ratio between the num-
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ber of negative and positive examples for attempting
to have a balanced Precision/Recall.

5.2 QC experiments
For these experiments, we used the UIUC dataset
(Li and Roth, 2002). It is composed by a training
set of 5,452 questions and a test set of 500 ques-
tions4. Question classes are organized in two levels:
6 coarse-grained classes (like ENTITY or HUMAN)
and 50 fine-grained sub-classes (e.g. Plant, Food
as subclasses of ENTITY).

The outcome of the several kernels applied to sev-
eral structures for the coarse and fine grained QC
is reported in Table 1. The first column shows
the experimented models, obtained by applying
PTK/SPTK to the structures described in Sec. 4. The
last two rows are: CT-STK, i.e. STK applied to a
constituency tree and BOW, which is a linear ker-

4http://cogcomp.cs.illinois.edu/Data/QA/QC/

nel applied to lexical vectors. Column 2, 3 and 4
report the accuracy using no, LSA and WL similar-
ity, where LeW is the amplifying parameter, i.e. a
weight associated with the leaves in the tree. The
last three columns refer to the fine grained task.

It is worth nothing that when no similarity is ap-
plied: (i) BOW produces high accuracy, i.e. 88.8%
but it is improved by STK (the current state-of-the-
art5 in QC (Zhang and Lee, 2003; Moschitti et al.,
2007)); (ii) PTK applied to the same tree of STK
produces a slightly lower value (non-statistically
significant difference); (iii) interestingly, when PTK
is instead applied to dependency structures, it im-
proves STK, i.e. 91.60% vs 91.40% (although not
significantly); and (iv) LCT, strongly based on lexi-
cal nodes, is the least accurate, i.e 90.80% since it is
obviously subject to data sparseness (fragments only
composed by lexicals are very sparse).

The very important results can be noted when lex-
ical similarity is used, i.e. SPTK is applied: (a) all
the syntactic-base structures using both LSA or WL
improve the classification accuracy. (b) CT gets the
lowest improvement whereas LCT achieves an im-
pressive result of 94.80%, i.e more than 41% of rel-
ative error reduction. It seems that the lexical similar
paths when driven by syntax produces accurate fea-
tures. Indeed, when syntax is missing such as for the
unstructured lexical path of LSTLSA, the accuracy
does not highly improve or may also decrease. Ad-
ditionally, the result of our best model is so high that
its errors only refer to questions like What did Jesse
Jackson organize ?, where the classifier selected En-
tity instead ofHuman category. These refer to clear
cases where a huge amount of background knowl-
edge is needed for deriving the exact solution.

Finally, on the fine grained experiments LCT
still produces the most accurate outcome again ex-
ceeding the state-of-the-art (Zhang and Lee, 2003),
where WL significantly improves on all models (CT
included).

5.3 Learning curves
It is interesting to study the impact of syntac-
tic/semantic kernels on the learning generalization.
For this purpose, Fig. 9 reports the learning curve

5Note that in (Bloehdorn and Moschitti, 2007b), higher ac-
curacy values for smoothed STK are shown for different param-
eters but the best according to a validation set is not highlighted.
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COARSE FINE
NO LSA WL NO LSA WL

LeW Acc. LeW Acc. LeW Acc. LeW Acc. LeW Acc. LeW Acc.
CT 4 90.80% 2 91.00% 5 92.20% 4 84.00% 5 83.00% 7 86.60%
GRCT 3 91.60% 4 92.60% 2 94.20% 3 83.80% 4 83.20% 2 85.00%
LCT 1 90.80% 1 94.80% 1 94.20% 0.33 85.40% 1 86.20% 0.33 87.40%
LOCT 1 89.20% 1 93.20% 1 91.80% 1 85.40% 1 86.80% 1 87.00%
LST 1 88.20% 1 85.80% 1 89.60% 1 84.00% 1 80.00% 1 85.00%
LPST 3 89.40% 1 89.60% 1 92.40% 3 84.20% 4 82.20% 1 84.60%
PCT 4 91.20% 4 92.20% 5 93.40% 4 84.80% 5 84.00% 5 85.20%
CT-STK - 91.20% - - - - - 82.20% - - - -
BOW - 88.80% - - - - - 83.20% - - - -

Table 1: Accuracy of structural several kernels on different structures for coarse and fine grained QC
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Figure 11: Micro-seconds for each kernel computation

of the previous models without lexical similarity
whereas Fig. 10 shows the complete SPTK behavior
through the different structures. We note that when
no similarity is used the dependency trees better
generalize than constituency trees or non-syntactic
structures like LPST or BOW. When WL is acti-
vated, all models outperform the best kernel of the
previous pool, i.e. PCT (see dashed line of Fig. 10
or the top curve in Fig. 9).

5.4 Kernel Efficiency
We plotted the average running time of each compu-
tation of PTK/SPTK applied to the different struc-
tures. We divided the examples from QC based
on the number of nodes in each example. Fig-
ure 11 shows the elapsed time in function of the
number of nodes for different tree representations.
We note that: (i) when the WL is not active, LCT
and GRCT are very fast as they impose hierarchical
matching of subtrees; (ii) when the similarity is ac-
tivated, LCTWL and GRCTWL tend to match many
more tree fragments thus their complexity increases.

However, the equations of the curve fit, shown in the
figure, suggests that the trend is sub-quadratic (x1.7).
Only LPSTWL, which has no structure, matches a
very large number of sequences of nodes, when the
similarity is active. This increases the complexity,
which results in an order higher than 2.
5.5 FrameNet Role Classification Experiments
To verify that our findings are general and that our
syntactic/semantic dependency kernels can be effec-
tively exploited for diverse NLP tasks, we experi-
mented with a completely different application, i.e.
FrameNet SRL classification (gold standard bound-
aries). We used the FrameNet version 1.3 with
the 90/10% split between training and test set (i.e
271,560 and 30,173 examples respectively), as de-
fined in (Johansson and Nugues, 2008b), one of the
best system for FrameNet parsing. We used the LTH
dependency parser. LSA was applied to the BNC
corpus, the source of the FrameNet annotations.

For each of 648 frames, we applied SVM along
with the best models for QC, i.e. GRCT and LCT, to
learn its associated binary role classifiers (RC) for
a total of 4,254 classifiers. For example, Figure 12
shows the LCT representation of the first two roles
of the following sentence:

[Bootleggers]CREATOR, then copy [the film]ORIGINAL

[onto hundreds of V HS tapes]GOAL

Table 2 shows the results of the different multi-
classifiers. GRCT and LCT show a large ac-
curacy, i.e. 87.60. This improves up to 88.74
by activating the LSA similarity. The combina-
tion GRCTLSA+LCTLSA significantly improves the
above model, achieving 88.91%. This is very close
to the state-of-the-art of SRL for classification (us-
ing a single classifier, i.e. no joint model), i.e.
89.6%, achieved in (Johansson and Nugues, 2008b).
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Figure 12: LCT Examples for argument roles

Kernel Accuracy
GRCT 87.60%
GRCTLSA 88,61%
LCT 87.61%
LCTLSA 88.74%
GRCT + LCT 87.99%
GRCTLSA + LCTLSA 88.91%

Table 2: Argument Classification Accuracy

Finally, it should be noted that, to learn and test the
SELF MOTION multi-classifier, containing 14,584
examples, distributed on 22 roles, SVM-SPTK em-
ployed 1.5 h and 10 minutes, respectively6.

6 Final Remarks and Conclusion
In this paper, we have proposed a study on repre-
sentation of dependency structures for the design of
effective structural kernels. Most importantly, we
have defined a new class of kernel functions, i.e. SP-
TKs, that carry out syntactic and lexical similarities
on the above structures. SPTK exploits the latter
by providing generalization trough lexical similar-
ities constrained in them. This allows for automat-
ically generating feature spaces of generalized syn-
tactic/semantic dependency substructures.

To test our models, we carried out experiments
on QC and SRL. These show that by exploiting the
similarity between two sets of words carried out ac-
cording to their dependency structure leads to an un-
precedented result for QC, i.e. 94.8% of accuracy.
In contrast, when no structure is used the accuracy
does not significantly improves. We have also pro-
vided a fast algorithm for the computation of SPTK
and empirically shown that it can easily scale.

It should be noted that our models are not abso-
lutely restricted to QC and SRL. Indeed, since most
of the NLP applications are based on syntactic and
lexical representations, SPTK will have a major im-
pact in most of them, e.g.:

6Using one of the 8 processors of an Intel(R) Xeon(R) CPU
E5430 @ 2.66GHz machine, 32Gb Ram.

• Question Answering, the high results for QC
will positively impact on the overall task.

• SRL, SPTK alone reaches the state-of-the-art
(SOA) (only 0.7% less) in FrameNet role clas-
sification. This is very valuable as previous
work showed that tree kernels (TK) alone per-
form lower than models based on manually en-
gineered features for SRL tasks, e.g., (Mos-
chitti, 2004; Giuglea and Moschitti, 2004; Giu-
glea and Moschitti, 2006; Moschitti, 2006b;
Che et al., 2006; Moschitti et al., 2008). Thus
for the first time in an SRL task, a general
tree kernel reaches the same accuracy of heavy
manual feature design. This also suggests an
improvement when used in combinations with
manual feature vectors.

• Relation Extraction and Pronominal Corefer-
ence, whose state-of-the-art for some tasks is
achieved with the simple STK-CT (see (Zhang
et al., 2006) and (Yang et al., 2006; Versley et
al., 2008), respectively).

• In word sense disambiguation tasks, SPTK can
generalize context according to syntactic and
semantic constraints (selectional restrictions)
making very effective distributional semantic
approaches.

• In Opinion Mining SPTK will allow to match
sentiment words within their corresponding
syntactic counterparts and improve the state-
of-the-art (Johansson and Moschitti, 2010b; Jo-
hansson and Moschitti, 2010a).

• Experiments on Recognizing Textual Entail-
ment (RTE) tasks, the use of SSTK (in-
stead of STK-CT) improved the state-of-the-art
(Mehdad et al., 2010). SPTK may provide fur-
ther enhancement and innovative and effective
dependency models.

The above points also suggest many promising fu-
ture research directions, which we would like to ex-
plore.
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Abstract

This paper investigates novel methods for in-
corporating syntactic information in proba-
bilistic latent variable models of lexical choice
and contextual similarity. The resulting mod-
els capture the effects of context on the inter-
pretation of a word and in particular its effect
on the appropriateness of replacing that word
with a potentially related one. Evaluating our
techniques on two datasets, we report perfor-
mance above the prior state of the art for esti-
mating sentence similarity and ranking lexical
substitutes.

1 Introduction

Distributional models of lexical semantics, which
assume that aspects of a word’s meaning can be re-
lated to the contexts in which that word is typically
used, have a long history in Natural Language Pro-
cessing (Spärck Jones, 1964; Harper, 1965). Such
models still constitute one of the most popular ap-
proaches to lexical semantics, with many proven ap-
plications. Much work in distributional semantics
treats words as non-contextualised units; the models
that are constructed can answer questions such as
“how similar are the words body and corpse?” but
do not capture the way the syntactic context in which
a word appears can affect its interpretation. Re-
cent developments (Mitchell and Lapata, 2008; Erk
and Padó, 2008; Thater et al., 2010; Grefenstette et
al., 2011) have aimed to address compositionality of
meaning in terms of distributional semantics, lead-
ing to new kinds of questions such as “how similar
are the usages of the words body and corpse in the

phrase the body/corpse deliberated the motion. . . ?”
and “how similar are the phrases the body deliber-
ated the motion and the corpse rotted?”. In this pa-
per we focus on answering questions of the former
type and investigate models that describe the effect
of syntactic context on the meaning of a single word.

The work described in this paper uses probabilis-
tic latent variable models to describe patterns of syn-
tactic interaction, building on the selectional prefer-
ence models of Ó Séaghdha (2010) and Ritter et al.
(2010) and the lexical substitution models of Dinu
and Lapata (2010). We propose novel methods for
incorporating information about syntactic context in
models of lexical choice, yielding a probabilistic
analogue to dependency-based models of contextual
similarity. Our models attain state-of-the-art per-
formance on two evaluation datasets: a set of sen-
tence similarity judgements collected by Mitchell
and Lapata (2008) and the dataset of the English
Lexical Substitution Task (McCarthy and Navigli,
2009). In view of the well-established effectiveness
of dependency-based distributional semantics and of
probabilistic frameworks for semantic inference, we
expect that our approach will prove to be of value in
a wide range of application settings.

2 Related work

The literature on distributional semantics is vast; in
this section we focus on outlining the research that is
most directly related to capturing effects of context
and compositionality.1 Mitchell and Lapata (2008)

1The interested reader is referred to Padó and Lapata (2007)
and Turney and Pantel (2010) for a general overview.
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follow Kintsch (2001) in observing that most dis-
tributional approaches to meaning at the phrase or
sentence level assume that the contribution of syn-
tactic structure can be ignored and the meaning of a
phrase is simply the commutative sum of the mean-
ings of its constituent words. As Mitchell and Lap-
ata argue, this assumption clearly leads to an impov-
erished model of semantics. Mitchell and Lapata in-
vestigate a number of simple methods for combining
distributional word vectors, concluding that point-
wise multiplication best corresponds to the effects
of syntactic interaction.

Erk and Padó (2008) introduce the concept of a
structured vector space in which each word is as-
sociated with a set of selectional preference vec-
tors corresponding to different syntactic dependen-
cies. Thater et al. (2010) develop this geometric ap-
proach further using a space of second-order distri-
butional vectors that represent the words typically
co-occurring with the contexts in which a word typi-
cally appears. The primary concern of these authors
is to model the effect of context on word meaning;
the work we present in this paper uses similar intu-
itions in a probabilistic modelling framework.

A parallel strand of research seeks to represent
the meaning of larger compositional structures us-
ing matrix and tensor algebra (Smolensky, 1990;
Rudolph and Giesbrecht, 2010; Baroni and Zampar-
elli, 2010; Grefenstette et al., 2011). This nascent
approach holds the promise of providing a much
richer notion of context than is currently exploited
in semantic applications.

Probabilistic latent variable frameworks for gen-
eralising about contextual behaviour (in the form
of verb-noun selectional preferences) were proposed
by Pereira et al. (1993) and Rooth et al. (1999). La-
tent variable models are also conceptually similar
to non-probabilistic dimensionality reduction tech-
niques such as Latent Semantic Analysis (Landauer
and Dumais, 1997). More recently, Ó Séaghdha
(2010) and Ritter et al. (2010) reformulated Rooth et
al.’s approach in a Bayesian framework using mod-
els related to Latent Dirichlet Allocation (Blei et al.,
2003), demonstrating that this “topic modelling” ar-
chitecture is a very good fit for capturing selectional
preferences. Reisinger and Mooney (2010) inves-
tigate nonparametric Bayesian models for teasing
apart the context distributions of polysemous words.

As described in Section 3 below, Dinu and Lapata
(2010) propose an LDA-based model for lexical sub-
stitution; the techniques presented in this paper can
be viewed as a generalisation of theirs. Topic models
have also been applied to other classes of semantic
task, for example word sense disambiguation (Li et
al., 2010), word sense induction (Brody and Lapata,
2009) and modelling human judgements of semantic
association (Griffiths et al., 2007).

3 Models

3.1 Latent variable context models

In this paper we consider generative models of lex-
ical choice that assign a probability to a particular
word appearing in a given linguistic context. In par-
ticular, we follow recent work (Dinu and Lapata,
2010; Ó Séaghdha, 2010; Ritter et al., 2010) in as-
suming a latent variable model that associates con-
texts with distributions over a shared set of variables
and associates each variable with a distribution over
the vocabulary of word types:

P (w|c) =
∑

z∈Z
P (w|z)P (z|c) (1)

The set of latent variables Z is typically much
smaller than the vocabulary size; this induces a (soft)
clustering of the vocabulary. Latent Dirichlet Allo-
cation (Blei et al., 2003) is a powerful method for
learning such models from a text corpus in an unsu-
pervised way; LDA was originally applied to doc-
ument modelling, but it has recently been shown to
be very effective at inducing models for a variety of
semantic tasks (see Section 2).

Given the latent variable framework in (1) we can
develop a generative model of paraphrasing a word
o with another word n in a particular context c:

PC→T (n|o, c) =
∑

z

P (n|z)P (z|o, c) (2)

P (z|o, c) =
P (o|z)P (z|c)∑
z′ P (o|z′)P (z′|c) (3)

In words, the probability P (n|o, c) is the probability
that n would be generated given the latent variable
distribution associated with seeing o in context c;
this latter distribution P (z|o, c) can be derived using
Bayes’ rule and the assumption P (o|z, c) = P (o|z).
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Given a set of contexts C in which an instance o ap-
pears (e.g., it may be both the subject of a verb and
modified by an adjective), (2) and (3) become:

PC→T (n|o, C) =
∑

z

P (n|z)P (z|o, C) (4)

P (z|o, C) =
P (o|z)P (z|C)∑
z′ P (o|z′)P (z′|C)

(5)

P (z|C) =

∏
c∈C P (z|c)∑

z′
∏
c∈C P (z′|c) (6)

Equation (6) can be viewed as defining a “product
of experts” model (Hinton, 2002). Dinu and Lapata
(2010) also use a similar formulation to (5), except
that P (z|o, C) is factorised over P (z|o, C) rather
than just P (z|C):

PDL10(z|o, C) =
∏

c∈C

P (o|z)P (z|c)∑
z′ P (o|z′)P (z′|c) (7)

In Section 5 below, we find that using (5) rather than
(7) gives better results.

The model described above (henceforth C → T )
models the dependence of a target word on its con-
text. An alternative perspective is to model the de-
pendence of a set of contexts on a target word, i.e.,
we induce a model

P (c|w) =
∑

z

P (c|z)P (z|w) (8)

Making certain assumptions, a formula for P (n|o, c)
can be derived from (8):

PT→C(n|o, c) =
P (c|o, n)P (n|o)

P (c|o) (9)

P (c|o, n) =
∑

z

P (c|z)P (z|o, n)

P (z|o, n) =
P (z|o)P (z|n)∑
z′ P (z′|o)P (z′|n)

(10)

P (c|o) =
∑

z

P (c|z)P (z|o) (11)

P (n|o) = 1/V (12)

The assumption of a uniform prior P (n|o) on the
choice of a paraphrase n for o is clearly not appro-
priate from a language modelling perspective (one
could imagine an alternative P (n) based on corpus
frequency), but in the context of measuring semantic

similarity it serves well. The T → C model for a set
of contexts C is:

PT→C(n|o, C) =
P (C|o, n)P (n|o)

P (C|o) (13)

P (C|o, n) =
∑

z

P (z|o, n)
∏

c∈C
P (c|z) (14)

P (C|o) =
∑

z

P (z|o)
∏

c∈C
P (c|z) (15)

P (z|o, C) =
P (z|o)P (C|o)∑
z′ P (z′|o)P (C|o) (16)

With appropriate priors chosen for the distribu-
tions over words and latent variables, P (n|o, C) is
a fully generative model of lexical substitution. A
non-generative alternative is one that estimates the
similarity of the latent variable distributions associ-
ated with seeing n and o in context C. The princi-
ple that similarity between topic distributions corre-
sponds to semantic similarity is well-known in doc-
ument modelling and was proposed in the context
of lexical substitution by Dinu and Lapata (2010).
In terms of the equations presented above, we could
compare the distributions P (z|o, C) with P (z|n,C)
using equations (5) or (16). However, Thater et
al. (2010) and Dinu and Lapata (2010) both ob-
serve that contextualising both o and n can degrade
performance; in view of this we actually compare
P (z|o, C) with P (z|n) and make the further simpli-
fying assumption that P (z|n) ∝ P (n|z). The sim-
ilarity measure we adopt is the Bhattacharyya coef-
ficient, which is a natural measure of similarity be-
tween probability distributions and is closely related
to the Hellinger distance used in previous work on
topic modelling (Blei and Lafferty, 2007):

simbhatt(Px(z), Py(z)) =
∑

z

√
Px(z)Py(z) (17)

This measure takes values between 0 and 1.
In this paper we train LDA models of P (w|c) and

P (c|w). In the former case, the analogy to document
modelling is that each context type plays the role of
a “document” consisting of all the words observed
in that context in a corpus; for P (c|w) the roles are
reversed. The models are trained by Gibbs sampling
using the efficient procedure of Yao et al. (2009).
The empirical estimates for distributions over words
and latent variables are derived from the assignment
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of topics over the training corpus in a single sam-
pling state. For example, to model P (w|c) we cal-
culate:

P (w|z) =
fzw + β

fz· +Nβ
(18)

P (z|c) =
fzc + αz

f·c +
∑

z′ αz′
(19)

where fzw is the number of words of type w as-
signed topic z, fzc is the number of times z is associ-
ated with context c, fz· and f·c are the marginal topic
and context counts respectively, N is the number of
word types and α and β parameterise the Dirichlet
prior distributions over P (z|c) and P (w|z). Follow-
ing the recommendations of Wallach et al. (2009)
we use asymmetric α and symmetric β; rather than
using fixed values for these hyperparameters we es-
timate them from data in the course of LDA train-
ing using an EM-like method.2 We use standard set-
tings for the number of training iterations (1000), the
length of the burnin period before hyperparameter
estimation begins (200 iterations) and the frequency
of hyperparameter estimation (50 iterations).

3.2 Context types

We have not yet defined what the contexts c look
like. In vector space models of semantics it is
common to distinguish between window-based and
dependency-based models (Padó and Lapata, 2007);
one can make the same distinction for probabilis-
tic context models. A broad generalisation is that
window-based models capture semantic association
(e.g. referee is associated with football), while
dependency models capture a finer-grained notion
of similarity (referee is similar to umpire but not
to football). Dinu and Lapata (2010) propose a
window-based model of lexical substitution; the set
of contexts in which a word appears is the set of
surrounding words within a prespecified “window
size”. In this paper we also investigate dependency-
based context sets derived from syntactic structure.
Given a sentence such as

2We use the estimation methods provided by the MAL-
LET toolkit, available from http://mallet.cs.umass.
edu/.

The:d executive:j body:n

n:ncmod:j

OO decided:v

v:ncsubj:n
��

. . .

the set C of dependency contexts for the noun body
is {executive:j:ncmod−1:n, decide:v:ncsubj:n},
where ncmod−1 denotes that body stands in an in-
verse non-clausal modifier relation to executive (we
assume that nouns are the heads of their adjectival
modifiers).

4 Experiment 1: Similarity in context

4.1 Data

Mitchell and Lapata (2008) collected human judge-
ments of semantic similarity for pairs of short sen-
tences, where the sentences in a pair share the same
subject but different verbs. For example, the sales
slumped and the sales declined should be judged as
very similar while the shoulders slumped and the
shoulders declined should be judged as less similar.
The resulting dataset (henceforth ML08) consists of
120 such pairs using 15 verbs, balanced across high
and low expected similarity. 60 subjects rated the
data using a scale of 1–7; Mitchell and Lapata cal-
culate average interannotator correlation to be 0.40
(using Spearman’s ρ). Both Mitchell and Lapata
and Erk and Padó (2008) split the data into a devel-
opment portion and a test portion, the development
portion consisting of the judgements of six annota-
tors; in order to compare our results with previous
research we use the same data split. To evaluate per-
formance, the predictions made by a model are com-
pared to the judgements of each annotator in turn
(using ρ) and the resulting per-annotator ρ values are
averaged.

4.2 Models

All models were trained on the written section of the
British National Corpus (around 90 million words),
parsed with RASP (Briscoe et al., 2006). The BNC
was also used by Mitchell and Lapata (2008) and
Erk and Padó (2008); as the ML08 dataset was com-
piled using words appearing more than 50 times in
the BNC, there are no coverage problems caused
by data sparsity. We trained LDA models for the
grammatical relations v:ncsubj:n and n:ncsubj−1:v
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Model PARA SIM

No optimisation
C→ T 0.24 0.34
T→ C 0.36 0.39
T↔ C 0.33 0.39

Optimised on dev
C→ T 0.24 0.35
T→ C 0.41 0.41
T↔ C 0.37 0.41

Erk and Padó (2008)
Mult 0.24
SVS 0.27

Table 1: Performance (average ρ) on the ML08 test
set

and used these to create predictors of type C → T
and T → C, respectively. For each predictor, we
trained five runs with 100 topics for 1000 iterations
and averaged the predictions produced from their fi-
nal states. We investigate both the generative para-
phrasing model (PARA) and the method of compar-
ing topic distributions (SIM). For both PARA and
SIM we present results using each predictor type on
its own as well as a combination of both types (T ↔
C); for PARA the contributions of the types are mul-
tiplied and for SIM they are averaged.3 One poten-
tial complication is that the PARA model is trained
to predict P (n|c, o), which might not be comparable
across different combinations of subject c and verb
o. Using P (n|c, o) as a proxy for the desired joint
distribution P (n, c, o) is tantamount to assuming a
uniform distribution P (c, o), which can be defended
on the basis that the choice of subject noun and ref-
erence verb is not directly relevant to the task. As
shown by the results below, this assumption seems
to work reasonably well in practice.

As well as reporting correlations for straightfor-
ward averages of each set of five runs, we also inves-
tigate whether the development data can be used to
select an optimal subset of runs. This is done by sim-
ply evaluating every possible subset of 1–5 runs on
the development data and picking the best-scoring
subset.

4.3 Results

Table 1 presents the results of the PARA and SIM

predictors on the ML08 dataset. The best results

3This configuration seems the most intuitive; averaging
PARA predictors and multiplying SIM also give good results.

previously reported for this dataset were given by
Erk and Padó (2008), who measured average ρ val-
ues of 0.24 for a vector multiplication method and
0.27 for their structured vector space (SVS) syn-
tactic disambiguation method. Even without using
the development set to select models, performance is
well above the previous state of the art for all predic-
tors except PARAC→T . Model selection on the de-
velopment data brings average ρ up to 0.41, which is
comparable to the human “ceiling” of 0.40 measured
by Mitchell and Lapata. In all cases the T → C pre-
dictors outperform C → T : models that associate
target words with distributions over context clusters
are superior to those that associate contexts with dis-
tributions over target words.

Figure 1 plots the beneficial effect of averaging
over multiple runs; as the number of runs n is in-
creased, the average performance over all combi-
nations of n predictors chosen from the set of five
T → C and five C → T runs is observed to in-
crease monotonically. Figure 1 also shows that the
model selection procedure is very effective at se-
lecting the optimal combination of models; develop-
ment set performance is a reliable indicator of test
set performance.

5 Experiment 2: Lexical substitution

5.1 Data

The English Lexical Substitution task, run as part
of the SemEval-1 competition, required participants
to propose good substitutes for a set of target words
in various sentential contexts (McCarthy and Nav-
igli, 2009). Table 2 shows two example sentences
and the substitutes appearing in the gold standard,
ranked by the number of human annotators who pro-
posed each substitute. The dataset contains a total of
2,010 annotated sentences with 205 distinct target
words across four parts of speech (noun, verb, ad-
jective, adverb). In line with previous work on con-
textual disambiguation, we focus here on the subtask
of ranking attested substitutes rather than proposing
them from an unrestricted vocabulary. To this end,
a candidate set is constructed for each target word
from all the substitutes proposed for that word in all
sentences in the dataset.

The data contains a number of multiword para-
phrases such as rush at; as our models (like most
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(a) PARA: Target→ Context
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(b) PARA: Context→ Target
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(c) PARA: Target↔ Context
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(d) SIM: Target→ Context
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(e) SIM: Context→ Target
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(f) SIM: Target↔ Context

Figure 1: Performance on the ML08 test set with different predictor types and different numbers of LDA
runs per predictor type; the solid line tracks the average performance, the dashed line shows the performance
of the predictor combination that scores best on the development set.

Realizing immediately that strangers have come,
attack (5), rush at (1)

the animals charge them and the horses began to fight.

Commission is the amount charged to execute a trade. levy (2), impose (1), take (1), demand (1)

Table 2: Examples for the verb charge from the English Lexical Substitution Task

current models of distributional semantics) do not
represent multiword expressions, we remove such
paraphrases and discard the 17 sentences which have
only multiword substitutes in the gold standard.4

There are also 7 sentences for which the gold stan-
dard contains no substitutes. This leaves a total of
1986 sentences. These sentences were lemmatised
and parsed with RASP.

Previous authors have partitioned the dataset in
various ways. Erk and Padó (2008) use only a sub-
set of the data where the target is a noun headed
by a verb or a verb heading a noun. Thater et al.

4Thater et al. (2010) and Dinu and Lapata (2010) similarly
remove multiword paraphrases (Georgiana Dinu, p.c.).

(2010) discard sentences which their parser cannot
parse and paraphrases absent from their training cor-
pus and then optimise the parameters of their model
through four-fold cross-validation. Here we aim for
complete coverage on the dataset and do not perform
any parameter tuning. We use two measures to eval-
uate performance: Generalised Averaged Precision
(Kishida, 2005) and Kendall’s τb rank correlation
coefficient, which were used for this task by Thater
et al. (2010) and Dinu and Lapata (2010), respec-
tively. Generalised Averaged Precision (GAP) is
a precision-like measure for evaluating ranked pre-
dictions against a gold standard. τb is a variant of
Kendall’s τ that is appropriate for data containing
tied ranks. We do not use the “precision out of ten”
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COORDINATION:

Cats and

c:conj:n

OO

c:conj:n

OOdogs run

v:ncsubj:n
��

⇒ Cats and dogsOO

n:and:n

OO run
��

v:ncsubj:n
��

PREDICATION:

The cat is

v:ncsubj:n

OO

v:xcomp:j
��

fierce ⇒ The cat

n:ncmod:j
��

is fierce

PREPOSITIONS:

The cat

n:ncmod:i
��

in

i:dobj:n

OOthe hat ⇒ The cat

n:prep in:n
��

in the hat

Table 3: Dependency graph preprocessing

measure that was used in the original Lexical Substi-
tution Task; this measure assigns credit for the pro-
portion of the first 10 proposed paraphrases that are
present in the gold standard and in the context of
ranking attested substitutes it is unclear how to ob-
tain non-trivial results for target words with 10 or
fewer possible substitutes. We calculate statistical
significance of performance differences using strati-
fied shuffling (Yeh, 2000).5

5.2 Models
We apply the models developed in Section 3.1 to the
Lexical Substitution Task dataset using dependency-
and window-based context information. Here we
only use the SIM predictor type. PARA did not give
satisfactory results; in particular, it tended to rank
common words highly in most contexts.6

As before we compiled training data by extracting
target-context cooccurrences from a text corpus. In
addition to the parsed BNC described above we used
a corpus of Wikipedia text consisting of over 45 mil-
lion sentences (almost 1 billion words) parsed using
the fast Combinatory Categorial Grammar (CCG)
parser described by Clark et al. (2009). The depen-

5We use the software package available at http://www.
nlpado.de/˜sebastian/sigf.html.

6Favouring more general words may indeed make sense in
some paraphrasing tasks (Nulty and Costello, 2010).

dency representation produced by this parser is inter-
operable with the RASP dependency format. In or-
der to focus our models on semantically discrimina-
tive information and make inference more tractable
we ignored all parts of speech other than nouns,
verbs, adjectives, prepositions and adverbs. Stop-
words and words of fewer than three characters were
removed. We also removed the very frequent but se-
mantically weak lemmas be and have.

We compare two classes of context models: mod-
els learned from window-based contexts and models
learned from syntactic dependency contexts. For the
syntactic models we extracted all dependencies and
inverse dependencies between lemmas of the afore-
mentioned POS types; in order to maximise the ex-
traction yield, the dependency graph for each sen-
tence was preprocessed using the transformations
shown in Table 3. For the window-based context
model we follow Dinu and Lapata (2010) in treating
each word within five words of a target as a member
of its context set.

It proved necessary to subsample the corpora in
order to make LDA training tractable, especially for
the window-based model where the training set of
context-target counts is extremely dense (each in-
stance of a word in the corpus contributes up to
10 context instances). For the window-based data,
we divided each context-target count by a factor of
5 and a factor of 70 for the BNC and Wikipedia
corpora respectively, rounding fractional counts to
the closest integer. The choice of 70 for scaling
Wikipedia counts is adopted from Dinu and Lap-
ata (2010), who used the same factor for the com-
parably sized English Gigaword corpus. As the de-
pendency data is an order of magnitude smaller we
downsampled the Wikipedia counts by 5 and left the
BNC counts untouched. Finally, we created a larger
corpus by combining the counts from the BNC and
Wikipedia datasets. Type and token counts for the
BNC and combined corpora are given in Table 4.

We trained three LDA predictors for each corpus:
a window-based predictor (W5), a Context → Tar-
get predictor (C → T ) and a Target → Context
predictor (T → C). For W5 the sets of types and
contexts should be symmetrical (in practice there
is some discrepancy due to preprocessing artefacts).
ForC → T , individual models were trained for each
of the four target parts of speech; in each case the set
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BNC BNC+Wikipedia
Tokens Types Contexts Tokens Types Contexts

Nouns 18723082 122999 316237 54145216 106448 514257
Verbs 7893462 18494 57528 20082658 16673 82580
Adjectives 4385788 73684 37163 11536424 88488 57531
Adverbs 1976837 7124 14867 3017936 4056 18510
Window5 28329238 88265 102792 42828094 139640 143443

Table 4: Type and token counts for the BNC and downsampled BNC+Wikipedia corpora

BNC BNC + Wikipedia
GAP τb Coverage GAP τb Coverage

W5 44.5 0.17 100.0 44.8 0.17 100.0
C → T 43.2 0.16 86.4 48.7 0.21 86.5
T → C 47.2 0.21 86.4 49.3 0.22 86.5
T ↔ C 45.7 0.20 86.4 49.1 0.23 86.5
W5 + C → T 46.0 0.18 100.0 48.7 0.21 100.0
W5 + T → C 48.6 0.21 100.0 49.3 0.22 100.0
W5 + T ↔ C 48.1 0.20 100.0 49.5 0.23 100.0

Table 5: Results on the English Lexical Substitution Task dataset; boldface denotes best performance at full
coverage for each corpus

of types is the vocabulary for that part of speech and
the set of contexts is the set of dependencies taking
those types as dependents. For T → C we again
train four models; the sets of types and contexts are
reversed. For the both corpora we trained models
with Z = {600, 800, 1000, 1200} topics; for each
setting of Z we ran five estimation runs. Each in-
dividual prediction of similarity between P (z|C, o)
and P (z|n) is made by averaging over the predic-
tions of all runs and over all settings of Z. Choosing
a single setting of Z does not degrade performance
significantly; however, averaging over settings is a
convenient way to avoid having to pick a specific
value.

We also investigate combinations of predictor
types, once again produced by averaging: we com-
bine C → T with C ↔ T (T ↔ C) and combine
each of these three models with W5.

5.3 Results
Table 5 presents the results attained by our mod-
els on the Lexical Substitution Task data. The
dependency-based models have imperfect coverage
(86% of the data); they can make no prediction when
no syntactic context is provided for a target, per-

haps as a result of parsing error. The window-based
models have perfect coverage, but score noticeably
lower. By combining dependency- and window-
based models we can reach high performance with
perfect coverage. All combinations outperform the
corresponding W5 results to a statistically signifi-
cant degree (p < 0.01). Performance at full cov-
erage is already very good (GAP= 48.6, τb = 0.21)
on the BNC corpus, but the best results are attained
by W5 + T ↔ C trained on the combined corpus
(GAP= 49.5, τb = 0.23). The results for the W5
model trained on BNC data is comparable to that
trained on the combined corpus; however the syntac-
tic models show a clear benefit from the less sparse
dependency data in the combined training corpus.

As remarked in Section 3.1, Dinu and Lap-
ata (2010) use a slightly different formulation of
P (z|C, o). Using the window-based context model
our formulation (5) outperforms (7) for both training
corpora; the Dinu and Lapata (2010) version scores
GAP = 41.5, τb = 0.15 for the BNC corpus and
GAP = 42.0, τb = 0.15 for the combined corpus.
The advantage of our formulation is statistically sig-
nificant for all evaluation measures.

1054



Nouns Verbs Adjectives Adverbs Overall
GAP τb GAP τb GAP τb GAP τb GAP τb

W5 46.0 0.16 38.9 0.14 44.0 0.18 54.0 0.22 44.8 0.17
W5 + T ↔ C 50.7 0.22 45.1 0.20 48.8 0.24 55.9 0.24 49.5 0.23
Thater et al. (2010) (Model 1) 46.4 – 45.9 – 39.4 – 48.2 – 44.6 –
Thater et al. (2010) (Model 2) 42.5 – – – 43.2 – 51.4 – – –
Dinu and Lapata (2010) (LDA) – 0.16 – 0.14 – 0.17 – 0.21 – 0.16
Dinu and Lapata (2010) (NMF) – 0.15 – 0.14 – 0.16 – 0.26 – 0.16

Table 6: Performance by part of speech

Table 6 gives a breakdown of performance by tar-
get part of speech for the BNC+Wikipedia-trained
W5 and W5 + T ↔ C models, as well as figures
provided by previous researchers.7 W5 + T ↔ C
outperforms W5 on all parts of speech using both
evaluation metrics. As remarked above, previous re-
searchers have used the corpus in slightly different
ways; we believe that the results of Dinu and Lapata
(2010) are fully comparable, while those of Thater et
al. (2010) were attained on a slightly smaller dataset
with parameters set through cross-validation. The
results for W5 + T ↔ C outperform all of Dinu
and Lapata’s per-POS and overall results except for
a slightly superior score on adverbs attained by their
NMF model (τb = 0.26 compared to 0.24). Turn-
ing to Thater et al., we report higher scores for ev-
ery POS with the exception of the verbs where their
Model 1 achieves 45.9 GAP compared to 45.1; the
overall average for W5 + T ↔ C is substantially
higher at 49.5 compared to 44.6. On balance, we
suggest that our models do have an advantage over
the current state of the art for lexical substitution.

6 Conclusion

In this paper we have proposed novel methods for
modelling the effect of context on lexical mean-
ing, demonstrating that information about syntactic
context and textual proximity can fruitfully be inte-
grated to produce state-of-the-art models of lexical
choice. We have demonstrated the effectiveness of
our techniques on two datasets but they are poten-
tially applicable to a range of applications where se-
mantic disambiguation is required. In future work,

7The overall average GAP for Thater et al. (2010) does not
appear in their paper but can be calculated from the score and
number of instances listed for each POS.

we intend to adapt our approach for word sense dis-
ambiguation as well as related domain-specific tasks
such as gene name normalisation (Morgan et al.,
2008). A further, more speculative direction for fu-
ture research is to investigate more richly structured
models of context, for example capturing correla-
tions between words in a text within a framework
similar to the Correlated Topic Model of Blei and
Lafferty (2007) or more explicitly modelling poly-
semy effects as in Reisinger and Mooney (2010).
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Abstract

Lexical co-occurrence is an important cue for
detecting word associations. We propose a
new measure of word association based on a
new notion of statistical significance for lex-
ical co-occurrences. Existing measures typ-
ically rely on global unigram frequencies to
determine expected co-occurrence counts. In-
stead, we focus only on documents that con-
tain both terms (of a candidate word-pair) and
ask if the distribution of the observed spans of
the word-pair resembles that under a random
null model. This would imply that the words
in the pair are not related strongly enough
for one word to influence placement of the
other. However, if the words are found to oc-
cur closer together than explainable by the null
model, then we hypothesize a more direct as-
sociation between the words. Through exten-
sive empirical evaluation on most of the pub-
licly available benchmark data sets, we show
the advantages of our measure over existing
co-occurrence measures.

1 Introduction

Lexical co-occurrence is an important indicator of
word association and this has motivated several
co-occurrence1 measures for word association like
PMI (Church and Hanks, 1989), LLR (Dunning,
1993), Dice (Dice, 1945), and CWCD (Washtell and
Markert, 2009). In this paper, we present a new mea-
sure of word association based on a new notion of
statistical significance for lexical co-occurrences. In
general, a lexical co-occurrence could refer to a pair

1We use the term co-occurrence to refer to a pair of words
that co-occur in a document with an arbitrary number of inter-
vening words.

of words that co-occur in a large number of docu-
ments; or it could refer to a pair of words that, al-
though co-occur only in a small number of docu-
ments, occur close to each other within those docu-
ments. We formalize these ideas and construct a sig-
nificance test that allows us to detect different kinds
of co-occurrences within a single unified framework
(a feature which is absent in current measures for
co-occurrence). Another distinguishing feature of
our measure is that it is based solely on the co-
occurrence counts in the documents containing both
words of the pair, unlike all existing measures which
also take global unigram frequencies in account.

We need a null hypothesis that can account for
an observed co-occurrence as a pure chance event
and this in-turn requires a corpus generation model.
Documents in a corpus can be assumed to be gen-
erated independent of each other. Existing co-
occurrence measures further assume that each docu-
ment is drawn from a multinomial distribution based
on global unigram frequencies. The main concern
with such a null model is the overbearing influence
of the unigram frequencies on the detection of word
associations. For example, the association between
anomochilidae (dwarf pipe snakes) and snake could
go undetected in our wikipedia corpus, since less
than 0.1% of the pages containing snake also con-
tained anomochilidae. Also, under current models,
the expected span2 of a word pair is very sensitive
to the associated unigram frequencies: the expected
span of a word pair composed of low frequency un-
igrams is much larger than that with high frequency
unigrams. This is contrary to how word associa-

2The span of an occurrence of a word-pair is the ‘unsigned
distance’ between the positions of the corresponding word oc-
currences.
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tions appear in language, where semantic relation-
ships manifest with small inter-word distances irre-
spective of the underlying unigram distributions.

Based on these considerations we employ a null
model that represents each document as a bag of
words 3. A random permutation of the associated
bag of words gives a linear representation for the
document. Under this null model, the locations of
an unrelated pair of words will likely be randomly
distributed in the documents in which they co-occur.
If the observed span distribution of a word-pair re-
sembles that under the (random permutation) null
model, then the relation between the words is not
strong enough for one word to influence the place-
ment of the other. However, if the words are found
to occur closer together than explainable by our null
model, then we hypothesize a more direct associa-
tion between the words. Therefore, this null model
detects biases in span distributions of word-pairs
while being agnostic to variations in global unigram
frequencies.

In this paper, we propose a new measure of word
association based on the statistical significance of
the observed span distribution of a word-pair. We
perform extensive experiments on all the publicly
available benchmark data sets4 and compare our
measure against other popular co-occurrence mea-
sures. Our experiments demonstrate the advan-
tages of our measure over all the competing mea-
sures. The ranked list of word associations output
by our measure has the best correlation with the
corresponding gold-standard in three (out of seven)
data sets in our experiments, while remaining in
the top three in other four datasets. While differ-
ent measures perform best on different data sets,
our measure outperforms other measures by being
consistently either the best measure or very close
to the best measure on all the data sets. The aver-
age deviation of our measure’s correlation with the
gold-standard from the best measure’s correlation
with the gold-standard (average taken across all the

3There can be many ways to associate a bag of words with a
document. Details of this association are not important for us,
except that the bag of words provides some kind of quantitative
summary of the words within the document.

4We exclude very small data sets of 80 word pairs or less.
Sizes of the seven datasets we used range from 351 word-pairs
to 83,713 word-pairs.

datasets) is 0.02, which is the least average deviation
among all the measures, the next best deviations be-
ing 0.04 and 0.06.

The paper is organized as follows. We present our
notion of statistical significance of span distribution
in Section 2. Algorithm for computing the proposed
word association measure is described in Section 3.
We discuss related work in Section 4. Performance
evaluation is presented in Section 5 followed with
conclusions in Section 6.

2 Lexically significant co-occurrences

Evidence for significant lexical co-occurrences can
be gathered at two levels in the data – document-
level and corpus-level. First, at the document level,
we may find that for a given word-pair, a surpris-
ingly high proportion of its occurrences within a
document have smaller spans than they would have
by random chance. Second, at the corpus-level,
we may find a pair of words appearing closer-than-
random in multiple documents in the corpus. We
now describe how to combine both kinds of evidence
to decide whether the nearby occurrences of a word-
pair are statistically significant or not.

Let the frequency f of a word-pair α in a
document D, be the maximum number of non-
overlapped occurrences of α in D. A set of occur-
rences of a word-pair is said to be non-overlapped if
the words corresponding to one occurrence from the
set do not appear in-between the words correspond-
ing to any other occurrence from the set.

Let f̂x denote the maximum number of non-
overlapped occurrences of α in D with span less
than a given threshold x. We refer to f̂x as the span-
constrained frequency of α in D. Note that f̂x can-
not exceed f .

2.1 Document-level significant co-occurrence

To assess the statistical significance of the word-pair
αwe ask if the span-constrained frequency f̂x (of α)
is more than what we would expect in a document
of size ` containing f ‘random’ occurrences of α.
Our intuition is that if two words are associated in
some way, they will often appear close to each other
in the document and so the distribution of the spans
will typically exhibit a bias toward values less than
a suitably chosen threshold x.
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Definition 1 Consider the null hypothesis that the
linear representation of a document is generated by
choosing a random permutation of the bag of words
associated with the document. Let ` be the length of
the document and f denote the frequency of a word-
pair in the document. For a given a span threshold
x, we define πx(f̂x, f, `) as the probability under the
null that the word-pair will appear in the document
with a span-constrained frequency of at least f̂x.

Observe that πx(0, f, `) = 1 for any x > 0;
also, for x ≥ ` we have πx(f, f, `) = 1 (i.e. all f
occurrences will always have span less than x for
x ≥ `). However, for typical values of x (i.e. for
x � `) the probability πx(f̂x, f, `) decreases with
increasing f̂x. For example, consider a document
of length 400 with 4 non-overlapped occurrences
of α. The probabilities of observing at least 4, 3,
2, 1 and 0 occurrences of α within a span of 20
words are 0.007, 0.09, 0.41, 0.83, and 1.0 respec-
tively. Since π20(3, 4, 400) = 0.09, even if 3 of the
4 occurrences of α have span less than 20 words,
there is 9% chance that the occurrences were a con-
sequence of a random event. As a result, if we de-
sired a confidence-level of at least 95%, we would
have to declare observed co-occurrences of α as in-
significant.

Given an ε (0 < ε < 1) and a span threshold
x (≥ 0) the document D is said to support the hy-
pothesis “α is an ε-significant word-pair within the
document” if we have [πx(f̂x, f, `) < ε]. We re-
fer to ε as the document-level evidence of the lexical
co-occurrence of α.

2.2 Corpus-level significant co-occurrence
We now describe how to aggregate evidence for lex-
ical significance by considering the occurrence of
α across multiple documents in the corpus. Let
{D1, . . . , DK} denote the set ofK documents (from
out of the entire corpus) that contain at least one
occurrence of α. Let `i be the length of Di, fi
be the frequency of α in Di, and, f̂xi be the span-
constrained frequency of α in Di. Define indicator
variables zi, i = 1, . . . ,K as:

zi =

{
1 if πx(f̂xi , fi, `i) < ε
0 otherwise

(1)

As discussed previously, zi indicates whether “α
is an ε-significant word-pair within the document

Di.” Note that we view f̂xi as the only random quan-
tity here, with x fixed by the user, and `i and fi
fixed given the document Di and word-pair α. Let
Z =

∑K
i=1 zi; Z models the number of documents

(out of K) that support the hypothesis “α is an ε-
significant word-pair.” The expected value of Z is
given by

E(Z) =
K∑

i=1

E(zi)

=
K∑

i=1

πx(gε,x(fi, `i), fi, `i) (2)

where gε,x(fi, `i) is given by Definition 2 below.

Definition 2 Given a document of length ` in which
a word-pair has a frequency of f , and given a span
threshold x, we define gε,x(f, `) as the smallest r for
which the inequality [πx(r, f, `) < ε] holds.

Note that gε,x(f, `) is well-defined since πx(r, f, `)
is non-increasing with respect to r. For the
example given earlier, g0.2,20(4, 400) = 3 and
g0.05,20(4, 400) = 4. Since each document in the
corpus is assumed to be generated independently,
zi’s are independent random variables and we can
bound the deviation of the observed value of Z from
its expectation using Hoeffding’s Inequality – for
any t > 0, we have

P [Z ≥ E(Z) +Kt] ≤ exp(−2Kt2)

= δ (3)

Recall that Z models the number of documents sup-
porting the hypothesis “α is an ε-significant word-
pair.”). Thus, the upper-bound δ (= exp(−2Kt2)),
0 < δ < 1 denotes the upper-bound on the prob-
ability that just due to random chance, more than
(E(Z) + Kt) documents out of K will support the
hypothesis “α is an ε-significant word-pair.” We
call δ the corpus-level evidence of the lexical co-
occurrence α. For example, in our corpus, the word-
pair (canyon, landscape) occurs in K = 416 doc-
uments. For ε = 0.1, we have ε-significant occur-
rences in Z = 33 documents (out of 416) , while
E(Z) = 14.34. Suppose we want to be 99% sure
that the occurrences of (canyon, landscape) in the
33 documents were a consequence of non-random
phenomena. Let δ = 1 − 0.99 = 0.01. By setting
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word-1 word-2
(0.1, 0.1) (0.1, 0.4) (0.4, 0.1)

algae green mold pool
amuse entertain clown amaze
damn hell mad bad
rat dirty ugly disease
sedative drug narcotic calm
topping chocolate flavour caramel
umbrella rain dry shade
unknown known dark secret
worm insect dirt fishing
wrap cover seal bandage

Table 1: Examples of word-pairs from Florida dataset
having statistically significant co-occurrences in the
wikipedia corpus for different (ε, δ) combinations under
a span constraint of 20 words.

t =
√

ln δ/(−2K) = 0.07, we get E(Z) + Kt =
43.46. Only ifZ was 44 or more, there would be less
than 1% chance of that being a random phenomena.
Thus, we cannot be 99% sure that the observed co-
occurrences in the 33 documents are non-random.
Hence, our test declares (canyon, landscape) as in-
significant at ε = 0.1, δ = 0.01. We now summarize
our significance test in the definition below.

Definition 3 (Significant lexical co-occurrence)
Consider a word-pair α and a set of K documents
containing at least one occurrence each of α. Fix
a span threshold of x (> 0), a document-level
evidence of ε (0 < ε < 1) and a corpus-level
evidence of δ (0 < δ < 1). Let Z denote
the number of documents (out of K) that sup-
port the hypothesis “α is ε-significant within
the document.” The word-pair α is said to be
(ε, δ)-significant if we have [Z ≥ E(Z) + Kt],
where t =

√
log δ/(−2K) and E(Z) is given by

Eq. (2). The ratio [Z/(E(Z) + Kt)] is called the
Co-occurrence Significance Ratio (CSR) for α.

2.3 Discussion

The significance test of Definition 3 gathers both
document-level and corpus-level evidence from data
in calibrated amounts. Prescribing ε fixes the
strength of the document-level hypothesis in our
test, while, δ, controls the extent of corpus-level ev-
idence we need to declare a word-pair as significant.
A small δ demands that there must be multiple doc-
uments in the corpus, each of which, individually
have some evidence of relatedness for the pair of
words.

By running the significance test with different val-
ues of ε and δ, the CSR test can be used to detect dif-
ferent types of lexically significant co-occurrences.
For example, the strongest lexical co-occurrences
would have both strong document-level evidence
(low ε) as well as high corpus-level evidence (low
δ). Informally, these would represent pairs of words
that appear multiple times with small spans within a
document, in many documents, and in-practice, we
find that multi-word expressions or pairs of words
separated by stop words tend to dominate this type.
On the other hand, a higher ε would represent word-
pairs that appear relatively farther apart within a
document, or a higher δ would represent word-pairs
that appear together in relatively fewer documents.
Note that to detect co-occurrences that exclusively
correspond to (say) low ε and high δ, we would have
to run the test with low ε and high δ, and then re-
move word-pairs that were also found significant at
low ε and low δ.

In Table 1, we present some examples of different
types of co-occurrences. The table lists word-pairs
that were found to be statistically significant for dif-
ferent choices of (ε, δ). Note that a word-pair is re-
ported under (ε = 0.1, δ = 0.4) or (ε = 0.4, δ =
0.1) only if it was not also found significant under
other two parameter settings. The strongest corre-
lations are the word-pairs corresponding to (ε =
0.1, δ = 0.1) e.g., algae-green, rat-dirty and worm-
insect. Different sets of weaker co-occurrences are
detected depending on whether we relaxed δ or ε.
For example, algae-mold is significant at a higher δ,
while algae-pool is significant for higher ε.

The semantic notion of word association is an
abstract concept and different kinds of associations
(with potentially different statistical characteriza-
tions) may be preferred by human judges in differ-
ent situations. While in Section 5, we discuss in de-
tail various datasets used, the evaluation methodol-
ogy, and the performance of CSR across datasets,
we wish to point out here that in 3 out of 5 cross-
validation runs for wordsim dataset, the best per-
forming CSR parameters were x = 50w, ε = 0.1
and δ = 0.9, while in 3 out of 5 runs for Minnesota
dataset, the best performing CSR parameters were
x = 20w, ε = 0.3 and δ = 0.5. This gives us some
indication that different kinds of word associations
were preferred in different data sets.
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3 Computing Co-occurrence Significance
Ratio(CSR)

There are three main steps for computing CSR
and the pseudocodes for these are listed in Proce-
dures 1, 2 & 3. Of these, the first two can be run
offline since they do not depend on the text corpus.
They need to be run only once, after which CSR can
be computed for any word-pair on any given corpus
of documents. We describe these steps in the sub-
sections below.

3.1 Computing histogram histf,`,x(·)
The first step is to compute a histogram for the span-
constrained frequency, f̂x, of a word-pair whose fre-
quency is f in a document of length `, given a cho-
sen span threshold of x (under our null model).

Definition 4 Given a document of length ` and a
span threshold of x, we define histf,`,x(f̂x) as the
number of ways to embed f non-overlapped occur-
rences of a word-pair in the document such that ex-
actly f̂x occurrences have span less than x.

Procedure 1 ComputeHist(f, `, x) – Offline
Input f - number of non-overlapped occurrences; ` - document length;

x - span threshold
Computes histf,`,x[·] as per Definition 4

1: Initialize histf,`,x[f̂x]← 0 for f̂x = 0, . . . , f
2: if f > ` then
3: return
4: if f = 0 then
5: histf,`,x[0]← 1
6: return
7: for i← 1 to (`− 1) do
8: for j ← (i+ 1) to ` do
9: histf−1,`−j,x ← ComputeHist(f − 1, `− j, x)

10: for k ← 0 to f − 1 do
11: if (j − i) < x then
12: histf,`,x[k + 1]← histf,`,x[k + 1]

+ histf−1,`−j,x[k]
13: else
14: histf,`,x[k]← histf,`,x[k] + histf−1,`−j,x[k]

Procedure 1 lists the pseudocode for computing
the histogram histf,`,x. The main steps involve se-
lecting a start and end position for embedding the
very first occurrence (lines 7-8) and then recursively
calling ComputeHist(·, ·, ·) (line 9). The i-loop
selects a start position for the first occurrence of
the word-pair, and the j-loop selects the end posi-
tion. The recursion step now computes the num-
ber of ways to embed the remaining (f − 1) non-
overlapped occurrences in the remaining (` − j)

positions. Once we have histf−1,`−j , we check
whether the occurrence introduced at positions (i, j)
will contribute to the f̂x count. If (j − i) < x,
whenever there are k span-constrained occurrences
in positions (j + 1) to `, there will be (k + 1)
span-constrained occurrences in positions 1 to `.
Thus, we increment histf,`[k + 1] by the quantity
histf−1,`−j [k] (lines 10-12). However, if (j − i) >
x, there is no contribution to the span-constrained
frequency from the (i, j) occurrence, and so we in-
crement histf,`[k] by the quantity histf−1,`−j [k]
(lines 10-11, 13-14). Finally, we note that in our
implementation we use memorization to avoid re-
dundant recursive calls.

3.2 Computing πx(·, f, `) distribution

Procedure 2 ComputeP iDist(f, `, x) – Offline
Input f - number of non-overlapped occurrences; ` - document length;

x - span threshold
Computes Distribution πx[f, `, ·] as per Definition 1 and gε,x[f, `] as

per Definition 2
1: N [f, `, x] =

∑f
k=0 histf,`,x[k]

2: for f̂x ← 0 to f do
3: Nx[f̂x, f, `]←

∑f

k=f̂x
histf,`,x[k]

4: πx[f̂x, f, `]← Nx[f̂x,f,`]
N [f,`,x]

5: gε,x[f, `]← min{r | πx[r, f, `] < ε}

The second offline step is computation of the
πx(·, f, `) distribution. We store the number of ways
of embedding f non-overlapped occurrences of a
word-pair in a document of length ` in the array
N [f, `]. Similarly, the array Nx[f̂x, f, `] stores the
number of ways of embedding f non-overlapped oc-
currences of the word-pair in a document of length `,
such that at least f̂x of the f occurrences have span
less than x. To compute N [f, `, x] and Nx[f̂x, f, `],
we need the histogram histf,`,x[·] which is the out-
put of Procedure 1. Procedure 2 lists the pseu-
docode for computing πx(f̂x, f, `) fromN(f, `) and
Nx(f̂x, f, `) given histf,` from Procedure 1 (For the
sake of readability the pseudocode does not describe
some optimizations that we used in our implementa-
tion).

The Procedure 1 is exponential in f and ` but
it does not depend on the data corpus. Hence, we
can run the Procedures 1 and 2 off-line, and publish
the πx[] and gε,x[] tables for various x, f̂x, f and
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`. Using these tables5, anyone wishing to compute
CSR needs to only run Procedure 3.

3.3 Computing CSR for a given word-pair

Procedure 3 ComputeCSR(α, ε, δ, x)
Input α - word-pair; ε - document-level evidence; δ - corpus-level ev-

idence; x - span threshold; Corpus of documents
Computes CSR(α) - Co-occurrence Significance Ratio (CSR) for α

as per Definition 3
1: D ← {D1, . . . , DK} // Set of documents from the corpus that

each contain at least one occurrence of α.
2: t←

√
log δ/(−2K)

3: Z ← 0 and ZE ← 0
4: for i← 1 to K do
5: `i = Length of Di
6: fi = Frequency of α in Di
7: f̂xi = Span-constrained frequency of α in Di
8: if πx[f̂xi , fi, `i] < ε then
9: zi ← 1

10: else
11: zi ← 0
12: Z ← Z + zi
13: ZE ← ZE + πx[gε[fi, `i, x], fi, `i]
14: CSR(α) = Z/(ZE +Kt)

Procedure 3 implements the significance test
given in Definition 3 and requires that the πx[] and
gε,x[] tables have already been computed offline.

The first step is to determine the subsetD of docu-
ments containing the given word-pair (line 1). Then
we compute t based on δ and K (the size of D)
(line 2). Next we determine how many of the K
documents support the hypothesis “α is ε-significant
within the document” (lines 3-12). The expected
number of documents supporting the hypothesis is
accumulated in ZE (line 13). CSR is then computed
as the ratio of Z to (ZE +Kt) (line 14).

3.4 Run-time overhead
The computation of Co-occurrence Significance Ra-
tio (CSR) as given in Definition 3 might appear
more complex than the simple formulae for other
co-occurrence measures given in Table 2. However,
bulk of the complexity in calculating CSR lies in
the one-time (data independent) off-line computa-
tion of the πx[] and gε,x[] tables. Once these tables
are published, the cost of comparing CSR for a given
word pair is comparable to the cost of computing
any other (spanned) measure in Table 2. The main
data-dependent computations for a spanned measure

5http://www.cse.iitb.ac.in/˜damani/papers/EMNLP11/
resources.html

are in determining span-constrained frequencies; all
other steps are simple arithmetic operations or mem-
ory lookups. To illustrate this, Procedure 4 gives de-
tails of computing PMI. The comparison of Proce-
dures 3 and 4 shows their almost parallel structures.
The main overhead in these procedures is incurred
in line 7, where span-constrained frequencies in a
given document are computed.

Procedure 4 ComputePMI(a, b)
Input (x, y) - word pair;
Computes PMI (Table 2) for (x, y).

1: let D = {D1, . . . , DK} // set of documents containing at least
one occurrence of α.

2: N = total number of words in corpus
3: (fx,fy) = unigram frequencies of x, y in corpus
4: (px,py) = (fx/N ,fy/N )
5: f̂ = 0
6: for i← 1 to K do
7: f̂i = span-constrained frequency of α in Di
8: f̂ = f̂ + f̂i
9: p̂x,y = f̂/N

10: PMI = log(
p̂x,y

pxpy
)

4 Related Work

Existing word association measures can be divided
into three broad categories: (i) Co-occurrence mea-
sures that rely on co-occurrence frequencies of both
words in a corpus in addition to the individual
unigram frequencies (Table 2), (ii) Distributional
similarity-based measures that characterize a word
by the distribution of other words around it (Agirre
et al., 2009; Bollegala et al., 2007; Chen et al., 2006;
Wandmacher et al., 2008), and (iii) Knowledge-
based measures that use knowledge-sources like
thesauri, semantic networks, or taxonomies (Milne
and Witten, 2008; Hughes and Ramage, 2007;
Gabrilovich and Markovitch, 2007; Yeh et al., 2009;
Strube and Ponzetto, 2006; Finkelstein et al., 2002;
Liberman and Markovitch, 2009).

In this paper, we focus on comparison with
other co-occurrence measures. These measures
are used in several domains like ecology, psy-
chology, medicine, and language processing. Ta-
ble 2 lists several measures chosen from all these
domains. Except Ochiai (Ochiai, 1957; Janson
and Vegelius, 1981) and the recently introduced
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Method Formula
CSR (this work) Z/(E(Z) +Kt)

CWCD (Washtell and
Markert, 2009)

f̂(x,y)
p(x)

1/max(p(x),p(y))
M

Dice (Dice, 1945) 2f̂(x,y)
f(x)+f(y)

LLR (Dunning, 1993)
∑

x′ ∈ {x,¬x}
y′ ∈ {y,¬y}

p(x′, y′)log p(x′,y′)
p(x′)p(y′)

Jaccard (Jaccard, 1912) f̂(x,y)

f(x)+f(y)−f̂(x,y)
Ochiai (Janson and Veg-
elius, 1981)

f̂(x,y)√
f(x)f(y)

Pearson’s χ2 test
∑

x′ ∈ {x,¬x}
y′ ∈ {y,¬y}

(f̂(x′,y′)−Ef̂(x′,y′))2

Ef̂(x′,y′)

PMI (Church and Hanks,
1989)

log
p(x,y)
p(x)p(y)

SCI (Washtell and Mark-
ert, 2009)

p(x,y)

p(x)
√
p(y)

T-test f̂(x,y)−Ef̂(x,y)√
f̂(x,y)

(
1− f̂(x,y)

N

)

N Total number of tokens in the corpus
f(x), f(y) unigram frequencies of x, y in the corpus
p(x), p(y) f(x)/N, f(y)/N

f̂(x, y) Span-constrained (x, y) word pair frequency in corpus
p̂(x, y) f̂(x, y)/N

M Harmonic mean of the spans of f̂(x, y) occurrences
Ef̂(x, y) Expected value of f̂(x, y)

Table 2: Co-occurrence measures.

CWCD6 (Washtell and Markert, 2009) all other
measures are well-known in the NLP commu-
nity (Pecina and Schlesinger, 2006). Our results
show that Ochiai and Chi-Square have almost iden-
tical performance, differing only in 3rd decimal dig-
its. Rankings produced by Chi-square is almost
monotonic with respect to the rankings produced by
Ochiai. This is because, for most word pairs (x, y),
[f(x) � N ], [f(y) � N ], [f(x, y) � f(x)], and
[f(x, y) � f(y)]. Therefore three of the four terms
in the Chi-square summation become zero7 and the
fourth term approximates to the square of Ochiai.
Similarly Jaccard and Dice coincide. While present-
ing our experimental results, we report these pairs of
measures together.

6CWCD was reported in (Washtell and Markert, 2009) as
the best performing variant among the so-called windowless (or
spanless) measures. In our experiments, we implemented win-
dowed (spanned) version of the CWCD measure.

7For example, f̂(x,¬y) − Ef(x,¬y) = f(x) − N ×
pf(x) × pf(¬y) = f(x) − 1

N
× f(x) × f(¬y) = f(x) −

1
N
× f(x)×N = 0.

Aspect Data Set No. of
Respon-
dents

No. of
Word
Pairs

No. of
Filtered
Word
Pairs

Semantic
relatedness

wordsim 16 353 351
(Finkelstein et al.,
2002)
Edinburg (Kiss et al.,
1973)

100 325,588 83,713

Florida (Nelson et
al., 1980)

5,019 65,523 59,852

Free-
Association

Goldfarb-Halpern
(Goldfarb and
Halpern, 1984)

316 410 384

Kent (Kent and
Rosanoff, 1910)

1,000 14,576 14,086

Minnesota (Russell
and Jenkins, 1954)

1,007 10,447 9,649

White-Abrams
(White and Abrams,
2004)

440 745 652

Table 3: Characteristics of data sets used.

5 Performance Evaluation

Two main aspects of word association studied in lit-
erature are: a) semantic relatedness, and b) free as-
sociation. Semantic relatedness encompasses many
different relationships between words, like syn-
onymy, meronymy, antonymy, and functional asso-
ciation (Budanitsky and Hirst, 2006). Free associ-
ation refers to the first response-words that come
to mind when presented with a stimulus. (ESSLLI,
2008). We experiment with all the publicly available
datasets that come with gold standard judgement of
these aspects, except the very small ones with less
than 80 word-pairs8.

5.1 Datasets

Details9 of the datasets used in our experiments are
listed in Table 3. Each data set comes with a gold-
standard of human judgments - a ranked list of asso-
ciation scores for the word-pairs in the data set. The
wordsim dataset was prepared by asking the subjects
to estimate the relatedness of the word pairs on a

8(MillerCharles (Miller and Charles, 1991), Rubenstein-
Goodenough (Rubenstein and Goodenough, 1965) and
TOEFL (Landauer and Dumais, 1997))

9We removed word-pairs containing multiword expressions.
For data sets with more than 10,000 word-pairs, we filtered out
pairs that contain stop words listed in (StopWordList, 2010).
For Edinburg (size 275393 after previous filtering), we further
filtered word-pairs where the response was supported by only
one respondant. Original and filtered data sets are available at
http://www.cse.iitb.ac.in/˜damani/papers/EMNLP11/resources.html
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CSR 0.25 0.30 0.42 0.31 0.34 0.10 0.63
CWCD 0.23 0.23 0.40 0.30 0.21 0.19 0.54
Dice (Jaccard) 0.20 0.27 0.43 0.32 0.21 0.09 0.59
LLR 0.20 0.26 0.40 0.29 0.18 0.03 0.51
Ochiai (χ2) 0.24 0.30 0.43 0.31 0.29 0.08 0.62
PMI 0.22 0.25 0.36 0.26 0.22 0.11 0.69
SCI 0.24 0.27 0.38 0.27 0.23 0.06 0.37
TTest 0.17 0.23 0.37 0.26 0.17 -0.02 0.45

Table 4: Comparison of the average Spearman coefficients obtained across five cross-validation runs by different
measures. The best performing measure for each data-set is shown in bold. All standard deviations for Edinburg and
Florida were less than 0.01, for Kent and Minnesota were between 0.01 and 0.02, for White-Abrams were between
0.05 and 0.08, for Goldfarb-Halpern between 0.05 and 0.15 and for wordsim were between 0.02 and 0.15. Number of
word-pairs in each dataset is shown in brackets against its name.
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CSR 0.00 (1) 0.00 (1) 0.01 (3) 0.01 (2) 0.00 (1) 0.09 (3) 0.06 (2) 3 0.02 0.09
CWCD 0.02 (4) 0.07 (7) 0.03 (4) 0.02 (4) 0.13 (5) 0.00 (1) 0.15 (5) 7 0.06 0.15
Dice (Jaccard) 0.05 (6) 0.03 (3) 0.00 (1) 0.00 (1) 0.13 (5) 0.10 (4) 0.10 (4) 6 0.06 0.13
LLR 0.05 (6) 0.04 (5) 0.03 (4) 0.03 (5) 0.16 (7) 0.16 (7) 0.18 (6) 7 0.09 0.18
Ochiai (χ2) 0.01 (2) 0.00 (1) 0.00 (1) 0.01 (2) 0.05 (2) 0.11 (5) 0.07 (3) 5 0.04 0.11
PMI 0.03 (5) 0.05 (6) 0.07 (8) 0.06 (7) 0.12 (4) 0.08 (2) 0.00 (1) 8 0.06 0.12
SCI 0.01 (2) 0.03 (3) 0.05 (6) 0.05 (6) 0.11 (3) 0.13 (6) 0.32 (8) 8 0.10 0.32
TTest 0.08 (8) 0.07 (7) 0.06 (7) 0.06 (7) 0.17 (8) 0.21 (8) 0.24 (7) 8 0.13 0.24

Table 5: Comparison of deviations from the best performing measure on each data set. Number of word-pairs in each
dataset is shown in brackets against its name. Figures in brackets against the deviation values denote the ranks of the
measures in the corresponding data sets.

scale from 0 to 10 (Finkelstein et al., 2002). The
methodology for collecting free association data is
explained at (ESSLLI, 2008): The degree of free as-
sociation between a stimulus (S) and response (R) is
the percentage of respondents who respond R as the
first response when presented with stimulus S.

These datasets are of varying size, and they were
constructed at different point in time, in different ge-
ographies. This allows us to compare different mea-
sures comprehensively under varying range of cir-
cumstances. To the best of our knowledge, no pre-
vious work has reported such a detailed comparison
of co-occurrence measures.

5.2 Resources Used

We use the Wikipedia (Wikipedia, April 2008) cor-
pus with 2.7 million articles (total of 1.24 Giga-
words). We did no pre-processing - no lemmatiza-
tion or function-word removal. When counting doc-
ument size (in words), punctuations were ignored.

Documents larger than 1500 words were partitioned
such that each part was at most 1500 words10. We
indexed the corpus using Lucene search engine li-
brary and used Lucene APIs to obtain various statis-
tics and documents containing given word-pairs.

5.3 Methodology

Each measure listed in Table 2 produces a ranked
list of association scores for the word-pairs in a data
set. We evaluate each measure by the Spearman’s
rank correlation between the ranking produced by
the measure and the gold-standard ranking.

The span threshold (or window-width) x is a user-
defined parameter in all measures. In addition, CSR
has the parameters ε and δ. For any measure, the
ranking of word-pairs will likely change with chang-

10While this limit can be raised using heavier computing re-
sources, we believe that partitioning documents of sizes greater
than 1500 words was reasonable (especially since typical span
values we used were less than 50, much less than 1500).
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Method Resource
wordsim

wordsim sim rel Esslli
(353) (203) (252) (272)

PMI Wikipedia 0.69 0.72 0.68 0.32
Ochiai (χ2) Wikipedia 0.62 0.68 0.62 0.44
Significance Ratio (CSR) Wikipedia 0.63 0.70 0.64 0.43
Latent Semantic Analysis (Wandmacher et al., 2008) Newspaper corpus - - - 0.38
Graph Traversal (WN30g) (Agirre et al., 2009)) Wordnet 0.66 0.72 0.56 -
Bag of Words based Distributional Similarity (BoW) (Agirre et al., 2009)) Web corpus 0.65 0.70 0.62 -
Context Window based Distributional Similarity (CW) (Agirre et al., 2009)) Web corpus 0.60 0.77 0.46 -
Hyperlink Graph (Milne and Witten, 2008) Wikipedia hyperlinks graph 0.69 - - -
Random Graph Walk (Hughes and Ramage, 2007) WordNet 0.55 - - -
Explicit Semantic Analysis (Gabrilovich and Markovitch, 2007) Wikipedia concepts 0.75 - - -

(reimplemented in (Yeh et al., 2009)) (0.71)
Normalized Path-length (lch) (Strube and Ponzetto, 2006) Wikipedia category tree 0.55 - - -
Thesarus based (Jarmasz, 2003) Roget’s thesaurus 0.55 - - -
Latent Semantic Analysis (Finkelstein et al., 2002) Web corpus 0.56 - - -

Table 6: Comparison of co-occurrence based measures with knowledge-based and distributional similarity based
measures. These other measures have not been applied to the free association datasets shown in Table 3. Data for
missing entries is not available. Note that sim and rel are subsets of wordsim dataset. Number of word-pairs in each
dataset is shown in brackets against its name.

ing parameter values. Hence we follow the standard
methodology of fixing parameters through cross val-
idation. Specifically, we partition the data into five
folds, four of which are used for training and one
hold-out fold is used for testing. For each mea-
sure, the parameter values that achieve best corre-
lation with human judgments on 4 training folds are
used to predict on the 1 hold-out testing fold. This
experiment is repeated 5 times for different training
and test folds. The average rank correlation obtained
by each measure over 5 cross-validation runs is re-
ported for each dataset. We varied ε and δ between
0.01 and 0.90 and x between 5 and 50 words.

5.4 Results

For each measure and for each data set, the aver-
age correlation over the 5 cross-validation runs is
reported in Table 4. The corresponding standard de-
viations are mentioned in the table’s caption. The
best performing measure in each case is highlighted
in bold. While different measures performed best on
different data sets, the results in Table 4 shows that
CSR performs consistently well across all data sets.
In all data sets the correlation for CSR was always
either the best or close to the best.

As expected, our results are statistically more sig-
nificant for the larger data sets, compared to the
smaller ones. The standard deviations of the results
are small for two largest data sets (less than 0.01
for Edinburg and Florida), gradually increasing (less

than 0.02 for Kent and Minnesota), and becoming
high (upto .15) for the three smallest datasets.

Although, among all measures, CSR has the best
average correlation over all datasets, taking average
of correlations across widely different dataset is not
a meaningful way to decide on which measure to
use. Ideally one would like to access an oracle to
learn which measure will perform best on a particu-
lar unseen application dataset. Short of such an ora-
cle, if one were to pick a fixed measure a-priori, then
one would like to know how much worse off one is
compared to the best measure for that dataset.

To compare different measures from this perspec-
tive, we compute the deviation of the correlation for
each measure from the correlation of the best mea-
sure for each data set. These deviations are reported
in Table 5, along with the corresponding ranks. The
average deviation of CSR over all the data sets is
0.02, which is the least among all the measures, the
next two being 0.04 and 0.06. CSR also has the least
worst-deviation among all measures. Also, CSR is
never ranked worse than 3 in any of the data sets.
This is also the smallest worst-rank among all mea-
sures. Based on these results, we infer that CSR
is overall the best performing co-occurrence based
word association measure.

While the focus of our work is on the co-
occurrence measures, for completeness, we present
all the known results for knowledge and distribu-
tional similarity-based measures on the datasets un-
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der consideration in Table 6. Note that in (Agirre et
al., 2009), the wordsim data set was partitioned into
two sets, namely sim and rel, and in Esslli shared
task (ESSLLI, 2008), a 272 word pair subset of the
Edinburgh dataset was chosen. To facilitate compar-
ison, in addition to CSR, we also present results for
PMI and Ochiai (Chi-Square) which are the best per-
forming co-occurrence measures on wordsim, and
Esslli datasets. For co-occurrence-based measures,
we used 5-fold cross validation, which is inapplica-
ble for parameterless measures. Results show that
co-occurrence-based measures compare well with
other resource-heavy measures.

6 Conclusions

In this paper, we introduced a new measure called
CSR for word-association based on statistical sig-
nificance of lexical co-occurrences. Our measure,
while being agnostic to global unigram frequencies,
detects skews in span distributions of word-pairs in
documents containing both words. We carried out
extensive evaluation on several benchmark datasets.
Our experiments demonstrate the advantages of our
measure over all the competing measures.
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Abstract

An entity in a dialogue may be old, new,
or mediated/inferrable with respect to the
hearer’s beliefs. Knowing the information
status of the entities participating in a dia-
logue can therefore facilitate its interpreta-
tion. We address the under-investigated prob-
lem of automatically determining the informa-
tion status of discourse entities. Specifically,
we extend Nissim’s (2006) machine learning
approach to information-status determination
with lexical and structured features, and ex-
ploit learned knowledge of the information
status of each discourse entity for coreference
resolution. Experimental results on a set of
Switchboard dialogues reveal that (1) incor-
porating our proposed features into Nissim’s
feature set enables our system to achieve state-
of-the-art performance on information-status
classification, and (2) the resulting informa-
tion can be used to improve the performance
of learning-based coreference resolvers.

1 Introduction

Information statusis not a term unfamiliar to re-
searchers working on discourse processing prob-
lems. It describes the extent to which a discourse en-
tity, which is typically a noun phrase (NP), isavail-
able to the hearer given the speaker’s assumptions
about the hearer’s beliefs. According to Nissim et
al. (2004), a discourse entity can benew, old, or me-
diated. Informally, a discourse entity is (1)old to
the hearer if it is known to the hearer and has pre-
viously been referred to in the dialogue, (2)new if
it is unknown to her and has not been previously re-
ferred to; and (3)mediatedif it is newly mentioned
in the dialogue but she can infer its identity from

a previously-mentioned entity. Information status
is a subject that has received a lot of attention in
theoretical linguistics (Halliday, 1976; Prince, 1981;
Hajičová, 1984; Vallduvı́, 1992; Steedman, 2000).

Knowing the information status of discourse enti-
ties can potentially benefit many NLP applications.
One such task is anaphora resolution. While there is
general belief that definite descriptions are mostly
anaphoric, Vieira and Poesio (2000) empirically
show that only 30% of these NPs are anaphoric.
Without being able to determine whether an NP is
anaphoric, an anaphora resolver will attempt to re-
solve every NP, potentially damaging its precision.
Sincenewentities are by definition new to the hearer
and therefore cannot refer to a previously-introduced
NP, knowledge of information status could be used
to improve anaphora resolution.

Despite the potential usefulness of information
status in NLP tasks, there has been little work on
learning the information status of discourse entities.
To investigate the plausibility of learning informa-
tion status, Nissim et al. (2004) annotate a set of
Switchboard dialogues with such information1, and
subsequently present a rule-based approach and a
learning-based approach to acquiring such knowl-
edge from the manual annotations (Nissim, 2006).

Our goals in this paper are two-fold. First, we
describe a learning approach to the under-studied
problem of determining the information status of
discourse entities that extends Nissim’s (2006) fea-
ture set with two novel types of features: lexical
features and structured features based on syntactic
parse trees. Second, we employ the automatically

1These and other linguistic annotations on the Switchboard
dialogues were later released by the LDC as part of the NXT
corpus, which is described in detail in Calhoun et al. (2010).
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acquired knowledge of information status for coref-
erence resolution. Experimental results on Nissim et
al.’s (2004) corpus of Switchboard dialogues show
that (1) adding our linguistic features to Nissim’s
feature set enables our system to outperform her sys-
tem by 8.1% in F-measure, and (2) learned knowl-
edge of information status can be used to improve
coreference resolvers by 1.1–2.6% in F-measure.

The rest of this paper is organized as follows. We
first illustrate with examples the concepts ofnew,
old, andmediatedentities. Then, we describe the
dataset and the feature set that Nissim (2006) used
in her approach. After that, we introduce our lexi-
cal and structured features. Finally, we evaluate the
determination of information status as a standalone
task and in the context of coreference resolution.

2 Old, New, and Mediated Entities

Since the concepts ofold, new, andmediatedentities
are not widely known to researchers working outside
the area of discourse processing, in this section we
will explain them in more detail.

The termsold and new information have meant
a variety of things over the years (Allerton, 1978;
Prince, 1981; Horn, 1986). Since we use Nissim
et al.’s (2004) corpus for training and evaluation,
the definitions of these concepts we present here are
those that Nissim et al. used to annotate their cor-
pus. According to Nissim et al., their definitions are
built upon Prince’s (1981), and the categorization
into old, new, andmediatedentities resemble those
of Strube (1998) and Eckert and Strube (2001).

Old. As mentioned before, an entity isold if it is
both known to the hearer and has been mentioned in
the conversation. More precisely, an entity isold if
(1) it is coreferential with an entity introduced ear-
lier, (2) it is a generic pronoun, or (3) it is a personal
pronoun referring to the dialogue participants. To
exemplify, consider the following sentences.

(1) I was angry that he destroyedmy tent.
(2) You cannot leave until the test is over.

In Example 1,my is an old entity because it is
coreferent withI. In Example 2,Youis anold entity
because it is a generic pronoun.

Mediated. An entity ismediatedif it has not been
previously introduced in the conversation, but can be

inferred from already-mentioned entities or is gener-
ally known to the hearer. More specifically, an entity
is mediatedif (1) it is a generally known entity (e.g.,
the Earth, China, and most proper names), (2) it is
a bound pronoun, or (3) it is an instance ofbridging
(i.e., an entity that is inferrable from a related entity
mentioned earlier in the dialogue). As an example,
consider the following sentences.

(3a) He passed by the door of Mary’s house and
saw thatthe door was painted purple.

(3b) He passed by Mary’s house and saw that
the door was painted purple.

In Example 3a, by the time the hearer processes
the second occurrence ofthe door, she has already
had a mental entity corresponding tothe door(af-
ter processing the first occurrence). As a result, the
second occurrence ofthe door is anold entity. In
Example 3b, on the other hand, the hearer is not as-
sumed to have any mental representation of the door
in question, but she can infer that the door she saw
was part of Mary’s house. Hence, this occurrence of
the door is a mediatedentity. In general, an entity
that is related to an earlier entity via a part-whole
relation or a set-subset relation ismediated.

New. An entity isnewif it has not been introduced
in the dialogue and the hearer cannot infer it from
previously mentioned entities.

In case more than one class is appropriate for
a given entity, Nissim et al. employ additional tie-
breaking rules. Suppose, for instance, that we have
two occurrences ofChina in a dialogue. The second
occurrence can be labeled asold (because it is coref-
erential with an earlier entity) ormediated(because
it is a generally known entity). According to Nissim
et al.’s rules, the entity will be labeled asold.

3 Dataset

We employ Nissim et al.’s (2004) dataset, which
comprises 147 Switchboard dialogues. A total of
68,992 NPs are annotated with information status:
51.2% of them are labeled asold, 34.5% asmediated
(henceforthmed), and 14.3% asnew. Nissim (2006)
randomly split the instances created from these NPs
into a training set (for classifier training), a develop-
ment set (for feature development), and an evalua-
tion set (for testing). Hence, the NPs from the same
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Training Test
old 31358 (51.7%) 3931 (47.4%)
med 20778 (34.2%) 3036 (36.6%)
new 8567 (14.1%) 1322 (16.0%)
total 60703 (100%) 8289 (100%)

Table 1: Information status distribution of NPs.

document may be split across different sets.
Unlike Nissim (2006), we partition the 147 dia-

logues (rather than the instances) into a training set
(117 dialogues) and a test set (30 dialogues). In
other words, we donot randomize the instances, as
we believe that it represents an unrealistic evalua-
tion setting, for the following reasons. First, in prac-
tice, the test dialogues may not be available until test
time. Second, we may want to examine how a sys-
tem performs on a given dialogue. Finally, random-
izing the instances does not allow us to apply learned
knowledge of information status to coreference res-
olution, which needs to be performed for each dia-
logue. The information status distribution of the NPs
in the training and test sets are shown in Table 1.

4 Baseline System

In this section, we describe our baseline system,
which adopts a machine learning approach to deter-
mining the information status of a discourse entity.

Building SVM classifiers for information-status
determination. We employ the support vector
machine (SVM) learner as implemented in the
SVMlight package (Joachims, 1999) to train three
binary classifiers, one for predicting each of the
three possible classes (i.e.,new, old, andmed), us-
ing a linear kernel in combination with theone-
versus-alltraining scheme.2 Each training instance
represents a single NP and consists of the seven
morpho-syntactic features that Nissim (2006) used
in her learning-based approach (see Table 2 for an
overview). Following Nissim, we extract the NPs
directly from the gold-standard annotations, but the
features are computed entirely automatically.

2SVM was chosen because it provides the option to employ
kernels. The reason why we train three binary classifiers rather
than just one multi-class classifier (using SVMmulticlass) is that
SVMmulticlass does not permit the use of a non-linear kernel,
which we will need to incorporate structured features lateron.

Feature Values
full prev mention numeric
mention time {first,second,more}
partial prev mention {yes,no,NA}
determiner {bare,def,dem,indef,poss,NA}
NP type {pronoun,common,proper,other}
NP length numeric
grammatical role {subject,subjpass,pp,other}

Table 2: Nissim’s feature set.

The seven features are all intuitively useful for
determining information status. For instance, if an
NP, NPk, and a discourse entity that appears before
it have the same string (full prev mention), thenNPk
is likely to be anold entity. Mention time is the cat-
egorical version of full prev mention and therefore
serves to detectold entities. Partial prev mention
is useful for detecting mediated entities, especially
those that have a set-subset relation with a preceding
entity. For instance,your dogswould be considered
a partial previous mention ofmy dogsor my three
dogs. The value “NA” stands for “not applicable”,
and is used for pronouns. Determiners and NP type
are likely to be helpful for all three categories. For
instance, indefinite NPs and pronouns are likely to
benewandold, respectively. The “NP length” fea-
ture is motivated by the observation thatold entities
tend to contain less lexical materials thannewenti-
ties. For instance, subsequent references toBarack
Obamamay simply beObama.

Applying the classifiers. To determine the infor-
mation status of an NP in a test dialogue, we create
an instance for it as during training and present it
independently to the three binary SVM classifiers,
each of which returns a real value representing the
signed distance of the instance from the hyperplane.
We assign the instance to the class that is associated
with the most positive classification value.

5 Our Features

We propose to extend Nissim’s (2006) feature set
with two types of features.

5.1 Lexical Features

As discussed, an entity should be labeled asmedif it
has not been introduced in the dialogue but is gener-
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ally known to a human. Whether an entity is “gener-
ally known” may be easily determined by a human
but not by a machine, since world knowledge is in-
volved in the decision process. In particular, Nis-
sim’s feature set does not contain any features that
encode the notion of a “generally known” entity.

Hence, it would be desirable to augment Nissim’s
feature set with features that indicate whether an en-
tity is generally known or not. One way to do this is
to (1) create a list of generally known entities, and
then (2) create a binary feature that has the value
True if and only if the entity under consideration ap-
pears in this list. The question, then, is: how can
we obtain the list of generally known entities? We
may manually assemble this list, but this could be
a labor-intensive task. As a result, we propose to
acquirethis kind of world knowledge automatically
from annotated data.

Specifically, we augment Nissim’s feature set
with the set ofunigramsthat appear in the training
data. Given a training/test instance (i.e., discourse
entity), we compute the values of its unigram fea-
tures (henceforthlexical features) as follows. For
each unigram, we check if it appears in the string
representing the discourse entity. If so, its feature
value is 1; otherwise, its value is 0. For instance, if
the entity isthe red hat, then all of its lexical features
exceptthe, red, andhat will have a value of 0.

It should perhaps not be too difficult to see why
these lexical features are useful for the information-
status classifier: these features enable the SVM
learner to determine the extent to which a unigram
correlates with each class. For instance, from the an-
notated data, the learner will learn that any instance
of China cannot be labeled asnew, and the deci-
sion of whether it should be anold entity or amed
entity depends on whether it is coreferential with a
previously-mentioned entity. Hence, the use of lex-
ical features allows the learner to implicitly acquire
some world knowledge.

We believe that lexicalization is an important step
towards building high-performance text-processing
systems. In fact, lexicalized models have demon-
strated their effectiveness in other areas of language
processing, such as syntactic and semantic parsing.
While lexicalized models may be less portable to
new genres and domains than their unlexicalized
counterparts, we believe that this issue can be han-

dled via domain adaptation techniques and should
not be a reason against lexicalization.

5.2 Structured Features

In Nissim’s (2006) feature set, there are a couple of
features that capture NP-internal information, such
as determiner, NP length, and NP type. However,
there is only one feature that captures the syntactic
context of an NP, grammatical role, which is com-
puted based on the parse tree in which the NP re-
sides. This is arguably a very shallow representation
of its syntactic context. We hypothesize that we can
train more accurate information-status classifiers if
we have access to a richer representation of syntac-
tic context. This motivates us to employ syntactic
parse treesdirectly as features.

Before describing how this can be done, recall
that in a traditional learning setting, the feature set
employed by an off-the-shelf learning algorithm typ-
ically consists offlat features (i.e., features whose
values are discrete- or real-valued, as the ones de-
scribed in the previous section). Advanced machine
learning algorithms such as SVMs, on the other
hand, have enabled the use ofstructured features
(i.e., features whose values are structures such as
parse trees), owing to their ability to employker-
nels to efficiently compute the similarity between
two potentially complex structures.

Perhaps the main advantage of employing struc-
tured features issimplicity. To understand this ad-
vantage, consider learning in a setting where we can
only employ flat features. If we want to use informa-
tion from a parse tree as features in this setting, we
will need to design heuristics to extract the desired
parse-based features from parse trees. For certain
tasks, designing a good set of heuristics can be time-
consuming and sometimes difficult. On the other
hand, SVMs enable a parse tree to be employed di-
rectly as a structured feature, obviating the need to
design such heuristics.

Given two parse trees (as features), we com-
pute their similarity using a convolution tree ker-
nel (Collins and Duffy, 2001), which efficiently enu-
merates the number of common substructures in the
two trees via dynamic programming. Note, however,
that while we want to use a parse tree directly as a
feature, we donotwant to use theentireparse tree as
a feature. Specifically, while using the entire parse
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tree enables a richer representation of the syntactic
context than using apartial parse tree, the increased
complexity of the tree also makes it more difficult
for the SVM learner to make generalizations.

To strike a better balance between having a rich
representation of the context and improving the
learner’s ability to generalize, we extract a substruc-
ture from a parse tree and use it as the value of the
structured feature of an instance. Specifically, given
an instance corresponding to discourse entitye, we
extract the substructure from the parse tree contain-
ing e as follows. Letn(e) be the root of the sub-
tree that spans all and only the words ine, and let
Parent(n(e)) be its immediate parent node. We (1)
take the subtree rooted atParent(n(e)), (2) replace
each leaf node in this subtree with a node labeled
X, (3) replace the subtree rooted atn(e) with a leaf
node labeledY, and (4) use the subtree rooted at
Parent(n(e)) as the structured feature for the in-
stance corresponding toe. Intuitively, the first three
steps aim to provide generalizations by simplifying
the tree. For instance, step (1) allows us to focus on
using a small window as the context. Steps (2) and
(3) help generalization by ignoring the words within
e and its context. Note that using two labels,X and
Y, enables the kernel to distinguish the discourse en-
tity under consideration from its context within this
substructure. In addition, we simply use a single
node (Y) to represent the discourse entity, since any
NP-internal information has presumably been cap-
tured by the flat features. We compute these struc-
tured features using hand-annotated parse trees.

While structured features have been employed for
a multitude of tasks in syntax, semantics, and in-
formation extraction such as syntactic parsing (e.g.,
Collins (2002)), semantic parsing (e.g., Moschitti
(2004)), named entity recognition (e.g., Cumby and
Roth (2003), and relation extraction (e.g., Zelenko
et al. (2003)), the same is not true for discourse
processing tasks. We hope that our use of struc-
tured features for information-status classification
can promote their use in discourse processing.

5.3 Combining Kernels

Recall that the flat features are computed using a
linear kernel, while the structured features are com-
puted using a tree kernel. If we want our learner to
make use of more than one of these types of features,

we need to employ acompositekernel to combine
them. Specifically, we define and employ the fol-
lowing composite kernel:

Kc(F1, F2) = K1(F1, F2) + K2(F1, F2),

whereF1 andF2 are the full set of features that rep-
resent the two entities under consideration, andK1

andK2 are the kernels we are combining. To ensure
that both kernels contribute equally to the compos-
ite kernel, we normalize the values they return to the
range [0,1].

6 Evaluation

Next, we evaluate the effectiveness of our features
in improving information-status classification.

6.1 Results and Discussion

Results of four information-status classification sys-
tems are shown in Table 3. Under Original Nis-
sim, we have the results copied verbatim from Nis-
sim’s (2006) paper. Baseline is the aforementioned
baseline system, which is trained using Nissim’s fea-
ture set. Baseline+Lexical is the system trained us-
ing Nissim’s feature set augmented with lexical fea-
tures. Finally, Baseline+Both is the system trained
using Nissim’s feature set augmented with both lex-
ical and structured features. For each system, we
show the recall (R), precision (P), and F-measure (F)
of each of the three classes:old, new, andmed. Be-
fore we describe the results, two points deserve men-
tion. First, as noted earlier, Nissim partitioned the
dialogues into training and test folds in a different
way than us. In particular, Original Nissim and the
remaining three systems were not evaluated on the
same set of test instances. Hence, the Original Nis-
sim results are not directly comparable with those of
the other systems. We show them here just to pro-
vide another point of reference. Second, the results
of the remaining three systems were obtained by ag-
gregating the results of three binary SVM classifiers,
as described earlier.

Comparing Baseline and Baseline+Lexical, we
see that augmenting Nissim’s feature set with lexical
features improves the F-measure scores on all three
classes. In particular, the F-measure and recall for
medrise considerably by 3.0 and 7.8, respectively.
This provides indirect empirical support for our ear-
lier hypothesis that themedclass can benefit from
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Original Nissim Baseline Baseline+Lexical Baseline+Both
R P F R P F R P F R P F

old 91.5 94.1 92.8 91.2 85.8 88.5 88.7 91.7 90.2 93.0 95.2 94.1
med 87.6 68.1 76.6 84.7 62.7 72.1 92.5 63.2 75.1 89.1 70.9 79.0
new 22.3 56.3 32.0 30.2 66.4 41.5 32.1 68.3 43.7 34.4 71.5 46.5

Accuracy 79.5 74.1 76.3 82.2

Table 3: Per-class performance of four information-statusclassifiers.

the shallow world knowledge that these lexical fea-
tures help to “extract” from annotated data.

Comparing Baseline+Lexical and Baseline+Both,
we see that the addition of structured features en-
ables a further boost to performance: F-measure in-
creases by 2.8–3.9 for the three classes. These re-
sults substantiate our hypothesis that employing a
richer representation of syntactic context is benefi-
cial to information-status classification.

Comparing Baseline and Baseline+Both, we see
that F-measure improves considerably by 5–6.9 for
the three classes. Overall, these results provide sug-
gestive evidence that both types of features are ef-
fective at improving an information-status classifier
that employs Nissim’s features.

For further comparison, we show the classifica-
tion accuracies of the four systems in the last row
of Table 3. As we can see, adding lexical features
to the baseline features improves accuracy by 2.2%,
and adding structured features further improves ac-
curacy by 5.9%. Our two types of features, when
used in combination with Nissim’s features, improve
the baseline substantially by an accuracy of 8.1%.

Note that while our results and Original Nissim’s
are not directly comparable, the two systems are
consistent in terms of the relative performance for
the three classes: best forold and worst fornew. The
poor performance fornew is largely a consequence
of its low recall, which can in turn be attributed to its
lower representation in the dataset. Since manynew
instances are misclassified, a natural question is: are
these instances misclassified asold or med? Simi-
lar questions can be raised forold andmed, despite
their substantially higher recall values thannew.

To answer these questions, we need to better
understand the kind of errors made by our ap-
proach. Consequently, we show in Table 4 the con-
fusion matrix generated from the test set for our

C→ old med new
G ↓
old 3656 257 18
med 167 2706 163
new 17 850 455

Table 4: Confusion matrix for the Baseline+Both
classifier. C=Classifier tag; G=Gold tag

best-performing information-status classifier, Base-
line+Both. The rows and the columns correspond
to the gold tags and the classifier tags, respectively.
As we can see, these numbers seem to suggest the
“in-between” nature of mediated entities: when an
old or newentity is misclassified, it is typically mis-
classified asmed(rows 1 and 3); however, when a
medentity is misclassified, it is equally likely to be
misclassified asold andnew(row 2).

These results are perhaps not surprisingly, since
intuitively med entities bear some resemblance to
both old and new entities. For instance, the simi-
larity betweenmedandold stems from the fact that
different instances of the same entity (e.g.,China)
can receive one of these two labels, with the deci-
sion dependent on whether the entity was previously
mentioned in the dialogue. On the other hand,med
andneware similar in that it may sometimes be dif-
ficult even for a human to determine whether certain
entities should be labeled asmedor new, since the
decision depends on whether she believes these en-
tities aregenerally knownor not.

6.2 Relation to Anaphoricity Determination

Anaphoricity determination refers to the task of de-
termining whether an NP is anaphoric or not, where
an NP is considered anaphoric if it is part of a (non-
singleton) coreference chain but is not the head of
the chain (Ng and Cardie, 2002). In other words, an
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Anaphoricity Baseline+Ana Baseline+Lexical+Ana Baseline+Both+Ana
R P F R P F R P F R P F

old 91.4 86.6 88.9 91.3 87.3 89.3 90.8 91.7 91.3 92.8 94.9 93.9
med 84.3 63.1 72.2 84.9 64.1 73.1 92.3 64.7 76.1 88.7 71.1 78.9
new 30.8 66.4 42.1 31.1 66.9 42.5 32.9 68.7 44.5 34.1 71.7 46.2

Accuracy 74.7 75.1 77.6 82.0

Table 5: Impact of knowledge of anaphoricity on the information-status classifiers.

NP is anaphoric if and only if it has an antecedent.

Given this definition, anaphoricity determination
bears resemblance to information-status classifica-
tion. For instance, anold entity is anaphoric, since it
has been introduced earlier in the conversation and
therefore have an antecedent. Similarly, anew or
medentity is non-anaphoric, since the entity has not
been previously introduced in the conversation and
therefore cannot have an antecedent.

There has been a lot of recent work on anaphoric-
ity determination (e.g., Bean and Riloff (1999),
Uryupina (2003), Ng (2004), Denis and Baldridge
(2007), Versley et al. (2008), Ng (2009), Zhou and
Kong (2009)). Given the similarity between this task
and information-status classification, a natural ques-
tion is: will the anaphoricity features previously de-
veloped by coreference researchers be helpful for
information-status classification? To answer this
question, we (1) assemble a feature set composed
of the 26 anaphoricity features previously used by
Rahman and Ng (2009),3 and then (2) repeat the ex-
periments in Table 3, except that we augment the
feature set used in each of these experiments with
the anaphoricity features we assembled in step (1).

Results with the anaphoricity features are shown
in Table 5. Under Anaphoricity, we have the results
obtained using only the 29 anaphoricity features. As
we can see, these results are comparable to those
obtained using the Baseline features. Comparing
each of Baseline+Ana and Baseline+Lexical+Ana
with the corresponding experiments in Table 3, we
see that the addition of anaphoricity features yields
a mild performance improvement, which is consis-
tent over all three classes. However, comparing the
last column of the two tables, we can see that in the

3These 26 features are derived from those employed by Ng
and Cardie’s (2002) anaphoricity determination system. See
Footnote 2 of Rahman and Ng (2009) for details.

presence of the structured features, the anaphoricity
features do not contribute positively to overall per-
formance. Hence, in the coreference experiments in
the next section, we will not employ anaphoricity
features for information-status classification.

7 Application to Coreference Resolution

Since the significance of information-status classi-
fication stems in part from the potential benefits it
brings to higher-level NLP applications, we deter-
mine whether our information-status classification
systems can offer benefits to learning-based coref-
erence resolution. Since the 147 information-status
annotated dialogues are also coreference annotated,
we use them in our coreference evaluation. To our
knowledge, our work represents the first attempt to
report coreference results on this dataset.

7.1 Coreference Models

While the so-called mention-pair coreference model
has dominated coreference research for more than
a decade since its appearance in the mid-1990s, a
number of new coreference models have been pro-
posed in recent years. To investigate whether these
newer, presumably more sophisticated, coreference
models can better exploit the automatically acquired
information-status information, we will evaluate the
usefulness of information-status information when
used in combination with two different coreference
models, the aforementioned mention-pair model and
the recently-developed cluster-ranking model.

7.1.1 Mention-Pair Model

The mention-pair (MP) model, proposed by Aone
and Bennett (1995) and McCarthy and Lehnert
(1995), is a classifier that determines whether two
NPs are co-referring or not. Each instancei(NPj ,
NPk) corresponds to two NPs,NPj and NPk, and is
represented by 39 features. Table 1 of Rahman and
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Ng (2009) contains a detailed description of these
features. Linguistically, they can be divided into
four categories: string-matching, grammatical, se-
mantic, and positional. They can also be categorized
based on whether they are relational or not. Specifi-
cally, relational features capture the relationship be-
tweenNPj andNPk, whereas non-relational features
capture the linguistic property of one of these NPs.

We follow Soon et al.’s (2001) method for cre-
ating training instances. Specifically, we create (1)
a positive instance for each anaphoric NPNPk and
its closest antecedentNPj ; and (2) a negative in-
stance forNPk paired with each of the intervening
NPs, NPj+1, NPj+2, . . ., NPk−1. The classification
associated with a training instance is either positive
or negative, depending on whether the two NPs are
coreferent. To train the MP model, we use the SVM
learner from SVMlight (Joachims, 1999).4

After training, the classifier is used to identify an
antecedent for an NP in a test text. Specifically,
each NP,NPk, is compared in turn to each preced-
ing NP,NPj , from right to left, and selectsNPj as its
antecedent if the pair is classified as coreferent. The
process terminates as soon as an antecedent is found
for NPk or the beginning of the text is reached.

Despite its popularity, the MP model has two
major weaknesses. First, since each candidate an-
tecedent for an NP to be resolved (henceforth anac-
tive NP) is considered independently of the others,
this model only determines how good a candidate
antecedent is relative to the active NP, but not how
good a candidate antecedent is relative to other can-
didates. So, it fails to answer the critical question of
which candidate antecedent is most probable. Sec-
ond, it has limitations in its expressiveness: the in-
formation extracted from the two NPs alone may not
be sufficient for making a coreference decision.

7.1.2 Cluster-Ranking Model

The cluster-ranking (CR) model, proposed by
Rahman and Ng (2009), addresses the two weak-
nesses of the MP model by combining the strengths
of theentity-mentionmodel (e.g., Luo et al. (2004),
Yang et al. (2008)) and themention-rankingmodel
(e.g., Denis and Baldridge (2008)). Specifically,
the CR model ranks the preceding clusters for an

4For this and subsequent uses of the SVM learner in our
experiments, we set all parameters to their default values.

active NP so that the highest-ranked cluster is the
one to which the active NP should be linked. Em-
ploying a ranker addresses the first weakness, as
a ranker allows all candidates to be comparedsi-
multaneously. Considering preceding clusters rather
than antecedents as candidates addresses the second
weakness, ascluster-levelfeatures (i.e., features that
are defined over any subset of NPs in a preceding
cluster) can be employed.

Since the CR model ranks preceding clusters, a
training instancei(cj , NPk) represents a preceding
clustercj and an anaphoric NPNPk. Each instance
consists of features that are computed based solely
on NPk as well as cluster-level features, which de-
scribe the relationship betweencj and NPk. Mo-
tivated in part by Culotta et al. (2007), we create
cluster-level features from therelational features in
our feature set using four predicates:NONE, MOST-
FALSE, MOST-TRUE, andALL . Specifically, for each
relational featureX, we first convertX into an equiv-
alent set of binary-valued features if it is multi-
valued. Then, for each resulting binary-valued fea-
ture Xb, we create four binary-valued cluster-level
features: (1)NONE-Xb is true whenXb is false be-
tweenNPk and each NP incj ; (2) MOST-FALSE-Xb

is true whenXb is true betweenNPk and less than half
(but at least one) of the NPs incj ; (3) MOST-TRUE-
Xb is true whenXb is true betweenNPk and at least
half (but not all) of the NPs incj ; and (4)ALL -Xb is
true whenXb is true betweenNPk and each NP incj .

We train a cluster ranker to jointly learn
anaphoricity determination and coreference reso-
lution using SVMlight’s ranker-learning algorithm.
Specifically, for each NP,NPk, we create a train-
ing instance betweenNPk andeachpreceding clus-
ter cj using the features described above. Since we
are learning a joint model, we need to provide the
ranker with the option to start a new cluster by creat-
ing an additional training instance that contains fea-
tures that solely describesNPk. The rank value of
a training instancei(cj , NPk) created forNPk is the
rank of cj among the competing clusters. IfNPk is
anaphoric, its rank is HIGH if NPk belongs tocj , and
LOW otherwise. IfNPk is non-anaphoric, its rank is
LOW unless it is the additional training instance de-
scribed above, which has rank HIGH.

After training, the cluster ranker processes the
NPs in a test text in a left-to-right manner. For each
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active NP,NPk, we create test instances for it by pair-
ing it with each of its preceding clusters. To allow
for the possibility thatNPk is non-anaphoric, we cre-
ate an additional test instance that contains features
that solely describe the active NP (similar to what
we did in the training step above). All these test in-
stances are then presented to the ranker. If the addi-
tional test instance is assigned the highest rank value
by the ranker, thenNPk is classified as non-anaphoric
and will not be resolved. Otherwise,NPk is linked to
the cluster that has the highest rank.

7.2 Coreference Experiments

7.2.1 Experimental Setup

The training/test split we use in the coreference
experiments is the same as that in the information-
status experiments. Specifically, we use the train-
ing set to train both the information-status classifier
and our coreference models, apply the information-
status classifier to each discourse entity in the test
set, and have the coreference models resolve all
and only those NPs that are labeled asold by the
information-status classifier. Our decision to allow
the coreference models to resolve only theold enti-
ties is motivated by the fact thatmedandnewentities
havenotbeen previously introduced in the conversa-
tion and therefore do not have antecedents. The NPs
used by the coreference models are the same as those
accessible to the information-status classifier.

We employ two scoring programs, B3 (Bagga and
Baldwin, 1998) andφ3-CEAF (Luo, 2005), to score
the output of a coreference model. Given a gold-
standard (i.e., key) partition,KP , and a system-
generated (i.e., response) partition,RP , B3 com-
putes the recall and precision of each NP and av-
erages these values at the end. Specifically, for each
NP, NPj , B3 first computes the number of NPs that
appear in bothKPj andRPj, the clusters containing
NPj in KP andRP , respectively, and then divides
this number by|KPj| and |RPj| to obtain the re-
call and precision ofNPj , respectively. On the other
hand, CEAF finds the best one-to-one alignment
between the key clusters and the response clusters
using the Kuhn-Munkres algorithm (Kuhn, 1955),
where the weight of an edge connecting two clusters
is equal to the number of NPs that appear in both
clusters. Precision and recall are equal to the sum of

the weights of the edges in the alignment divided by
the total number of NPs in the response and the key,
respectively.

7.2.2 Results and Discussion

As our baseline, we employ our coreference mod-
els to generate NP partitions on the test documents
withoutusing any knowledge of information status.
Results, reported in terms of recall (R), precision
(P), and F-measure (F) using B3 andφ3-CEAF, are
shown in row 1 of Table 6.5 As we can see, the
baseline achieves B3 F-measures of 69.2 (MP) and
74.5 (CR) and CEAF F-measures of 61.6 (MP) and
68.5 (CR). These results suggest that the CR model
is stronger than the MP model, corroborating previ-
ous empirical findings (Rahman and Ng, 2009).

Next, we examine the impact of learned knowl-
edge of information status on the performance of a
coreference model. Since knowledge of information
status enables a coreference model to focus on re-
solving only theold entities, we hypothesize that the
resulting model will have a higher precision than one
that does not employ such knowledge. An equally
important question is: will the F-measure of the re-
sulting model improve? Since we are employing
knowledge of information status in apipelinecoref-
erence architecture where information-status classi-
fication is performed prior to coreference resolution,
errors made by the (upstream) information-status
classifier may propagate to the (downstream) coref-
erence system. Given this observation, we hypoth-
esize that the answer to the aforementioned ques-
tion depends in part on the accuracy of information-
status classification. In particular, the higher the
accuracy of information-status classification is, the
more likely the F-measure of the downstream coref-
erence model will improve. To test this hypothe-
sis, we conduct experiments where we employ the
knowledge provided by the three information-status
classifiers which, as discussed earlier, perform at
varying levels of accuracy — the first one using only
Nissim’s features, the second one using both lexical
and Nissim’s features, and the last one using Nis-
sim’s features in combination with lexical and parse-
based features — for our coreference models.

5Since gold-standard NPs are used in our experiments,
CEAF precision is always equal to CEAF recall. For brevity,
we only report F-measure scores for CEAF in the table.
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Mention-Pair Model Cluster-Ranking Model
B3 CEAF B3 CEAF

System R P F F R P F F
No knowledge of information status78.6 61.8 69.2 61.6 78.2 71.1 74.5 68.5
Nissim features only 73.4 67.3 70.2 62.1 73.6 77.4 75.4 69.7
Nissim+Lexical features 71.0 69.5 70.2 61.9 73.7 77.3 75.4 69.9
Nissim+Lexical+Parse features 74.1 66.8 70.3 62.3 77.3 74.0 75.6 71.1
Perfect information status 76.7 68.1 72.1 66.4 77.1 79.5 78.3 74.2

Table 6: B3 and CEAF coreference results.

Results of the coreference models employing
knowledge provided by the three information-status
classifiers are shown in rows 2–4 of Table 6. As ex-
pected, B3 precision increases in comparison to the
baseline, regardless of the coreference model and the
scoring program. In addition, employing knowledge
of information status always improves coreference
performance: F-measure scores increase by 1.0–
1.1% (B3) and 0.3–0.7% (CEAF) for the MP model,
and by 0.9–1.1% (B3) and 1.2–2.6% (CEAF) for
the CR model. These results suggest that the three
information-status classifiers have achieved the level
of accuracy needed for the coreference models to
improve. On the other hand, it is somewhat surpris-
ing that the three information-status classifiers have
yielded coreference systems that perform at essen-
tially the same level of performance.

To understand why better information-status clas-
sification results do not necessarily yield better
coreference performance, we take a closer look at
the results of the coreference resolver employing
Nissim’s features (henceforth NISSIM) and the re-
solver employing our Nissim+Lexical+Parse fea-
tures (henceforth FULL -FEATURE). Among theold
entities that were correctly classified using our fea-
tures and incorrectly classified by Nissim’s features,
we found that the precision of the FULL -FEATURE

system suffered (since in many cases the corefer-
ence models identified wrong antecedents for these
old entities) whereas the NISSIM system remained
unaffected (since the entities were misclassified and
would not be resolved by the models). In addition,
although manymedandnewentities were correctly
classified using our features and incorrectly classi-
fied (asold) using Nissim’s features, we found that
in many cases no antecedents were identified for
these misclassified entities and hence the precision

of the NISSIM system was not adversely affected.
Finally, we investigate whether our coreference

system could be improved if it had access to per-
fect knowledge of information status (taken directly
from the gold-standard annotations). This experi-
ment will allow us to determine whether the useful-
ness of knowledge of information status for coref-
erence resolution is limited by the accuracy in com-
puting such knowledge. Results are shown in the
last row of Table 6. As we can see, using per-
fect information-status knowledge yields a corefer-
ence system that improves those that employs auto-
matically acquired information-status knowledge by
1.8–4.1% (MP) and 2.7–3.1% (CR) in F-measure.
This indicates that the accuracy in computing such
knowledge does play a role in determining its use-
fulness for coreference resolution.

8 Conclusions

We examined the problem of automatically deter-
mining the information status of discourse entities in
spoken dialogues. In particular, we augmented Nis-
sim’s feature set with two types of features: lexical
features, which capture in a shallow manner world
knowledge implicitly encoded in the annotated data;
and syntactic parse trees, which provide a richer rep-
resentation of the syntactic context in which a dis-
course entity appears than grammatical roles. Re-
sults on 147 Switchboard dialogues demonstrated
the effectiveness of these features: we obtained a
significant improvement of 8.1% in accuracy over
a information-status classifier trained on Nissim’s
feature set. In addition, we evaluated information-
status classification in the context of coreference
resolution, and showed that automatically acquired
knowledge of information status can be profitably
used to improve coreference systems.
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Abstract

Traditional approaches to sentiment classifica-
tion rely on lexical features, syntax-based fea-
tures or a combination of the two. We pro-
pose semantic features using word senses for
a supervised document-level sentiment classi-
fier. To highlight the benefit of sense-based
features, we compare word-based representa-
tion of documents with a sense-based repre-
sentation where WordNet senses of the words
are used as features. In addition, we highlight
the benefit of senses by presenting a part-of-
speech-wise effect on sentiment classification.
Finally, we show that even if a WSD engine
disambiguates between a limited set of words
in a document, a sentiment classifier still per-
forms better than what it does in absence of
sense annotation. Since word senses used as
features show promise, we also examine the
possibility of using similarity metrics defined
on WordNet to address the problem of not
finding a sense in the training corpus. We per-
form experiments using three popular similar-
ity metrics to mitigate the effect of unknown
synsets in a test corpus by replacing them with
similar synsets from the training corpus. The
results show promising improvement with re-
spect to the baseline.

1 Introduction

Sentiment Analysis (SA) is the task of prediction of
opinion in text. Sentiment classification deals with
tagging text as positive, negative or neutral from the
perspective of the speaker/writer with respect to a
topic. In this work, we follow the definition of Pang
et al. (2002) & Turney (2002) and consider a binary

classification task for output labels as positive and
negative.

Traditional supervised approaches for SA have
explored lexeme and syntax-level units as features.
Approaches using lexeme-based features use bag-
of-words (Pang and Lee, 2008) or identify the
roles of different parts-of-speech (POS) like adjec-
tives (Pang et al., 2002; Whitelaw et al., 2005).
Approaches using syntax-based features construct
parse trees (Matsumoto et al., 2005) or use text
parsers to model valence shifters (Kennedy and
Inkpen, 2006).

Our work explores incorporation of semantics
in a supervised sentiment classifier. We use the
synsets in Wordnet as the feature space to represent
word senses. Thus, a document consisting of
words gets mapped to a document consisting of
corresponding word senses. Harnessing WordNet
senses as features helps us address two issues:

1. Impact of WordNet sense-based features on the
performance of supervised SA

2. Use of WordNet similarity metrics to solve the
problem of features unseen in the training cor-
pus

The first points deals with evaluating sense-based
features against word-based features. The second is-
sue that we address is in fact an opportunity to im-
prove the performance of SA that opens up because
of the choice of sense space. Since sense-based
features prove to generate superior sentiment clas-
sifiers, we get an opportunity to mitigate unknown
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synsets in the test corpus by replacing them with
known synsets in the training corpus. Note that such
replacement is not possible if word-based represen-
tation were used as it is not feasible to make such a
large number of similarity comparisons.

We use the corpus by Ye et al. (2009) that con-
sists of travel domain reviews marked as positive or
negative at the document level. Our experiments on
studying the impact of Wordnet sense-based features
deal with variants of this corpus manually or auto-
matically annotated with senses. Besides showing
the overall impact, we perform a POS-wise analysis
of the benefit to SA. In addition, we compare the ef-
fect of varying training samples on a sentiment clas-
sifier developed using word based features and sense
based features. Through empirical evidence, we also
show that disambiguating some words in a docu-
ment also provides a better accuracy as compared
to not disambiguating any words. These four sets of
experiments highlight our hypothesis that WordNet
senses are better features as compared to words.

Wordnet sense-based space allows us to mitigate
unknown features in the test corpus. Our synset re-
placement algorithm uses Wordnet similarity-based
metrics which replace an unknown synset in the test
corpus with the closest approximation in the training
corpus. Our results show that such a replacement
benefits the performance of SA.

The roadmap for the rest of the paper is as fol-
lows: Existing related work in SA and the differ-
entiating aspects of our work are explained in sec-
tion 2 Section 3 describes the sense-based features
that we use for this work. We explain the similarity-
based replacement technique using WordNet synsets
in section 4. Our experiments have been described
in section 5. In section 6, we present our results
and related discussions. Section 7 analyzes some of
the causes for erroneous classification. Finally, sec-
tion 8 concludes the paper and points to future work.

2 Related Work

This work studies the benefit of a word sense-based
feature space to supervised sentiment classification.
However, a word sense-based feature space is feasi-
ble subject to verification of the hypothesis that sen-
timent and word senses are related. Towards this,
Wiebe and Mihalcea (2006) conduct a study on hu-

man annotation of 354 words senses with polarity
and report a high inter-annotator agreement. The
work in sentiment analysis using sense-based fea-
tures, including ours, assumes this hypothesis that
sense decides the sentiment.

The novelty of our work lies in the following.
Firstly our approach is distinctly. Akkaya et al.
(2009) and Martn-Wanton et al. (2010) report per-
formance of rule-based sentiment classification us-
ing word senses. Instead of a rule-based implemen-
tation, We used supervised learning. The supervised
nature of our approach renders lexical resources un-
necessary as used in Martn-Wanton et al. (2010).
Rentoumi et al. (2009) suggest using word senses
to detect sentence level polarity of news headlines.
The authors use graph similarity to detect polarity of
senses. To predict sentence level polarity, a HMM
is trained on word sense and POS as the observa-
tion. The authors report that word senses partic-
ularly help understanding metaphors in these sen-
tences. Our work differs in terms of the corpus and
document sizes in addition to generating a general
purpose classifier.

Another supervised approach of creating an emo-
tional intensity classifier using concepts as features
has been reported by Carrillo de Albornoz et al.
(2010). This work is different based on the feature
space used. The concepts used for the purpose are
limited to affective classes. This restricts the size of
the feature space to a limited set of labels. As op-
posed to this, we construct feature vectors that map
to a larger sense-based space. In order to do so, we
use synset offsets as representation of sense-based
features.

Akkaya et al. (2009), Martn-Wanton et al. (2010)
and Carrillo de Albornoz et al. (2010) perform sen-
timent classification of individual sentences. How-
ever, we consider a document as a unit of sentiment
classification i.e. our goal is to predict a document
on the whole as positive or negative. This is different
from Pang and Lee (2004) which suggests that sen-
timent is associated only with subjective content. A
document in its entirety is represented using sense-
based features in our experiments. Carrillo de Al-
bornoz et al. (2010) suggests expansion using Word-
Net relations which we also follow. This is a benefit
that can be achieved only in a sense-based space.
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3 Features based on WordNet Senses

In their original form, documents are said to be in
lexical space since they consist of words. When the
words are replaced by their corresponding senses,
the resultant document is said to be in semantic
space.

WordNet 2.1 (Fellbaum, 1998) has been used as
the sense repository. Each word/lexeme is mapped
to an appropriate synset in WordNet based on
its sense and represented using the corresponding
synset id of WordNet. Thus, the word love is dis-
ambiguated and replaced by the identifier 21758160
which consists of a POS category identifier 2 fol-
lowed by synset offset identifier 1758160. This pa-
per refers to synset offset as synset identifiers or sim-
ply, senses.

This section first gives the motivation for using
word senses and then, describes the approaches that
we use for our experiments.

3.1 Motivation

Consider the following sentences as the first sce-
nario.

1. “Her face fell when she heard that she had
been fired.”

2. “The fruit fell from the tree.”

The word ‘fell’ occurs in different senses in the
two sentences. In the first sentence, ‘fell’ has the
meaning of ‘assume a disappointed or sad expres-
sion, whereas in the second sentence, it has the
meaning of ‘descend in free fall under the influence
of gravity’. A user will infer the negative polarity of
the first sentence from the negative sense of ‘fell’ in
it while the user will state that the second sentence
does not carry any sentiment. This implies that there
is at least one sense of the word ‘fell’ that carries
sentiment and at least one that does not.

In the second scenario, consider the following ex-
amples.

1. “The snake bite proved to be deadly for the
young boy.”

2. “Shane Warne is a deadly spinner.”

The word deadly has senses which carry opposite
polarity in the two sentences and these senses as-
sign the polarity to the corresponding sentence. The
first sentence is negative while the second sentence
is positive.

Finally in the third scenario, consider the follow-
ing pair of sentences.

1. “He speaks a vulgar language.”

2. “Now that’s real crude behavior!”

The words vulgar and crude occur as synonyms
in the synset that corresponds to the sense ‘conspic-
uously and tastelessly indecent’. The synonymous
nature of words can be identified only if they are
looked at as senses and not just words.

As one may observe, the first scenario shows that
a word may have some sentiment-bearing and some
non-sentiment-bearing senses. In the second sce-
nario, we show that there may be different senses
of a word that bear sentiments of opposite polarity.
Finally, in the third scenario, we show how a sense
can be manifested using different words, i.e., words
in a synset. The three scenarios motivate the use of
semantic space for sentiment prediction.

3.2 Sense versus Lexeme-based Feature
Representation

We annotate the words in the corpus with their
senses using two sense disambiguation approaches.

As the first approach, manual sense annotation
of documents is carried out by two annotators on two
subsets of the corpus, the details of which are given
in Section 5.1. This is done to determine the ideal
case scenario- the skyline performance.

As the second approach, a state-of-art algorithm
for domain-specific WSD proposed by Khapra et
al. (2010) is used to obtain an automatically sense-
tagged corpus. This algorithm called iterative WSD
or IWSD iteratively disambiguates words by rank-
ing the candidate senses based on a scoring function.

The two types of sense-annotated corpus lead us
to four feature representations for a document:

1. Word senses that have been manually annotated
(M)

2. Word senses that have been annotated by an au-
tomatic WSD (I)
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3. Manually annotated word senses and words
(both separately as features) (Words +
Sense(M))

4. Automatically annotated word senses and
words (both separately as features) (Words +
Sense(I))

Our first set of experiments compares the four
feature representations to find the feature represen-
tation with which sentiment classification gives the
best performance. W+S(M) and W+S(I) are used to
overcome non-coverage of WordNet for some noun
synsets. In addition to this, we also present a part-
of-speech-wise analysis of benefit to SA as well as
effect of varying the training samples on sentiment
classification accuracy.

3.3 Partial disambiguation as opposed to no
disambiguation

The state-of-the-art automatic WSD engine that we
use performs (approximately) with 70% accuracy on
tourism domain (Khapra et al., 2010). This means
that the performance of SA depends on the perfor-
mance of WSD which is not very high in case of the
engine we use.

A partially disambiguated document is a docu-
ment which does not contain senses of all words.
Our hypothesis is that disambiguation of even few
words in a document can give better results than
no disambiguation. To verify this, we create differ-
ent variants of the corpus by disambiguating words
which have candidate senses within a threshold. For
example, a partially disambiguated variant of the
corpus with threshold 3 for candidate senses is cre-
ated by disambiguating words which have a maxi-
mum of three candidate senses. These synsets are
then used as features for classification along with
lexeme based features. We conduct multiple experi-
ments using this approach by varying the number of
candidate senses.

4 Advantage of senses: Similarity Metrics
and Unknown Synsets

4.1 Synset Replacement Algorithm

Using WordNet senses provides an opportunity to
use similarity-based metrics for WordNet to reduce

the effect of unknown features. If a synset encoun-
tered in a test document is not found in the training
corpus, it is replaced by one of the synsets present
in the training corpus. The substitute synset is deter-
mined on the basis of its similarity with the synset
in the test document. The synset that is replaced is
referred to as an unseen synset as it is not known to
the trained model.

For example, consider excerpts of two reviews,
the first of which occurs in the training corpus while
the second occurs in the test corpus.

1. “ In the night, it is a lovely city and... ”

2. “ The city has many beautiful hot spots for hon-
eymooners. ”

The synset of ‘beautiful’ is not present in the train-
ing corpus. We evaluate a similarity metric for all
synsets in the training corpus with respect to the
sense of beautiful and find that the sense of lovely is
closest to it. Hence, the sense of beautiful in the test
document is replaced by the sense of lovely which is
present in the training corpus.

The replacement algorithm is described in Algo-
rithm 1. The algorithm follows from the fact that the
similarity value for a synset with itself is maximum.

4.2 Similarity metrics used
We conduct different runs of the replacement
algorithm using three similarity metrics, namely
LIN’s similarity metric, Lesk similarity metric and
Leacock and Chodorow (LCH) similarity metric.
These runs generate three variants of the corpus.
We compare the benefit of each of these metrics by
studying their sentiment classification performance.
The metrics can be described as follows:

LIN: The metric by Lin (1998) uses the infor-
mation content individually possessed by two con-
cepts in addition to that shared by them. The infor-
mation content shared by two concepts A and B is
given by their most specific subsumer (lowest super-
ordinate(lso). Thus, this metric defines the similarity
between two concepts as

simLIN (A,B) =
2× logPr(lso(A,B))

logPr(A) + logPr(B)
(1)
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Input: Training Corpus, Test Corpus,
Similarity Metric
Output: New Test Corpus
T:= Training Corpus;
X:= Test Corpus;
S:= Similarity metric;
train concept list = get list concept(T) ;
test concept list = get list concept(X);
for each concept C in test concept list do

temp max similarity = 0 ;
temp concept = C ;
for each concept D in train concept list do

similarity value = get similarity value(C,D,S);
if (similarity value > temp max similarity) then

temp max similarity= similarity value;
temp concept = D ;

end
end
C = temp concept ;
replace synset corpus(C,X);

end
Return X ;

Algorithm 1: Synset replacement using similarity
metric

Lesk: Each concept in WordNet is defined
through gloss. To compute the Lesk similar-
ity (Banerjee and Pedersen, 2002) between A and
B, a scoring function based on the overlap of words
in their individual glosses is used.

Leacock and Chodorow (LCH): To measure
similarity between two concepts A and B, Leacock
and Chodorow (1998) compute the shortest path
through hypernymy relation between them under the
constraint that there exists such a path. The final
value is computed by scaling the path length by the
overall taxonomy depth (D).

simLCH(A,B) = − log

(
len(A,B)

2D

)
(2)

5 Experimentation

We describe the variants of the corpus generated and
the experiments in this section.

5.1 Data Preparation

We create different variants of the dataset by Ye et
al. (2009). This dataset contains 600 positive and
591 negative reviews about seven travel destinations.
Each review contains approximately 4-5 sentences

with an average number of words per review being
80-85.

To create the manually annotated corpus, two hu-
man annotators annotate words in the corpus with
senses for two disjoint subsets of the original cor-
pus by Ye et al. (2009). The inter-annotation agree-
ment for a subset of the corpus showed 91% sense
overlap. The manually annotated corpus consists of
34508 words with 6004 synsets.

POS #Words P(%) R(%) F-Score(%)
Noun 12693 75.54 75.12 75.33
Adverb 4114 71.16 70.90 71.03
Adjective 6194 67.26 66.31 66.78
Verb 11507 68.28 67.97 68.12
Overall 34508 71.12 70.65 70.88

Table 1: Annotation Statistics for IWSD; P- Precision,R-
Recall

The second variant of the corpus contains word
senses obtained from automatic disambiguation us-
ing IWSD. The evaluation statistics of the IWSD is
shown in Table 1. Table 1 shows that the F-score for
noun synsets is high while that for adjective synsets
is the lowest among all. The low recall for adjective
POS based synsets can be detrimental to classifica-
tion since adjectives are known to express direct sen-
timent (Pang et al., 2002). Hence, in the context of
sentiment classification, disambiguation of adjective
synsets is more critical as compared to disambigua-
tion of noun synsets.

5.2 Experimental setup

The experiments are performed using C-SVM (lin-
ear kernel with default parameters1) available as a
part of LibSVM2 package. We choose to use SVM
since it performs the best for sentiment classification
(Pang et al., 2002). All results reported are average
of five-fold cross-validation accuracies.

To conduct experiments on words as features, we
first perform stop-word removal. The words are not
stemmed since stemming is known to be detrimen-
tal to sentiment classification (Leopold and Kinder-
mann, 2002). To conduct the experiments based on

1C=0.0,ε=0.0010
2http://www.csie.ntu.edu.tw/ cjlin/libsvm
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Feature Representations Accuracy(%) PF NF PP NP PR NR
Words (Baseline) 84.90 85.07 84.76 84.95 84.92 85.19 84.60
Sense (M) 89.10 88.22 89.11 91.50 87.07 85.18 91.24
Words + Sense (M) 90.20 89.81 90.43 92.02 88.55 87.71 92.39
Sense (I) 85.48 85.31 85.65 87.17 83.93 83.53 87.46
Words + Sense (I) 86.08 86.28 85.92 85.87 86.38 86.69 85.46

Table 2: Classification Results; PF-Positive F-score(%), NF-Negative F-score (%), PP-Positive Precision (%), NP-
Negative Precision (%), PR-Positive Recall (%), NR-Negative Recall (%)

the synset representation, words in the corpus are an-
notated with synset identifiers along with POS cat-
egory identifiers. For automatic sense disambigua-
tion, we used the trained IWSD engine from Khapra
et al. (2010). These synset identifiers along with
POS category identifiers are then used as features.
For replacement using semantic similarity measures,
we used WordNet::Similarity 2.05 package by Ped-
ersen et al. (2004).

To evaluate the result, we use accuracy, F-score,
recall and precision as the metrics. Classification
accuracy defines the ratio of the number of true in-
stances to the total number of instances. Recall is
calculated as a ratio of the true instances found to
the total number of false positives and true posi-
tives. Precision is defined as the number of true
instances divided by number of true positives and
false negatives. Positive Precision (PP) and Posi-
tive Recall (PR) are precision and recall for positive
documents while Negative Precision (NP) and Nega-
tive Recall (NR) are precision and recall for negative
documents. F-score is the weighted precision-recall
score.

6 Results and Discussions

6.1 Comparison of various feature
representations

Table 2 shows results of classification for different
feature representations. The baseline for our results
is the unigram bag-of-words model (Baseline).

An improvement of 4.2% is observed in the ac-
curacy of sentiment prediction when manually an-
notated sense-based features (M) are used in place
of word-based features (Words). The precision of
both the classes using features based on semantic
space is also better than one based on lexeme space.

While reported results suggest that it is more diffi-
cult to detect negative sentiment than positive senti-
ment (Gindl and Liegl, 2008), our results show that
negative recall increases by around 8% in case of
sense-based representation of documents.

The combined model of words and manually an-
notated senses (Words + Senses (M)) gives the best
performance with an accuracy of 90.2%. This leads
to an improvement of 5.3% over the baseline accu-
racy 3.

One of the reasons for improved performance is
the feature abstraction achieved due to the synset-
based features. The dimension of feature vector is
reduced by a factor of 82% when the document is
represented in synset space. The reduction in dimen-
sionality may also lead to reduction in noise (Cun-
ningham, 2008).

A comparison of accuracy of different sense rep-
resentations in Table 2 shows that manual disam-
biguation performs better than using automatic al-
gorithms like IWSD. Although overall classification
accuracy improvement of IWSD over baseline is
marginal, negative recall also improves. This bene-
fit is despite the fact that evaluation of IWSD engine
over manually annotated corpus gave an overall F-
score of 71% (refer Table 1). For a WSD engine
with a better accuracy, the performance of sense-
based SA can be boosted further.

Thus, in terms of feature representation of docu-
ments, sense-based features provide a better overall
performance as compared to word-based features.

1086



Sense

81.24
78.30

66.14

73.

70.00

80.00

90.00

50.00

60.00

ra
cy
(%

)

20.00

30.00

40.00

A
cc
ur

0.00

10.00

20.00

Adverb  Verb 

PO

Words

74.99

66.83
.78 71.81

80.03

Noun  Adjective

OS category

Figure 1: POS-wise statistics of manually annotated se-
mantic space

6.2 POS-wise analysis
For each POS, we compare the performance of two
models:

• Model trained on words of only that POS

• Model trained on word senses of only that POS

Figure 1 shows the parts-of-speech-wise classifica-
tion accuracy of sentiment classification for senses
(manual) and words. In the lexeme space, adjectives
directly impact the classification performance. But it
can be seen that disambiguation of adverb and verb
synsets impact the performance of SA higher than
disambiguation of nouns and adjectives.

While it is believed that adjectives carry direct
sentiments, our results suggest that using adjectives
alone as features may not improve the accuracy. The
results prove that sentiment may be subtle at times
and not expressed directly through adjectives.

As manual sense annotation is an effort and cost
intensive process, the parts-of-speech-wise results
suggest improvements expected from an automatic
WSD engine so that it can aid sentiment classifica-
tion. Table 1 suggests that the WSD engine works
better for noun synsets compared to adjective and
adverb synsets. While this is expected in a typical
WSD setup, it is the adverbs and verbs that are more
important for detecting sentiment in semantics space

3The improvement in results of semantic space is found to
be statistically significant over the baseline at 95% confidence
level when tested using a paired t-test.

than nouns. The future WSD systems will have to
show an improvement in their accuracy with respect
to adverb and verb synsets.

Sense Words
POS Category PF NF PF NF
Adverb 79.65 80.45 70.25 73.68
Verb 75.50 79.28 62.23 63.12
Noun 73.39 75.40 69.77 72.55
Adjective 63.11 65.03 78.29 79.20

Table 3: POS-wise F-score for sense (M) and Words;PF-
Positive F-score(%), NF- Negative F-score (%)

Table 3 shows the positive and negative F-score
statistics with respect to different POS. Detection
of negative reviews using lexeme space is difficult.
POS-wise statistics also suggest the same. It should
be noted that adverb and verb synsets play an im-
portant role in negative class detection. Thus, an au-
tomatic WSD engine should give importance to the
correct disambiguation of these POS categories.

6.3 Effect of size of training corpus

#Training
Documents

W M I W+S(M) W+S(I)

100 76.5 87 79.5 82.5 79.5
200 81.5 88.5 82 90 84
300 79.5 92 81 89.5 82
400 82 90.5 81 94 85.5
500 83.5 91 85 96 82.5

Table 4: Accuracy (%) with respect to number of training
documents; W: Words, M: Manual Annotation, I: IWSD-
based sense annotation, W+S(M): Word+Senses (Manual
annotation), W+S(I): Word+Senses(IWSD-based sense
annotation)

From table 2, the benefit of sense disambigua-
tion to sentiment prediction is evident. In addition,
Table 4 shows variation of classification accuracy
with respect to different number of training sam-
ples based on different approaches of annotation ex-
plained in previous sections. The results are based
on a blind set of 90 test samples from both the po-
larity labels 4.

4No cross validation is performed for this experiment
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Compared to lexeme-based features, manually an-
notated sense based features give better performance
with lower number of training samples. IWSD is
also better than lexeme-based features. A SA sys-
tem trained on 100 training samples using manually
annotated senses gives an accuracy of 87%. Word-
based features never achieve this accuracy. An
IWSD-based system requires lesser samples when
compared to lexeme space for an equivalent accu-
racy. Note that model based on words + senses(M)
features achieve an accuracy of 96% on this test set.

This implies that the synset space, in addition
to benefit to sentiment prediction in general, re-
quires lesser number of training samples in order to
achieve the accuracy that lexeme space can achieve
with a larger number of samples.

6.4 Effect of Partial disambiguation

Figure 2 shows the accuracy, positive F-score and
negative F-score with respect to different thresholds
of candidate senses for partially disambiguated doc-
uments as described in Section 3.3. We compare the
performance of these documents with word-based
features (B) and sense-based features based on man-
ually (M) or automatically obtained senses (I). Note
that Sense (I) and Sense (M) correspond to com-
pletely disambiguated documents.

In case of partial disambiguation using manual
annotation, disambiguating words with less than
three candidate senses performs better than others.
For partial disambiguation that relies on an auto-
matic WSD engine, a comparable performance to
full disambiguation can be obtained by disambiguat-
ing words which have a maximum of four candidate
senses.

As expected, completely disambiguated docu-
ments provide the best F-score and accuracy fig-
ures5. However, a performance comparable to com-
plete disambiguation can be attained by disam-
biguating selective words.

Our results show that even if highly ambiguous
(in terms of senses) words are not disambiguated by
a WSD engine, the performance of sentiment classi-
fication improves.

5All results are statistically significant with respect to base-
line
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Figure 2: Partial disambiguation statistics: Accu-
racy,Positive F-score, Negative F-score variation with re-
spect to sense disambiguation difficult level is shown.
Words(B): baseline system

6.5 Synset replacement using similarity metrics

Table 5 shows the results of synset replacement ex-
periments performed using similarity metrics de-
fined in section 4. The similarity metric value NA
shown in the table indicates that synset replacement
is not performed for the specific run of experiment.
For this set of experiments, we use the combina-
tion of sense and words as features (indicated by
Senses+Words (M)).

Synset replacement using a similarity metric
shows an improvement over using words alone.
However, the improvement in classification accu-
racy is marginal compared to sense-based represen-
tation without synset replacement (Similarity Met-
ric=NA).

Replacement using LIN and LCH metrics gives
marginally better results compared to the vanilla set-
ting in a manually annotated corpus. The same phe-
nomenon is seen in the case of IWSD based ap-
proach6. The limited improvement can be due to
the fact that since LCH and LIN consider only IS-A

6Results based on LCH and LIN similarity metric for auto-
matic sense disambiguation is not statistically significant with
α=0.05
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Feature Representation Similarity
Metric

Accuracy PF NF PP NP PR NR

Words (Baseline) NA 84.90 85.07 84.76 84.95 84.92 85.19 84.60
Words + Sense(M) NA 90.20 89.81 90.43 92.02 88.55 87.71 92.39
Words + Sense(I) NA 86.08 86.28 85.92 85.87 86.38 86.69 85.46
Words + Sense (M) LCH 90.60 90.20 90.85 92.85 88.61 87.70 93.21
Words + Sense(M) LIN 90.70 90.26 90.97 93.17 88.50 87.53 93.57
Words + Sense (M) Lesk 91.12 90.70 91.38 93.55 88.97 88.03 93.92
Words + Sense (I) LCH 85.66 85.85 85.52 85.67 85.76 86.02 85.28
Words + Sense(I) LIN 86.16 86.37 86.00 86.06 86.40 86.69 85.61
Words + Sense (I) Lesk 86.25 86.41 86.10 86.31 86.26 86.52 85.95

Table 5: Similarity Metric Analysis using different similarity metrics with synsets and a combinations of synset and
words;PF-Positive F-score(%), NF-Negative F-score (%), PP-Positive Precision (%), NP-Negative Precision (%), PR-
Positive Recall (%), NR-Negative Recall (%)

Top information
content features
(in %)

IWSD
synset #

Manual
synsets #

Match
synset #

Match
Synsets (%)

Unmatched
Synset(%)

10 601 722 288 39.89 60.11
20 1199 1443 650 45.05 54.95
30 1795 2165 1005 46.42 53.58
40 2396 2889 1375 47.59 52.41
50 2997 3613 1730 47.88 52.12

Table 6: Comparison of top information gain-based features of manually annotated corpora and automatically anno-
tated corpora

relationship in WordNet, the replacement happens
only for verbs and nouns. This excludes adverb
synsets which we have shown to be the best features
for a sense-based SA system.

Among all similarity metrics, the best classifica-
tion accuracy is achieved using Lesk. The system
performs with an overall classification accuracy of
91.12%, which is a substantial improvement of 6.2%
over baseline. Again, it is only 1% over the vanilla
setting that uses combination of synset and words.
However, the similarity metric is not sophisticated
as LIN or LCH.

Thus, we observe a marginal improvement by us-
ing similarity-based metrics for WordNet. A good
metric which covers all POS categories can provide
substantial improvement in the classification accu-
racy.

7 Error Analysis

For sentiment classification based on semantic
space, we classify the errors into four categories.
The examples quoted are from manual evaluation of
the results.

1. Effect of low disambiguation accuracy of IWSD
engine: SA using automatic sense annotation
depends on the annotation system used. To as-
sess the impact of IWSD system on sentiment
classification, we compare the feature set based
on manually annotated senses with the feature
set based on automatically annotated senses.
We compare the most informative features of
the two classifiers. Table 6 shows the number
of top informative features (synset) selected as
the percentage of total synset features present
when the semantic representation of documen-
tation is used. The matched synset column rep-
resents the number of IWSD synsets that match
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with manually annotated synsets.

The number of top performing features is more
in case of manually annotated synsets. This
can be attributed to the total number of synsets
tagged in the two variant of the corpus. The re-
duction in the performance of SA for automati-
cally annotated senses is because of the number
of unmatched synsets.

Thus, although the accuracy of IWSD is cur-
rently 70%, the table indicates that IWSD can
match the performance of manually annotated
senses for SA if IWSD is able to tag correctly
those top information content synsets. This as-
pect needs to be investigated further.

2. Negation Handling: For the purpose of this
work, we concentrate on words as units for sen-
timent determination. Syntax and its contri-
bution in understanding sentiment is neglected
and hence, positive documents which con-
tain negations are wrongly classified as nega-
tive. Negation may be direct as in the excerpt
‘....what is there not to like about Vegas.’ or
may be double as in the excerpt‘...that aren’t
insecure’.

3. Interjections and WordNet coverage: Recent
informal words are not covered in WordNet and
hence, do not get disambiguated. The same
is the case for interjections like ‘wow’,‘duh’
which sometimes carry direct sentiment. Lex-
ical resources which include them can be used
to incorporate information about these lexical
units.

4. Document Specificity: The assumption under-
lying our analysis is that a document contains
description of only one topic. However, re-
views are generic in nature and tend to express
contrasting sentiment about sub-topics . For
example, a travel review about Paris can talk
about restaurants in Paris, traffic in Paris, pub-
lic behaviour, etc. with opposing sentiments.
Assigning an overall sentiment to a document
is subjective in such cases.

8 Conclusion & Future Work

This work presents an empirical benefit of WSD to
sentiment analysis. The study shows that supervised
sentiment classifier modeled on wordNet senses per-
form better than word-based features. We show how
the performance impact differs for different auto-
matic and manual techniques, parts-of-speech, dif-
ferent training sample size and different levels of
disambiguation. In addition, we also show the bene-
fit of using WordNet based similarity metrics for re-
placing unknown features in the test set. Our results
support the fact that not only does sense space im-
prove the performance of a sentiment classification
system, but also opens opportunities for improve-
ment using better similarity metrics.

Incorporation of syntactical information along
with semantics can be an interesting area of work.
More sophisticated features which include the two
need to be explored. Another line of work is in the
context of cross-lingual sentiment analysis. Current
solutions are based on machine translation which is
very resource-intensive. Using a bi-lingual dictio-
nary which maps WordNet across languages, such a
machine translation sub-system can be avoided.
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Abstract

In this paper, we introduce a connotation lex-
icon, a new type of lexicon that lists words
with connotative polarity, i.e., words with pos-
itive connotation (e.g., award, promotion) and
words with negative connotation (e.g., cancer,
war). Connotation lexicons differ from much
studied sentiment lexicons: the latter concerns
words that express sentiment, while the former
concerns words that evoke or associate with
a specific polarity of sentiment. Understand-
ing the connotation of words would seem to
require common sense and world knowledge.
However, we demonstrate that much of the
connotative polarity of words can be inferred
from natural language text in a nearly unsu-
pervised manner. The key linguistic insight
behind our approach is selectional preference
of connotative predicates. We present graph-
based algorithms using PageRank and HITS
that collectively learn connotation lexicon to-
gether with connotative predicates. Our em-
pirical study demonstrates that the resulting
connotation lexicon is of great value for sen-
timent analysis complementing existing senti-
ment lexicons.

1 Introduction

In this paper, we introduce a connotation lexicon,
a new type of lexicon that lists words with conno-
tative polarity, i.e., words with positive connotation
(e.g., award, promotion) and words with negative
connotation (e.g., cancer, war). Connotation lexi-
cons differ from sentiment lexicons that are studied
in much of previous research (e.g., Esuli and Sebas-

tiani (2006), Wilson et al. (2005a)): the latter con-
cerns words that express sentiment either explicitly
or implicitly, while the former concerns words that
evoke or even simply associate with a specific polar-
ity of sentiment. To our knowledge, there has been
no previous research that investigates polarized con-
notation lexicons.

Understanding the connotation of words would
seem to require common sense and world knowl-
edge at first glance, which in turn might seem to re-
quire human encoding of knowledge base. However,
we demonstrate that much of the connotative polar-
ity of words can be inferred from natural language
text in a nearly unsupervised manner.

The key linguistic insight behind our approach is
selectional preference of connotative predicates. We
define a connotative predicate as a predicate that
has selectional preference on the connotative polar-
ity of some of its semantic arguments. For instance,
in the case of the connotative predicate “prevent”,
there is strong selectional preference on negative
connotation with respect to the thematic role (se-
mantic role) “THEME”. That is, statistically speak-
ing, people tend to associate negative connotation
with the THEME of “prevent”, e.g., “prevent can-
cer” or “prevent war”, rather than positive conno-
tation, e.g., “prevent promotion”. In other words,
even though it is perfectly valid to use words with
positive connotation in the THEME role of “pre-
vent”, statistically more dominant connotative po-
larity is negative. Similarly, the THEME of “con-
gratulate” or “praise” has strong selectional prefer-
ence on positive connotation.

The theoretical concept supporting the selective
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accomplish, achieve, advance, advocate, admire,
applaud, appreciate, compliment, congratulate,
develop, desire, enhance, enjoy, improve, praise,
promote, respect, save, support, win

Table 1: Positively Connotative Predicates w.r.t. THEME

alleviate, accuse, avert, avoid, cause, complain,
condemn, criticize, detect, eliminate, eradicate,
mitigate, overcome, prevent, prohibit, protest, re-
frain, suffer, tolerate, withstand

Table 2: Negatively Connotative Predicates w.r.t. THEME

preference of connotative predicates is that of se-
mantic prosody in corpus linguistics. Semantic
prosody describes how some of the seemingly neu-
tral words (e.g., “cause”) can be perceived with pos-
itive or negative polarity because they tend to col-
locate with words with corresponding polarity (e.g.,
Sinclair (1991), Louw et al. (1993), Stubbs (1995),
Stefanowitsch and Gries (2003)). In this work, we
demonstrate that statistical approaches that exploit
this very concept of semantic prosody can success-
fully infer connotative polarity of words.

Having described the key linguistic insight, we
now illustrate our graph-based algorithms. Figure 1
depicts the mutually reinforcing relation between
connotative predicates (nodes on the left-hand side)
and words with connotative polarity (node on the
right-hand side). The thickness of edges represents
the strength of the association between predicates
and arguments. For brevity, we only consider conno-
tation of words that appear in the THEME thematic
role.

We expect that words that appear often in the
THEME role of various positively (or negatively)
connotative predicates are likely to be words with
positive (or negative) connotation. Likewise, pred-
icates whose THEME contains words with mostly
positive (or negative) connotation are likely to be
positively (or negatively) connotative predicates. In
short, we can induce the connotative polarity of
words using connotative predicates, and inversely,
we can learn new connotative predicates based on
words with connotative polarity.

We hypothesize that this mutually reinforcing re-

Prevent 

Avoid 

Alleviate Cancer 

Incident 

Promotion 

Overcome Tragedy 

Figure 1: Bipartite graph of connotative predicates and
arguments. Edge weights are proportionate to the associ-
ation strength.

lation between connotative predicates and their ar-
guments can be captured via graph centrality in
graph-based algorithms. Given a small set of seed
words for connotative predicates, our algorithms
collectively learn connotation lexicon together with
connotative predicates in a nearly unsupervised
manner. A number of different graph representa-
tions are explored using both PageRank (Page et al.,
1999) and HITS (Kleinberg, 1999) algorithms. Em-
pirical study demonstrates that our graph based al-
gorithms are highly effective in learning both con-
notation lexicon and connotative predicates.

Finally, we quantify the practical value of our
connotation lexicon in concrete sentiment analysis
applications, and demonstrate that the connotation
lexicon is of great value for sentiment classification
tasks complementing conventional sentiment lexi-
cons.

2 Connotation Lexicon & Connotative
Predicate

In this section, we define connotation lexicon and
connotative predicates more formally, and contrast
them against words in conventional sentiment lexi-
cons.

2.1 Connotation Lexicon

This lexicon lists words with positive and negative
connotation, as defined below.

• Words with positive connotation: In this
work, we define words with positive connota-
tion as those that describe physical objects or
abstract concepts that people generally value,
cherish or care about. For instance, we regard
words such as “freedom”, “life”, or “health” as
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words with positive connotation. Some of these
words may express subjectivity either explic-
itly or implicitly, e.g., “joy” or “satisfaction”.
However, a substantial number of words with
positive connotation are purely objective, such
as “life”, “health”, “tenure”, or “scientific”.

• Words with negative connotation: We define
words with negative connotation as those that
describe physical objects or abstract concepts
that people generally disvalue or avoid. Sim-
ilarly as before, some of these words may ex-
press subjectivity (e.g., “disappointment”, “hu-
miliation”), while many other are purely objec-
tive (e.g., “bedbug”, “arthritis, “funeral”).

Note that this explicit and intentional inclusion of
objective terms makes connotation lexicons differ
from sentiment lexicons: most conventional senti-
ment lexicons have focused on subjective words by
definition (e.g., Wilson et al. (2005b)), as many re-
searchers use the term sentiment and subjectivity in-
terchangeably (e.g., Wiebe et al. (2005)).

2.2 Connotative Predicate
In this work, connotative predicates are those that
exhibit selectional preference on the connotative po-
larity of some of their arguments. We emphasize that
the polarity of connotative predicates does not coin-
cide with the polarity of sentiment in conventional
sentiment lexicons, as will be elaborated below.

• Positively connotative predicate: In this
work, we define positively connotative predi-
cates as those that expect positive connotation
in some arguments. For example, “congratu-
late” or “save” are positively connotative pred-
icates that expect words with positive conno-
tation in the THEME argument: people typi-
cally congratulate something positive, and save
something people care about. More examples
are shown in Table 1.

• Negatively connotative predicate: In this
work, we define negatively connotative predi-
cates as those that expect negative connotation
in some arguments. For instance, predicates
such as “prevent” or “suffer” tend to project
negative connotation in the THEME argument.
More examples are shown in Table 2.

Note that positively connotative predicates are not
necessarily positive sentiment words. For instance
“save” is not a positive sentiment word in the
lexicon published by Wilson et al. (2005b). In-
versely, (strongly) positive sentiment words are not
necessarily (strongly) positively connotative predi-
cates, e.g., “illuminate”, “agree”. Likewise, neg-
atively connotative predicates are not necessarily
negative sentiment words. For instance, predicates
such as “prevent”, “detect”, or “cause” are not
negative sentiment words, but they tend to corre-
late with negative connotation in the THEME argu-
ment. Inversely, (strongly) negative sentiment words
are not necessarily (strongly) negatively connotative
predicates, e.g., “abandon” (“abandoned [something
valuable]”).

3 Graph Representation

In this section, we explore the graphical representa-
tion of our task. Figure 1 depicts the key intuition as
a bipartite graph, where the nodes on the left-hand
side correspond to connotative predicates, and the
nodes on the right-hand side correspond to words in
the THEME argument. There is an edge between a
predicate p and an argument a, if the argument a
appears in the THEME role of the predicate p. For
brevity, we explore only verbs as the predicates, and
words in the THEME role of the predicates as argu-
ments. Our work can be readily extended to exploit
other predicate-argument relations however.

Note that there are many sources of noise in the
construction of graph. For instance, some of the
predicates might be negated, changing the semantic
dynamics between the predicate and the argument.
In addition, there might be many unusual combina-
tions of predicates and arguments, either due to data
processing errors or due to idiosyncratic use of lan-
guage. Some of such combinations can be valid ones
(e.g., “prevent promotion”), challenging the learning
algorithm with confusing evidence.

We hypothesize that by focusing on the important
part of the graph via centrality analysis , it is possible
to infer connotative polarity of words despite various
noise introduced in the graph structure. This implies
that it is important to construct the graph structure so
as to capture important linguistic relations between
predicates and arguments. With this goal in mind,
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we next explore the directionality of the edges and
different strategies to assign weights to them.

3.1 Undirected (Symmetric) Graph
First we explore undirected edges. In this case,
we assign weight for each undirected edge between
a predicate p and an argument a. Intuitively, the
weight should correspond to the strength of relat-
edness or association between the predicate p and
the argument a. We use Pointwise Mutual Infor-
mation (PMI), as it has been used by many pre-
vious research to quantify the association between
two words (e.g., Turney (2001), Church and Hanks
(1990)). The PMI score between p and a is defined
as follows:

w(p− a) := PMI(p, a) = log
P (p, a)

P (p)P (a)

The log of the ratio is positive when the pair of
words tends to co-occur and negative when the pres-
ence of one word correlates with the absence of the
other word.

3.2 Directed (Asymmetric) Graph
Next we explore directed edges. That is, for each
connected pair of a predicate p and an argument a,
there are two edges in opposite directions: e(p→ a)
and e(a → p). In this case, we explore the use
of asymmetric weights using conditional probabil-
ity. In particular, we define weights as follows:

w(p→ a) := P (a|p) =
P (p, a)

P (p)

w(a→ p) := P (p|a) =
P (p, a)

P (a)

Having defined the graph structure, next we explore
algorithms that analyze graph centrality via random
walks. In particular, we investigate the use of HITS
algorithm (Section 4), and PageRank (Section 5).

4 Lexicon Induction using HITS

The graph representation described thus far (Sec-
tion 3) captures general semantic relations between
predicates and arguments, rather than those specific
to connotative predicates and arguments. Therefore
in this section, we explore techniques to augment
the graph representation so as to bias the centrality

of the graph toward connotative predicates and argu-
ments.

In order to establish a learning bias, we start with
a small set of seed words for just connotative predi-
cates. We use 20 words for each polarity, as listed in
Table 1 and Table 2. These seed words act as prior
knowledge in our learning. We explore two different
techniques to incorporate prior knowledge into ran-
dom walk, as will be elaborated in Section 4.2 & 4.3,
followed by brief description of HITS in Section 4.1.

4.1 Hyperlink-Induced Topic Search (HITS)
HITS (Hyperlink-Induced Topic Search) algorithm
(Kleinberg, 1999), also known as Hubs and author-
ities, is a link analysis algorithm that is particularly
suitable to model mutual reinforcement between two
different types of nodes: hubs and authorities. The
definitions of hubs and authorities are given recur-
sively. A (good) hub is a node that points to many
(good) authorities, and a (good) authority is a node
pointed by many (good) hubs.

Notice that the mutually reinforcing relation-
ship is precisely what we intend to model between
connotative predicates and arguments. Let G =
(P,A,E) be the bipartite graph, where P is the set
of nodes corresponding to connotative predicates, A
is the set of nodes corresponding to arguments, and
E is the set of edges among nodes. (Pi, Aj) ∈ E
if and only if the predicate Pi and the argument Ai
occur together as a predicate – argument pair in the
corpus. The co-occurrence matrix derived from our
corpus is denoted as L, where

Lij =

{
w(i, j) if(Pi, Aj) ∈ E
0 otherwise

The value of w(i, j) is set to w(i − j) as defined
in Section 3.1 for undirected graphs, and w(i → j)
defined in Section 3.2 for directed graphs.

Let a(Ai) and h(Ai) be the authority and hub
score respectively, for a given node Ai ∈ A. Then
we compute the authority and hub score recursively
as follows:

a(Ai) =
∑

Pi,Aj∈E

w(i, j)h(Aj) +
∑

Pj ,Ai∈E

h(Pj)w(j, i)

h(Ai) =
∑

Pi,Aj∈E

w(i, j)a(Aj) +
∑

Pj ,Ai∈E

a(Pj)w(j, i)
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The scores a(Pi) and h(Pi) for Pi ∈ P are defined
similarly as above.

In what follows, we describe two different tech-
niques to incorporate prior knowledge. Note that it
is possible to apply each of the following techniques
to both directed and undirected graph representa-
tions introduced in Section 3. Also note that for each
technique, we construct two separate graphsG+ and
G− corresponding to positive and negative polarity
respectively. That is, G+ learns positively connota-
tive predicates and arguments, while G− learns neg-
atively connotative predicates and arguments.

4.2 Prior Knowledge via Truncated Graph
First we introduce a method based on graph trunca-
tion. In this method, when constructing the bipartite
graph, we limit the set of predicates P to only those
words in the seed set, instead of including all words
that can be predicates. In a way, the truncated graph
representation can be viewed as the query induced
graph on which the original HITS algorithm was in-
vented (Kleinberg, 1999).

The truncated graph is very effective in reducing
the level of noise that can be introduced by predi-
cates of the opposite polarity. It may seem like we
cannot discover new connotative predicates in the
truncated graph however, as the graph structure is
limited only to the seed predicates. We address this
issue by alternating truncation to different side of the
graph, i.e., left (predicates) or right (arguments), as
illustrated in Figure 1, through multiple rounds of
HITS.

For instance, we start with the graph G =
(P o, A,E(P o)) that is truncated only on the left-
hand side, with the seed predicates P o. Here,E(P o)
denotes the reduced set of edges discarding those
edges that connect to predicates not in P o. Then, we
apply HITS algorithm until convergence to discover
new words with connotation, and this completes the
first round of HITS.

Next we begin the second round. Let Ao be the
new words with connotation that are found in the
first round. We now set Ao as seed words for the
second phase of HITS, where we construct a new
graph G = (P,Ao, E(Ao)) that is truncated only
on the right-hand side, with full candidate words for
predicates included on the left-hand side. This al-
ternation can be repeated multiple times to discover

many new connotative predicates and arguments.

4.3 Prior Knowledge via Focussed Graph
In the truncated graph described above, one poten-
tial concern is that the discovery of new words with
connotation is limited to those that happen to corre-
late well with the seed predicates. To mitigate this
problem, we explore an alternative technique based
on the full graph, which we will name as focussed
graph.

In this method, instead of truncating the graph, we
simply emphasize the important portion of the graph
via edge weights. That is, we assign high weights to
those edges that connect a seed predicate with an ar-
gument, while assigning low weights for those edges
that connect to a predicate outside the seed set. This
way, we allow predicates not in the seed set to par-
ticipate in hubs and authority scores, but in a much
suppressed way. This method can be interpreted as
a smoothed version of the truncated graph described
in Section 4.2.

More formally, if the node Ai is connected to
the seed predicate Pj , the value of co-occurrence
matrix Lij is defined by prior knowledge(e.g.
PMI(Ai, Pj) or P (Ai|Pj) ), otherwise a small con-
stant ε is assigned to the edge.

Lij =

{
w(i, j) ifPj ∈ Eo
ε otherwise

Similarly to the truncated graph, we proceed with
multiple rounds of HITS, focusing different part of
the bipartite graph alternately.

5 Lexicon Induction using PageRank

In this section, we explore the use of another popu-
lar approach for link analysis: PageRank (Page et
al., 1999). We first describe PageRank algorithm
briefly in Section 5.1, then introduce two different
techniques to incorporate prior knowledge in Sec-
tion 5.2 and 5.3.

5.1 PageRank
Let G = (V,E) be the graph, where vi ∈ V =
P ∪ A are nodes (words) for the disjunctive set of
predicates (P ) and arguments (A), and e(i,j) ∈ E
are edges. Let In(i) be the set of nodes with an
edge leading to ni and similarly, Out(i) be the set
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of nodes that ni has an edge leading to. At a given
iteration of the algorithm, we update the score of ni
as follows:

S(i) = α
∑

j∈In(i)
S(j)× w(i, j)

|Out(i)| + (1− α) (1)

where the value α is constant damping factor. The
value of α is typically set to 0.85. The value of
w(i, j) is set to w(i−j) as defined in Section 3.1 for
undirected graphs, and w(i → j) as defined in Sec-
tion 3.2 for directed graphs. As before, we will con-
sider two different techniques to incorporate prior
knowledge into the graph analysis as follows.

5.2 Prior Knowledge via Truncated Graph
Unlike HITS, which was originally invented for a
query-induced graph, PageRank is typically applied
to the full graph. However, we can still apply the
truncation technique introduced in Section 4.2 to
PageRank as well. To do so, when constructing the
bipartite graph, we limit the set of predicates P to
only those words in the seed set, instead of including
all words that can be predicates. Graph truncation
eliminates the noise that can be introduced by pred-
icates of the opposite polarity. However, in order to
learn new predicates, we need to perform multiple
rounds of PageRank, truncating different side of the
bipartite graph alternately. Refer to Section 4.2 for
futher details.

5.3 Prior Knowledge via Teleportation
We next explore what is known as teleportation
technique for topic sensitive PageRank (Haveliwala,
2002). For this, we use the following equation that
is slightly augmented from Equation 1.

S(i) = α
∑

j∈In(i)
S(j)× w(i, j)

|Out(i)| + (1− α) εi (2)

Here, the new term εi is a smoothing factor that pre-
vents cliques in the graph from garnering reputation
through feedback (Bianchini et al. (2005)). In or-
der to emphasize important portion of the graph, i.e.,
subgraphs connected to the seed set, we assign non-
zero ε scores to only those important nodes, i.e., the
seed set. Intuitively, this will cause the random walk
to restart from the seed set with (1−α) = 0.15 prob-
ability for each step.

6 The Use of Google Web 1T Data
In order to implement the network of connotative
predicates and arguments, we need a substantially
large amount of documents. The quality of the co-
occurrence statistics is expected to be proportionate
to the size of corpus, but collecting and process-
ing such a large amount of data is not trivial. We
therefore resort to the Google Web 1T data (Brants
and Franz., 2006), which consists of Google n-gram
counts (frequency of occurrence of each n-gram) for
1 ≤ n ≤ 5. The use of Web 1T data will lessen the
challenge with respect to data acquisition, while still
allowing us to enjoy the co-occurrence statistics of
web-scale data. Because Web 1T data is just n-gram
statistics, rather than a collection of normal docu-
ments, it does not provide co-occurrence statistics of
any random word pairs. However, it provides a nice
approximation to the particular co-occurrence statis-
tics we are interested in, which are, predicate – ar-
gument pairs. This is because the THEME argument
of a verb predicate is typically on the right hand side
of the predicate, and the argument is within the close
range of the predicate.

We now describe how to derive co-occurrence
statistics of each predicate – argument pair using the
Web 1T data. For a given predicate p and an argu-
ment a, we add up the count (frequency) of all n-
grams (2 ≤ n ≤ 5) that match the following pattern:

[p] [?]n−2 [a]

where p must be the first word (head), a must be the
last word (tail), and [?]n−2 matches any n− 2 num-
ber of words between p and a. Note that this rule
enforces the argument a to be on the right hand side
of the predicate p. To reduce the level of noise, we
do not allow the wildcard [?] to match any punctu-
ation mark, as such n-grams are likely to cross sen-
tence boundaries representing invalid predicate – ar-
gument relations. We consider a word as a predicate
if it is tagged as a verb by a Part-of-Speech tagger
(Toutanova and Manning, 2000). For argument [a],
we only consider content-words.

The use of web n-gram statistics necessarily in-
vites certain kinds of noise. For instance, some of
the [p] [?]n−2 [a] patterns might not correspond to
a valid predicate – argument relation. However, we
expect that our graph-based algorithms — HITS and
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Lexicon FREQ HITS-sT HITS-aT HITS-sF HITS-aF Page-aT Page-aF
Top 100 73.6 67.8 77.7 67.8 48.4 76.3 77.0
Top 1000 67.8 60.6 68.8 60.6 38.0 68.4 68.5
Top MAX 65.8 57.6 66.5 57.6 39.1 65.5 65.7

Table 3: Comparison Result with General Inquirer Lexicon(%)

Lexicon FREQ HITS-sT HITS-aT HITS-sF HITS-aF Page-aT Page-aF
Top 100 83.0 79.3 86.3 79.3 55.8 86.3 87.2
Top 1000 80.3 67.3 81.3 67.3 46.5 80.7 80.3
Top MAX 71.5 62.7 72.2 62.7 45.4 71.1 72.3

Table 4: Comparison Result with OpinionFinder (%)

PageRank — will be able to discern valid relations
from noise, by focusing on the important part of the
graph. In other words, we expect that good predi-
cates will be supported by good arguments, and vice
versa, thereby resulting in a reliable set of predicates
and arguments that are mutually supported by each
other.

7 Experiments
As a baseline, we use a simple method dubbed
FREQ, which uses co-occurrence frequency with
respect to the seed predicates. Using the pattern
[p] [?]n−2 [a] (see Section 6), we collect two sets
of n-gram records: one set using the positive con-
notative predicates, and the other using the negative
connotative predicates. With respect to each set, we
calculate the following for each word a,

• Given [a], the number of unique [p] as f1
• Given [a], the number of unique phrases [?]n−2

as f2
• The number of occurrences of [a] as f3

We then obtain the score σa+ for positive connota-
tion and σa− for negative connotation using the fol-
lowing equations that take a linear combination of
f1, f2, and f3 that we computed above with respect
to each polarity.

σa+ = α× σf1+ + β × σf2+ + γ × σf3+ (3)

σa− = α× σf1− + β × σf2− + γ × σf3− (4)

Note that the coefficients α, β and γ are determined
experimentally. We assign positive polarity to the
word a, if σa+ >> σa− and vice versa.

7.1 Comparison against Sentiment Lexicon
The polarity defined in the connotation lexicon dif-
fers from that of conventional sentiment lexicons in
which we aim to recognize more subtle sentiment
that correlates with words. Nevertheless, we provide
agreement statistics between our connotation lexi-
con and conventional sentiment lexicons for com-
parison purposes. We collect statistics with respect
to the following two resources: General Inquirer
(Stone and Hunt, 1963) and Opinion Finder (Wilson
et al., 2005b).
For polarity λ ∈ {+,−}, let countsentlex(λ) denote
the total number of words labeled as λ in a given
sentiment lexicon, and let countagreement(λ) denote
the total number of words labeled as λ by both the
given sentiment lexicon and our connotation lexi-
con. In addition, let countoverlap(λ) denote the total
number of words that are labeled as λ by our conno-
tation lexicon that are also included in the reference
lexicon with or without the same polarity. Then we
compute precλ as follows:

precλ % =
countagreement(λ)

countoverlap(λ)
× 100

We compare precλ % for three different segments
of our lexicon: the top 100, top 1000, and the entire
lexicon. We compare the lexicons provided by the
seven variations of our algorithm. Results are shown
in Table 3 & 4.

The acronym of each different method is defined
as follows: HITS-sT & HITS-aT correspond to
the Symmetric (undirected) and Asymmetric (di-
rected) version of the Truncated method respec-
tively. HITS-sF & HITS-aF correspond to the
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Positive: include, offer, obtain, allow, build, in-
crease, ensure, contain, pursue, fulfill, maintain,
recommend, represent, require, respect
Negative: abate, die, condemn, deduce, investi-
gate, commit, correct, apologize, debilitate, dis-
pel, endure, exacerbate, indicate, induce, mini-
mize

Table 5: Examples of newly discovered connotative pred-
icates

Positive: boogie, housewarming, persuasiveness,
kickoff, playhouse, diploma, intuitively, monu-
ment, inaugurate, troubleshooter, accompanist
Negative: seasickness, overleap, gangrenous,
suppressing, fetishist, unspeakably, doubter,
bloodmobile, bureaucratized

Table 6: Examples of newly discovered words with con-
notations: these words are treated as neutral in some con-
ventional sentiment lexicons.

symmetric and asymmetric version of the Focused
method. Finally, Page-aT & Page-aF correspond to
the Truncation and teleportation (Focused) respec-
tively.

Asymmetric HITS on a directed truncated graph
(HITS-aT) and topic-sensitive PageRank (Page-aF)
achieve the best performance in most cases, espe-
cially for top ranked words which have a higher
average frequency. The difference between these
two top performers is not large, but statistically
significant using wilcoxon test with p < 0.03.
Standard PageRank (Page-aT) achieves the third
best performance overall. All these top performing
ones (HITS-aT, Page-aF, Page-aT) outperform the
baseline approach (FREQ) statistically significantly
with p < 0.001. For brevity, we omit the PageRank
results based on the undirected graphs, as the perfor-
mance of those was not as good as that of directed
ones.

7.2 Extrinsic Evaluation via Sentiment
Analysis

Next we perform extrinsic evaluation to quantify the
practical value of our connotation lexicon in con-
crete sentiment analysis applications. In particular,
we make use of our connotation lexicon for binary

sentiment classification tasks in two different ways:

• Unsupervised classification by voting. We de-
fine r as the ratio of positive polarity words to
negative polarity words in the lexicon. In our
experiment, penalty is 0 for positive and −0.5
for negative.

score(x+) = 1 + penalty+(r,#positive)

score(x−) = −1 + penalty−(r,#negative)

• Supervised classification using SVM. We use
bag-of-words features for baseline. In order
to quantify the effect of different lexicons, we
add additional features based on the following
scores as defined below:

scoreraw(x) =
∑

wεx

s(w)

scorepurity(x) =
scoreraw(x)∑
wεx abs(s(w))

The two corpora we use are SemEval2007 (Strap-
parava and Mihalcea, 2007) and Sentiment Twitter.1

The Twitter dataset consists of tweets containing ei-
ther a smiley emoticon (representing positive senti-
ment) or a frowny emoticon (representing negative
sentiment), we randomly select 50000 smiley tweets
and 50000 frowny tweets.2 We perform a 5-fold
cross validation.

In Table 8, we find very promising results, partic-
ularly for Twitter dataset, which is known to be very
noisy. Notice that the use of Top 6k words from
our connotation lexicon along with OpinionFinder
lexicon boost the performance up to 78.0%, which
is significantly better than than 71.4% using only
the conventional OpinionFinder lexicon. This result
shows that our connotation lexicon nicely comple-
ments existing sentiment lexicon, improving practi-
cal sentiment analysis tasks.

1http://www.stanford.edu/˜ alecmgo/cs224n/twitterdata.
2009.05.25.c.zip

2We filter out stop-words and words appearing less than 3
times. For Twitter, we also remove usernames of the format
@username occurring within tweet bodies.
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Algorithm 1st Round 2nd Round
Acc. F-val Acc. F-val

Voting 68.7 65.4 71.0 68.5
Bag of Words 69.9 65.1 69.9 65.1

(′′) + OpFinder 74.7 75.0 74.7 75.0
BoW + Top 2k 73.3 74.5 73.7 75.4

(′′) + OpFinder 72.8 73.5 75.0 77.6
BoW + Top 6k 76.6 77.1 74.5 75.3

(′′) + OpFinder 74.1 73.5 75.2 76.0
BoW + Top 10k 74,1 73.5 74.2 73.8

(′′) + OpFinder 73.5 74.3 74.7 75.1

Table 7: SemEval Classification Result(%) — (′′) denotes
that all features in the previous row are copied over.

Algorithm 1st Round 2nd Round
Acc. F-val Acc. F-val

Voting 60.4 59.1 62.6 61.3
Bag of Words 69.9 72.1 69.9 72.1

(′′) + OpFinder 70.3 71.4 70.3 71.4
BoW + Top 2k 71.3 65.4 72.7 73.3

(′′) + OpFinder 69.4 63.1 73.1 74.6
BoW + Top 6k 77.2 69.0 76.4 77.6

(′′) + OpFinder 76.4 72.0 76.8 78.0
BoW + Top 10k 73.3 73.5 73.7 74.1

(′′) + OpFinder 74.1 69.5 73.5 74.2

Table 8: Twitter Classification Result(%) — (′′) denotes
that all features in the previous row are copied over.

7.3 Intrinsic Evaluation via Human Judgment

In order to measure the quality of the connotation
lexicon, we also perform human judgment study on
a subset of the lexicon. Human judges are asked to
quantify the degree of connotative polarity of each
given word using an integer value between 1 and 5,
where 1 and 5 correspond to the most negative and
positive connotation respectively. When computing
the annotator agreement score or evaluating our con-
notation lexicon against human judgment, we con-
solidate 1 and 2 into a single negative class and 4
and 5 into a single positive class. The Kappa score
between two human annotators is 0.78.

As a control set, we also include 100 words taken
from the General Inquirer lexicon: 50 words with
positive sentiment, and 50 words with negative sen-
timent. These words are included so as to mea-

sure the quality of human judgment against a well-
established sentiment lexicon. The words were pre-
sented in a random order so that the human judges
will not know which words are from the General In-
quirer lexicon and which are from our connotative
lexicon. For the words in the control set, the anno-
tators achieved 94% (97% lenient) accuracy on the
positive set and 97% on the negative set.

Note that some words appear in both positive and
negative connotation graphs, while others appear in
only one of them. For instance, if a given word x
appears as an argument for only positive connotative
predicates, but never for negative ones, then xwould
appear only in the positive connotation graph. This
means that for such word, we can assume the conno-
tative polarity even without applying the algorithms
for graph centrality. Therefore, we first evaluate the
accuracy of the polarity of such words that appear
only in one of the connotation graphs. We discard
words with low frequency (300 in terms of Google
n-gram frequency), and randomly select 50 words
from each polarity. The accuracy of such words is
88% by strict evaluation and 94.5% by lenient eval-
uation, where lenient evaluation counts words in our
polarized connotation lexicon to be correct if the hu-
man judges assign non-conflicting polarities, i.e., ei-
ther neutral or identical polarity.

For words that appear in both positive and nega-
tive connotation graphs, we determine the final po-
larity of such words as one with higher scores given
by HITS or PageRank. We randomly select words
that rank at 5% of top 100, top 1000, top 2000, and
top 5000 by each algorithm for human judgment.
We only evaluate the top performing algorithms –
HITS-aT and Page-aF – and FREQ baseline. The
stratified performance for each of these methods is
given in Table 9.

8 Related Work
Graph based approaches have been used in many
previous research for lexicon induction. A tech-
nique named label propagation (Zhu and Ghahra-
mani, 2002) has been used by Rao and Ravichan-
dran (2009) and Velikovich et al. (2010), while ran-
dom walk based approaches, PageRank in particular,
have been used by Esuli and Sebastiani (2007). In
our work, we explore the use of both HITS (Klein-
berg, 1999) and PageRank (Page et al., 1999) and
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Average Positive Negative
Top # Str. Len. Str. Len. Str. Len.

FREQ
@100 73.5 87.3 72.2 91.1 74.7 83.5
@1000 51.8 78.6 44.4 75.6 81.8 90.9
@2000 66.9 74.7 73.1 84.2 57.3 60.0
@5000 61.5 81.3 61.4 84.1 62.0 70.0

HITS-aT
@100 61.3 79.8 74.4 93.3 47.0 65.1
@1000 39.6 75.5 48.1 77.8 30.8 73.1
@2000 57.7 72.1 78.0 86.0 41.0 60.7
@5000 55.6 73.5 69.7 85.7 44.3 63.8

Page-aF
@100 63.0 78.6 74.7 91.2 50.0 64.6
@1000 53.7 72.2 54.5 72.7 53.1 71.9
@2000 56.5 79.6 67.2 91.8 42.6 63.8
@5000 57.1 76.2 75.7 91.0 43.3 65.3

Table 9: Human Annotation Accuracies(%) – Str. de-
notes strict evaluation & Len. denotes lenient evaluation.

present systematic comparison of various options for
graph representation and encoding of prior knowl-
edge. We are not aware of any previous research
that made use of HITS algorithm for connotation or
sentiment lexicon induction.

Much of previous research investigated the use of
dictionary network (e.g., WordNet) for lexicon in-
duction (e.g., Kamps et al. (2004), Takamura et al.
(2005), Adreevskaia and Bergler (2006), Esuli and
Sebastiani (2006), Su and Markert (2009), Moham-
mad et al. (2009)), while relatively less research in-
vestigated the use of web documents (e.g., Kaji and
Kitsuregawa (2007), Velikovich et al. (2010))).

Wilson et al. (2005b) first introduced the sen-
timent lexicon, spawning a great deal of research
thereafter. At the beginning, sentiment lexicons
were designed to include only those words that ex-
press sentiment, that is, subjective words. However
in recent years, sentiment lexicons started expand-
ing to include some of those words that simply asso-
ciate with sentiment, even if those words are purely
objective (e.g., Velikovich et al. (2010), Baccianella
et al. (2010)). This trend applies even to the most re-
cent version of the lexicon of Wilson et al. (2005b).
We conjecture that this trend of broader coverage
suggests that such lexicons are practically more use-
ful than sentiment lexicons that include only those
words that are strictly subjective. In this work, we

make this transition more explicit and intentional,
by introducing a novel connotation lexicon.

Mohammad and Turney (2010) focussed on emo-
tion evoked by common words and phrases. The
spirit of their work shares some similarity with ours
in that it aims to find the emotion evoked by words,
as opposed to expressed. Two main differences are:
(1) our work aims to discover even more subtle asso-
ciation of words with sentiment, and (2) we present
a nearly unsupervised approach, while Mohammad
and Turney (2010) explored the use of Mechanical
Turk to build the lexicon based on human judgment.

In the work of Osgood et al. (1957), it has been
discussed that connotative meaning of words can
be measured in multiple scales of semantic differ-
ential, for example, the degree of “goodness” and
“badness”. Our work presents statistical approaches
that measure one such semantic differential auto-
matically. Our graph construction to capture word-
to-word relation is analogous to that of Collins-
Thompson and Callan (2007), where the graph rep-
resentation was used to model more general defini-
tions of words.

9 Conclusion
We introduced the connotation lexicon, a novel lex-
icon that list words with connotative polarity, which
will be made publically available. We also pre-
sented graph-based algorithms for learning conno-
tation lexicon together with connotative predicates
in a nearly unsupervised manner. Our approaches
are grounded on the linguistic insight with respect to
the selectional preference of connotative predicates.
Empirical study demonstrates the practical value of
the connotation lexicon for sentiment analysis en-
couraging further research in this direction.
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Abstract

Reranking models have been successfully ap-
plied to many tasks of Natural Language Pro-
cessing. However, there are two aspects of
this approach that need a deeper investiga-
tion: (i) Assessment of hypotheses generated
for reranking at classification phase: baseline
models generate a list of hypotheses and these
are used for reranking without any assess-
ment; (ii) Detection of cases where rerank-
ing models provide a worst result: the best
hypothesis provided by the reranking model
is assumed to be always the best result. In
some cases the reranking model provides an
incorrect hypothesis while the baseline best
hypothesis is correct, especially when base-
line models are accurate. In this paper we
propose solutions for these two aspects: (i)
a semantic inconsistency metric to select pos-
sibly more correct n-best hypotheses, from a
large set generated by an SLU basiline model.
The selected hypotheses are reranked apply-
ing a state-of-the-art model based on Partial
Tree Kernels, which encode SLU hypothe-
ses in Support Vector Machines with com-
plex structured features; (ii) finally, we apply
a decision strategy, based on confidence val-
ues, to select the final hypothesis between the
first ranked hypothesis provided by the base-
line SLU model and the first ranked hypothe-
sis provided by the re-ranker. We show the ef-
fectiveness of these solutions presenting com-
parative results obtained reranking hypothe-
ses generated by a very accurate Conditional
Random Field model. We evaluate our ap-
proach on the French MEDIA corpus. The re-
sults show significant improvements with re-
spect to current state-of-the-art and previous

re-ranking models.

1 Introduction

Discriminative reranking is a widely used approach
for several Natural Language Processing (NLP)
tasks: Syntactic Parsing (Collins, 2000), Named En-
tity Recognition (Collins, 2000; Collins and Duffy,
2001), Semantic Role Labelling (Moschitti et al.,
2008), Machine Translation (Shen et al., 2004),
Question Answering (Moschitti et al., 2007). Re-
cently reranking approaches have been successfully
applied also to Spoken Language Understanding
(SLU) (Dinarelli et al., 2009b).

Discriminative Reranking combines two models:
a first SLU model is used to generate a ranked list
of n-best hypotheses; a reranking model sorts the
list based on a different score and the final result
is the new top ranked hypothesis. The advantage of
reranking approaches is in the possibility to learn di-
rectly complex dependencies in the output domain,
as this is provided in the hypotheses generated by
the baseline model.

In previous approaches complex features are ex-
tracted from the hypotheses for both training and
classification phase, but there are very few stud-
ies on approaches that can be applied to search in
the hypotheses space generated by the baseline SLU
model. Moreover, to keep overall computational
cost reasonable, the size of the n-best list is typically
small (few tens). This is a limitation since the larger
is the hypotheses space generated, the more likely is
to find a better hypothesis. On the other hand, re-
ranking a large set of hypotheses is computationally
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expensive, thus a strategy to select the best hypothe-
ses to be re-ranked would overcome this problem.

Another aspect of reranking that deserves to be
deeper studied is its applicability. Although a
reranking model improves the baseline model in the
overall performance, in some cases the reranked best
hypotheses can contain more mistakes than the base-
line best hypothesis. A strategy to decide when the
reranking model should be applied and when the
first hypothesis of the baseline model is more accu-
rate would improve reranking performances.

In this paper, we propose two new models for
improving discriminative reranking: (a) a seman-
tic inconsistency metric that can be applied to SLU
hypotheses to select those that are more likely to
be correct; (b) a model selection strategy based on
the confidence scores provided by the baseline SLU
model and the reranker. This provides a decision
function that detects if the original top ranked hy-
pothesis is more accurate than the reranked best hy-
pothesis.

Our re-ranking strategies turn out to be effective
on very accurate baseline models based on state-of-
the-art Conditinal Random Fields (CRF) implemen-
tation (Lavergne et al., 2010). We evaluate our ap-
proach on the well-known French MEDIA corpus
for SLU (Bonneau-Maynard et al., 2006). The re-
sults show that our approach significantly improves
both “traditional” reranking approaches and state-
of-the-art SLU models.

The remainder of the paper is organized as fol-
lows: in Section 2 we introduce the SLU task. Sec-
tion 3 describes our discriminative reranking frame-
work for SLU, in particular the baseline model
adopted, in sub-section 3.1, and the reranking
model, in sub-section 3.2. Section 4 describes
the two strategies proposed in this paper for SLU
reranking, whereas the experiments to evaluate our
approaches are described in Section 5. Finally, after
a discussion in Section 6, in Section 7 we draw some
conclusions.

2 Spoken Language Understanding

Spoken Language Understanding is the task of rep-
resenting and extracting the meaning of natural lan-
guage sentences. Designing a general meaning rep-
resentation which can capture the semantics of a

spoken language is very complex. Therefore, in
practice, the meaning representations depend on the
specific application domain being modeled.

For the corpus used in this work, the semantic rep-
resentation is defined in an ontology described in
(Bonneau-Maynard et al., 2006). As an example,
given the following natural language sentence trans-
lated from the MEDIA corpus:

“Good morning I would like to book an hotel room in Lon-

don”

The semantic representation extraction for the
SLU task is performed in two steps:

1. Automatic Concept Labeling

Null{Good morning} command-task{I would like to book}
object-bd{an hotel room} localization-city{in London}

2. Attribute-Value Extraction

command-task[reservation] object-bd[hotel] localization-
city[London]

command-task, object-bd and localization-city
are three domain concepts, called also “attributes”,
defined in the ontology and Null is the concept for
words not associated to any concept. As shown in
the example, Null concepts are removed from the fi-
nal output since they don’t bring any semantic con-
tent with respect to the application domain. reserva-
tion, hotel and London are the normalized attribute
values, defined also in the application ontology. This
representation is usually called attribute-value repre-
sentation.

In the last decade several probabilistic models
have been proposed for the Automatic Concept La-
beling step: in (Raymond et al., 2006) a conceptual
language model encoded in Stochastic Finite State
Transducers (SFST) is proposed. In (Raymond and
Riccardi, 2007), the SFST-based model is compared
with Support Vector Machines (SVM) (Vapnik,
1998) and Conditional Random Fields (CRF) (Laf-
ferty et al., 2001). Moreover, in (Hahn et al., 2008a)
two more models are applied to SLU: a Maximum
Entropy (EM) model and a model coming from
the Statistical Machine Translation (SMT) commu-
nity (it is actually a log-linear combination of SMT
models). Among these models, CRF has shown in
general superior performances on sequence labeling
tasks like Named Entity Recognition (NER) (Tjong
Kim Sang and De Meulder, 2003), Grapheme-to-
Phoneme transcription (Sejnowski and Rosenberg,
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1987) and also Spoken Language Understanding
(Hahn et al., 2008a).

In addition to individual systems, more recently
also some system combination approaches have
been tried on SLU. In (Hahn et al., 2010), two such
approaches are compared, one based on weighted
ROVER (Fiscus, 1997) while the other is the rerank-
ing approach proposed in (Dinarelli et al., 2009b).
Both system combination approaches are applied on
the MEDIA corpus, thus we will refer to (Hahn et
al., 2010) for a comparison with our approach.

Like the other tasks mentioned above, SLU is usu-
ally a supervised learning task, this means that mod-
els are learned from annotated data. This is an im-
portant aspect to take into account when designing
SLU systems. In this respect accurate SLU models
can in part alleviate the problem of manually anno-
tating data.

The second step of SLU, that is Attribute Value
Extraction (from now on AVE) is performed with
two approaches: a) Rule-based approaches apply
Regular Expressions (RE) to map the words realiz-
ing a concept into a normalized value. Regular ex-
pressions are defined for each attribute-value pair.
Given a concept and its realizing surface form, if a
RE for that concept matches the surface, the corre-
sponding value is returned.

An example of surfaces that can be mapped into
the value hotel given the concept object-bd is:

1. an hotel room
2. a hotel room
3. the hotel

...

Note that these surfaces share the same keyword
for the concept object-bd, which is “hotel”. Thus,
a possible rule extracted from data, for the concept
object-bd can be:

Robject−bd(S) =
if S = “an hotel room” or
S = “a hotel room” or
S = “the hotel” then
return “hotel”
end

This kind of rules can be easily refined using reg-
ular expressions, so that they can capture all possible
linguistic patterns containing the triggering keyword
(“hotel” in the example).

b) The other approach used for attribute value ex-
traction is based on probabilistic models. In this case
the model learns from data the conditional probabil-
ity of values V , given the concept C and the cor-
responding sequence of words W realizing the con-
cept: P (V |W, C).

The most meaningful work about AVE ap-
proaches in SLU tasks is (Hahn et al., 2010).

The model used in this work for Automatic Con-
cept Labeling is based on CRF. For the Attribute-
Value Extraction phase we use a combination of
rule based and probabilistic approaches. The first
is made of regular expressions, as explained above.
The probabilistic approach is based again on CRF.

3 Reranking Framework

This section describes the different models involved
in the pipeline realising our reranking framework:

• Conditional Random Fields

• Semantic Inconsistency Metric for hypotheses
selection, which is optional and is applied only
at the classification phase

• Support Vector Machines with Partial Tree Ker-
nel

• Decision Strategy to detect when the top ranked
hypothesis of the baseline model is more accu-
rate than the reranked best hypothesis

It is important to underline that the phases in-
volved in the reranking framewrok are distinguished
for a matter of clarity. In principle, the phases
from the hypotheses selection to the last, the deci-
sion strategy, can be thought of as a whole reranking
model.

In the next two subsection we describe the two
models used for hypotheses generation and for
reranking: CRF and SVM with kernel methods. The
two improvements proposed in this paper and listed
above are presented in a dedicated section (4).

3.1 Conditional Random Fields
CRFs have been proposed for the first time for se-
quence segmentation and labeling tasks in (Lafferty
et al., 2001). This model belongs to the family of
exponential or log-linear models. Its main charac-
teristics are the possibility to include a huge number
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of features, like the Maximum Entropy (ME) model,
but computing global conditional probabilities nor-
malized at sentence level, instead of position level
like in ME. In particular this last point results very
effective since it solves the label bias problem, as
pointed out in (Lafferty et al., 2001).

Given a sequence of N words WN
1 = w1, ..., wN

and its corresponding sequence of concepts CN
1 =

c1, ..., cN , CRF trains the conditional probabilities

P (CN
1 |W N

1 ) =
1

Z

N∏

n=1

exp

(
M∑

m=1

λm · hm(cn−1, cn, wn+2
n−2)

)

(1)

where λm are the training parameters.
hm(cn−1, cn, wn+2

n−2) are the feature functions
capturing conditional dependencies of concepts and
words. Z is a probability normalization factor in
order to model well defined probability distribution:

Z =
∑

c̃N
1

N∏

n=1

H(c̃n−1, c̃n, wn+2
n−2) (2)

here c̃n−1 and c̃n are the concepts hypoth-
esized for the previous and current words,
H(c̃n−1, c̃n, wn+2

n−2) is an abbreviation for∑M
m=1 λm · hm(cn−1, cn, wn+2

n−2).

The CRF model used for the Attribute-Value Ex-
traction phase learns in the same way the conditional
probability P (V N

1 |CN
1 , WN

1 ). In particular we use
attributes-words concatenations on the source side
and attribute values on the target side.

Two particular effective implementations of CRFs
have been recently proposed. One is described in
(Hahn et al., 2009) and uses a margin based criterion
for probabilities estimation. The other is described
in (Lavergne et al., 2010) and has been implemented
in the software wapiti1. The latter solution in partic-
ular trains the model using two different regulariza-
tion factors at the same time:

Gaussian prior, used as l2 regularization and used
in many softwares to avoid overfitting;

Laplacian prior, used as l1 regularization (Riezler
and Vasserman, 2010), which has the effect to filter
out features with very low scores.

1available at http://wapiti.limsi.fr

The two regularization parameters are used to-
gether in the model implementing the so-called elas-
tic net regularization (Zou and Hastie, 2005):

l(λ) + ρ1‖λ‖1 +
ρ2

2
‖λ‖22 (3)

λ is the set of parameters of the model introduced
in equation 1, l(λ) is the minus-logarithm of equa-
tion 1, used as loss function for training CRF. ‖λ‖1
and ‖λ‖2 are the l1 and l2 regularization, respec-
tively, while ρ1 and ρ2 are two parameters that can
be optimized as usual on development data or with
cross validation.

As explained in (Lavergne et al., 2010), using l1
regularization is an effective way for feature selec-
tion in CRF at training time. Note that other ap-
proaches have been proposed for feature selection,
e.g. in (McCallum, 2003). This type of features se-
lection, performed directly at training time, yields
very accurate models, since only the most meaning-
ful features are kept in the final model, which guar-
antee a strong robustness on unseen data.

In this work we refer in particular to the CRF im-
plementation described in (Lavergne et al., 2010).

3.2 SVM and Kernel Methods

Our reranking model is based on SVM (Vapnik,
1998) with the use of the Partial Tree Kernel defined
in (Moschitti, 2006).

SVMs are well-known machine learning algo-
rithms belonging to the class of maximal-margin lin-
ear classifiers (Vapnik, 1998). The model represents
a hyperplane which separates the training examples
with a maximum margin. The hyperplane is learned
using optimization theory and is represented in the
dual form as a linear combination of training exam-
ples:∑

i=1..l yiαi ~xi~x + b = 0,
where ~xi, i ∈ [1, .., l] are training examples rep-

resenting objects oi and o in any feature space, yi is
the label associated with ~xi and αi are the lagrange
multipliers. The dual form of the hyperplane shows
that SVM training depends on the inner product be-
tween instances. Kernel methods theory (Shawe-
Taylor and Cristianini, 2004), allows us to substitute
the inner product with a so-called kernel function,
computing the same result: K(oi, o) = ~xi · ~x.
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The interesting aspect of using such formulation
is the possibility to compare objects in arbitrar-
ily complex feature spaces implicitly, i.e. without
knowing the features to be used. Since in real world
scenarios data cannot be classified using a simple
linear classifier, kernel methods can be used to carry
out learning in complex feature spaces. In this work
we use the Partial Tree Kernel (PTK) (Moschitti,
2006).

3.3 Reranking Model
In order to give an effective representation to SLU
hypotheses in SVM, since we are using PTK, we
need to represent as trees SLU hypotheses like the
one described in section 2.

This problem is easily solved by transforming the
hypotheses into trees like the one depicted in fig-
ure 1. Although there may be more formal solutions
to represent semantic information of SLU hypothe-
ses as trees, we would like to remark that the tree
structure shown in figure 1 contains all the key in-
formation needed for our purposes: the first level of
the tree represents the concept sequence annotated
on surface form. The second level of the tree al-
low to implicitly represent the segmentation of each
concept, while the third level, i.e. the leaves, are the
input words. Moreover, from figure 1 we removed
word categories associated to words in order to keep
the figure readable. Word categories are provided
together with the corpus as an application knowl-
edge base. They comprise domain categories like
city names, hotel names, street names etc., and some
domain independent categories like numbers, dates,
months etc. The categories are used at the same level
of words, they provide a generalization over words
and alleviate the effect of Out-of-Vocabulary (OOV)
words.

The CRF model used as baseline generates the
n most likely conceptual annotations for each input
sentence. These are ranked by the global conditional
probability of the concept sequence, given the input
word sequence of CRF. The n-best list produced by
the baseline model is the list of candidate hypotheses
H1, H2, .., Hn used in the reranking step.

The candidate hypotheses are organized into
pairs, e.g. (H1, H2) or (H1, H3). We build train-
ing pairs such that a reranker can learn to select the
best one between the two hypotheses in a pair, i.e.

the more correct hypothesis with respect to a refer-
ence annotation and a given metric. In particular,
we compute the edit distance of each hypothesis in
the list, with respect to the manual annotation taken
from the corpus. The best hypothesis Hb is used
to build positive instances for the reranker as pairs
(Hb, Hi) for i ∈ [1..n] and i 6= b, negative instances
are built as (Hi, Hb), with same constraints on index
i. This means that, if n hypotheses are generated for
a sentence, 2 · n instances are generated from them.
Note that by construction of pairs the model is sym-
metric, this provides a property that will be exploited
at classification phase, as described in (Shen et al.,
2003b).

Hypotheses are then converted into trees like the
one shown in figure 1. Pairs of trees ek = (ti,k, tj,k),
for k varying along all the training or classification
instances, are given as input to the SVM model to
train the reranker using the following reranking ker-
nel:

KR(e1, e2) = PTK(t1,1, t1,2) + PTK(t2,1, t2,2) (4)

− PTK(t1,1, t2,2)− PTK(t2,1, t1,2),

where e1 and e2 are two pairs of trees to be com-
pared.

The reranking kernel in equation 4, consisting in
summing four different kernels, has been proposed
in (Shen et al., 2003b) for syntactic parsing rerank-
ing, where the basic kernel was a Tree Kernel, and
the idea was taken in turn from (Heibrich et al.,
2000), where pairs where used to learn preference
ranking. The same idea appears also, in a slightly
different form, in early work about reranking, e.g.
(Collins and Duffy, 2002). The same reranking
schema has been used also in (Shen et al., 2004)
for reranking different candidate hypotheses for ma-
chine translation.

For classification, observing that the model is
symmetric and exploiting kernel properties, we can
use, as classification instances, simple hypotheses
instead of pairs. More precisely we use pairs where
the second hypothesis is empty, i.e. (Hi, 0), for
i ∈ [1..n]. This simplification allow a relatively fast
classification phase, since only n instances are gen-
erated for each sentence, instead of n2. This simpli-
fication has been proposed in (Shen et al., 2003b).
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Figure 1: An example of semantic tree constructed from an SLU hypothesis from the MEDIA corpus and used in PTK

4 Hypotheses Selection Criteria

This section describes the main contribution of our
work: first, a semantic inconsistency metric based
on the AVE phase of SLU and allowing to select hy-
potheses generated by the baseline model; second, a
strategy to decide, after the reranking phase, if it is
more likely that the baseline best hypothesis is more
accurate than the best reranked hypothesis and al-
lowing to recover the mistake. Similar ideas have
been proposed in (Dinarelli et al., 2010), here we
propose a significant evolution and we give a much
wider description and evaluation.

4.1 Hypotheses Selection via Attribute Value
Extraction (AVE)

In previous reranking approaches (Collins, 2000;
Collins and Duffy, 2002; Shen et al., 2003a; Shen
et al., 2003b; Shen et al., 2004; Collins and Koo,
2005; Kudo et al., 2005; Dinarelli et al., 2009b), few
hypotheses are generated with the baseline model,
ranked by the model probability. These are then
used for the reranking model. An interesting strat-
egy to improve reranking performance is the selec-
tion of the best set of hypotheses to be reranked.

In this work we propose a semantic inconsistency
metric (SIM) based on the attribute-value extraction
phase that allows to select better n-best hypotheses.
We combine the scores provided by the rule based
approach and the CRF approach for AVE, comput-
ing a confidence measure.

The rule-based approach for AVE is defined by
a set of rules that map concepts and their realiz-
ing words into the corresponding value. The rules
are extracted from the training data, thus they are
defined to extract correct values from well formed
phrases annotated with correct concepts. This means

that when the corresponding words are annotated
with a wrong concept, the extracted value will prob-
ably be wrong. We use this property to compute a
semantic inconsistency value for hypotheses, which
in turn allows to select hypotheses with higher prob-
abilities to be correct.

We show the application of SIM using the same
example of Section 2. For space issues we ab-
breviate command-task with com-task, object-bd
with obj-bd and localization-city with loc-city. We
also suppose to have already removed Null concepts.
From the same sentence, the three first hypotheses
that may be generated by the baseline model are:

1. obj-bd{I would like to book} obj-bd{an hotel room} loc-
city{in London}

2. com-task{I would like to book} obj-bd{an hotel room} loc-
city{in London}

3. com-task{I would like to book} obj-bd{an hotel} obj-
bd{room} loc-city{in London}

Two of these annotations show typical errors of an
SLU model:
(i) wrong concepts annotation: in the first hypothe-
sis the phrase “I would like to book” is erroneously
annotated as obj-bd;
(ii) wrong concept segmentation: in the third hy-
pothesis the phrase “an hotel room” is split in two
concepts.

If we apply the AVE module to these hypotheses
the result is:

1. obj-bd[] obj-bd[hotel] loc-city[london]

2. cmd-task[reservation] obj-bd[hotel] loc-city[london]

3. cmd-task[reservation] obj-bd[hotel] obj-bd[] loc-city[london]

As we can see the first concept obj-bd in the first
hypothesis has an empty value since it was incor-
rectly annotated and, therefore, it is not supported
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MEDIA training dev test
# sentences 12,908 1,259 3,005

words concepts words concepts words concepts
# tokens 94,466 43,078 10,849 4,705 25,606 11,383
# vocabulary 2,210 99 838 66 1,276 78
# singletons 798 16 338 4 494 10
# OOV rate [%] – – 1.33 0.02 1.39 0.04

Table 1: Statistics of the MEDIA training and evaluation sets used for all experiments.

by words from which the AVE module can extract
a correct value. In this case, the output of AVE is
empty. In the same way, in the third hypothesis, the
AVE module cannot extract a correct value from the
phrase “room” since it doesn’t contain any keyword
for a obj-bd concept.

For each hypothesis, our SIM simply counts the
number of wrong (or empty) values. In the example
above, we have 1, 0 and 1 for the three hypothe-
sis, respectively. Accordingly, the most accurate hy-
pothesis under SIM is the second, which is also the
correct one.

In order to combine the SIM score computed by
the rule-based AVE module with the score provided
by the CRF AVE model, we consider per-concept
scores from both approaches. In particular, we for-
malize the definition of the SIM metric above on a
concept ci as SIM(ci, w

1,...,m
i ). The value of SIM

is simply 0 if the rule-based AVE module can extract
a value from the surface form w1,...,m

i realizing the
concept ci. 1 otherwise. For each concept in a hy-
pothesis, we compute its semantic consistency s(ci)
as

s(ci) =
P (vi|ci, w

1,...,m
i )

SIM(ci, w
1,...,m
i ) + 1

(5)

where P (vi|ci, w
1,...,m
i ) is the conditional prob-

ability output by the CRF model for the value vi,
given the concept ci and its realizing surface w1,...,m

i .
Equation 5 means that the CRF score provided for a
given value is halved if SIM returns 1, i.e. if the
AVE module cannot extract any value. Otherwise
the score output by the CRF AVE model is kept
unchanged. The semantic inconsistency metric of
an hypothesis Hk containing the concept sequence
CN

1 = c1, ..., cN is then defined as

S(Hk) =
N∑

i=1

s(ci) (6)

Using S(Hk) as semantic inconsistency metric,
we generate a huge number of hypotheses with the
baseline model and we select only the top n-best. We
use these hypotheses in the discriminative reranking
model, instead of the original n-best generated by
the CRF model. For simplicity, in general context
we denote S(Hk) as SIM.

4.2 Wrong Rerank Rejection
After the reranking model is applied, the first hy-
pothesis is selected as final result. This choice as-
sumes that the new hypothesis is more accurate than
the one provided by the baseline model. In gen-
eral this assumption is not true. Indeed, a reranking
model must be carefully tuned in order to correctly
rerank wrong first best hypotheses but keeping the
original baseline best for correct hypotheses. When
the baseline model is relatively accurate, the latter
case occurs in most of the cases. In this situation it
becomes hard to train an accurate reranking model.

Our idea to overcome this problem is to apply the
reranking model and then post-process results to de-
tect when the original best hypothesis is actually bet-
ter than the reranked best.

For this purpose we propose a simple strategy
based on the scores computed by the two models in-
volved in reranking: CRF for the baseline and SVM
with PTK for reranking.

Let Hcrf and HRR be the best hypothesis of the
CRF and reranking (RR) models, respectively. Let
Scrf (Hcrf ) and Scrf (HRR) be the scores of the
CRF model for Hcrf and HRR. In the same way,
let SRR(Hcrf ) and SRR(HRR) be the scores of the
reranking model on the same hypotheses. We define
the confidence margin of the CRF model the quan-
tity: Mcrf = Scrf (Hcrf )− Scrf (HRR).

In the same way we define the confidence mar-
gin of the RR model: MRR = SRR(Hcrf ) −
SRR(HRR).

We compute two thresholds Tcrf and TRR for the
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Average score Feature type
0.0528186 Pref2
0.044189 CATEGORY-2
0.0355579 CATEGORY
0.0354006 Pref3-2
0.0338949 Pref4-2
0.0332647 Suff3-2
0.0314831 Suff2
0.030613 Suff4-2
... ...
0.0165602 Suff1
0.000579602 Pref1

Table 2: Ranks of average score given by the CRF model to feature
types

two margins with respect to error rate minimization
(with a “line search” algorithm).

We select the final best interpretation hypothesis
for a given sentence with the decision function:

BestHypothesis =

{
HRR if Mcrf ≤ Tcrf and MRR ≥ TRR

Hcrf otherwise.

Since this strategy allows to recover from rerank-
ing mistakes, we call it Wrong Rerank Rejection
(WRR).

5 Experiments

The data used in our experiments are taken from
the French MEDIA corpus (Bonneau-Maynard et
al., 2006). The corpus is made of 1.250 Human-
Machine dialogs acquired with a Wizard-of-Oz ap-
proach in the domain of informtation and reservation
of French hotels. The data are split into training, de-
velopment and test set. Statistics of the corpus are
presented in table 1.

For our CRF models, both Automatic Concept An-
notation and Attribute Value Extraction SLU phases,
we used wapiti2 (Lavergne et al., 2010). The CRF
model for the first SLU phase integrates a tradi-
tional set of features like word prefixes and suffixes
(of length up to 5), plus some Yes/No features like
“Does the word start with capital letter ?”, “Does
the word contain non alphanumeric characters ?”,
“Is the word preceded by non alphanumeric char-
acteris ?” etc. The CRF model for AVE integrates
only words, prefixes and suffixes (length 3 and 4)
concatenated with concepts. Since in this case la-
bels are attribute values, which are a huge set with

2available at http://wapiti.limsi.fr

MEDIA Text Input DEV TEST
Model Attr Attr+Val Attr Attr+Val
CRF 12.1% 14.8% 11.5% 13.8%
CRF+RR 12.0% 14.6% 11.5% 13.7%
CRF+RRSIM 11.7% 13.9% 11.3% 13.4%
CRF+RRWRR 11.2% 13.4% 11.3% 13.0%

Table 3: Results of baseline CRF model and reranking models on
MEDIA text input

respect to concepts (7̃00 VS 99), using a lot of fea-
tures would make model training problematic. De-
spite the reduced set of features, training error rate
at both token and sentence level is under 1%. We
didn’t carry out optimization for parameters ρ1 and
ρ2 of the elastic net (see section 3.1), default values
lead in most cases to very accurate models.

Reranking models based on SVM and PTK have
been trained with “SVM-Light-TK”3. Kernel param-
eters M and SVM parameter C have been optimized
on the development set, as well as thresholds for the
WRR (see section 4.2).

Concerning hypotheses generation, for training
we generate 100 hypotheses, we select the best with
respect to the edit distance and the reference anno-
tation and we keep a total of 10 hypotheses to build
pairs. For classification, with the “standard” rerank-
ing approach we generate and we keep the 10 best
hypotheses. While using SIM for hypotheses selec-
tion, we generate 1.000 hypotheses and we keep the
10 best with respect to SIM. 1.000 is the best thresh-
old between oracle accuracy and computational cost
for evaluating the hypotheses.

Experiments have been performed on both man-
ual and automatic transcriptions of dialog turns. For
automatic transcriptions the WER of the ASR is
30.3% on development set and 31.4% on test set.

All results are reported in terms of Concept Er-
ror Rate (CER), which is the same as WER, but it is
computed on concept sequences. In all cases we give
results for both attributes only and attributes and val-
ues extraction

5.1 Results

In order to understand feature relevance, in table 2
we report feature types ranked by the average score
given by the CRF model. Each type correspond to
features at any position with respect to the target

3available at http://disi.unitn.it/moschitti/Tree-Kernel.htm
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(a) M kernel parameter VS CER (on
attribute-value extraction)

(b) C SVM parameter VS training time (c) C SVM parameter VS CER (on
attribute-value extraction)

Figure 2: Optimization of the PTK M parameter and C parameter of SVM

MEDIA Speech Input DEV TEST
Model Attr Attr+Val Attr Attr+Val
CRF 24.1% 29.1% 23.7% 27.6%
CRF+RR 23.9% 29.1% 23.5% 27.6%
CRF+RRSIM 23.9% 28.3% 23.2% 26.8%
CRF+RRWRR 23.3% 27.5% 22.7% 26.1%

Table 4: Results of baseline CRF model and reranking models on
MEDIA speech input

word, with label unigrams. In contrast observation
unigrams are distinguished from bigrams using suf-
fixes -1 and -2 respectively. Feature types wrd are
words converted to lower case, Wrd are words kept
with original capitalization. Feature types Pren are
word prefixes of length n, Suf n are word suffixes of
length n. CATEGORY features are word categories
(see section 3.3). As we can see from the table,
although feature relevance depends of course from
the task, surprisingly word prefixes of length 2 are
the most meaningful features. As expected, CATE-
GORY features are also very relevant features, since
they provide a strong generalization over words. An-
other expected outcome is the fact that prefixes and
suffixes of length 1 are the least relevant features.

In figure 2(a), 2(b) and 2(c) we show the curves
resulting from optimization of parameters of rerank-
ing models. In particular we optimized the M kernel
parameter (µ decay factor, see (Moschitti, 2006) for
details), and the C SVM parameter, i.e. the scale
factor for the soft margin (please refer to (Vapnik,
1998) for SVM details). Figure 2(b) shows the learn-
ing time as a function of the C SVM parameter. This
gives an idea of how long takes training our rerank-

ing models.

In table 3 and 4 we report comparative results
over the baseline CRF model, the baseline rerank-
ing model (CRF+RR) and the reranking models ob-
tained applying the two improvements proposed in
this work (CRF+RRSIM and CRF+RRWRR). As
we can see, the baseline reranking model does not
improve significantly the baseline CRF model. This
outcome is expected since we don’t use any other in-
formation in the reranking model than the semantic
tree shown in figure 1. Previous approaches like for
example (Collins and Duffy, 2002), use the baseline
model score as feature, as that the reranking model
cannot do worst than the baseline model. As we
pointed out in section 4.2, this solution require a fine
tuning of the reranking model, especially when the
baseline model is relatively accurate. In our case,
the CRF model has a Sentence Error Rate of 25.0%
on the MEDIA test set. This means that 75% of
the times the best hypothesis of CRF is correct. In
turn this implies that the reranking model must not
rerank 75% of times and rerank the other 25% of
times, someway contrasting the evidence provided
by the baseline model score. In contrast, using our
WRR strategy, we can tune the reranking model to
maximize reranking effect and recover from rerank-
ing errors applying WRR. As shown in tables 3 and
4, we consistently improve CRF baseline as well
as reranking baseline CRF+RR, especially applying
both SIM and WRR (CRF+RRWRR). Comparing
our results with those reported in (Hahn et al., 2010),
we can see that our model reaches, and even im-
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MEDIA Test set OER[%] correct found/present
Model
CRF 9.5 2359/2657
CRF+RR 9.5 2375/2657
CRF+RRSIM 7.5 2381/2758
CRF+RRWRR 7.5 2444/2758

Table 5: Analysis over 10-best hypotheses for CRF baseline and the
reranking models showing the effect of hypotheses selection

MEDIA Text Input DEV TEST
Model Pair Attr+Val Attr+Val
CRF vs. CRF+RR 0.2235 0.4075
CRF vs. CRF+RRSIM 0.0299 0.065
CRF vs. CRF+RRWRR 0.0044 1.9998E-4
CRF+RR vs. CRF+RRSIM 0.002 5.9994E-4
CRF+RR vs. CRF+RRWRR 4.9995E-4 9.999E-5
CRF+RRSIM vs. CRF+RRWRR 0.1355 0.0031

Table 6: Significance tests on results of models described in this
work. The significance test is based on computationally-intensive ran-
domizations as described in (Yeh and Church, 2000).

proves in some cases, state-of-the-art performance.
This is particularly meaningful since best results re-
ported in (Hahn et al., 2010) are obtained combining
6 different SLU models.

In table 5 we report some statistics to show the
effect of SIM on the 10-best hypotheses list. It is
particularly interesting to see that when hypothe-
ses selection is applied, oracle error rate (OER)
drops of 2% points from an already accurate OER
of 9.5%. This is reflected also by the number of ora-
cles present in the 10-best list without applying and
applying SIM. We pass from 2657 without SIM to
2758 applying our hypotheses selection metric.

Finally, in table 6 we report statistical signifi-
cance tests over the models described in this work.
We used the significance test described in (Yeh
and Church, 2000), it is based on computationally-
intensive randomizations of data and tests the null
hypothesis, i.e. the lower the score, the higher the
statistical significance of results difference. Scores
in table 5 reflect results given in terms of CER. We
can see that when the difference between results is
small, this is not statistically significant, when the
score is above 0.05, the difference between the two
corresponding models is not significant. We can thus
conclude that the reranking model we propose, using
hypotheses selection and reranking errors recover,
significantly improves baseline CRF model and “tra-
ditional” reranking models.

6 Discussion

Although the new ideas proposed in this paper are
effective and interesting, an important issue is their
applicability to other tasks and domains. In this re-
spect, it is sufficient to note that our ideas comes
from the multi-stage nature of the task and of the
proposed reranking framework. SLU is performed
in two intertwined steps, since attribute values are
extracted from syntactic chunks annotated with con-
cept in the first step. This allows to use the model for
the second step to validate the output of the first step,
and vice versa, which is the principle of our hypothe-
ses selection metric. There are many other tasks,
in NLP and in other domains, that can be modeled
with multiple steps and thus the same idea of “val-
idation” of the output of one step with the other’s
model output can be applied. An example is syntac-
tic parsing, where in most cases parsing is performed
upon POS tagging output.

7 Conclusions

In this paper we propose two improvements for
reranking models to be integrated in a reranking
framework for Spoken Language Understanding.
The reranking model is based on a CRF baseline
model and Support Vector Machines with the Par-
tial Tree Kernel for the reraning model. The two
improvements we propose are: i) hypotheses selec-
tion criteria, used before applying reranking to select
better hypotheses amongst those generated by CRF.
ii) a strategy to recover from reranking errors called
Wrong Rerank Rejection.

We presented a full set of comparative results
showing the viability of our approach. We can reach
performances of state-of-the-art models, improving
them in some cases, especially on automatic tran-
scriptions coming from ASR (speech input).

In particular, the effectiveness of hypotheses se-
lection is shown reporting the improvement of the
Oracle Error Rate on the 10-best hypotheses list.
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Abstract

A re-scoring strategy is proposed that makes
it feasible to capture more long-distance de-
pendencies in the natural language. Two pass
strategies have become popular in a num-
ber of recognition tasks such as ASR (au-
tomatic speech recognition), MT (machine
translation) and OCR (optical character recog-
nition). The first pass typically applies a
weak language model (n-grams) to a lattice
and the second pass applies a stronger lan-
guage model to N best lists. The stronger lan-
guage model is intended to capture more long-
distance dependencies. The proposed method
uses RNN-LM (recurrent neural network lan-
guage model), which is a long span LM, to re-
score word lattices in the second pass. A hill
climbing method (iterative decoding) is pro-
posed to search over islands of confusability
in the word lattice. An evaluation based on
Broadcast News shows speedups of 20 over
basic N best re-scoring, and word error rate
reduction of 8% (relative) on a highly compet-
itive setup.

1 Introduction

Statistical Language Models (LMs) have received
considerable attention in the past few decades. They
have proved to be an essential component in many
statistical recognition systems such as ASR (au-
tomatic speech recognition), MT (machine trans-
lation) and OCR (optical character recognition).
The task of a language model is to assign prob-
ability to any word sequence possible in the lan-
guage. The probability of the word sequence W ≡

w1, . . . , wm ≡ wm1 is typically factored using the
chain rule:

P (wm1 ) =
m∏

i=1

P (wi|wi−11 ) (1)

In modern statistical recognition systems, an LM
tends to be restricted to simple n-gram models,
where the distribution of the predicted word depends
on the previous (n − 1) words i.e. P (wi|wi−11 ) ≈
P (wi|wi−1i−n+1).

Noam Chomsky argued that n-grams cannot learn
long-distance dependencies that span over more than
n words (Chomsky, 1957, pp.13). While that might
seem obvious in retrospect, there was a lot of ex-
citement at the time over the Shannon-McMillan-
Breiman Theorem (Shannon, 1948) which was inter-
preted to say that, in the limit, under just a couple of
minor caveats and a little bit of not-very-important
fine print, n-gram statistics are sufficient to capture
all the information in a string (such as an English
sentence). Chomsky realized that while that may be
true in the limit, n-grams are far from the most parsi-
monious representation of many linguistic facts. In
a practical system, we will have to truncate n-grams
at some (small) fixed n (such as trigrams or perhaps
5-grams). Truncated n-gram systems can capture
many agreement facts, but not all.1

By long-distance dependencies, we mean facts
like agreement and collocations that can span over
many words. With increasing order of n-gram mod-
els we can, in theory, capture more regularities in the

1The discussion in this paragraph is taken as-is from an arti-
cle (to appear) by Church (2012).
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language. In addition, if we can move to more gen-
eral models then we could hope to capture more, as
well. However, due to data sparsity, it is hard to es-
timate a robust n-gram distribution for large values
of n ( say, n > 10) using the conventional Max-
imum Likelihood techniques, unless a more robust
technique is employed for modeling which gener-
alizes well on unseen events. Some of these well
known long span / complex language models which
have shown to perform very well on many speech
tasks include: structured language model (Chelba
and Jelinek, 2000; Roark, 2001; Wang and Harper,
2002; Filimonov and Harper, 2009), latent seman-
tic analysis language model (Bellegarda, 2000),
topic mixture language models (Iyer and Ostendorf,
1999), whole sentence exponential language mod-
els (Rosenfeld, 1997; Rosenfeld et al., 2001), feed-
forward neural networks (Bengio et al., 2001), re-
current neural network language models (Mikolov
et al., 2010), among many others.

Although better modeling techniques can now
capture longer dependencies in a language, their
incorporation in decoders of speech recognition or
machine translation systems becomes computation-
ally challenging. Due to the prohibitive increase in
the search space of sentence hypotheses (or longer
length word sub sequences), it becomes challenging
to use a long span language model in the first pass
decoding. A word graph (word lattices for speech
recognition systems and hypergraphs for machine
translation systems), encoding exponential number
of hypotheses is hence outputted at the first pass out-
put on which a sophisticated and complex language
model is deployed for re-scoring. However, some-
times even re-scoring of this refined search space
can be computationally expensive due to explosion
of state space.

Previously, we showed in (Deoras et al., 2011)
how to tackle the problem of incorporating long span
information during decoding in speech recogni-
tion systems by variationaly approximating (Bishop,
2006, pp. 462) the long span language model by a
tractable substitute such that this substitute model
comes closest to the long span model (closest in
terms of Kullback Leibler Divergence (Cover and
J.A.Thomas, 1991, pp. 20)). The tractable substi-
tute was then used directly in the first pass speech
recognition systems. In this paper we propose an

approach that keeps the model intact but approxi-
mates the search space instead (which can become
intractable to handle especially under a long span
model), thus enabling the use of full blown model
for re-scoring.With this approach, we can achieve
full lattice re-scoring with a complex model, at a
cost more than 20 times less than of a naive brute
force approach that is commonly used today.

The rest of the paper is organized as follows:
We discuss a particular form of long span language
model in Sec. 2. In Sec. 3 we discuss two standard
re-scoring techniques and then describe and demon-
strate our proposed technique in Sec. 4. We present
experimental results in Sec. 5 followed by conclu-
sions and some remarks in Sec. 6.

2 Recurrent Neural Networks (RNN)

There is a long history of using neural networks to
model sequences. Elman (1990) used recurrent neu-
ral network for modeling sentences of words gen-
erated by an artificial grammar. Work on statistical
language modeling of real natural language data, to-
gether with an empirical comparison of performance
to standard techniques was done by Bengio et al.
(2001). His work has been followed by Schwenk
(2007), who has shown that neural network language
models actually work very well in the state-of-the-
art speech recognition systems. Recurrent Neu-
ral Network based Language Models (RNN-LMs)
(Mikolov et al., 2010) improved the ability of the
original model to capture patterns in the language
without using any additional features (such as part
of speech, morphology etc) i.e. other than lexical
ones. The RNN-LM was shown to have superior
performance than the original feedforward neural
network (Mikolov et al., 2011b). Recently, we also
showed that this model outperforms many other ad-
vanced language modeling techniques (Mikolov et
al., 2011a). We hence decided to work with this
model. This model uses whole history to make pre-
dictions, thus it lies outside the family of n-gram
models. Power of the model comes at a considerable
computational cost. Due to the requirement of un-
limited history, many optimization tricks for rescor-
ing with feedforward-based NNLMs as presented by
Schwenk (2007) cannot be applied during rescoring
with RNN LM. Thus, this model is a good candidate
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Figure 1: Schematic Representation of Recurrent Neu-
ral Network Language Model. The network has an input
layer w, a hidden layer s and an output layer y. Matrices
U and V represent synapses.

to show effectiveness and importance of our work.
The basic RNNLM is shown in Fig. 1. The model

has an input layer w(t) that encodes previous word
using 1 of N coding (thus, the size of the input layer
is equal to the size of the vocabulary, and only the
neuron that corresponds to the previous word in a
sequence is set to 1). The hidden layer s(t) has addi-
tional recurrent connections that are delayed by one
time step. After the network is trained, the output
layer y(t) represents probability distribution for the
current word, given the previous word and the state
of the hidden layer from the previous time step.

The training is performed by ‘backpropagation-
through-time’ algorithm that is commonly used for
training recurrent neural networks (Rumelhart et al.,
1986). More details about training, setting initial pa-
rameters, choosing size of the hidden layer etc. are
presented in (Mikolov et al., 2010). Additional ex-
tensions that allow this model to be trained on large
corpora are presented in (Mikolov et al., 2011b).

3 Standard Approaches for Rescoring

3.1 Word Lattice Rescoring
A word lattice, L, obtained at the output of the first
pass decoding, encodes exponential number (expo-
nential in the number of states (nodes) present in
the lattice) of hypotheses in a very compact data
structure. It is a directed acyclic graph G =
(V, E , ns, Ne), where V and E denote set of vertices
(nodes / states) and edges (arcs / links), respectively.
ns and Ne denote the unique start state and set of
end states.

A path, π, in a lattice is an element of E∗ with
consecutive transitions. We will denote the origin /

previous state of this path by p[π] and destination /
next state of this path by n[π]. A path, π is called
a complete path if p[π] = ns and n[π] ∈ Ne. A
path, π, is called a partial path if p[π] = ns but n[π]
may or may not belong to Ne. A path, π, is called
a trailing path if p[π] may or may not be equal to
ns and n[π] ∈ Ne. We will also denote the time
stamp at the start of the path by Ts[π] and the time
stamp at the end of the path by Te[π]. Since there
are nodes attached to the start and end of any path,
we will denote the time stamp at any node u ∈ V by
T [u]. Associated with every path, π, is also a word
sequence W [π] ∈ W∗, where W is the vocabulary
used during speech recognition. For the sake of sim-
plicity, we will distinguish word sequence of length
1 from the word sequences of length greater than 1
by using lower and upper casing i.e. w[·] and W [·]
respectively.

The acoustic likelihood of the path π ∈ E∗ is then
given as:

A[π] =

|π|∏

j=1

P (aj |w[πj ])

where ∀j ∈ {1, 2, . . . , |π|} πj ∈ E , π = �|π|j=1πj
and P (aj |w[πj ]) is the acoustic likelihood of the
acoustic substring aj , spanning between Ts[πj ] and
Te[πj ], conditioned on the word w[πj ] associated
with the edge πj .2 Similarly, the language model
score of the path π is given as:

L[π] =

|π|∏

j=1

P (w[πj ]|w[πj−1], . . . , w[πj−m+1])

where P (w[πj ]|w[πj−1], . . . , w[πj−m+1]) is the
m-th order Markov approximation for estimating the
probability of a word given the context upto that
point. The speech recognizer, which uses m-th or-
der Markov LM for first pass recognition, imposes a
constraint on the word lattice such that at each state
there exists an unambiguous context of consecutive
m− 1 words.

A first pass output is then a path π∗ having Max-
imum a Posterior (MAP) probability.3 Thus π∗ is

2We will use � symbol to denote concatenation of paths or
word strings.

3Note that asterisk symbol here connotes that the path is op-
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obtained as:

π∗ = arg max
π:p[π]=ns

n[π]∈Ne

A[π]γL[π],

where γ is the scaling parameter needed to balance
the dynamic variability between the distributions of
acoustic and language model (Ogawa et al., 1998).
Efficient algorithms such as single source shortest
path (Mohri et al., 2000) can be used for finding out
the MAP path.

Under a new n-gram Language Model, rescor-
ing involves replacing the existing language model
scores of all paths π. If we denote the new language
model by Lnew and correspondingly the score of the
path π by Lnew[π], then it is simply obtained as:

Lnew[π] =

|π|∏

j=1

P (w[πj ]|w[πj−1], . . . , w[πj−n+1])

where P (w[πj ]|w[πj−1], . . . , w[πj−n+1]) is the n-
th order Markov approximation for estimating the
probability of a word given the unambiguous con-
text of n − 1 words under the new rescoring LM.
If the Markov rescoring n-gram LM needs a bigger
context for the task of prediction (i.e. n > m, where
m− 1 is the size of the unambiguous context main-
tained at every state of the word lattice), then each
state of the lattice has to be split until an unambigu-
ous context of length as large as that required by the
new re-scoring language model is not maintained.
The best path, π∗ is then obtained as:

π∗ = arg max
π:p[π]=ns

n[π]∈Ne

A[π]ηLnew[π],

where η acts as the new scaling parameter which
may or may not be equal to the old scaling parameter
γ.

It should be noted that if the rescoring LM needs a
context of the entire past in order to predict the next
word, then the lattice has to be expanded by splitting
the states many more times. This usually blows up
the search space even for a reasonably small number

timal under some model. This should not be confused with the
Kleene stars appearing as superscripts for E andW , which serve
the purpose of regular expressions implying 0 or many occu-
rances of the element of E and V respectively.

of state splitting iterations. When the task is to do
rescoring under a long span LM, such as RNN-LM,
then exact lattice re-scoring option is not feasible. In
order to tackle this problem, a suboptimal approach
via N best list rescoring is utilized. The details of
this method are presented next.

3.2 N best List Rescoring
N best list re-scoring is a popular way to cap-
ture some long-distance dependencies, though the
method can be slow and it can be biased toward the
weaker language model that was used in the first
pass.

Given a word lattice, L, top N paths
{π1, . . . , πN} are extracted such that their joint
likelihood under the baseline acoustic and language
models are in descending order i.e. that:

A[π1]
γL[π1] ≥ A[π2]

γL[π2] ≥ . . . ≥ A[πN ]γL[πN ]

Efficient algorithms exist for extractingN best paths
from word lattices (Chow and Schwartz, 1989;
Mohri and Riley, 2002). If a new language model,
Lnew, is provided, which now need not be restricted
to finite state machine family, then that can be de-
ployed to get the score of the entire path π. If we
denote the new LM scores by Lnew[·], then under N
best list paradigm, optimal path π̃ is found out such
that:

π̃ = arg max
π∈{π1,...,πN}

A[π]ηLnew[π], (2)

where η acts as the new scaling parameter which
may or may not be equal to γ. If N � |L| (where
|L| is the total number of complete paths in word lat-
tice, which are exponentially many), then the path
obtained using (2) is not guaranteed to be optimal
(under the rescoring model). The short list of hy-
potheses so used for re-scoring would yield subop-
timal output if the best path π∗ (according to the
new model) is not present among the top N candi-
dates extracted from the lattice. This search space
is thus said to be biased towards a weaker model
mainly because the N best lists are representative of
the model generating them. To illustrate the idea,
we demonstrate below a simple analysis on a rel-
atively easy task of speech transcription on WSJ
data.4 In this setup, the recognizer made use of a bi-

4Full details about the setup can be found in (Deoras et al.,
2010)
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gram LM to produce lattices and hence N best lists.
Each hypothesis in this set got a rank with the top
most and highest scoring hypothesis getting a rank
of 1, while the bottom most hypothesis getting a
rank of N . We then re-scored these hypotheses with
a better language model (either with a higher order
Markov LM i.e. a trigram LM (tg) or the log linear
combination of n-gram models and syntactic mod-
els (n-gram+syntactic) and re-ranked the hypothe-
ses to obtain their new ranks. We then used Spear-
man’s rank correlation factor, ρ, which takes values
in [−1,+1], with −1 meaning that the two ranked
lists are negatively correlated (one list is in a reverse
order with respect to the other list) and +1 mean-
ing that the two ranked lists are positively correlated
(the two lists are exactly the same). Spearman’s rank
correlation factor is given as:

ρ = 1− 6
∑N

n=1 d
2
n

N(N2 − 1)
, (3)

where dn is the difference between the old and new
rank of the nth entry (in our case, difference between
n(∈ {1, 2, . . . , N}) and the new rank which the nth

hypothesis got under the rescoring model).
Table 1 shows how the correlation factor drops

dramatically when a better and a complementary
LM is used for re-scoring, suggesting that theN best
lists are heavily biased towards the starting models.
Huge re-rankings suggests there is an opportunity to
improve and also a need to explore more hypotheses,
i.e. beyond N best lists.

Model (ρ) WER (%)
bg 1.00 18.2%

tg 0.41 17.4%

n-gram+syntactic 0.33 15.8%

Table 1: Spearman Rank Correlation on the N best list
extracted from a bi-gram language model (bg) and re-
scored with relatively better language models including,
trigram LM (tg), and the log linear combination of n-
gram models, and syntactic models (n-gram+syntactic).
With a bigger and a better LM, the WER decreases at
the expense of huge re-rankings of N best lists, only
suggesting the fact that N best lists generated under a
weaker model, are not reflective enough of a relatively
better model.

In the next section, we propose an algorithm
which keeps the representation of search space as

simple as that of N best list, but does not restrict it-
self to topN best paths alone and hence does not get
biased towards the starting weaker model.

4 Proposed Approach for Rescoring

A high level idea of our proposed approach is to
identify islands of confusability in the word lattice
and replace the problem of global search over word
lattice by series of local search problems over these
islands in an iterative manner. The motivation be-
hind this strategy is the observation that the recog-
nizer produces bursts of errors such that they have
a temporal scope. The recognizer output (sentence
hypotheses) when aligned together typically shows
a pattern of confusions both at the word level and
at the phrase level. Regions where there are sin-
gleton words competing with one another (reminis-
cent of a confusion bin of a Confusion Network
(CN) (Mangu, 2000)), choice of 1 word edit dis-
tance works well for the formation of local neigh-
borhood. Regions where there are phrases com-
peting with other phrases, choice of variable length
neighborhood works well. Previously, Richardson
et al. (1995) demonstrated a hill climbing frame-
work by exploring 1 word edit distance neighbor-
hood, while in our own previous work (Deoras and
Jelinek, 2009), we demonstrated working of iterative
decoding algorithm, a hill climbing framework, for
CNs, in which the neighborhood was formed by all
words competing with each other in any given time
slot, as defined by a confusion bin.

In this work, we propose a technique which gen-
eralizes very well on word lattices and overcomes
the limitations posed by a CN or by the limited na-
ture of local neighborhood. The size of the neigh-
borhood in our approach is a variable factor which
depends upon the confusability in any particular re-
gion of the word lattice. Thus the local neighbor-
hood are in some sense a function of the confusabil-
ity present in the lattice rather than some predeter-
mined factor. Below we describe the process, virtue
of which, we can cut the lattice to form many self
contained smaller sized sub lattices. Once these sub
lattices are formed, we follow a similar hill climbing
procedure as proposed in our previous work (Deoras
and Jelinek, 2009).
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4.1 Islands of Confusability
We will continue to follow the notation introduced
in section 3.1. Before we define the procedure for
cutting the lattice into many small self contained
lattices, we will define some more terms necessary
for the ease of understandability of the algorithm.5

For any node v ∈ V , we define forward probability,
α(v), as the probability of any partial path π ∈ E∗,
s.t. p[π] = ns, n[π] = v and it is given as:

α(v) =
∑

π∈E∗
s.t.p[π]=ns,n[π]=v

A[π]γL[π] (4)

Similarly, for any node v ∈ V , we define the
backward probability, β(v), as the probability of any
trailing path π ∈ E∗, s.t. p[π] = v, n[π] ∈ Ne and it
is given as:

β(v) =
∑

π∈E∗
s.t.p[π]=v,n[π]∈Ne

A[π]γL[π] (5)

If we define the sum of joint likelihood under the
baseline acoustic and language models of all paths
in the lattice by Z, then it can simply be obtained as:
Z =

∑
u∈Ne

α(u) = β(ns)
In order to cut the lattice, we want to identify sets

of nodes, S1, S2, . . . , S|S| such that for any set Si ∈
S following conditions are satisfied:

1. For any two nodes u, v ∈ Si we have that:
T [u] = T [v]. We will define this common time
stamp of the nodes in the set by T [Si].

2. 6 ∃ π ∈ E such that Ts[π] < T [Si] < Te[π].

The first property can be easily checked by first
pushing states into a linked list associated with each
time marker (this can be done by iterating over all
the states of the graph) then iterating over the unique
time markers and retrieving back the nodes asso-
ciated with it.The second property can be checked
by first iterating over the unique time markers and
for each of the marker, iterating over the arcs and
terminating the loop as soon as some arc is found

5Goel and Byrne (2000) previously demonstrated the lat-
tice segmentation procedure to solve the intractable problem of
MBR decoding. The cutting procedure in our work is different
from theirs in the sense that we rely on time information for
collating competing phrases, while they do not.

out violating property 2 for the specific time marker.
Thus the time complexity for checking property 1 is
O(|V|) and that for property 2 isO(|T |×|E|), where
|T | is the total number of unique time markers. Usu-
ally |T | � |E| and hence the time complexity for
checking property 2 is almost linear in the number
of edges. Thus effectively, the time complexity for
cutting the lattice is O(|V|+ |E|).

Having formed such sets, we can now cut the
lattice at time stamps associated with these sets
i.e. that: T [S1], . . . , T [S|S|]. It can be easily seen
that the number of sub lattices, C, will be equal
to |S| − 1.We will identify these sub lattices as
L1,L1, . . . ,LC . At this point, we have not formed
self contained lattices yet by simply cutting the par-
ent lattice at the cut points.

Once we cut the lattice at these cut points, we im-
plicitly introduce many new starting nodes and end-
ing nodes for any sub lattice. We will refer to these
nodes as exposed starting nodes and exposed end-
ing nodes. Thus for some jth sub lattice, Lj , there
will be as many new exposed starting nodes as there
are nodes in the set Sj and as many exposed ending
nodes as there are nodes in the set Sj+1. In order
to make these sub lattices consistent with the defini-
tion of a word lattice (see Sec. 3.1), we unify all the
exposed starting nodes and exposed ending nodes.
To unify the exposed starting nodes, we introduce
as many new edges as there are nodes in the set Sj
such that they have a common starting node, ns[Lj ],
(newly created) and distinct ending nodes present
in Sj . To unify the exposed ending nodes of Lj ,
we introduce as many new edges as there are nodes
in the set Sj+1 such that they have distinct starting
nodes present in Sj+1 and a common ending node
ne[Lj ] (newly created). From the totality of these
new edges and nodes along with the ones already
present in Lj forms an induced directed acyclic sub-
graph G[Lj ] = (V[Lj ], E [Lj ], ns[Lj ], ne[Lj ]).

For any path π ∈ E [Lj ] such that p[π] = ns[Lj ]
and n[π] ∈ Sj , we assign the value of α(n[π])
to denote the joint likelihood A[π]γL[π] and as-
sign epsilon for word associated with these edges
i.e. w[π]. We assign T [Sj ] − δT to denote Ts[π]
and T [Sj ] to denote Te[π]. Similarly, for any path
π ∈ E [Lj ] such that p[π] ∈ Sj+1 and n[π] = ne[Lj ],
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we assign the value of β(p[π])6 to denote the joint
likelihood A[π]γL[π] and assign epsilon for word
associated with these edges i.e. w[π]. We assign
T [Sj+1] to denote Ts[π] and T [Sj+1] + δT to de-
note Te[π]. This completes the process and we ob-
tain self contained lattices, which if need be, can be
independently decoded and/or analyzed.

4.2 Iterative Decoding on Word Lattices

Once we have formed the self contained lattices,
L1,L1, . . . ,LC , where C is the total number of sub
lattices formed, then the idea is to divide the re-
scoring problem into many small re-scoring prob-
lems carried over the sub lattices one at a time by
fixing single best paths from all the remaining sub
lattices.

The inputs to the algorithm are the sub lattices
(produced by cutting the parent lattice generated un-
der some Markov n-gram LM) and a new rescor-
ing LM, which now need not be restricted to fi-
nite state machine family. The output of the al-
gorithm is a word string, W∗, such that it is the
concatenation of final decoded word strings from
each sub lattice. Thus if we denote the final de-
coded path (under some decoding scheme, which
will become apparent next) in the jth sub lattice
by π∗j and the concatenation symbol by ’·’, then
W∗ = W [π∗1] ·W [π∗2] · . . . ·W [π∗C ] = �Cj=1W [π∗j ].

Algorithm 1 Iterative Decoding on word lattices.
Require: {L1,L1, . . . ,LC}, Lnew

PrevHyp← null
CurrentHyp←�Cj=1W [π̂j ]
while PrevHyp 6= CurrentHyp do

for i← 1 . . . C do
π̂i ← argmax

πi∈E∗i :
p[πi]=ns[Li]
n[πi]=ne[Li]

(
Lnew[π̂1 · . . . ·πi · . . . · π̂k]

×A[πi]
η
∏k
j=1
j 6=i

A[π̂j ]
η
)

end for
PrevHyp← CurrentHyp
CurrentHyp←�Cj=1W [π̂j ]

end while
∀j ∈ {1, 2, . . . , C} π∗j ← π̂j

6The values of α(·) and β(·) are computed under parent lat-
tice structure.

The algorithm is initialized by setting PrevHypo
to null and CurrHypo to the concatenation of 1-best
output from each sub lattice. During the initializa-
tion step, each sub lattice is analyzed independent of
any other sub lattice and under the baseline acoustic
scores and baseline n-gram LM scores, 1-best path
is found out. Thus if we define the best path under
baseline model in some jth sub-lattice by π̂j , Cur-
rHypo is then initialized to: W [π̂1] · W [π̂2] · . . . ·
W [π̂C ]. The algorithm then runs as long as Cur-
rHypo is not equal to PrevHypo. In each iteration,
the algorithm sequentially re-scores each sub-lattice
by keeping the surrounding context fixed. Once all
the sub lattices are re-scored, that constitutes one it-
eration. At the end of each iteration, CurrHypo is
set to the concatenation of 1 best paths from each
sub lattice while PrevHypo is set to the old value
of CurrHypo. Thus if we are analyzing some ith

sub-lattice in some iteration, then 1-best paths from
all but this sub-lattice is kept fixed and a new 1-best
path under the re-scoring LM is found out. It is not
hard to see that the likelihood of the output under
the new re-scoring model is guaranteed to increase
monotonically after every decoding step.

Since the cutting of parent lattices produce many
small lattices with considerably lesser number of
nodes, in practice, an exhaustive search for the 1-
best hypothesis can be carried out via N best list.
Algorithm 1 outlines the steps for iterative decoding
on word lattices.

4.3 Entropy Pruning

In this section, we will discuss a speed up technique
based on entropy of the lattice. Entropy of a lattice
reflects the confidence of the recognizer in recogniz-
ing the acoustics. Based on the observation that if
the N best list / lattice generated under some model
has a very low entropy, then the Spearman’s rank
correlation factor, ρ (Eqn. 3), tends to be higher
even when the N best lists / lattice is re-ranked with
a bigger and a better model. A low entropy under
the baseline model only reflects the confidence of
the recognizer in recognizing the acoustic. Table 2
shows the rank correlation values between two sets
of N best lists. Both sets are produced by a bi-
gram LM (bg). The entropy of N best lists in the
first set is 0.05 nats or less. The N best lists in the
second set have an entropy greater than 0.05 nats.
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Both these sets are re-ranked with bigger and bet-
ter models (see Table 1 for model definitions). We
can see from Table 2 that the rank correlation values
tend to be higher (indicating little re-rankings) when
the entropy of the N best list, under the baseline
model, is lower. Similarly, the rank-correlation val-
ues tend to be lower (indicating more re-rankings)
whenever the entropy of the N best list is higher.
Note that these entropy values are computed with re-
spect to the starting model (in this case, bigram LM).
Of course, if the starting LM is much weaker than
the rescoring model, then the entropy values need
not be reflective of the difficulty of the overall task.
This observation then suggests that it is safe to re-
score only those N best lists whose entropy under
the starting model is higher than some threshold.

Rescoring Model ρ(H≤0.05) ρ(H>0.05)

bg 1.00 1.00

tg 0.58 0.38

n-gram+syntactic 0.54 0.31

Table 2: Spearman Rank Correlation on the N best list
extracted from a bi-gram language model (bg) and re-
scored with relatively better language models (see Table 1
for model definitions). Entropy under the baseline model
correlates well with the rank correlation factor, suggest-
ing that exhaustive search need not be necessary for ut-
terances yielding lower entropy.

While computation of entropy for N best list is
tractable, for a word lattice, the computation of en-
tropy is intractable if one were to enumerate all the
hypotheses. Even if we were able to enumerate all
hypotheses, this method tends to be slower. Using
efficient semiring techniques introduced by Li and
Eisner (2009) or using posterior probabilities on the
edges leading to end states, we can compute the en-
tropy of a lattice in one single forward pass using
dynamic programming. It should, however, be noted
that, for dynamic programming technique to work,
only n-gram LMs can be used. One has to resort to
approximate entropy computation via N best list, if
entropy under long span LM is desired.

4.3.1 Speed Up for Iterative Decoding
Our speed up technique is simple. Once we have

formed self contained sub lattices, we want to prune
all but the top few best complete paths (obtained un-

der baseline / starting model) of those sub lattices
whose entropy is below some threshold. Thus, be-
lieving in the original model’s confidence, we want
to focus only on those sub lattices which the recog-
nizer found difficult to decode in the first pass. All
other part of the parent lattice will be not be ana-
lyzed. The thresholds for pruning is very application
and corpus specific and needs to be tuned on some
held out data.

5 Experiments and Results

We performed recognition on the Broadcast News
(BN) dev04f, rt03 and rt04 task using the state-
of-the-art acoustic models trained on the English
Broadcast News (BN) corpus (430 hours of audio)
provided to us by IBM (Chen et al., 2009). IBM also
provided us its state-of-the-art speech recognizer,
Attila (Soltau et al., 2010) and two Kneser-Ney
smoothed backoff n-gram LMs containing 4.7M n-
grams (n ≤ 4) and 54M n-grams (n ≤ 4), both
trained on 400M word tokens. We will refer to them
as KN:BN-Small and KN:BN-Big respectively. We
refer readers to (Chen et al., 2009) for more details
about the recognizer and corpora used for training
the models.

We trained two RNN based language models -
the first one, denoted further as RNN-limited, was
trained on a subset of the training data (58M tokens).
It used 400 neurons in the hidden layer. The second
model, denoted as RNN-all, was trained on all of
the training data (400M tokens), but due to the com-
putational complexity issues, we had to restrict its
hidden layer size to 320 neurons.

We followed IBM’s multi-pass decoding recipe
using KN:BN-Small in the first pass followed by ei-
ther N best list re-scoring or word lattice re-scoring
using bigger and better models.7 For the purpose
of re-scoring, we combined all the relevant statisti-
cal models in one unified log linear framework rem-
iniscent of work by Beyerlein (1998). We, however,
trained the model weights by optimizing expected
WER rather than 1-best loss as described in (De-
oras et al., 2010). Training was done on N best
lists of size 2K. We will refer to the log linear com-

7The choice of the order and size of LM to be used in the
first pass decoding was determined by taking into consideration
the capabilities of the decoder.
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Figure 2: Plot of WER (y axis) on rt03+dev04f set versus
the size of the search space (x axis). The baseline WER
obtained using KN:BN-Small is 12% which then drops
to 11% when KN:BN-Big is used for re-scoring. N best
list search method obtains the same reduction in WER
by evaluating as many as 228K sentence hypotheses on
an average. The proposed method obtains the same re-
duction by evaluating 14 times smaller search space. The
search effort reduces further to 40 times if entropy based
pruning is employed during re-scoring.

bination of KN:BN-Big and RNN-limited by KN-
RNN-lim; KN:BN-Big and RNN-all by KN-RNN-
all and KN:BN-Big, RNN-limited and RNN-all by
KN-RNN-lim-all.

We used two sets for decoding: rt03+dev04f set
was used as a development set while rt04 was used
as a blind set for the purpose of evaluating the per-
formance of long span RNN models using the pro-
posed approach. We made use of OpenFst C++ li-
braries (Allauzen et al., 2007) for manipulating lat-
tice graphs and generating N best lists. Due to the
presence of hesitation tokens in reference transcripts
and the need to access the silence/pause tokens for
penalizing short sentences, we treated these tokens
as regular words before extracting sentence hypothe-
ses. This, and poorly segmented nature of the test
corpora, led to huge enumeration of sentence hy-
potheses.

5.1 n-gram LM for re-scoring

In this setup, we used KN:BN-Small as the base-
line starting LM which yielded the WER of 12%
on rt03+dev04f set. Using KN:BN-Big as the re-
scoring LM, the WER dropped to 11%. Since the

re-scoring LM belonged to the n-gram family, it was
possible to compute the optimal word string by re-
scoring the whole lattice (see Sec. 3.1). We now
compare the performance of N best list approach
(Sec. 3.2) with our proposed approach (Sec. 4).
N best list achieved the best possible reduction by
evaluating as many as 228K sentence hypotheses
on an average. As against that, our proposed ap-
proach achieved the same performance by evaluat-
ing 16.6K sentence hypotheses, thus reducing the
search efforts by 13.75 times. By carrying out en-
tropy pruning (see Sec. 4.3 ) on sub lattices, our pro-
posed approach required as little as 5.6K sentence
hypotheses evaluations to obtain the same optimal
performance, reducing the search effort by as much
as 40.46 times. For the purpose of this experiment,
entropy based pruning was carried out when the en-
tropy of the sub lattice was below 5 nats. Table 3
compares the two search methods for this setup and
Fig. 2 shows a plot of WER versus the size of the
search space (in terms of number of sentence hy-
potheses evaluated by an n-gram language model).

On rt04, the KN:BN-Small LM gave a WER of
14.1% which then dropped to 13.1% after re-scoring
with KN:BN-Big. Since the re-scoring model was
an n-gram LM, it was possible to obtain the opti-
mal performance via lattice update technique (see
Sec. 3.1). We then carried out the re-scoring of the
word lattices under KN:BN-Big using our proposed
technique and found it to give the same performance
yielding the WER of 13.1%.

5.2 Long Span LM for re-scoring

In this setup, we used the strongest n-gram LM
as our baseline. We thus used KN:BN-Big as the
baseline LM which yielded the WER of 11% on
rt03+dev04f. We then used KN-RNN-lim-all for re-
scoring. Due to long span nature of the re-scoring
LM, it was not possible to obtain the optimal WER
performance. Hence we have compared the perfor-
mance of our proposed method with N best list ap-
proach. N best list achieved the lowest possible
WER after evaluating as many as 33.8K sentence
hypotheses on an average. As against that, our pro-
posed approach in conjunction with entropy pruning
obtained the same performance by evaluating just
1.6K sentence hypotheses, thus reducing the search
by a factor of 21. Fig 3 shows a plot of WER versus
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Figure 3: Plot of WER (y axis) on rt03+dev04f set versus
the size of the search space (x axis). The baseline WER
obtained using KN:BN-Big is 11% which then drops to
10.4% when KN-RNN-lim-all is used for re-scoring. N
best list search method obtains this reduction in WER by
evaluating as many as 33.8K sentence hypotheses on an
average, while the proposed method (with entropy prun-
ing) obtains the same reduction by evaluating 21 times
smaller search space.

the size of the search space (in terms of number of
sentence hypotheses evaluated by a long span lan-
guage model).

In-spite of starting off with a very strong n-gram
LM, theN best lists so extracted were still not repre-
sentative enough of the long span rescoring models.
Had we started off with KN:BN-Small, the N best
list re-scoring method would have had no chance of
finding the optimal hypothesis in reasonable size of
hypotheses search space. Table 4 compares the two
search methods for this setup when many other long
span LMs were also used for re-scoring.

On rt04, the KN:BN-Big LM gave a WER of
13.1% which then dropped to 12.15% after re-
scoring with KN-RNN-lim-all using our proposed
technique.8 Since the re-scoring model was not an
n-gram LM, it was not possible to obtain the optimal
performance but we could enumerate huge N best
list to approximate this value. Our proposed method
is much faster than huge N best lists and no worse
in terms of WER. As far as we know, the result ob-
tained on these sets is the best performance ever
reported on the Broadcast News corpus for speech

8The WER obtained using KN-RNN-lim and KN-RNN-all
were 12.5% and 12.3% respectively.

recognition.

Models WER NBest ID Saving
KN:BN-Small 12.0 - - -
KN:BN-Big 11.0 228K 5.6K 40

Table 3: The starting LM is a weak n-gram LM (KN:BN-
Small) and the re-scoring LM is a much stronger but n-
gram LM (KN:BN-Big). The baseline WER in this case
is 12% and the optimal performance by the re-scoring LM
is 11.0%. The proposed method outperforms N best list
approach, in terms of search efforts, obtaining optimal
WER.

Models WER NBest ID Saving
KN:BN-Big 11.0 - - -
KN-RNN-lim 10.5 42K 1.1K 38

KN-RNN-all 10.5 26K 1.3K 20

KN-RNN-lim-all 10.4 34K 1.6K 21

Table 4: The starting LM is a strong n-gram LM
(KN:BN-Big) and the re-scoring model is a long span
LM (KN-RNN-*). The baseline WER is 11.0%. Due
to long span nature of the LM, optimal WER could not
be estimated. The proposed method outperfoms N best
list approach on every re-scoring task.

6 Conclusion

We proposed and demonstrated a new re-scoring
technique for general word graph structures such as
word lattices. We showed its efficacy by demonstrat-
ing huge reductions in the search effort to obtain a
new state-of-the-art performance on a very compet-
itive speech task of Broadcast news. As part of the
future work, we plan to extend this technique for hy-
pergraphs and lattices in re-scoring MT outputs with
complex and long span language models.
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Abstract

We propose an efficient way to train maximum
entropy language models (MELM) and neural
network language models (NNLM). The ad-
vantage of the proposed method comes from
a more robust and efficient subsampling tech-
nique. The original multi-class language mod-
eling problem is transformed into a set of bi-
nary problems where each binary classifier
predicts whether or not a particular word will
occur. We show that the binarized model is
as powerful as the standard model and allows
us to aggressively subsample negative training
examples without sacrificing predictive per-
formance. Empirical results show that we can
train MELM and NNLM at 1% ∼ 5% of the
standard complexity with no loss in perfor-
mance.

1 Introduction

Language models (LM) assign probabilities to se-
quences of words. They are widely used in many
natural language processing applications. The prob-
ability of a sequence can be modeled as a product of
local probabilities, as shown in (1), where wi is the
ith word, and hi is the word history preceding wi.

P (w1, w2, ..., wl) =

l∏

i=1

P (wi|hi) (1)

Therefore the task of language modeling reduces
to estimating a set of conditional distributions
{P (w|h)}. The n-gram LM is a dominant way to
parametrizeP (w|h), where it is assumed thatw only
depends on the previous n−1 words. More complex

models have also been proposed–MELM (Rosen-
feld, 1996) and NNLM (Bengio et al., 2003) are two
examples.

Modeling P (w|h) can be seen as a multi-class
classification problem. Given the history, we have
to choose a word in the vocabulary, which can eas-
ily be a few hundred thousand words in size. For
complex models such as MELM and NNLM, this
poses a computational challenge for learning, be-
cause the resulting objective functions are expensive
to normalize. In contrast, n-gram LMs do not suf-
fer from this computational challenge. In the web
era, language modelers have access to virtually un-
limited amounts of data, while the computing power
available to process this data is limited. Therefore,
despite the demonstrated effectiveness of complex
LMs, the n-gram is still the predominant approach
for most real world applications.

Subsampling is a simple solution to get around
the constraint of computing resources. For the pur-
pose of language modeling, it amounts to taking
only part of the text corpus to train the LM. For
complex models such as NNLM, it has been shown
that subsampling can speed up training greatly, at
the cost of some degradation in predictive perfor-
mance (Schwenk, 2007), allowing for trade-off be-
tween computational cost and LM quality.

Our contribution is a novel way to train com-
plex LMs such as MELM and NNLM which allows
much more aggressive subsampling without incur-
ring as high a cost in predictive performance. The
key to our approach is reducing the multi-class LM
problem into a set of binary problems. Instead of
training a V -class classifier, where V is the size of
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the vocabulary, we train V binary classifiers, each
one of which performs a one-against-all classifica-
tion. The V trained binary probabilities are then re-
normalized to obtain a valid distribution over the V
words. Subsampling here can be done in the nega-
tive examples. Since the majority of training exam-
ples are negative for each of the binary classifiers,
we can achieve substantial computational saving by
only keeping subsets of them. We will show that the
binarized LM is as powerful as its multi-class coun-
terpart, while being able to sustain much more ag-
gressive subsampling. For certain types of LMs such
as MELM, there are more benefits–the binarization
leads to a set of completely independent classifiers
to train, which allows easy parallelization and sig-
nificantly lowers the memory requirement.

Similar one-against-all approaches are often used
in the machine learning community, especially by
SVM (support vector machine) practitioners to solve
multi-class problems (Rifkin and Klautau, 2004;
Allwein et al., 2000). The goal of this paper is to
show that a similar technique can also be used for
language modeling and that it enables us to sub-
sample data much more efficiently. We show that
the proposed approach is useful when the dominant
modeling constraint is computing power as opposed
to training data.

The rest of the paper is organized as follows. In
section 2, we describe our binarization and subsam-
pling techniques for language models with MELM
and NNLM as two specific examples. Experimental
results are presented in Section 3, followed by dis-
cussion in Section 4.

2 Approximating Language Models with
Binary Classifiers

Suppose we have an LM that can be written in the
form

P (w|h) =
exp aw(h; θ)∑
w′ exp aw′(h; θ)

, (2)

where aw(h; θ) is a parametrized history representa-
tion for word w.

Given a training corpus of word history pairs with
empirical distribution P̃ (h,w), the regularized log
likelihood of the training set can be written as

L =
∑

h

P̃ (h)
∑

w

P̃ (w|h) logP (w|h)− r(θ), (3)

where r(θ) is the regularizing function over the pa-
rameters.

Assuming that r(θ) can be written as a sum over
per-word regularizers, namely r(θ) =

∑
w rw(θ),

we can take the gradient of the log likelihood w.r.t θ
to show that the regularized MLE for the LM satis-
fies

∑

h

P̃ (h)
∑

w

P (w|h)∇θaw(h; θ)

=
∑

h,w

P̃ (w, h)∇θaw(h; θ)−
∑

w

∇θrw(θ). (4)

For each word w, we can define a binary classifier
that predicts whether the next word is w by

Pb(w|h) =
exp aw(h; θ)

1 + exp aw(h; θ)
. (5)

The regularized training set log likelihood for all
the binary classifiers is given by

Lb =
∑

w

∑

h

P̃ (h)

[
P̃ (w|h) logPb(w|h)

+P̃ (w̄|h) logPb(w̄|h)

]
−
∑

w

rw(θ), (6)

where Pb(w̄|h) = 1− Pb(w|h) is the probability of
w not occurring. Here we assume the same structure
of the regularizer r(θ).

The regularized MLE for the binary classifiers
satisfies

∑

h

P̃ (h)
∑

w

Pb(w|h)∇θaw(h; θ)

=
∑

h,w

P̃ (w, h)∇θaw(h; θ)−
∑

w

∇θrw(θ). (7)

Notice the right hand sides of (4) and (7) are the
same. Thus, taking P ′(w|h) = Pb(w|h) from ML
trained binary classifiers gives an LM that meets the
MLE constraints for language models. Therefore,
if
∑

w Pb(w|h) = 1, ML training for the language
model is equivalent to ML training of the binary
classifiers and using the probabilities given by the
classifiers as our LM probabilities.

Note that in practice, the probabilities given by
the binary classifiers are not guaranteed to sum up
to one. For tasks such as measuring perplexity,
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these probabilities have to be normalized explicitly.
Our hope is that for large enough data sets and rich
enough history representation aw(h; θ), we will get∑

w Pb(w|h) ≈ 1 so that renormalizing the classi-
fiers to get

P ′(w|h) =
Pb(w|h)∑

w′∈V Pb(w
′|h)

(8)

will not change the MLE constraint too much.

2.1 Stratified Sampling

We note that iterative estimation of the LM shown
in (2) in general requires enumerating over the T
training cases in the training set and computing the
denominator of (2) for each case at a cost of O(V ).
Thus, each iteration of training takesO(V T ) in gen-
eral. The complexity of estimating each of the V
binary classifiers is O(T ) per iteration, also giving
O(V T ) per iteration in total.

However, as mentioned earlier, we are able to
maximally subsample negative examples for each
classifier. Thus the classifier for w is trained us-
ing the C(w) positive examples and a proportion
α of the T − C(w) negative examples. The total
number of training examples for all V classifiers is
then (1 − α)T + αV T . For large V , we choose
α >> 1

1+V so that this is approximately αV T .
Thus, our complexity for estimating all V classifiers
is O(αV T ).

The resulting training set for each binary classi-
fier is a stratified sample (Neyman, 1934), and our
estimate needs to be calibrated to account for this.
Since the training set subsamples negative examples
by α, the resulting classifier will have a likelihood
ratio

Pb(w|h)

1− Pb(w|h)
= exp aw(h; θ) (9)

that is overestimated by a factor of 1
α . This can be

corrected by simply adding logα to the bias (uni-
gram) weight of the classifier.

2.2 Maximum Entropy LM

MELM is an effective alternative to the standard n-
gram LM. It provides a flexible framework to incor-
porate different knowledge sources in the form of
feature constraints. Specifically, MELM takes the

form of (2), for wordw following history h, we have
the following probability definition,

P (w|h) =
exp

∑
i θifi(h,w)∑

w′∈V exp
∑

i θifi(h,w
′)
. (10)

fi is the ith feature function defined over the
word-history pair, θi is the feature weight associated
with fi. By defining general features, we have a nat-
ural framework to go beyond n-grams and capture
more complex dependencies that exist in language.
Previous research has shown the benefit of including
various kinds of syntactic and semantic information
into the LM (Khudanpur and Wu, 2000). However,
despite providing a promising avenue for language
modeling, MELM are computationally expensive to
estimate. The bottleneck lies in the denominator
of (10).

To estimate θis, gradient based methods can be
used. The derivative of the likelihood function L
w.r.t θi has a simple form, namely

∂L
∂θi

=
∑

k

fi(wk, hk)−
∑

k

∑

w′∈V
P (w′|h)fi(w

′, hk),

(11)
where k is the index of word-history pair in the train-
ing corpus. The first term in the derivative is the ob-
served feature count in the training corpus, the sec-
ond term is the expected feature count according to
the model. In order to obtain P (w′|h) in the second
term, we need to compute the normalizer, which in-
volves a very expensive summation over the entire
vocabulary. As described earlier, the complexity for
each iteration of training is at O(V T ), where T is
the size of training corpus.

For feature sets that can be expressed hierarchi-
cally, for example n-gram feature set, where higher
order n-grams imply lower order n-grams, Wu and
Khudanpur (2000) exploit the structure of the nor-
malizer, and precompute components that can be
shared by different histories. For arbitrary feature
sets, however, it may not be possible to establish
the required hierarchical relations and the normal-
izer still needs to be computed explicitly. Good-
man (2001) changes the original LM into a class-
based LM, where each one of the two-step predic-
tions only involves a much smaller summation in the
normalizer. In addition, MELM estimation can be
parallelized, with expected count computation done
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separately for different parts of the training data and
merged together at the end of each iteration. For
models with massive parametrizations, this merge
step can be expensive due to communication costs.

Obviously, a different way to expedite MELM
training is to simply train on less data. We propose a
way to do this without incurring a significant loss of
modeling power, by reframing the problem in terms
of binary classification. As mentioned above, we
build V binary classifiers of the form in (5) to model
the distribution over the V words. The binary clas-
sifiers use the same features as the MELM of (10),
and are given by:

Pb(w|h) =
exp

∑
i θifi(h,w)

1 + exp
∑

i θifi(h,w)
. (12)

We assume the features are partitioned over the vo-
cabulary, so that each feature fi has an associated
w such that fi(h,w′) = 0 for all w′ 6= w. There-
fore, the corresponding θi affects only the binary
classifier for w. This gives an important advan-
tage in terms of parallelization–we have a set of bi-
nary classifiers with no feature sharing, and can be
trained separately on different machines. The par-
allelized computations are completely independent
and do not require the tedious communication be-
tween machines. Memory-wise, since the compu-
tations are independent, each word trainer only have
to store features that are associated with the word, so
the memory requirement for each individual worker
is significantly reduced.

2.3 Neural Network LM

Neural Network Language Models (NNLM) have
gained a lot of interest since their introduction (Ben-
gio et al., 2003). While in standard language mod-
eling, words are treated as discrete symbols, NNLM
map them into a continuous space and learn their
representations automatically. It is often believed
that NNLM can generalize better to sequences that
are not seen in the training data. However, despite
having been shown to outperform standard n-gram
LM (Schwenk, 2007), NNLM are computationally
expensive to train.

Figure 1 shows the standard feed-forward NNLM
architecture. Starting from the left part of the figure,
each word of the n− 1 words history is mapped to a

Figure 1: Feed-forward NNLM

continuous vector and concatenated. Through a non-
linear hidden layer, the neural network constructs a
multinomial distribution at the output layer. Denot-
ing the concatenated d-dimensional word represen-
tations r, we have the following probability defini-
tion:

P (wi = k|wi−1, ..., wi−n+1) =
eak∑
m e

am
, (13)

ak = bk +
h∑

l=1

Wkl tanh(cl +

(n−1)d∑

j=1

Uljrj), (14)

where h denotes the hidden layer size, b and c are
the bias vectors for the output nodes and hidden
nodes respectively. Note that NNLM also has the
form of (2).

Stochastic gradient descent is often used to max-
imize the training data likelihood under such a
model. The gradient can be computed using the
back-propagation method. To analyze the complex-
ity, computing an n-gram conditional probability re-
quires approximately

O((n− 1)dh+ h+ V h+ V ) (15)

operations, where V is the size of the vocabu-
lary. The four terms in the complexity correspond
to computing the hidden layer, applying the nonlin-
earity, computing the output layer and normaliza-
tion, respectively. The error propagation stage can
be analyzed similarly and takes about the same num-
ber of operations. For typical values as used in our
experiments, namely n = 3, d = 50, h = 200,
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V = 10000, the majority of the complexity per iter-
ation comes from the term hV . For large scale tasks,
it may be impractical to train an NNLM.

A lot of previous research has focused on
speeding up NNLM training. It usually aims
at removing the computational dependency on V .
Schwenk (2007) used a short list of frequent words
such that a large number of out-of-list words are
taken care of by a back-off LM. To reduce the
gradient computation introduced by the normal-
izer, Bengio and Senecal (2008) proposed a dif-
ferent kind of importance sampling technique. A
recent work (Mikolov et al., 2011) applied Good-
man’s class MELM trick (2001) to NNLM, in or-
der to avoid the gigantic normalization. A similar
technique has been introduced even earlier which
took the idea of factorizing output layer to the ex-
treme (Morin, 2005) by replacing the V -way predic-
tion by a tree-style hierarchical prediction. The au-
thors show a theoretical complexity reduction from
O(V ) to (log V ), but the technique requires a care-
ful clustering which may not be easily attainable in
practice.

Subsampling has also been proposed to acceler-
ate NNLM training (Schwenk, 2007). The idea is to
select random subsets of the training data in each
epoch of stochastic gradient descent. After some
epochs, it is very likely that all of the training exam-
ples have been seen by the model. We will show that
our binary classifier representation leads to a more
robust and promising subsampling strategy.

As with MELM, we notice that the parameters
of (14) can be interpreted as also defining a set of
V per-word binary classifiers

Pb(wi = k|wi−1, ..., wi−n+1) =
eak

1 + eak
, (16)

but with a common hidden layer representation. As
in MELM, we will train the classifiers, and renor-
malize them to obtain an NNLM over the V words.

In order to train the classifiers, we need to com-
pute all V output nodes and propagate the errors
back. Since the hidden layer is shared, the classifiers
are not independent, and the computations can not
be easily parallelized to multiple machines. How-
ever, subsampling can be done differently for each
classifier. Each training instance serves as a positive
example for one classifier and as a negative exam-

ple for only a fraction α of the others. The rest of
the nodes are not computed and do not produce er-
ror signal for the hidden representation. We calibrate
the classifiers after subsampled training as described
above for MELM.

It is straightforward to show that the dominating
term V h in the complexity is reduced to αV h. We
want to point out that compared with MELM, sub-
sampling the negatives here does not always reduce
the complexity proportionally. In cases where the
vocabulary is very small, as shown in (15), com-
puting the hidden layer can no longer be ignored.
Nonetheless, real world applications such as speech
recognition, usually involves a vocabulary of consid-
erable size, therefore, subsampling in the binary set-
ting can still achieve substantial speedup for NNLM.

3 Experimental Results

3.1 MELM

We evaluate the proposed technique on two datasets
of different sizes. Our first dataset is obtained
from Penn Treebank. Section 00-20 are used for
training(972K tokens), section 21-22 are the val-
idation set(77K), section 23-24(86K) are the test
set. The vocabulary size of the experiment is
10, 000. This is one of the standard setups on which
many researchers have reported perplexity results on
(Mikolov et al., 2011).

The binary MELM is trained using stochastic
gradient descent, no explicit regularization is per-
formed (Zhang, 2004). The learning rate starts at 0.1
and is halved every time the perplexity on the vali-
dation set stops decreasing. It usually takes around
20 iterations before no significant improvement can
be obtained on the validation set. The training stops
at that time.

We compare perplexity with both the standard in-
terpolated Kneser-Ney trigram model and the stan-
dard MELM. The MELM is L2 regularized and es-
timated using a variant of generalized iterative scal-
ing, the regularizer is tuned on the validation data.
To demonstrate the effectiveness of our subsampling
approach, we compare the subsampled versions of
the binary MELM and the standard MELM. In order
to obtain valid perplexities, the binary LMs are first
renormalized explicitly according to equation (8) for
each test history.
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Model PPL
KN Trigram 153.0

Standard MELM, Feat-I 154.2
Binary MELM, Feat-I 153.7

Standard MELM, Feat-II 140.2
Binary MELM, Feat-II 141.1

Table 1: Binary MELM vs. Standard MELM

We consider two kinds of feature sets: Feat-I con-
tains only n-gram features, namely unigram, bigram
and trigram features, with no count cutoff, the total
number of features is 0.9M . Feat-II is augmented
with skip-1 bigrams and skip-1 trigrams (Goodman,
2001), as well as word trigger features as described
in (Rosenfeld, 1996). The total number of features
in this set is 1.9M . Note that the speedup trick de-
scribed in (Wu and Khudanpur, 2000) can be used
for feat-I , but not feat-II .

Table 1 shows the perplexity results when no sub-
sampling is performed. With only n-gram features,
the binary MELM is able to match both standard
MELM and the Kneser-Ney model. We can also see
that by adding features that are known to be able to
improve the standard MELM, we can get the same
improvement in the binary setting.

Figure 2 shows the comparisons of the two types
of MELM when the training data are subsampled.
The standard MELM with n-gram features suffers
drastically as we sample more aggressively. In con-
trast, the binary n-gram MELM(Feat-I) does not
appear to be hurt by aggressive subsampling, even
when 99% of the negative examples are discarded.
The robustness also holds for Feat-II where more
complicated features are added into the model. This
suggests a very efficient way of training MELM–
with only 1% of the computational cost, we are able
to train an LM as powerful as the standard MELM.

We further test our approach on a second dataset
which comes from Wall Street Journal corpus. It
contains 26M training tokens and a test set of 22K
tokens. We also have a held-out validation set to
tune parameters. This set of experiments is intended
to demonstrate that the binary subsampling tech-
nique is useful on a large text corpus where training
a standard MELM is not practical, and gives a better
LM than the commonly used Kneser-Ney baseline.

Figure 2: Subsampled Binary MELM vs. Subsampled
Standard MELM

Model PPL
KN Trigram 117.7

Standard MELM, Trigram 116.5
Binary MELM, Feat-III, 10% 110.2
Binary MELM, Feat-III, 5% 110.8
Binary MELM, Feat-III, 2% 112.1
Binary MELM, Feat-III, 1% 112.4

Table 2: Binary Subsampled MELM on WSJ

The binary MELM is trained in the same way as
described in the previous experiment. Besides un-
igram, bigram and trigram features, we also added
skip-1 bigrams and skip-1 trigrams, this gives us
7.5M features in total. We call this set of features
feat-III . We were unable to train a standard MELM
with feat-III or a binary MELM without subsam-
pling because of the computational cost. However,
with our binary subsampling technique, as shown in
Table 2, we are able to benefit from skip n-gram fea-
tures with only 5% of the standard MELM complex-
ity. Also the performance does not degrade much as
we discard more negative examples.

To show that such improvement in perplexity
translates into gains in practical applications, we
conducted a set of speech recognition experiments.
The task is on Wall Street Journal, the LMs are
trained on 37M tokens and are used to rescore the n-
best list generated by the first pass recognizer with
a trigram LM. The details of the experimental setup
can be found in (Xu et al., 2009). Our baseline LM
is an interpolated Kneser-Ney 4-gram model.

Note that the size of the vocabulary for the task
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Model Dev WER Eval WER
KN 4-gram 11.8 17.2

Binary MELM, Feat-IV, 5% 11.0 16.7
Binary MELM, Feat-IV, 2% 11.2 16.7
Binary MELM, Feat-IV, 1% 11.2 16.7

Table 3: WSJ WER improvement. Binary MELM are
interpolated with KN 4-gram

is 20K, for the purpose of rescoring, we are only
interested in the words that exist in the n-best list,
therefore, for the binary MELM, we only have to
train about 5300 binary classifiers. For comparison,
the KN 4-gram also uses the same restricted vocabu-
lary. The features for the binary MELM are n-gram
features up to 4-grams plus skip-1 bigrams and skip-
1 trigrams. The total number of features is 10M. We
call this set of features Feat-IV.

Table 3 demonstrates the word error rate(WER)
improvement enabled by our binary subsampling
technique. Note that we can achieve 0.5% abso-
lute WER improvement on the test set at only 1%
of the standard MELM complexity. More specifi-
cally, with only 50 machines, such a reduction in
complexity allows us to train a binary MELM with
skip n-gram features in less than two hours, which is
not possible for the standard MELM on 37M words.

Obviously, with more machines, the estimation
can be even faster, it’s also reasonable to expect that
with more kinds of features, the improvement can
be even larger. We think that the proposed technique
opens the door for the utilization of the modeling
framework provided by MELM at a scale that has
not been possible before.

3.2 NNLM

We evaluate our binary subsampling technique on
the same Penn Treebank corpus as described for the
MELM experiments. Taking random subsets of the
training data with the standard model is our primary
baseline to compare with. The NNLM we train is
a trigram LM with tanh hidden units. The size of
word representation and the size of hidden layer are
tuned minimally on the validation set(Hidden layer
size 200; Representation size 50). We adopt the
same learning rate strategy as for training MELM,
and the validation set is used to track perplexity per-
formance and adjust learning rate correspondingly.

Model PPL
100% 20% 10% 5%

Standard NNLM 154.3 239.8 297.0 360.3
Binary NNLM - 152.7 160.0 176.2

KN trigram 153.0 - - -

Table 4: Binary NNLM vs. Standard NNLM. Fixed ran-
dom subset.

Model Interpolated PPL
100% 20% 10% 5%

Standard NNLM 132.7 145.6 148.6 150.7
Binary NNLM - 132.1 134.2 138.0

KN trigram 153.0 - - -

Table 5: Binary NNLM vs. Standard NNLM. Fixed ran-
dom subset. Interpolated with KN trigram.

All parameters are initialized randomly with mean 0
and variance 0.01. As with binary MELM, binary
NNLM are explicitly renormalized to obtain valid
perplexities.

In our first experiment, we keep the subsampled
data fixed as we did for MELM. For the standard
NNLM, it means only a subset of the data is seen by
the model and it does not change through epochs;
For binary NNLM, it means the subset of negative
examples for each binary classifier does not change.
Table 4 shows the perplexity results by NNLM itself
and the interpolated results are shown in Table 5.

We can see that both models exhibit a tendency
to deteriorate as we subsample more aggressively.
However, the standard NNLM is clearly impacted
more severely. With binary NNLM, we are able to
retain all the gain after interpolation with only 20%
of the negative examples.

Notice that with a fixed random subset, we are not
replicating the experiments of Schwenk (Schwenk,
2007) exactly, although it is reasonable to expect
both models are able to benefit from seeing different
random subsets of the training data. This is verified
by results in Table 6 and Table 7.

The standard NNLM benefits quite a lot going
from using a fixed random subset to a variable ran-
dom subset, but still demonstrates a clear tendency
to deteriorate as we discard more and more data. On
the constrast, the binary NNLM maintains all the
performance gain with only 5% of the negative ex-
amples and still clearly outperforms its counterpart.
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Model PPL
100% 20% 10% 5%

Standard NNLM 154.3 157.7 172.2 186.5
Binary NNLM - 151.7 150.1 152.1

Table 6: Binary NNLM vs. Standard NNLM. Variable
random subset.

Model Interpolate PPL
100% 20% 10% 5%

Standard NNLM 132.7 133.9 138.1 141.2
Binary NNLM - 132.2 131.7 132.2

Table 7: Binary NNLM vs. Standard NNLM. Variable
random subset. Interpolated with KN trigram.

4 Discussion

For the standard models, the amount of existent pat-
terns fed into training heavily depends on the sub-
sampling rate α. For a small α, the models will in-
evitably lose some training patterns given any rea-
sonable number of epochs of training. Taking vari-
able random subsets in each epoch can alleviate this
problem to some extent, but still can not solve the
fundamental problem. In the binary setting, we are
able to do subsampling differently. While the com-
plexity remains the same without subsampling, the
majority of the complexity comes from processing
negatives examples for each binary classifier. There-
fore, we can achieve the same level of speedup as
standard subsampling by only subsampling negative
examples, and most importantly, it allows us to keep
all the existent patterns(positive examples) in the
training data. Of course, negative examples are im-
portant and even in the binary case, we benefit from
including more of them, but since we have so many
of them, they might not be as critical as positive ex-
amples in determining the distribution.

A similar conclusion can be drawn from Google’s
work on large LMs (Brants et al., 2007). Not having
to properly smooth the LM, they are still able to ben-
efit from large volumes of web text as training data.
It is probably more important to have a high n-gram
coverage than having a precise distribution.

The explanation here might lead us to wonder
whether for the multi-class problem, subsampling
the terms in the normalizer would achieve the same
results. More specifically, instead of summing over

all words in the vocabulary, we may choose to only
consider α of them. In fact, the short-list approach
in (Schwenk, 2007) and the adaptive importance
sampling in (Bengio and Senecal, 2008) have ex-
actly this intuition. However, in the multi-class
setup, subsampling like this has to be very careful.
We have to either have a good estimate of how much
probability mass we’ve thrown away, as in the short-
list approach, or have a good estimate of the entire
normalizer, as in the importance sampling approach.
It is very unlikely that an arbitrary random subsam-
pling will not harm the model. Fortunately, in the bi-
nary case, the effect of random subsampling is much
easier to analyze. We know exactly how much nega-
tive examples we’ve discarded, and they can be com-
pensated easily in the end.

It is worth pointing out that the proposed tech-
nique is not restricted to MELM and NNLM. We
have done experiments to binarize the class trick
sometimes used for language modeling (Goodman,
2001; Mikolov et al., 2011), and it also proves to
be useful. We plan to report these results in the fu-
ture. More generally, for many large-scale multi-
class problems, binarization and subsampling can be
an effective combination to consider.

5 Conclusion

We propose efficient subsampling techniques for
training large multi-class classifiers such as maxi-
mum entropy language models and neural network
language models. The main idea is to replace a
multi-way decision by a set of binary decisions.
Since most of the training instances in the binary
setting are negatives examples, we can achieve sub-
stantial speedup by subsampling only the negatives.
We show by extensive experiments that this is more
robust than subsampling subsets of training data for
the original multi-class classifier. The proposed
method can be very useful for building large lan-
guage models and solving more general multi-class
problems.

Acknowledgments

This work is partially supported by National Science
Foundation Grant No

¯
0963898, the DARPA GALE

Program and JHU/HLTCOE.

1135



References

Allwein, Erin, Robert Schapire, Yoram Singer and Pack
Kaelbling. 2000. Reducing Multiclass to Binary: A
Unifying Approach for Margin Classifiers. Journal of
Machine Learning Research, 1:113-141.

Bengio, Yoshua, Rejean Ducharme and Pascal Vincent
2003. A neural probabilistic language model Journal
of Machine Learning research, 3:1137–1155.

Bengio, Yoshua and J. Senecal 2008. Adaptive impor-
tance sampling to accelerate training of a neural prob-
abilistic language model IEEE Transaction on Neural
Network, Apr. 2008.

Berger, Adam, Stephen A. Della Pietra and Vicent J.
Della Pietra 1996. A Maximum Entropy approach
to Natural Language Processing. Computational Lin-
guistics, 1996, 22:39-71.

Brants, Thorsten, Ashok C. Popat, Peng Xu, Frank J. Och
and Jeffrey Dean 2007. Large language models in ma-
chine translation. In Proceedings of 2007 Conference
on Empirical Methods in Natural Language Process-
ing, 858–867.

Goodman, Joshua 2001. Classes for Fast Maximum
Entropy Training. Proceedings of 2001 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing.

Goodman, Joshua 2001. A bit of Progress in Language
Modeling. Computer Speech and Language, 403-434.

Khudanpur, Sanjeev and Jun Wu 2000. Maximum En-
tropy Techniques for Exploiting Syntactic, Semantic
and Collocational Dependencies in Language Model-
ing. Computer Speech and Language, 14(4):355-372.

Mikolov, Tomas, Stefan Kombrink, Lukas Burget, Jan
”Honza” Cernocky and Sanjeev Khudanpur 2011. Ex-
tensions of recurrent neural network language model.
Proceedings of 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing.

Morin, Frederic 2005. Hierarchical probabilistic neural
network language model. AISTATS’05, pp. 246-252.

Neyman, Jerzy 1934. On the Two Different Aspects
of the Representative Method: The Method of Strati-
fied Sampling and the Method of Purposive Selection.
Journal of the Royal Statistical Society, 97(4):558-
625.

Rifkin, Ryan and Aldebaro Klautau 2004. In Defense of
One-Vs-All Classification. Journal of Machine Learn-
ing Research.

Rosenfeld, Roni. 1996. A maximum entropy approach
to adaptive statistical language modeling. Computer
Speech and Language, 10:187–228.

Schwenk, Holger 2007. Continuous space language
model. Computer Speech and Language, 21(3):492-
518.

Wu, Jun and Sanjeev Khudanpur. 2000. Efficient train-
ing methods for maximum entropy language model-
ing. Proceedings of the 6th International Conference
on Spoken Language Technologies, pp. 114–117.

Xu, Puyang, Damianos Karakos and Sanjeev Khudanpur.
2009. Self-supervised discriminative training of statis-
tical language models. Proceedings of 2009 IEEE Au-
tomatic Speech Recognition and Understanding Work-
shop.

Zhang, Tong 2004. Solving large scale linear prediction
problems using stochastic gradient descent algorithms.
Proceedings of 2004 International Conference on Ma-
chine Learnings.

1136



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1137–1146,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Generating Aspect-oriented Multi-Document Summarization with
Event-aspect model

Peng Li1 and Yinglin Wang1 and Wei Gao2and Jing Jiang3

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
2 Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong

3 School of Information Systems, Singapore Management University
{lipeng, ylwang@sjtu.edu.cn} {wgao@se.cuhk.edu.hk} {jingjiang@smu.edu.sg}

Abstract

In this paper, we propose a novel approach to
automatic generation of aspect-oriented sum-
maries from multiple documents. We first de-
velop an event-aspect LDA model to cluster
sentences into aspects. We then use extend-
ed LexRank algorithm to rank the sentences
in each cluster. We use Integer Linear Pro-
gramming for sentence selection. Key features
of our method include automatic grouping of
semantically related sentences and sentence
ranking based on extension of random walk
model. Also, we implement a new sentence
compression algorithm which use dependency
tree instead of parser tree. We compare our
method with four baseline methods. Quantita-
tive evaluation based on Rouge metric demon-
strates the effectiveness and advantages of our
method.

1 Introduction

In recent years, there has been much interest in
the task of multi-document summarization. In this
paper, we study the task of automatically generat-
ing aspect-oriented summaries from multiple docu-
ments. The goal of aspect-oriented summarization
is to present the most important content to the us-
er in a condensed form and a well-organized struc-
ture to satisfy the user’s needs. A summary should
follow a readable structure and cover all the aspect-
s users are interested in. For example, a summary
about natural disasters should include aspects about
what happened, when/where it happened, reasons,
damages, rescue efforts, etc. and these aspects may
be scattered in multiple articles written by different
news agencies. Our goal is to automatically collect

aspects and construct summaries from multiple doc-
uments.

Aspect-oriented summarization can be used in
many scenarios. First of all, it can be used to gener-
ate Wikipedia-like summary articles, especially used
to generate introduction sections that summarizes
the subject of articles before the table of contents
and other elaborate sections. Second, opinionat-
ed text often contains multiple viewpoints about an
issue generated by different people. Summarizing
these multiple opinions can help people easily di-
gest them. Furthermore, combined with search en-
gines and question&answering systems, we can bet-
ter organize the summary content based on aspects
to improve user experience.

Despite its usefulness, the problem of modeling
domain specific aspects for multi-document summa-
rization has not been well studied. The most relevant
work is by (Haghighi and Vanderwende, 2009) on
exploring content models for multi-document sum-
marization. They proposed a HIERSUM model for
finding the subtopics or aspects which are combined
by using KL-divergence criterion for selecting rel-
evant sentences. They introduced a general con-
tent distribution and several specific content distri-
butions to discover the topic and aspects for a s-
ingle document collection. However, the aspects
may be shared not only across documents in a sin-
gle collection, but also across documents in different
topic-related collections. Their model is conceptual-
ly inadequate for simultaneously summarizing mul-
tiple topic-related document collections. Further-
more, their sentence selection method based on KL-
divergence cannot prevent redundancy across differ-
ent aspects.

In this paper, we study how to overcome these
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limitations. We hypothesize that comparatively
summarizing topics across similar collections can
improve the effectiveness of aspect-oriented multi-
document summarization. We propose a novel
extraction-based approach which consists of four
main steps listed below:

Sentence Clustering: Our goal in this step is to
automatically identify the different aspects and clus-
ter sentences into aspects (See Section 2). We sub-
stantially extend the entity-aspect model in (Li et al.,
2010) for generating general sentence clusters.

Sentence Ranking: In this step, we use an exten-
sion of LexRank algorithm proposed by (Paul et al.,
2010) to score representative sentences in each clus-
ter (See Section 3).

Sentence Compression: In this step, we aim to
improve the linguistic quality of the summaries by
simplifying the sentence expressions. We prune sen-
tences using grammatical relations defined on de-
pendency trees for recognizing important clauses
and removing redundant subtrees (See Section 4).

Sentence Selection: Finally, we select one com-
pressed version of the sentences from each aspec-
t cluster. We use Integer Linear Programming
(ILP) algorithm, which optimizes a global objective
function, for sentence selection (McDonald, 2007;
Gillick and Favre, 2009; Sauper and Barzilay, 2009)
(See Section 5).

We evaluate our method using TAC2010 Guided
Summarization task data sets1 (Section 6). Our eval-
uation shows that our method obtains better ROUGE
recall score compared with four baseline methods,
and it also achieve reasonably high-quality aspec-
t clusters in terms of purity.

2 Sentence Clustering

In this step, our goal is to discover event aspects con-
tained in a document set and cluster sentences in-
to aspects. Here we substantially extend the entity-
aspect model in Li et al. (2010) and refer to it as
event-aspect model. The main difference between
our event-aspect model and entity-aspect model is
that we introduce an additional layer of event topics
and the separation of general and specific aspects.

1http://www.nist.gov/tac/2010/
Summarization/

Our extension is based upon the following ob-
servations. For example, specific events like
“Columbine Massacre” and “Malaysia Resort Ab-
duction” can be related to the “Attack” topic. Each
event consists of multiple articles written by dif-
ferent news agencies. Interesting aspects may in-
clude “what happened, when, where, perpetrators,
reasons, who affected, damages and countermea-
sures,” etc2. We compared the “Columbine Mas-
sacre” and “Malaysia Resort Abduction” data set-
s and found 5 different kinds of words in the text:
(1) stop words that occur frequently in any docu-
ment collection; (2) general content words describ-
ing “damages” or “countermeasures” aspect of at-
tacks; (3) specific content words describing “what
happened”, “who affected” or “where” aspect of the
concrete event; (4) background words describing the
general topic of “Attack”; (5) words that are local to
a single document and do not appear across different
documents. Table 1 shows four sentences related to
two major aspects. We found that the entity-aspect
model does not have enough capacity to cluster sen-
tences into aspects (See Section 6). So we introduce
additional layer to improve the effectiveness of sen-
tence clustering. We also found that their one aspect
per sentence assumption is not very strong in this
scenario. Although a sentence may belong to a sin-
gle general aspect, it still contains multiple specific
aspect words like second sentence in Table 1. There-
fore, We assume that each sentence belongs to both
a general aspect and a specific aspect.

2.1 Event-Aspect Model
Stop words can be ignored by LDA model because
they can be easily identified using a standard stop
word list. Suppose that for a given event topic, there
are in total C specific events for which we need to
simultaneously generate summaries. We can assume
four kinds of unigram language models (i.e. multi-
nomial word distributions). For each event topic,
there is a background model ϕB that generates words
commonly used in all documents, and there are AG

general aspect models ϕga (1 ≤ ga ≤ AG), where
AG is the number of general aspects. For each spe-
cific event in a topic, there are AS specific aspect

2http://www.nist.gov/tac/2010/
Summarization/Guided-Summ.2010.guidelines.
html
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countermeasures
Police/GA are/S close/B to/S identifying/GA someone/B responsible/GA

for/S the/S attack/B .
Investigators/GA do/S not/S know/B how/S many/S suspects/SA

they/S are/S looking/B for/S, but/S reported/B progress/B toward/S
identifying/GA one/S of/S the/S bombers/SA .
what happened, when, where

During/S the/S morning/SA rush/D hour/D on/S July/SA 7/SA terrorists/B
exploded/SA bombs/SA on/S three/D London/SA subway/D trains/SA and/S a/S
double-decker/D bus/SA .

Four/D coordinated/B bombings/SA struck/B central/B London/SA on/SA
July/SA 7/SA, three/D in/S subway/D cars/SA and/S one/D on/S a/S bus/SA .

Table 1: Four sentences on “COUNTERMEASURES” and “What, When, Where” aspects from the “Attack” topic. S:
stop word. B: background word. GA: general aspect word. SA: specific aspect word. D: document word.

models ϕsa (1 ≤ sa ≤ AS), where AS is the num-
ber of specific aspects, and also there are D doc-
ument models ϕd (1 ≤ d ≤ D), where D is the
number of documents in this collection. We assume
that these word distributions have a uniform Dirich-
let prior with parameter β.

We introduce a level distribution σ that control-
s whether we choose a word from ϕga or ϕsa. σ
is sampled from Beta(δ0, δ1) distribution. We also
introduce an aspect distribution θ that controls how
often a general or a specific aspect occurs in the col-
lection, where θ is sampled from another Dirichlet
prior with parameter α. There is also a multinomi-
al distribution π that controls in each sentence how
often we encounter a background word, a document
word, or an aspect word. π has a Dirichlet prior with
parameter γ.

Let Sd denote the number of sentences in docu-
ment d, Nd,s denote the number of words (after stop
word removal) in sentence s of document d, and
wd,s,n denote the n’th word in this sentence. We
introduce hidden variables zga

d,s and zsa
d,s to indicate

that a sentence s of document d belongs to which
general or specific aspects . We introduce hidden
variables yd,s,n for each word to indicate whether a
word is generated from the background model, the
document model, or the aspect model. We also intro-
duce hidden variables ld,s,n to indicate whether the
n’th word in sentence s of document d is generated
from the general aspect model. Figure 1 describes
the process of generating the whole document col-
lection. The plate notation of the model is shown in
Figure 2. Note that the values of δ0, δ1, α1, α2, β

and γ are fixed. The number of general and specific
aspects AG and AS are also empirically set.

Given a document collection, i.e. the set of all
wd,s,n, our goal is to find the most likely assignmen-
t of zga

d,s, zsa
d,s, yd,s,n and ld,s,n that maximizes dis-

tribution p(z,y, l|w;α, β, γ, δ), where z, y, l and w
represent the set of all z, y, l and w variables, respec-
tively. With the assignment, sentences are naturally
clustered into aspects, and words are labeled as ei-
ther a background word, a document word, a general
aspect word or a specific aspect word.

Inference can be done with Gibbs sampling,
which is commonly used in LDA models (Griffiths
and Steyvers, 2004).

In our experiments, we set α1 = 5, α2 = 3,
β = 0.01, γ = 20, δ1 = 10 and δ2 = 10. We
run 100 burn-in iterations through all documents in
a collection to stabilize the distribution of z and y
before collecting samples. We take 10 samples with
a gap of 10 iterations between two samples, and av-
erage over these 10 samples to get the estimation for
the parameters.

After estimating all the distributions, we can find
the values of each zga

d,s and zsa
d,s that gives us sen-

tences clustered into general and specific aspects.

3 Sentence Ranking

In this step, we want to order the clustered sen-
tences so that the representative sentences can be
ranked higher in each aspect. Inspired by Paul et
al. (2010), we use an extended LexRank algorithm
to obtain top ranked sentences. LexRank (Erkan and
Radev, 2004) algorithm defines a random walk mod-
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1. Draw θ1 ∼ Dir(α1), θ2 ∼ Dir(α2), π ∼ Dir(γ)
Draw σ ∼ Beta(δ0, δ1)

2. For each event topic, there is a background model
ϕB, and there are general aspect ga, where 1 ≤
ga ≤ AG

(a) draw ϕB ∼ Dir(β)

(b) draw ϕga ∼ Dir(β)

3. For each document collection, there are specific
aspect sa, where 1 ≤ sa ≤ AS

(a) draw ϕsa ∼ Dir(β)

4. For each document d = 1, . . . , D,
(a) draw ϕd ∼ Dir(β)

(b) for each sentence s = 1, . . . , Sd

i. draw zga ∼ Multi(θ1)

ii. draw zsa ∼ Multi(θ2)

iii. for each word n = 1, . . . , Nd,s

A. draw ld,s,n ∼ Binomial(σ)

B. draw yd,s,n ∼ Multi(π)

C. draw wd,s,n ∼ Multi(ϕB) if yd,s,n =
1, wd,s,n ∼ Multi(ϕd) if yd,s,n = 2,
wd,s,n ∼ Multi(ϕzsa

d,s) if yd,s,n =
3 and ld,s,n = 1 or wd,s,n ∼
Multi(ϕzga

d,s) if yd,s,n = 3 and
ld,s,n = 0

Figure 1: The document generation process.

el on top of a graph that represents sentences to be
summarized as nodes and their similarities as edges.
The LexRank score of a sentence gives the expected
probability that a random walk will visit that sen-
tence in the long run. A variant is called continu-
ous LexRank improved LexRank by making use of
the strength of the similarity links. The continuous
LexRank score can be computed using the following
formula:

L(u) =
d

N
+ (1 − d)

∑

v∈adj[u]

p(u|v)L(v)

where L(u) is the LexRank value of sentence u, N is
the total number of nodes in the graph, d is a damp-
ing factor for the convergence of the method, and
p(u|v) is the jumping probability between sentence
u and its neighboring sentence v. p(u|v) is defined
using content similarity function sim(u, v) between
two sentences:

T

ydφ
dS

D

sd� ,

wSA

φ

β

C

γ

π σ

δ

gaz
saz

l

φ
GA

Bφ

1
θ 2

θ

1
α 2

α

Figure 2: The event-aspect model.

p(u|v) =
sim(u, v)∑

z∈adj[v] sim(z, v)

The major extension is to modify this jumping
probability so as to favor visiting representative sen-
tences. More specifically, we scale sim(u, v) by the
likelihood that the two sentences represent the same
general aspect ga or specific aspect sa:

sim′(u, v) = sim(u, v)[
AG∑

ga=1

P (ga|u)P (ga|v)

+

AS∑

sa=1

P (sa|u)P (sa|v)]

where the value P (ga|u) and P (sa|u) can be
computed by our event-aspect model. We define
sim(u, v) as the tf ∗ idf weighted cosine similar-
ity between two sentences.

We found that sentence ranking is better con-
ducted before the compression because the pre-
compressed sentences are more informative and the
similarity function in LexRank can be better off with
the complete information.

4 Sentence Compression

It has been shown that sentence compression can
improve linguistic quality of summaries (Zajic et
al., 2007; Gillick et al., 2010). Commonly used
“Syntactic parse and trim” approach may produce
poor compression results. For example, given the
sentence “We have friends whose children go to
Columbine, the freshman said”, the procedure tries
to remove the clause “the freshman said” from the
parse tree by using the “SBAR” label to locate the
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clause, and will result in “whose children go to
Columbine”, which is not adequate. Furthermore,
some important temporal modifier, numeric modifier
and clausal complement need to be retained because
they reflect content aspects of the summary. There-
fore, we propose the “dependency parse and trim”
approach, which prunes sentences based on depen-
dency tree representations, using English grammati-
cal relations to recognize clauses and remove redun-
dant structures. Table 2 shows two examples by re-
moving redundant auxiliary clauses. Below is the
sentence compression procedure:

1. Select possible subtree root nodes using gram-
matical relations, such as clausal complement,
complementizer, or parataxis 3.

2. Decide which subtree root node can be the root
of clause. If this root contains maximum num-
ber of child nodes and the collection of all child
edges include object or auxiliary relations, it is
selected as the root node.

3. Remove redundant modifiers such as adverbial-
s, relative clause modifiers and abbreviations,
participials and infinitive modifiers.

4. Traverse the subtrees and generate all possible
compression alternatives using the subtree root
node, then keep the top two longest sub sen-
tences.

5. Drop the sub sentences shorter than 5 words.

5 Sentence Selection

After sentence pruning, we prepare for the final
event summary generation process. In this step, we
select one compressed version of the sentence from
each aspect cluster. To avoid redundancy between
aspects, we use Integer Linear Programming to opti-
mize a global objective function for sentence selec-
tion. Inspired by (Sauper and Barzilay, 2009), we
formulate the optimization problem based on sen-
tence ranking information. More specifically, we

3The parataxis relation is a relation between the main verb
of a clause and other sentential elements, such as a sentential
parenthetical, colon, or semicolon

Original Compressed
When rescue workers
arrived, they said, on-
ly one of his limbs was
visible.

When rescue workers
arrived, only one of his
limbs was visible.

Two days earlier, a
massacre by two s-
tudents at Columbine
High, whose teams are
called the Rebels, left
15 people dead and
dozens wounded.

Two days earlier, a
massacre by two stu-
dents at Columbine
High, left 15 peo-
ple dead and dozens
wounded.

Table 2: Example compressed sentences.

would like to select exactly one compressed sen-
tence which receives the highest possible ranking s-
core from each aspect cluster subject to a series of
constraints, such as redundancy and length. We em-
ployed lp solver 4, an efficient mixed integer pro-
gramming solver using the Branch-and-Bound algo-
rithm to select sentences.

Assume that there are in total K aspects in an
event topic. For each aspect j, there are in total R
ranked sentences. The variables Sjl is a binary indi-
cator of the sentence. That is, Sjl= 1 if the sentence
is included in the final summary, and Sjl = 0 other-
wise. l is the ranked position of the sentence in this
aspect cluster.

Objective Function

Top ranked sentences are the most relevant corre-
sponding to the related aspects which we want to in-
clude in the final summary. Thus we try to minimize
the ranks of the sentences to improve the overall re-
sponsiveness.

min(

K∑

j=1

Rj∑

l=1

l · Sjl)

Exclusivity Constraints
To prevent redundancy in each aspect, we just
choose one sentence from each general or specific
aspect cluster. The constraint is formulated as fol-
lows:

Rj∑

l=1

Sjl = 1 ∀j ∈ {1 . . . K}

4http://lpsolve.sourceforge.net/5.5/
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Redundancy Constraints

We also want to prevent redundancy across differ-
ent aspects. If sentence-similarity sim(sjl, sj′l′) be-
tween sentence sjl and sj′l′ is above 0.5, then we
drop the pair and choose one sentence ranked higher
from the pair otherwise. This constraint is formulat-
ed as follows:

(Sjl + Sj′l′) · sim(sjl, sj′l′) ≤ 0.5

∀j, j′ ∈ {1 . . .K}∀l ∈ {1 . . . Rj}∀l′ ∈ {1 . . . Rj′}

Length Constraints

We add this constraint to ensure that the length of
the final summary is limited to L words.

K∑

j=1

Rj∑

l=1

lenjl · Sjl ≤ L

where lenjl is the length of Sjl.

6 Evaluation

In order to systematically evaluate our method, we
want to check (1) whether the whole system is effec-
tive, which means to quantitatively evaluate summa-
ry quality, and (2) whether individual components
like clustering and compression algorithms are use-
ful.

6.1 Data

We use TAC2010 Summarization task data set for
the summary content evaluation. This data set pro-
vides 46 events. Each event falls into a predefined
event topic. Each specific event includes an even-
t statement and 20 relevant newswire articles which
have been divided into 2 sets: Document Set A and
Document Set B. Each document set has 10 docu-
ments, and all the documents in Set A chronologi-
cally precede the documents in Set B. We just use
document Set A for our task. Assessors wrote mod-
el summaries for each event, so we can compare
our automatic generated summaries with the model
summaries. We combine topic related data sets to-
gether, then these data sets simultaneously annotated
by our Event-aspect model. After labeling process,
we run sentence ranking, compression and selection
module to get final aspect-oriented summarizations.

6.2 Quality of summary

We use the ROUGE (Lin and Hovy, 2003) metric for
measuring the summarization system performance.
Ideally, a summarization criterion should be more
recall oriented. So the average recall of ROUGE-
1, ROUGE-2, ROUGE-SU4, ROUGE-W-1.2 and
ROUGE-L were computed by running ROUGE-
1.5.5 with stemming but no removal of stop word-
s. We compare our method with the following four
baseline methods.

Baseline 1
In this baseline, we try to compare different sen-

tence clustering algorithms in the multi-document
summarization scenario. First, we use CLUTO 5 to
do K-means clustering. Then we try entity-aspect
model proposed by Li et al. (2010) to do sentence
clustering. Entity-aspect model is similar with “HI-
ERSUM” content model proposed by Haghighi and
Vanderwende (2009). We use the same ranking,
compression, and selection components to generate
aspect-oriented summaries for comparison.

Baseline 2
In this baseline, we compare our method with

traditional ranking and selection summary genera-
tion framework (Erkan and Radev, 2004; Nenkova
and Vanderwende, 2005) to show that our sentence
clustering component is necessary in aspect-oriented
summarization system. Also we want check whether
sentence ranking combined with greedy based sen-
tence selection can prevent redundancy effective-
ly. We follow LexRank based sentence ranking
combined with greedy sentence selection methods.
We implement two greedy algorithms (Zhang et al.,
2008; Paul et al., 2010). One is to select the top
ranked sentence simultaneously by removing 10 re-
dundant neighbor sentences from the sentence sim-
ilarity graph if the summary length is less then 100
words. This is repeated until the graph cannot be
partitioned. The similarity graph building threshold
is 0.3, damping factor is 0.2 and error tolerance for
Power Method in LexRank is 0.1. The other is to se-
lect top ranked sentences as long as the redundancy
score (similarity) between a candidate sentence and

5http://glaros.dtc.umn.edu/gkhome/cluto/
cluto/overview
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current summary is under 0.5. This is repeated until
the summary reaches a 100 word length limit.

Baseline 3
In this baseline, we compare our ILP based sen-

tence selection with KL-divergence based sentence
selection. The KL-divergence formula we use is be-
low,

KL(PS ||QD) =
∑

w

P (w) log
P (w)

Q(w)

where P (S) is the empirical unigram distribution of
the candidate summary S, and Q(D) is the unigram
distribution of document collection D. We only re-
placed our selection method with the KL-divergence
selection method. Other parts are the same. After
ranking sentences for each aspect, we add the sen-
tence with the highest ranking score from each as-
pect sentence cluster as long as the KL-divergence
between candidate and current summary does not
decrease. This is repeated until the summary reach-
es a 100 word length limit. To our knowledge, this
is the first work to directly compare Integer Lin-
ear Programming based sentence selection with KL-
divergence based sentence selection in summariza-
tion generation framework.

Baseline 4
In this baseline, we directly compare our method

with “HIERSUM” proposed by (Haghighi and Van-
derwende, 2009). As in Baseline 1, we use entity-
aspect model to approximate “HIERSUM” mod-
el. We replace unigram distribution of P (w) in
KL-divergence with learned distribution estimated
by “HIERSUM” model. The KL-divergence based
greedy sentence selection algorithm is similar to
Baseline 3.

For fair comparison, Baselines 1, 2, 3 and 4 use
the same sentence compression algorithm and have
the summary length no more then 100 words. In
Table 3, we show the average ROUGE recall of 46
summaries generated by our method and four base-
line methods. We can see that our method gives
better Rouge recall measures then the four baseline
methods. For BL-1, we can see that LDA-based sen-
tence clustering is better then k-means. For BL-2,
we can see that traditional ranking plus greedy selec-
tion summary generation framework is not suitable

for the aspect-oriented summarization task. More
specifically, greedy-based sentence selection can not
prevent redundancy effectively. BL-3 evaluation re-
sults showed that ILP-based sentence selection is
better then KL-divergence selection in terms of pre-
venting redundancy across different aspects. The
measurement performance between BL-3 and BL-
4 is close. They use the same KL-divergence based
sentence selection, but topic model they use are d-
ifferent, and also BL-3 has a sentence ranking pro-
cess. The Rouge recall of our method is better than
BL-4. It is expected because our event-aspect mod-
el can better find the aspects and also prove that
our LexRank based sentence ranking combined with
ILP-based sentence selection can prevent redundan-
cy.

Due to TAC2010 summarization community just
compute ROUGE-2 and ROUGE-SU4 metrics for
participants, our ROUGE-2 metric ranked 11 out
of 23, ROUGE-SU4 metric ranked 12 out of 23.
They use MEAD6 as their baseline approach. The
ROUGE-2 score of our approach achieve 0.06508
higher than MEAD’s 0.05929. The ROUGE-SU4 s-
core of our approach achieve 0.10146 higher than
MEAD’s 0.09112. Many systems that get high-
er performances leverage domain knowledge bases
like Wikipedia or training data, but we didn’t. The
advantage of our method is that we generate sum-
maries with totally unsupervised framework and this
approach is domain adaptive.

6.3 Quality of aspect-oriented sentence clusters

To judge the quality of the aspect-oriented sentence
clusters, we ask the human judges to group the
ground truth sentences based on the aspect related-
ness in each event topic. We then compute the pu-
rity of the automatically generated clusters against
the human judged clusters. The results are shown
in Table 4. In our experiments, we set the number
of general aspect clusters AG is 5 and specific as-
pect clusters AS is 3. We can see from Table 4 that
our generated aspect clusters can achieve reasonably
good performance.

6http://www.summarization.com/mead/
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Rouge Average Recall
Method ROUGE-1 ROUGE-2 ROUGE-SU4 ROUGE-W-1.2 ROUGE-L

BL-1 k-means 0.21895 0.03689 0.06644 0.06683 0.19208
entity-aspect 0.26082 0.05082 0.08286 0.08055 0.22976

BL-2 greedy 1 0.27802 0.04872 0.08302 0.08488 0.24426
greedy 2 0.27898 0.04723 0.08275 0.08500 0.24430

BL-3 KL-Div 0.29286 0.05369 0.09117 0.08827 0.25100
BL-4 HIERSUM 0.28736 0.05502 0.08932 0.08923 0.25285
Without compression 0.30563 0.05983 0.09513 0.09468 0.25487

Our Method 0.32641 0.06508 0.10146 0.09998 0.28610

Table 3: ROUGE evaluation results on TAC2010 Summarization data sets

Category A Purity
Accidents and Natural Disasters 7 0.613
Attacks 8 0.658
Health and Safety 5 0.724
Endangered Resources 4 0.716
Investigations and Trials 6 0.669

Table 4: The true numbers of aspects as judged by the
human annotator (A), and the purity of the clusters.

Category Average Score
Accidents and Natural Disasters 2.4
Attacks 2.3
Health and Safety 2.6
Endangered Resources 2.5
Investigations and Trials 2.4

Table 5: The average score of each event topic.

6.4 Quality of sentence compression

To judge the quality of the dependency tree based
sentence compression algorithm, we ask the human
judges to choose 20 sentences from each event top-
ic then score them. The judges follow 3-point scale
to score each compressed sentence: 1 means poor,
2 means barely acceptable, and 3 means good. We
then compute the average scores. The results are
shown in Table 5. To evaluate the effectiveness of
sentence compression component, we conduct the
system without sentence compression component,
then compare it with our system. In Table 3, we
can see that sentence compression can improve the
system performance.

7 Related Work

Our event-aspect model is related to a number of
previous extensions of LDA models. Chemudugun-
ta et al. (2007) proposed to introduce a background
topic and document-specific topics. Our background
and document language models are similar to theirs.
However, they still treat documents as bags of words
rather then sets of sentences as in our models. Titov
and McDonald (2008) exploited the idea that a short
paragraph within a document is likely to be about
the same aspect. The way we separate words in-
to stop words, background words, document word-
s and aspect words bears similarity to that used
in (Daumé III and Marcu, 2006; Haghighi and Van-
derwende, 2009). Paul and Girju (2010) proposed a
topic-aspect model for simultaneously finding topic-
s and aspects. The most related extension is entity-
aspect model proposed by Li et al. (2010). The main
difference between event-aspect model and entity-
aspect model is our model further consider aspect
granularity and add a layer to model topic-related
events.

Filippova and Strube (2008) proposed a depen-
dency tree based sentence compression algorithm.
Their approach need a large corpus to build language
model for compression, whereas we prune depen-
dency tree using grammatical rules.

Paul et al. (2010) proposed to modify LexRank
algorithm using their topic-aspect model. But their
task is to summarize contrastive viewpoints in opin-
ionated text. Furthermore, they use a simple greedy
approach for constructing summary.

McDonald (2007) proposed to use Integer Linear
Programming framework in multi-document sum-
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marization. And Sauper and Barzilay (2009) use in-
teger linear programming framework to automatical-
ly generate Wikipedia articles. There is a fundamen-
tal difference between their method and ours. They
used trained perceptron algorithm for ranking ex-
cerpts, whereas we give an extended LexRank with
integer linear programming to optimize sentence se-
lection for our aspect-oriented multi-document sum-
marization.

8 Conclusions and Future Work

In this paper, we study the task of automatically
generating aspect-oriented summary from multiple
documents. We proposed an event-aspect model
that can automatically cluster sentences into aspect-
s. We then use an extension of the LexRank algo-
rithm to rank sentences. We took advantage of the
output generated by the event-aspect model to mod-
ify jumping probabilities so as to favor visiting rep-
resentative sentence. We also proposed dependen-
cy tree compression algorithm to prune sentence for
improving linguistic quality of the summaries. Fi-
nally we use Integer Linear Programming Frame-
work to select aspect relevant sentences. We con-
ducted quantitative evaluation using standard test
data sets. We found that our method gave overal-
l better ROUGE scores than four baseline methods,
and the new sentence clustering and compression al-
gorithm are robust.

There are a number of directions we plan to pur-
sue in the future in order to improve our method.
First, we can possibly apply more linguistic knowl-
edge to improve the quality of sentence compres-
sion. Currently the sentence compression algorith-
m may generate meaningless subtrees. It is rela-
tively hard to decide which clause is redundant in
terms of summarization. Second, we may explore
more domain knowledge to improve the quality of
aspect-oriented summaries. For example, we know
that the “who-affected” aspect is related to person,
and “when, where” are related to Time and Location.
we can import Name Entity Recognition to anno-
tate these phrases and then help locate relevant sen-
tences. Third, we want to extend our event-aspect
model to simultaneously find topics and aspects.

Acknowledgments

This work was supported by the National Nat-
ural Science Foundation of China (NSFC No.
60773088), the National High-tech R&D Program
of China (863 Program No. 2009AA04Z106), and
the Key Program of Basic Research of Shanghai
Municipal S&T Commission (No. 08JC1411700).

References

Chaitanya Chemudugunta, Padhraic Smyth, and Mark
Steyvers. 2007. Modeling general and specific aspects
of documents with a probabilistic topic model. In Ad-
vances in Neural Information Processing Systems 19,
pages 241–248.
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Abstract

Machine-produced text often lacks grammat-
icality and fluency. This paper studies gram-
maticality improvement using a syntax-based
algorithm based onCCG. The goal of the
search problem is to find an optimal parse tree
among all that can be constructed through se-
lection and ordering of the input words. The
search problem, which is significantly harder
than parsing, is solved by guided learning for
best-first search. In a standard word order-
ing task, our system gives a BLEU score of
40.1, higher than the previous result of 33.7
achieved by a dependency-based system.

1 Introduction

Machine-produced text, such asSMT output, often
lacks grammaticality and fluency, especially when
using n-gram language modelling (Knight, 2007).
Recent efforts have been made to improve grammat-
icality using local language models (Blackwood et
al., 2010) and global dependency structures (Wan et
al., 2009). We study grammaticality improvement
using a syntax-based system.

The task is effectively a text-to-text generation
problem where the goal is to produce a grammati-
cal sentence from an ungrammatical and fragmen-
tary input. The input can range from a bag-of-
words (Wan et al., 2009) to a fully-ordered sentence
(Blackwood et al., 2010). A general form of the
problem is to construct a grammatical sentence from
a set of un-ordered input words. However, in cases
where the base system produces fluent subsequences
within the sentence, constraints on the choice and

order of certain words can be fed to the grammati-
cality improvement system. The input may also in-
clude words beyond the output of the base system,
e.g. extra words from theSMT lattice, so that con-
tent word insertion and deletion can be performed
implicity via word selection.

We study the above task usingCCG (Steedman,
2000). The main challenge is the search problem,
which is to find an optimal parse tree among all that
can be constructed with any word choice and order
from the set of input words. We use an approximate
best-first algorithm, guided by learning, to tackle
the more-than-factorial complexity. Beam-search is
used to control the volume of accepted hypotheses,
so that only a very small portion of the whole search
space is explored. The search algorithm is guided by
perceptron training, which ensures that the explored
path in the search space consists of highly proba-
ble hypotheses. This framework of best-first search
guided by learning is a general contribution of the
paper, which could be applied to problems outside
grammaticality improvement.

We evaluate our system using the generation task
of word-order recovery, which is to recover the orig-
inal word order of a fully scrambled input sentence
(Bangalore et al., 2000; Wan et al., 2009). This
problem is an instance of our general task formu-
lation, but without any input constraints, or con-
tent word selection (since all input words are used).
It is straightforward to use this task to evaluate
our system and compare with existing approaches.
Our system gave 40.1 BLEU score, higher than the
dependency-based system of Wan et al. (2009), for
which a BLEU score of 33.7 was reported.
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2 The Grammar

Combinatory Categorial Grammar (CCG; Steedman
(2000)) is a lexicalized grammar formalism, which
associates words with lexical categories. Lexical
categories are detailed grammatical labels, typically
expressing subcategorisation information.CCG, and
parsing with CCG, has been described in detail
elsewhere (Clark and Curran, 2007; Hockenmaier,
2003); here we provide only a short description.

During CCGparsing, adjacent categories are com-
bined usingCCG’s combinatory rules. For example,
a verb phrase in English (S\NP ) can combine with
anNP to its left:

NP S\NP ⇒ S

In addition to binary rule instances, such as the
one above, there are also unary rules which operate
on a single category in order to change its type. For
example, forward type-raising can change a subject
NP into a complex category looking to the right for
a verb phrase:

NP ⇒ S/(S\NP)

Following Hockenmaier (2003), we extract the
grammar by reading rule instances directly from the
derivations in CCGbank (Hockenmaier and Steed-
man, 2007), rather than defining the combinatory
rule schema manually as in Clark and Curran (2007).

3 The Search Algorithm

The input to the search algorithm is a set of words,
each word having a count that specifies the maxi-
mum number of times it can appear in the output.
Typically, most input words can occur only once in
the output. However, punctuation marks and func-
tion words can be given a higher count. Depending
on the fluency of the base output (e.g. the output
of the baseSMT system), some constraints can be
given to specific input words, limiting their order or
identifying them as an atomic phrase, for example.

The goal of the search algorithm is to find an op-
timal parse tree (including the surface string) among
all that can be constructed via selecting and ordering
a subset of words from the input multiset. The com-
plexity of this problem is much higher than a typical
parsing problem, since there is an exponential num-
ber of word choices for the output sentence, each

with a factorial number of orderings. Moreover, dy-
namic programming packing for parsers, such as a
CKY chart, is not applicable, because of the lack of
a fixed word order.

We perform approximate search using a best-
first algorithm. Starting from single words, candi-
date parses are constructed bottom-up. Similar to a
best-first parser (Caraballo and Charniak, 1998), the
highest scored hypothesis is expanded first. A hy-
pothesis is expanded by applyingCCG unary rules
to the hypothesis, or by combining the hypothesis
with existing hypotheses usingCCG binary rules.

We use beam search to control the number of ac-
cepted hypotheses, so that the computational com-
plexity of expanding each hypothesis is linear in the
size of the beam. Since there is no guarantee that a
goal hypothesis will be found in polynomial time,
we apply a robustness mechanism (Riezler et al.,
2002; White, 2004), and construct a default output
when no goal hypothesis is found within a time limit.

3.1 Data Structures

Edges are the basic structures that represent hy-
potheses. Each edge is aCCG constituent, spanning
a sequence of words. Similar to partial parses in a
typical chart parser, edges have recursive structures.
Depending on the number of subedges, edges can
be classified intoleaf edges, unary edges andbinary
edges. Leaf edges, which represent input words,
are constructed first in the search process. Existing
edges are expanded to generate new edges via unary
and binaryCCG rules. An edge that meets the output
criteria is called agoal edge. In the experiments of
this paper, we define a goal edge as one that includes
all input words the correct number of times.

The signature of an edge consists of the cate-
gory label, surface string and head word of the con-
stituent. Two edges areequivalent if they share
the same signature. Given our feature definitions,
a lower scoring edge with the same signature as a
higher scoring edge cannot be part of the highest
scoring derivation.

The number of words in the surface string of an
edge is called thesize of the edge. Other important
substructures of an edge include a bitvector and an
array, which stores the indices of the input words
that the edge contains. Before two edges are com-
bined using a binaryCCG rule, aninput check is per-
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formed to make sure that the total count for a word
from the two edges does not exceed the count for
that word in the input. Intuitively, an edge can record
the count of each unique input word it contains,
and perform the input check in linear time. How-
ever, since most input words typically occur once,
they can be indexed and represented by a bitvector,
which allows a constant time input check. The few
multiple-occurrence words are stored in a count ar-
ray.

In the best-first process, edges to be expanded are
ordered by their scores, and stored in anagenda.
Edges that have been expanded are stored in achart.
There are many ways in which edges could be or-
dered and compared. Here the chart is organised as
a set of beams, each containing a fixed number of
edges with a particular size. This is similar to typical
decoding algorithms for phrase-basedSMT (Koehn,
2010). In each beam, edges are ordered by their
scores, and low score edges are pruned. In addition
to pruning by the beam, only the highest scored edge
is kept among all that share the same signature.

3.2 The Search Process

Figure 1 shows pseudocode for the search algorithm.
During initialization, the agenda (a) and chart (c)
are cleared. All candidate lexical categories are as-
signed to each input word, and the resulting leaf
edges are put onto the agenda.

In the main loop, the best edge (e) is popped from
the agenda. Ife is a goal hypothesis, it is appended
to a list of goals (goal), and the loop is continued
without e being expanded. Ife or any equivalent
edgeẽ of e is already in the chart, the loop continues
without expandinge. It can be proved that any edge
in the chart must have been combined withẽ, and
therefore the expansion ofe is unnecessary.

Edgee is first expanded by applying unary rules,
and any new edges are put into a list (new). Next,e
is matched against each existing edgeẽ in the chart.
e andẽ can be combined if they pass the input check,
and there is a binary rule in which the constituents
are combined.e andẽ are combined in both possible
orders, and any resulting edge is added tonew.

At the end of each loop, edges fromnew are added
to the agenda, andnew is cleared. The loop contin-
ues until a stopping criterion is met. A typical stop-
ping condition is thatgoal containsN goal edges.

a← INITAGENDA(input)
c← INIT CHART()
new← []
goal← []
while not STOP(goal, time):

e← POPBEST(a)
if GOALTEST(e)

APPEND(goal, e)
continue

for ẽ in c:
if EQUIV(ẽ, e):

continue
for e′ in UNARY(e, grammar):

APPEND(new, e′)
for ẽ in c:

if CANCOMBINE(e, ẽ):
e′ ← BINARY (e, ẽ, grammar)
APPEND(new, e′)

if CANCOMBINE(ẽ, e):
e′ ← BINARY (ẽ, e, grammar)
APPEND(new, e′)

for e′ in new:
ADD(a, e′)

ADD(c, e)
new← []

Figure 1: The search algorithm.

We setN to 1 in our experiments. For practical
reasons we also include a timeout stopping condi-
tion. If no goal edges are found before the timeout
is reached, a default output is constructed by the fol-
lowing procedure. First, if any two edges in the chart
pass the input check, and the words they contain
constitute the full input set, they are concatenated to
form an output string. Second, when no two edges in
the chart meet the above condition, the largest edge
ẽ in the chart is chosen. Then edges in the chart are
iterated over in the larger first order, with any edge
that passes the input check withẽ concatenated with
ẽ and ẽ updated. The final̃e, which can be shorter
than the input, is taken as the default output.

4 Model and Features

We use a discriminative linear model to score edges,
where the score of an edgee is calculated using the
global feature vectorΦ(e) and the parameter vector
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~w of the model.

SCORE(e) = Φ(e) · ~w

Φ(e) represents the counts of individual features
of e. It is computed incrementally as the edge is
built. At each constituent level, the incremental fea-
ture vector is extracted according to the feature tem-
plates from Table 1, and we use the termconstituent
level vector φ to refer to it. So for any edgee, φ(e)
consists of features from the top rule of the hierar-
chical structure ofe. Φ(e) can be written as the sum
of φ(e′) of all recursive subedgese′ of e, including
e itself:

Φ(e) =
∑

e′∈e

φ(e′)

The parameter update in Section 5 is in terms of con-
stituent level vectors.

The features in Table 1 represent patterns in-
cluding the constituent label; the head word of the
constituent; the size of the constituent; word,POS

and lexical category N-grams resulting from a bi-
nary combination; and the unary and binary rules
by which the constituent is constructed. They can
be classified roughly into “parsing” features (those
about the parse structure, such as the binary rule)
and “generation features” (those about the surface
string, such as word bigrams), although some fea-
tures, such as “rule + head word + non-head word”,
contain both types of information.

5 The Learning Algorithm

The statistical model plays two important roles in
our system. First, as in typical statistical systems, it
is expected to give a higher score to a more correct
hypothesis. Second, it is also crucial to the speed of
the search algorithm, since the best-first mechanism
relies on a model to find goal hypotheses efficiently.
As an indication of the impact of the model on effi-
ciency, if the model parameters are set to all zeros,
the search algorithm cannot find a result for the first
sentence in the development data within two hours.

We perform training on a corpus ofCCG deriva-
tions, where constituents in a gold-standard deriva-
tion serve as gold edges. The training algorithm
runs the decoder on each training example, updat-
ing the model when necessary, until the gold goal

condition feature

constituent + size
all edges constituent + head word

constituent + size + head word
constituent + headPOS

constituent + leftmost word
constituent + rightmost word

size> 1 consti. + leftmostPOSbigram
consti. + rightmostPOSbigram
consti. + lmostPOS+ rmostPOS

the binary rule
the binary rule + head word
rule + head word + non-head word
bigrams resulting from combination

binary POSbigrams resulting from combi.
edges word trigrams resulting from combi.

POStrigrams resulting from combi.
resulting lexical categary trigrams
resulting word +POSbigrams
resultingPOS+ word bigrams
resultingPOS+ word +POStrigrams

unary unary rule
edges unary rule + headw

Table 1: Feature template definitions.

edge is recovered. We use the perceptron (Rosen-
blatt, 1958) to perform parameter updates. The tra-
ditional perceptron has been adapted to structural
prediction (Collins, 2002) and search optimization
problems (Daumé III and Marcu, 2005; Shen et al.,
2007). Our training algorithm can be viewed as an
adaptation of the perceptron to our best-first frame-
work for search efficiency and accuracy.

We choose to update parameters as soon as the
best edge from the agenda is not a gold-standard
edge. The intuition is that all gold edges are forced
to be above all non-gold edges on the agenda. This
is a strong precondition for parameter updates. An
alternative is to update when a gold-standard edge
falls off the chart, which corresponds to the pre-
condition for parameter updates of Daumé III and
Marcu (2005). However, due to the complexity of
our search task, we found that reasonable training
efficiency cannot be achieved by the weaker alterna-
tives. Our updates lead both to correctness (edges in
the chart are correct) and efficiency (correct edges
are found at the first possible opportunity).
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During a perceptron update, an incorrect predic-
tion, corresponding to the current best edge in the
agenda, is penalized, and the corresponding gold
edge is rewarded. However, in our scenario it is not
obvious what the corresponding gold edge should
be, and there are many ways in which the gold
edge could be defined. We investigated a number
of alternatives, for example trying to find the “best
match” for the incorrect prediction. In practice we
found that the simple strategy of selecting the lowest
scored gold-standard edge in the agenda was effec-
tive, and the results presented in this paper are based
on this method.

After an update, there are at least two alterna-
tive methods to continue. The first is to reinitial-
ize the agenda and chart using the new model, and
continue until the current training example is cor-
rectly predicted. This method is calledaggressive
training (Shen et al., 2007). In order to achieve
reasonable efficiency, we adopt a second approach,
which is to continue training without reinitializing
the agenda and chart. Instead, only edges from the
top of the agenda down to the lowest-scoring gold-
standard edge are given new scores according to the
new parameters.

Figure 2 shows pseudocode for the learning al-
gorithm applied to one training example. The ini-
tialization is identical to the test search, except that
the list of goal edges is not maintained. In the main
loop, the best edgee is popped off the agenda. If it
is the gold goal edge, the training for this sentence
finishes. Ife is not a gold edge, parameter updates
are performed and the loop is continued withe be-
ing discarded. Only gold edges are pushed onto the
chart throughout the training process.

When updating parameters, the current non-gold
edge (e) is used as the negative example, and the
smallest gold edge in the agenda (minGold) is used
as the corresponding positive example. The model
parameters are updated by adding the constituent
level feature vector (see Section 4) ofminGold, and
subtracting the constituent level feature vector ofe.
Note that we do not use the global feature vector in
the update, since only the constituent level param-
eter vectors are compatible for edges with different
sizes. After a parameter update, edges are rescored
from the top of the agenda down tominGold.

The training algorithm iterates through all train-

a← INITAGENDA(input)
c← INIT CHART()
new← []
while true:

e← POPBEST(a)
if GOLD(e) and GOALTEST(e):

return
if not GOLD(e):

popped← []
n← 0
while n < GOLDCOUNT(a):

ẽ← POPBEST(a)
APPEND(popped, ẽ)
if GOLD(ẽ):

minGold← ẽ
n← n + 1

~w← ~w − φ(e) + φ(minGold)
for ẽ in popped:

RECOMPUTESCORE(ẽ)
ADD(a, ẽ)

for ẽ in c:
RECOMPUTESCORE(ẽ)

continue
for e′ in UNARY(e, grammar):

APPEND(new, e′)
for ẽ in c:

if CANCOMBINE(e, ẽ):
e′ ← BINARY (e, ẽ, grammar)
APPEND(new, e′)

if CANCOMBINE(ẽ, e):
e′ ← BINARY (ẽ, e, grammar)
APPEND(new, e′)

for e′ in new:
ADD(a, e′)

ADD(c, e)
new← []

Figure 2: The learning algorithm.

ing examplesN times, and the final parameter vec-
tor is used as the model. In our experiments,N is
chosen according to results on development data.

6 Experiments

We use CCGBank (Hockenmaier and Steedman,
2007) for experimental data. CCGbank is theCCG

version of the Penn Treebank. Sections 02–21 are
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used for training, section 00 is used for development
and section 23 for the final test.

Original sentences from CCGBank are trans-
formed into bags of words, with sequence informa-
tion removed, and passed to our system as input
data. The system outputs are compared to the orig-
inal sentences for evaluation. Following Wan et al.
(2009), we use the BLEU metric (Papineni et al.,
2002) for string comparison. Whilst BLEU is not
an ideal measure of fluency or grammaticality, be-
ing based on n-gram precision, it is currently widely
used for automatic evaluation and allows us to com-
pare directly with existing work (Wan et al., 2009).

In addition to the surface string, our system also
produces theCCGparse given an input bag of words.
The quality of the parse tree can reflect both the
grammaticality of the surface string and the quality
of the trained grammar model. However, there is
no direct way to automatically evaluate parse trees
since output word choice and order can be differ-
ent from the gold-standard. Instead, we indirectly
measure parse quality by calculating the precision of
CCG lexical categories. SinceCCG lexical categories
contain so much syntactic information, they provide
a useful measure of parse quality. Again because the
word order can be different, we turn both the output
and the gold-standard into a bag of word/category
pairs, and calculate the percentage of matched pairs
as the lexical category precision.

For fair comparison with Wan et al. (2009), we
keep base NPs as atomic units when preparing the
input. Wan et al. (2009) used base NPs from Penn
Treebank annotation, while we extract base NPs
from the CCGBbank by taking as base NPs the NPs
that do not recursively contain other NPs. These
base NPs mostly correspond to the base NPs from
the Penn Treebank. In the training data, there are
242,813 Penn Treebank base NPs with an average
size of 1.09, and 216,670 CCGBank base NPs with
an average size of 1.19.

6.1 Development Tests

Table 2 shows a set of development experiment re-
sults after one training iteration. Three different
methods of assigning lexical categories are used.
The first (“dictionary”) is to assign all possible lex-
ical categories to each input word from the dictio-
nary. The lexical category dictionary is built using

Length Timeout
Method Timeout BLEU ratio ratio

0.5s 34.98 84.02 62.26
1s 35.40 85.66 57.87

dictionary 5s 36.27 89.05 45.79
10s 36.45 89.13 42,13
50s 37.07 92.52 32.41

0.5s 36.54 84.26 66.07
1s 37.50 86.69 58.22

β = 0.0001 5s 38.75 90.15 43.23
10s 39.14 91.35 38.36
50s 39.58 93.09 30.53

0.5s 40.87 85.66 61.27
1s 42.04 87.99 53.11

β = 0.075 5s 43.99 91.20 40.30
10s 44.23 92.14 35.70
50s 45.08 93.70 29.43

Table 2: Development tests using various levels of lexical
categories and timeouts, after one training iteration.

the training sections of CCGBank. For each word
occurring more than 20 times in the corpus, the dic-
tionary has an entry with all lexical categories the
word has been seen with. For the rest of the words,
the dictionary maintains an entry for eachPOSwhich
contains all lexical categories it has been seen with.
There are on average 26.8 different categories for
each input word by this method.

In practice, it is often unnecessary to leave lexi-
cal category disambiguation completely to the gram-
maticality improvement system. When it is reason-
able to assume that the input sentence for the gram-
maticality improvement system is sufficiently fluent,
a list of candidate lexical categories can be assigned
automatically to each word via supertagging (Clark
and Curran, 2007) on the input sequence. We use
the C&C supertagger1 to assign a set of probable
lexical categories to each input word using the gold-
standard order. When the input is noisy, the accuracy
of a supertagger tends to be lower than when the in-
put is grammatical. One way to address this problem
is to allow the supertagger to produce a larger list
of possible supertags for each input word, and leave
the ambiguity to the grammatical improvement sys-
tem. We simulate the noisy input situation by using

1http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Download.
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Precision

dictionary 58.5%
β = 0.0001 59.7%
β = 0.075% 77.0%

Table 3: Lexical category accuracies. Timeout = 5s. 1
training iteration.

a small probability cutoff (β) value in the supertag-
ger, and supertag correctly ordered input sentences
before breaking them into bags of words. With aβ
value of 0.0001, there are 5.4 lexical categories for
each input word in the development test (which is
smaller than the dictionary case).

The average number of lexical categories per
word drops to 1.3 whenβ equals 0.075, which is the
value used for parsing newspaper text in Clark and
Curran (2007). We include thisβ in our experiments
to compare the effect of differentβ levels.

The table shows that the BLEU score of the gram-
maticality improvement system is higher when a su-
per tagger is used, and the higher theβ value, the
better the BLEU score. In practice, theβ value
should be set in accordance with the lack of gram-
maticality and fluency in the input. The dictionary
method can be used when the output is extremely
unreliable, while a small beta value can be used if
the output is almost fluent.

Due to the default output mechanism on timeout,
the system can sometimes fail to produce sentences
that cover all input words. We choose five different
timeout settings between 0.5s to 50s, and compare
the speed/quality tradeoff. In addition to BLEU, we
report the percentage of timeouts and the ratio of the
sum of all output sentence lengths to the sum of all
input sentence lengths.

When the timeout value increases, the BLEU
score generally increases. The main effect of a larger
timeout is the increased possibility of a complete
sentence being found. As the time increases from
0.5s to 50s using the dictionary method, for exam-
ple, the average output sentence length increases
from 84% of the input length to 93%.

Table 3 shows the lexical category accuracies us-
ing the dictionary, and supertagger with differentβ
levels. The timeout limit is set to 5 seconds. As
the lexical category ambiguity decreases, the accu-

Length dictionary β = 0.0001 β = 0.075

≤ 5 75.65 89.42 92.64
≤ 10 57.74 66.00 78.54
≤ 20 42.44 48.89 58.23
≤ 40 37.48 40.32 46.00
≤ 80 36.50 39.01 44.26
all 36.27 38.75 43.99

Table 4: BLEU scores measured on different lengths on
development data. Timeout = 5s. 1 training iteration.

racy increases. The best lexical category accuracy
of 77% is achieved when using a supertagger with
a β level 0.075, the level for which the least lexical
category disambiguation is required. However, com-
pared to the 93% lexical category accuracy of aCCG

parser (Clark and Curran, 2007), which also uses aβ
level of 0.075 for the majority of sentences, the ac-
curacy of our grammaticality improvement system
is much lower. The lower score reflects the lower
quality of the parse trees produced by our system.
Besides the difference in the algorithms themselves,
one important reason is the much higher complexity
of our search problem.

Table 4 shows the BLEU scores measured by dif-
ferent sizes of input. We also give some example
output sentences in Figure 3. It can be seen from
the table that the BLEU scores are higher when the
size of input is smaller. For sentences shorter than
20 words, our system generally produces reason-
ably fluent and grammatical outputs. For longer sen-
tences, the grammaticality drops. There are three
possible reasons. First, larger constituents require
more steps to construct. The model and search algo-
rithm face many more ambiguities, and error propa-
gation is more severe. Second, the search algorithm
often fails to find a goal hypothesis before timeout,
and a default output that is less grammatical than
a complete constituent is constructed. Long sen-
tences have comparatively more input words uncov-
ered in the output. Third, the upper bound is not 100,
and presumably lower for longer sentences, because
there are many ways to generate a grammatical sen-
tence given a bag of words. For example, the bag
{ cats, chase, dogs} can produce two equally fluent
and grammatical sentences.

The relatively low score for long sentences is un-
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(dictionary) our products There is no asbestos in now .
(β = 0.0001) in our products now There is no asbestos .
(β = 0.075) There is no asbestos in our products now .

(dictionary) No price for the new shares has been set .
(bothβ) No price has been set for the new shares .

(all) Federal Data Corp. got a $ 29.4 million Air Force contract for
intelligence data handling .

(dictionary) was a nonexecutive director of Rudolph Agnew and former chairman
of Consolidated Gold Fields PLC , this British industrial
conglomerate , 55 years old . named

(β = 0.0001) old Consolidated Gold Fields PLC , was named 55 years , former
chairman of Rudolph Agnew and a nonexecutive director of this
British industrial conglomerate .

(β = 0.075) Consolidated Gold Fields PLC , 55 years old , was named former
chairman of Rudolph Agnew and a nonexecutive director of this
British industrial conglomerate .

(dictionary) McDermott International Inc. said its Babcock & Wilcox unit
completed the sale of its Bailey Controls Operations for
Finmeccanica S.p . A. to $ 295 million .

(β = 0.0001) $ 295 million McDermott International Inc. for the sale of
its Babcock & Wilcox unit said its Bailey Controls Operations
completed to Finmeccanica S.p . A. .

(β = 0.075) McDermott International Inc. said its Bailey Controls
Operations completed the sale of Finmeccanica S.p . A. for its
Babcock & Wilcox unit to $ 295 million .

Figure 3: Example outputs on development data.

likely to be such a problem in practice, because
the base system (e.g. anSMT system) is likely to
produce sentences with locally fluent subsequences.
When fluent local phrases in the input are treated as
atomic units, the effective sentence length is shorter.

All the above development experiments were per-
formed using only one training iteration. Figure 4
shows the effect of different numbers of training it-
erations. For the final test, based on the graphs in
Figure 4, we chose the training iterations to be 8, 6
and 4 for the dictionary,β = 0.0001 andβ = 0.075
methods, respectively.

6.2 Final Accuracies

Table 5 shows the final results of our system, to-
gether with the MST-based (“Wan 2009 CLE”)
and assignment-based (“Wan 2009 AB”) systems
of Wan et al. (2009). Our system outperforms the

BLEU

Wan 2009 CLE 26.8
Wan 2009 AB 33.7
This paper dictionary 40.1

This paperβ = 0.0001 43.2
This paperβ = 0.075 50.1

Table 5: Final accuracies.

dependency grammar-based systems, and using a
supertagger with smallβ value produces the best
BLEU. Note that through the use of a supertagger,
we are no longer assuming that the input is a bag of
words without any order, and therefore only the dic-
tionary results are directly comparable with Wan et
al. (2009)2.

2We also follow Wan et al. (2009) by assuming each word is
associated with itsPOStag.
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7 Related Work

Both Wan et al. (2009) and our system use approx-
imate search to solve the problem of input word or-
dering. There are three differences. First, Wan et
al. use a dependency grammar to model grammati-
cality, while we useCCG. Compared to dependency
trees,CCG has stronger category constraints on the
parse structure. Moreover,CCG allows us to reduce
the ambiguity level of the search algorithm through
the assignment of possible lexical categories to input
words, which is useful when the input has a basic
degree of fluency, as is often the case in a grammat-
icality improvement task.

Second, we use learning to optimise search in or-
der to explore a large search space. In contrast, Wan
et al. break the search problem into a sequence of
sub tasks and use greedy search to connect them.
Finally, in addition to ordering, our algorithm fur-
ther allows word selection. This gives our system
the flexibility to support word insertion and deletion.

White (2004) describes a system that performs
CCG realization using best-first search. The search
process of our algorithm is similar to his work.
The problem we solve is different from realization,
which takes an input in logical form and produces
a corresponding sentence. Without constraints, the
word order ambiguities can be much larger with a
bag of words, and we use learning to guide our
search algorithm. Espinosa et al. (2008) apply hy-
pertagging to logical forms to assign lexical cate-
gories for realization. White and Rajkumar (2009)
further use perceptron reranking on N-best outputs
to improve the quality.

The use of perceptron learning to improve search
has been proposed in guided learning for easy-first
search (Shen et al., 2007) and LaSO (Daumé III and
Marcu, 2005). LaSO is a general framework for
various search strategies. Our learning algorithm is
similar to LaSO with best-first inference, but the pa-
rameter updates are different. In particular, LaSO
updates parameters when all correct hypotheses are
lost, but our algorithm makes an update as soon as
the top item from the agenda is incorrect. Our algo-
rithm updates the parameters using a stronger pre-
condition, because of the large search space. Given
an incorrect hypothesis, LaSO finds the correspond-
ing gold hypothesis for perceptron update by con-
structing its correct sibling. In contrast, our algo-
rithm takes the lowest scored gold hypothesis cur-
rently in the agenda to avoid updating parameters
for hypotheses that may have not been constructed.

Our parameter update strategy is closer to the
guided learning mechanism for the easy-first algo-
rithm of Shen et al. (2007), which maintains a queue
of hypotheses during search, and performs learning
to ensure that the highest scored hypothesis in the
queue is correct. However, in easy-first search, hy-
potheses from the queue are ranked by the score of
their next action, rather than the hypothesis score.
Moreover, Shen et al. use aggressive learning and
regenerate the queue after each update, but we per-
form non-agressive learning, which is faster and is
more feasible for our complex search space. Similar
methods to Shen et al. (2007) have also been used
in Shen and Joshi (2008) and Goldberg and Elhadad
(2010).

8 Conclusion

We proposed a grammaticality improvement system
using CCG, and evaluated it using a standard input
word ordering task. Our system gave higher BLEU
scores than the dependency-based system of Wan et
al. (2009). We showed that the complex search prob-
lem can be solved effectively using guided learning
for best-first search.

Potential improvements to our system can be
made in several areas. First, a large scale lan-
guage model can be incorporated into our model in
the search algorithm, or through reranking. Sec-
ond, a heuristic future cost (e.g. Varges and Mel-
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lish (2010)) can be considered for each hypothesis
so that it also considers the words that have not been
used, leading to better search. Future work also in-
cludes integration with anSMT system, where con-
tent word selection will be applicable.
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Abstract

Traditional computational approaches to re-
ferring expression generation operate in a de-
liberate manner, choosing the attributes to be
included on the basis of their ability to dis-
tinguish the intended referent from its dis-
tractors. However, work in psycholinguis-
tics suggests that speakers align their refer-
ring expressions with those used previously in
the discourse, implying less deliberate choice
and more subconscious reuse. This raises the
question as to which is a more accurate char-
acterisation of what people do. Using a cor-
pus of dialogues containing 16,358 referring
expressions, we explore this question via the
generation of subsequent references in shared
visual scenes. We use a machine learning ap-
proach to referring expression generation and
demonstrate that incorporating features that
correspond to the computational tradition does
not match human referring behaviour as well
as using features corresponding to the process
of alignment. The results support the view that
the traditional model of referring expression
generation that is widely assumed in work on
natural language generation may not in fact
be correct; our analysis may also help explain
the oft-observed redundancy found in human-
produced referring expressions.

1 Introduction

Computational work on referring expression genera-
tion (REG) has an extensive history, and a wide vari-
ety of algorithms have been proposed, dealing with
various facets of what is recognised to be a com-
plex problem. Almost all of this work sees the task

as being concerned with choosing those attributes
of an intended referent that distinguish it from the
other entities with which it might be confused (see,
for example, Dale (1989), Dale and Reiter (1995),
Krahmer et al. (2003), van Deemter and Krahmer
(2007), Gardent and Striegnitz (2007)). Indepen-
dently, an alternative way of thinking about refer-
ence has arisen within the psycholinguistics com-
munity: there is now a long tradition of work that
explores how a dialogue participant’s forms of ref-
erence are influenced by those previously used for
a given entity. Most recently, this line of work has
been discussed in terms of the notions of alignment
(Pickering and Garrod, 2004) and conceptual pacts
(Clark and Wilkes-Gibbs, 1986; Brennan and Clark,
1996).

We suspect that neither approach tells the full
story, and so we are interested in exploring whether
the two perspectives should be integrated. Using a
large corpus of referring expressions in task-oriented
dialogues, this paper presents a machine learning
approach that allows us to combine features corre-
sponding to the two perspectives. Our results show
that models based on the alignment perspective out-
perform models based on traditional REG considera-
tions, as well as a number of simpler baselines.

The paper is structured as follows. In Section 2,
we outline the two perspectives on subsequent ref-
erence, and summarise related work. In Section 3,
we describe the iMAP Corpus and the referring ex-
pressions it contains. In Section 4, we describe the
approach we take to learning models of referential
behaviour using this data, and in Section 5 we dis-
cuss the results of a number of experiments based
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on this approach, followed by an error analysis in
Section 6. Section 7 draws some conclusions and
discusses future work.

2 Related Work

2.1 The Algorithmic Approach

We use the term algorithmic approach here to re-
fer to the perspective that is common to the consid-
erable body of work within computational linguis-
tics on the problem of referring expression gener-
ation developed over the last 20 years. Much of
this work takes as its starting point the characterisa-
tion of the problem expressed in (Dale, 1989). This
work has focused on the design of algorithms which
take into account the context of reference in order to
decide what properties of an entity should be men-
tioned in order to distinguish that entity from others
with which it might be confused. Early work was
concerned with subsequent reference in discourse,
inspired by Grosz and Sidner’s (1986) observations
on how the attentional structure of a discourse made
particular referents accessible at any given point.
More recently, attention has shifted to initial ref-
erence in visual domains, driven in large part by
the availability of the TUNA dataset and the shared
tasks that make use of it (Gatt et al., 2008). The con-
struction of distinguishing descriptions has consis-
tently been a key consideration in this body of work.

Scenarios that require the generation of references
in multi-turn dialogues that concern visual scenes
are likely to be among the first where we can ex-
pect computational approaches to referring expres-
sion generation to be practically useful. Surpris-
ingly, however, the more recent work on initial refer-
ence in visual domains and the earlier work on sub-
sequent reference in discourse remain somewhat dis-
tinct and separate from each other, despite much the
same algorithms having been used in both. There
is very little work that brings these two strands to-
gether by looking at both initial and subsequent ref-
erences in dialogues that concern visual scenes. An
exception here is the machine learning approach de-
veloped by Stoia et al. (2006), who aimed at building
a dialogue system for a situated agent giving instruc-
tions in a virtual 3D world. However, their approach
was concerned with choosing the type of reference
to use (definite or indefinite, pronominal, bare or

modified head noun), and not with the content of the
reference; and their data set consisted of only 1242
referring expressions.

2.2 The Alignment Approach

Meanwhile, starting with the early work of Carroll
(1980), a quite distinct strand of research in psy-
cholinguistics has explored how a speaker’s form of
reference to an entity is impacted by the way that en-
tity has been previously referred to in the discourse
or dialogue. The general idea behind what we will
call the alignment approach is that a conversational
participant will often adopt the same semantic, syn-
tactic and lexical alternatives as the other party in a
dialogue. This perspective is most strongly associ-
ated with the work of Pickering and Garrod (2004).
With respect to reference in particular, speakers are
said to form conceptual pacts in their use of lan-
guage (Clark and Wilkes-Gibbs, 1986; Brennan and
Clark, 1996). Although there is disagreement about
the exact mechanisms that enable alignment and
conceptual pacts, the implication of much of this
work is that one speaker introduces an entity by
means of some description, and then (perhaps after
some negotiation) both conversational participants
share this form of reference, or a form of reference
derived from it, when they subsequently refer to that
entity.

Recent work by Goudbeek and Krahmer (2010)
supports the view that subconscious alignment does
indeed take place at the level of content selection for
referring expressions. The participants in their study
were more likely to use a dispreferred attribute to
describe a target referent if this attribute had recently
been used in a description by a confederate.

There is some work within natural language gen-
eration that attempts to model the process of align-
ment (Buschmeier et al., 2009; Janarthanam and
Lemon, 2009), but this is predominantly concerned
with what we might think of as the ‘lexical perspec-
tive’, focussing on lexical choice rather than the se-
lection of appropriate semantic content for distin-
guishing descriptions.

2.3 Combined Models

This paper is not the first to look at how the algorith-
mic approach and the alignment approach might be
integrated in REG. An early machine learning ap-
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Figure 1: An example pair of maps.

proach to content selection was presented by Jor-
dan and Walker (2000; 2005); they were also in-
terested in an exploration of the validity of differ-
ent psycholinguistic models of reference produc-
tion, including Grosz and Sidner’s (1986) model
of discourse structure, the conceptual pacts model
of Clark and colleagues, and the intentional influ-
ences model developed by Jordan (2000). However,
their data set consists of only 393 referring expres-
sions, compared to our 16,358, and these expres-
sions had functions other than identification; most
importantly, the entities referred to were not part of
a shared visual scene as is the case in our data.

Gupta and Stent (2005) instantiated Dale and Re-
iter’s (1995) Incremental Algorithm with a prefer-
ence ordering that favours the attributes that were
used in the previous mention of the same referent. In
a second variant, they even require these attributes
to be included in a subsequent reference. Differ-
ently from most other work on REG, they extended
the task to include ordering of the attributes in the
surface form. They therefore create a special evalu-
ation metric that takes ordering into account, which
makes it hard to compare the performance they re-
port to that of any system that is not concerned with
attribute ordering, such as ours. Their evaluation set
was also considerably smaller than ours: they used

1294 and 471 referring expressions from two differ-
ent corpora, compared to our test set of 4947 refer-
ring expressions.

More recently in (Viethen et al., 2010), we pre-
sented a rule-based system that addressed a specific
instance of the problem we consider here, using the
same corpus as we do: we singled out 2579 first ref-
erences to landmarks by the second speaker (‘second
speaker initial references’) and attempted to repro-
duce these using a system based on Dale and Re-
iter’s (1995) Incremental Algorithm. Although the
data set was a subset of the one used here, the system
did not reach the same performance (see Section 5).

3 Referring Expressions in the iMAP
Corpus

The iMAP Corpus (Louwerse et al., 2007) is a col-
lection of 256 dialogues between 32 participant-
pairs who contributed 8 dialogues each. Both par-
ticipants had a map of the same environment, but
one participant’s map showed a route winding its
way between the landmarks on the map; see Fig-
ure 1. The task was for this participant (the in-
struction giver, IG) to describe this route in such a
way that their partner (the instruction follower, IF)
could draw it onto their map; this was complicated
by some discrepancies between the two maps, such
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as missing landmarks, the unavailability of colour in
some regions due to ink stains, and small differences
between some landmarks.

The landmarks differ from each other in type,
colour, and one other attribute, which is different
for each type of landmark. For example, there are
different kinds of birds (eagle, ostrich, penguin . . . );
fish differ by their patterns (dotted, checkered, plain
. . . ), aliens have different shapes (circular, hexago-
nal . . . ), and bugs appear in small clusters of differ-
ing numbers. In addition to these inherent attributes
of the landmarks, participants used spatial relations
to other items on the map. Each referring expression
in the corpus is annotated with a unique identifier
corresponding to the landmark that it describes and
the semantic values of the attributes that it contains.
This collection of annotations forms the basic data
we use in our experiments.

For each landmarkR referred to in a dialogue, we
view the sequence of references to this landmark as
a coreference chain, notated 〈R1, R2, . . . , Rn〉. By
convention, R1 is termed the initial reference, and
all other references in the chain are subsequent ref-
erences. From the corpus as a whole we extracted
34,127 referring expressions in 9558 chains. The av-
erage length of a chain is 4.74; and the longest coref-
erence chain contains 43 references. References
may be contributed to a chain by either speaker, and
can be arbitrarily far apart: in the data, 4201 refer-
ences are in the utterance immediately following the
preceding reference in the chain, but the distance be-
tween references in a chain can be as high as 423
utterances.

We removed from the data any annotation that
was not concerned with the four landmark attributes,
type, colour, relation, or the landmark’s other dis-
tinguishing attribute. For example, ‘semantically
empty’ head nouns such as thing or set. Ordi-
nal numbers that were annotated as the use of the
number attribute were re-tagged as spatial relations,
as these usually described the position of the target
within a line of landmarks.

As a result of the removal of annotations not per-
taining to the use of the four landmark attributes,
2785 referring expressions had no annotation left;
we removed these instances from the final data set.
We also do not attempt to replicate the remaining
5552 plural referring expressions or the 3062 pro-

Content Pattern Count Proportion
〈other〉 5893 36.0%
〈other, type〉 3684 22.5%
〈other, colour〉 1630 10.0%
〈other, colour, type〉 1021 6.2%
〈colour〉 969 5.9%
〈relation〉 777 4.7%
〈other, relation〉 587 3.6%
〈type〉 574 3.5%
〈colour, type〉 434 2.7%
〈other, relation, type〉 312 1.9%
〈relation, type〉 236 1.4%
〈colour, relation〉 99 0.6%
〈other, colour, relation〉 81 0.5%
〈other, colour, relation, type〉 44 0.3%
〈colour, relation, type〉 17 0.1%

Total 16,358

Table 1: The 15 content patterns by frequency.

nouns found in the corpus.1 However, we do in-
clude all of these instances in the feature extraction
step, on the assumption that they might impact on
the content of subsequent references. Similarly, we
filter out 6369 initial references after we have ex-
tracted features from them, since we focus here on
the generation of subsequent reference only. The re-
maining 16,358 referring expressions form the data
which we use in our experiments.

Contrary to findings from other corpora, in which
colour was used much more frequently (Gatt, 2007;
Viethen and Dale, 2008), the colour attribute was
used in only 26.3% of the referring expressions in
our data set. This is probably due to the often low
reliability of colour in this task caused by the ink
stains. The proportion of referring expressions men-
tioning the target’s type might, at 38.7%, also seem
low. This can be explained by the fact that one quar-
ter of the landmarks, namely birds and buildings, are
more likely to be described in terms of their specific
kind than in terms of their generic type. This also
helps explain why the overall use of the other at-
tribute, which for some landmarks was their kind,
was used in 81.0% of all instances. Spatial relations
were used in 13.16% of the referring expressions,
comparable to other corpora in the literature.

1The additional issues that arise in generating plural refer-
ences and deciding when to use pronouns considerably compli-
cate the problem; see (Gatt, 2007).
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We can think of each referring expression as be-
ing a linguistic realisation of a content pattern: this
is the collection of attributes that are used in that
instance. The attributes can be derived from the
property-level annotation given in the corpus. So,
for example, if a particular reference appears as the
noun phrase the blue penguin, annotated seman-
tically as 〈blue, penguin〉, then the corresponding
content pattern is 〈colour, kind〉. Our aim is to repli-
cate the content pattern of each referring expression
in the corpus. Table 1 lists the 15 content patterns
that occur in our data set in order of frequency.

4 Modelling Referential Behaviour

4.1 The Two Perspectives
Our task is defined simply as follows: for each sub-
sequent referenceR in the corpus, can we predict the
content pattern that will be used in that reference?
As we noted at the outset of the paper, the literature
would appear to suggest two distinct approaches to
this problem. What we have characterised as the al-
gorithmic approach can be summarised thus:

At the point where a reference is required,
a speaker determines the relevant features
of other entities in the context, then com-
putes the content of a referring expression
which distinguishes the intended referent
from the other entities.

The alignment approach, on the other hand, can be
summarised thus:

Speakers align the forms of reference they
use to be similar or identical to references
that have been used before. In particular,
once a form of reference to the intended
referent has been established, they tend to
re-use that form of reference, or perhaps
an abbreviated version of it.

The alignment approach would appear to be prefer-
able on the grounds of computational cost: we
would expect that retrieving a previously-used refer-
ring expression, or parts thereof, generally requires
less computation than building a new referring ex-
pression from scratch.

On the other hand, if the context has changed
in any way, then a previously-used form of ref-
erence may no longer be effective in identifying

Map Features
Main Map type most frequent type of LM on this map
Main Map other other attribute if the most frequent type of LM
Mixedness are other LM types present on this map?
Ink Orderliness shape of the ink blot(s) on the IF’s map
Lmprop Features
other Att type of the other attribute of the target
[att] Value value for each att of target
[att] Difference was att of target different between the two

maps?
Missing was target missing one of the maps?
Inked Out was target inked] out on the IG’s map?
Speaker Features
Dyad ID ID of the pair of participant-pair
Speaker ID ID of the person who uttered this RE
Speaker Role was the speaker the IG or the IF?

Table 2: The Ind feature set.

the intended referent, and recomputation may be
required.2 This is precisely the consideration on
which the initial work on referring expression gen-
eration was based, inspired by Grosz and Sidner’s
(1986) observations about how the changing atten-
tional structure of a discourse moves different en-
tities in and out of focus. However, a straightfor-
ward recomputation of reference based on the cur-
rrent context carries the risk that the most effective
set of properties to use may change quite radically;
if no account is taken of the history of previous ref-
erences to the entity, it’s conceivable that one could
produce a description that is so different from the
previous description that they are virtually unreco-
gisable as descriptions of the same entity. Ideally,
what we want to do is modify a previous description
to do the job.

These observations suggest that, in order to
choose the most appropriate form of reference for an
entity, we need to simultaneously take account of:

• the other entities from which it must be distin-
guished, both in the visual context and in the
preceding discourse (in other words, exactly
the information that traditional algorithmic ap-
proaches consider);

• how this entity, and perhaps other entities, have
been referred to in the past (precisely the infor-
mation that the alignment approach considers).

2Unfortunately, determining what counts as a change of con-
text, especially in visual scenes, is fraught with difficulty.
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TradREG Features (Visual)
Count Vis Distractors number of visual distractors
Prop Vis Same [att] proportion of visual distractors with

same att
Dist Closest distance to the closest visual distrac-

tor
Closest Same [att] has the closest distractor the same

att?
Dist Closest Same [att] distance to the closest distractor of

same att as target
Cl Same type Same [att] has the closest distractor of the same

type also the same att?
TradREG Features (Discourse)
Count Intervening LMs number of other LMs mentioned since

the last mention of the target
Prop Intervening [att] proportion of intervening LMs for

which att was used AND which have
the same att as target

Table 3: The TradREG feature set.

The set of features we describe next attempts to cap-
ture these two aspects of the problem.

4.2 Features
The number of factors that can be hypothesised as
having an impact on the form of a referring expres-
sion in a dialogic setting associated with a visual do-
main is very large. Attempting to incorporate all of
these factors into parameters for rule-based systems,
and then experimenting with different settings for
these parameters, is prohibitively complex. Instead,
we here capture a wide range of factors as features
that can be used by a machine learning algorithm to
automatically induce from the data a classifier that
predicts for a given set of features the attributes that
should be used in a referring expression.

The features we extracted from the data set are
listed in Tables 2–4.3 They fall into five subsets.
Map Features capture design characteristics of the
maps the current dialogue is about; Speaker Fea-
tures capture the identity and role of the partici-
pants; and LMprop Features capture the inherent
visual properties of the target referent. For our ex-
periments, we group the Map, LMprop and Speaker
feature sets into one theory-independent set (Ind).
Most importantly for our present considerations,

3In these tables, att is an abbreviatory variable that is instan-
tiated once for each of the four attributes type, colour, relation,
and the other distinguishing attribute of the landmark. The ab-
breviation LM stands for landmark

Alignment Features (Recency)
Last Men Speaker Same who made the last mention of target?
Last Mention [att] was att used in the last mention of

target?
Dist Last Mention Utts distance to the last mention of target

in utterances
Dist Last Mention REs distance to the last mention of target

in REs
Dist Last [att] LM Utts distance in utterances to last use of

att for target
Dist Last [att] LM REs distance in REs to last use of att for

target
Dist Last [att] Dial Utts distance in utterances to last use of

att
Dist Last [att] Dial REs distance in REs to last use of att
Dist Last RE Utts distance to last RE in utterances
Last RE [att] was att mentioned in the last RE?
Alignment Features (Frequency)
Count [att] Dial how often has att been used in the dialogue?
Count [att] LM how often has att been used for target?
Quartile quartile of the dialogue the RE was uttered in
Dial No number of dialogues already completed +1
Mention No number of previous mentions of target +1

Table 4: The Alignment feature set.

TradREG Features capture factors that the tradi-
tional computational approaches to referring expres-
sion generation take account of, in particular prop-
erties of the discourse and visual distractors; and
Alignment Features capture factors that we would
expect to play a role in the psycholinguistic models
of alignment and conceptual pacts.

4.3 The Models
For the experiments described here, we used a 70–30
split to divide the data into a training set (11,411 in-
stances) and a test set (4,947 instances). In addition
to the main prediction class content pattern, the split
was stratified for Speaker ID and Quartile to ensure
that training and test set contained the same pro-
portion of descriptions from each speaker and each
quartile of the dialogues. We used the J48 algorithm
implemented in the Weka toolkit (Witten and Frank,
2005) to train decision trees with the task of judging,
based on the given features, which content pattern
should be used.

First, we have three separate baseline models:

HeadNounOnly generates only the property that is
the most likely head noun for the target, which
is kind for birds and buildings and type for all
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other landmarks. This is a form of ‘reduced
reference’ strategy.

RepeatLast represents a very simplistic alignment
approach. It generates the same content pattern
that was used in the previous mention of the
target referent.

MajorityClass generates the content pattern most
commonly used in the training set.

We then have a number of models that use subsets
of the features described above:

AllFeatures is a decision tree trained on all fea-
tures;

TradREG is a decision tree trained on the
TradREG features only;

Alignment is a decision tree trained on the Align-
ment features only;

Ind is a decision tree trained on the Ind features
only;

Alignment+Ind is a decision tree trained on all but
the TradREG features;

TradREG+Ind is a decision tree trained on all but
the Alignment features; and

TradREG+Alignment is a decision tree trained on
all but the Ind features.

5 Results

In this section we report how the models described
in the previous section performed on the held-out
test set in comparison to each other and to the three
baselines.

We use Accuracy and average DICE score for our
comparisons; these are the most commonly used
measures in the REG literature (see, for example,
Gatt et al., 2008). Given two sets of attributes, A
and B, DICE is computed as

(1) DICE =
2× |A ∩B|
|A|+ |B| .

This gives some measure of the overlap between two
referring expressions, assigning a partial score if the
two sets share attributes but are not identical. The
Accuracy of a system is the proportion of test in-
stances for which it achieves a DICE score of 1, sig-
nifying a perfect match.

col other type rel Comb. Pattern
Acc Acc Acc Acc Acc DICE

HeadOnly n/a n/a n/a n/a 23.1 0.49
RepLast n/a n/a n/a n/a 38.4 0.55
Majority 73.8 81.0 61.7 86.8 36.0 0.65

predicts no yes no no 〈other〉
Trad 74.6 84.8 77.1 87.0 47.3 0.73
Align 83.6 84.1 80.7 87.5 54.6 0.78
Ind 81.9 82.8 81.4 88.0 52.7 0.78
Align+Ind 86.1 85.3 82.4 88.7 58.2 0.81
Trad+Ind 82.2 84.1 81.1 87.1 52.5 0.78
Trad+Align 84.1 84.0 80.1 86.8 53.9 0.78
AllFeatures 86.2 85.8 83.2 88.5 58.8 0.81

Table 5: Performance of our models compared to the
baselines. Model names are abbreviated for space rea-
sons. The Accuracy (given in %) of all models is signifi-
cantly better than that of the highest performing baseline
at p<.01 according to the χ2 statistic.

We tested two different ways of generating con-
tent patterns based on the different feature sets de-
scribed above: PatternAtOnce builds a decision
tree that chooses one of the 15 content patterns that
occur in our data set; whereas CombinedPattern
builds attribute-specific decision trees (one for each
of the four attributes that occur in the data: colour,
other, type, and relation), and then combines their
predictions into a complete content pattern. We
found that CombinedPattern slightly outperformed
PatternAtOnce, although the difference is not statis-
tically significant for all feature sets. For space rea-
sons, we report in what follows only on the slightly
better-performing CombinedPattern model.

Table 5 compares the performances of the three
baselines and the decision trees based on the five fea-
ture subsets for each of the individual attributes and
for the combined content pattern; note that the Head-
NounOnly and RepeatLast baselines do not make
attribute-specific predictions. The table shows that
the learned systems outperform all three baselines
for the individual attributes as well as for the com-
bined content pattern.

A comparison of the Alignment feature set and
the TradREG feature set shows that the former out-
performs the latter for the attribute-specific trees
which predict the use of the colour attribute and the
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use of relation, and that the combined patterns re-
sulting from the Alignment trees are a better match
of the human-produced patterns both in terms of Ac-
curacy (p<.01 for all three categories, using χ2) and
DICE. Interestingly, even the theory-independent
Ind features outperform the TradREG features.

The comparison between TradREG+Ind and
Alignment+Ind again shows a clear advantage for
the Alignment features: dropping them from the
complete feature set significantly hurts performance
compared to AllFeatures (χ2=80.5, p<.01), while
dropping the TradREG features has no significant
impact. Also consistent with the results of the three
individual feature sets, dropping the Ind features
hurts performance more than dropping the TradREG
features, but less than dropping the Alignment fea-
tures. Training on the complete feature set (All-
Features) achieves the highest performance, which
is significantly better than that of all other features
sets (p<.01 using χ2) except Alignment+Ind.

These results suggest that considerations at the
heart of traditional REG approaches do not play as
important a role as those postulated by alignment-
based models for the selection of semantic content
for subsequent referring expressions.

We also note that the Accuracy scores achieved
by our learned systems are similar to the best num-
bers previously reported in the REG literature. While
Jordan and Walker’s (2005) data set is not directly
comparable, they achieved a maximum of 59.9%
Accuracy, against our 58.8%. Stoia et al.’s (2006)
best Accuracy was 31.2%, albeit on a slightly dif-
ferent task. Even in the arguably much simpler
non-dialogic domains of the REG competitions con-
cerned with pure content selection, the best perform-
ing system achieved only 53% Accuracy (see Gatt et
al., 2008). The most comparable approach, the rule-
based system we presented in (Viethen et al., 2010)
for a subset of the data used here, was not able to
outperform a RepeatLast baseline at 40.2% Accu-
racy and an average DICE score of 0.67.

6 Error Analysis

An important question to ask is how wrong the mod-
els really are when they do not succeed in perfectly
matching a human-produced reference in our test
set. It might be that they choose a completely dif-

Acc Dice Super Sub Inter Noover
Trad 47.3 0.75 14.4 22.2 5.5 10.5

Align 54.6 0.78 16.0 16.1 3.9 9.4
Ind 52.7 0.78 17.1 17.2 3.9 9.0

Align+Ind 58.2 0.81 16.0 14.8 3.1 7.9
Trad+Ind 52.5 0.78 17.4 17.5 3.8 8.8

Trad+Align 53.9 0.78 17.1 15.6 4.3 9.0
AllFeature 58.8 0.81 16.5 14.5 3.1 7.2

Table 6: The proportions of test instances for which each
model produced a subset, a superset, some other form of
intersection or no-overlap to the human reference.

ferent set of attributes from those included by the
human speaker; however, the Accuracy score also
counts as incorrect any set that only partly overlaps
with the reference found in the test set.

The DICE score gives us a partial answer to this
question, as it assigns a score that is based on the
size of the overlap between the attribute set cho-
sen by the model and that included by the human
speaker. A DICE score that is equal to the Accuracy
score would mean that each referring expression was
either reproduced perfectly, or that a set of attributes
was chosen that did not overlap with the original
one at all. The fact that all our models achieved
DICE scores much higher than their Accuracy scores
shows that they only rarely got it completely wrong.

Table 6 gives a more fine-grained picture by list-
ing, for each model, what percentage of the refer-
ring expressions it produced contained a subset of
the attributes included in the human reference, what
percentage were a superset, what percentage had
another form of partial intersection, and what per-
centage had no commonality with the human refer-
ence. Interestingly, a large number of the referring
expressions produced by the model trained only on
TradREG features are subsets of the human refer-
ence. This indicates that human speakers tend to in-
clude more attributes than are strictly speaking nec-
essary to distinguish the landmark.4 The Alignment
model does not as often produce a subset of the gold
standard content pattern, suggesting that it might be
alignment considerations that account for some of

4That humans often produce ‘redundant’ descriptions, in op-
position to the target behaviour of some of the early REG algo-
rithms, is of course an oft-observed fact.
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both both 1st 2nd either pot.
corr. wrong corr. corr. corr. Acc

Trad vs Ind 1797 1794 545 811 3153 63.7
Trad vs Align 1742 1647 600 958 3300 66.7
Trad vs Align+Ind 1849 1574 493 1031 3373 68.2

Align vs Trad+Ind 1908 1557 792 690 3390 68.5
Align vs Ind 1872 1511 828 736 3436 69.5

Ind vs Trad+Align 1840 1511 768 828 3436 69.5

Table 7: Comparison of the predictions for the combined
content pattern between the models trained on mutually
exclusive feature sets.

the apparent redundancy that human-produced refer-
ring expressions contain.

A second important question is whether the differ-
ent feature sets are doing the same work, or whether
they complement each other. Table 7 lists for those
pairings of our learned models which were based on
mutually exclusive feature sets how many referring
expressions both models predicted correctly, how
many both failed to predict, and how many were pre-
dicted correctly by either of the two models.

Note the high numbers in the columns listing the
counts of instances which both models got either
correct or wrong: these show that there is con-
siderable overlap between all pairings. The small-
est agreement lies at 3424 instances (68.2%) be-
tween TradREG (the least successful model) and
Alignment+Ind (the most successful model). How-
ever, they also each predict correct solutions that the
other misses: 493 (10.0%) for TradREG and 1031
(20.8%) for Alignment+Ind.

The last two columns of Table 7 show the number
of instances that at least one of the two models in
each pairing got correct and the proportion out of
all test instances that this number represents. This
proportion is the maximum Accuracy that could be
achieved by a model that combines the two models
in a pairing and then correctly chooses which one to
use in each instance. The maximum Accuracies that
could be achieved in this way on our data set lie just
below 70%, significantly higher than any numbers
reported in the literature on the task of generating
subsequent reference.

7 Conclusions

Using the largest corpus of referring expressions
to date, we have shown how both the traditional
computational view of REG and the alternative psy-
cholinguistic alignment approach can be captured
via a large set of features for machine learning. Ad-
ditionally, we defined a number of theory indepen-
dent features. Using this approach we have pre-
sented three main findings.

First, we have demonstrated that a model using all
these features to predict content patterns in subse-
quent references in shared visual scenes delivers an
Accuracy of 58.8% and a DICE score of 0.81, out-
performing models based only on features inspired
by one of the two approaches. However, we found
that the features based on traditional REG considera-
tions do not contribute as much to this score as those
based on the alignment approach, and that dropping
the traditional REG features does not significantly
hurt the performance of a model based on alignment
and theory-independent features.

Second, our error analysis showed that the main
reason for the low performance of a model based
on traditional algorithmic features is that it often
chooses too few attributes. The fact that the model
based on the alignment features does not make this
mistake so frequently suggests that it may be the
psycholinguistic considerations incorporated in our
alignment features that lead people to add those ad-
ditional attributes.

Finally, while the different models make the same
correct predictions about the content of referring ex-
pressions in many cases, there are also a consider-
able number of cases where the models based on
either the traditional algorithmic features (10.0%)
or the alignment and independent features (20.8%)
alone make correct predictions that the other gets
wrong; this suggests that a system with the ability
to choose the correct model in each of those cases
(perhaps based on a hypothesis as to whether or not
the relevant context has changed) could reach an ac-
curacy of almost 70% on our data set. In future work
we plan to identify further features that will allow us
to inform this choice so that we can move towards
this level of performance.
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Abstract

Previous work has shown that high quality
phrasal paraphrases can be extracted from
bilingual parallel corpora. However, it is not
clear whether bitexts are an appropriate re-
source for extracting more sophisticated sen-
tential paraphrases, which are more obviously
learnable from monolingual parallel corpora.
We extend bilingual paraphrase extraction to
syntactic paraphrases and demonstrate its abil-
ity to learn a variety of general paraphrastic
transformations, including passivization, da-
tive shift, and topicalization. We discuss how
our model can be adapted to many text gener-
ation tasks by augmenting its feature set, de-
velopment data, and parameter estimation rou-
tine. We illustrate this adaptation by using
our paraphrase model for the task of sentence
compression and achieve results competitive
with state-of-the-art compression systems.

1 Introduction

Paraphrases are alternative ways of expressing the
same information (Culicover, 1968). Automatically
generating and detecting paraphrases is a crucial as-
pect of many NLP tasks. In multi-document sum-
marization, paraphrase detection is used to collapse
redundancies (Barzilay et al., 1999; Barzilay, 2003).
Paraphrase generation can be used for query expan-
sion in information retrieval and question answer-
ing systems (McKeown, 1979; Anick and Tipirneni,
1999; Ravichandran and Hovy, 2002; Riezler et al.,
2007). Paraphrases allow for more flexible matching
of system output against human references for tasks
like machine translation and automatic summariza-
tion (Zhou et al., 2006; Kauchak and Barzilay, 2006;
Madnani et al., 2007; Snover et al., 2010).

Broadly, we can distinguish two forms of para-
phrases: phrasal paraphrases denote a set of surface
text forms with the same meaning:

the committee’s second proposal
the second proposal of the committee

while syntactic paraphrases augment the surface
forms by introducing nonterminals (or slots) that are
annotated with syntactic constraints:

the NP1’s NP2

the NP2 of the NP1

It is evident that the latter have a much higher poten-
tial for generalization and for capturing interesting
paraphrastic transformations.

A variety of different types of corpora (and se-
mantic equivalence cues) have been used to auto-
matically induce paraphrase collections for English
(Madnani and Dorr, 2010). Perhaps the most nat-
ural type of corpus for this task is a monolingual
parallel text, which allows sentential paraphrases to
be extracted since the sentence pairs in such corpora
are perfect paraphrases of each other (Barzilay and
McKeown, 2001; Pang et al., 2003). While rich syn-
tactic paraphrases have been learned from monolin-
gual parallel corpora, they suffer from very limited
data availability and thus have poor coverage.

Other methods obtain paraphrases from raw
monolingual text by relying on distributional simi-
larity (Lin and Pantel, 2001; Bhagat and Ravichan-
dran, 2008). While vast amounts of data are
readily available for these approaches, the distri-
butional similarity signal they use is noisier than
the sentence-level correspondency in parallel cor-
pora and additionally suffers from problems such as
mistaking cousin expressions or antonyms (such as
{boy , girl} or {rise, fall}) for paraphrases.
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Abundantly available bilingual parallel corpora
have been shown to address both these issues, ob-
taining paraphrases via a pivoting step over foreign
language phrases (Bannard and Callison-Burch,
2005). The coverage of paraphrase lexica extracted
from bitexts has been shown to outperform that
obtained from other sources (Zhao et al., 2008a).
While there have been efforts pursuing the extrac-
tion of more powerful paraphrases (Madnani et
al., 2007; Callison-Burch, 2008; Cohn and Lapata,
2008; Zhao et al., 2008b), it is not yet clear to what
extent sentential paraphrases can be induced from
bitexts. In this paper we:

• Extend the bilingual pivoting approach to para-
phrase induction to produce rich syntactic para-
phrases.

• Perform a thorough analysis of the types of
paraphrases we obtain and discuss the para-
phrastic transformations we are capable of cap-
turing.

• Describe how training paradigms for syntac-
tic/sentential paraphrase models should be tai-
lored to different text-to-text generation tasks.

• Demonstrate our framework’s suitability for a
variety of text-to-text generation tasks by ob-
taining state-of-the-art results on the example
task of sentence compression.

2 Related Work

Madnani and Dorr (2010) survey a variety of data-
driven paraphrasing techniques, categorizing them
based on the type of data that they use. These
include large monolingual texts (Lin and Pantel,
2001; Szpektor et al., 2004; Bhagat and Ravichan-
dran, 2008), comparable corpora (Barzilay and Lee,
2003; Dolan et al., 2004), monolingual parallel cor-
pora (Barzilay and McKeown, 2001; Pang et al.,
2003), and bilingual parallel corpora (Bannard and
Callison-Burch, 2005; Madnani et al., 2007; Zhao et
al., 2008b). We focus on the latter type of data.

Paraphrase extraction using bilingual parallel cor-
pora was proposed by Bannard and Callison-Burch
(2005) who induced paraphrases using techniques
from phrase-based statistical machine translation
(Koehn et al., 2003). After extracting a bilingual

phrase table, English paraphrases are obtained by
pivoting through foreign language phrases. Since
many paraphrases can be extracted for a phrase,
Bannard and Callison-Burch rank them using a para-
phrase probability defined in terms of the translation
model probabilities p(f |e) and p(e|f):

p(e2|e1) =
∑

f

p(e2, f |e1) (1)

=
∑

f

p(e2|f, e1)p(f |e1) (2)

≈
∑

f

p(e2|f)p(f |e1). (3)

Several subsequent efforts extended the bilin-
gual pivoting technique, many of which introduced
elements of more contemporary syntax-based ap-
proaches to statistical machine translation. Mad-
nani et al. (2007) extended the technique to hier-
archical phrase-based machine translation (Chiang,
2005), which is formally a synchronous context-free
grammar (SCFG) and thus can be thought of as a
paraphrase grammar. The paraphrase grammar can
paraphrase (or “decode”) input sentences using an
SCFG decoder, like the Hiero, Joshua or cdec MT
systems (Chiang, 2007; Li et al., 2009; Dyer et al.,
2010). Like Hiero, Madnani’s model uses just one
nonterminal X instead of linguistic nonterminals.

Three additional efforts incorporated linguistic
syntax. Callison-Burch (2008) introduced syntac-
tic constraints by labeling all phrases and para-
phrases (even non-constituent phrases) with CCG-
inspired slash categories (Steedman and Baldridge,
2011), an approach similar to Zollmann and Venu-
gopal (2006)’s syntax-augmented machine transla-
tion (SAMT). Callison-Burch did not formally de-
fine a synchronous grammar, nor discuss decoding,
since his presentation did not include hierarchical
rules. Cohn and Lapata (2008) used the GHKM
extraction method (Galley et al., 2004), which is
limited to constituent phrases and thus produces
a reasonably small set of syntactic rules. Zhao
et al. (2008b) added slots to bilingually extracted
paraphrase patterns that were labeled with part-of-
speech tags, but not larger syntactic constituents.

Before the shift to statistical natural language pro-
cessing, paraphrasing was often treated as syntactic
transformations or by parsing and then generating
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from a semantic representation (McKeown, 1979;
Muraki, 1982; Meteer and Shaked, 1988; Shem-
tov, 1996; Yamamoto, 2002). Indeed, some work
generated paraphrases using (non-probabilistic) syn-
chronous grammars (Shieber and Schabes, 1990;
Dras, 1997; Dras, 1999; Kozlowski et al., 2003).

After the rise of statistical machine translation, a
number of its techniques were repurposed for para-
phrasing. These include sentence alignment (Gale
and Church, 1993; Barzilay and Elhadad, 2003),
word alignment and noisy channel decoding (Brown
et al., 1990; Quirk et al., 2004), phrase-based models
(Koehn et al., 2003; Bannard and Callison-Burch,
2005), hierarchical phrase-based models (Chiang,
2005; Madnani et al., 2007), log-linear models and
minimum error rate training (Och, 2003a; Madnani
et al., 2007; Zhao et al., 2008a), and here syntax-
based machine translation (Wu, 1997; Yamada and
Knight, 2001; Melamed, 2004; Quirk et al., 2005).

Beyond cementing the ties between paraphrasing
and syntax-based statistical machine translation, the
novel contributions of our paper are (1) an in-depth
analysis of the types of structural and sentential
paraphrases that can be extracted with bilingual piv-
oting, (2) a discussion of how our English–English
paraphrase grammar should be adapted to specific
text-to-text generation tasks (Zhao et al., 2009) with
(3) a concrete example of the adaptation procedure
for the task of paraphrase-based sentence compres-
sion (Knight and Marcu, 2002; Cohn and Lapata,
2008; Cohn and Lapata, 2009).

3 SCFGs in Translation

The model we use in our paraphrasing approach is
a syntactically informed synchronous context-free
grammar (SCFG). The SCFG formalism (Aho and
Ullman, 1972) was repopularized for statistical ma-
chine translation by Chiang (2005). Formally, a
probabilistic SCFG G is defined by specifying

G = 〈N , TS , TT ,R, S〉,

whereN is a set of nonterminal symbols, TS and TT
are the source and target language vocabularies, R
is a set of rules and S ∈ N is the root symbol. The
rules inR take the form:

C → 〈γ, α,∼, w〉,

PP/NN → mit einer  |  with a
NP → das leck  |  the leak

VP →  NP PP/NN detonation zu schliessen  |  closing NP PP/NN blast 

they

VP
VP

PRP VBD NNDTNN

NP NPNP

closing          tried the   

S

sie versuchten das zu schliessen

leak

leck

with          a   blast
DT IN

PP

VBG

einermit detonation

Figure 1: Synchronous grammar rules for translation are
extracted from sentence pairs in a bixtext which have
been automatically parsed and word-aligned. Extraction
methods vary on whether they extract only minimal rules
for phrases dominated by nodes in the parse tree, or more
complex rules that include non-constituent phrases.

where the rule’s left-hand side C ∈ N is a nonter-
minal, γ ∈ (N∪TS)∗ and α ∈ (N∪TT )∗ are strings
of terminal and nonterminal symbols with an equal
number of nonterminals cNT (γ) = cNT (α) and

∼: {1 . . . cNT (γ)} → {1 . . . cNT (α)}

constitutes a one-to-one correspondency function
between the nonterminals in γ and α. A non-
negative weight w ≥ 0 is assigned to each rule, re-
flecting the likelihood of the rule.

Rule Extraction Phrase-based approaches to sta-
tistical machine translation (and their successors)
extract pairs of (e, f) phrases from automatically
word-aligned parallel sentences. Och (2003b)
described various heuristics for extracting phrase
alignments from the Viterbi word-level alignments
that are estimated using Brown et al. (1993) word-
alignment models.

These phrase extraction heuristics have been ex-
tended so that they extract synchronous grammar
rules (Galley et al., 2004; Chiang, 2005; Zollmann
and Venugopal, 2006; Liu et al., 2006). Most of
these extraction methods require that one side of the
parallel corpus be parsed. This is typically done au-
tomatically with a statistical parser.

Figure 1 shows examples of rules obtained from
a sentence pair. To extract a rule, we first choose a
source side span f like das leck. Then we use phrase
extraction techniques to find target spans e that are
consistent with the word alignment (in this case the
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leak is consistent with our f ). The nonterminal sym-
bol that is the left-hand side of the SCFG rule is then
determined by the syntactic constituent that domi-
nates e (in this case NP). To introduce nonterminals
into the right-hand side of the rule, we can apply
rules extracted over sub-phrases of f , synchronously
substituting the corresponding nonterminal symbol
for the sub-phrases on both sides. The synchronous
substitution applied to f and e then yields the corre-
spondency ∼.

One significant differentiating factor between the
competing ways of extracting SCFG rules is whether
the extraction method generates rules only for con-
stituent phrases that are dominated by a node in
the parse tree (Galley et al., 2004; Cohn and
Lapata, 2008) or whether they include arbitrary
phrases, including non-constituent phrases (Zoll-
mann and Venugopal, 2006; Callison-Burch, 2008).
We adopt the extraction for all phrases, including
non-constituents, since it allows us to cover a much
greater set of phrases, both in translation and para-
phrasing.

Feature Functions Rather than assigning a single
weight w, we define a set of feature functions ~ϕ =
{ϕ1...ϕN} that are combined in a log-linear model:

w = −
N∑

i=1

λi logϕi. (4)

The weights ~λ of these feature functions are set to
maximize some objective function like BLEU (Pap-
ineni et al., 2002) using a procedure called minimum
error rate training (MERT), owing to Och (2003a).
MERT iteratively adjusts the weights until the de-
coder produces output that best matches reference
translations in a development set, according to the
objective function. We will examine appropriate ob-
jective functions for text-to-text generation tasks in
Section 6.2.

Typical features used in statistical machine trans-
lation include phrase translation probabilities (cal-
culated using maximum likelihood estimation over
all phrase pairs enumerable in the parallel cor-
pus), word-for-word lexical translation probabili-
ties (which help to smooth sparser phrase transla-
tion estimates), a “rule application penalty” (which
governs whether the system prefers fewer longer

they can not be dangerous to the rest of the village

VP/PP

VB+JJ

S

NP

NP/NN

sie könnengefährlich werdennichtdem rest des dorfes

VP/PP

VB+JJ

S

NP

NP/NN

NP/NN → dem rest des  |   the rest of the

NP → NP/NN dorfes  |  NP/NN village
VP/PP → nicht VB+JJ können  |  can not VB+JJ

VB+JJ → gefährlich werden  |  be dangerous

S → sie NP VP/PP  |  they VP/PP to NP

Figure 2: An example derivation produced by a syntactic
machine translation system. Although the synchronous
trees are unlike the derivations found in the Penn Tree-
bank, their yield is a good translation of the German.

phrases or a greater number of shorter phrases), and
a language model probability.

Decoding Given an SCFG and an input source
sentence, the decoder performs a search for the sin-
gle most probable derivation via the CKY algorithm.
In principle the best translation should be the En-
glish sentence e that is the most probable after sum-
ming over all d ∈ D derivations, since many deriva-
tions yield the same e. In practice, we use a Viterbi
approximation and return the translation that is the
yield of the single best derivation:

ê = arg max
e∈Trans(f)

∑

d∈D(e,f)

p(d, e|f)

≈ yield(arg max
d∈D(e,f)

p(d, e|f)). (5)

Derivations are simply successive applications of the
SCFG rules such as those given in Figure 2.

4 SCFGs in Paraphrasing

Rule Extraction To create a paraphrase grammar
from a translation grammar, we extend the syntac-
tically informed pivot approach of Callison-Burch
(2008) to the SCFG model. For this purpose, we
assume a grammar that translates from a given for-
eign language to English. For each pair of trans-
lation rules where the left-hand side C and foreign
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string γ match:

C → 〈γ, α1,∼1, ~ϕ1〉
C → 〈γ, α2,∼2, ~ϕ2〉,

we create a paraphrase rule:

C → 〈α1, α2,∼, ~ϕ〉,

where the nonterminal correspondency relation ∼
has been set to reflect the combined nonterminal
alignment:

∼ = ∼−11 ◦ ∼2 .

Feature Functions In the computation of the fea-
tures ~ϕ from ~ϕ1 and ~ϕ2 we follow the approximation
in Equation 3, which yields lexical and phrasal para-
phrase probability features. Additionally, we add a
boolean indicator for whether the rule is an iden-
tity paraphrase, δidentity . Another indicator feature,
δreorder , fires if the rule swaps the order of two non-
terminals, which enables us to promote more com-
plex paraphrases that require structural reordering.

Decoding With this, paraphrasing becomes an
English-to-English translation problem which can
be formulated similarly to Equation 5 as:

ê2 ≈ yield(arg max
d∈D(e2,e1)

p(d, e2|e1)).

Figure 3 shows an example derivation produced as a
result of applying our paraphrase rules in the decod-
ing process. Another advantage of using the decoder
from statistical machine translation is that n-gram
language models, which have been shown to be use-
ful in natural language generation (Langkilde and
Knight, 1998), are already well integrated (Huang
and Chiang, 2007).

5 Analysis

A key motivation for the use of syntactic paraphrases
over their phrasal counterparts is their potential to
capture meaning-preserving linguistic transforma-
tions in a more general fashion. A phrasal system is
limited to memorizing fully lexicalized transforma-
tions in its paraphrase table, resulting in poor gener-
alization capabilities. By contrast, a syntactic para-
phrasing system intuitively should be able to address
this issue and learn well-formed and generic patterns
that can be easily applied to unseen data.

twelve cartoons insulting the prophet mohammad
CD NNS JJ DT NNP

NP

NP

VP
NP

DT+NNP

12 the prophet mohammad
CD NNS JJ DT NNP

NP

NP
VP

NP

DT+NNP

cartoons offensive

Foreign Pivot PhraseParaphrase Rule

JJ → offensive  |   insulting
Lexical paraphrase:

NP → NP that VP  |  NP VP
Reduced relative clause:

NP → CD of the NNS  |  CD NNS
Partitive construction: 

VP → are JJ to NP  |  JJ NP
Pred. adjective copula deletion:

JJ -> beleidigend  |  offensive
JJ -> beleidigend  |  insulting

NP -> NP die VP  |  NP VP
NP -> NP die VP  |  NP that VP

NP -> CD der NNS  |  CD of the NNS
NP -> CD der NNS  |  CD NNS

VP → sind JJ für NP  |  are JJ to NP
VP → sind JJ für NP  |  JJ NP

of the that are to

Figure 3: An example of a synchronous paraphrastic
derivation. A few of the rules applied in the parse are
show in the left column, with the pivot phrases that gave
rise to them on the right.

To put this expectation to the test, we investigate
how our grammar captures a number of well-known
paraphrastic transformations.1 Table 1 shows the
transformations along with examples of the generic
grammar rules our system learns to represent them.
When given a transformation to extract a syntactic
paraphrase for, we want to find rules that neither
under- nor over-generalize. This means that, while
replacing the maximum number of syntactic argu-
ments with nonterminals, the rules ideally will both
retain enough lexicalization to serve as sufficient ev-
idence for the applicability of the transformation and
impose constraints on the nonterminals to ensure the
arguments’ well-formedness.

The paraphrases implementing the possessive rule
and the dative shift shown in Table 1 are a good
examples of this: the two noun-phrase arguments
to the expressions are abstracted to nonterminals
while each rule’s lexicalization provides an appro-
priate frame of evidence for the transform. This is
important for a good representation of dative shift,
which is a reordering transformation that fully ap-
plies to certain ditransitive verbs while other verbs
are uncommon in one of the forms:

1The data and software used to extract the grammar we draw
these examples from is described in Section 6.5.
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Possessive rule NP → the NN of the NNP | the NNP ’s NN
NP → the NNS 1 made by NNS 2 | the NNS 2’s NNS 1

Dative shift VP → give NN to NP | give NP the NN
VP → provide NP1 to NP2 | give NP2 NP1

Adv./adj. phrase move S/VP → ADVP they VBP | they VPB ADVP
S → it is ADJP VP | VP is ADJP

Verb particle shift VP → VB NP up | VB up NP

Reduced relative clause SBAR/S → although PRP VBP that | although PRP VBP
ADJP → very JJ that S | JJ S

Partitive constructions NP → CD of the NN | CD NN
NP → all DT\NP | all of the DT\NP

Topicalization S → NP , VP . | VP , NP .
Passivization SBAR→ that NP had VBN | which was VBN by NP

Light verbs VP → take action ADVP | to act ADVP
VP → TO take a decision PP | TO decide PP

Table 1: A selection of meaning-preserving transformations and hand-picked examples of syntactic paraphrases that
our system extracts capturing these.

give decontamination equipment to Japan
give Japan decontamination equipment

provide decontamination equipment to Japan
? provide Japan decontamination equipment

Note how our system extracts a dative shift rule for
to give and a rule that both shifts and substitutes a
more appropriate verb for to provide.

The use of syntactic nonterminals in our para-
phrase rules to capture complex transforms also
makes it possible to impose constraints on their ap-
plication. For comparison, as Madnani et al. (2007)
do not impose any constraints on how the nontermi-
nal X can be realized, their equivalent of the topi-
calization rule would massively overgeneralize:

S → X1, X2 . | X2, X1 .

Additional examples of transforms our use of syn-
tax allows us to capture are the adverbial phrase
shift and the reduction of a relative clause, as well
as other phenomena listed in Table 1.

Unsurprisingly, syntactic information alone is not
sufficient to capture all transformations. For in-
stance it is hard to extract generic paraphrases for all
instances of passivization, since our syntactic model
currently has no means of representing the morpho-
logical changes that the verb undergoes:

the reactor leaks radiation
radiation is leaking from the reactor .

Still, for cases where the verb’s morphology does
not change, we manage to learn a rule:

the radiation that the reactor had leaked
the radiation which leaked from the reactor .

Another example of a deficiency in our synchronous
grammar models are light verb constructs such as:

to take a walk
to walk .

Here, a noun is transformed into the corresponding
verb – something our synchronous syntactic CFGs
are not able to capture except through memorization.

Our survey shows that we are able to extract ap-
propriately generic representations for a wide range
of paraphrastic transformations. This is a surpris-
ing result which shows that bilingual parallel cor-
pora can be used to learn sentential paraphrases, and
that they are a viable alternative to other data sources
like monolingual parallel corpora, which more obvi-
ously contain sentential paraphrases, but are scarce.

6 Text-to-Text Applications

The core of many text-to-text generation tasks is
sentential paraphrasing, augmented with specific
constraints or goals. Since our model borrows much
of its machinery from statistical machine translation
– a sentential rewriting problem itself – it is straight-
forward to use our paraphrase grammars to generate
new sentences using SMT’s decoding and param-
eter optimization techniques. Our framework can
be adapted to many different text-to-text generation
tasks. These could include text simplification, sen-
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tence compression, poetry generation, query expan-
sion, transforming declarative sentences into ques-
tions, and deriving hypotheses for textual entail-
ment. Each individual text-to-text application re-
quires that our framework be adapted in several
ways, by specifying:

• A mechanism for extracting synchronous
grammar rules (in this paper we argue that
pivot-based paraphrasing is widely applicable).

• An appropriate set of rule-level features that
capture information pertinent to the task (e.g.
whether a rule simplifies a phrase).

• An appropriate “objective function” that scores
the output of the model, i.e. a task-specific
equivalent to the BLEU metric in SMT.

• A development set with examples of the sen-
tential transformations that we are modeling.

• Optionally, a way of injecting task-specific
rules that were not extracted automatically.

In the remainder of this section, we illustrate how
our bilingually extracted paraphrases can be adapted
to perform sentence compression, which is the task
of reducing the length of sentence while preserving
its core meaning. Most previous approaches to sen-
tence compression focused only on the deletion of
a subset of words from the sentence (Knight and
Marcu, 2002). Our approach follows Cohn and La-
pata (2008), who expand the task to include substi-
tutions, insertions and reorderings that are automat-
ically learned from parallel texts.

6.1 Feature Design

In Section 4 we discussed phrasal probabilities.
While these help quantify how good a paraphrase
is in general, they do not make any statement on
task-specific things such as the change in language
complexity or text length. To make this information
available to the decoder, we enhance our paraphrases
with four compression-targeted features. We add the
count features csrc and ctgt , indicating the number of
words on either side of the rule as well as two differ-
ence features: cdcount = ctgt − csrc and the anal-
ogously computed difference in the average word
length in characters, cdavg .

6.2 Objective Function
Given our paraphrasing system’s connection to
SMT, the naive/obvious choice for parameter op-
timization would be to optimize for BLEU over a
set of paraphrases, for instance parallel English ref-
erence translations for a machine translation task
(Madnani et al., 2007). For a candidate C and a ref-
erence R, (with lengths c and r) BLEU is defined as:

BLEUN (C,R)

=

{
e(1−c/r) · e

∑N
n=1 logwnpn if c/r ≤ 1

e
∑N

n=1 logwnpn otherwise
,

where pn is the modified n-gram precision of C
against R, with typically N = 4 and wn = 1

N . The
“brevity penalty” term e(1−c/r) is added to prevent
short candidates from achieving perfect scores.

Naively optimizing for BLEU, however, will re-
sult in a trivial paraphrasing system heavily biased
towards producing identity “paraphrases”. This is
obviously not what we are looking for. Moreover,
BLEU does not provide a mechanism for directly
specifying a per-sentence compression rate, which
is desirable for the compression task.

Instead, we propose PRÉCIS, an objective func-
tion tailored to the text compression task:

PRÉCISλ,ϕ(I, C,R)

=

{
eλ(ϕ−c/i) · BLEU(C,R) if c/i ≥ ϕ
BLEU(C,R) otherwise

For an input sentence I , an output C and ref-
erence compression R (with lengths i, c and r),
PRÉCIS combines the precision estimate of BLEU

with an additional “verbosity penalty” that is ap-
plied to compressions that fail to meet a given target
compression rate ϕ. We rely on the BLEU brevity
penalty to prevent the system from producing overly
aggressive compressions. The scaling term λ deter-
mines how severely we penalize deviations from ϕ.
In our experiments we use λ = 10.

It is straightforward to find similar adaptations for
other tasks. For text simplification, for instance, the
penalty term can include a readability metric. For
poetry generation we can analogously penalize out-
puts that break the meter (Greene et al., 2010).
6.3 Development Data
To tune the parameters of our paraphrase system for
sentence compression, we need an appropriate cor-
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pus of reference compressions. Since our model is
designed to compress by paraphrasing rather than
deletion, the commonly used deletion-based com-
pression data sets like the Ziff-Davis corpus are not
suitable. We have thus created a corpus of com-
pression paraphrases. Beginning with 9570 tuples
of parallel English–English sentences obtained from
multiple reference translations for machine transla-
tion evaluation, we construct a parallel compression
corpus by selecting the longest reference in each tu-
ple as the source sentence and the shortest reference
as the target sentence. We further retain only those
sentence pairs where the compression rate cr falls in
the range 0.5 < cr ≤ 0.8. From these, we randomly
select 936 sentences for the development set, as well
as 560 sentences for a test set that we use to gauge
the performance of our system.

6.4 Grammar Augmentations

As we discussed in Section 5, the paraphrase gram-
mar we induce is capable of representing a wide va-
riety of transformations. However, the formalism
and extraction method are not explicitly geared to-
wards a compression application. For instance, the
synchronous nature of our grammar does not allow
us to perform deletions of constituents as done by
Cohn and Lapata (2007)’s tree transducers. One way
to extend the grammar’s capabilities towards the re-
quirements of a given task is by injecting additional
rules designed to capture appropriate operations.

For the compression task, this could include
adding rules to delete target-side nonterminals:

JJ → JJ | ε
This would render the grammar asynchronous and
require adjustments to the decoding process. Al-
ternatively, we can generate rules that specifically
delete particular adjectives from the corpus:

JJ → superfluous | ε .

In our experiments we evaluate the latter approach
by generating optional deletion rules for all adjec-
tives, adverbs and determiners.

6.5 Experimental Setup

We extracted a paraphrase grammar from the
French–English Europarl corpus (v5). The bitext
was aligned using the Berkeley aligner and the En-
glish side was parsed with the Berkeley parser. We

Grammar # Rules
total 42,353,318

w/o identity 23,641,016
w/o complex constituents 6,439,923

w/o complex const. & identity 5,097,250

Table 2: Number and distribution of rules in our para-
phrase grammar. Note the significant number of identity
paraphrases and rules with complex nonterminal labels.

obtained the initial translation grammar using the
SAMT toolkit (Venugopal and Zollmann, 2009).

The grammars we extract tend to be extremely
large. To keep their size manageable, we only con-
sider translation rules that have been seen more than
3 times and whose translation probability exceeds
10−4 for pivot recombination. Additionally, we only
retain the top 25 most likely paraphrases of each
phrase, ranked by a uniformly weighted combina-
tion of phrasal and lexical paraphrase probabilities.

We tuned the model parameters to our PRÉCIS

objective function, implemented in the Z-MERT
toolkit (Zaidan, 2009). For decoding we used the
Joshua decoder (Li et al., 2010). The language
model used in our paraphraser and the Clarke and
Lapata (2008) baseline system is a Kneser-Ney dis-
counted 5-gram model estimated on the Gigaword
corpus using the SRILM toolkit (Stolcke, 2002).

6.6 Evaluation
To assess the output quality of the resulting sentence
compression system, we compare it to two state-of-
the-art sentence compression systems. Specifically,
we compare against our implementation of Clarke
and Lapata (2008)’s compression model which uses
a series of constraints in an integer linear program-
ming (ILP) solver, and Cohn and Lapata (2007)’s
tree transducer toolkit (T3) which learns a syn-
chronous tree substitution grammar (STSG) from
paired monolingual sentences. Unlike SCFGs, the
STSG formalism allows changes to the tree topol-
ogy. Cohn and Lapata argue that this is a natural
fit for sentence compression, since deletions intro-
duce structural mismatches. We trained the T3 soft-
ware2 on the 936 〈full, compressed〉 sentence pairs
that comprise our development set. This is equiva-
lent in size to the training corpora that Cohn and La-
pata (2007) used (their training corpora ranged from

2www.dcs.shef.ac.uk/people/T.Cohn/t3/
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882–1020 sentence pairs), and has the advantage of
being in-domain with respect to our test set. Both
these systems reported results outperforming previ-
ous systems such as McDonald (2006). To showcase
the value of the adaptations discussed above, we also
compare variants of our paraphrase-based compres-
sion systems: using Hiero instead of syntax, using
syntax with or without compression features, using
an augmented grammar with optional deletion rules.

We solicit human judgments of the compres-
sions along two five-point scales: grammaticality
and meaning. Judges are instructed to decide how
much the meaning from a reference translation is
retained in the compressed sentence, with a score
of 5 indicating that all of the important information
is present, and 1 being that the compression does
not retain any of the original meaning. Similarly, a
grammar score of 5 indicates perfect grammaticality,
and a grammar score of 1 is assigned to sentences
that are entirely ungrammatical. To ensure fairness,
we perform pairwise system comparisons with com-
pression rates strictly tied on the sentence-level. For
any comparison, a sentence is only included in the
computation of average scores if the difference be-
tween both systems’ compression rates is < 0.05.3

Table 4 shows a set of pairwise comparisons for
compression rates ≈ 0.5. We see that going from
a Hiero-based to a syntactic paraphrase grammar
yields a significant improvement in grammatical-
ity. Adding compression-specific features improves
grammaticality even further. Further augmenting the
grammar with deletion rules significantly helps re-
tain the core meaning at compression rates this high,
however compared to the un-augmented syntactic
system grammaticality scores drop. While our ap-
proach significantly outperforms the T3 system, we
are not able to match ILP’s results in grammaticality.

In Table 3 we compare our system to the ILP ap-
proach at a modest compression rate of≈ 0.8. Here,
we significantly outperform ILP in meaning reten-
tion while achieving comparable results in gram-
maticality. This improvement is significant at p <
0.0001, using the sign test, while the better gram-
maticality score of the ILP system is not statisti-

3Because evaluation quality correlates linearly with com-
pression rate, the community-accepted practice of not compar-
ing based on a closely tied compression rate is potentially sub-
ject to erroneous interpretation (Napoles et al., 2011).

CR Meaning Grammar
Reference 0.73 4.26 4.35

Syntax+Feat. 0.80 3.67 3.38
ILP 0.80 3.50 3.49

Random Deletions 0.50 1.94 1.57

Table 3: Results of the human evaluation on longer com-
pressions: pairwise compression rates (CR), meaning and
grammaticality scores. Bold indicates a statistically sig-
nificance difference at p < 0.05.

CR Meaning Grammar
Hiero 0.56 2.57 2.35
Syntax 0.56 2.76 2.67
Syntax 0.53 2.70 2.49
Syntax+Feat. 0.53 2.71 2.54
Syntax+Feat. 0.54 2.79 2.71
Syntax+Aug. 0.54 2.96 2.52
Syntax+Aug. 0.52 2.87 2.40
ILP 0.52 2.83 3.09
Syntax+Aug. 0.50 2.41 2.20
T3 0.50 2.01 1.93

Table 4: Human evaluation for shorter compressions and
for variations of our paraphrase system. +Feat. includes
the compression features from Section 6.1, +Aug. in-
cludes optional deletion rules from Section 6.4.

cally significant (p < 0.088). These results indi-
cate that, over a variety of compression rates, our
framework for text-to-text generation is performing
as well as or better than specifically tailored state-
of-the-art methods.

Table 5 shows an example sentence drawn from
our test set and the compressions produced by the
different systems. We see that both the paraphrase
and ILP systems produce good quality results, with
the paraphrase system retaining the meaning of the
source sentence more accurately.

7 Conclusion

In this work we introduced a method to learn syntac-
tically informed paraphrases from bilingual parallel
texts. We discussed the expressive power and limita-
tions of our formalism and outlined straightforward
adaptation strategies for applications in text-to-text
generation. We demonstrated when our paraphras-
ing system was adapted to do sentence compression,
it achieved results competitive with state-of-the-art
compression systems with only minimal effort.
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Source he also expected that he would have a role in the future at the level of the islamic movement
across the palestinian territories , even if he was not lucky enough to win in the elections .

Reference he expects to have a future role in the islamic movement in the palestinian territories if he is
not successful in the elections .

Syntax+Feat. he also expected that he would have a role in the future of the islamic movement in the
palestinian territories , although he was not lucky enough to win elections .

ILP he also expected that he would have a role at the level of the islamic movement , even if he
was not lucky enough to win in the elections .

Source in this war which has carried on for the last 12 days , around 700 palestinians , which include
a large number of women and children , have died .

Reference about 700 palestinians , mostly women and children , have been killed in the israeli offensive
over the last 12 days .

Syntax+Feat. in this war has done for the last 12 days , around 700 palestinians , including women and
children , died .

ILP in this war which has carried for the days palestinians , which include a number of women
and children died .

Source hala speaks arabic most of the time with her son , taking into consideration that he can speak
english with others .

Reference hala speaks to her son mostly in arabic , as he can speak english to others .

Syntax+Feat. hala speaks arabic most of the time with her son , considering that he can speak english with
others .

ILP hala speaks arabic most of the time , taking into consideration that he can speak english with
others .

Table 5: Example compressions produced by the two systems in Table 3 for three input sentences from our test data.
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Abstract
Part-of-speech (POS) is an indispensable fea-
ture in dependency parsing. Current research
usually models POS tagging and dependency
parsing independently. This may suffer from
error propagation problem. Our experiments
show that parsing accuracy drops by about
6% when using automatic POS tags instead
of gold ones. To solve this issue, this pa-
per proposes a solution by jointly optimiz-
ing POS tagging and dependency parsing in a
unique model. We design several joint models
and their corresponding decoding algorithms
to incorporate different feature sets. We fur-
ther present an effective pruning strategy to re-
duce the search space of candidate POS tags,
leading to significant improvement of parsing
speed. Experimental results on Chinese Penn
Treebank 5 show that our joint models sig-
nificantly improve the state-of-the-art parsing
accuracy by about 1.5%. Detailed analysis
shows that the joint method is able to choose
such POS tags that are more helpful and dis-
criminative from parsing viewpoint. This is
the fundamental reason of parsing accuracy
improvement.

1 Introduction

In dependency parsing, features consisting of part-
of-speech (POS) tags are very effective, since pure
lexical features lead to severe data sparseness prob-
lem. Typically, POS tagging and dependency pars-
ing are modeled in a pipelined way. However, the
pipelined method is prone to error propagation, es-
pecially for Chinese. Due to the lack of morpholog-
ical features, Chinese POS tagging is even harder
than other languages such as English. The state-of-
the-art accuracy of Chinese POS tagging is about

93.5%, which is much lower than that of English
(about 97% (Collins, 2002)). Our experimental re-
sults show that parsing accuracy decreases by about
6% on Chinese when using automatic POS tagging
results instead of gold ones (see Table 3 in Section
5). Recent research on dependency parsing usually
overlooks this issue by simply adopting gold POS
tags for Chinese data (Duan et al., 2007; Zhang and
Clark, 2008b; Huang and Sagae, 2010). In this pa-
per, we address this issue by jointly optimizing POS
tagging and dependency parsing.

Joint modeling has been a popular and effec-
tive approach to simultaneously solve related tasks.
Recently, many successful joint models have been
proposed, such as joint tokenization and POS tag-
ging (Zhang and Clark, 2008a; Jiang et al., 2008;
Kruengkrai et al., 2009), joint lemmatization and
POS tagging (Toutanova and Cherry, 2009), joint
tokenization and parsing (Cohen and Smith, 2007;
Goldberg and Tsarfaty, 2008), joint named en-
tity recognition and parsing (Finkel and Manning,
2009), joint parsing and semantic role labeling
(SRL) (Li et al., 2010), joint word sense disambigua-
tion and SRL (Che and Liu, 2010), joint tokenization
and machine translation (MT) (Dyer, 2009; Xiao et
al., 2010) and joint parsing and MT (Liu and Liu,
2010). Note that the aforementioned “parsing” all
refer to constituent parsing.

As far as we know, there are few successful mod-
els for jointly solving dependency parsing and other
tasks. Being facilitated by Conference on Com-
putational Natural Language Learning (CoNLL)
2008 and 2009 shared tasks, several joint models
of dependency parsing and SRL have been pro-
posed. Nevertheless, the top-ranked systems all
adopt pipelined approaches (Surdeanu et al., 2008;
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Hajič et al., 2009). Theoretically, joint modeling
of POS tagging and dependency parsing should be
helpful to the two individual tasks. On the one hand,
syntactic information can help resolve some POS
ambiguities which are difficult to handle for the se-
quential POS tagging models. On the other hand,
more accurate POS tags should further improve de-
pendency parsing.

For joint POS tagging and dependency parsing,
the major issue is to design effective decoding algo-
rithms to capture rich features and efficiently search
out the optimal results from a huge hypothesis
space.1 In this paper, we propose several dynamic
programming (DP) based decoding algorithms for
our joint models by extending existing parsing algo-
rithms. We also present effective pruning techniques
to speed up our decoding algorithms. Experimen-
tal results on Chinese Penn Treebank show that our
joint models can significantly improve the state-of-
the-art parsing accuracy by about 1.5%.

The remainder of this paper is organized as fol-
lows. Section 2 describes the pipelined method, in-
cluding the POS tagging and parsing models. Sec-
tion 3 discusses the joint models and the decod-
ing algorithms, while Section 4 presents the pruning
techniques. Section 5 reports the experimental re-
sults and error analysis. We review previous work
closely related to our method in Section 6, and con-
clude this paper in Section 7.

2 The Baseline Pipelined Method

Given an input sentence x = w1...wn, we denote its
POS tag sequence by t = t1...tn, where ti ∈ T , 1 ≤
i ≤ n, and T is the POS tag set. A dependency tree
is denoted by d = {(h,m) : 0 ≤ h ≤ n, 0 < m ≤
n}, where (h, m) represents a dependency wh →
wm whose head word (or father) is wh and modifier
(or child) is wm. w0 is an artificial root token which
is used to simplify the formalization of the problem.

The pipelined method treats POS tagging and de-
pendency parsing as two cascaded problems. First,

1It should be noted that it is straightforward to simultane-
ously do POS tagging and constituent parsing, as POS tags can
be regarded as non-terminals in the constituent structure (Levy
and Manning, 2003). In addition, Rush et al. (2010) describes
an efficient and simple inference algorithm based on dual de-
composition and linear programming relaxation to combine a
lexicalized constituent parser and a trigram POS tagger.

an optimal POS tag sequence t̂ is determined.

t̂ = arg max
t

Scorepos(x, t)

Then, an optimal dependency tree d̂ is determined
based on x and t̂.

d̂ = arg max
d

Scoresyn(x, t̂,d)

2.1 POS Tagging

POS tagging is a typical sequence labeling prob-
lem. Many models have been successfully applied
to sequence labeling problems, such as maximum-
entropy (Ratnaparkhi, 1996), conditional random
fields (CRF) (Lafferty et al., 2001) and perceptron
(Collins, 2002). We use perceptron to build our POS
tagging baseline for two reasons. Firstly, as a linear
model, perceptron is simple, fast, and effective. It is
competitive to CRF in tagging accuracy but requires
much less training time (Shen et al., 2007). Sec-
ondly, perceptron has been successfully applied to
dependency parsing as well (Koo and Collins, 2010).
In this paper, perceptron is used in all models includ-
ing the POS tagging model, the dependency parsing
models and the joint models.

In a perceptron, the score of a tag sequence is

Scorepos(x, t) = wpos · fpos(x, t)

where fpos(x, t) refers to the feature vector and wpos

is the corresponding weight vector.
For POS tagging features, we follow the work of

Zhang and Clark (2008a). Three feature sets are
considered: POS unigram, bigram and trigram fea-
tures. For brevity, we will refer to the three sets as
wi ti, ti−1 ti and ti−2 ti−1 ti.

Given wpos, we adopt the Viterbi algorithm to get
the optimal tagging sequence.

2.2 Dependency Parsing

Recently, graph-based dependency parsing has
gained more and more interest due to its state-of-
the-art accuracy. Graph-based dependency parsing
views the problem as finding the highest scoring tree
from a directed graph. Based on dynamic program-
ming decoding, it can efficiently find an optimal tree
in a huge search space. In a graph-based model, the
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score of a dependency tree is factored into scores of
small parts (subtrees).

Scoresyn(x, t,d) = wsyn · fsyn(x, t,d)

=
∑

p⊆d

Scoresyn(x, t, p)

where p is a scoring part which contains one or more
dependencies in the dependency tree d. Figure 1
shows different types of scoring parts used in current
graph-based models.

h m

dependency

h s

sibling

m g h

grandparent

m

h s

tri-sibling

mth s

grand-sibling

mg

Figure 1: Different types of scoring parts used in current
graph-based models (Koo and Collins, 2010).

Eisner (1996) proposes an O(n3) decoding al-
gorithm for dependency parsing. Based on the al-
gorithm, McDonald et al. (2005) propose the first-
order model, in which the scoring parts only con-
tains dependencies. The second-order model of Mc-
Donald and Pereira (2006) incorporates sibling parts
and also needs O(n3) parsing time. The second-
order model of Carreras (2007) incorporates both
sibling and grandparent parts, and needs O(n4)
parsing time. However, the grandparent parts are
restricted to those composed of outermost grand-
children. Koo and Collins (2010) propose efficient
decoding algorithms of O(n4) for third-order mod-
els. In their paper, they implement two versions
of third-order models, Model 1 and Model 2 ac-
cording to their naming. Model 1 incorporates only
grand-sibling parts, while Model 2 incorporates both
grand-sibling and tri-sibling parts. Their experi-
ments on English and Czech show that Model 1 and
Model 2 obtain nearly the same parsing accuracy.
Therefore, we use Model 1 as our third-order model
in this paper.

We use three versions of graph-based dependency
parsing models.

• The first-order model (O1): the same with Mc-
Donald et al. (2005).

• The second-order model (O2): the same with
Model 1 in Koo and Collins (2010), but without
using grand-sibling features.2

• The third-order model (O3): the same with
Model 1 in Koo and Collins (2010).

We adopt linear models to define the score of a de-
pendency tree. For the third-order model, the score
of a dependency tree is represented as:

Scoresyn(x, t,d) =
∑

{(h,m)}⊆d

wdep · fdep(x, t, h, m)

+
∑

{(h,s)(h,m)}⊆d

wsib · fsib(x, t, h, s, m)

+
∑

{(g,h),(h,m)}⊆d

wgrd · fgrd(x, t, g, h, m)

+
∑

{(g,h),(h,s),(h,m)}⊆d

wgsib · fgsib(x, t, g, h, s,m)

For the first- and second-order models, the above
formula is modified by deactivating extra parts.

For parsing features, we follow standard prac-
tice for graph-based dependency parsing (McDon-
ald, 2006; Carreras, 2007; Koo and Collins, 2010).
Since these features are highly related with our joint
decoding algorithms, we summarize the features as
follows.

• Dependency Features, fdep(x, t, h,m)

– Unigram Features: whth dir, wmtm dir

– Bigram Features: whth wmtm dir dist

– In Between Features: th tb tm dir dist

– Surrounding Features:
th−1 th th+1 tm−1 tm tm+1 dir dist

• Sibling Features, fsib(x, t, h, s, m)

wh th ws ts wm tm dir

• Grandparent Features, fgrd(x, t, g, h, m)

wg tg wh th wm tm dir gdir

• Grand-sibling Features, fgsib(x, t, g, h, s,m)

wg tg wh th ws ts wm tm dir gdir

2This second-order model incorporates grandparent features
composed of all grandchildren rather than just outermost ones,
and outperforms the one of Carreras (2007) according to the
results in Koo and Collins (2010).
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where b denotes an index between h and m; dir
and dist are the direction and distance of (h,m);
gdir is the direction of (g, h). We also use back-
off features by generalizing from very specific fea-
tures over word forms, POS tags, directions and dis-
tances to less sparse features over just POS tags or
considering fewer nodes. To avoid producing too
many sparse features, at most two word forms are
used at the same time in sibling, grandparent and
grand-sibling features, while POS tags are used in-
stead for other nodes; meanwhile, at most four POS
tags are considered at the same time for surrounding
features.

3 Joint Models

In the joint method, we aim to simultaneously solve
the two problems.

(t̂, d̂) = arg max
t,d

Scorejoint(x, t,d)

Under the linear model, the score of a tagged de-
pendency tree is:

Scorejoint(x, t,d) = Scorepos(x, t)

+ Scoresyn(x, t,d)

= wpos⊕syn · fpos⊕syn(x, t,d)

where fpos⊕syn(.) means the concatenation of fpos(.)
and fsyn(.). Under the joint model, the weights of
POS and syntactic features, wpos⊕syn, are simulta-
neously learned. We expect that POS and syntactic
features can interact each other to determine an op-
timal joint result.

Similarly to the baseline dependency parsing
models, we define the first-, second-, and third-order
joint models according to the syntactic features con-
tained in fsyn(.).

In the following, we propose two versions of joint
models which can capture different feature sets and
have different complexity.

3.1 Joint Models of Version 1
The crucial problem for the joint method is to de-
sign effective decoding algorithms to capture rich
features and efficiently search out the optimal re-
sults from a huge hypothesis space. Eisner (2000)
describes a preliminary idea to handle polysemy by
extending parsing algorithms. Based on this idea,

we extend decoding algorithms of McDonald et al.
(2005) and Koo and Collins (2010), and propose two
DP based decoding algorithms for our joint models
of version 1.

(b)

(a)

i r r j

r+1 ji ri j

i j

Figure 2: The DP structures and derivations of the first-
order decoding algorithm of joint models of version 1.
We omit symmetric right-headed versions for brevity.
Trapezoids denote incomplete spans. Triangles denote
complete spans. Solid circles denote POS tags of the cor-
responding indices.

The decoding algorithm of O1: As shown in
Figure 2, the first-order joint decoding algorithm
utilizes two types of dynamic programming struc-
tures. (1) Incomplete spans consist of a dependency
and the region between the head and modifier; (2)
Complete spans consist of a headword and its de-
scendants on one side. Each span is recursively cre-
ated by combining two smaller and adjacent spans
in a bottom-up fashion.

The pseudo codes are given in Algorithm 1.
I(i,j)(ti,tj) denotes an incomplete span from i to j
whose boundary POS tags are ti and tj . C(i,j)(ti,tj)

refers to a complete span from i to j whose bound-
ary POS tags are ti and tj . Conversely, I(j,i)(tj ,ti)

and C(j,i)(tj ,ti) represent spans of the other direction.
Note that in these notations the first argument index
always refers to the head of the span.

Line 6 corresponds to the derivation in Figure 2-
(a). Scorejoint(x, ti, tr, tr+1, tj , p = {(i, j)}) cap-
tures the joint features invented by this combina-
tion, where p = {(i, j)} means that the newly ob-
served scoring part is the dependency (i, j). The
syntactic features, denoted by fsyn(x, ti, tj , i, j), can
only incorporate syntactic unigram and bigram fea-
tures. The surrounding and in between features
are unavailable, because the context POS tags, such
as tb and ti−1, are not contained in the DP struc-
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Algorithm 1 The first-order joint decoding algorithm of version 1
1: ∀0 ≤ i ≤ n, ti ∈ T C(i,i)(ti,ti) = 0 ▹ initialization
2: for w = 1..n do ▹ span width
3: for i = 0..(n − w) do ▹ span start index
4: j = i + w ▹ span end index
5: for (ti, tj) ∈ T 2 do
6: I(i,j)(ti,tj) = maxi≤r<j max(tr,tr+1)∈T 2{C(i,r)(ti,tr) + C(j,r+1)(tj ,tr+1) + Scorejoint(x, ti, tr, tr+1, tj , p = {(i, j)})}
7: I(j,i)(tj ,ti) = maxi≤r<j max(tr,tr+1)∈T 2{C(i,r)(ti,tr) + C(j,r+1)(tj ,tr+1) + Scorejoint(x, ti, tr, tr+1, tj , p = {(j, i)})}
8: C(i,j)(ti,tj) = maxi<r≤j maxtr∈T {I(i,r)(ti,tr) + C(r,j)(tr,tj) + Scorejoint(x, ti, tr, tj , p = ∅)}
9: C(j,i)(tj ,ti) = maxi≤r<j maxtr∈T {C(r,i)(tr,ti) + I(j,r)(tj ,tr) + Scorejoint(x, ti, tr, tj , p = ∅)}

10: end for
11: end for
12: end for

tures. Therefore, we adopt pseudo surrounding
and in between features by simply fixing the con-
text POS tags as the single most likely ones (Mc-
Donald, 2006). Taking the in between features
as an example, we use ti t̂b tj dir dist instead,
where t̂b is the 1-best tag determined by the base-
line POS tagger. The POS features, denoted by
fpos(x, ti, tr, tr+1, tj), can only incorporate all POS
unigram and bigram features.3 Similarly, we use
pseudo POS trigram features such as t̂r−1 tr tr+1.

Line 8 corresponds to the derivation in Figure 2-
(b). Since this combination invents no scoring part
(p = ∅), Scorejoint(x, ti, tr, tj , p = ∅) is only com-
posed of POS features.4

Line 7 and Line 9 create spans in the opposite di-
rection, which can be analogously illustrated. The
space and time complexity of the algorithm are re-
spectively O(n2q2) and O(n3q4), where q = |T |.5

The decoding algorithm of O2 & O3: Figure
3 illustrates the second- and third-order decoding
algorithm of joint models of version 1. A new
kind of span, named the sibling span, is used to
capture sibling structures. Furthermore, each span
is augmented with a grandparent-index to capture
both grandparent and grand-sibling structures. It is
straightforward to derive the pseudo codes of the al-

3¬ wr tr if i ̸= r; ­ wr+1 tr+1 if r + 1 ̸= j; ® tr tr+1

if r ̸= i or r + 1 ̸= j; ¯ ti tr if r − 1 = i; ° tr+1 tj if
r + 2 = j. Note that wi ti, wj tj and ti tj (if i = j − 1) are
not incorporated here to avoid double counting.

4¬ wr tr if r ̸= j; ­ ti tr if i = r−1; ® tr tj if r+1 = j.
Pseudo trigram features can be added accordingly.

5We can reduce the time complexity to O(n3q3) by strictly
adopting the DP structures in the parsing algorithm of Eisner
(1996). However, that may make the algorithm harder to com-
prehend.

ig j g i i ji+1

(a)

g i j g i k i k j

(b)

i k j i ik jr+1r

(c)

g i j g i r i r j

(d)

Figure 3: The DP structures and derivations of the
second- and third-order joint decoding algorithm of ver-
sion 1. For brevity, we elide the right-headed and right-
grandparented versions. Rectangles represent sibling
spans.

i j i r r j

i j i r r+1 j

(b)

(a)

Figure 4: The DP structures and derivations of the first-
order joint decoding algorithm of version 2. We omit the
right-headed version for brevity.
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gorithm from Figure 3. We omit them due to space
limitation. Pseudo surrounding, in between and POS
trigram features are used due to the same reason as
above. The space and time complexity of the algo-
rithm are respectively O(n3q3) and O(n4q5).

3.2 Joint Models of Version 2

To further incorporate genuine syntactic surround-
ing and POS trigram features in the DP structures,
we extend the algorithms of joint models of version
1, and propose our joint models of version 2.

The decoding algorithm of O1: Figure 4 illus-
trates the first-order joint decoding algorithm of ver-
sion 2. Compared with the structures in Figure 2,
each span is augmented with the POS tags surround-
ing the boundary indices. These context POS tags
enable Scorejoint(.) in line 6-9 of Algorithm 1 to
capture the syntactic surrounding and POS trigram
features, but also require enumeration of POS tags
over more indices. For brevity, we skip the pseudo
codes which can be easily derived from Algorithm
1. The space and time complexity of the algorithm
are respectively O(n2q6) and O(n3q10).

The decoding algorithm of O2 & O3: Using the
same idea as above, the second- and third-order joint
decoding algorithms of version 2 can be derived
based on Figure 3. Again, we omit both its DP struc-
tures and pseudo codes for the sake of brevity. Its
space and time complexity are respectively O(n3q7)
and O(n4q11).

In between features, which should be regarded as
non-local features in the joint situation, still cannot
be incorporated in our joint models of version 2.
Again, we adopt the pseudo version.

3.3 Comparison

Based on the above illustration, we can see that joint
models of version 1 are more efficient with regard
to the number of POS tags for each word, but fail to
incorporate syntactic surrounding features and POS
trigram features in the DP structures. On the con-
trary, joint models of version 2 can incorporate both
aforementioned feature sets, but have higher com-
plexity. These two versions of models will be thor-
oughly compared in the experiments.

4 Pruning Techniques

In this section, we introduce two pruning strategies
to constrain the search space of our models due to
their high complexity.

4.1 POS Tag Pruning

The time complexity of the joint decoding algorithm
is unbearably high with regard to the number of can-
didate POS tags for each word (q = |T |). We
find that it would be extremely time-consuming even
when we only use two most likely POS tags for each
word (q = 2) even for joint models of version 1.
To deal with this problem, we propose a pruning
method that can effectively reduce the POS tag space
based on a probabilistic tagging model.

We adopt a conditional log-linear model (Lafferty
et al., 2001), which defines a conditional distribution
of a POS tag sequence t given x:

P (t|x) =
ewpos·fpos(x,t)

∑
t ewpos·fpos(x,t)

We use the same feature set fpos defined in Sec-
tion 2.1, and adopt the exponentiated gradient algo-
rithm to learn the weight vector wpos (Collins et al.,
2008).

The marginal probability of tagging a word wi as
t is

P (ti = t|x) =
∑

t:t[i]≡t

P (t|x)

which can be efficiently computed using the
forward-backward algorithm.

We define pmaxi(x) to be the highest marginal
probability of tagging the word wi:

pmaxi(x) = max
t∈T

P (ti = t|x)

We then define the allowable candidate POS tags
of the word wi to be

Ti(x) = {t : t ∈ T , P (ti = t|x) ≥ λt ×pmaxi(x)}

where λt is the pruning threshold. Ti(x) is used to
constrain the POS search space by replacing T in
Algorithm 1.
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4.2 Dependency Pruning

The parsing time grows quickly for the second- and
third-order models (both baseline and joint) when
the input sentence gets longer (O(n4)). Follow-
ing Koo and Collins (2010), we eliminate unlikely
dependencies using a form of coarse-to-fine prun-
ing (Charniak and Johnson, 2005; Petrov and Klein,
2007). On the development set, 68.87% of the de-
pendencies are pruned, while the oracle dependency
accuracy is 99.77%. We use 10-fold cross validation
to do pruning on the training set.

5 Experiments

We use the Penn Chinese Treebank 5.1 (CTB5) (Xue
et al., 2005). Following the setup of Duan et al.
(2007), Zhang and Clark (2008b) and Huang and
Sagae (2010), we split CTB5 into training (secs 001-
815 and 1001-1136), development (secs 886-931
and 1148-1151), and test (secs 816-885 and 1137-
1147) sets. We use the head-finding rules of Zhang
and Clark (2008b) to turn the bracketed sentences
into dependency structures.

We use the standard tagging accuracy to evalu-
ate POS tagging. For dependency parsing, we use
word accuracy (also known as dependency accu-
racy), root accuracy and complete match rate (all
excluding punctuation) .

For the averaged training, we train each model for
15 iterations and select the parameters that perform
best on the development set.

5.1 Results of POS Tag Pruning

Figure 5 shows the distribution of words with dif-
ferent number of candidate POS tags and the k-best
oracle tagging accuracy under different λt. To avoid
dealing with words that have many candidate POS
tags, we further apply a hard criterion that the decod-
ing algorithms only consider top k candidate POS
tags.

To find the best λt, we train and evaluate the
second-order joint model of version 1 on the train-
ing and development sets pruned with different λt

(top k = 5). We adopt the second-order joint model
of version 1 because of its efficiency compared with
the third-order models and its capability of captur-
ing rich features compared with the first-order mod-
els. The results are shown in Table 1. The model
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Figure 5: Results of POS tag pruning with different prun-
ing threshold λt on the development set.

λt word root compl. acc. speed
0.1 81.53 76.88 30.00 94.17 2.5
0.01 81.83 76.62 30.62 93.16 1.2
0.001 81.73 77.38 30.50 93.41 0.5

Table 1: Performance of the second-order joint model of
version 1 with different pruning threshold λt (top k = 5)
on the development set. “Acc.” means the tagging accu-
racy. “Speed” refers to the parsing speed (the number of
sentences processed per second).

with λt = 0.1 obtains the highest tagging accuracy,
which is much higher than that of both λt = 0.01
and λt = 0.001. However, its parsing accuracy
is inferior to the other two. λt = 0.01 produces
slightly better parsing accuracy than λt = 0.001,
and is twice faster. Finally, we choose λt = 0.01
due to the efficiency factor and our priority over the
parsing accuracy.

Then we do experiments to find an optimal top
k. Table 2 shows the results. We decide to choose
k = 3 since it leads to best parsing accuracy.

From Table 1 and 2, we can have an interesting
finding: it seems that the harder we filter the POS
tag space, the higher tagging accuracy we get. In
other words, giving the joint model less flexibility
of choosing POS tags leads to better tagging per-
formance.

Due to time limitation, we do not tune λt and k for
other joint models. Instead, we simply adopt λt =
0.01 and top k = 3.

5.2 Final Results

Table 3 shows the final results on the test set. We list
a few state-of-the-art results in the bottom. Duan07
refers to the results of Duan et al. (2007). They
enhance the transition-based parsing model with
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Syntactic Metrics Tagging Accuracy Parsing Speed
word root compl. all-word known unknown Sent/Sec

Joint Models V2
O3 80.79 75.84 29.11 92.80 93.88 76.80 0.3
O2 80.49 75.49 28.24 92.68 93.77 76.27 0.6
O1 77.37 68.64 23.09 92.96 94.05 76.64 2.0

Joint Models V1
O3 80.69 75.90 29.06 92.89 93.96 76.80 0.5
O2 80.74 75.80 28.24 93.08 94.11 77.53 1.7
O1 77.38 69.69 22.62 93.20 94.23 77.76 8.5

Auto POS

O3 79.29 74.65 27.24

93.51 94.36 80.78

2.0
O2 79.03 74.70 27.19 5.8
O1 75.68 68.06 21.10 17.4

MSTParser2 77.95 72.04 25.50 4.1
MSTParser1 75.84 68.55 21.36 5.2
MaltParser 75.24 65.92 23.19 2.6

Gold POS

O3 86.00 77.59 34.02

100.0 100.0 100.0

-
O2 86.18 78.58 34.07 -
O1 82.24 70.10 26.02 -

MSTParser2 85.24 77.41 33.19 -
MSTParser1 83.04 71.49 27.59 -
MaltParser 82.62 69.34 29.06 -

H&S10 85.20 78.32 33.72 -
Z&C08 single 84.33 76.73 32.79 -
Z&C08 hybrid 85.77 76.26 34.41 -

Duan07 83.88 73.70 32.70 -

Table 3: Final results on the test set. “Gold POS” means that gold POS tags are used as input by the pipelined parsing
models; while “Auto POS” means that the POS tags are generated by the baseline POS tagging model.

top k word root compl. acc. speed
2 81.46 76.12 30.50 93.51 2.7
3 82.11 76.75 29.75 93.31 1.7
4 81.75 76.62 30.38 93.25 1.4
5 81.83 76.62 30.62 93.16 1.2

Table 2: Performance of the second-order joint model of
version 1 with different top k (λt = 0.01) on the devel-
opment set.

the beam search. H&S10 refers to the results of
Huang and Sagae (2010). They greatly expand the
search space of the transition-based model by merg-
ing equivalent states with dynamic programming.
Z&C08 refers to the results of Zhang and Clark
(2008b). They use a hybrid model to combine the
advantages of both graph-based and transition-based
models. We also do experiments with two publicly
available and widely-used parsers, MSTParser6 and
MaltParser7. MSTParser1 refers to the first-order

6http://sourceforge.net/projects/mstparser/
7http://maltparser.org/

graph-based model of McDonald et al. (2005), while
MSTParser2 is the second-order model of McDon-
ald and Pereira (2006). MaltParser is a transition-
based parsing system. It integrates a number of clas-
sification algorithms and transition strategies. We
adopt the support vector machine classifier and the
arc-standard strategy (Nivre, 2008).

We can see that when using gold tags, our
pipelined second- and third-order parsing models
achieve best parsing accuracy, which is even higher
than the hybrid model of Zhang and Clark (2008b).
It is a little surprising that the second-order model
slightly outperforms the third-order one. This may
be possible, since Koo and Collins (2010) shows that
the third-order model outperforms the second-order
one by only 0.32% on English and 0.07% on Czech.
In addition, we only use basic third-order features.

Both joint models of version 1 and 2 can consis-
tently and significantly improve the parsing accu-
racy by about 1.5% for all first-, second- and third-
order cases. Accidentally, the parsing accuracy of
the second-order joint model of version 2 is lower
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error pattern # ↓ error pattern # ↑
DEC → DEG 237 114 NR → NN 184 100

NN → VV 389 73 NN → NR 106 91
DEG → DEC 170 39 NN → JJ 95 70

VV → NN 453 27 VA → VV 29 41
P → VV 52 24 JJ → NN 126 29
P → CC 39 13 VV → VA 67 10

Table 4: Error analysis of POS tagging. # means the
error number of the corresponding pattern made by the
baseline tagging model. ↓ and ↑ mean the error number
reduced or increased by the joint model.

than that of its counterparts by about 0.3%. More
experiments and further analysis may be needed to
find out the reason. The two versions of joint models
performs nearly the same, which indicates that using
pseudo surrounding and POS trigram features may
be sufficient for the joint method on this data set.
In summary, we can conclude that the joint frame-
work is certainly helpful for dependency parsing.

It is clearly shown in Table 3 that the joint
method surprisingly hurts the tagging accuracy,
which diverges from our discussion in Section 1.
Some insights into this issue will be given in Sec-
tion 5.3. Moreover, it seems that the more syntac-
tic features the joint method incorporates (from
O1 to O3), the more the tagging accuracy drops.
We suspect that this is because the joint models are
dominated by the syntactic features. Take the first-
order joint model as an example. The dimension of
the syntactic features fsyn is about 3.5 million, while
that of fpos is only about 0.5 million. The gap be-
comes much larger for the second- and third-order
cases.

Comparing the parsing speed, we can find that the
pruning of POS tags is very effective. The second-
order joint model of version 1 can parse 1.7 sen-
tences per second, while the pipelined second-order
parsing model can parse 5.8 sentences per second,
which is rather close considering that there is a fac-
tor of q5.

5.3 Error Analysis

To find out the impact of our joint models on the
individual tasks, we conduct detailed error analy-
sis through comparing the results of the pipelined
second-order parsing model and the second-order
joint model of version 1.

Impact on POS tagging: Table 4 shows how the
joint model changes the quantity of POS tagging er-
ror patterns compared with the pipelined model. An
error pattern “X → Y” means that the focus word,
whose true tag is ‘X’, is assigned a tag ‘Y’. We
choose these patterns with largest reduction or in-
crease in the error number, and rank them in de-
scending order of the variation.

From the left part of Table 4, we can see that
the joint method is clearly better at resolving tag-
ging ambiguities like {VV, NN} and {DEG, DEC}.8

One common characteristic of these ambiguous
pairs is that the local or even whole syntactic struc-
ture will be destructed if the wrong tag is chosen. In
other words, resolving these ambiguities is critical
and helpful from the parsing viewpoint. From an-
other perspective, the joint model is capable of pre-
ferring the right tag with the help of syntactic struc-
tures, which is impossible for the baseline sequential
labeling model.

In contrast, pairs like {NN, NR}, {VV, VA} and
{NN, JJ} only slightly influence the syntactic struc-
ture when mis-tagged. The joint method performs
worse on these ambiguous pairs, as shown in the
right part of Table 4.

Impact on parsing: Table 5 studies the change of
parsing error rates between the pipelined and joint
model on different POS tag patterns. We present the
most typical and prominent patterns in the table, and
rank them in descending order of X’s frequency of
occurrence. We also show the change of proportion
of different patterns, which is consistent with the re-
sults in Table 4.

From the table, we can see the joint model can
achieve a large error reduction (0.8∼4.0%) for all
the patterns “X → X”. In other words, the joint
model can do better given the correct tags than
the pipelined method.

For all the patterns marked by ♢, except for the
ambiguous pair {NN, JJ} (which we find is difficult
to explain even after careful result analysis), the joint
model also reduces the error rates (2.2∼15.4%). As

8DEG and DEC are the two POS tags for the frequently used
auxiliary word “的” (dē, of) in Chinese. The associative “的”
is tagged as DEG, such as “父亲/father 的 眼睛/eyes (eyes of
the father)”; while the one in a relative clause is tagged as DEC,
such as “他/he 取得/made 的 进步/progress (progress that he
made)”.
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pattern
pipelined joint

prop (%) error (%) prop (%) error (%)
NN → NN 94.6 16.8 -1.1 -1.8
→ VV ♡ 2.9 55.5 -0.5 +15.1
→ NR ♢ 0.8 24.5 +0.7 -2.2
→ JJ ♢ 0.7 17.9 +0.5 +2.1

VV → VV 89.6 34.2 -0.3 –4.0
→ NN ♡ 6.6 66.4 -0.4 +0.7
→ VA ♢ 1.0 38.8 +0.1 -15.4

NR → NR 91.7 15.4 -3.7 -0.8
→ NN ♢ 5.9 21.7 +3.2 -3.7

P → P 92.8 22.6 +3.4 -3.2
→ VV ♡ 3.0 50.0 -1.4 +10.7
→ CC ♡ 2.3 74.4 -0.7 +21.9

JJ → JJ 80.5 11.2 -2.8 -2.0
→ NN ♢ 9.8 18.3 +2.2 +1.8

DEG → DEG 86.5 11.1 +2.8 -3.6
→ DEC ♡ 13.5 61.8 -3.1 +37.4

DEC → DEC 79.7 17.2 +12.1 -4.0
→ DEG ♡ 20.2 56.5 -9.7 +40.2

Table 5: Comparison of parsing error rates on different
POS tag patterns between the pipelined and joint models.
Given a pattern “X → Y”, “prop” means its proportion in
all occurrence of ‘X’ (Count(X→Y )

Count(X) ), and “error” refers

to its parsing error rate ( Count(wrongly headed X→Y )
Count(X→Y ) ).

The last two columns give the absolute reduction (-) or
increase (+) in proportion and error rate made by the joint
model. ♡ marks the patterns appearing in the left part of
Table 4, while ♢ marks those in the right part of Table 4.

discussed earlier, these patterns concern ambiguous
tag pairs which usually play similar roles in syn-
tactic structures. This demonstrates that the joint
model can do better on certain tagging error pat-
terns.

For patterns marked by ♡, the error rate of the
joint model usually increases by large margin. How-
ever, the proportion of these patterns is substantially
decreased, since the joint model can better resolve
these ambiguities with the help of syntactic knowl-
edge.

In summary, we can conclude that the joint model
is able to choose such POS tags that are more helpful
and discriminative from parsing viewpoint. This is
the fundamental reason of the parsing performance
improvement.

6 Related Work

Theoretically, Eisner (2000) proposes a preliminary
idea of extending the decoding algorithm for de-

pendency parsing to handle polysemy. Here, word
senses can be understood as POS-tagged words.
Koo and Collins (2010) also briefly discuss that their
third-order decoding algorithm can be modified to
handle word senses using the idea of Eisner (2000).

In his PhD thesis, McDonald (2006) extends his
second-order model with the idea of Eisner (2000)
to study the impact of POS tagging errors on pars-
ing accuracy. To make inference tractable, he uses
top 2 candidate POS tags for each word based on
a maximum entropy tagger, and adopts the single
most likely POS tags for the surrounding and in be-
tween features. He conducts primitive experiments
on English Penn Treebank, and shows that parsing
accuracy can be improved from 91.5% to 91.9%.
However, he finds that the model is unbearably time-
consuming.

7 Conclusions

In this paper, we have systematically investigated
the issue of joint POS tagging and dependency pars-
ing. We propose and compare several joint models
and their corresponding decoding algorithms which
can incorporate different feature sets. We also pro-
pose an effective POS tag pruning method which can
greatly improve the decoding efficiency. The experi-
mental results show that our joint models can signif-
icantly improve the state-of-the-art parsing accuracy
by more than 1.5%. Detailed error analysis shows
that the fundamental reason for the parsing accu-
racy improvement is that the joint method is able to
choose POS tags that are helpful and discriminative
from parsing viewpoint.
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Abstract

We propose a relaxed correspondence as-
sumption for cross-lingual projection of con-
stituent syntax, which allows a supposed
constituent of the target sentence to corre-
spond to an unrestricted treelet in the source
parse. Such a relaxed assumption fundamen-
tally tolerates the syntactic non-isomorphism
between languages, and enables us to learn
the target-language-specific syntactic idiosyn-
crasy rather than a strained grammar di-
rectly projected from the source language syn-
tax. Based on this assumption, a novel con-
stituency projection method is also proposed
in order to induce a projected constituent tree-
bank from the source-parsed bilingual cor-
pus. Experiments show that, the parser trained
on the projected treebank dramatically out-
performs previous projected and unsupervised
parsers.

1 Introduction

For languages with treebanks, supervised models
give the state-of-the-art performance in dependency
parsing (McDonald and Pereira, 2006; Nivre et al.,
2006; Koo and Collins, 2010; Martins et al., 2010)
and constituent parsing (Collins, 2003; Charniak
and Johnson, 2005; Petrov et al., 2006). To break the
restriction of the treebank scale, lots of works have
been devoted to the unsupervised methods (Klein
and Manning, 2004; Bod, 2006; Seginer, 2007; Co-
hen and Smith, 2009) and the semi-supervised meth-
ods (Sarkar, 2001; Steedman et al., 2003; McClosky
et al., 2006; Koo et al., 2008) to utilize the unan-
notated text. In recent years, researchers have also

conducted many investigations on syntax projection
(Hwa et al., 2005; Ganchev et al., 2009; Smith and
Eisner, 2009; Jiang et al., 2010), in order to borrow
syntactic knowledge from another language.

Different from the bilingual parsing (Smith and
Smith, 2004; Burkett and Klein, 2008; Zhao et al.,
2009; Huang et al., 2009; Chen et al., 2010) that
improves parsing performance with bilingual con-
straints, and the bilingual grammar induction (Wu,
1997; Kuhn, 2004; Blunsom et al., 2008; Snyder et
al., 2009) that induces grammar from parallel text,
the syntax projection aims to project the syntac-
tic knowledge from one language to another. This
seems especially promising for the languages that
have bilingual corpora parallel to resource-rich lan-
guages with large treebanks. Previous works mainly
focus on dependency projection. The dependency
relationship between words in the parsed source sen-
tences can be directly projected across the word
alignment to words in the target sentences, follow-
ing the direct correspondence assumption (DCA)
(Hwa et al., 2005). Due to the syntactic non-
isomorphism between languages, DCA assumption
usually leads to conflicting or incomplete projection.
Researchers have to adopt strategies to tackle this
problem, such as designing rules to handle language
non-isomorphism (Hwa et al., 2005), and resorting
to the quasi-synchronous grammar (Smith and Eis-
ner, 2009).

For constituency projection, however, the lack of
isomorphism becomes much more serious, since a
constituent grammar describes a language in a more
detailed way. In this paper we propose a relaxed
correspondence assumption (RCA) for constituency
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Figure 1: An example for constituency projection based on the RCA assumption. The projection is from English
to Chinese. A dash dot line links a projected constituent to its corresponding treelet, which is marked with gray
background; An Arabic numeral relates a directly-projected constituent to its counter-part in the source parse.

projection. It allows a supposed constituent of
the target sentence to correspond to an unrestricted
treelet in the source parse. Such a relaxed as-
sumption fundamentally tolerates the syntactic non-
isomorphism between languages, and enables us to
learn the target-language-specific syntactic idiosyn-
crasy, rather than induce a strained grammar directly
projected from the source language syntax. We also
propose a novel cross-lingual projection method for
constituent syntax based on the RCA assumption.
Given a word-aligned source-parsed bilingual cor-
pus, a PCFG grammar can be induced for the target
language by maximum likelihood estimation on the
exhaustive enumeration of candidate projected pro-
ductions, where each nonterminal in a production
is an unrestricted treelet extracted from the source
parse. The projected PCFG grammar is then used
to parse each target sentence under the guidance of
the corresponding source tree, so as to produce an
optimized projected constituent tree.

Experiments validate the effectiveness of the
RCA assumption and the constituency projection
method. We induce a projected Chinese constituent
treebank from the FBIS Chinese-English parallel
corpus with English sentences parsed by the Char-
niak parser. The Berkeley Parser trained on the pro-

jected treebank dramatically outperforms the previ-
ous projected and unsupervised parsers. This pro-
vides an promising substitute for unsupervised pars-
ing methods, to the resource-scarce languages that
have bilingual corpora parallel to resource-rich lan-
guages with human-annotated treebanks.

In the rest of this paper we first presents the RCA
assumption, and the algorithm used to determine the
corresponding treelet in the source parse for a can-
didate constituent in the target sentence. Then we
describe the induction of the projected PCFG gram-
mar and the projected constituent treebank from the
word-aligned source-parsed parallel corpus. After
giving experimental results and the comparison with
previous unsupervised and projected parsers, we fi-
nally conclude our work and point out several as-
pects to be improved in the future work.

2 Relaxed Correspondence Assumption

The DCA assumption (Hwa et al., 2005) works well
in dependency projection. A dependency grammar
describes a sentence in a compact manner where the
syntactic information is carried by the dependency
relationships between pairs of words. It is reason-
able to audaciously assume that the relationship of
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Algorithm 1 Treelet Extraction Algorithm.
1: Input : Tf : parse tree of source sentencef
2: e: target sentence
3: A: word alignment ofe andf
4: for i, j s.t.1 ≤ i < j ≤ |e| do ⊲ all spans
5: t← EXTTREELET(e, i, j,Tf ,A)
6: T〈i,j〉 ← PRUNETREE(t)

7: Output: treelet setT for all spans ofe
8: function EXTTREELET(e, i, j, T, A)
9: if T aligns totally outsideei:j then

10: return ∅
11: if T aligns totally insideei:j then
12: return {T · root}
13: t← {T · root} ⊲ partly aligned insideei:j

14: for each subtrees of T do
15: t← t ∪ EXTTREELET(e, i, j, s,A)

16: return t
17: function PRUNETREE(T)
18: for each noden in T do
19: mergen’s successive empty children

20: t← T
21: while t has only one non-empty subtreedo
22: t← the non-empty subtree oft

23: return t

a word pair in the source sentence also holds for
the corresponding word pair in the target sentence.
Compared with dependency grammar, constituent
grammar depicts syntax in a more complex way that
gives a sentence a hierarchically branched structure.
Therefore the lack of syntactic isomorphism for con-
stituency projection becomes much more serious, it
will be hard and inappropriate to directly project the
complex constituent structure from one language to
another.

For constituency projection, we propose a relaxed
corresponding assumption (RCA) to eliminate the
influence of syntactic non-isomorphism between the
source- and target languages. This assumption al-
lows a supposed constituent of the target sentence to
correspond to an unrestricted treelet in the source
parse. A treelet is a connected subgraph in the
source constituent tree, which covers a discontigu-
ous sequence of words of the source sentence. This
property enables a supposed constituent of the tar-
get sentence not necessarily to correspond to exactly
a constituent of the source parse, so as to funda-
mentally tolerate the syntactic non-isomorphism be-
tween languages. Figure 1 gives an example of re-
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Figure 2: Two examples for treelet pruning. Asterisks
indicate eliminated subtrees, which are represented as
empty children of their parent nodes.

laxed correspondence.

2.1 Corresponding Treelet Extraction

According to the word alignment between the source
and target sentences, we can extract the treelet out of
the source parse for any possible constituent span of
the target sentence. Algorithm 1 shows the treelet
extraction algorithm.

Given the target sentencee, the parse treeTf of
the source sentencef , and the word alignmentA
betweene and f , the algorithm extracts the corre-
sponding treelet out ofTf for each candidate span
of e (line 4-6). For a given span〈i, j〉, its corre-
sponding treelet inTf can be extracted by a recur-
sive top-down traversal in the tree. If all nodes in
the current subtreeT align outside of source subse-
quenceei:j, the recursion stops and returns an empty
tree∅, indicating that the subtree is eliminated from
the final treelet (line 9-10). And, if all nodes inT
align insideei:j, the root ofT is returned as the con-
cise representation of the whole subtree (line 11-12).
For the third situation, that is to sayT aligns partly
insideei:j, the recursion has to continue to investi-
gate the subtrees ofT (line 14-15). The recursive
traversal finally returns a treelett that exactly corre-

1194



sponds to the candidate constituent span〈i, j〉 of the
source sentence.

We can find that even for a smaller span, the recur-
sive extraction procedure still starts from the root of
the source tree. This leads to a expatiatory treelet
with some redundant nodes on the top. Function
PRUNETREE takes charge of the treelet pruning (line
6). It traverses the treelet to merge the successive
empty sibling nodes (marked with asterisks) into one
(line 18-19), then conducts a top-down pruning to
delete the redundant branches until meeting a branch
with more than one non-empty subtrees (line 20-22).
Figure 2 shows the effect of the pruning operation
with two examples. The pruning operation maps the
two original treelets into the same simplified ver-
sion, that is, the pruned treelet. The branches pruned
out of the original treelet serve as the context of the
pruned treelet. The bracketed representations of the
pruned treelets, as shown above the treelet graphs,
are used as the nonterminals of the projected target
parses.

Since the overall complexity of the algorithm is
O(|e|3), it seems inefficient to collect the treelets
for all spans in the target sentence. But in fact it
runs fast on the realistic corpus in our experiments,
we assume that the function EXTTREELET doesn’t
always consumeO(|e|) because of the more or less
isomorphism between two languages.

3 Projected Grammar and Treebank

This section describes how to build a projected con-
stituent treebank based on the RCA assumption. Ac-
cording to the last section, each span of the target
sentence could correspond to a treelet in the source
parse. If a span〈i, j〉 has a corresponding treelett,
a candidate projected constituent can be defined as a
triple 〈i, j, t〉. For ann-way partition of this span,

〈i, k1〉, 〈k1 + 1, k2〉, .., 〈kn−1 + 1, j〉

if each sub-span〈kp−1+1, kp〉 corresponds to a can-
didate constituent〈kp−1+1, kp, tp〉, a candidate pro-
jected production can then be defined, denoted as

〈i, j, t〉 → 〈i, k1, t1〉〈k1+1, k2, t2〉..〈kn−1+1, j, tn〉

There may be many candidate projected constituents
because of arbitrary combination, the tree projec-
tion procedure aims to find the optimum tree from

the parse forest determined by these candidate con-
stituents. Each production in the optimum tree
should satisfy this principle: the rule used in this
production appears in the whole corpus as frequently
as possible.

However, due to translation diversity and word
alignment error, the real constituent tree of the target
sentence may not be contained in the candidate pro-
jected constituents. We propose a relaxed and fault-
tolerant tree projection strategy to tackle this prob-
lem. First, based on the distribution of candidate
projected constituents over each single sentence, we
estimate the distribution over the whole corpus for
the rules used in these constituents, so as to obtain
a projected PCFG grammar. Then, using a PCFG
parser and this grammar, we parse each target sen-
tence under the guidance of the candidate projected
constituent set of the target sentence, so as to ob-
tain the optimum projected tree as far as possible.
In the following, we first describe the estimation of
the projected PCFG grammar and then show the tree
projection procedure.

3.1 Projected PCFG Grammar

From a human-annotated treebank, we can induce a
PCFG grammar by estimating the frequency of the
production rules, which are contained in the produc-
tions of the trees. But for each target sentence we
don’t know which candidate productions consist the
correct constituent tree, so we can’t estimate the fre-
quency of the production rules directly.

A reasonable hypothesis is, if a candidate pro-
jected production for a target sentence happens to be
in the correct parse of the sentence, the rule used in
this production will appear frequently in the whole
corpus. We assume that each candidate projected
production may be a part of the correct parse, but
with different probabilities. If we give each candi-
date projected production an appropriate probabil-
ity and use this probability as the appearance fre-
quency of this production in the correct parse, we
can achieve an approximation of the PCFG gram-
mar hidden in the target sentences. In this work,
we restrict the productions to be binarized to reduce
the computational complexity. It results in a bina-
rized PCFG grammar, similar to previous unsuper-
vised works.

To estimate the frequencies of the candidate pro-
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ductions in the correct parse of the target sentence,
we need first estimate the frequencies of the candi-
date spans, which are described as follows:

p(〈i, j〉|e) =
# of trees including 〈i, j〉

# of all trees
(1)

The count of all binary trees of a target sentencee
can be calculated similar to theβ value calculation
in the inside-outside algorithm. Without confusion,
we adopt the symbolβ(i, j) to denote the count of
binary tree for span〈i, j〉:

β(i, j) =





1 i = j

j−1∑

k=i

β(i, k) · β(k + 1, j) i < j

(2)

β(1, |e|) is the count of binary trees of target sen-
tencee. We also need to calculate the count of bi-
nary tree fragments that cover the nodes outside span
〈i, j〉. This is similar to the calculation of theα value
in the inside-outside algorithm. We also adopt the
symbolα(i, j) here:

α(i, j) =





1 i = 1, j = |e|

|e|∑

k=j+1

α(i, k) · β(k + 1, |e|)

+

i−1∑

k=1

α(k, j) · β(k, j − 1) else

(3)

For simplicity we omit some conditions in above for-
mulas. The count of trees containing span〈i, j〉 is
α(i, j) · β(i, j). Equation 1 can be rewritten as

p(〈i, j〉|e) =
α(i, j) · β(i, j)

β(1, |e|) (4)

On condition that〈i, j〉 is a span in the parse ofe,
the probability that〈i, j〉 has two children〈i, k〉 and
〈k + 1, j〉 is

p(〈i, k〉〈k + 1, j〉|〈i, j〉) =
β(i, k) · β(k + 1, j)

β(i, j)
(5)

Therefore, the probability that〈i, j〉 is a span in the
parse ofe and has two children〈i, k〉 and〈k + 1, j〉

can be calculated as follows:

p(〈i,j〉 → 〈i, k〉〈k + 1, j〉|e)

= p(〈i, j〉|e) · p(〈i, k〉〈k + 1, j〉|〈i, j〉)

=
α(i, j) · β(i, k) · β(k + 1, j)

β(1, |e|)

(6)

Since each candidate projected span aligns to one
treelet at most, this probability is also the frequency
of the candidate projected production related to the
three spans.

The counting approach above is based on the as-
sumption that there is a uniform distribution over the
projected trees for every target sentence. The inside
and outside algorithms and the other counting for-
mulae are used to calculate the expected counts un-
der this assumption. This looks like a single iteration
of EM.

A binarized projected PCFG grammar can then be
easily induced by maximum likelihood estimation.
Due to word alignment errors, free translation, and
exhaustive enumeration of possible projected pro-
ductions, such a PCFG grammar may contain too
much noisy nonterminals and production rules. We
introduce a thresholdbRULE to filter the grammar. A
production rule can be reserved only if its frequency
is larger thanbRULE .

3.2 Relaxed Tree Projection

The projected PCFG grammar is used in the pro-
cedure of constituency projection. Such a gram-
mar, as a kind of global syntactic knowledge, can
attenuate the negative effect of word alignment er-
ror, free translation and syntactic non-isomorphism
for the constituency projection between each sin-
gle sentence pair. To obtain as optimal a projected
constituency tree as possible, we have to integrate
two kinds of knowledge: the local knowledge in
the candidate projected production set of the target
sentence, and the global knowledge in the projected
PCFG grammar.

The integrated projection strategy can be con-
ducted as follows. We parse each target sentence
with the projected PCFG grammarG, and use the
candidate projected production setD to guide the
PCFG parsing. The parsing procedure aims to find
an optimum projected tree, which maximizes both
the PCFG tree probability and the count of produc-
tions that also appear in the candidate projected pro-
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Figure 3: Rule counts corresponding to selected nonter-
minal sets, and their frequency summation proportions to
the whole rule set.

duction set. The two optimization objectives can be
coordinated as follows:

ỹ = argmax
y

∏

d∈y

(p(d|G) · eλ·δ(d,D)) (7)

Here,d represents a production;δ is a boolean func-
tion that returns1 if d appears inD and returns0
otherwise;λ is a weight coefficient that needs to be
tuned to maximize the quality of the projected tree-
bank.

4 Experiments

Our work focuses on the constituency projection
from English to Chinese. The FBIS Chinese-English
parallel corpus is used to obtain a projected con-
stituent treebank. It contains 239 thousand sentence
pairs, with about 6.9/8.9 million Chinese/English
words. We parse the English sentences with the
Charniak Parser (Charniak and Johnson, 2005), and
tag the Chinese sentences with a POS tagger imple-
mented faithfully according to (Collins, 2002) and
trained on the Penn Chinese Treebank 5.0 (Xue et
al., 2005). We perform word alignment by runing
GIZA++ (Och and Ney, 2000), and then use the
alignment results for constituency projection.

Following the previous works of unsupervised
constituent parsing, we evaluate the projected parser
on the subsets of CTB 1.0 and CTB 5.0, which con-
tain no more than10 or 40 words after the removal
of punctuation. The gold-standard POS tags are di-
rectly used for testing. The evaluation for unsu-
pervised parsing differs slightly from the standard
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Figure 4: Performance curve of the projected PCFG
grammars corresponding to different sizes of nontermi-
nal sets.

PARSEVAL metrics, it ignores the multiplicity of
brackets, brackets of span one, and the bracket la-
bels. In all experiments we report the unlabeled F1
value which is the harmonic mean of the unlabeled
precision and recall.

4.1 Projected PCFG Grammar

An initial projected PCFG grammar can be induced
from the word-aligned and source-parsed parallel
corpus according to section 3.1. Such an initial
grammar is huge and contains a large amount of
projected nonterminals and production rules, where
many of them come from free translation and word
alignment errors. We conservatively set the filtra-
tion thresholdbRULE as1.0 to discard the rules with
frequency less than one, the rule count falls dramat-
ically from 3.3 millions to92 thousands.

Figure 3 shows the statistics of the remained pro-
duction rules. We sort the projected nonterminals
according to their frequencies and select the top2N

(1 ≤ N ≤ 10) best ones, and then discard the rules
that fall out of the selected nonterminal set. The fre-
quency summation of the rule set corresponding to
32 best nonterminals accounts for nearly90% of the
frequency summation of the whole rule set.

We use the developing set of CTB 1.0 (chapter
301-325) to evaluate the performance of a series of
filtered grammars. Figure 4 gives the unlabeled F1
value of each grammar on all trees in the developing
set. The filtered grammar corresponding to the set
of top 32 nonterminals achieves the highest perfor-
mance. We denote this grammar asG32 and use it
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Figure 5: Performance curve of the Berkeley Parser
trained on 5 thousand projected trees. The weight co-
efficientλ ranges from0 to 5.

in the following tree projection procedure.

4.2 Projected Treebank and Parser

The projected grammarG32 provides global syn-
tactic knowledge for constituency projection. Such
global knowledge and the local knowledge carried
by the candidate projected production set are inte-
grated in a linear weighted manner as in Formula
7. The weight coefficientλ is tuned to maximize
the quality of the projected treebank, which is in-
directly measured by evaluating the performance of
the parser trained on it.

We select the first5 thousand sentence pairs from
the Chinese-English FBIS corpus, and induce a se-
ries of projected treebanks using differentλ, ranging
from 0 to 5. Then we train the Berkeley Parser on
each projected treebank, and test it on the develop-
ing set of CTB 1.0. Figure 5 gives the performance
curve, which reports the unlabeled F1 values of the
projected parsers on all sentences of the developing
set. We find that the best performance is achieved
with λ between1 and 2.5, with slight fluctuation
in this range. It can be concluded that, the pro-
jected PCFG grammar and the candidate projected
production set do represent two different kinds of
constraints, and we can effectively coordinate them
by tuning the weight coefficient. Since differentλ
values in this range result in slight performance fluc-
tuation of the projected parser, we simply set it to1
for the constituency projection on the whole FBIS
corpus.

There are more than200 thousand projected trees
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Figure 6: Performance curve of the Berkeley Parser
trained on different amounts of best project trees. The
scale of the selected treebank ranges from5000 to
160000.

induced from the Chinese-English FBIS corpus. It
is a heavy burden for a parser to train on so large a
treebank. And on the other hand, the free translation
and word alignment errors result in many projected
trees of poor-quality. We design a criteria to approx-
imate the quality of the projected treey for the target
sentencex:

Q̃(y) = |x|−1

√∏

d∈y

(p(d|G) · eλ·δ(d,D)) (8)

and use an amount of best projected trees instead of
the whole projected treebank to train the parser. Fig-
ure 6 shows the performance of the Berkeley Parser
trained on different amounts of selected trees. The
performance of the Berkeley Parser constantly im-
proves along with the increment of selected trees.
However, treebanks containing more than40 thou-
sand projected trees can not brings significant im-
provement. The parser trained on160 thousand trees
only achieves an F1 increment of0.4 points over the
one trained on40 thousand trees. This indicates that
the newly added trees do not give the parser more
information due to their projection quality, and a
larger parallel corpus may lead to better parsing per-
formance.

The Berkeley Parser trained on160 thousand best
projected trees is used in the final test. Table 1
gives the experimental results and the comparison
with related works. This is a sparse table since the
experiments of previous researchers focused on dif-
ferent data sets. Our projected parser significantly
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System CTB-TEST-40 CTB1-ALL-10 CTB5-ALL-10 CTB5-ALL-40
(Klein and Manning, 2004) — 46.7 — —
(Bod, 2006) — 47.2 — —
(Seginer, 2007) — — 54.6 38.0
(Jiang et al., 2010) 40.4 — — —
our work 52.1 54.4 54.5 49.2

Table 1: The performance of the Berkeley Parser trained on160 thousand best projected trees, compared with previous
works on constituency projection and unsupervised parsing. CTB-TEST-40: sentences≤ 40 words from CTB standard
test set (chapter 271-300); CTB1-ALL-10/CTB5-ALL-10: sentences≤ 10 words from CTB 1.0/CTB 5.0 after the
removal of punctuation; CTB5-ALL-40: sentences≤ 40 words from CTB 5.0 after the removal of punctuation.

outperforms the parser of Jiang et al. (2010), where
they directly adapt the DCA assumption of (Hwa
et al., 2005) from dependency projection to con-
stituency projection and resort to a better word align-
ment and a more complicated tree projection algo-
rithm. This indicates that the RCA assumption is
more suitable for constituency projection than the
DCA assumption, and can induce a better grammar
that much more reflects the language-specific syn-
tactic idiosyncrasy of the target language.

Our projected parser also obviously surpasses ex-
isting unsupervised parsers. The parser of Seginer
(2007) performs slightly better on CTB 5.0 sen-
tences no more than10 words, but obviously falls
behind on sentences no more than40 words. Fig-
ure 7 shows the unlabeled F1 of our parser on
a series of subsets of CTB 5.0 with different sen-
tence length upper limits. We find that even on the
whole treebank, our parser still gives a promising
result. Compared with unsupervised parsing, con-
stituency projection can make use of the syntactic
information of another language, so that it proba-
bly induce a better grammar. Although compar-
ing a syntax projection technique to supervised or
semi-supervised techniques seems unfair, it still sug-
gests that if a resource-poor language has a bilingual
corpus parallel to a resource-rich language with a
human-annotated treebank, the constituency projec-
tion based on RCA assumption is a promising sub-
stitute for unsupervised parsing.

5 Conclusion and Future Works

This paper describes a relaxed correspondence as-
sumption (RCA) for constituency projection. Un-
der this assumption a supposed constituent in the
target sentence can correspond to an unrestricted
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Figure 7: Performance of the Berkeley Parser on subsets
of CTB 5.0 with different sentence length upper limits.
100+ indicates the whole treebank.

treelet in the parse of the source sentence. Different
from the direct correspondence assumption (DCA)
widely used in dependency projection, the RCA as-
sumption is more suitable for constituency projec-
tion, since it fundamentally tolerates the syntactic
non-isomorphism between the source and target lan-
guages. According to the RCA assumption we pro-
pose a novel constituency projection method. First, a
projected PCFG grammar is induced from the word-
aligned source-parsed parallel corpus. Then, the tree
projection is conducted on each sentence pair by a
PCFG parsing procedure, which integrates both the
global knowledge in the projected PCFG grammar
and the local knowledge in the set of candidate pro-
jected productions.

Experiments show that the parser trained on
the projected treebank significantly outperforms the
projected parsers based on the DCA assumption.
This validates the effectiveness of the RCA assump-
tion and the constituency projection method, and
indicates that the RCA assumption is more suit-
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able for constituency projection than the DCA as-
sumption. The projected parser also obviously sur-
passes the unsupervised parsers. This suggests
that if a resource-poor language has a bilingual
corpus parallel to a resource-rich language with a
human-annotated treebank, the constituency projec-
tion based on RCA assumption is an promising sub-
stitute for unsupervised methods.

Although achieving appealing results, our current
work is quite coarse and has many aspects to be im-
proved. First, the word alignment is the fundamental
precondition for projected grammar induction and
the following constituency projection, we can adopt
the better word alignment strategies to improve the
word alignment quality. Second, the PCFG grammar
is too weak due to its context free assumption, we
can adopt more complicated grammars such as TAG
(Joshi et al., 1975), in order to provide a more pow-
erful global syntactic constraints for the tree projec-
tion procedure. Third, the current tree projection
algorithm is too simple, more bilingual constraints
could lead to better projected trees. Last but not
least, the constituency projection and the unsuper-
vised parsing make use of different kinds of knowl-
edge, therefore the unsupervised methods can be in-
tegrated into the constituency projection framework
to achieve better projected grammars, treebanks, and
parsers.
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André F. T. Martins, Noah A. Smith, Eric P. Xing, Pe-
dro M. Q. Aguiar, and Mário A. T. Figueiredo. 2010.
Turbo parsers: Dependency parsing by approximate
variational inference. InProceedings of EMNLP.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Reranking and self-training for parser adapta-
tion. In Proceedings of the ACL.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. InProceedings of EACL, pages 81–88.

1200



Joakim Nivre, Johan Hall, Jens Nilsson, Gulsen Eryigit,
and Svetoslav Marinov. 2006. Labeled pseudoprojec-
tive dependency parsing with support vector machines.
In Proceedings of CoNLL, pages 221–225.

Franz J. Och and Hermann Ney. 2000. Improved statisti-
cal alignment models. InProceedings of the ACL.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProceedings of the ACL.

Anoop Sarkar. 2001. Applying co-training methods to
statistical parsing. InProceedings of NAACL.

Yoav Seginer. 2007. Fast unsupervised incremental pars-
ing. In Proceedings of the ACL.

David Smith and Jason Eisner. 2009. Parser adaptation
and projection with quasi-synchronous grammar fea-
tures. InProceedings of EMNLP.

David A. Smith and Noah A. Smith. 2004. Bilingual
parsing with factored estimation: Using english to
parse korean. InProceedings of the EMNLP.

Benjamin Snyder, Tahira Naseem, and Regina Barzilay.
2009. Unsupervised multilingual grammar induction.
In Proceedings of the ACL.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen
Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen,
Steven Baker, and Jeremiah Crim. 2003. Bootstrap-
ping statistical parsers from small datasets. InPro-
ceedings of the EACL.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. InNatural Lan-
guage Engineering.

Hai Zhao, Yan Song, Chunyu Kit, and Guodong Zhou.
2009. Cross language dependency parsing using a
bilingual lexicon. InProceedings of the ACL-IJCNLP.

1201



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1202–1212,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Computing Logical Form on Regulatory Texts∗

Nikhil Dinesh
Artificial Intelligence Center

SRI International
Menlo Park, CA - 94025
dinesh@ai.sri.com

Aravind Joshi and Insup Lee
Department of Computer Science

University of Pennsylvania
Philadelphia, PA - 19104

{joshi,lee}@seas.upenn.edu

Abstract

The computation of logical form has been pro-
posed as an intermediate step in the translation
of sentences to logic. Logical form encodes
the resolution of scope ambiguities. In this
paper, we describe experiments on a modest-
sized corpus of regulation annotated with a
novel variant of logical form, calledabstract
syntax trees(ASTs). The main step in com-
puting ASTs is to order scope-taking opera-
tors. A learning model for ranking is adapted
for this ordering. We design features by study-
ing the problem of comparing the scope of one
operator to another. The scope comparisons
are used to compute ASTs, with an F-score of
90.6% on the set of ordering decisons.

1 Introduction

May (1985) argued for a level oflogical form as a
prelude to translating sentences to logic. Just as a
parse tree determines the constituent structure of a
sentence, a logical form of a sentence represents one
way of resolving scope ambiguities. The level of
logical form is an appealing layer of modularity; it
allows us to take a step beyond parsing in studying
scope phenomenon, and yet, avoid the open problem
of fully translating sentences to logic.

Data-driven analyses of scope have been of in-
terest in psycholinguistics (Kurtzman and MacDon-
ald, 1993) and more recently in NLP (Srinivasan
and Yates, 2009). The focus has typically been

∗This research was supported in part by ONR MURI
N00014-07-1-0907, NSF CNS-1035715, NSF IIS 07-05671,
and SRI International.

on predicting the preferred scopal ordering of sen-
tences with two quantifying determiners, for exam-
ple, in the sentence “every kid climbed a tree”. In
the related problem of translating database queries
to logic, Zettlemoyer and Collins (2009) and Wong
and Mooney (2007) consider the scope of adjectives
in addition to determiners, for example the scope of
“cheapest” in the noun phrase “the cheapest flights
from Boston to New York”. To our knowledge, em-
pirical studies of scope have been restricted to phe-
nomenon between and within noun phrases.

In this paper, we describe experiments on a novel
annotation of scope phenomenon in regulatory texts
– Section 610 of the Food and Drug Administra-
tion’s Code of Federal Regulations1 (FDA CFR).
Determiners, modals, negation, and verb phrase
modifiers are the main scope-taking operators. We
have annotated195 sentences with a variant of log-
ical form, calledabstract syntax trees(ASTs). Our
focus is on the problem of computing the AST, given
a (variant of a) parse tree of a sentence.

The long term goal of this work is to assist in the
translation of regulation to logic, for the application
of conformance checking. The problem is to for-
mally determine whether an organization conforms
to regulation, by checking the organization’s records
using the logical translation of regulation. Confor-
mance checking has been of interest in a variety of
regulatory contexts, and examples include privacy
policy (Barth et al., 2006; Jones and Sergot, 1992;
Anderson, 1996) and business contracts (Governa-
tori et al., 2006; Grosof et al., 1999).

We now discuss some problems that arise in defin-

1http://www.gpoaccess.gov/cfr/index.html
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ing logical form and the assumptions that we make
to circumvent these problems.

1.1 Problems and Assumptions

A key assumption of logical form is that the trans-
lation from language to logic is syntax-based. As
a result, the logic needs to be expressive enough to
accomodate a syntactic translation. There is no con-
sensus logic for constructs, such as, plurals, purpose
clauses, and certain modals. This leads to the fol-
lowing problem in defining logical form.
How do we define the logical form of a sentence,
without defining the logic?We adopt a specific for-
malism that accomodates a subset of the constructs
found in regulation. We generalize from the formal-
ized constructs to other constructs. Some of these
generalizations may need revision in the future.

We assume that sentences in regulation are trans-
lated to statements in logic of the form:

(id) ϕ(x1, ..., xn) 7→ ψ(x1, ..., xn)

where, “id” is an identifier,ϕ is the precondition,
ψ is the postcondition, andx1, ..., xn are free vari-
ables. The distinction between pre and postcondi-
tions has been adopted by most logics for regula-
tion, to accomodate exceptions to laws (Sergot et al.,
1986; Makinson and van der Torre, 2000; Governa-
tori et al., 2006). The pre and postconditions are
expressed in a modal logic that we designed in prior
work (Dinesh et al., 2011). In describing the logi-
cal form, we will sketch how the logical form can
be mapped to logic. But, we do not assume that the
reader has a detailed understanding of the logic.

Given the assumptions about the logic, our goal
is to transform a regulatory sentence into a structure
that lets us determine: (I) the constituents of a sen-
tence that contribute to the pre/postcondition, and
(II) the scope of operators in the pre/postcondition.
The structures that we use are calledabstract syn-
tax trees(ASTs), which can be understood as a re-
stricted kind of logical form for regulatory texts.

1.2 Contributions and Outline

In this paper, we focus on the problem of computing
the AST given a (kind of) parse tree for a sentence.
The main step is is toorder or rank scope-taking
operators. A learning model for ranking is adapted

for this ordering. We design features by studying the
problem of comparing the scope of one operator to
another. The pairwise scope comparisons are then
used to compute ASTs, with an F-score of90.6% on
the set of ordering decisons.

The rest of this paper is organized as follows. We
define ASTs using an example in Section 2, and
setup the learning problem in Section 3. We then de-
scribe the corpus using statistics about operators in
Section 4. In Section 5, we describe experiments on
comparing the scope of an operator to another. We
use the pairwise scope comparisons, in Section 6 to
comput the AST. We discuss related work in Sec-
tion 7 and conclude in Section 8.

2 Abstract Syntax Trees

We describeabstract syntax trees(ASTs) using an
example from CFR Section 610.11:

(1) A general safety testfor the detection of extra-
neous toxic contaminantsshall be performed on
biological productsintended for administration
to humans.

We discuss the translation in logic and the AST
for the fragment of (1) that appears in black. In or-
der to keep figures to a manageable size, we restrict
attention to fragments of sentences, by graying out
portions. The term AST is borrowed from compil-
ers (Aho et al., 1986), where it is used as an interme-
diate step in the semantic interpretation of programs.
Translation in Logic: The sentence (1) is formally
expressed as:

(1) bio prod(x) 7→ Om(x)(∃y : test(y) ∧ ψ(x, y))

where,ψ(x, y) = gensaf(y)∧ag(y,m(x))∧ob(y, x)

The predicates and function symbols are read as
follows. bio prod(x) - “x is a biological product”.
m(x) denotes the manufacturer ofx. The modal op-
eratorO stands for “obligation”. test(y) - “y is a
test (event)”.gensaf(y) - “y is a general safety pro-
cedure”.ag(y,m(x)) - “the agent ofy ism(x)”, and
ob(y, x) - “the object of the eventy is x”. The for-
malized version of the law is read as follows: “Ifx
is a biological product, then the manufacturerm(x)
is required/obligated to perform a general safety test
y which hasx as its object”. We refer the reader
to (Dinesh et al., 2011) for details on the logic.
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The distinction between pre and postconditions
is a non-trivial assumption. As with all logic-
programming formalisms, only free variables are
“shared” between pre and postconditons. This im-
plies that all existential quantification, modals, and
negation appear within the pre or postcondition. In
the example above, the existential quantifier (∃y)
and the modal (O) appear within the postcondition.
Abstract Syntax Tree: The AST for (1) is shown in
Figure 1. The main nodes of interest are the inter-
nal nodes labeledλ . An internal node withn + 1
children corresponds to ann-ary operator. The first
child of the internal node is the operator. Opera-
tors are labeled with a part-of-speech tag, for exam-
ple, “D” for determiner, “M” for modal, and “O” for
other. The remainingn children are its arguments.
We use the termnuclear scopeto refer to the last
(nth) argument of the operator, and the termrestric-
tor to refer to any other argument. We borrow these
terms from the literature on quantifier scope for de-
terminers (Heim and Kratzer, 1998, Chapter 7).

For example, the phrase “general safety test” is in
the restrictor of the operatorA, and the variabley
is in its nuclear scope. The modalshall is a unary
operator, and doesn’t have a restrictor. Non-unary
operators bind the variable displayed on the internal
node. The variabley is bound by the operatorA.

Implicit operatorsare inserted when there is no
overt word or phrase. In Figure 1, the implicit oper-
ators areunderlined. The generic noun phrase “bi-
ological products” is associated with the implicit de-
terminerall. Similarly, we use the implicit operator
Post to mark the position of the postcondition.

λx

D

all

R

bio. prod.

λ

O

Post

λ

M

shall

λ

M

be

λy

D

A

R

gen. saf. test

.

y performed onx

Figure 1: Example of an abstract syntax tree (AST).

We conclude this section with some notation for
describing ASTs. Given an AST for a sentences, we

say that an operatoroi scopes overoj, denotedoi ≫
oj, if oj appears in the nuclear scope ofoi. For ex-
ample, in Figure 1, we haveall ≫ Post, all ≫ shall,
all ≫ A, Post ≫ A, andshall ≫ A. In addition, we
say thatthe restrictor ofoi scopes overoj, denoted
R(oi) ≫ oj, if oj appears in the restrictor ofoi. Such
configurations occur with PP-modification of NPs,
and we discuss examples in later sections.

3 Computing ASTs – Overview

In this section, we give an overview of our approach
to computing ASTs. We will assume as given a Pro-
cessed Parse Tree (PPT) of a sentence, with the op-
erators and their restrictors identified. An example
is discussed in Section 3.1. Given such a PPT, the
AST is computed in two steps: (1) finding the preter-
minal at which an operator takes scope, and (2) or-
dering the operators associated with a preterminal.
We describe the second step in Section 3.2, and then
briefly outline the first step in Section 3.3. The steps
are described in reverse order, because in most cases,
the operators associated with a preterminal are deter-
mined directly by syntactic attachment.

3.1 Processed Parse Trees

We compute ASTs from processed parse trees
(PPTs) of sentences. Figure 2 gives the PPT cor-
responding to the AST in Figure 1.

.

λ

P

Post

λy

D

A

R

gen. saf. test

λ

M

shall

λ

M

be

.

performed on

λx

D

IMP

R

bio. prod.

Figure 2: Processed parse tree (PPT) for (1).

A PPT provides the set of operators in a sen-
tence, associated with their restrictors. For exam-
ple, the determiner “a” has the restrictorgeneral
safety test. The phrasebiological productshas no
explicit determiner associated with it, and the cor-
responding operator in the PPT is labeled “IMP”
for implicit. In addition, the postcondition marker
“Post” is also identified. Except for the postcon-
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dition marker, annotator-specified implicit operators
are not given in the PPT.

There are two main types of nodes in the PPT –
operatorsandpreterminals. The nodes labeled with
the symbolλ, e.g., λ and λx , correspond to op-
erators. The root of the PPT and the restrictors of
the operators, are the preterminals. Based on this
example, it may seem that a sentence just has a list
of operators. While this is true of example (1), em-
bedded operators arise, for example, in the context
of PP-modification of NPs and relative clauses. We
will discuss an example in Section 3.3.

In this work, the PPTs are obtained by removing
all scope decisions from the AST. To a first approxi-
mation, we start by removing all operators from the
AST, and then, replace the corresponding variables
by the operators. Implicit unary operators (such as
the postcondition marker) are placed at the start of
the preterminal.

It is worthwhile to consider whether it is rea-
sonable to assume PPTs as given. We believe that
this assumption is (slightly) stronger than assuming
perfect parse trees. Although the PPT leaves cer-
tain chunks of the sentence unprocessed, in most
cases, the unprocessed chunks correspond to base
NPs. The main additional piece of information is the
existence of a postcondition marker for each main
clause of a sentence. We believe that computation
of PPTs is better seen as a problem of syntax rather
than scope, and we set it aside to future work. Our
focus here is on converting a PPT to an AST.

3.2 Ordering Operators

The problem of learning to order a set of items is
not new. Cohen et al. (1998) give a learning theo-
retic perspective, and Liu (2009) surveys informa-
tion retrieval applications. The approach that we use
can be seen as a probabilistic version of the boosting
approach developed by Cohen et al. (1998). We ex-
plain the step of ordering operators, by revisiting the
example of the general safety test, from Section 2.

Given the PPT in Figure 2, we compute the AST
in Figure 1 byorderingor rankingthe operators. For
example, we need to determine that the implicit de-
terminer associated withbiological productsis uni-
versal, and hence, we haveIMP ≫ Post. However,
the determiner “A” associated withgeneral safety
testis existential, and hence, we havePost ≫ A.

We now develop some notation to describe the
scopal ordering of operators. A PPTτ is viewed
as a set of preterminal nodes, and we will write –
(a) p ∈ τ to denote thatp occurs inτ , and (b)
|τ | to denote the number of preterminals inτ . A
preterminalp is viewed as an ordered set of oper-
atorsp = (o1, ..., o|p|). For example, in Figure 2,
the root preterminalp has|p| = 5, and the operators
o1 = Post, o2 = A, o3 = shall, and so on.

An AST α contains a ranking of operators asso-
ciated with each preterminal, denotedrα(p). The
ranks of operators are denoted by subscripts. Let
p = (o1, ..., o5) be the root preterminal of the PPT
in Figure 2. The ranking associated with the AST in
Figure 1 is given byrα(p) = (o1

2, o
2
5, o

3
3, o

4
4, o

5
1). For

example,o2
5 = A denotes that the determiner “A” ap-

pears second in the surface order (Figure 2) and fifth
or lowest in the scope order (Figure 1). Similarly,
o5
1 = IMP denotes that the implicit determiner ap-

pears fifth or last in the surface order (Figure 2) and
first or highest in the scope order (Figure 1). Note
that the subscript suffices to identify the position of
an operator in the AST.
Model: We now describe the learning model for or-
dering operators. Given a PPTτ , let A(τ) be the set
of all possible ASTs. Our goal is to find the AST
which has the highest probability given the PPT:

α∗ = arg max
α∈A(τ)

P (α|τ)

The conditional probability of an AST is defined as:

P (α|τ) =
∏

p∈τ

P (rα(p)|τ)

P (rα(p)|τ) =

|p|−1∏

i=1

|p|∏

j=i+1

P (oi ≫ oj|τ)

In other words,P (α|τ) is modeled as the product
of the probabilities of the ranking of each pretermi-
nal, which is in turn expressed as the product of the
probabilities of the pairwise ordering decisions. The
model falls under the class of pairwise ranking ap-
proaches (Liu, 2009). We will consider the problem
of estimating the probabilities in Section 5, and the
problem of searching for the best AST in Section 6.
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Figure 3: PPT for (2)

λx1

D

any

R

λx2

D
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R

lic. prod.
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lot of x2

λ

P

Post

λ

M

may

λ

M

be

λx3

D

some

R

samp. of x1

.

...

Figure 4: AST for (2)

3.3 Finding the Scope Preterminal

In the example that we discussed in the previous sec-
tion, there were no embedded operators, i.e., an op-
erator or its variable located in the restrictor of an-
other. An embedded operator can either – (a) take
scope within the restrictor of the embedding oper-
ator, or (b) outscope the embedding operator. To
account for the second case, we need to determine
whether it is appropriate to lift an embedded opera-
tor to a higher preterminal than the one to which it
is associated syntactically.

We discuss an example ofinverse linking(Larson,
1985) to illustrate the problem. Consider the follow-
ing sentence:

(2) Samples of any lot of a licensed product,except
for radioactive biological products, together with
the protocols showing results of applicable tests,
may at any time be required to be sent to the Di-
rector, Center for Biologics Evaluation and Re-
search.

The PPT and AST for (2) are shown in Figures 3
and 4 respectively. Consider the noun phrase “IMP
samples ofany lot of a licensed product” in the

.

λ

P

Post

λx1

D

any

R

.

lot of

λx2

D

a

R

lic. prod.

λx3

D

IMP

R

samp. of x1

λ

M

may

λ

M

be

.

...

Figure 5: Second PPT for (2), obtained from the PPT in
Figure 3, by raisingany to the root preterminal.

PPT. The implicit determinerIMP in the PPT is in-
terpreted as the existential determinersome in the
AST. The three operators are related as follows in
the AST:any ≫ some and R(any) ≫ a, i.e., any
outscopes the implicit determiner, anda appears in
the restrictor ofany. Observe that the variablesx1

and x2 , which are associated withany anda, ap-
pear in the restrictors ofsome andany respectively.
As a result, in the PPT, in Figure 3,any anda appear
in the restrictor ofIMP andany. The PPT provides
a standard parse of PP-modification of NPs.

The important feature of this example is that
the determiner “any” is syntactically embedded in
the restrictor ofIMP in the PPT (Figure 4), but it
outscopes the implicit determiner in the AST (Fig-
ure 3). As a result, the PPT in Figure 3 cannot be
converted to the AST in Figure 4 simply by ranking
sibling operators (as we did in the previous section).

To handle such cases, we convert the PPT in Fig-
ure 3 to a second PPT (shown in Figure 5). The only
allowed operation during this conversion is to raise
an embedded operator to a higher preterminal. The
PPT in Figure 5 is obtained by raisingany to the
root preterminal, making it a sibling of the implicit
determinerIMP in the PPT in Figure 5. This second
PPT can be converted to the AST by reordering sib-
ling operators. The learning model used for this step
is similar to the one used to order operators, and in
the interests of space, we omit the details.

4 Brief Overview of the Corpus

We have annotated195 sentences from the FDA
CFR Section 610 with ASTs. The operators are di-
vided into the following types – determiners (e.g.,

1206



every, a, at least), modal auxiliaries (e.g.,must,
be), VP modifiers (e.g.,if, for, after), negation and
coordinating conjunctions (e.g.,and, but, or). The
majority of the corpus was annotated by a single an-
notator. However, to estimate inter-annotator agree-
ment, a set of32 sentences was annotated by a
second annotator. In this section, we restrict our-
selves to presenting statistics that highlight part of
the guidelines and motivate the features that we use
to order operators. An example-based justification
of guidelines, and a discussion of inter-annotator
agreement can be found in (Dinesh, 2010).
De Re vs De Dicto:We narrow our focus to one part
of the annotation, thede revs de dictodistinction.
Informally, operators withde rescope occur in the
precondition of the logical translation of a sentence,
while those withde dictoscope occur in the post-
condition. This distinction is of key importance in
the application of conformance checking, as it helps
determine the facts that need to be provided by an
organization (de re), and the actions that an organi-
zation is required to take (de dicto).

For simplicity, we further restrict attention to op-
erators that are siblings of the postcondition in the
AST, and ignore the operators embedded in preposi-
tional phrases and clauses, for example. A (main
clause) operatoro is said to havede re scope iff
it outscopes the postcondition marker (o ≫ Post).
Otherwise, the operator is said to havede dictoscope
(Post ≫ o). In the example of the general safety test
from Section 2, the implicit determiner associated
with “biological products” hasde rescope, while all
other operators in the sentence havede dictoscope.

Operator Number of De Re Scope
Type Instances Percentage
Determiner 277 59.9%
Modal Aux 268 0%
VP Modifier 132 68.2%
CC 36 22.2%
Neg 33 0%
Other 74 17.6%

Table 1: De Re scope distribution. An operator hasde re
scope iff it outscopes the postcondition marker.

Table 1 shows the percentage of each type of op-
erator that hasde rescope. Modal auxiliaries and
negation are umambigous to this distinction, and al-
ways havede dictoscope. Note that a type of opera-

tor with 50% occuringde reis ambiguous, while0%
or 100% are unambiguous. Thus, from Table 1, we
can conclude that determiners, and VP modifiers are
the most ambiguous types. And, more features are
needed to disambiguate them.

Determiner Number of De Re Scope
Type Instances Percentage
Universal 74 100%
Existential 12 0%
Ambiguous 50 28%
Deictic 127 53.5%
Other 14 35.7%

Table 2: De Re scope distribution for determiners.

Determiners: We divide the determiners into the
following subtypes: universal/generic (e.g.,every,
all), existential (some), ambiguous (e.g.,a, an), de-
ictic (e.g.,the, those), and other (e.g.,at least, at
most). The guidelines for annotation were as fol-
lows – (a) universal determiners havede rescope,
(b) existential determiners havede dictoscope, and
(c) for other determiners, the annotator needs to de-
cide whether a particular use is interpreted existen-
tially or universally. Table 2 showsde rescope dis-
tribution for each of these subtypes. As expected,
universal and existential determiners are unambigu-
ous, while ambiguous and deictic determiners show
more variety. For example, the deictic determiner
the can refer to a specific entity (“the FDA”) or have
a universal interpretation (“the products”).

Thus, to disambiguate betweende reandde dicto
interpretations for determiners, we need two types of
features – (1) Features to predict whether ambiguous
and deictic determiners are universal or not, and (2)
Features to determine the type of implicit determin-
ers. In Table 2, we assume that the type of implicit
determiners are given. This assumption is unreal-
istic. Rather, we need to predict the type of such
determiners, during the computation of the AST.

VP Modifier Number of De Re Scope
Type Instances Percentage
Temporal and Conditional 73 100%
Purpose 8 0%
References to Laws 33 0.9%
Other 29 65.5%

Table 3: De Re scope distribution for VP modifiers.
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VP Modifiers: We divide the VP modifiers into the
following subtypes: temporal and conditional (e.g.,
after, if), purpose (for), references to laws (which
are a special type of modifier in the legal domain,
e.g., “as specified in paragraph (c)”), and other (e.g.,
regardless, notwithstanding). Table 3 shows the
percentage of each subtype of modifier that hasde
re scope. Following the guidelines for annotation,
the temporal and conditional modifiers are alwaysde
re, the purpose modifiers and modifiers conveying
references to laws are alwaysde dicto.

5 Comparing the Scope of Operators

We now consider a subproblem in computing the
AST – comparing the scope of pairs of operators.
In Section 6, we will use the classifiers that perform
comparisons, to compute the AST. All experiments
in this section use the MAXENT implentation from
the MALLET toolkit (McCallum, 2002). We begin
by revisiting de re-de dicto distinction from Sec-
tion 4. Then, we generalize to other comparisons.
De Re vs De Dicto: The (binary) classification
problem is as follows. Our observations are triples
x = (o, o′, τ) are such that there is a preterminal
p ∈ τ , {o, o′} ⊆ p, ando′ = Post. In other words,
we are considering operators (o) that are siblings of
the postcondition marker (o′). An observation has
the label1 if o ≫ o′ (de rescope), and a label of0
otherwise (de dictoscope).
Features: We use the following (classes of) fea-
tures for an observationx = (o, o′, τ):

• TYPE - The type and subtype of the operator.
We use the subtypes from Section 4 only for
explicit operators.

• PRE-VERB - Tracks whethero and o′ appear
before or after the main verb of the sentence.

• PRE-VERB + PERF - Conjunction of the previ-
ous feature with whether the main verb isper-
form. The verbperformis frequent in the CFR,
and its subject is typically givende dictoscope,
as it is the main predicate of the sentence.

• POS - The part-of-speech of the head word. For
example, for the noun phrasebiological prod-
ucts, the head word isproducts, and the POS is

NNS (plural common noun). And, this POS tag
may indicate a generic/universal interpretation.

Count MAJORITY TYPE ALL

All 823 66.2% 84.1% 89.2%

No MD 522 53.2% 74.9% 83.7%

DT 277 59.9% 62.9% 81.2%

Imp. DT 100 69% 76%

Table 4: De Re vs De Dicto classification. Average accu-
racies over 10-fold cross-validation. The rows describe
the subset of observations considered, and the columns
describe the subset of features used.

Experiments: We evaluate the features by perform-
ing 10-fold cross-validation. The results are summa-
rized in Table 4. The rows describe the subset of ob-
servations used. “All” includes all observations, “No
MD” excludes the modal auxiliaries, “DT” includes
only the determiners, and “Imp. DT” includes only
implicit determiners. The columns describe the fea-
tures used. MAJORITY is the majority baseline, i.e.,
the accuracy obtained by predicting the most fre-
quent class or the majority class. The majority class
is de dictowhen all operators are considered (the
first row), andde re in all other rows. The TYPE

column gives the accuracy when only the type and
subtypes are used as features. This column does not
apply to implicit determiners, as the subtype infor-
mation is unavailable. And, finally, the ALL column
gives the accuracy when all features are used.

From Table 4, we can conclude that the TYPE fea-
ture is useful in making thede re-de dictodistinc-
tion, and further gains are obtained by using ALL

features. The most dramatic improvement is for de-
terminers, and indeed, our features were designed
for this case. However, the performance gains are
not very high for implicit determiners, and further
investigation is needed.

Next, we apply the features to more general oper-
ator comparisons. The first row of Table 5 considers
observationsx = (o, o′, τ), whereo ando′ are sib-
lings, and predicts whethero ≫ o′. The second row
considers observations whereo′ is embedded syn-
tactically withino, and predicts whether R(o) ≫ o′.
In other words, the problem is to determine whether
a syntactically embedded operator remains scopally
embedded, or whether it has inverse scope (see Sec-
tion 3.3).
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Count MAJORITY TYPE ALL

Siblings 2793 76.1% 83.3% 87.5%

Embedded 5081 95% 95.3% 96.4%

Table 5: Ordering siblings and embedded operators.
Average accuracies over 10-fold cross-validation. The
columns describe the subset of features used.

6 From Operator Comparisons to ASTs

We now consider the problem of computing the
AST given the classifiers for comparing operators.
Section 6.1 describes the algorithms used. In Sec-
tion 6.2, we develop metrics to evaluate the com-
putation of ASTs. We conclude, in Section 6.3, by
evaluating different algorithms using the metrics.

6.1 Algorithms

We begin by discussing the intractability of the prob-
lem of ranking or ordering operators. Then, we
sketch the search heuristics used.
Intractability: The decision version of the rank-
ing problem is NP-complete. A similar result is es-
tablished by Cohen et al. (1998) in the context of a
boosting approach to ranking.

Theorem 1. The following problem is NP-complete:
Input: A PPTτ , a preterminalp ∈ τ , probabilities
P (oi ≫ oj|τ), andc ∈ [0, 1]

Output: Yes, if there is an orderingr such that
P (r(p)|τ) ≥ c

The proof is by reduction from ACYCLIC SUB-
GRAPH (Karp, 1972) – finding a subgraph which is
acyclic and has at leastk edges.
Heuristics: To order operators, we use a beam
search procedure. Each search state consists preter-
minal, in which the firsti ranks have been assigned
to operators. We then search over next states by as-
signing the ranki+1 to one of the remaining opera-
tors. We used a beam size of104 in our experiments.
In most cases, the number of operators per preter-
minal is less than7. As a result, the total number
of possible orderings is typically less than7!, and a
beam size of104 is sufficient to compute an exact or-
dering. In other words, due to the size restrictions, in
most cases, beam search is equivalent to exact (ex-
haustive) search.

To handle embedded operators, we use a simple
greedy heuristic. We enumerate the operators in the

initial PPT, corresponding to an in-order traversal.
For each operator, we attach it to the most likely an-
cestor, given the attachment decisions for the previ-
ous operators. This heuristic is optimal for the case
where the depth of embedding is at most1, which is
the common case.

6.2 Metrics

In this section, we describe metrics used to evaluate
the computation of ASTs. Letτ be the initial PPT,
α the correct AST, andα∗ the computed AST. We
define accuracy at various levels.

The simplest metric is to define accuracy atthe
level of ASTs, i.e., by computing the fraction of cases
for which α = α∗. However, this metric is harsh,
in the sense that it does not give algorithms partial
credit for getting a portion of the AST correct.

The next possible metric is to define accuracy at
the level of preterminals. Let p be a preterminal.
Note thatτ , α andα∗ share the same set of preter-
minals, but may associate different operators with
them. We say thatp is correct inα∗, if it is asso-
ciated with the same set of operators as inα, and
for all {o, o′} ⊆ p, we haveo ≫ o′ w.r.t. α∗ iff
o ≫ o′ w.r.t. α. In other words, the preterminals
are identical, both in terms of the set of operators
and the ordering between pairs of operators. While
preterminal-level accuracy gives partial credit, it is
still a little harsh, in the sense that an algorithm
which makes one ordering mistake at a preterminal
is penalized the same as an algorithm which makes
multiple mistakes.

Finally, we consider metrics to define accuracy at
the level of pairs of operators. Let p be a preter-
minal. The setPairs(p, α) consists of pairs of op-
erators(o, o′) such thato and o′ are both associ-
ated withp in α, ando = o′ or o ≫ o′. The set
Pairs(p, α∗) is defined similarly usingα∗ instead of
α. Given the setsPairs(p, α) andPairs(p, α∗), pre-
cision, recall, and f-score are defined in the usual
way. We leave the details to the reader.

6.3 Results

We evaluate the following algorithms:

1. No Embedding – The AST is computed purely
by reordering operators within a preterminal in
the PPT.
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(a) SURFACE – No reordering is performed,
i.e., the order of operators in the AST re-
spects the surface order

(b) TYPE – Using only type and subtype in-
formation for the operators

(c) ALL – Using all the features described in
Section 5

2. ALL + – The initial PPT is transformed into a
second PPT before reordering (as described in
Section 3.3). All features are used.

Prec. Rec. F p α

SURF. 86.9% 82.7% 84.6% 81% 4.2%

TYPE 90.4% 86% 88.1% 83.6% 24.7%

ALL 92% 87.6% 89.8% 85.1% 33.5%

ALL + 91.9% 89.4% 90.6% 85.9% 36.2%

Table 6: Performance of the algorithms in computing the
ASTs. Averaged over 10-fold cross-validation.195 ASTs
in total, an average of8.6 preterminals per AST, and1.8
operators per preterminal.

Table 6 summarizes the performance of the al-
gorithms, under the various metrics. The accura-
cies are averaged over 10-fold cross-validation. A
total of 195 ASTs are used. The average number
of preterminals per AST is8.6, with an average of
1.8 operators per preterminal. The best number un-
der each metric is shown in bold-face. By adding
features, we improve the precision from86.9% to
90.4% to 92% in moving from SURFACE to TYPE

to ALL . By handling embedded operators, we im-
prove the recall from87.6% to 89.4% in moving
from ALL to ALL +. As we saw in Section 5, in95%
of the cases, the embedded operators respects syn-
tactic scope, and as a result, we obtain only modest
gains from handling embedded operators.

The reader may feel that the F-score of90.6% is
quite high given the size of our training data. This
score is inflated by inclusion of reflexive pairs, of
the form (o, o). Such pairs are included for the
following (technical) reasons. The algorithm that
handles embedded operators (ALL+) usually raises
them from a single operator node (as in Figure 3) to
a multi-operator node (as in Figure 5). If it makes
an incorrect decision to raise an operator it takes a
precision hit, at the multi-operator node (because

it has some false positives). By contrast, an algo-
rithm loses precision for failing to correctly raise,
only when we encounter the single operator node.

For these reasons, it is better to consider the rela-
tive improvement in F-score over the baseline. The
relative improvement of ALL + over SURFACE in
terms of F-score is36.6%. We believe that the
preterminal-level accuracy is more indicative in an
absolute sense. Furthermore, when we restrict atten-
tion to those preterminals with two or more opera-
tors in the PPT, the accuracy of ALL + is 69.4%.

7 Related Work

ASTs can be seen as a middle ground between two
lines of research in translating sentences to logic.

At one end of the spectrum, we have methods
that achieve good accuracy on restricted texts. The
two main corpora that have been considered are the
GEOQUERY corpus (Thompson et al., 1997) and
the ATIS-3 corpus (Dahl et al., 1994). The GEO-
QUERY corpus consists of queries to a geographical
database. The queries were collected from students
participating in a study and the average sentence
length is 8 words. The ATIS corpus is collected
from subjects’ interaction with a database of flight
information, using spoken natural language. The ut-
terances have be transcribed, and the average sen-
tence length is10 words (Berant et al., 2007). Algo-
rithms, which achieve good accuracy, have been de-
veloped to compute the logical translation for these
queries (Zettlemoyer and Collins, 2005; Wong and
Mooney, 2007; Zettlemoyer and Collins, 2009). The
annotated sentences in the FDA CFR Section 610.40
are longer (about30 words on average), and contain
modalities which are not present in these corpora.

At the other end of the spectrum, Bos et al. (Bos et
al., 2004) have developed a broad-coverage parser to
translate sentences to a logic based on discourse rep-
resentation theory. Here, there is no direct method to
evaluate the correctness of the translation. However,
indirect evaluations are possible, for example, by
studying improvement in textual entailment tasks.

To summarize, there are techniques that either
produce an accurate translation for sentences in a
limited domain, or produce some translation for sen-
tences in a broader range of texts. ASTs offer a mid-
dle ground in two ways. First, we focus on regula-
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tory texts which are less restricted than the database
queries in the GEOQUERY and ATIS corpora, but do
not exhibit anaphoric phenomenon found in genres,
such as, newspaper text. In (Dinesh et al., 2007), we
discuss lexical statistics that show significant differ-
ences in the distribution of anaphoric items in the
CFR and Wall Street Journal (WSJ) corpora. For ex-
ample, the frequency of pronouns and anaphoric dis-
course connectives is significantly lower in the CFR
than in the WSJ. Instead, the CFR has an idiosyn-
cratic mechanism for referring to sentences, using
phrases such as “except as specified in paragraph
(c) and (d)”. A question of interest is whether the
GEOQUERY and ATIS corpora show similar pecu-
liarities in terms of anaphora. The second difference
between our approach and others is that we do not
attempt to translate all the way to logic. The level of
logical form lets us obtain a direct evaluation, while
leaving open the design of parts of the logic.

8 Conclusions

We described experiments on a modest-sized cor-
pus of regulatory sentences, annotated with a novel
variant of logical form, calledabstract syntax trees
(ASTs). An example from the corpus was presented
in Section 2 and some statistics, describing the cor-
pus, were discussed in Section 4. In Sections 3, 5,
and 6, we developed and tested algorithms to con-
vert a processed parse tree (PPT) to an AST. The
main step in this conversion was to rank or order the
operators at a preterminal. We presented a proba-
bilistic model for ranking, investigated the design of
features, and developed search heuristics. The best
algorithm, which uses all features and handles em-
bedded operators, achieves an F-score of90.6%.

An important direction for further inquiry is in the
design of better features. Various types of features
have been proposed for the scopal ordering of deter-
miners. Examples include syntactic features (Ioup,
1975; Reinhart, 1983), such as position and voice,
semantic features (Grimshaw, 1990; Jackendoff,
1972), such as thematic roles. More recently, Srini-
vasan and Yates (2009) showed how pragmatic in-
formation, for example “there are more people than
cities”, can be leveraged for scope disambiguation.
We experimented with lexico-syntactic features in
this work, and leave an investigation of semantic and

pragmatic features to future work.
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Abstract

The notion of infix probability has been intro-
duced in the literature as a generalization of
the notion of prefix (or initial substring) prob-
ability, motivated by applications in speech
recognition and word error correction. For the
case where a probabilistic context-free gram-
mar is used as language model, methods for
the computation of infix probabilities have
been presented in the literature, based on vari-
ous simplifying assumptions. Here we present
a solution that applies to the problem in its full
generality.

1 Introduction

Probabilistic context-free grammars (PCFGs for
short) are a statistical model widely used in natural
language processing. Several computational prob-
lems related to PCFGs have been investigated in
the literature, motivated by applications in model-
ing of natural language syntax. One such problem is
the computation of prefix probabilities for PCFGs,
where we are given as input a PCFG G and a string
w, and we are asked to compute the probability that
a sentence generated by G starts with w, that is, has
w as a prefix. This quantity is defined as the possi-
bly infinite sum of the probabilities of all strings of
the form wx, for any string x over the alphabet of G.

The problem of computation of prefix probabili-
ties for PCFGs was first formulated by Persoon and
Fu (1975). Efficient algorithms for its solution have
been proposed by Jelinek and Lafferty (1991) and
Stolcke (1995). Prefix probabilities can be used to
compute probability distributions for the next word

or part-of-speech, when a prefix of the input has al-
ready been processed, as discussed by Jelinek and
Lafferty (1991). Such distributions are useful for
speech recognition, where the result of the acous-
tic processor is represented as a lattice, and local
choices must be made for a next transition. In ad-
dition, distributions for the next word are also useful
for applications of word error correction, when one
is processing ‘noisy’ text and the parser recognizes
an error that must be recovered by operations of in-
sertion, replacement or deletion.

Motivated by the above applications, the problem
of the computation of infix probabilities for PCFGs
has been introduced in the literature as a generaliza-
tion of the prefix probability problem. We are now
given a PCFG G and a string w, and we are asked
to compute the probability that a sentence generated
by G has w as an infix. This probability is defined
as the possibly infinite sum of the probabilities of
all strings of the form xwy, for any pair of strings x
and y over the alphabet of G. Besides applications
in computation of the probability distribution for the
next word token and in word error correction, in-
fix probabilities can also be exploited in speech un-
derstanding systems to score partial hypotheses in
algorithms based on beam search, as discussed by
Corazza et al. (1991).

Corazza et al. (1991) have pointed out that the
computation of infix probabilities is more difficult
than the computation of prefix probabilities, due to
the added ambiguity that several occurrences of the
given infix can be found in a single string generated
by the PCFG. The authors developed solutions for
the case where some distribution can be defined on
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the distance of the infix from the sentence bound-
aries, which is a simplifying assumption. The prob-
lem is also considered by Fred (2000), which pro-
vides algorithms for the case where the language
model is a probabilistic regular grammar. However,
the algorithm in (Fred, 2000) does not apply to cases
with multiple occurrences of the given infix within
a string in the language, which is what was pointed
out to be the problematic case.

In this paper we adopt a novel approach to the
problem of computation of infix probabilities, by re-
moving the ambiguity that would be caused by mul-
tiple occurrences of the given infix. Although our
result is obtained by a combination of well-known
techniques from the literature on PCFG parsing and
pattern matching, as far as we know this is the first
algorithm for the computation of infix probabilities
that works for general PCFG models without any re-
strictive assumption.

The remainder of this paper is structured as fol-
lows. In Section 2 we explain how the sum of the
probabilities of all trees generated by a PCFG can
be computed as the least fixed-point solution of a
non-linear system of equations. In Section 3 we re-
call the construction of a new PCFG out of a given
PCFG and a given finite automaton, such that the
language generated by the new grammar is the in-
tersection of the languages generated by the given
PCFG and the automaton, and the probabilities of
the generated strings are preserved. In Section 4
we show how one can efficiently construct an un-
ambiguous finite automaton that accepts all strings
with a given infix. The material from these three
sections is combined into a new algorithm in Sec-
tion 5, which allows computation of the infix prob-
ability for PCFGs. This is the main result of this
paper. Several extensions of the basic technique are
discussed in Section 6. Section 7 discusses imple-
mentation and some experiments.

2 Sum of probabilities of all derivations

Assume a probabilistic context-free grammar G, rep-
resented by a 5-tuple (Σ, N, S, R, p), where Σ and
N are two finite disjoint sets of terminals and non-
terminals, respectively, S ∈ N is the start symbol,
R is a finite set of rules, each of the form A → α,
whereA ∈ N and α ∈ (Σ∪N)∗, and p is a function

from rules in R to real numbers in the interval [0, 1].
The concept of left-most derivation in one step is

represented by the notation α π⇒G β, which means
that the left-most occurrence of any nonterminal in
α ∈ (Σ ∪ N)∗ is rewritten by means of some rule
π ∈ R. If the rewritten nonterminal is A, then π
must be of the form (A → γ) and β is the result
of replacing the occurrence of A in α by γ. A left-
most derivation with any number of steps, using a
sequence d of rules, is denoted as α d⇒G β. We omit
the subscript G when the PCFG is understood. We
also write α ∗⇒ β when the involved sequence of
rules is of no relevance. Henceforth, all derivations
we discuss are implicitly left-most.

A complete derivation is either the empty se-
quence of rules, or a sequence d = π1 · · ·πm, m ≥
1, of rules such that A d⇒ w for some A ∈ N and
w ∈ Σ∗. In the latter case, we say the complete
derivation starts withA, and in the former case, with
d an empty sequence of rules, we assume the com-
plete derivation starts and ends with a single termi-
nal, which is left unspecified. It is well-known that
there exists a bijective correspondence between left-
most complete derivations starting with nonterminal
A and parse trees derived by the grammar with root
A and a yield composed of terminal symbols only.

The depth of a complete derivation d is the length
of the longest path from the root to a leaf in the parse
tree associated with d. The length of a path is de-
fined as the number of nodes it visits. Thus if d = π
for some rule π = (A → w) with w ∈ Σ∗, then the
depth of d is 2.

The probability p(d) of a complete derivation d =
π1 · · ·πm, m ≥ 1, is:

p(d) =

m∏

i=1

p(πi).

We also assume that p(d) = 1 when d is an empty
sequence of rules. The probability p(w) of a string
w is the sum of all complete derivations deriving that
string from the start symbol:

p(w) =
∑

d: S
d⇒w

p(d).

With this notation, consistency of a PCFG is de-
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fined as the condition:
∑

d,w: S
d⇒w

p(d) = 1.

In other words, a PCFG is consistent if the sum
of probabilities of all complete derivations starting
with S is 1. An equivalent definition of consistency
considers the sum of probabilities of all strings:

∑

w

p(w) = 1.

See (Booth and Thompson, 1973) for further discus-
sion.

In practice, PCFGs are often required to satisfy
the additional condition:

∑

π=(A→α)
p(π) = 1,

for each A ∈ N . This condition is called proper-
ness. PCFGs that naturally arise by parameter es-
timation from corpora are generally consistent; see
(Sánchez and Benedı́, 1997; Chi and Geman, 1998).
However, in what follows, neither properness nor
consistency is guaranteed.

We define the partition function of G as the func-
tion Z that assigns to each A ∈ N the value

Z(A) =
∑

d,w

p(A
d⇒ w). (1)

Note that Z(S) = 1 means that G is consistent.
More generally, in later sections we will need to
compute the partition function for non-consistent
PCFGs.

We can characterize the partition function of a
PCFG as a solution of a specific system of equa-
tions. Following the approach in (Harris, 1963; Chi,
1999), we introduce generating functions associated
with the nonterminals of the grammar. For A ∈ N
and α ∈ (N ∪ Σ)∗, we write f(A,α) to denote the
number of occurrences of symbol A within string α.
LetN = {A1, A2, . . . , A|N |}. For eachAk ∈ N , let
mk be the number of rules in R with left-hand side
Ak, and assume some fixed order for these rules. For
each i with 1 ≤ i ≤ mk, let Ak → αk,i be the i-th
rule with left-hand side Ak.

For each k with 1 ≤ k ≤ |N |, the generating
function associated with Ak is defined as

gAk
(z1, z2, . . . , z|N |) =

mk∑

i=1

(
p(Ak → αk,i) ·

|N |∏

j=1

z
f(Aj ,αk,i)
j

)
. (2)

Furthermore, for each i ≥ 1 we recursively define
functions g(i)Ak

(z1, z2, . . . , z|N |) by

g
(1)
Ak

(z1, z2, . . . , z|N |) = gAk
(z1, z2, . . . , z|N |), (3)

and, for i ≥ 2, by

g
(i)
Ak

(z1, z2, . . . , z|N |) = (4)

gAk
( g

(i−1)
A1

(z1, z2, . . . , z|N |),

g
(i−1)
A2

(z1, z2, . . . , z|N |), . . . ,

g
(i−1)
A|N|

(z1, z2, . . . , z|N |) ).

Using induction it is not difficult to show that, for
each k and i as above, g(i)Ak

(0, 0, . . . , 0) is the sum of
the probabilities of all complete derivations fromAk
having depth not exceeding i. This implies that, for
i = 0, 1, 2, . . ., the sequence of the g(i)Ak

(0, 0, . . . , 0)
monotonically converges to Z(Ak).

For each k with 1 ≤ k ≤ |N | we can now write

Z(Ak) =

= lim
i→∞

g
(i)
Ak

(0, . . . , 0)

= lim
i→∞

gAk
( g

(i−1)
A1

(0, 0, . . . , 0), . . . ,

g
(i−1)
A|N|

(0, 0, . . . , 0) )

= gAk
( limi→∞ g

(i−1)
A1

(0, 0, . . . , 0), . . . ,

limi→∞ g
(i−1)
A|N|

(0, 0, . . . , 0) )

= gAk
(Z(A1), . . . , Z(A|N |)).

The above shows that the values of the partition
function provide a solution to the system of the fol-
lowing equations, for 1 ≤ k ≤ |N |:

zk = gAk
(z1, z2, . . . , z|N |). (5)

In the case of a general PCFG, the above equa-
tions are non-linear polynomials with positive (real)
coefficients. We can represent the resulting system
in vector form and write X = g(X). These systems
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are called monotone systems of polynomial equa-
tions and have been investigated by Etessami and
Yannakakis (2009) and Kiefer et al. (2007). The
sought solution, that is, the partition function, is the
least fixed point solution of X = g(X).

For practical reasons, the set of nonterminals of
a grammar is usually divided into maximal subsets
of mutually recursive nonterminals, that is, for each
A and B in such a subset, we have A

∗⇒ uBα
and B

∗⇒ vAβ, for some u, v, α, β. This corre-
sponds to a strongly connected component if we
see the connection between the left-hand side of a
rule and a nonterminal member in its right-hand side
as an edge in a directed graph. For each strongly
connected component, there is a separate system of
equations of the form X = g(X). Such systems can
be solved one by one, in a bottom-up order. That
is, if one strongly connected component contains
nonterminalA, and another contains nonterminalB,
where A ∗⇒ uBα for some u, α, then the system for
the latter component must be solved first.

The solution for a system of equations such as
those described above can be irrational and non-
expressible by radicals, even if we assume that all
the probabilities of the rules in the input PCFG are
rational numbers, as observed by Etessami and Yan-
nakakis (2009). Nonetheless, the partition function
can still be approximated to any degree of preci-
sion by iterative computation of the relation in (4),
as done for instance by Stolcke (1995) and by Ab-
ney et al. (1999). This corresponds to the so-called
fixed-point iteration method, which is well-known
in the numerical calculus literature and is frequently
applied to systems of non-linear equations because
it can be easily implemented.

When a number of standard conditions are met,
each iteration of (4) adds a fixed number of bits
to the precision of the solution; see Kelley (1995,
Chapter 4). Since each iteration can easily be im-
plemented to run in polynomial time, this means
that we can approximate the partition function of a
PCFG in polynomial time in the size of the PCFG
itself and in the number of bits of the desired preci-
sion.

In practical applications where large PCFGs are
empirically estimated from data sets, the standard
conditions mentioned above for the polynomial time
approximation of the partition function are usually

met. However, there are some degenerate cases for
which these standard conditions do not hold, result-
ing in exponential time behaviour of the fixed-point
iteration method. This has been firstly observed
in (Etessami and Yannakakis, 2005).

An alternative iterative algorithm for the approx-
imation of the partition function has been proposed
by Etessami and Yannakakis (2009), based on New-
ton’s method for the solution of non-linear systems
of equations. From a theoretical perspective, Kiefer
et al. (2007) have shown that, after a certain number
of initial iterations, Newton’s method adds a fixed
number of bits to the precision of the approximated
solution, even in the above mentioned cases in which
the fixed-point iteration method shows exponential
time behaviour. However, these authors also show
that, in some degenerate cases, the number of itera-
tions needed to compute the first bit of the solution
can be at least exponential in the size of the system.

Experiments with Newton’s method for the ap-
proximation of the partition functions of PCFGs
have been carried out in several application-oriented
settings, by Wojtczak and Etessami (2007) and by
Nederhof and Satta (2008), showing considerable
improvements over the fixed-point iteration method.

3 Intersection of PCFG and FA

It was shown by Bar-Hillel et al. (1964) that context-
free languages are closed under intersection with
regular languages. Their proof relied on the con-
struction of a new CFG out of an input CFG and
an input finite automaton. Here we extend that con-
struction by letting the input grammar be a proba-
bilistic CFG. We refer the reader to (Nederhof and
Satta, 2003) for more details.

To avoid a number of technical complications, we
assume the finite automaton has no epsilon transi-
tions, and has only one final state. In the context
of our use of this construction in the following sec-
tions, these restrictions are without loss of general-
ity. Thus, a finite automaton (FA)M is represented
by a 5-tuple (Σ, Q, q0, qf , ∆), where Σ and Q are
two finite sets of terminals and states, respectively,
q0 is the initial state, qf is the final state, and ∆ is
a finite set of transitions, each of the form s

a7→ t,
where s, t ∈ Q and a ∈ Σ.

A complete computation ofM accepting string
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w = a1 · · · an is a sequence c = τ1 · · · τn of tran-
sitions such that τi = (si−1

ai7→ si) for each i (1 ≤
i ≤ n), for some s0, s1, . . . , sn with s0 = q0 and
sn = qf . The language of all strings accepted byM
is denoted by L(M). A FA is unambiguous if at
most one complete computation exists for each ac-
cepted string. A FA is deterministic if there is at
most one transition s a7→ t for each s and a.

For a FAM as above and a PCFG G = (Σ, N, S,
R, p) with the same set of terminals, we construct
a new PCFG G′ = (Σ, N ′, S′, R′, p′), where N ′ =
Q× (Σ∪N)×Q, S′ = (q0, S, qf ), and R′ is the set
of rules that is obtained as follows.

• For each A → X1 · · ·Xm in R and each se-
quence s0, . . . , sm with si ∈ Q, 0 ≤ i ≤ m,
and m ≥ 0, let (s0, A, sm)→ (s0, X1, s1) · · ·
(sm−1, Xm, sm) be in R′; if m = 0, the new
rule is of the form (s0, A, s0)→ ε. Function p′

assigns the same probability to the new rule as
p assigned to the original rule.

• For each s a7→ t in ∆, let (s, a, t)→ a be in R′.
Function p′ assigns probability 1 to this rule.

Intuitively, a rule of G′ is either constructed out of
a rule of G or out of a transition ofM. On the basis
of this correspondence between rules and transitions
of G′, G and M, it is not difficult to see that each
derivation d′ in G′ deriving string w corresponds to a
unique derivation d in G deriving the same string and
a unique computation c in M accepting the same
string. Conversely, if there is a derivation d in G
deriving string w, and some computation c in M
accepting the same string, then the pair of d and c
corresponds to a unique derivation d′ in G′ deriving
the same string w. Furthermore, the probabilities of
d and d′ are equal, by definition of p′.

Let us now assume that each string w is accepted
by at most one computation, i.e. M is unambigu-
ous. If a string w is accepted byM, then there are
as many derivations deriving w in G′ as there are in
G. If w is not accepted by M, then there are zero
derivations deriving w in G′. Consequently:

∑

d′,w:

S′ d′⇒G′w

p′(d′) =
∑

d,w:

S
d⇒Gw∧w∈L(M)

p(d),

or more succinctly:
∑

w

p′(w) =
∑

w∈L(M)

p(w).

Note that the above construction of G′ is exponen-
tial in the largest value of m in any rule from G. For
this reason, G is usually brought in binary form be-
fore the intersection, i.e. the input grammar is trans-
formed to let each right-hand side have at most two
members. Such a transformation can be realized in
linear time in the size of the grammar. We will return
to this issue in Section 7.

4 Obtaining unambiguous FAs

In the previous section, we explained that unambigu-
ous finite automata have special properties with re-
spect to the grammar G′ that we may construct out
of a FA M and a PCFG G. In this section we dis-
cuss how unambiguity can be obtained for the spe-
cial case of finite automata accepting the language
of all strings with given infix w ∈ Σ∗:

Linfix (w) = {xwy | x, y ∈ Σ∗}.

Any deterministic automaton is also unambigu-
ous. Furthermore, there seem to be no practical al-
gorithms that turn FAs into equivalent unambiguous
FAs other than the algorithms that also determinize
them. Therefore, we will henceforth concentrate on
deterministic rather than unambiguous automata.

Given a string w = a1 · · · an, a finite automaton
accepting Linfix (w) can be straightforwardly con-
structed. This automaton has states s0, . . . , sn, tran-
sitions s0

a7→ s0 and sn
a7→ sn for each a ∈ Σ, and

transition si−1
ai7→ si for each i (1 ≤ i ≤ n). The

initial state is s0 and the final state is sn. Clearly,
there is nondeterminism in state s0.

One way to make this automaton deterministic is
to apply the general algorithm of determinization of
finite automata; see e.g. (Aho and Ullman, 1972).
This algorithm is exponential for general FAs. An
alternative approach is to construct a deterministic
finite automaton directly from w, in line with the
Knuth-Morris-Pratt algorithm (Knuth et al., 1977;
Gusfield, 1997). Both approaches result in the same
deterministic FA, which we denote by Iw. However,
the latter approach is easier to implement in such a
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way that the time complexity of constructing the au-
tomaton is linear in |w|.

The automaton Iw is described as follows. There
are n + 1 states t0, . . . , tn, where as before n is
the length of w. The initial state is t0 and the final
state is tn. The intuition is that Iw reads a string
x = b1 · · · bm from left to right, and when it has
read the prefix b1 · · · bj (0 ≤ j ≤ m), it is in state
ti (0 ≤ i < n) if and only if a1 · · · ai is the longest
prefix of w that is also a suffix of b1 · · · bj . If the
automaton is in state tn, then this means that w is an
infix of b1 · · · bj .

In more detail, for each i (1 ≤ i ≤ n) and each
a ∈ Σ, there is a transition ti−1

a7→ tj , where j is
the length of the longest string that is both a prefix
of w and a suffix of a1 · · · ai−1a. If a = ai, then
clearly j = i, and otherwise j < i. To ensure that we
remain in the final state once an occurrence of infix
w has been found, we also add transitions tn

a7→ tn
for each a ∈ Σ. This construction is illustrated in
Figure 1.

5 Infix probability

With the material developed in the previous sections,
the problem of computing the infix probabilities can
be effectively solved. Our goal is to compute for
given infix w ∈ Σ∗ and PCFG G = (Σ, N, S, R,
p):

σinfix (w,G) =
∑

z∈Linfix (w)

p(z).

In Section 4 we have shown the construction of finite
automaton Iw accepting Linfix (w), by which we ob-
tain:

σinfix (w,G) =
∑

z∈L(Iw)

p(z).

As Iw is deterministic and therefore unambiguous,
the results from Section 3 apply and if G′ = (Σ, N ′,
S′, R′, p′) is the PCFG constructed out of G and Iw
then:

σinfix (w,G) =
∑

z

p′(z).

Finally, we can compute the above sum by applying
the iterative method discussed in Section 2.

6 Extensions

The approach discussed above allows for a number
of generalizations. First, we can replace the infix w
by a sequence of infixes w1, . . . , wm, which have to
occur in the given order, one strictly after the other,
with arbitrary infixes in between:

σisland (w1, . . . , wm,G) =∑

x0,...,xm∈Σ∗
p(x0w1x1 · · ·wmxm).

This problem was discussed before by (Corazza et
al., 1991), who mentioned applications in speech
recognition. Further applications are found in com-
putational biology, but their discussion is beyond the
scope of this paper; see for instance (Apostolico et
al., 2005) and references therein. In order to solve
the problem, we only need a small addition to the
procedures we discussed before. First we construct
separate automata Iwj (1 ≤ j ≤ m) as explained in
Section 4. These automata are then composed into
a single automaton I(w1,...,wm). In this composition,
the outgoing transitions of the final state of Iwj , for
each j (1 ≤ j < m), are removed and that final state
is merged with the initial state of the next automaton
Iwj+1 . The initial state of the composed automaton
is the initial state of Iw1 , and the final state is the
final state of Iwm . The time costs of constructing
I(w1,...,wm) are linear in the sum of the lengths of the
strings wj .

Another way to generalize the problem is to re-
place w by a finite set L = {w1, . . . , wm}. The ob-
jective is to compute:

σinfix (L,G) =
∑

w∈L,x,y∈Σ∗
p(xwy)

Again, this can be solved by first constructing a de-
terministic FA, which is then intersected with G.
This FA can be obtained by determinizing a straight-
forward nondeterministic FA accepting L, or by di-
rectly constructing a deterministic FA along the lines
of the Aho-Corasick algorithm (Aho and Corasick,
1975). Construction of the automaton with the latter
approach takes linear time.

Further straightforward generalizations involve
formalisms such as probabilistic tree adjoining
grammars (Schabes, 1992; Resnik, 1992). The tech-
nique from Section 3 is also applicable in this case,
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t0 t1 t2 t3 t4
a b a c

b, c a
a, b, cc

b, c a

b

Figure 1: Deterministic automaton that accepts all strings over alphabet {a, b, c} with infix abac.

as the construction from Bar-Hillel et al. (1964) car-
ries over from context-free grammars to tree ad-
joining grammars, and more generally to the linear
context-free rewriting systems of Vijay-Shanker et
al. (1987).

7 Implementation

We have conducted experiments with the computa-
tion of infix probabilities. The objective was to iden-
tify parts of the computation that have a high time
or space demand, and that might be improved. The
experiments were run on a desktop with a 3.0 GHz
Pentium 4 processor. The implementation language
is C++.

The set-up of the experiments is similar to that in
(Nederhof and Satta, 2008). A probabilistic context-
free grammar was extracted from sections 2-21 of
the Penn Treebank version II. Subtrees that gener-
ated the empty string were systematically removed.
The result was a CFG with 10,035 rules, 28 nonter-
minals and 36 parts-of-speech. The rule probabili-
ties were determined by maximum likelihood esti-
mation. The grammar was subsequently binarized,
to avoid exponential behaviour, as explained in Sec-
tion 3.

We have considered 10 strings of length 7, ran-
domly generated, assuming each of the parts-of-
speech has the same probability. For all prefixes of
those strings from length 2 to length 7, we then com-
puted the infix probability. The duration of the full
computation, averaged over the 10 strings of length
7, is given in the first row of Table 1.

In order to solve the non-linear systems of equa-
tions, we used Broyden’s method. It can be seen
as an approximation of Newton’s method. It re-
quires more iterations, but seems to be faster over-
all, and more scalable to large problem sizes, due to

the avoidance of matrix inversion, which sometimes
makes Newton’s method prohibitively expensive. In
our experiments, Broyden’s method was generally
faster than Newton’s method and much faster than
the simple iteration method by the relation in (4).
For further details on Broyden’s method, we refer
the reader to (Kelley, 1995).

The main obstacle to computation for infixes sub-
stantially longer than 7 symbols is the memory con-
sumption rather than the running time. This is due
to the required square matrices, the dimension of
which is the number of nonterminals. The number
of nonterminals (of the intersection grammar) natu-
rally grows as the infix becomes longer.

As explained in Section 2, the problem is divided
into smaller problems by isolating disjoint sets of
mutually recursive nonterminals, or strongly con-
nected components. We found that for the applica-
tion to the automata discussed in Section 4, there
were exactly three strongly connected components
that contained more than one element, throughout
the experiments. For an infix of length n, these com-
ponents are:

• C1, which consists of nonterminals of the form
(ti, A, tj), where i < n and j < n,

• C2, which consists of nonterminals of the form
(ti, A, tj), where i = j = n, and

• C3, which consists of nonterminals of the form
(ti, A, tj), where i < j = n.

This can be easily explained by looking at the struc-
ture of our automata. See for example Figure 1, with
cycles running through states t0, . . . , tn−1, and cy-
cles through state tn. Furthermore, the grammar ex-
tracted from the Penn Treebank is heavily recursive,
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infix length 2 3 4 5 6 7
total running time 1.07 1.95 5.84 11.38 23.93 45.91
Broyden’s method for C1 0.46 0.90 3.42 6.63 12.91 24.38
Broyden’s method for C2 0.08 0.04 0.07 0.04 0.03 0.09
Broyden’s method for C3 0.20 0.36 0.81 1.74 5.30 9.02

Table 1: Running time for infixes from length 2 to length 7. The infixes are prefixes of 10 random strings of length 7,
and reported CPU times (in seconds) are averaged over the 10 strings.

so that almost every nonterminal can directly or in-
directly call any other.

The strongly connected component C2 is always
the same, consisting of 2402 nonterminals, for each
infix of any length. (Note that binarization of the
grammar introduced artificial nonterminals.) The
last three rows of Table 1 present the time costs of
Broyden’s method, for the three strongly connected
components.

The strongly connected componentC3 happens to
correspond to a linear system of equations. This is
because a rule in the intersection grammar with a
left-hand side (ti, A, tj), where i < j = n, must
have a right-hand side of the form (ti, A

′, tj), or of
the form (ti, A1, tk) (tk, A2, tj), with k ≤ n. If k <
n, then only the second member can be in C3. If
k = n, only first member can be in C3. Hence,
such a rule corresponds to a linear equation within
the system of equations for the entire grammar.

A linear system of equations can be solved an-
alytically, for example by Gaussian elimination,
rather than approximated through Newton’s method
or Broyden’s method. This means that the running
times in the last row of Table 1 can be reduced by
treating C3 differently from the other strongly con-
nected components. However, the running time for
C1 dominates the total time consumption.

The above investigations were motivated by two
questions, namely whether any part of the computa-
tion can be precomputed, and second, whether infix
probabilities can be computed incrementally, for in-
fixes that are extended to the left or to the right. The
first question can be answered affirmatively for C2,
as it is always the same. However, as we can see in
Table 1, the computation of C2 amounts to a small
portion of the total time consumption.

The second question can be rephrased more pre-
cisely as follows. Suppose we have computed the

infix probability of a string w and have kept inter-
mediate results in memory. Can the computation of
the infix probability of a string of the form aw orwa,
a ∈ Σ, be computed by relying on the existing re-
sults, so that the computation is substantially faster
than if the computation were done from scratch?

Our investigations so far have not found a posi-
tive answer to this second question. In particular,
the systems of equations for C1 and C3 change fun-
damentally if the infix is extended by one more sym-
bol, which seems to at least make incremental com-
putation very difficult, if not impossible. Note that
the algorithms for the computation of prefix prob-
abilities by Jelinek and Lafferty (1991) and Stolcke
(1995) do allow incrementality, which contributes to
their practical usefulness for speech recognition.

8 Conclusions

We have shown that the problem of infix probabili-
ties for PCFGs can be solved by a construction that
intersects a context-free language with a regular lan-
guage. An important constraint is that the finite
automaton that is input to this construction be un-
ambiguous. We have shown that such an automa-
ton can be efficiently constructed. Once the input
probabilistic PCFG and the FA have been combined
into a new probabilistic CFG, the infix probability
can be straightforwardly solved by iterative algo-
rithms. Such algorithms include Newton’s method,
and Broyden’s method, which was used in our exper-
iments. Our discussion ended with an open question
about the possibility of incremental computation of
infix probabilities.

References

S. Abney, D. McAllester, and F. Pereira. 1999. Relating
probabilistic grammars and automata. In 37th Annual

1220



Meeting of the Association for Computational Linguis-
tics, Proceedings of the Conference, pages 542–549,
Maryland, USA, June.

A.V. Aho and M.J. Corasick. 1975. Efficient string
matching: an aid to bibliographic search. Communi-
cations of the ACM, 18(6):333–340, June.

A.V. Aho and J.D. Ullman. 1972. Parsing, volume 1
of The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, N.J.

A. Apostolico, M. Comin, and L. Parida. 2005. Con-
servative extraction of overrepresented extensible mo-
tifs. In Proceedings of Intelligent Systems for Molecu-
lar Biology (ISMB05).

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On formal
properties of simple phrase structure grammars. In
Y. Bar-Hillel, editor, Language and Information: Se-
lected Essays on their Theory and Application, chap-
ter 9, pages 116–150. Addison-Wesley, Reading, Mas-
sachusetts.

T.L. Booth and R.A. Thompson. 1973. Applying prob-
abilistic measures to abstract languages. IEEE Trans-
actions on Computers, C-22:442–450.

Z. Chi and S. Geman. 1998. Estimation of probabilis-
tic context-free grammars. Computational Linguistics,
24(2):299–305.

Z. Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160.

A. Corazza, R. De Mori, R. Gretter, and G. Satta.
1991. Computation of probabilities for an island-
driven parser. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(9):936–950.

K. Etessami and M. Yannakakis. 2005. Recursive
Markov chains, stochastic grammars, and monotone
systems of nonlinear equations. In 22nd International
Symposium on Theoretical Aspects of Computer Sci-
ence, volume 3404 of Lecture Notes in Computer Sci-
ence, pages 340–352, Stuttgart, Germany. Springer-
Verlag.

K. Etessami and M. Yannakakis. 2009. Recursive
Markov chains, stochastic grammars, and monotone
systems of nonlinear equations. Journal of the ACM,
56(1):1–66.

A.L.N. Fred. 2000. Computation of substring proba-
bilities in stochastic grammars. In A. Oliveira, edi-
tor, Grammatical Inference: Algorithms and Applica-
tions, volume 1891 of Lecture Notes in Artificial Intel-
ligence, pages 103–114. Springer-Verlag.

D. Gusfield. 1997. Algorithms on Strings, Trees, and
Sequences. Cambridge University Press, Cambridge.

T.E. Harris. 1963. The Theory of Branching Processes.
Springer-Verlag, Berlin, Germany.

F. Jelinek and J.D. Lafferty. 1991. Computation of the
probability of initial substring generation by stochas-
tic context-free grammars. Computational Linguistics,
17(3):315–323.

C.T. Kelley. 1995. Iterative Methods for Linear and
Nonlinear Equations. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA.

S. Kiefer, M. Luttenberger, and J. Esparza. 2007. On the
convergence of Newton’s method for monotone sys-
tems of polynomial equations. In Proceedings of the
39th ACM Symposium on Theory of Computing, pages
217–266.

D.E. Knuth, J.H. Morris, Jr., and V.R. Pratt. 1977. Fast
pattern matching in strings. SIAM Journal on Comput-
ing, 6:323–350.

M.-J. Nederhof and G. Satta. 2003. Probabilistic pars-
ing as intersection. In 8th International Workshop on
Parsing Technologies, pages 137–148, LORIA, Nancy,
France, April.

M.-J. Nederhof and G. Satta. 2008. Computing parti-
tion functions of PCFGs. Research on Language and
Computation, 6(2):139–162.

E. Persoon and K.S. Fu. 1975. Sequential classification
of strings generated by SCFG’s. International Journal
of Computer and Information Sciences, 4(3):205–217.

P. Resnik. 1992. Probabilistic tree-adjoining grammar as
a framework for statistical natural language process-
ing. In Proc. of the fifteenth International Conference
on Computational Linguistics, Nantes, August, pages
418–424.

J.-A. Sánchez and J.-M. Benedı́. 1997. Consistency
of stochastic context-free grammars from probabilis-
tic estimation based on growth transformations. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 19(9):1052–1055, September.

Y. Schabes. 1992. Stochastic lexicalized tree-adjoining
grammars. In Proc. of the fifteenth International Con-
ference on Computational Linguistics, Nantes, Au-
gust, pages 426–432.

A. Stolcke. 1995. An efficient probabilistic context-free
parsing algorithm that computes prefix probabilities.
Computational Linguistics, 21(2):167–201.

K. Vijay-Shanker, D.J. Weir, and A.K. Joshi. 1987.
Characterizing structural descriptions produced by
various grammatical formalisms. In 25th Annual
Meeting of the Association for Computational Linguis-
tics, Proceedings of the Conference, pages 104–111,
Stanford, California, USA, July.

D. Wojtczak and K. Etessami. 2007. PReMo: an an-
alyzer for Probabilistic Recursive Models. In Tools
and Algorithms for the Construction and Analysis of
Systems, 13th International Conference, volume 4424
of Lecture Notes in Computer Science, pages 66–71,
Braga, Portugal. Springer-Verlag.

1221



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1222–1233,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Parse Correction with Specialized Models for Difficult Attachment Types

Enrique Henestroza Anguiano and Marie Candito
Alpage (Universit́e Paris Diderot / INRIA)

Paris, France
henestro@inria.fr, marie.candito@linguist.jussieu.fr

Abstract

This paper develops a framework for syntac-
tic dependency parse correction. Dependen-
cies in an input parse tree are revised by se-
lecting, for a given dependent, the best gov-
ernor from within a small set of candidates.
We use a discriminative linear ranking model
to select the best governor from a group of
candidates for a dependent, and our model in-
cludes a rich feature set that encodes syntac-
tic structure in the input parse tree. The parse
correction framework is parser-agnostic, and
can correct attachments using either a generic
model or specialized models tailored to dif-
ficult attachment types like coordination and
pp-attachment. Our experiments show that
parse correction, combining a generic model
with specialized models for difficult attach-
ment types, can successfully improve the qual-
ity of predicted parse trees output by sev-
eral representative state-of-the-art dependency
parsers for French.

1 Introduction

In syntactic dependency parse correction, attach-
ments in an input parse tree are revised by selecting,
for a given dependent, the best governor from within
a small set of candidates. The motivation behind
parse correction is that attachment decisions, espe-
cially traditionally difficult ones like pp-attachment
and coordination, may require substantial contextual
information in order to be made accurately. Because
syntactic dependency parsers predict the parse tree
for an entire sentence, they may not be able to take

into account sufficient context when making attach-
ment decisions, due to computational complexity.
Assuming nonetheless that a predicted parse tree is
mostly accurate, parse correction can revise difficult
attachments by using the predicted tree’s syntactic
structure to restrict the set of candidate governors
and extract a rich set of features to help select among
them. Parse correction is also appealing because it
is parser-agnostic: it can be trained to correct the
output of any dependency parser.

In Section 2 we discuss work related to parse
correction, pp-attachment and coordination resolu-
tion. In Section 3 we discuss dependency struc-
ture and various statistical dependency parsing ap-
proaches. In Section 4 we introduce the parse cor-
rection framework, and Section 5 describes the fea-
tures and learning model used in our implementa-
tion. In Section 6 we present experiments in which
parse correction revises the predicted parse trees of
four state-of-the-art dependency parsers for French.
We provide concluding remarks in Section 7.

2 Related Work

Previous research directly concerning parse correc-
tion includes that of Attardi and Ciaramita (2007),
working on English and Swedish, who use an ap-
proach that considers a fixed set of revision rules:
each rule describes movements in the parse tree
leading from a dependent’s original governor to a
new governor, and a classifier is trained to select
the correct revision rule for a given dependent. One
drawback of this approach is that the classes lack
semantic coherence: a sequence of movements does
not necessarily have the same meaning across differ-
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ent syntactic trees. Hall and Novák (2005), working
on Czech, define a neighborhood of candidate gov-
ernors centered around the original governor of a de-
pendent, and a Maximum Entropy model determines
the probability of each candidate-dependent attach-
ment. We follow primarily from their work in our
use of neighborhoods to delimit the set of candidate
governors. Our main contributions are: specialized
corrective models for difficult attachment types (co-
ordination and pp-attachment) in addition to a gen-
eral corrective model; more sophisticated features,
feature combinations, and feature selection; and a
ranking model trained directly to select the true gov-
ernor from among a set of candidates.

There has also been other work on techniques
similar to parse correction. Attardi and Dell’Orletta
(2009) investigatereverse revision: a left-to-right
transition-based model is first used to parse a sen-
tence, then a right-to-left transition-based model is
run with additional features taken from the left-to-
right model’s predicted parse. This approach leads
to improved parsing results on a number of lan-
guages. While their approach is similar to parse cor-
rection in that it uses a predicted parse to inform a
subsequent processing step, this information is used
to improve a second parser rather than a model for
correcting errors. McDonald and Pereira (2006)
consider a method for recovering non-projective at-
tachments from a graph representation of a sentence,
in which an optimal projective parse tree has been
identified. The parse tree’s edges are allowed to be
rearranged in ways that introduce non-projectivity
in order to increase its overall score. This rearrange-
ment approach resembles parse correction because
it is a second step that can revise attachments made
in the first step, but it differs in a number of ways: it
is dependent on a graph-based parsing approach, it
does not model errors made by the parser, and it can
only output non-projective variants of the predicted
parse tree.

As a process that revises the output of a syntac-
tic parser, parse reranking is also similar to parse
correction. A well-studied subject (e.g. the work
of Charniak and Johnson (2005) and of Collins and
Koo (2005)), parse reranking is concerned with the
reordering ofn-best ranked parse trees output by
a syntactic parser. Parse correction has a num-
ber of advantages compared to reranking: it can be

used with parsers that do not outputn-best ranked
parses, it can be easily restricted to specific attach-
ment types, and its output space of parse trees is not
limited to those appearing in ann-best list. How-
ever, parse reranking has the advantage of selecting
the globally optimal parse for a sentence from ann-
best list, while parse correction makes only locally
optimal revisions in the predicted parse for a sen-
tence.

2.1 Difficult Attachment Types

Research on pp-attachment traditionally formulates
the problem in isolation, as in the work of Pantel and
Lin (2000) and of Olteanu and Moldovan (2005).
Examples consist of tuples of the form(v, n1, p, n2),
where eitherv or n1 is the true governor of the
pp comprisingp andn2, and the task is to choose
betweenv and n1. Recently, Atterer and Schütze
(2007) have criticized this formulation as unrealistic
because it uses an oracle to select candidate gover-
nors, and they find that successful approaches for
the isolated problem perform no better than state-
of-the-art parsers on pp-attachment when evaluated
on full sentences. With parse correction, candi-
date governors are identified automatically with no
(v, n1, p, n2) restriction, and for several representa-
tive parsers we find that parse correction improves
pp-attachment performance.

Research on coordination resolution has also of-
ten formulated the problem in isolation. Resnik
(1999) uses semantic similarity to resolve noun-
phrase coordination of the form(n1, cc, n2, n3),
where the coordinating conjunctioncc coordinates
either the headsn1 and n2 or the headsn1 and
n3. The same criticism as the one made by At-
terer and Scḧutze (2007) for pp-attachment might
be applied to this approach to coordination reso-
lution. In another formulation, the input consists
of a raw sentence, and coordination structure is
then detected and disambiguated using discrimina-
tive learning models (Shimbo and Hara, 2007) or
coordination-specific parsers (Hara et al., 2009). Fi-
nally, other work has focused on introducing spe-
cialized features for coordination into existing syn-
tactic parsing models (Hogan, 2007). Our approach
is novel with respect to previous work by directly
modeling the correction of coordination errors made
by general-purpose dependency parsers.
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ouvrit
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la
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clé

la

Figure 1: An unlabeled dependency tree for:Elle ouvrit
la porte avec la cĺe. (She opened the door with the key).

3 Dependency Parsing

Dependency syntax involves the representation of
syntactic information for a sentence in the form a
directed graph, whose edges encode word-to-word
relationships. An edge from agovernor to a de-
pendentindicates, roughly, that the presence of the
dependent is syntactically legitimated by the gover-
nor. An important property of dependency syntax is
that each word, except for the root of the sentence,
has exactly one governor; dependency syntax is thus
represented by trees. Figure 1 shows an example
of an unlabeled dependency tree.1 For languages
like English or French, most sentences can be rep-
resented with aprojectivedependency tree: for any
edge from wordg to wordd, g dominates any inter-
vening word betweeng andd.

Dependency trees are appealing syntactic repre-
sentations, closer than constituency trees to the se-
mantic representations useful for NLP applications.
This is true even with the projectivity requirement,
which occasionally creates syntax-semantics mis-
matches. Dependency trees have recently seen a
surge of interest, particularly with the introduction
of supervised models for dependency parsing us-
ing linear classifiers. Such parsers fall into two
main categories: transition-based parsing and graph-
based parsing. Additionally, an alternative method
for obtaining the dependency parse for a sentence
is to parse the sentence with a constituency-based
parser and then use an automatic process to convert
the output into dependency structure.

1Edges are generally labeled with the surface grammatical
function that the dependent bears with respect to its governor.
In this paper we focus on unlabeled dependency parsing, setting
aside labeling as a separate task.

3.1 Transition-Based Parsing

In transition-based dependency parsing, whose sem-
inal works are that of Yamada and Matsumoto
(2003) and Nivre (2003), the parsing process ap-
plies a sequence of incremental actions, which typ-
ically manipulate a buffer position in the sentence
and a stack for built sub-structures. Actions are of
the type “read word from buffer”, “ build a depen-
dency from node on top of the stack to node that
begins the buffer”, etc. In a greedy version of this
process, the action to apply at each step is determin-
istically chosen to be the best-scoring action accord-
ing to a classifier, which is trained on a dependency
treebank converted into sequences of actions. The
strengths of this framework areO(n) time complex-
ity and a lack of restrictions on the locality of fea-
tures. A major drawback is its greedy behavior: it
can potentially make difficult attachment decisions
early in the processing of a sentence, without being
able to reconsider them when more information be-
comes available. Beamed versions of the algorithm
(Johansson and Nugues, 2006) partially address this
problem, but still do not provide a global optimiza-
tion for selecting the output parse tree.

3.2 Graph-Based Parsing

In graph-based dependency parsing, whose seminal
work is that of McDonald et al. (2005), the parsing
process selects the globally optimal parse tree from
a graph containing attachments (directed edges) be-
tween each pair of words (nodes) in a sentence.
It finds thek-best scoring parse trees, both during
training and at parse time, where the score of a tree
is the sum of the scores of itsfactors(consisting of
one or more linked edges). While large factors are
desirable for capturing sophisticated linguistic con-
straints, they come at the cost of time complexity:
for the projective case, adaptations of Eisner’s algo-
rithm (Eisner, 1996) areO(n3) for 1-edge factors
(McDonald et al., 2005) or sibling 2-edge factors
(McDonald and Pereira, 2006), andO(n4) for gen-
eral 2-edge factors (Carreras, 2007) or 3-edge fac-
tors (Koo and Collins, 2010).

3.3 Constituency-Based Parsing

Beyond the two main approaches to dependency
parsing, there is also the approach of constituency-
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based parsing followed by a conversion step to de-
pendency structure. We use the three-step parsing
architecture previously tested for French by Candito
et al. (2010a): (i) A constituency parse tree is out-
put by the BerkeleyParser, which has been trained to
learn a probabilistic context-free grammar with la-
tent annotations (Petrov et al., 2006) that has parsing
time complexityO(n3) (Matsuzaki et al., 2005); (ii)
A functional role labeler using a Maximum Entropy
model adds functional annotations to links between
a verb and its dependents; (iii) Constituency trees
are automatically converted into projective depen-
dency trees, with remaining unlabeled dependencies
assigned labels using a rule-based approach.

3.4 Baseline Parsers

In this paper, we use the following baseline parsers:
MaltParser (Nivre et al., 2007) for transition-based
parsing; MSTParser (McDonald et al., 2005) (with
sibling 2-edge factors) and BohnetParser (Bohnet,
2010) (with general 2-edge factors) for graph-based
parsing; and BerkeleyParser (Petrov et al., 2006) for
constituency-based parsing.

For MaltParser and MSTParser, we use the best
settings from a benchmarking of parsers for French
(Candito et al., 2010b), except that we remove un-
supervised word clusters as features. The parsing
models are thus trained using features including pre-
dicted part-of-speech tags, lemmas and morpholog-
ical features. For BohnetParser, we trained a new
model using these same predicted features. For
BerkelyParser, which was included in the bench-
marking experiments, we trained a model using the
so-called “desinflection” process that addresses data
sparseness due to morphological variation: both
at training and parsing time, terminal symbols are
word forms in which redundant morphological suf-
fixes are removed, provided the original part-of-
speech ambiguities are kept (Candito et al., 2010b).

All models are trained on the French Treebank
(FTB) (Abeillé and Barrier, 2004), consisting of
12,351 sentences from theLe Mondenewspaper, ei-
ther “desinflected” for the BerkeleyParser, or con-
verted to projective dependency trees (Candito et al.,
2010a) for the three dependency-native parsers.2 For

2The projectivity constraint is linguistically valid for most
French parses: the authors report< 2% non-projective edges in
a hand-corrected subset of the converted FTB.

INPUT: Predicted parse treeT

LOOP: For each chosen dependentd ∈ D

• Identify candidatesCd from T

• Predictĉ = argmax
c ∈ Cd

S(c, d, T )

• UpdateT{gov(d) ← ĉ}
OUTPUT: Corrected version of parse treeT

Figure 2: The parse correction algorithm.

the dependency-native models, features include pre-
dicted part-of-speech (POS) tags from the MElt tag-
ger (Denis and Sagot, 2009), as well as predicted
lemmas and morphological features from the Lefff
lexicon (Sagot, 2010). These models constitute the
state-of-the-art for French dependency parsing: un-
labeled attachment scores (UAS) on the FTB test set
are89.78% for MaltParser,91.04% for MSTParser,
91.78% for BohnetParser, and90.73% for Berkeley-
Parser.

4 Parse Correction

The parse correction algorithm is a post-processing
step to dependency parsing, where attachments from
the predicted parse tree of a sentence are corrected
by considering alternative candidate governors for
each dependent. This process can be useful for at-
tachments made too early in transition-based pars-
ing, or with features that are too local in MST-based
parsing.

The input is the predicted parseT of a sentence.
FromT a setD of dependent nodes are chosen for
attachment correction. For eachd ∈ D in left-to-
right sentence order, a setCd of candidate governors
from T is identified, and then the highest scoring
c ∈ Cd, using a functionS(c, d, T ), is assigned as
the new governor ofd in T . Pseudo-code for parse
correction is shown in Figure 2.3

3Contrary to Hall and Nov́ak (2005), our iterative algorithm
(along with the fact thatCd never includes nodes that are domi-
nated byd) ensures that corrected structures are trees, so it does
not require additional processing to eliminate cycles and pre-
serve connectivity.
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4.1 Choosing Dependents

Various criteria may be used to choose the setD
of dependents to correct. In the work of Hall and
Novák (2005) and of Attardi and Ciaramita (2007),
D contains all nodes in the input parse tree. How-
ever, one advantage of parse correction is its ability
to focus on specific attachment types, so an addi-
tional criterion for choosing dependents is to look
separately at those dependents that correspond to
difficult attachment types.

Analyzing errors made by the dependency parsers
introduced in Section 3 on the development set of
the FTB, we observe that two major sources of er-
ror across different parsers are coordination and pp-
attachment. Coordination accounts for around10%
of incorrect attachments and has an error rate rang-
ing from 30 − 40%, while pp-attachment accounts
for around30% of incorrect attachments and has an
error rate of around15%.

In this paper, we pay special attention to coordina-
tion and pp-attachment. Given the FTB annotation
scheme, coordination can be corrected by changing
the governor (first conjunct) of the coordinating con-
junction that governs the second conjunct, and pp-
attachment can be corrected by changing the gover-
nor of the preposition that heads the pp.4 We thus
train specialized corrective models for when the de-
pendents are coordinating conjunctions and preposi-
tions, in addition to a generic corrective model that
can be applied to any dependent.5

4.2 Identifying Candidate Governors

The set of candidate governorsCd for a dependent
d can be chosen in different ways. One method is
to let every other node inT be a candidate gover-
nor ford. However, parser error analysis has shown
that errors often occur in local contexts. Hall and
Novák (2005) define a neighborhood as a set of
nodesNm(d) around the original predicted gover-
nor co of d, whereNm(d) includes all nodes in the

4The FTB handles pp-attachment in a typical fashion, but
coordination may be handled differently by other schemes (e.g.
the coordinating conjunction governs both conjuncts).

5In our experiments, we never revise punctuation and clitic
dependents. Since punctuation attachments mostly carry little
meaning, they are often annotated inconsistently and ignored
in parsing evaluations (including ours). Clitics are not revised
because they have a very low attachment error rate (2%).

parse treeT within graph distancem of d that pass
throughco. They find that around2/3 of the incor-
rect attachments in the output of Czech parses can be
corrected by selecting the best governor from within
N3(d). Similarly, in oracle experiments reported in
section 6, we find that around1/2 of coordination
and pp-attachments in the output of French parses
can be corrected by selecting the best governor from
within N3(d). We thus use neighborhoods to delimit
the set of candidate governors.

While one can simply assignCd ← Nm(d), we
add additional restrictions. First, in order to preserve
projectivity within T , we keep inCd only thosec
such that the updateT{gov(d) ← c} would result
in a projective tree.6 Additionally, we discard candi-
dates with certain POS categories that are very un-
likely to be governors: clitics and punctuation are
always discarded, while determiners are discarded if
the dependent is a preposition.

4.3 Scoring Candidate Governors

A new governor̂c for a dependentd is predicted by
selecting the highest scoring candidatec ∈ Cd ac-
cording to a functionS(c, d, T ), which takes into
account features overc, d, and the parse treeT . We
use a linear model for our scoring function, which
allows for relatively fast training and prediction. Our
scoring function uses a weight vector~w ∈ F, where
F is the feature space for dependents we wish to cor-
rect (either generic, or specialized for prepositions
or for coordinating conjunction), as well as the map-
pingΦ : C×D×T → F from combinations of candi-
datec ∈ C, dependentd ∈ D, and parse treeT ∈ T,
to vectors in the feature spaceF. The scoring func-
tion returns the inner product of~w andΦ(c, d, T ):

S(c, d, T ) = ~w · Φ(c, d, T ) (1)

4.4 Algorithm Complexity

The time complexity of our algorithm isO(n) in
the lengthn of the input sentence, which is consis-
tent with past work on parse correction by Hall and
Novák (2005) and by Attardi and Ciaramita (2007).

6We also keep candidates that would lead to a non-projective
tree, as long as it would be projective if we ignored punctuation.
This relaxation of the projectivity constraint leads to better or-
acle scores while retaining the key linguistic properties of pro-
jectivity.
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Attachments for up ton dependents in a sentence
are deterministically corrected in one pass. For each
such dependentd, the algorithm uses a linear model
to select a new governor after extracting features for
a local set of candidate governorsCd, whose size
does not dependent onn in the average case.7 Lo-
cality in candidate governor identification and fea-
ture extraction preserves linear time complexity in
the overall algorithm.

5 Model Learning

We now discuss our training setup, features, and
learning approach for obtaining the weight vector~w.

5.1 Training Setup

The parse correction training set pairs gold parse
trees with corresponding predicted parse trees out-
put by a syntactic parser, and it is obtained us-
ing a jackknifing procedure to automatically parse
the gold-annotated training section of a dependency
treebank with a syntactic dependency parser.

We extract separate training sets for each type of
dependent we wish to correct (generic, prepositions,
coordinating conjunctions). Givenp, then for each
tokend we wish to correct in a sentence in the train-
ing section, we note its true governorgd in the gold
parse tree of the sentence, identify a set of candidate
governorsCd in the predicted parseT , and get fea-
ture vectors{Φ(c, d, T ) : c ∈ Cd}.

5.2 Feature Space

In order to learn an effective scoring function, we
use a rich feature spaceF that encodes syntactic con-
text surrounding a candidate-dependent pair(c, d)
within a parse treeT . Our primary features are indi-
cator functions for realizations of linguistic or tree-
based feature classes.8 From these primary features
we generate more complex feature combinations of
length up toP , which are then added toF. Each
combo represents a set of one or more primary fea-
tures, and is an indicator function that fires if and
only if all of its members do.

7Degenerate parse trees (e.g. flat trees) could lead to cases
where|Cd|=n, but for linguistically coherent parse trees|Cd| is
ratherO(km), wherek is the average-arity of syntactic parse
trees andm is the neighborhood distance used.

8For instance, there is a binary feature that is 1 if feature
class ”POS ofc” takes on the value ”verb”, and 0 otherwise.

5.2.1 Primary Feature Classes

The primary feature classes we use are listed be-
low, grouped into categories corresponding to their
use in different corrective models (dobj is the object
of the dependent,cgov is the governor of the candi-
date, andcd−1 andcd+1 are the closest dependents
of c linearly to the left and right, respectively, ofd).

Generic features (always included)

− POS, lemma, and number of dependents ofc

− POS and dependency label ofcd−1

− POS and dependency label ofcd+1

− POS ofcgov

− POS and lemma ofd

− POS ofdobj and whetherdobj has a determiner

− Whetherc is the predicted governor ofd

− Binned linear distance betweenc andd

− Linear direction ofc with respect tod

− POS sequence for nodes on path fromc to d

− Graph distance betweenc andd

− Whether there is punctuation betweenc andd

Features exclusive to coordination

Whetherd would coordinate two conjuncts that:

− Have the same POS

− Have the same word form

− Have number agreement

− Are both nouns with the same cardinality

− Are both proper nouns or both common nouns

− Are both prepositions with the same word form

− Are both prepositions with object of same POS

Features exclusive to pp-attachment

− Whetherd immediately follows a punctuation

− Whetherd heads a pp likely to be the agent of
a passive verb

− If c is a coordinating conjunction, then whether
c would coordinate two prepositions with the
same word form, and whether there is at least
one open-category word linearly betweenc and
d (in which casec is an unlikely governor)
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− If c is linearly afterd, then whether there exists
a plausible rival candidate to the left ofd (im-
plemented as whether there is a noun or adjec-
tive linearly befored, without any intervening
finite verb)

5.2.2 Feature Selection

Feature combos allow our models to effectively
sidestep linearity constraints, at the cost of an expo-
nential increase in the size of the feature spaceF. In
order to accommodate combos, we use feature se-
lection to help reduce the resulting space.

Our first feature selection technique is to apply a
frequency threshold: if a feature or a combo appears
less thanK times among instances in our training
set, we remove it fromF. In addition to making the
feature space more tractable, frequency thresholding
makes our scoring function less reliant on rare fea-
tures and combos.

Following frequency thresholding, we employ an
additional technique using conditional entropy (CE)
that we termCE-reduction. LetY be a random vari-
able for whether or not an attachment is true, and
let A be a random variable for different combos that
can appear in an attachment. We calculate the CE of
a comboa with respect toY as follows,

H(Y |A=a) = −
∑

y∈Y

p(y|a) log p(y|a) (2)

where the probabilityp(y|a) is approximated from
the training set asfreq(a, y)/freq(a), with exam-
ple balancing used here to account for more false at-
tachments (Y = 0) than true ones (Y = 1) in our train-
ing set. Having calculated the CE of each combo,
we remove fromF those combos for which a subset
combo (or feature) exists with equal or lesser CE.
This eliminates any overly specific comboa when
the extra features encoded ina, compared to some
subsetb, do not helpa explainY any better thanb.

5.3 Ranking Model

The ranking setting for learning is used when a
model needs to discriminate between mutually ex-
clusive candidates that vary from instance to in-
stance. This is typically used in parse reranking
(Charniak and Johnson, 2005), where for each sen-
tence the model must select the correct parse from
within an n-best list. Denis and Baldridge (2007)

INPUT: AggressivenessC, roundsR.

INITIALIZE : ~w0 ←(0, ..., 0), ~wavg ←(0, ..., 0)

REPEAT: R times

LOOP: For t = 1, 2, . . . , |X|
· Get feature vectors{~xt,c : c ∈ Cdt

}
· Get true governorgt ∈ Cdt

· Let ht = argmax
c∈Cdt −{gt}

(~wt−1 · ~xt,c)

· Let mt = (~wt−1 · ~xt,gt
) − (~wt−1 · ~xt,ht

)

IF: mt < 1

· Let τt = min

{
C , 1−mt

‖~xt,gt−~xt,ht‖2

}

· Set ~wt ← ~wt−1 + τt(~xt,gt
− ~xt,ht

)

ELSE:
· Set ~wt ← ~wt−1

· Set ~wavg ← ~wavg + ~wt

· Set ~w0 ← ~w|X|

OUTPUT: ~wavg/(R · |X|)

Figure 3: Averaged PA-Ranking training algorithm.

also show that ranking outperforms a binary classifi-
cation approach to pronoun resolution (using a Max-
imum Entropy model), where for each pronominal
anaphor the model must select the correct antecedent
among candidates in a text.9

In our ranking approach to parse correction (PA-
Ranking), the weight vector is trained to select the
true governor from a set of candidatesCd for a de-
pendentd. The training setX is defined such that
the tth instance is a collection of feature vectors
{~xt,c = Φ(c, dt, Tt) : c ∈ Cdt}, whereCdt is the
candidate set for the dependentdt within the pre-
dicted parseTt, and the class is the true governorgt.
Instances in whichgt 6∈ Cdt are discarded.

PA-Ranking training is carried out using a varia-
tion of the Passive-Aggressive algorithm (Crammer
et al., 2006), which has been adapted to the rank-
ing setting, implemented using the Polka library.10

For each training iterationt, the margin is defined as

9We considered a binary training approach to parse correc-
tion in which the model is trained to independently classify can-
didates as true or false governors, as used by Hall and Novák
(2005). However, we found that this approach performs no bet-
ter (and often worse) than the ranking approach, and is less ap-
propriate from a modeling standpoint.

10http://polka.gforge.inria.fr/
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mt = (~wt−1 · ~xt,gt) − (~wt−1 · ~xt,ht), whereht is the
highest scoring incorrect candidate. The algorithm
is passivebecause an update to the weight vector is
made if and only ifmt < 1, either for incorrect pre-
dictions (mt < 0) or for correct predictions with in-
sufficient margin (0≤mt <1). The new weight vec-
tor ~wt is as close as possible to~wt−1, subject to the
aggressiveconstraint that the new margin be greater
than1. We use weight averaging, so the final out-
put ~wavg is the average over the weight vectors after
each training step. Pseudo-code for the training al-
gorithm is shown in Figure 3. The rounds parameter
R determines the number of times to run through the
training set, and the aggressiveness parameterC sets
an upper limit on the update magnitude.

6 Experiments

We present experiments where we applied parse cor-
rection to the output of four state-of-the-art depen-
dency parsers for French. We conducted our eval-
uation on the FTB using the standard training, de-
velopment (dev), and test splits (containing 9,881,
1,235 and 1,235 sentences, respectively). To train
our parse correction models, we generated special-
ized training sets corresponding to each parser by
doing 10-fold jackknifing on the FTB training set
(cf. Section 5.1). Each parser was run on the FTB
dev and test sets, providing baseline unlabeled at-
tachment score (UAS) results and output parse trees
to be corrected.

6.1 Oracles and Neighborhood Size

To determine candidate neighborhood size, we con-
sidered an oracle scoring function that always se-
lects the true governor of a dependent if it appears
in the set of candidate governors, and otherwise se-
lects the predicted governor. Results for this oracle
on the dev set are shown in Table 1. The baseline
corresponds tom=1, where the oracle just selects
the predicted governor. Incrementingm to 2 and
to 3 resulted in substantial gains in oracle UAS, but
further incrementingm to 4 resulted in a relatively
small additional gain. We found that average can-
didate set size increases about linearly inm, so we
decided to usem=3 in order to have a high UAS up-
per bound without adding candidates that are very
unlikely to be true governors.

Neighborhood Size (m)
Base 2 3 4

Berkeley
Coords 67.2 76.5 82.8 84.8
Preps 82.9 88.5 92.2 93.2

Overall 90.1 94.0 96.0 96.5

Bohnet
Coords 70.1 80.6 85.6 87.7
Preps 85.4 89.4 93.4 94.5

Overall 91.2 94.4 96.1 96.6

Malt
Coords 60.9 72.2 78.2 80.5
Preps 82.6 88.1 92.6 93.7

Overall 89.3 93.2 95.1 95.8

MST
Coords 63.6 73.7 80.7 84.4
Preps 84.7 89.4 93.4 94.4

Overall 90.2 93.7 95.6 96.2

MST Overall Reranking top-100 parses: 95.4

Table 1: Parse correction oracle UAS (%) for differ-
ent neighborhood sizes, by dependent type (coordinating
conjunctions, prepositions, or all dependents). Also, a
reranking oracle for MSTParser using the top-100 parses.

We also compared the oracle for parse correc-
tion with an oracle for parse reranking, in which the
parse with the highest UAS for a sentence is selected
from the top-100 parses output by MSTParser. We
found that for MSTParser, the oracle for parse cor-
rection using neighborhood sizem=3 (95.6% UAS)
is comparable to the oracle for parse reranking using
the top-100 parses (95.4% UAS). This is an encour-
aging result, showing that parse correction is capable
of the same improvement as parse reranking without
needing to process ann-best list of parses.

6.2 Feature Space Parameters

For the feature spaceF, we performed a grid search
to find good values for the parametersK (frequency
threshold),P (combo length), and CE-reduction.
We found thatP=3 with CE-reduction allowed for
the most compactness without sacrificing correction
performance, for all of our corrective models. Ad-
ditionally, K=2 worked well for the coordinating
conjunction models, whileK=10 worked well for
the preposition and generic models. CE-reduction
proved useful in greatly reducing the feature space
without lowering correction performance: it reduced
the size of the coordinating conjunction models from
400k to 65k features each, the preposition models
from 400k to 75k features each, and the generic
models from 800k to 200k features each.
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Corrective UAS (%)
Configuration Coords Preps Overall

Berkeley
Baseline 68.3 83.8 90.73
Generic 69.4 84.9* 91.13*

Specialized 71.5* 85.1* 91.23*

Bohnet
Baseline 70.5 86.1 91.78
Generic 71.2 86.4 91.88

Specialized 72.7* 86.2 91.88

Malt
Baseline 59.8 83.2 89.78
Generic 63.2* 84.5* 90.39*

Specialized 64.0* 85.0* 90.47*

MST
Baseline 60.5 85.9 91.04
Generic 64.2* 86.2 91.25*

Specialized 68.0* 86.2 91.36*

Table 2: Coordinating conjunction, preposition, and over-
all UAS (%) by corrective configuration on the test set.
Significant improvements over the baseline starred.

6.3 Corrective Configurations

For our evaluation of parse correction, we compared
two different configurations:generic (corrects all
dependents using the generic model) andspecialized
(corrects coordinating conjunctions and prepositions
using their respective specialized models, and cor-
rects other dependents using the generic model).
The PA-Ranking aggressiveness parameterC was
set to 1 for our experiments, while the rounds pa-
rameterR was tuned separately for each corrective
model using the dev set. For our final tests, we ap-
plied each combination of parser + corrective con-
figuration by sequentially revising all dependents in
the output parse that had a relevant POS tag given
the corrective configuration. In the FTB test set,
this amounted to an evaluation over 5,706 prepo-
sition tokens, 801 coordinating conjunction tokens,
and 31,404 overall (non-punctuation) tokens.11

6.4 Results

Final results for the test set are shown in Table 2.
The overall UAS of each parser (except Bohnet-
Parser) was significantly improved under both cor-
rective configurations.12 Thespecializedconfigura-

11Since the MElt tagger and BerkeleyParser POS tagging ac-
curacies were around97%, the sets of tokens considered for re-
vision differed slightly from the sets of tokens (with gold POS
tags) used to calculate UAS scores.

12We used McNemar’s Chi-squared test withp = 0.05 for all
significance tests.

tion performed as well as, and in most cases bet-
ter than, thegeneric configuration, indicating the
usefulness of specialized models and features for
difficult attachment types. Interestingly, the lower
the baseline parser’s UAS, the larger the overall
improvement from parse correction under thespe-
cialized configuration: MaltParser had the lowest
baseline and the highest error reduction (6.8%),
BerkeleyParser had the second-lowest baseline and
the second-highest error reduction (5.4%), MST-
Parser had the third-lowest baseline and the third-
highest error reduction (3.6%), and BohnetParser
had the highest baseline and the lowest error re-
duction (1.2%). It may be that the additional er-
rors made by a low-baseline parser, compared to a
high-baseline parser, involve relatively simpler at-
tachments that parse correction can better model.

Parse correction achieved significant improve-
ments for coordination resolution under thespe-
cialized configuration for each parser. MaltParser
and MSTParser had very low baseline coordinat-
ing conjunction UAS (around60%), while Berke-
leyParser and BohnetParser had higher baselines
(around 70%). The highest error reduction was
achieved by MSTParser (19.0%), followed by Malt-
Parser (10.4%), BerkeleyParser (10.1%), and finally
BohnetParser (7.5%). The result for MSTParser was
surprising: although it had the second-highest base-
line overall UAS, it shared the lowest baseline coor-
dinating conjunction UAS and had the highest er-
ror reduction with parse correction. An explana-
tion for this result is that the annotation scheme for
coordination structure in the dependency FTB has
the first conjunct governing the coordinating con-
junction, which governs the second conjunct. Since
MSTParser is limited to sibling 2-edge factors (cf.
section 3), it is unable to jointly consider a full coor-
dination structure. BohnetParser, which uses general
2-edge factors, can consider full coordination struc-
tures and consequently has a much higher baseline
coordinating conjunction UAS than MSTParser.

Parse correction achieved significant but mod-
est improvements in pp-attachment performance un-
der thespecializedconfiguration for MaltParser and
BerkeleyParser. However, parse correction did not
significantly improve pp-attachment performance
for MSTParser or BohnetParser, the two parsers that
had the highest baseline preposition UAS (around
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Modification Type
w→c c→w w→w Mods

Berkeley
Coords 40 14 33 10.9 %
Preps 118 39 41 3.5 %

Overall 228 67 104 1.3 %

Bohnet
Coords 32 15 33 10.0 %
Preps 52 46 32 2.3 %

Overall 150 121 130 1.1 %

Malt
Coords 55 21 56 16.5 %
Preps 149 50 76 4.8 %

Overall 390 172 293 2.4 %

MST
Coords 80 20 51 18.9 %
Preps 64 45 26 2.4 %

Overall 183 88 117 1.1 %

Table 3: Breakdown of modifications made under the
specializedconfiguration for each parser, by dependent
type. w→c is wrong-to-correct,c→w is correct-to-
wrong, w→w is wrong-to-wrong, and Mods is the per-
centage of tokens modified.

86%). These results are a bit disappointing, but they
suggest that there may be a performance ceiling for
pp-attachment beyond which rich lexical informa-
tion (syntactic and semantic) or full sentence con-
texts are needed. For English, the average human
performance on pp-attachment for the(v, n1, p, n2)
problem formulation is just88.2% when given only
the four head-words, but increases to93.2% when
given the full sentence (Ratnaparkhi et al., 1994).
If similar levels of human performance exist for
French, additional sources of information may be
needed to improve pp-attachment performance.

In addition to evaluating UAS improvements for
parse correction, we took a closer look at the best
corrective configuration (specialized) and analyzed
the types of attachment modifications made (Ta-
ble 3). In most cases there were around2−3 times
as many error-correcting modifications (w→c) as
error-creating modifications (c→w), and the overall
% of tokens modified was very low overall (around
1-2%). Parse correction is thus conservative in the
number of modifications made, and rather accurate
when it does decide to modify an attachment.

Finally, we compared the running times of the
four parsers, as well as that of parse correction, on
the test set using a 2.66 GHz Intel Core 2 Duo ma-
chine. BerkeleyParser took 600s, BohnetParser took
450s using both cores (800s using a single core),

MaltParser took 45s, and MSTParser took 1000s. A
rough version of parse correction in thespecialized
configuration took around 200s (for each parser). An
interesting result is that parse correction improves
MaltParser the most while retaining an overall time
complexity ofO(n), compared toO(n3) or higher
for the other parsers. This suggests that linear-time
transition-based parsing and parse correction could
combine to form an attractive system that improves
parsing performance while retaining high speed.

7 Conclusion

We have developed a parse correction framework for
syntactic dependency parsing that uses specialized
models for difficult attachment types. Candidate
governors for a given dependent are identified in a
neighborhood around the predicted governor, and a
scoring function selects the best governor. We used
discriminative linear ranking models with features
encoding syntactic context, and we tested parse cor-
rection on coordination, pp-attachment, and generic
dependencies in the outputs of four representative
statistical dependency parsers for French. Parse cor-
rection achieved improvements in unlabeled attach-
ment score for three out of the four parsers, with
MaltParser seeing the greatest improvement. Since
both MaltParser and parse correction run inO(n)
time, a combined system could prove useful in situ-
ations where high parsing speed is required.

Future work on parse correction might focus on
developing specialized models for other difficult
attachment types, such as verb-phrase attachment
(verb dependents account for around 15% of incor-
rect attachments across all four parsers). Also, se-
lectional preferences and subcategorization frames
(from hand-built resources or extracted using distri-
butional methods) could make for useful features in
the pp-attachment corrective model; we suspect that
richer lexical information is needed in order to in-
crease the currently modest improvements achieved
by parse correction on pp-attachment.

Acknowledgments

We would like to thank Pascal Denis for his help us-
ing the Polka library, and Alexis Nasr for his advice
and comments. This work was partially funded by
the ANR project Sequoia ANR-08-EMER-013.

1231



References
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Abstract

We describe a generative model for non-
projective dependency parsing based on a sim-
plified version of a transition system that has
recently appeared in the literature. We then
develop a dynamic programming parsing al-
gorithm for our model, and derive an inside-
outside algorithm that can be used for unsu-
pervised learning of non-projective depend-
ency trees.

1 Introduction

Dependency grammars have received considerable
attention in the statistical parsing community in
recent years. These grammatical formalisms of-
fer a good balance between structural expressiv-
ity and processing efficiency. Most notably, when
non-projectivity is supported, these formalisms can
model crossing syntactic relations that are typical in
languages with relatively free word order.

Recent work has reduced non-projective parsing
to the identification of a maximum spanning tree in a
graph (McDonald et al., 2005; Koo et al., 2007; Mc-
Donald and Satta, 2007; Smith and Smith, 2007).
An alternative to this approach is to use transition-
based parsing (Yamada and Matsumoto, 2003; Nivre
and Nilsson, 2005; Attardi, 2006; Nivre, 2009;
Gómez-Rodrı́guez and Nivre, 2010), where there is
an incremental processing of a string with a model
that scores transitions between parser states, condi-
tioned on the parse history. This paper focuses on
the latter approach.

The above work on transition-based parsing has
focused on greedy algorithms set in a statistical
framework (Nivre, 2008). More recently, dynamic

programming has been successfully used for pro-
jective parsing (Huang and Sagae, 2010; Kuhlmann
et al., 2011). Dynamic programming algorithms for
parsing (also known as chart-based algorithms) al-
low polynomial space representations of all parse
trees for a given input string, even in cases where
the size of this set is exponential in the length of
the string itself. In combination with appropriate
semirings, these packed representations can be ex-
ploited to compute many values of interest for ma-
chine learning, such as best parses and feature ex-
pectations (Goodman, 1999; Li and Eisner, 2009).

In this paper we move one step forward with re-
spect to Huang and Sagae (2010) and Kuhlmann et
al. (2011) and present a polynomial dynamic pro-
gramming algorithm for non-projective transition-
based parsing. Our algorithm is coupled with a
simplified version of the transition system from At-
tardi (2006), which has high coverage for the type
of non-projective structures that appear in various
treebanks. Instead of an additional transition oper-
ation which permits swapping of two elements in
the stack (Titov et al., 2009; Nivre, 2009), Attardi’s
system allows reduction of elements at non-adjacent
positions in the stack. We also present a generat-
ive probabilistic model for transition-based parsing.
The implication for this, for example, is that one can
now approach the problem of unsupervised learning
of non-projective dependency structures within the
transition-based framework.

Dynamic programming algorithms for non-
projective parsing have been proposed by Kahane et
al. (1998), Gómez-Rodrı́guez et al. (2009) and Kuhl-
mann and Satta (2009), but they all run in exponen-
tial time in the ‘gap degree’ of the parsed structures.
To the best of our knowledge, this paper is the first to
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introduce a dynamic programming algorithm for in-
ference with non-projective structures of unbounded
gap degree.

The rest of this paper is organized as follows. In
§2 and §3 we outline the transition-based model we
use, together with a probabilistic generative inter-
pretation. In §4 we give the tabular algorithm for
parsing, and in §5 we discuss statistical inference
using expectation maximization. We then discuss
some other aspects of the work in §6 and conclude
in §7.

2 Transition-based Dependency Parsing

In this section we briefly introduce the basic defini-
tions for transition-based dependency parsing. For a
more detailed presentation of this subject, we refer
the reader to Nivre (2008). We then define a spe-
cific transition-based model for non-projective de-
pendency parsing that we investigate in this paper.

2.1 General Transition Systems

Assume an input alphabet Σ with a special symbol
$ ∈ Σ , which we use as the root of our parse struc-
tures. Throughout this paper we denote the input
string as w = a0 · · · an−1, n ≥ 1, where a0 = $ and
ai ∈ Σ \ {$} for each i with 1 ≤ i ≤ n− 1.

A dependency tree for w is a directed tree Gw =
(Vw, Aw), where Vw = {0, . . . , n − 1} is the set of
nodes, and Aw ⊆ Vw × Vw is the set of arcs. The
root of Gw is the node 0. The intended meaning
is that each node in Vw encodes the position of a
token in w. Furthermore, each arc in Aw encodes a
dependency relation between two tokens. We write
i → j to denote a directed arc (i, j) ∈ Aw, where
node i is the head and node j is the dependent.

A transition system (for dependency parsing) is a
tuple S = (C, T, I, Ct), whereC is a set of configur-
ations, defined below, T is a finite set of transitions,
which are partial functions t:C ⇀ C, I is a total
initialization function mapping each input string to
a unique initial configuration, and Ct ⊆ C is a set of
terminal configurations.

A configuration is defined relative to some input
string w, and is a triple (σ, β,A), where σ and β are
disjoint lists called stack and buffer, respectively,
and A ⊆ Vw × Vw is a set of arcs. Elements of
σ and β are nodes from Vw and, in the case of the

stack, a special symbol ¢ that we will use as initial
stack symbol. If t is a transition and c1, c2 are con-
figurations such that t(c1) = c2, we write c1 `t c2,
or simply c1 ` c2 if t is understood from the context.

Given an input string w, a parser based on S in-
crementally processes w from left to right, starting
in the initial configuration I(w). At each step, the
parser nondeterministically applies one transition, or
else it stops if it has reached some terminal config-
uration. The dependency graph defined by the arc
set associated with a terminal configuration is then
returned as one possible analysis for w.

Formally, a computation of S is a sequence γ =
c0, . . . , cm, m ≥ 1, of configurations such that, for
every iwith 1 ≤ i ≤ m, ci−1 `ti ci for some ti ∈ T .
In other words, each configuration in a computa-
tion is obtained as the value of the preceding con-
figuration under some transition. A computation is
called complete whenever c0 = I(w) for some in-
put string w, and cm ∈ Ct.

We can view a transition-based dependency
parser as a device mapping strings into graphs (de-
pendency trees). Without any restriction on trans-
ition functions in T , these functions might have an
infinite domain, and could thus encode even non-
recursively enumerable languages. However, in
standard practice for natural language parsing, trans-
itions are always specified by some finite mean. In
particular, the definition of each transition depends
on some finite window at the top of the stack and
some finite window at the beginning of the buffer
in each configuration. In this case, we can view a
transition-based dependency parser as a notational
variant of a push-down transducer (Hopcroft et al.,
2000), whose computations output sequences that
directly encode dependency trees. These transducers
are nondeterministic, meaning that several trans-
itions can be applied to some configurations. The
transition systems we investigate in this paper fol-
low these principles.

We close this subsection with some additional
notation. We denote the stack with its topmost ele-
ment to the right and the buffer with its first ele-
ment to the left. We indicate concatenation in the
stack and buffer by a vertical bar. For example, for
k ∈ Vw, σ|k denotes some stack with topmost ele-
ment k and k|β denotes some buffer with first ele-
ment k. For 0 ≤ i ≤ n − 1, βi denotes the buffer
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[i, i + 1, . . . , n − 1]; for i ≥ n, βi denotes [] (the
empty buffer).

2.2 A Non-projective Transition System

We now turn to give a description of our trans-
ition system for non-projective parsing. While a
projective dependency tree satisfies the requirement
that, for every arc in the tree, there is a direc-
ted path between its headword and each of the
words between the two endpoints of the arc, a non-
projective dependency tree may violate this condi-
tion. Even though some natural languages exhibit
syntactic phenomena which require non-projective
expressive power, most often such a resource is used
in a limited way.

This idea is demonstrated by Attardi (2006), who
proposes a transition system whose individual trans-
itions can deal with non-projective dependencies
only to a limited extent, depending on the distance
in the stack of the nodes involved in the newly con-
structed dependency. The author defines this dis-
tance as the degree of the transition, with transitions
of degree one being able to handle only projective
dependencies. This formulation permits parsing a
subset of the non-projective trees, where this subset
depends on the degree of the transitions. The repor-
ted coverage in Attardi (2006) is already very high
when the system is restricted to transitions of degree
two or three. For instance, on training data for Czech
containing 28,934 non-projective relations, 27,181
can be handled by degree two transitions, and 1,668
additional dependencies can be handled by degree
three transitions. Table 1 gives additional statistics
for treebanks from the CoNLL-X shared task (Buch-
holz and Marsi, 2006).

We now turn to describe our variant of the trans-
ition system of Attardi (2006), which is equivalent to
the original system restricted to transitions of degree
two. Our results are based on such a restriction. It is
not difficult to extend our algorithms (§4) to higher
degree transitions, but this comes at the expense of
higher complexity. See §6 for more discussion on
this issue.

Let w = a0 · · · an−1 be an input string over Σ
defined as in §2.1, with a0 = $. Our transition sys-
tem for non-projective dependency parsing is

S(np) = (C, T (np), I(np), C
(np)
t ),

Language Deg. 2 Deg. 3 Deg. 4
Arabic 180 21 7
Bulgarian 961 41 10
Czech 27181 1668 85
Danish 876 136 53
Dutch 9072 2119 171
German 15827 2274 466
Japanese 1484 143 9
Portuguese 3104 424 37
Slovene 601 48 13
Spanish 66 7 0
Swedish 1566 226 79
Turkish 579 185 8

Table 1: The number of non-projective relations of vari-
ous degrees for several treebanks (training sets), as repor-
ted by the parser of Attardi (2006). Deg. stands for ‘de-
gree.’ The parser did not detect non-projective relations
of degree higher than 4.

where C is the same set of configurations defined
in §2.1. The initialization function I(np) maps each
string w to the initial configuration ([¢], β0, ∅). The
set of terminal configurationsC(np)

t contains all con-
figurations of the form ([¢, 0], [], A), for any set of
arcs A.

The set of transition functions is defined as

T (np) = {shb | b ∈ Σ} ∪ {la1, ra1, la2, ra2},

where each transition is specified below. We let vari-
ables i, j, k, l range over Vw, and variable σ is a list
of stack elements from Vw ∪ {¢}:

shb : (σ, k|β,A) ` (σ|k, β,A) if ak = b;

la1 : (σ|i|j, β,A) ` (σ|j, β,A ∪ {j → i});
ra1 : (σ|i|j, β,A) ` (σ|i, β, A ∪ {i→ j});
la2 : (σ|i|j|k, β,A) ` (σ|j|k, β,A ∪ {k → i});
ra2 : (σ|i|j|k, β,A) ` (σ|i|j, β,A ∪ {i→ k}).

Each of the above transitions is undefined on config-
urations that do not match the forms specified above.
As an example, transition la2 is not defined for a
configuration (σ, β,A) with |σ| ≤ 2, and transition
shb is not defined for a configuration (σ, k|β,A)
with b 6= ak, or for a configuration (σ, [], A).

Transition shb removes the first node from the buf-
fer, in case this node represents symbol b ∈ Σ ,
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and pushes it into the stack. These transitions are
called shift transitions. The remaining four trans-
itions are called reduce transitions, i.e., transitions
that consume nodes from the stack. Notice that in
the transition system at hand all the reduce trans-
itions decrease the size of the stack by one ele-
ment. Transition la1 creates a new arc with the top-
most node on the stack as the head and the second-
topmost node as the dependent, and removes the
latter from the stack. Transition ra1 is symmetric
with respect to la1. Transitions la1 and ra1 have
degree one, as already explained. When restricted
to these three transitions, the system is equivalent
to the so-called stack-based arc-standard model of
Nivre (2004). Transition la2 and transition ra2 are
very similar to la1 and ra1, respectively, but with
the difference that they create a new arc between
the topmost node in the stack and a node which is
two positions below the topmost node. Hence, these
transitions have degree two, and are the key com-
ponents in parsing of non-projective dependencies.

We turn next to describe the equivalence between
our system and the system in Attardi (2006). The
transition-based parser presented by Attardi pushes
back into the buffer elements that are in the top pos-
ition of the stack. However, a careful analysis shows
that only the first position in the buffer can be af-
fected by this operation, in the sense that elements
that are pushed back from the stack are never found
in buffer positions other than the first. This means
that we can consider the first element of the buffer
as an additional stack element, always sitting on the
top of the top-most stack symbol.

More formally, we can define a function mc :
C → C that maps configurations in the original al-
gorithm to those in our variant as follows:

mc((σ, k|β,A)) = (σ|k, β,A)

By applying this mapping to the source and target
configuration of each transition in the original sys-
tem, it is easy to check that c1 ` c2 in that parser if
and only if mc(c1) ` mc(c2) in our variant. We ex-
tend this and define an isomorphism between com-
putations in both systems, such that a computation
c0, . . . , cm in the original parser is mapped to a com-
putation mc(c0), . . . ,mc(cm) in the variant, with
both generating the same dependency graph A. This



 2n2n− 12n− 21 2 3

Figure 1: A dependency structure of arbitrary gap degree
that can be parsed with Attardi’s parser.

proves that our notational variant is in fact equival-
ent to Attardi’s parser.

A relevant property of the set of dependency
structures that can be processed by Attardi’s parser,
even when restricted to transitions of degree two, is
that the number of discontinuities present in each of
their subtrees, defined as the gap degree by Bod-
irsky et al. (2005), is not bounded. For example, the
dependency graph in Figure 1 has gap degree n− 1,
and it can be parsed by the algorithm for any arbit-
rary n ≥ 1 by applying 2n shb transitions to push
all the nodes into the stack, followed by (2n − 2)
ra2 transitions to create the crossing arcs, and finally
one ra1 transition to create the dependency 1→ 2.

As mentioned in §1, the computational complex-
ity of the dynamic programming algorithm that will
be described in later sections does not depend on the
gap degree, contrary to the non-projective depend-
ency chart parsers presented by Gómez-Rodrı́guez et
al. (2009) and by Kuhlmann and Satta (2009), whose
running time is exponential in the maximum gap de-
gree allowed by the grammar.

3 A Generative Probabilistic Model

In this section we introduce a generative probabil-
istic model based on the transition system of §2.2.
In formal language theory, there is a standard way
of giving a probabilistic interpretation to a non-
deterministic parser whose computations are based
on sequences of elementary operations such as trans-
itions. The idea is to define conditional probability
distributions over instances of the transition func-
tions, and to ‘combine’ these probabilities to assign
probabilities to computations and strings.

One difficulty we have to face with when dealing
with transition systems is that the notion of compu-
tation, defined in §2.1, depends on the input string,
because of the buffer component appearing in each
configuration. This is a pitfall to generative model-
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ing, where we are interested in a system whose com-
putations lead to the generation of any string. To
overcome this problem, we observe that each com-
putation, defined as a sequence of stacks and buffers
(the configurations) can equivalently be expressed as
a sequence of stacks and transitions.

More precisely, consider a computation γ =
c0, . . . , cm, m ≥ 1. Let σi, be the stack associated
with ci, for each i with 0 ≤ i ≤ m. Let also Cσ be
the set of all stacks associated with configurations in
C. We can make explicit the transitions that have
been used in the computation by rewriting γ in the
form σ0 `t1 σ1 · · ·σm−1 `tm σm. In this way, γ
generates a string that is composed by all symbols
that are pushed into the stack by transitions shb, in
the left to right order.

We can now associate a probability to (our repres-
entation of) sequence γ by setting

p(γ) =
m∏

i=1

p(ti | σi−1). (1)

To assign probabilities to complete computations we
should further multiply p(γ) by factors ps(σ0) and
pe(σm), where ps and pe are start and end probabil-
ity distributions, respectively, both defined over Cσ.
Note however that, as defined in §2.2, all initial con-
figurations are associated with stack [¢] and all final
configurations are associated with stack [¢, 0], thus
ps and pe are deterministic. Note that the Markov
chain represented in Eq. 1 is homogeneous, i.e., the
probabilities of the transition operations do not de-
pend on the time step.

As a second step we observe that, according to the
definition of transition system, each t ∈ T has an in-
finite domain. A commonly adopted solution is to
introduce a special function, called history function
and denoted by H , defined over the set Cσ and tak-
ing values over some finite set. For each t ∈ T and
σ, σ′ ∈ Cσ, we then impose the condition

p(t | σ) = p(t | σ′)
whenever H(σ) = H(σ′). Since H is finitely val-
ued, and since T is a finite set, the above condition
guarantees that there will only be a finite number of
parameters p(t | σ) in our model.

So far we have presented a general discussion of
how to turn a transition-based parser into a gener-
ative probabilistic model, and have avoided further

specification of the history function. We now turn
our attention to the non-projective transition system
of §2.2. To actually transform that system into a
parametrized probabilistic model, and to develop an
associated efficient inference procedure as well, we
need to balance between the amount of information
we put into the history function and the computa-
tional complexity which is required for inference.

We start the discussion with a naı̈ve model using a
history function defined by a fixed size window over
the topmost portion of the stack. More precisely,
each transition is conditioned on the lexical form of
the three symbols at the top of the stack σ, indic-
ated as b3, b2, b1 ∈ Σ below, with b1 referring to the
topmost symbol. The parameters of the model are
defined as follows.

p(shb | b3, b2, b1) = θshbb3,b2,b1
, ∀b ∈ Σ ,

p(la1 | b3, b2, b1) = θla1b3,b2,b1 ,

p(ra1 | b3, b2, b1) = θra1b3,b2,b1 ,

p(la2 | b3, b2, b1) = θla2b3,b2,b1 ,

p(ra2 | b3, b2, b1) = θra2b3,b2,b1 .

The parameters above are subject to the follow-
ing normalization conditions, for every choice of
b3, b2, b1 ∈ Σ :

θla1b3,b2,b1 + θra1b3,b2,b1 + θla2b3,b2,b1+

θra2b3,b2,b1 +
∑

b∈Σ
θshbb3,b2,b1

= 1 .

This naı̈ve model presents two practical problems.
The first problem relates to the efficiency of an in-
ference algorithm, which has a quite high computa-
tional complexity, as it will be discussed in §5. A
second problem arises in the probabilistic setting.
Using this model would require estimating many
parameters which are based on trigrams. This leads
to higher sample complexity to avoid sparse counts:
we would need more samples to accurately estimate
the model.

We therefore consider a more elaborated model,
which tackles both of the above problems. Again,
let b3, b2, b1 ∈ Σ indicate the lexical form of the
three symbols at the top of the stack. We define the

1238



distributions p(t | σ) as follows:

p(shb | b1) = θshbb1
, ∀b ∈ Σ ,

p(la1 | b2, b1) = θrdb1 · θ
la1
b2,b1

,

p(ra1 | b2, b1) = θrdb1 · θ
ra1
b2,b1

,

p(la2 | b3, b2, b1) = θrdb1 · θ
rd2
b2,b1
· θla2b3,b2,b1 ,

p(ra2 | b3, b2, b1) = θrdb1 · θ
rd2
b2,b1
· θra2b3,b2,b1 .

The parameters above are subject to the following
normalization conditions, for every b3, b2, b1 ∈ Σ :

∑

b∈Σ
θshbb1

+ θrdb1 = 1 , (2)

θla1b2,b1 + θra1b2,b1 + θrd2b2,b1 = 1 , (3)

θla2b3,b2,b1 + θra2b3,b2,b1 = 1 . (4)

Intuitively, parameter θrdb denotes the probability
that we perform a reduce transition instead of a shift
transition, given that we have seen lexical form b at
the top of the stack. Similarly, parameter θrd2b2,b1 de-
notes the probability that we perform a reduce trans-
ition of degree 2 (see §2.2) instead of a reduce trans-
ition of degree 1, given that we have seen lexical
forms b1 and b2 at the top of the stack.

We observe that the above model has a num-
ber of parameters |Σ | + 4 · |Σ |2 + 2 · |Σ |3 (not
all independent). This should be contrasted with
the naı̈ve model, that has a number of parameters
4 · |Σ |3 + |Σ |4.

4 Tabular parsing

We present here a dynamic programming algorithm
for simulating the computations of the system from
§2–3. Given an input string w, our algorithm pro-
duces a compact representation of the set Γ (w),
defined as the set of all possible computations of
the model when processing w. In combination with
the appropriate semirings, this method can provide
for instance the highest probability computation in
Γ (w), or else the probability of w, defined as the
sum of all probabilities of computations in Γ (w).

We follow a standard approach in the literature
on dynamic programming simulation of stack-based
automata (Lang, 1974; Tomita, 1986; Billot and
Lang, 1989). More recently, this approach has also
been applied by Huang and Sagae (2010) and by
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Figure 2: Schematic representation of the computations
γ associated with item [h1, i, h2h3, j].

Kuhlmann et al. (2011) to the simulation of pro-
jective transition-based parsers. The basic idea in
this approach is to decompose computations of the
parser into smaller parts, group them into equival-
ence classes and recombine to obtain larger parts of
computations.

Let w = a0 · · · an−1, Vw and S(np) be defined as
in §2. We use a structure called item, defined as

[h1, i, h2h3, j],

where 0 ≤ i < j ≤ n and h1, h2, h3 ∈ Vw must
satisfy h1 < i and i ≤ h2 < h3 < j. The intended
interpretation of an item can be stated as follows; see
also Figure 2.

• There exists a computation γ of S(np) on w hav-
ing the form c0, . . . , cm, m ≥ 1, with c0 =
(σ|h1, βi, A) and cm = (σ|h2|h3, βj , A′) for
some stack σ and some arc sets A and A′;
• For each iwith 1 ≤ i < m, the stack σi associated

with configuration ci has the list σ at the bottom
and satisfies |σi| ≥ |σ|+ 2.

Some comments on the above conditions are in
order here. Let t1, · · · , tm be the sequence of trans-
itions in T (np) associated with computation γ. Then
we have t1 = shai , since |σ1| ≥ |σ| + 2. Thus we
conclude that |σ1| = |σ|+ 2.

The most important consequence of the definition
of item is that each transition ti with 2 ≤ i ≤ m
does not depend on the content of the σ portion of
the stack σi. To see this, consider transition ci−1 `ti
ci. If ti = shai , the content of σ is irrelevant at
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this step, since in our model shai is conditioned only
on the topmost stack symbol of σi−1, and we have
|σi−1| ≥ |σ|+ 2.

Consider now the case of ti = la2. From |σi| ≥
|σ| + 2 we have that |σi−1| ≥ |σ| + 3. Again, the
content of σ is irrelevant at this step, since in our
model la2 is conditioned only on the three topmost
stack symbols of σi−1. A similar argument applies
to the cases of ti ∈ {ra2, la1, ra1}.

From the above, we conclude that if we apply the
transitions t1, . . . , tm to stacks of the form σ|h1, the
resulting computations have all identical probabilit-
ies, independently of the choice of σ.

Each computation satisfying the two conditions
above will be called an I-computation associ-
ated with item [h1, i, h2h3, j]. Notice that an I-
computation has the overall effect of replacing node
h1 sitting above a stack σ with nodes h2 and h3.
This is the key property in the development of our
algorithm below.

We specify our dynamic programming algorithm
as a deduction system (Shieber et al., 1995). The
deduction system starts with axiom [¢, 0, ¢0, 1], cor-
responding to an initial stack [¢] and to the shift of
a0 = $ from the buffer into the stack. The set Γ (w)
is non-empty if and only if item [¢, 0, ¢0, n] can be
derived using the inference rules specified below.
Each inference rule is annotated with the type of
transition it simulates, along with the arc constructed
by the transition itself, if any.

[h1, i, h2h3, j]

[h3, j, h3j, j + 1]
(shaj )

[h1, i, h2h3, k] [h3, k, h4h5, j]

[h1, i, h2h5, j]
(la1;h5 → h4)

[h1, i, h2h3, k] [h3, k, h4h5, j]

[h1, i, h2h4, j]
(ra1;h4 → h5)

[h1, i, h2h3, k] [h3, k, h4h5, j]

[h1, i, h4h5, j]
(la2;h5 → h2)

[h1, i, h2h3, k] [h3, k, h4h5, j]

[h1, i, h2h4, j]
(ra2;h2 → h5)

The above deduction system infers items in a
bottom-up fashion. This means that longer compu-
tations over substrings of w are built by combining
shorter ones. In particular, the inference rule shaj
asserts the existence of I-computations consisting of
a single shaj transition. Such computations are rep-
resented by the consequent item [h3, j, h3j, j + 1],
indicating that the index of the shifted word aj is
added to the stack by pushing it on top of h3.

The remaining four rules implement the reduce
transitions of the model. We have already ob-
served in §2.2 that all available reduce transitions
shorten the size of the stack by one unit. This al-
lows us to combine pairs of I-computations with
a reduce transition, resulting in a computation that
is again an I-computation. More precisely, if we
concatenate an I-computation asserted by an item
[h1, i, h2h3, k] with an I-computation asserted by an
item [h3, k, h4h5, j], we obtain a computation that
has the overall effect of increasing the size of the
stack by 2, replacing the topmost stack element h1
with stack elements h2, h4 and h5. If we now apply
any of the reduce transitions from the inventory of
the model, we will remove one of these three nodes
from the stack, and the overall result will be again
an I-computation, which can then be asserted by a
certain item. For example, if we apply the reduce
transition la1, the consequent item is [h1, i, h2h5, j],
since an la1 transition removes the second topmost
element from the stack (h4). The other reduce trans-
itions remove a different element, and thus their
rules produce different consequent items.

The above argument shows the soundness of the
deduction system, i.e., an item I = [h1, i, h2h3, j]
is only generated if there exists an I-computation
γ = c0, . . . , cm with c0 = (σ|h1, βi, A) and cm =
(σ|h2|h3, βj , A′). To prove completeness, we must
show the converse result, i.e., that the existence of
an I-computation γ implies that item I is inferred.
We first do this under the assumption that the infer-
ence rule for the shift transitions do not have an ante-
cedent, i.e., items [h1, j, h1j, j + 1] are considered
as axioms. We proceed by using strong induction on
the length m of the computation γ.

For m = 1, γ consists of a single transition shaj ,
and the corresponding item I = [h1, j, h1j, j + 1]
is constructed as an axiom. For m > 1, let γ be
as specified above. The transition that produced
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cm must have been a reduce transition, otherwise
γ would not be an I-computation. Let ck be the
rightmost configuration in c0, . . . , cm−1 whose stack
size is |σ| + 2. Then it can be shown that the com-
putations γ1 = c0, . . . , ck and γ2 = ck, . . . , cm−1
are again I-computations. Since γ1 and γ2 have
strictly fewer transitions than γ, by the induction hy-
pothesis, the system constructs items [h1, i, h2h3, k]
and [h3, k, h4h5, j], where h2 and h3 are the stack
elements at the top of ck. Applying to these items
the inference rule corresponding to the reduce trans-
ition at hand, we can construct item I .

When the inference rule for the shift transition has
an antecedent [h1, i, h2h3, j], as indicated above, we
have the overall effect that I-computations consist-
ing of a single transition shifting aj on the top of h3
are simulated only in case there exists a computation
starting with configuration ([¢], β0) and reaching a
configuration of the form (σ|h2|h3, βj). This acts as
a filter on the search space of the algorithm, but does
not invalidate the completeness property. However,
in this case the proof is considerably more involved,
and we do not report it here.

An important property of the deduction system
above, which will be used in the next section, is
that the system is unambiguous, that is, each I-
computation is constructed by the system in a
unique way. This can be seen by observing that, in
the sketch of the completeness proof reported above,
there always is an unique choice of ck that decom-
poses I-computation γ into I-computations γ1 and
γ2. In fact, if we choose a configuration ck′ other
than ck with stack size |σ| + 2, the computation
γ′2 = ck′ , . . . , cm−1 will contain ck as an interme-
diate configuration, which violates the definition of
I-computation because of an intervening stack hav-
ing size not larger than the size of the stack associ-
ated with the initial configuration.

As a final remark, we observe that we can keep
track of all inference rules that have been applied
in the computation of each item by the above al-
gorithm, by encoding each application of a rule as
a reference to the pair of items that were taken as
antecedent in the inference. In this way, we ob-
tain a parse forest structure that can be viewed as a
hypergraph or as a non-recursive context-free gram-
mar, similar to the case of parsing based on context-
free grammars. See for instance Klein and Manning

(2001) or Nederhof (2003). Such a parse forest en-
codes all valid computations in Γ (w), as desired.

The algorithm runs in O(n8) time. Using meth-
ods similar to those specified in Eisner and Satta
(1999), we can reduce the running time to O(n7).
However, we do not further pursue this idea here,
and proceed with the discussion of exact inference,
found in the next section.

5 Inference

We turn next to specify exact inference with our
model, for computing feature expectations. Such
inference enables, for example, the derivation of
an expectation-maximization algorithm for unsuper-
vised parsing.

Here, a feature is a function over computations,
providing the count of a pattern related to a para-
meter. We denote by f la2b3,b2,b1(γ), for instance,
the number of occurrences of transition la2 within
γ with topmost stack symbols having word forms
b3, b2, b1 ∈ Σ , with b1 associated with the topmost
stack symbol.

Feature expectations are computed by using an
inside-outside algorithm for the items in the tabu-
lar algorithm. More specifically, given a string w,
we associate each item [h1, i, h2h3, j] defined as in
§4 with two quantities:

I([h1, i, h2h3, j]) =
∑

γ=([h1],βi),...,([h2,h3],βj)

p(γ) ; (5)

O([h1, i, h2h3, j]) =
∑

σ,γ=([¢],β0),...,(σ|h1,βi)
γ′=(σ|h2|h3,βj),...,([¢,0],βn)

p(γ) · p(γ′) . (6)

I([h1, i, h2h3, j]) and O([h1, i, h2h3, j]) are called
the inside and the outside probabilities, respect-
ively, of item [h1, i, h2h3, j]. The tabular algorithm
of §4 can be used to compute the inside probabilit-
ies. Using the gradient transformation (Eisner et al.,
2005), a technique for deriving outside probabilities
from a set of inference rules, we can also compute
O([h1, i, h2h3, j]). The use of the gradient trans-
formation is valid in our case because the tabular al-
gorithm is unambiguous (see §4).

Using the inside and outside probabilities, we can
now efficiently compute feature expectations for our
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Ep(γ|w)[f
la2
b3,b2,b1

(γ)] =
∑

γ∈Γ (w)
p(γ | w) · f la2b3,b2,b1(γ) =

1

p(w)
·
∑

γ∈Γ (w)
p(γ) · f la2b3,b2,b1(γ)

=
1

p(w)
·

∑

σ,i,k,j,

h1,h2,h3,h4,h5,

s.t. ah2=b3,

ah4=b2, ah5=b1

∑

γ0=([¢],β0),...,(σ|h1,βi),
γ1=(σ|h1,βi),...,(σ|h2|h3,βk),

γ2=(σ|h2|h3,βk),...,(σ|h2|h4|h5,βj),
γ3=(σ|h2|h5,βj),...,([¢,0],βn)

p(γ0) · p(γ1) · p(γ2) · p(la2 | b3, b2, b1) · p(γ3)

=
θrdb1 · θ

rd2
b2,b1
· θla2b3,b2,b1

p(w)
·
∑

σ,i,j,

h1,h2,h5, s.t.

ah2=b3, ah5=b1

∑

γ0=([¢],β0),...,(σ|h1,βi),
γ3=(σ|h2|h5,βj),...,([¢,0],βn)

p(γ0) · p(γ3) ·

·
∑

k,h3,h4,

s.t. ah4=b2

∑

γ1=(σ|h1,βi),...,(σ|h2|h3,βk)

p(γ1) ·
∑

γ2=(σ|h2|h3,βk),...,(σ|h2|h4|h5,βj)

p(γ2)

Figure 3: Decomposition of the feature expectationEp(γ|w)[f
la2
b3,b2,b1

(γ)] into a finite summation. Quantity p(w) above
is the sum over all probabilities of computations in Γ (w).

model. Figure 3 shows how to express the expect-
ation of feature f la2b3,b2,b1(γ) by means of a finite
summation. Using Eq. 5 and 6 and the relation
p(w) = I([¢, 0, ¢0, n]) we can then write:

Ep(γ|w)[f
la2
b3,b2,b1

(γ)] =
θrdb1 · θ

rd2
b2,b1
· θla2b3,b2,b1

I([¢, 0, ¢0, n])
·

·
∑

i,j,h1,h4,h5,

s.t. ah4=b2, ah5=b1

O([h1, i, h4h5, j]) ·

·
∑

k,h2,h3,

s.t. ah2=b3

I([h1, i, h2h3, k]) · I([h3, k, h4h5, j]) .

Very similar expressions can be derived for the ex-
pectations for features f ra2b3,b2,b1

(γ), f la1b2,b1(γ), and

f ra1b2,b1
(γ). As for feature f shbb1

(γ), b ∈ Σ , the above
approach leads to

Ep(γ|w)[f
shb
b1

(γ)] =

=
θshbb1

I([¢, 0, ¢0, n])
·
∑

σ,i,h, s.t.

ah=b1, ai=b

O([h, i, hi, i+ 1]) .

As mentioned above, these expectations can be
used, for example, to derive an EM algorithm for our
model. The EM algorithm in our case is not com-
pletely straightforward because of the way we para-
metrize the model. We give now the re-estimation
steps for such an EM algorithm. We assume that all
expectations below are taken with respect to a set of
parameters θ from iteration s − 1 of the algorithm,
and we are required to update these θ. To simplify
notation, let us assume that there is only one stringw
in the training corpus. For each b1 ∈ Σ , we define:

Zb1 =
∑

b2∈Σ
Ep(γ|w)

[
f la1b2,b1(γ) + f ra1b2,b1

(γ)
]

+
∑

b3,b2∈Σ
Ep(γ|w)

[
f la2b3,b2,b1(γ) + f ra2b3,b2,b1

(γ)
]

;

Zb2,b1 =
∑

b3∈Σ
Ep(γ|w)

[
f la2b3,b2,b1(γ) + f ra2b3,b2,b1

(γ)
]
.

We then have, for every b ∈ Σ :

θshbb1
(s)←

Ep(γ|w)[f
shb
b1

(γ)]

Zb1 +
∑

b′∈Σ Ep(γ|w)[f
shb′
b1

(γ)]
.
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Furthermore, we have:

θla1b2,b1(s)←
Ep(γ|w)[f

la1
b2,b1

(γ)]

Zb2,b1 + Ep(γ|w)
[
f la1b2,b1(γ) + f ra1b2,b1

(γ)
] ,

and:

θla2b3,b2,b1(s)←
Ep(γ|w)[f

la2
b3,b2,b1

(γ)]

Ep(γ|w)
[
f la2b3,b2,b1(γ) + f ra2b3,b2,b1

(γ)
] .

The rest of the parameter updates can easily be de-
rived using the above updates because of the sum-
to-1 constraints in Eq. 2–4.

6 Discussion

We note that our model inherits spurious ambigu-
ity from Attardi’s model. More specifically, we can
have different derivations, corresponding to differ-
ent system computations, that result in identical de-
pendency graphs and strings. While running our
tabular algorithm with the Viterbi semiring effi-
ciently computes the highest probability computa-
tion in Γ (w), spurious ambiguity means that find-
ing the highest probability dependency tree is NP-
hard. This latter result can be shown using proof
techniques similar to those developed by Sima’an
(1996). We leave it for future work how to eliminate
spurious ambiguity from the model.

While in the previous sections we have described
a tabular method for the transition system of Attardi
(2006) restricted to transitions of degree up to two, it
is possible to generalize the model to include higher-
degree transitions. In the general formulation of At-
tardi parser, transitions of degree d create links in-
volving nodes located d positions beneath the top-
most position in the stack:

lad : (σ|i1|i2| . . . |id+1, β, A) `
(σ|i2| . . . |id+1, β, A ∪ {id+1 → i1});

rad : (σ|i1|i2| . . . |id+1, β, A) `
(σ|i1|i2| . . . |id, β, A ∪ {i1 → id+1}).

To define a transition system that supports trans-
itions up to degree D, we use a set of
items of the form [s1 . . . sD−1, i, e1 . . . eD, j], cor-
responding (in the sense of §4) to compu-
tations of the form c0, . . . , cm, m ≥ 1,

with c0 = (σ|s1| . . . |sD−1, βi, A) and cm =
(σ|e1| . . . |eD, βj , A′). The deduction steps corres-
ponding to reduce transitions in this general system
have the general form

[s1 . . . sD−1, i, e1m1 . . .mD−1, j]
[m1 . . .mD−1, j, e2 . . . eD+1, w]

[s1 . . . sD−1, i, e1 . . . ec−1ec+1 . . . eD+1, w]
(ep → ec)

where the values of p and c differ for each transition:
to obtain the inference rule corresponding to a lad
transition, we make p = D + 1 and c = D + 1− d;
and to obtain the rule for a rad transition, we make
p = D + 1− d and c = D + 1. Note that the parser
runs in timeO(n3D+2), whereD stands for the max-
imum transition degree, so each unit increase in the
transition degree adds a cubic factor to the parser’s
polynomial time complexity. This is in contrast to a
previous tabular formulation of the Attardi parser by
Gómez-Rodrı́guez et al. (2011), which ran in expo-
nential time.

The model for the transition system we give in this
paper is generative. It is not hard to naturally extend
this model to the discriminative setting. In this case,
we would condition the model on the input string to
get a conditional distribution over derivations. It is
perhaps more natural in this setting to use arbitrary
weights for the parameter values, since the compu-
tation of a normalization constant (the probability of
a string) is required in any case. Arbitrary weights
in the generative setting could be more problematic,
because it would require computing a normalization
constant corresponding to a sum over all strings and
derivations.

7 Conclusion

We presented in this paper a generative probabilistic
model for non-projective parsing, together with the
description of an efficient tabular algorithm for pars-
ing and doing statistical inference with the model.
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Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics (ACL), Portland, Oregon,
USA.

Bernard Lang. 1974. Deterministic techniques for ef-
ficient non-deterministic parsers. In Jacques Loecx,
editor, Automata, Languages and Programming, 2nd
Colloquium, University of Saarbrücken, July 29–
August 2, 1974, number 14 in Lecture Notes in Com-
puter Science, pages 255–269. Springer.

Zhifei Li and Jason Eisner. 2009. First- and second-order
expectation semirings with applications to minimum-
risk training on translation forests. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 40–51, Singa-
pore.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency pars-
ing. In Tenth International Conference on Parsing
Technologies (IWPT), pages 121–132, Prague, Czech
Republic.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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Abstract
This paper introduces Chart Inference (CI),
an algorithm for deriving a CCG category
for an unknown word from a partial parse
chart. It is shown to be faster and more pre-
cise than a baseline brute-force method, and
to achieve wider coverage than a rule-based
system. In addition, we show the application
of CI to a domain adaptation task for ques-
tion words, which are largely missing in the
Penn Treebank. When used in combination
with self-training, CI increases the precision
of the baseline StatCCG parser over subject-
extraction questions by 50%. An error analy-
sis shows that CI contributes to the increase by
expanding the number of category types avail-
able to the parser, while self-training adjusts
the counts.

1 Introduction

Unseen lexical items are a major cause of error in
strongly lexicalised parsers such as those based on
CCG (Clark and Curran, 2003; Hockenmaier, 2003).
The problem is especially acute for less privileged
languages, but even in the case of English, we are
aware of many category types entirely missing from
the Penn Treebank (Clark et al., 2004).

In the case of totally unseen words, the standard
method used by StatCCG (Hockenmaier, 2003) and
many other treebank parsers is part-of-speech back-
off, which is quite effective, affording an F-score of
93% over dependencies in §00 in the optimal config-
uration. It is difficult to say how backing off affects
dependency errors, but when we examine category
match accuracy of the CCGBank-trained parser, we
find that POS backoff has been used on 19.6% of to-
kens, which means that those tokens are unseen, or

too infrequent in the training data to be included in
the lexicon. Of the 3320 items the parser labelled
incorrectly, 675 (20.3%) are words that are miss-
ing from the lexicon entirely.1 In the best case, if
we were able to learn lexical entries for those 675,
we could transfer them to lexical treatment, which
is 93.5% accurate, rather than POS backoff, which
is 89.3% accurate. Under these conditions, we pre-
dict a further 631 word/category pairs to be tagged
correctly by the parser, reducing the error rate from
7.4% to 6% on §00. Further to reducing parsing er-
ror, a robust method for learning words from un-
labelled data would result in the recovery of inter-
esting and important category types that are missing
from our standard lexical resources.

This paper introduces Chart Inference (CI) as
a strategy for deducing a ranked set of possible
categories for an unknown word using the partial
chart formed from the known words that surround
it. CCG (Steedman, 2000) is particularly suited to
this problem, because category types can be inferred
from the types of the surrounding constituents. CI
is designed to take advantage of this property of
generative CCGBank-trained parser, and of access
to the full inventory of CCG combinators and non-
combinatory unary rules from the trained model. It
is capable of learning category types that are com-
pletely missing from the lexicon, and is superior to
existing learning systems in both precision and effi-
ciency.

Four experiments are discussed in this paper. The
first compares three word-learning methods for their
ability to converge to a toy target lexicon. The sec-

1A further 269 (8%) are cases where the word is known, but
has not been seen with the correct category.
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ond and third compare the three methods based on
their ability to correctly tag the all the words in a
small natural language corpus. The final experiment
shows how Chart Induction can be effectively used
in a domain adaptation task where a small number
of category types are known to be missing from the
lexicon.

2 Learning Words

The methods used in this paper all operate under
a restricted learning setting, over sentences where
all but one word is in the lexicon. Since the learn-
ing portion of the algorithm is unsupervised, it has
access to an essentially unlimited amount of unla-
belled data, and it can afford to skip any sentence
that does not conform to the one-unseen-word re-
striction. Attempting two or more OOL words at a
time from one sentence would compound the search
space and the error rate. We do not address the much
harder problem of hypothesising missing categories
for known words, which should presumably be han-
dled by quite other methods, such as prior offline
generalization of the lexicon.

2.1 A Brute-force System

One of the early lexical acquisition systems us-
ing Categorial Grammar was that of Watkinson and
Manandhar (1999; 2000; 2001a; 2001b). This sys-
tem attempted to simultaneously learn a CG lexicon
and annotate unlabelled text with parse derivations.
Using a stripped-down parser that only utilised the
forward- and backward-application rules, they iter-
atively learned the lexicon from the feedback from
online parsing. The system decided which parse was
best based on the lexicon, and then decided which
additions to the lexicon to make based on principles
of compression. After each change, the system re-
examined the parses for previous sentences and up-
dated them to reflect the new lexicon.

They report fully convergent results on two toy
corpora, but the parsing accuracy of the system
trained on natural language data was far below
the state of the art. However, they do show cat-
egorial grammar to be a promising basis for ar-
tificial language acquisition, because CCG makes
learning the lexicon and learning the grammar the
same task (Watkinson and Manandhar, 1999). They

also showed that seeding the lexicon with examples
of lexical items (closed-class words in their case),
rather than just a list of possible category types, in-
creased its chances of converging. This approach of
automating the learning process differs from the pre-
vious language learning methods described, in that
it doesn’t require the specification of any particular
patterns, only knowledge of the grammar formalism.

For this paper, as a baseline, we implement
a generalised version of Watkinson and Manand-
har’s mechanism for determining the category γ
of a single OOL word in a sentence where the
rest of the words C1...CN are in the lexicon: γ =
argmaxParse(C1...Cn,γ). This is equivalent to
backing off to the set of all known category types;
the learner returns the category that maximises the
probability of the completed parse tree. We ignore
the optimisation and compression steps of the origi-
nal system.

2.2 A Rule-based System
Yao et al. (2009a; 2009b) developed a learning sys-
tem based on handwritten translation rules for de-
ducing the category (X) of a single unknown word
in a sentence consisting of a sequence of partially-
parsed constituents (A..N).

Their system was based on a small inventory of
inference rules that eliminated ambiguity in the or-
dering of arguments. For example, one of the Level
3 inference rules specifies the order of the arguments
in the deduced category:

A X B C→ D⇒ X = ((D\A)/C)/B
Without this inductive bias the learner would

have to deal with the ambiguity of the options
((D/C)/B)\A and ((D/C)\A)/B at minimum. In
addition they limited their learner to CG-compatible
parse structures and their constituent strings to
length 4.

Their argument is that only this minimal bias is
needed to learn syntactic structures, including the
fronting of polar interrogative auxiliaries and aux-
iliary word order (should > have > been), from a
training set that did not explicitly contain full evi-
dence for them.

Although Yao et al. (2009b) used the full set of
CCG combinators to generate learned categories,
they employed a post-processing step to filter spu-
rious categories by checking whether the category
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DERIVE([C1...Cn],β ,γ)

if β = /0
then return (γ)
else if C1 = Cn = X

then
{

γ = γ + β ;
DERIVE(X , /0,γ)

else





if C1 /∈ S,X
then DERIVE([C2...Cn],β\C1,γ)

if Cn /∈ S,X
then DERIVE([C1...Cn−1],β/Cn,γ)

if β ≡ B and C1 ≡ B/A and C1 /∈ S,X
then DERIVE([C2...Cn],A,γ)

if β ≡ B and Cn ≡ B\A and Cn /∈ S,X
then DERIVE([C1...Cn−1],A,γ)

Figure 1: Generalised recursive rule-based algorithm,
where [C1...Cn] is a sequence of categories, one of which
is X , β is a result category, and γ is the (initially empty)
category set.

participated in a CG-only derivation (using applica-
tion rules only). This is effective in limiting spuri-
ous derivations, but at the expense of reduced recall
on those sentences for whose analysis CCG rules of
composition etc. are crucial.

Their rules were effective for their toy-scale
datasets, but for the purposes of this paper we have
implemented a generalised version of the recursive
algorithm for use in wide-coverage parsing. This al-
gorithm is outlined in Figure 1. It takes a sequence
of categorial constituents, all known except one (X),
and builds a candidate set of categories (γ) for the
unknown word by recursively applying Yao’s Level
0 and Level 1 inference rules.

2.3 Chart Inference

Both Watkinson’s and Yao’s experiments were fully
convergent over toy datasets, but did not scale to re-
alistic corpora. Watkinson attempted to learn from
the LLL corpus (Kazakov et al., 1998), but attributed
the failure to the small amount of training data rela-
tive to the corpus, and the naive initial category set.
Yao’s method was only ever designed as a proof-of-
concept to show how much of the language can be
learned from partial evidence, and was not meant to
be run in earnest in a real-world learning setting. For

one, the rules do not cover the full set of partial parse
conditions, and further to that, they do not allow for
partial parses to be reanalysed within the learning
framework.

To that end, we have developed a learning algo-
rithm that is capable of operating within the one-
unknown-word-per-sentence learning setting estab-
lished by the two baseline systems, that is able to
invent new category types, and that is able to take
advantage of the full generality of CCG. This sec-
tion shows that it performs as well as the previous
two systems on a toy corpus, and the next section
proves that it more readily scales to natural language
domains.

Mellish (1989) established a two-stage bidirec-
tional chart parser for diagnosing errors in input text.
His method relied heavily on heuristic rules, and
the only evaluation he did was on number of cy-
cles needed for each type of error, and number of
solutions produced. His method was designed for
use in producing parses where the original parser
failed, dealing with omissions, insertions, and mis-
spelled/unknown words. The only method used to
rank the possible solutions was heuristic scores.

Kato (1994) implemented a revised system that
used a generalised top-down parser, rather than a
chart, and was able to get the number of cycles to
decrease.

In both cases the evaluation was only on a toy cor-
pus, and they did not evaluate on whether the sys-
tems diagnosed the errors correctly, or whether the
solution they offered was accurate. They also had
to deal with cases where the error was ambiguous,
for example, where an inserted word could be inter-
preted as a misspelling or vice-versa.

Where Mellish uses the two-stage parsing process
to complete malformed parses, we use it to diagnose
unknown lexical items. In addition, we work on the
scale of a full grammar and wide-coverage parser,
using modern lexical corpora.

Our method is a wrapper for a naive generative
CCG parser StatOpenCCG (Christodoulopoulos,
2008), a statistical extension to OpenCCG (White
and Baldridge, 2003). In the general case, the parser
is trained on all the labelled data available in a par-
ticular learning setting, then the learner discovers
new lexical items from unlabelled text. Like the
brute force and rule-based systems, it is vulnerable
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CCG Combinator Inverse Combinator
A/B B → A (>) X B → A ⇒ X = A/B if v(B) ≤ 1

A/B X → A ⇒ X = B
B A\B → A (<) X A\B → A ⇒ X = B

B X → A ⇒ X = A\B if v(B) ≤ 1
A/C C/B → A/B (>B) X C/B → A/B ⇒ X = A/C

A/C X → A/B ⇒ X = C/B
C\B A\C → A\B (<B) X A\C → A\B ⇒ X = C\B

C\B X → A\B ⇒ X = A\C

Figure 2: Derivation of inverse combinators

P(target = C|R,S) = max
{

P(HeadRight|R)
P(HeadLe f t|R)

}

P(HeadRight|R) =





P[outside](R)∗
P[inside](S)∗

P(exp = le f t|R)∗
P(C|R,exp = le f t)∗

P(S|R,exp = le f t,C)





P(HeadLe f t|R) =





P[outside](R)∗
P[inside](S)∗

P(exp = right|R)∗
P(S|R,exp = right)∗

P(C|R,exp = right,S)





Figure 3: CI probability that the target is category C,
given possible categories for result (R) and sister (S).

to attachment errors and ambiguity from adverbials.
The learning step consists in presenting the parser

with sentences all of whose words but one are in-
lexicon. The parser must have a statistical parsing
model, which contains a seed lexicon, a set of CCG
combinators, and an optional set of unary and binary
rules learned from the training corpus.

First the baseline bottom-up parser is called upon
to produce a partial parse chart. The learner takes
this partial chart and fills the top right cell with a
distribution for the result category based on the end
punctuation.2

Using this partial chart that contains at least one
entry for every leaf cell (except the one OOL tar-
get cell) and at least one entry for the result, the

2For simple corpora, only S is required, but realistic corpora
necessitate a distribution over all result types, including noun
phrases and fragments.

learner steps through the chart in a top-down ver-
sion of CYK (Younger, 1967). For the top-down
process, the standard combinators have to be refor-
mulated to take an argument and a result as inputs,
rather than two arguments as in the standard bottom-
up case. In addition, the learner has access to the
non-combinator rules from the parse model, which
have been similarly inverted for top-down use. This
process continues until the target cell has been filled,
and the ranked set of categories is returned.

The probability that the target has a given cat-
egory is calculated as the greater of the right- or
left-headed derivations, according to Figure 3. At
training time, the StatOpenCCG parser creates a
head-dependency model from the training corpus, in
which we can look up the values for the expansion
probabilities. Where a value is unavailable, it backs
off to a pre-specified value (default 0.0001).3 The
system requires a pruning parameter that limits each
cell to the top N most probable categories. Here, we
set N=10, to limit the search space and complexity. 4

Figure 2 sets out the inventory of inverse combi-
nators used in the top-down learning step. Each stan-
dard binary CCG combinator motivates two inverse
combinators: one for each possible missing item. In
the two permissive instances where the sister cate-
gory’s form is the unrestricted B, we limit the sis-
ter’s valency to 1, in order to keep the learner from
generating spurious categories that could result from
these two rules being overapplied.

Figure 4 illustrates the workings of the learning

3This backoff parameter allows adjustment of the expecta-
tion of new category types and could be replaced with another
smoothing method in subsequent implementations.

4Further testing on the McGuffey corpus has shown the av-
erage rank of correct tags in the category set to be 1.4.
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algorithm for the sentence The cat X her. The grey
cells are filled as a partial chart by the parser, and the
white cells are filled by the top-down learner. Note
that taking rule probabilities into account makes the
algorithm robust to ambiguity. The highest-ranking
lexical category for her is NP[nb]/N, but the next
highest (NP) is preferred in the derivation of the
highest-ranking category for the unknown word X.

3 Experiment I: Convergence

In the following experiments, we compare Chart In-
ference to the two baseline methods: Brute Force
(BF), derived from Watkinson and Manandhar, and
Rule-Based (RB), derived from Yao et al. This sec-
tion investigates how robust the three systems are to
changes in theoriginal seed lexicon.

3.1 Corpus
For this experiment we test the three systems on a
reconstructed version of Corpus 1 from Watkinson
and Manandhar’s experiments.5 The lexicon con-
tains 40 word-category pairs, including the full stop
(S\S), which was not in Watkinson’s experiment,
and one example of noun-verb ambiguity (saw). The
test sentences are randomly generated from a simple
PCFG over the lexicon, and are always presented to
the learners in the same order.

3.2 Methods
In order to directly compare the three learning meth-
ods, we use the evaluation setting from Watkinson
and Manandhar (1999), which consists of a 40-entry
target lexicon and a PCFG language model used to
randomly generate 1000 sentences. We then specify
a seed lexicon and run the learner incrementally, so
that it deals with one sentence at a time, then feeds
the learned material back into the lexicon. Watkin-
son’s system was shown to fully convergent (they
defined convergence as cosine similarity between
the seed lexicon (~S) and the target lexicon (~T ) ex-
ceeding 0.99), whenever the seed lexicon contained
at least one instance of each of the category types in
the target lexicon (Watkinson and Manandhar, 1999)

5The full corpus was not included in any of Watkinson’s pa-
pers, but its properties were outlined to such an extent that it
was straightforward to recreate, though the reconstruction may
differ from the original in the distribution of category types. The
reconstructed corpus will be released shortly.
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Figure 5: Learning curve for all three methods when the
seed contains no ditransitives. CI and RB are identical.
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Figure 6: Learning curve for all three methods when seed
contains only three determiners and one noun.

3.3 Results

When run incrementally over this toy corpus, both
the RB and CI algorithms converge to the target
lexicon in an identical sigmoid learning curve (not
shown). However, when we start with an im-
poverished seed, the algorithms’ behaviours start
to diverge. Figure 5 shows the learning curve
for the three methods when the seed lexicon
omits all instances of the ditransitive category type
((S\NP)/NP)/NP. Both RB and CI converge iden-
tically as expected, but BF, the lower curve, cannot
learn any category types that are not attested in the
seed, so it plateaus at 95% similarity.

When the seed is reduced to only three deter-
miners and a noun, CI can still learn the complete
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0 1 2 3
NP[nb]/N : 0.08428 NP[nb] : 0.00138 S[dcl]\NP : 2.90E-5 S[dcl] : 1.0 0

S[dcl]/NP : 2.90E-10
The N : 0.01890 (S[dcl]\NP)/NP : 1.35E-7 S[dcl]\NP : 1.00E-4

1NP : 0.00174
S/(S\NP) : 0.00152

cat (S[dcl]\NP)/NP : 2.21E-9 S[dcl]\NP : 1.64E-6

2(S[dcl]\NP)\NP[nb] : 6.06E-19 S[dcl]\NP[nb] : 7.41E-17
(S[dcl]/NP)\NP[nb] : 4.00E-23 (S[dcl]\NP)\N : 2.87E-17

... ...
X NP[nb]/N : 0.05467

3NP : 0.02439
S/(S\NP) : 0.02124

her .

Figure 4: Example of a two-stage derivation using Chart Inference: Grey boxes are filled bottom-up by the partial
parser; white boxes top-down by the learner. The target cell (2,2) shows the correct category type as the highest
probability solution.

lexicon, despite some initial missteps and a steeper
curve. However, the other two methods fail catas-
trophically (Figure 6). BF never gets going, since it
can only correctly learn the remaining nouns. RB is
partially successful, but is thwarted by a bad deci-
sion at 80% that quickly compounds to diverge from
the target lexicon, ending up with higher coverage
in the form of more lexical entries, but lower preci-
sion, as the final similarity plateaus at the same level
as the original seed.

4 Experiments II and III: Coverage

Next, we compare the three learning methods on a
larger corpus of natural language, to investigate how
well they perform at recovering a wide range of cat-
egory types in complex settings.

4.1 Corpus
We have constructed a small natural language lex-
icon based on the first volume of a 6-volume 1836
children’s primer, McGuffey’s Eclectic Reader.6

Volume 1 of the McGuffey corpus (MG1) consists
of 546 sentences that have been manually annotated
with CCG categories, automatically parsed, and then
corrected. Volume 2 (MG2) comprises 801 sen-
tences, annotated in the same manner as Volume 1,
though not as reliably. The McGuffey corpus makes

6The raw text of William Holmes McGuffey’s Eclectic
Reader is available as an e-book from Project Gutenberg at
http://www.gutenberg.org/ebooks/14640. The annotated corpus
will be released shortly.

an ideal seed for development purposes, as it con-
tains a high proportion of simple declarative sen-
tences, but also touches on questions, quotations,
passives, and other complex constructions.

4.2 Methods

In the first of these two experiments we train and
test on the same corpus in one pass, attempting to
learn each word token in turn and comparing the
learned category set to the gold standard annota-
tion. Because we know that the lexicon contains all
the necessary entries to correctly parse all the sen-
tences, this addresses the lexical coverage problem
discussed in Section 1 of this paper.

The second of these two experiments looks at a
more realistic environment for word learning: the
parser is initially trained on MG1, then tested on
MG2. We evaluate on the gold standard categories
in MG2. Since we are not guaranteed to have ac-
cess to all the necessary word/category pairs in the
seed lexicon, the precision and recall values for this
second experiment will inevitably be lower than the
first.

Figure 7 outlines the process of producing new
parsed sentences out of raw text. The process be-
gins like the previous experiment, but then the cat-
egory set generated by the learner is passed back to
the parser, so it can incorporate this new informa-
tion into its lexicon and produce a full parse. The
Hypothesis lexicon is cleared after every sentence.
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Figure 7: Learning framework for Experiments II-IV.

4.3 Results

Table 1 compares the category match accuracy
across the three systems in experiment II, as well
as the baseline that chose the the most probable
category for the target word’s POS. Two tasks are
scored: Top One, where we evaluate the single
highest-scoring category against the gold-standard
tag, and Top Ten, where we check to see if the gold
tag is in the set of the ten highest-probability cate-
gories returned by the learner.

CI achieves the best F-scores in both tasks, reach-
ing 76% for Top One and 94% for Top Ten. POS
backoff has an advantage in the Top Ten task, es-
pecially in recall, since it returns an answer in ev-
ery case, but CI still outperforms it on F-score. BF
achieves the highest precision in the Top One task,
but takes 30 hours to do so, since it is searching over
all possible categories. RB is markedly worse in
both precision and recall, but also remarkably fast.
CI combines the merits of both BF and RB, yield-
ing a higher F-score than BF and a processing time
similar to RB.

In Experiment III, to test the limits of the learners
on truly OOL words, we again train on MG1, but test
instead on MG2. We can then perform a meaningful
error analysis on the results, showing how the three
word-learning methods compare in actual practice,
in a realistic setting.

Out of its 801 sentences in MG2, only 32 present
learning opportunities for the learners, being be-
tween 2 and 10 tokens long, containing no inter-
nal punctuation or coordination, and containing only
one OOL word.

Table 2 shows the category match results of the
three systems on MG2. Recall is calculated over
the set of learning opportunities, of which there are
only 32. BF performs best in all metrics, but the
CI results are reasonable. The underlying reason for
this behaviour is that the 32 learning targets are all
of common categories: over half of them are N or
NP. Since the Brute Force learner seeks simply to
maximise the tree probability, N and NP are its most
common guesses in general.

5 Experiment IV: Domain Adaptation

Clark et al. (2004) identified the problem with using
news data to train a parser for a question answering
task as the lack of lexical support for question words.
Some lexical types were missing entirely. The lexi-
con for CCGBank §02-21 contains 12 WH-question
types, notably lacking some important ones. Clark
et al. note the absence of one category in partic-
ular: (S[wq]/(S[dcl]\NP))/N, the category needed
for What President became Chief Justice after his
presidency?

They attempt to adapt the discriminative C&C
parser (Clark and Curran, 2007) to the QA do-
main by retraining on 500 hand-labelled question
sentences, then automatically parsing and hand-
correcting an additional 671. The entire set was
then used in conjunction with CCGBank §02-21 to
train a final parsing model. Their per-word accuracy
rose from a 68.5% baseline to 94.6% for the newly
trained model.

In this experiment, we examine how close we
can get to those results by using Chart Inference to
learn WH-question words from the unlabelled ques-
tion corpus. If successful, this would eliminate the
human-annotation step for domain adaptation of the
kind investigated by (Clark et al., 2004).

5.1 Corpora

We trained the initial parser on the CCG-
Bank (Hockenmaier and Steedman, 2007; Hock-
enmaier, 2003) training set (§02-21), consisting of
39603 sentences of Wall Street Journal text (Marcus
et al., 1993). It is important to note that this training
corpus contains only 93 questions in total, so it is
not surprising that several category types for ques-
tion words are entirely unrepresented. It also rein-
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Top One Top Ten
P R F P R F Time (m)

POS 64.91 64.91 64.91 92.55 92.55 92.55 1
BF 80.53 65.84 72.45 95.97 78.32 86.25 1740
RB 39.77 37.92 38.82 68.46 65.28 66.83 12
CI 78.63 74.16 76.33 97.03 91.52 94.20 22

Table 1: Exp. II: Category match results for the three systems on the McGuffey corpus, training and testing on MG1.

Top One Top Ten
P R F P R F

BF 70.83 53.13 60.72 83.33 62.50 71.43
RB 16.13 15.63 15.87 29.03 28.13 28.57
CI 61.90 40.63 49.06 76.19 50.00 60.38

Table 2: Exp. III: Category match results for the three systems on the McGuffey corpus, training on MG1 and testing
on MG2. Common categories (N, NP, N/N) are overrepresented in the test data, leading to higher BF scores. POS
tags not available for MG2, so no POS baseline is reported.

forces the fact that this is a domain-adaptation task.
We use the same 500-sentence test set as Rimell

and Clark (2008b). The test corpus consists of 488
questions, each starting with What, When, How,
Who or Where. The learning corpus contains 1328
questions in a similar distribution.

Only three out of the five categories needed
to parse What-questions are present in the
CCGBank seed lexicon: S[wq]/(S[q]/NP),7,
S[wq]/(S[dcl]\NP),8 and S[wq]/(S[q]/NP)/N.9

For this experiment we focus on the
subject WH-element extraction category
(S[wq]/(S[dcl]\NP))/N, as in Which cat is the
grandmother?. This particular category was chosen
as a point of investigation because it is OOL in
CCGBank and is common enough to meaningfully
evaluate.

5.2 Methods
The baseline is the original StatCCG parser and lexi-
con. We also employ self-training (Charniak, 1997),
in which a parser is used to parse a set of sentences,
and then retrained using those output trees. Self-
training has had very little success in CCG appli-
cations hitherto. McClosky et al (2006) attribute
success in self-training to a confluence of circum-

7Object question category as in What is the Keystone State?
8Subject question category as in What lays blue eggs?
9Object WH-element extraction category as in What conti-

nent is Scotland in?

stances particular to their learning setting, which has
the benefit of a discriminative re-ranker, both in the
parsing case and in the learning case (McClosky et
al., 2008). We follow their recommendations that
the best performance is achieved when all the train-
ing sentences are parsed at once, rather than incre-
mentally.

We evaluate the success of CI in bootstrapping
Wh-question categories from the out-of-domain cor-
pus in two ways. First, we compare the CI output to
the gold standard categories labelled in Rimmell and
Clark (2008a). Second, we add the parsed questions
into the training set, then retrain and finally retest the
parser.

The parser was initially trained on CCGBank §02-
21 with a word frequency threshold of 5.10 It pro-
duces partial parse charts in the cases where all
words in the sentence are in-lexicon, except for the
WH-word target, for which the learner attempts to
return a category motivated by that context.

We run the learner on the set of 149 sentences
from the TREC Question-Answering corpus (Rimell
and Clark, 2008b) that contain the word/category
pair What:(S[wq]/(S[dcl]\NP))/N. For this exper-
iment the end-punctuation distribution derived from
the training corpus is replaced with a single value:
P(S[wq]|?) = 1.

10StatCCG requires a parameter to trade off between training
the lexicon and the POS-backoff.
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BL CI CI+ST
All Words 84.31 86.59 87.03
POS=WHQ 53.40 56.19 59.54
Word=What 55.87 60.83 65.42
Cat=SubjExt 7.84 52.94 58.82

Table 3: F-score over individual category matches. Bold
means significantly different from the Baseline.

5.3 Results

Table 3 shows the change in F-score throughout this
experiment. BL is the baseline condition, where
the accuracy is predictably high over all the words
in the sentence, but lower when we examine the
question words only. It is most telling that the
baseline F-score over words that should be tagged
with the subject WH-element-extraction category
((S[wq]/(S[dcl]\NP))/N) is extremely low. In fact,
that seven percent represents only a handful of in-
stances of Which, and none of What. Applying Chart
Inference to the problem results in statistically sig-
nificant increases in all metrics, but the biggest gain
is in the last. When we first apply CI, then self-train
over the full training corpus, we further increase all
metrics, and again the largest gain is over the target
category type specifically. 11 The reason for this can
be clearly seen when we evaluate the lexicons cre-
ated by each method.

Table 4 shows the differences in the impact on
the lexicon between baseline (BL), Chart Induc-
tion (CI), and the combined method of CI and self-
training (CI+ST).12 CI leaves the initial distribution
unchanged while adding seven more category types.
One of these is the category we are interested in:
(S[wq]/(S[dcl]\NP))/N, which is previously asso-
ciated with Which in the baseline lexicon. The other
six are spurious categories, and have low counts.
Combining the learning mechanisms by running first
CI, and then ST, has the effect of introducing the cat-
egory we need, and then elevating the counts. The
probability for S[wq] is elevated as well, as a result
of misparses, but the whole process results in bet-

11We also ran the experiment using ST only, which per-
formed better than CI alone, but only over a different set consist-
ing entirely of seen categories. We do not report those figures
here because they are not commensurable with the CI results.

12What has 31 categories in total in the baseline lexicon; here
we show only the [wq] types.

ter category matches over the test set, as we saw in
Table 3.

5.4 Error Analysis
Of the previously known categories, the ST
step overwhelmingly prefers three categories:
one subject extraction category S[wq]/(S[dcl]\NP)
and two object extraction S[wq]/(S[q]/NP) and
(S[wq]/(S[q]/NP))/N. The remaining categories
are classified in Table 4 as either rare (R), spu-
rious (*), or duplicate (D). Rare categories, like
S[wq] are used for specialised cases (the sentence
What?) which occur in PTB, but not in the QA
corpus. Spurious categories, like (S[wq]/PP)/N
exist in the baseline parser, arising from er-
rors in either the original PTB, or the transla-
tion to CCGBank. S[wq]/S[q] is only used where
S[wq]/(S[q]/NP) is meant, but fails to capture the
extraction. S[wq]/(S[dcl]/NP) is a misinterpretation
of sentences requiring (S[wq]/(S[dcl]\NP))/N, but
without capturing the extracted N.

Five spurious categories are also introduced
by the CI learning step. (S[wq]/S[dcl])/N and
(S[wq]/((S[dcl]\NP[expl])/NP))/N are spurious
forms of (S[wq]/(S[dcl]\NP))/N that arise when
the constituent directly right of the target is mis-
parsed; the former misses the extraction and the lat-
ter adds an extra dummy subject. S[wq]/N occurs
when the main verb of the sentence is treated as
a participle, forming a complex nominal argument.
(S[wq]/N)/N and (S[wq]/(S[dcl]/(S[pt]\NP)))/N
are caused by similar verbal ambiguity.

The classification of (S[wq]/S[inv])/N as a du-
plicate category is linguistically motivated. Rather
than interpret the embedded sentence as declarative,
the parser uses has:S[inv]/NP to interpret it instead
as an inverted sentence. In essence, it cannot see
the difference between What companies have them?
and What choice have they? when the NPs lack a
case distinction. As such, it duplicates the work of
the target (S[wq]/(S[dcl]\NP))/N, because the con-
stituents S[dcl]\NP and S[inv] are often synonymous
in practice.

As seen in Table 4, the distinction between rare
and spurious categories cannot be made on fre-
quency alone, but the best categories are the ones
with the highest frequency. Duplicate categories can
be considered spurious for the sake of parsing, but
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P(W |C) F P(C|W )
? C BL CI CI+ST BL CI CI+ST BL CI CI+ST
R S[wq] 0.09 0.09 0.17 1 1 2 0.006 0.005 0.002
R S[wq]/PP 0.6 0.6 0.6 3 3 3 0.019 0.016 0.003
∗ (S[wq]/PP)/N 1 1 1 1 1 4 0.006 0.005 0.004
∗ S[wq]/(S[ad j]\NP) 0.5 0.5 0.5 1 1 1 0.006 0.005 0.001

S[wq]/(S[dcl]\NP) 0.37 0.37 0.86 22 22 239 0.137 0.118 0.225
S[wq]/(S[dcl]/NP) 1 1 1 1 1 8 0.006 0.005 0.008
(S[wq]/(S[dcl]/NP))/N 0.5 0.5 0.5 1 1 1 0.006 0.005 0.001

∗ S[wq]/(S[ng]\NP) 1 1 1 1 1 2 0.006 0.005 0.002
R S[wq]/S[poss] 0.83 0.83 0.83 5 5 5 0.031 0.027 0.005
∗ S[wq]/S[q] 0.03 0.03 0.12 2 2 9 0.012 0.011 0.008

S[wq]/(S[q]/NP) 0.64 0.64 0.97 16 16 331 0.099 0.086 0.312
(S[wq]/(S[q]/NP))/N 0.36 0.36 0.95 4 4 136 0.025 0.021 0.128
(S[wq]/(S[dcl]\NP))/N - 0.5 0.96 - 4 75 - 0.021 0.071

∗ S[wq]/N - 1 1 - 8 12 - 0.043 0.011
∗ (S[wq]/S[dcl])/N - 1 1 - 8 28 - 0.043 0.026
∗ (S[wq]/N)/N - 1 1 - 4 7 - 0.021 0.007
D (S[wq]/S[inv])/N - 1 1 - 3 78 - 0.016 0.074
∗ (S[wq]/(S[dcl]/(S[pt]\NP)))/N - 1 1 - 1 2 - 0.005 0.002
∗ (S[wq]/((S[dcl]\NP[expl])/NP))/N - 1 1 - 1 12 - 0.005 0.011

Table 4: Exp. IV: Lexical category distribution for the word What in the baseline §02-21 of CCGBank (BL), after
Chart Inference (CI), and after first applying Chart Inference, then self-training (CI+ST). Column 1 classifies low-
frequency categories as rare (R), spurious (*) or duplicate (D). Cateogories above the middle line are present in the
Baseline lexicon; below are induced.

are linguistically interesting, and if they are frequent
enough, that is possibly an indication that the struc-
ture of the lexicon or the grammar is non-optimal.

6 Conclusion and Future Work

Chart Inference is a useful tool for finding OOL cat-
egories. It has been shown to outperform both the
brute-force and rule-based systems. When used in
conjunction with self-training, CI presents a valu-
able framework for domain adaptation in the case
where whole category types are missing from the
lexicon.

It remains to put Chart Inference into an appro-
priate framework for improving coverage over the
baseline WSJ-trained StatCCG parser. We estimate
an upper bound of 20% error reduction possible over
CCGBank §00, if the lexicon is expanded to cover
all the necessary word/category pairs. Improving
global F-score for §23 is of course very difficult. The
lexical entries CI finds are by definition rare and at
the scale we are running, they are unlikely to occur
in those 2000 sentences. We believe our analysis of
the lexical items themselves shows that we are learn-

ing a high proportion of good lexical entries.
The problem of discovering missing categories

for known words remains. We have shown through
adapting to the question domain that it is possible to
make focused improvements when we can identify
the gaps in coverage (as in wh-question words), but
in order to address the challenge of automatic lex-
icon extension fully, quite different techniques for
generalising lexical entries for seen words will be
require.
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Abstract

Dependency parsers are critical components
within many NLP systems. However, cur-
rently available dependency parsers each ex-
hibit at least one of several weaknesses, in-
cluding high running time, limited accuracy,
vague dependency labels, and lack of non-
projectivity support. Furthermore, no com-
monly used parser provides additional shal-
low semantic interpretation, such as prepo-
sition sense disambiguation and noun com-
pound interpretation. In this paper, we present
a new dependency-tree conversion of the Penn
Treebank along with its associated fine-grain
dependency labels and a fast, accurate parser
trained on it. We explain how a non-projective
extension to shift-reduce parsing can be in-
corporated into non-directional easy-first pars-
ing. The parser performs well when evalu-
ated on the standard test section of the Penn
Treebank, outperforming several popular open
source dependency parsers; it is, to the best
of our knowledge, the first dependency parser
capable of parsing more than 75 sentences per
second at over 93% accuracy.

1 Introduction

Parsers are critical components within many natu-
ral language processing (NLP) systems, including
systems for information extraction, question answer-
ing, machine translation, recognition of textual en-
tailment, summarization, and many others. Unfortu-
nately, currently available dependency parsers suf-
fer from at least one of several weaknesses includ-
ing high running time, limited accuracy, vague de-
pendency labels, and lack of non-projectivity sup-
port. Furthermore, few parsers include any sort of

additional semantic interpretation, such as interpre-
tations for prepositions, possessives, or noun com-
pounds.

In this paper, we describe 1) a new dependency
conversion (Section 3) of the Penn Treebank (Mar-
cus, et al., 1993) along with the associated de-
pendency label scheme, which is based upon the
Stanford parser’s popular scheme (de Marneffe and
Manning, 2008), and a fast, accurate dependency
parser with non-projectivity support (Section 4) and
additional integrated semantic annotation modules
for automatic preposition sense disambiguation and
noun compound interpretation (Section 5). We show
how Nivre’s (2009) swap-based reordering tech-
nique for non-projective shift-reduce-style parsing
can be integrated into the non-directional easy-first
framework of Goldberg and Elhadad (2010) to sup-
port non-projectivity, and we report the results of our
parsing experiments on the standard test section of
the PTB, providing comparisons with several freely
available parsers, including Goldberg and Elhadad’s
(2010) implementation, MALTPARSER (Nivre et al.,
2006), MSTPARSER (McDonald et al., 2005; Mc-
Donald and Pereira, 2006), the Charniak (2000)
parser, and the Berkeley parser (Petrov et al., 2006;
Petrov and Klein, 2007).

The experimental results show that the parser is
substantially more accurate than Goldberg and El-
hadad’s original implementation, with fairly simi-
lar overall speed. Furthermore, the results prove
that Stanford-granularity dependency labels can be
learned by modern dependency parsing systems
when using our Treebank conversion, unlike the
Stanford conversion, for which Cer et al. (2010)
show that this isn’t the case.

The optional semantic annotation modules also
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perform well, with the preposition sense disam-
biguation module exceeding the accuracy of the pre-
vious best reported result for fine-grained preposi-
tion sense disambiguation (85.7% vs Hovy et al.’s
(2010) 84.8%), the possessives interpretation sys-
tem achieving over 85% accuracy, and the noun
compound interpretation system performing simi-
larly to an earlier version described by Tratz and
Hovy (2010) at just over 79% accuracy.

2 Background

The NLP community has recently seen a surge of
interest in dependency parsing, with several CoNLL
shared tasks focusing on it (Buchholz and Marsi,
2006; Nivre et al., 2007). One of the main advan-
tages of dependency parsing is the relative ease with
which it can handle non-projectivity1. Additionally,
since each word is linked directly to its head via a
link that, ideally, indicates the syntactic dependency
type, there is no difficulty in determining either the
syntactic head of a particular word or the syntactic
relation type, whereas these issues often arise when
dealing with constituent parses2.

Unfortunately, most currently available depen-
dency parsers produce relatively vague labels or, in
many cases, produce no labels at all. While the
Stanford fine-grain dependency scheme (de Marn-
effe and Manning, 2008) has proven to be popular,
recent experiments by Cer et al. (2010) using the
Stanford conversion of the Penn Treebank indicate
that it is difficult for current dependency parsers to
learn. Indeed, the highest scoring parsers trained us-
ing the MSTPARSER (McDonald and Pereira, 2006)
and MALTPARSER (Nivre et al., 2006) parsing suites
achieved only 78.8 and 81.1 labeled attachment
F1, respectively. This contrasted with the much
higher performance obtained using a constituent-to-
dependency conversion approach with accurate, but
much slower, constituency parsers such as the Char-
niak and Johnson (2005) and Berkeley (Petrov et
al., 2006; Petrov and Klein, 2007) parsers, which
achieved 89.1 and 87.9 labeled F1 scores, respec-
tively.

1A tree is non-projective if the sequence of words visited in
a left-to-right, depth-first traversal of the sentence’s parse tree is
different than the actual word order of the sentence.

2These latter two issues are not problems for constituent
parses with binarized output and functional tags.

Though there are many syntactic parsers than can
reconstruct the grammatical structure of a text, there
are few, if any, accurate and widely accepted sys-
tems that also produce shallow semantic analysis of
the text. For example, a parser may indicate that,
in the case of ‘ice statue’, ‘ice’ modifies ‘statue’ but
will not indicate that ‘ice’ is the substance of the
statue. Similarly, a parser will indicate which words
a preposition connects but will not give any seman-
tic interpretation (e.g., ‘the boy with the pirate hat’
→ wearing or carrying, ‘wash with cold water’ →
means, ‘shave with the grain’→ in the same direc-
tion as). While, in some cases, it may be possible to
use the output from a separate system for this pur-
pose, doing so is often difficult in practice due to a
wide variety of complications, including program-
ming language differences, alternative data formats,
and, sometimes, other parsers.

3 Dependency Conversion

3.1 Relations and Structure

Most recent English dependency parsers produce
one of three sets of dependency types: unlabeled,
some variant of the coarse labels used by the
CoNLL dependency parsing shared-tasks (Buchholz
and Marsi, 2006; Nivre et al., 2007) (e.g., ADV,
NMOD, PMOD), or Stanford’s dependency labels
(de Marneffe and Manning, 2008). Unlabeled de-
pendencies are clearly too impoverished for many
tasks. Similarly, the coarse labels of the CoNLL
tasks are not very specific; for example, the same re-
lation, NMOD, is used for determiners, adjectives,
nouns, participle modifiers, relative clauses, etc. that
modify nouns. In contrast, the Stanford relations
provide a more reasonable level of granularity.

Our dependency relation scheme is similar to
Stanford’s basic scheme but has several differ-
ences. It introduces several new relations including
ccinit “initial coordinating conjunction”, cleft “cleft
clause”, combo “combined term”, extr “extraposed
element”, infmark “infinitive marker ‘to’ ”, objcomp
“object complement”, postloc “post-modifying lo-
cation”, sccomp “clausal complement of ‘so’ ”, vch
“verbal chain” and whadvmod “wh- adverbial mod-
ifier”. The nsubjpass, csubjpass, and auxpass rela-
tions of Stanford’s are left out because adding them
up front makes learning more difficult and the fact
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abbrev abbreviation csubjpass clausal subject (passive) pobj prepositional object
acomp adjectival complement det determiner poss possessive
advcl adverbial clause dobj direct object possessive possessive marker
advmod adverbial modifier extr extraposed element postloc post-modifying location
agent ‘by’ agent expl ‘there’ expletive preconj pre conjunct
amod adjectival modifier infmark infinitive marker (‘to’) predet predeterminer
appos appositive infmod infinite modifier prep preposition
attr attributive iobj indirect object prt particle
aux auxillary mark subordinate clause marker punct punctuation
auxpass auxillary (passive) measure measure modifier purpcl purpose clause
cleft cleft clause neg negative quantmod quantifier modifier
cc coordination nn noun compound rcmod relative clause
ccinit initial CC nsubj nominal subject rel relative
ccomp clausal complement nsubjpass nominal subject (passive) sccomp clausal complement of ‘so’
combo combination term num numeric modifier tmod temporal modifier
compl complementizer number compound number vch verbal chain
conj conjunction objcomp object complement whadvmod wh- adverbial
cop copula complement parataxis parataxis xcomp clausal complement w/o subj
csubj clausal subject partmod participle modifier

Table 1: Dependency scheme with differences versus basic Stanford dependencies highlighted. Bold indicates the
relation does not exist in the Stanford scheme. Italics indicate the relation appears in Stanford’s scheme but not ours.

that a nsubj, csubj, or aux is passive can easily be de-
termined from the final tree. Stanford’s aux depen-
dencies are replaced using verbal chain (vch) links;
conversion of these to Stanford-style aux dependen-
cies is also trivial as a post-processing step.3 The attr
dependency is excluded because it is redundant with
the cop relation due to different handling of copula,
and the dependency scheme does not have an abbrev
label because this information is not provided by the
Penn Treebank. The dependency scheme with dif-
ferences with Stanford highlighted is presented in
Table 1.

In addition to using a slightly different set of de-
pendency names, a handful of relations, notably cop,
conj, and cc, are treated in a different manner. These
differences are illustrated by Figure 1. The Stan-
ford scheme’s treatment of copula may be one rea-
son why dependency parsers have trouble learning
and applying it. Normally, the head of the clause
is a verb, but, under Stanford’s scheme, if the verb
happens to be a copula, the complement of the cop-
ula (cop) is treated as the head of the clause instead.

3The parsing system includes an optional script that can con-
vert vch arcs into aux and auxpass and the subject relations into
csubjpass and nsubjpass.

Figure 1: Example comparing Stanford’s (top) handling
of copula and coordinating conjunctions with ours (bot-
tom).

3.2 Conversion Process

A three-step process is used to convert the Penn
Treebank (Marcus, et al., 1993) from constituent
parses into dependency trees labeled according to
the dependency scheme presented in the prior sec-
tion. The first step is to apply the noun phrase
structure patch created by Vadas and Curran (2007),
which adds structure to the otherwise flat noun
phrases (NPs) of the Penn Treebank (e.g., ‘(metal
soup pot cover)’ would become ‘(metal (soup pot)
cover)’). The second step is to apply a version
of Johansson and Nugues’ (2007) constituent-to-
dependency converter with some head-finding rule
modifications; these rules, with changes highlighted
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(WH)?NP|NX|NML|NAC FW|NML|NN* JJR $|# CD|FW QP JJ|NAC JJS PRP ADJP RB[SR] VBG|DT|WP
RB NP-ε S|SBAR|UCP|PP SINV|SBARQ|SQ UH VP|NP VB|VBP

ADJP|JJP NNS QP NN $|# JJ VBN VBG (AD|J)JP ADVP JJR NP|NML JJS DT FW RBR RBS SBAR RB
ADVP RB|RBR|JJ|JJR RBS FW ADVP TO CD IN NP|NML JJS NN
PRN S* VP NN*|NX|NML NP W* PP|IN ADJP|JJ ADVP RB NAC VP INTJ
QP $|# NNS NN CD JJ RB DT NCD QP IN CC JJR JJS
SBARQ SQ S SBARQ SINV FRAG
SQ VBZ VBD VBP VB MD *-PRD SQ VP FRAG X
UCP [QNVP]P|S*|UCP|NML|PR[NT]|RRC|NX|NAC|FRAG|INTJ|AD[JV]P|LST|WH*|X
VP VBD|AUX VBN MD VBZ VB VBG VBP VP POS *-PRD ADJP JJ NN NNS NP|NML
WHADJP CC JJ WRB ADJP
WHADVP CC WRB|RB
X [QNVP]P|S*|UCP|NML|PR[NT]|RRC|NX|NAC|FRAG|INTJ|AD[JV]P|LST|WH*|X|CONJP
LST LS : DT|NN|SYM

Figure 2: Modified head-finding rules. Underline indicates that the search is performed in a left-to-right fashion instead
of the default right-to-left order. NML and JJP are both products of Vadas and Curran’s (2007) patch. Bold indicates
an added or moved element; for the original rules, see the paper by Johansson and Nugues (2007).

in bold, are provided in Figure 2. Finally, an addi-
tional script makes additional changes and converts
the intermediate output into the dependency scheme.

This dependency conversion has several advan-
tages to it. Using the modified head-finding rules for
Johansson and Nugues’ (2007) converter results in
fewer buggy trees than were present in the CoNLL
shared tasks, including fewer trees in which words
are headed by punctuation marks. For sections 2–
21, there are far fewer generic dep/DEP relations
(2,765) than with the Stanford conversion (34,134)
or the CoNLL 2008 shared task conversion (23,811).
Also, the additional conversion script contains vari-
ous rules for correcting part-of-speech (POS) errors
using the syntactic structure as well as additional
rules for some specific word forms, mostly common
words with inconsistent taggings. Many of these
changes cover part-of-speech problems discussed by
Manning (2011), including VBD/VBN, VBZ/NNS,
NNP/NNPS, and IN/WDT/DT issues. In total, the
script changes over 9,500 part-of-speech tags, with
the most common change being to change preposi-
tion tags (IN) into adverb tags (RB) for cases where
there is no prepositional complement/object. The
top fifteen of these changes are presented in Table
2. The conversion script contains a variety of ad-
ditional rules for modifying the parse structure and
fixing erroneous trees as well, including cases where
one or more POS tags were incorrect and, as such,
the initial dependency parse was flawed. Quick
manual inspections of the changes suggested that the

vast majority are accurate.
In the final output from the conversion, the num-

ber of sentences with one or more words dependent
on non-projective arcs in sections 2–21 is 3,245—
about 8.1% of the dataset. About 1.3% of this, or
556 of sentences, is due to the secondary conver-
sion script, with sentences containing approximate
currency amounts (e.g., about $ 10) comprising the
bulk of difference. For these, the quantifying text
(e.g., about, over, nearly), is linked to the number
following the currency symbol instead of to the cur-
rency symbol as it was in the CoNLL 2008 task.

Original New # of changes
IN RB 1128
JJ NN 787

VBD VBN 601
RB IN 462

VBN VBD 441
NN JJ 409

NNPS NNP 405
IN WDT 388

VBG NN 223
DT IN 220
RB JJ 214
VB VBP 184
NN NNS 169
RB NN 157

NNS VBZ 148

Table 2: Top 15 part-of-speech tag changes performed by
the conversion script.
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4 Parser

4.1 Algorithm

The parsing approach is based upon the non-
directional easy-first algorithm recently presented
by Goldberg and Elhadad (2010). Their original al-
gorithm behaves as follows. For a sentence of length
n, the algorithm performs a total of n steps. In each
step, one of the unattached tokens is added as a child
to one of its current neighbors and is then removed
from the list of unprocessed tokens. When only one
token remains unprocessed, it is designated as the
root. Provided that only a constant number of po-
tential attachments need to be re-evaluated after each
step, which is the case if one restricts the context for
feature generation to a constant number of neigh-
boring tokens, the algorithm can be implemented to
run in O(n log n). However, since only O(n) dot
products must be calculated by the parser and these
have a large constant associated with them, the run-
ning time will rival O(n) parsers for any reasonable
n, and, thus, a naive O(n2) implementation will be
nearly as fast as a priority queue implementation in
practice.4

The algorithm has a couple potential advantages
over standard shift-reduce style parsing algorithms.
The first advantage is that performing easy ac-
tions first may make the originally difficult deci-
sions easier. The second advantage is that perform-
ing parse actions in a more flexible order than left-
to-right/right-to-left shift-reduce parsing reduces the
chance of error propagation.

Unfortunately, the original algorithm does not
support non-projective trees. To extend the algo-
rithm to support non-projective trees, we introduce
move-right and move-left operations similar to the
stack-to-buffer swaps proposed by Nivre (2009) for
shift-reduce style parsing. Thus, instead of attaching
a token to one of its neighbors at each step, the algo-
rithm may instead decide to move a token past one
of its neighbors. Provided that no node is allowed
to be moved past a token in such a way that a previ-
ous move operation is undone, there can be at most
O(n2) moves and the overall worst-case complexity
becomes O(n2 log n). While theoretically slower,
this has a limited impact upon actual parsing times

4See Goldberg and Elhadad (2010) for more explanation.

in practice, especially for languages with relatively
fixed word order such as English.5 Though Gold-
berg and Elhadad’s (2010) original implementation
only supports unlabeled dependencies, the algorithm
itself is in no way limited in this regard, and it is
simple enough to add labeled dependency support
by treating each dependency label as a specific type
of attach operation (e.g., attach_as_nsubj), which
is the method used by this implementation. Pseu-
docode for the non-directional easy-first algorithm
with non-projective support is given in Algorithm 1.

input : w1 ... wn, #the sentence
m, #the model
k, #the context width
actions, #the list of parse actions
φ, #the feature generator

output: tree #a collection of dependency arcs
words = copyOf(s);
stale = copyOf (s);
cache; #cache of action scores
while |words| > 1 do

for w ∈ stale do
for act ∈ actions do

cache[w,act] = score(act, φ(w,...),
m);

stale.remove(w);
best = arg max

a∈actions&valid(a),w∈words

cache[w, a]

if isMove(best) then
i =

words.index(getTokenToMove(best));
words.move (i, isMoveLeft(best) ? -1
: 1);

else
arc = createArc(best);
tree.add(arc);
i = words.index(getChild(arc));
words.remove(i);

for x ∈ -k,...,k do
stale.add(words.get(index+x));

return tree

Algorithm 1: Modified version of Goldberg and
Elhadad’s (2010) Easy-First Algorithm with non-
projective support.

5See Nivre (2009) for more information on the effect of re-
ordering operations on parse time.
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4.2 Features

One of the key aspects of the parser is the complex
set of features used. The feature set is based off
the features used by Goldberg and Elhadad (2010)
but has a significant number of extensions. Various
feature templates are specifically designed to pro-
duce features that help with several syntactic issues
including preposition attachment, coordination, ad-
verbial clauses, clausal complements, and relative
clauses. Unfortunately, there is insufficient space in
this paper to describe them all here. However, a list
of feature templates will be provided with the parser
download.

Several of the feature templates use unsupervised
word clusters created with the Brown et al. (1992)
hierarchical clustering algorithm. The use of this al-
gorithm was inspired by Koo et al. (2008), who used
the top branches of the cluster hierarchy as features.
However, unlike Koo et al.’s (2008) parser, the fine-
grained cluster identifiers are used instead of just
the top 4-6 branches of the cluster hierarchy. The
175 word clusters utilized by the parser were created
from the New York Times corpus (Sandhaus, 2008).
Some examples from the clusters are presented in
Figure 3. The ideal number of such clusters was not
thoroughly investigated.

while where when although despite unless unlike ...
why what whom whatever whoever whomever whence ...
based died involved runs ended lived charged born ...
them him me us himself themselves herself myself ...
really just almost nearly simply quite fully virtually ...
know think thought feel believe knew felt hope mean ...
into through on onto atop astride Saturday/Early thru ...
Ms. Mr. Dr. Mrs. Judge Miss Professor Officer Colonel ...
John President David J. St. Robert Michael James George ...
wife own husband brother sister grandfather beloved ...
often now once recently sometimes clearly apparently ...
everyone it everybody somebody anybody nobody hers ...
around over under among near behind outside across ...
Clinton Bush Johnson Smith Brown Williams King ...
children companies women people men things students ...

Figure 3: High frequency examples from 15 of the Brown
clusters.

4.3 Training

The parsing model is trained using a variant of the
structured perceptron training algorithm used in the
original Goldberg and Elhadad (2010) implementa-

tion. The general idea of the algorithm is to iterate
over the sentences and, whenever the model predicts
an incorrect action, update the model weights. Fol-
lowing Goldberg and Elhadad, parameter averaging
is used to reduce overfitting.

Our implementation varies slightly from that of
Goldberg and Elhadad (2010). The difference is
that, at any particular step for a given sentence, the
algorithm continues to update the weight vector as
long as any invalid action is scored higher than any
valid action, not just the highest scoring valid ac-
tion; unfortunately, this change significantly slowed
down the training process. In early experiments, this
change produced a slight improvement in accuracy
though it also slowed training significantly. In later
experiments using additional feature templates, this
change ceased to have any notable impact on the
overall accuracy, but it was kept anyway. 6

The oracle used to determine whether a move op-
eration should be considered legal during the train-
ing phase is similar to Nivre et al.’s (2009) improved
oracle based upon maximal projective subcompo-
nents. As an additional restriction, during training,
move actions were only considered valid either if no
other action was valid or if the token to be moved
already had all its children attached and moving it
caused it to be adjacent to its parent. This fits with
Nivre et al.’s (2009) intuition that it is best to delay
word reordering as long as possible.

4.4 Speed Enhancements

To enhance the speed for practical use, the parser
uses constraints based upon the part-of-speech tags
of the adjacent word pairs to eliminate invalid de-
pendencies from even being evaluated. A rela-
tion is only considered between a pair of words if
such a relation was observed in the training data
between a pair of words with the same parts-of-
speech (with the exception of the generic dep de-
pendency, which is permitted between any POS tag
pair). Early experiments utilizing similar constraints
showed an improvement in parsing speed of about
16% with no significant impact on accuracy, regard-
less of whether the constraints were enforced during
training.

6See Goldberg and Elhadad (2010) for more description of
the general training procedure.
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System Arc Accuracy Perfect Sentences Non-Proj Arcs
Labeled Unlabeled Labeled Unlabeled Labeled Unlabeled

THIS WORK 92.1 (93.3) 93.7 (94.3) 38.4 (42.5) 46.2 (48.5) 66.5 (69.7) 69.3 (71.7)
THIS WORKno clusters 91.8 (93.1) 93.4 (94.1) 38.2 (42.3) 45.5 (47.3) 67.3 (70.9) 69.3 (72.5)
THIS WORKmoves disabled 91.7 (92.9) 93.3 (93.9) 37.1 (40.8) 44.2 (46.2) 21.1 (21.1) 22.7 (21.9)
NON-DIR EASY FIRST * 91.2 (92.0) * 37.8 (39.4) * 15.1 (16.3)
EISNER†MST 90.9 (92.2) 92.8 (93.5) 32.1 (35.6) 40.6 (42.3) 62.5 (65.3) 63.7 (66.9)
CHU-LIU-EDMONDSMST 90.0 (91.2) 91.8 (92.5) 28.4 (31.3) 35.0 (36.4) 62.9 (65.3) 64.1 (66.5)
ARC-EAGERMalt 89.8 (91.1) 91.3 (92.1) 31.6 (34.2) 37.4 (38.5) 19.5 (19.5) 20.3 (19.9)
ARC-STANDARDMalt 88.3 (89.5) 89.7 (90.4) 31.4 (34.1) 36.1 (37.3) 13.1 (12.0) 13.9 (12.7)
STACK-EAGERMalt 90.0 (91.2) 91.5 (92.3) 34.5 (37.5) 40.4 (41.9) 51.8 (53.8) 53.8 (55.4)
STACK-LAZYMalt 90.4 (91.7) 91.9 (92.8) 34.8 (37.7) 40.6 (42.5) 61.8 (63.3) 63.3 (65.3)

CHARNIAK‡ * 93.2 * 43.5 * 32.3
BERKELEY‡ * 93.3 * 43.6 * 34.3

Table 3: Parsing results for section 23 of the Penn Treebank (punctuation excluded). Results in parentheses were
produced using gold POS tags. †Eisner (1996) algorithm with non-projective rewriting and second order features.
‡Results not directly comparable; see text. ∗Labeled dependencies not available/comparable.

4.5 Evaluation

The following split of the Penn Treebank (Marcus,
et al., 1993) was used for the experiments: sections
2–21 for training, 22 for development, and 23 for
testing.

For part-of-speech (POS) tagging, we used an in-
house SVM-based POS tagger modeled after the
work of Giménez and Márquez (2004) 7. The train-
ing data was tagged in a 10-fold fashion; each fold
was tagged using a tagger trained from the nine re-
maining folds. The development and test sections
were tagged by an instance of the tagger trained us-
ing the entire training set. The full details of the
POS tagger are outside the scope of this paper; it is
included with the parser download.

The final parser was trained for 31 iterations,
which is the point at which its performance on the
development set peaked. One test run was per-
formed with non-projectivity support disabled in or-
der to get some idea of the impact of the move opera-
tions on the parser’s overall performance; also, since
the parsers used for comparison had no access to the
unsupervised word clusters, an additional instance
of the parser was trained with every word treated
as belonging to the same cluster so as to facilitate
a more fair comparison.

Seven different dependency parsing models were

797.42% accuracy on traditional POS evaluation (Penn Tree-
bank WSJ sections 22-24).

trained for comparison using the following open
source parsing packages: Goldberg and Elhadad’s
(2010)’s non-directional easy-first parser, MALT-
PARSER (Nivre et al., 2006), and MSTPARSER

(McDonald and Pereira, 2006)8. The model trained
using Goldberg and Elhadad’s (2010) easy-first
parser serves as something of a baseline. The
four MALTPARSER parsing models used the arc-
eager, arc-standard, stack-eager, and stack-lazy al-
gorithms. One of the MSTPARSER models used
the Chu-Liu-Edmonds maximum spanning tree ap-
proach, and the other used the Eisner (1996) al-
gorithm with second order features and a non-
projective rewriting post-processing step.

Unfortunately, it is not possible to directly com-
pare the parser’s accuracy with most popular con-
stituent parsers such as the Charniak (2000) and
Berkeley (Petrov et al., 2006; Petrov and Klein,
2007) parsers9 both because they do not pro-
duce functional tags for subjects, direct objects,
etc., which are required for the final script of the
constituent-to-dependency conversion routine, and
because they determine part-of-speech tags in con-
junction with the parsing. However, it is possible to
compute approximate unlabeled accuracy scores by
training the constituent parsers on the NP-patched
(Vadas and Curran, 2007) version of the data and
then running the test output through just the first
conversion script—that is, the modified version of
Johansson and Nugues’ (2007) converter.
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The results of the experiment are given in Ta-
ble 3, including accuracy for individual arcs, non-
projective arcs only, and full sentence match. Punc-
tuation is excluded in all the result computations. To
determine whether an arc is non-projective, the fol-
lowing heuristic was used. Traverse the sentence in
a depth-first search, starting from the imaginary root
node and pursuing child arcs in order of increasing
absolute distance from their parent. Whenever an
arc being traversed is found to cross a previously tra-
versed arc, mark it as non-projective and continue.
To evaluate the impact of part-of-speech tagging er-
ror, results for parsing using the gold standard part-
of-speech tags are also included.

We also measured the speed of the parser on the
various sentences in the test collection. For reason-
able sentence lengths, the parser scales quite well.
The scatterplot depicting the relation between sen-
tence length and parsing time is presented in Figure
5.

Figure 4: Parse times for Penn Treebank section 23 for
the parsers on a PC with a 2.4Ghz Q6600 processor and
8GB RAM. MALTPARSER ran substantially slower than
the others, perhaps due to its use of polynomial kernels,
and isn’t shown. (C-L-E - Chu-Liu-Edmonds, G&E -
Goldberg and Elhadad (2010)).

4.5.1 Results Discussion
The parser achieves 92.1% labeled and 93.7% un-

labeled accuracy on the evaluation, a solid result and
about 2.5% higher than the original easy-first imple-
mentation of Goldberg and Elhadad (2010). Further-
more, the parser processed the entire test section in

8Versions 1.4.1, 0.4.3b, and 0.2, respectively
9Versions 1.1 and 05Aug16, respectively

just over 30 seconds—a rate of over 75 sentences per
second, substantially faster than most of the other
parsers.

Not surprisingly, the results for non-projective
arcs are substantially lower than the results for all
arcs, and the systems that are designed to handle
them outperformed the strictly projective parsers in
this regard.

The negative effect of part-of-speech tagging er-
ror appears to impact the different parsers about the
same amount, with a loss of .6% to .8% in unlabeled
accuracy and 1.1% to 1.3% in labeled accuracy.

The 93.2% and 93.3% accuracy scores achieved
by the Charniak and Berkeley parsers are not too
different from the 93.7% result, but, of course, it is
important to remember that these scores are not di-
rectly comparable.

Figure 5: Sentence length versus parse time. Median
times for five runs over section 23.

5 Shallow Semantic Annotation

To create a more informative parse, the parser in-
cludes four optional modules, a preposition sense
disambiguation (PSD) system, a work-in-progress
’s-possessive interpretation system, a noun com-
pound interpretation system, and a PropBank-based
semantic role labeling system10. Taken together,
these integrated modules enable the parsing sys-
tem to produce substantially more informative out-
put than a traditional parser.

Preposition Sense Disambiguation The PSD
system is a newer version of the system described

10Lack of space prohibits a sufficiently thorough discussion
of these individual components and their evaluations, but addi-
tional information will be available with the system download.
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by Tratz and Hovy (2009) and Hovy et al. (2010); it
achieves 85.7% accuracy on the SemEval-2007 fine-
grain PSD task (Litkowski and Hargraves, 2007),
which is a statistically significant (p<=0.05; upper-
tailed z test) increase over the previous best reported
result for this dataset, Hovy et al.’s (2010) 84.8%.

Noun Compound Interpretation The noun com-
pound interpretation system is a newer version of
the system described by Tratz and Hovy (2010) with
similar accuracy (79.6% vs 79.3% using 10-fold
cross-validation11).

Possessives Interpretation The possessive inter-
pretation system assigns interpretations to ’s pos-
sessives (e.g., John’s arm → PART-OF, Mowgli’s
capture → PATIENT/THEME). The current system
achieves over 85.0% accuracy, but it is important to
note that the annotation scheme, automatic classifier,
and dataset are all still under active development.

PropBank SRL The PropBank-based semantic
role labeling system achieves 86.8 combined F1

measure for automatically-generated parse trees cal-
culated over both predicate disambiguation and ar-
gument/adjunct classification (89.5 F1 on predicate
disambiguation, 85.6 F1 on argument and adjuncts
corresponding to dependency links, and 86.8 F1);
this score is not directly comparable to any previ-
ous work due to some differences, including differ-
ences in both the parse tree conversion and the Prop-
Bank conversion. The most similar work is that of
the CoNLL shared task work (Surdeanu et al., 2008;
Hajič et al., 2009).

6 Related Work

Non-projectivity. There are two main approaches
used in recent NLP literature for handling non-
projectivity in parse trees. The first is to use an al-
gorithm, like the one presented in this paper, that
has inherent support for non-projective trees. Ex-
amples of this include the Chu-Liu-Edmonds’ ap-
proach for maximum spanning tree (MST) parsing
(McDonald et al., 2005) and Nivre’s (2009) swap-
based reordering method for shift-reduce parsing.
The second approach is to create an initial projec-
tive parse and then apply transformations to intro-

11These accuracy figures are higher than what should be ex-
pected for unseen datasets; see Tratz and Hovy (2010) for more
detail.

duce non-projectivity into it. Examples of this in-
clude McDonald and Pereira’s (2006) rewriting of
projective trees produced by the Eisner (1996) al-
gorithm, and Nivre and Nilsson’s (2005) pseudo-
projective approach that creates projective trees with
specially marked arcs that are later transformed into
non-projective dependencies.

Descriptive dependency labels. While most re-
cent dependency parsing research has used either
vague labels, such as those of the CoNLL shared
tasks, or no labels at all, some descriptive depen-
dency label schemes exist. By far the most promi-
nent of these is the Stanford typed dependency
scheme (de Marneffe and Manning, 2008). An-
other descriptive scheme that exists, but which is
less widely used in the NLP community, is the one
used by Tapanainen and Järvinen’s parser (1997).
Unfortunately, the Stanford dependency conversion
of the Penn Treebank has proven difficult to learn for
current dependency parsers (Cer et al., 2010), and
there is no publicly available dependency conversion
according to Tapanainen and Järvinen’s scheme.

Faster parsing. While the fastest reasonable
parsing algorithms are the O(n) shift-reduce algo-
rithms, such as Nivre’s (2003) algorithm and an ex-
pected linear time dynamic programming approach
presented by Huang and Sagae (2010), a few other
fast alternatives exist. Goldberg and Elhadad’s
(2010) easy-first algorithm is one such example. An-
other example, is Roark and Hollingshead’s (2009)
work that uses chart constraints to achieve linear
time complexity for constituency parsing.

Effective features for parsing. A variety of work
has investigated the use of more informative fea-
tures for parsing. This includes work that inte-
grates second and even third order features (McDon-
ald et al., 2006; Carreras, 2007; Koo and Collins,
2010). Also, some work has incorporated unsuper-
vised word clusters as features, including that of Koo
et al. (2008) and Suzuki et al. (2009), who utilized
unsupervised word clusters created using the Brown
et al. (1992) hierarchical clustering algorithm.

Semantically-enriched output. The 2008 and
2009 CoNLL shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009), which required participants to
build systems capable of both syntactic parsing and
Semantic Role Labeling (SRL) (Gildea and Juraf-
sky, 2002), are the most notable attempts to encour-
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age the development of parsers with additional se-
mantic annotation. These tasks relied upon Prop-
Bank (2005) and NomBank (2004) for the seman-
tic roles. A variety of other systems have focused
on FrameNet-based (1998) SRL instead, including
those that participated in the SemEval-2007 Task 19
(Baker et al., 2007) and work by Das et al. (2010).

7 Conclusion

In this paper, we have described a new high-quality
dependency tree conversion of the Penn Treebank
(Marcus, et al., 1993) along with its labeled depen-
dency scheme and presented a parser that is fast, ac-
curate, supports non-projective trees and provides
rich output, including not only informative depen-
dency labels similar to Stanford’s but also additional
semantic annotation for prepositions, possessives,
and noun compound relations. We showed how the
easy-first algorithm of Goldberg and Elhadad (Gold-
berg and Elhadad, 2010) can be extended to support
non-projective trees by adding move actions similar
to Nivre’s (2009) swap-based reordering for shift-
reduce parsing and evaluated our parser on the stan-
dard test section of the Penn Treebank, comparing
with several other freely available parsers.

The Penn Treebank conversion process fixes a
number of buggy trees and part-of-speech tags and
produces dependency trees with a relatively small
percentage of generic dep dependencies. The ex-
perimental results show that dependency parsers can
generally produce Stanford-granularity labels with
high accuracy when using the new dependency con-
version of the Penn Treebank, something which, ac-
cording to the findings of Cer et al. (2010), does
not appear to be the case when training and testing
dependency parsers on the Stanford conversion.

The parser achieves high labeled and unlabeled
accuracy in the evaluation, 92.1% and 93.7%, re-
spectively. The 93.7% result represents a 2.5% in-
crease over the accuracy of Goldberg and Elhadad’s
(2010) implementation. Also, the parser proves to
be quite fast, processing section 23 of the Penn Tree-
bank in just over 30 seconds (a rate of over 75 sen-
tences per second).

The parsing system is capable of not only produc-
ing fine-grained dependency relations, but can also
produce shallow semantic annotations for preposi-

tions, possessives, and noun compounds by using
several optional integrated modules. The preposi-
tion sense disambiguation (PSD) module achieves
85.7% accuracy on the SemEval-2007 PSD task, ex-
ceeding the previous best published result of 84.8%
by a statistically significant margin, the possessives
module is over 85% accurate, the noun compound
interpretation module achieves 79.6% accuracy on
Tratz and Hovy’s (2010) dataset. The PropBank
SRL module achieves 89.5 F1 on predicate disam-
biguation and 85.6 F1 on argument and adjuncts cor-
responding to dependency links, for an overall F1 of
86.8. Combined with the core parser, these modules
allow the system to produce a substantially more in-
formative textual analysis than a standard parser.

8 Future Work

There are a variety of ways to extend and improve
upon this work. We would like to change our han-
dling of coordinating conjunctions to treat the co-
ordinating conjunction as the head because this has
fewer ambiguities than the current approach and also
add the ability to produce traces for WH- words. It
would also be interesting to examine the impact on
final parsing accuracy of the various differences be-
tween our dependency conversion and Stanford’s.

To aid future NLP research work, the code,
including the treebank converter, part-of-speech
tagger, parser, and semantic annotation add-ons,
will be made publicly available for download via
http://www.isi.edu.
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Abstract

We present new training methods that aim to
mitigate local optima and slow convergence in
unsupervised training by using additional im-
perfect objectives. In its simplest form,lateen
EM alternates between the two objectives of
ordinary “soft” and “hard” expectation max-
imization (EM) algorithms. Switching objec-
tives when stuck can help escape local optima.
We find that applying a single such alternation
already yields state-of-the-art results for En-
glish dependency grammar induction. More
elaborate lateen strategies trackboth objec-
tives, with each validating the moves proposed
by the other. Disagreements can signal earlier
opportunities to switch or terminate, saving it-
erations. De-emphasizing fixed points in these
ways eliminates some guesswork from tuning
EM. An evaluation against a suite of unsu-
pervised dependency parsing tasks, for a vari-
ety of languages, showed that lateen strategies
significantly speed up training of both EM al-
gorithms, and improve accuracy for hard EM.

1 Introduction

Expectation maximization (EM) algorithms (Demp-
ster et al., 1977) play important roles in learning
latent linguistic structure. Unsupervised techniques
from this family excel at core natural language pro-
cessing (NLP) tasks, including segmentation, align-
ment, tagging and parsing. Typical implementations
specify a probabilistic framework, pick an initial
model instance, and iteratively improve parameters
using EM. A key guarantee is that subsequent model
instances are no worse than the previous, according
to training data likelihood in the given framework.

Another attractive feature that helped make EM
instrumental (Meng, 2007) is its initial efficiency:
Training tends to begin with large steps in a param-
eter space, sometimes bypassing many local optima
at once. After a modest number of such iterations,
however, EM lands close to an attractor. Next, its
convergence rate necessarily suffers: Disproportion-
ately many (and ever-smaller) steps are needed to
finally approach this fixed point, which is almost in-
variably a local optimum. Deciding when to termi-
nate EM often involves guesswork; and finding ways
out of local optima requires trial and error. We pro-
pose several strategies that address both limitations.

Unsupervised objectives are, at best, loosely cor-
related with extrinsic performance (Pereira and Sch-
abes, 1992; Merialdo, 1994; Liang and Klein, 2008,
inter alia). This fact justifies (occasionally) devi-
ating from a prescribed training course. For exam-
ple, sincemultipleequi-plausible objectives are usu-
ally available, a learner could cycle through them,
optimizing alternatives when the primary objective
function gets stuck; or, instead of trying to escape, it
could aim to avoid local optima in the first place, by
halting search early if an improvement to one objec-
tive would come at the expense of harming another.

We test these general ideas by focusing on non-
convex likelihood optimization using EM. This set-
ting is standard and has natural and well-understood
objectives: the classic, “soft” EM; and Viterbi, or
“hard” EM (Kearns et al., 1997). The name “la-
teen” comes from the sea — triangularlateensails
can take wind on either side, enabling sailing ves-
sels totack (see Figure 1). As a captain can’t count
on favorable winds, so an unsupervised learner can’t
rely on co-operative gradients: soft EM maximizes
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Figure 1: A triangular sail atop a traditional Arab sail-
ing vessel, thedhow(right). Older square sails permitted
sailing only before the wind. But the efficientlateensail
worked like a wing (with high pressure on one side and
low pressure on the other), allowing a ship to go almost
directly into a headwind. Bytacking, in a zig-zag pattern,
it became possible to sail in any direction, provided there
was some wind at all (left). For centuries seafarers ex-
pertly combined both sails to traverse extensive distances,
greatly increasing the reach of medieval navigation.1

likelihoods of observed data across assignments to
hidden variables, whereas hard EM focuses on most
likely completions.2 These objectives are plausible,
yet both can be provably “wrong” (Spitkovsky et al.,
2010a,§7.3). Thus, it is permissible for lateen EM
to maneuver between their gradients, for example by
tacking around local attractors, in a zig-zag fashion.

2 The Lateen Family of Algorithms

We propose several strategies that use a secondary
objective to improve over standard EM training. For
hard EM, the secondary objective is that of soft EM;
and vice versa if soft EM is the primary algorithm.

2.1 Algorithm #1: Simple Lateen EM

Simple lateen EM begins by running standard EM
to convergence, using a user-supplied initial model,
primary objective and definition of convergence.
Next, the algorithm alternates. A single lateen al-
ternation involves two phases: (i) retraining using
the secondary objective, starting from the previ-
ous converged solution (once again iterating until
convergence, but now of the secondary objective);

1Partially adapted fromhttp://www.britannica.com/
EBchecked/topic/331395, http://allitera.tive.org/
archives/004922.html and http://landscapedvd.com/
desktops/images/ship1280x1024.jpg.

2See Brown et al.’s (1993,§6.2) definition ofViterbi train-
ing for a succinct justification of hard EM; in our case, the cor-
responding objective is Spitkovsky et al.’s (2010a,§7.1) θ̂VIT .

and (ii) retraining using the primary objective again,
starting from the latest converged solution (once
more to convergence of the primary objective). The
algorithm stops upon failing to sufficiently improve
the primary objective across alternations (applying
the standard convergence criterion end-to-end) and
returns the best of all models re-estimated during
training (as judged by the primary objective).

2.2 Algorithm #2: Shallow Lateen EM

Same as algorithm #1, but switches back to optimiz-
ing the primary objective after asinglestep with the
secondary, during phase (i) of all lateen alternations.
Thus, the algorithm alternates between optimizing
a primary objective to convergence, then stepping
away, using one iteration of the secondary optimizer.

2.3 Algorithm #3: Early-Stopping Lateen EM

This variant runs standard EM but quits early if
the secondary objective suffers. We redefine con-
vergence by “or”-ing the user-supplied termination
criterion (i.e., a “small-enough” change in the pri-
mary objective) withanyadverse change of the sec-
ondary (i.e., an increase in its cross-entropy). Early-
stopping lateen EM doesnot alternate objectives.

2.4 Algorithm #4: Early-Switching Lateen EM

Same as algorithm #1, but with the new definition
of convergence, as in algorithm #3. Early-switching
lateen EM halts primary optimizers as soon as they
hurt the secondary objective and stops secondary op-
timizers once they harm the primary objective. This
algorithm terminates when it fails to sufficiently im-
prove the primary objective across a full alternation.

2.5 Algorithm #5: Partly-Switching Lateen EM

Same as algorithm #4, but again iterating primary
objectives to convergence, as in algorithm #1; sec-
ondary optimizers still continue to terminate early.

3 The Task and Study #1

We chose to test the impact of these five lateen al-
gorithms on unsupervised dependency parsing — a
task in which EM plays an important role (Paskin,
2001; Klein and Manning, 2004; Gillenwater et al.,
2010, inter alia). This entailed two sets of exper-
iments: In study #1, we tested whether single al-
ternations of simple lateen EM (as defined in§2.1,
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System DDA (%)
(Blunsom and Cohn, 2010) 55.7

(Gillenwater et al., 2010) 53.3
(Spitkovsky et al., 2010b) 50.4

+ soft EM + hard EM 52.8 (+2.4)
lexicalized, using hard EM 54.3 (+1.5)

+ soft EM + hard EM 55.6(+1.3)

Table 1: Directed dependency accuracies (DDA) on Sec-
tion 23 of WSJ (all sentences) for recent state-of-the-art
systems and our two experiments (one unlexicalized and
one lexicalized) with a single alternation of lateen EM.

Algorithm #1) improve our recent publicly-available
system for English dependency grammar induction.
In study #2, we introduced a more sophisticated
methodology that uses factorial designs and regres-
sions to evaluate lateen strategies with unsupervised
dependency parsing in many languages, after also
controlling for other important sources of variation.

For study #1, our base system (Spitkovsky et al.,
2010b) is an instance of the popular (unlexicalized)
Dependency Model with Valence (Klein and Man-
ning, 2004). This model was trained using hard EM
on WSJ45 (WSJ sentences up to length 45) until suc-
cessive changes in per-token cross-entropy fell be-
low 2−20 bits (Spitkovsky et al., 2010b; 2010a,§4).3

We confirmed that the base model had indeed con-
verged, by running 10 steps of hard EM on WSJ45
and verifying that its objective did not change much.
Next, we applied a single alternation of simple la-
teen EM: first running soft EM (this took 101 steps,
using the same termination criterion), followed by
hard EM (again to convergence — another 23 it-
erations). The result was a decrease in hard EM’s
cross-entropy, from 3.69 to 3.59 bits per token (bpt),
accompanied by a 2.4% jump in accuracy, from 50.4
to 52.8%, on Section 23 of WSJ (see Table 1).4

Our first experiment showed that lateen EM holds
promise for simple models. Next, we tested it in
a more realistic setting, by re-estimatinglexicalized
models,5 starting from the unlexicalized model’s

3http://nlp.stanford.edu/pubs/

markup-data.tar.bz2: dp.model.dmv
4It is standard practice to convert gold labeled constituents

from Penn English Treebank’s Wall Street Journal (WSJ) por-
tion (Marcus et al., 1993) into unlabeled reference dependency
parses using deterministic “head-percolation” rules (Collins,
1999); sentence root symbols (but not punctuation) arcs count
towards accuracies (Paskin, 2001; Klein and Manning, 2004).

5We used Headden et al.’s (2009) method (also the approach

parses; this took 24 steps with hard EM. We then
applied another single lateen alternation: This time,
soft EM ran for 37 steps, hard EM took another 14,
and the new model again improved, by 1.3%, from
54.3 to 55.6% (see Table 1); the corresponding drop
in (lexicalized) cross-entropy was from 6.10 to 6.09
bpt. This last model is competitive with the state-of-
the-art; moreover, gains from single applications of
simple lateen alternations (2.4 and 1.3%) are on par
with the increase due to lexicalization alone (1.5%).

4 Methodology for Study #2

Study #1 suggests that lateen EM can improve gram-
mar induction in English. To establish statistical sig-
nificance, however, it is important to test a hypothe-
sis in many settings (Ioannidis, 2005). We therefore
use a factorial experimental design and regression
analyses with a variety of lateen strategies. Two re-
gressions — one predicting accuracy, the other, the
number of iterations — capture the effects that la-
teen algorithms have on performance and efficiency,
relative to standard EM training. We controlled for
important dimensions of variation, such as the un-
derlying language: to make sure that our results are
not English-specific, we induced grammars in 19
languages. We also explored the impact from the
quality of an initial model (using both uniform and
ad hoc initializers), the choice of a primary objective
(i.e., soft or hard EM), and the quantity and com-
plexity of training data (shorter versus both short and
long sentences). Appendix A gives the full details.

4.1 Data Sets

We use all 23 train/test splits from the 2006/7
CoNLL shared tasks (Buchholz and Marsi, 2006;
Nivre et al., 2007),6 which cover 19 different lan-
guages.7 We splice out all punctuation labeled in the
data, as is standard practice (Paskin, 2001; Klein and
Manning, 2004), introducing new arcs from grand-
mothers to grand-daughters where necessary, both in
train- and test-sets. Evaluation is always against the

taken by the two stronger state-of-the-art systems): for words
seen at least 100 times in the training corpus, gold part-of-
speech tags are augmented with lexical items.

6These disjoint splits require smoothing; in the WSJ setting,
training and test sets overlapped (Klein and Manning, 2004).

7We down-weigh languages appearing in both years — Ara-
bic, Chinese, Czech and Turkish — by 50% in all our analyses.

1271



entireresulting test sets (i.e., all sentence lengths).8

4.2 Grammar Models

In all remaining experiments we model grammars
via the original DMV, which ignores punctuation; all
models are unlexicalized, with gold part-of-speech
tags for word classes (Klein and Manning, 2004).

4.3 Smoothing Mechanism

All unsmoothed models are smoothed immediately
prior to evaluation; some of the baseline models are
also smoothed during training. In both cases, we use
the “add-one” (a.k.a. Laplace) smoothing algorithm.

4.4 Standard Convergence

We always halt an optimizer once a change in its ob-
jective’s consecutive cross-entropy values falls be-
low 2−20 bpt (at which point we consider it “stuck”).

4.5 Scoring Function

We report directed accuracies — fractions of cor-
rectly guessed (unlabeled) dependency arcs, includ-
ing arcs from sentence root symbols, as is standard
practice (Paskin, 2001; Klein and Manning, 2004).
Punctuation does not affect scoring, as it had been
removed from all parse trees in our data (see§4.1).

5 Experiments

We now summarize our baseline models and briefly
review the proposed lateen algorithms. For details of
the default systems (standard soft and hard EM), all
control variables and both regressions (against final
accuracies and iteration counts) see Appendix A.

5.1 Baseline Models

We tested a total of six baseline models, experiment-
ing with two types of alternatives: (i) strategies that
perturb stuck models directly, bysmoothing, ignor-
ing secondary objectives; and (ii)shallow applica-
tions of a single EM step, ignoring convergence.

BaselineB1 alternates running standard EM to
convergence and smoothing. A second baseline,B2,
smooths after every step of EM instead. Another
shallow baseline,B3, alternates single steps of soft

8With the exception of Arabic ’07, from which we discarded
a single sentence containing 145 non-punctuation tokens.

and hard EM.9 Three such baselines begin with hard
EM (marked with the subscripth); and three more
start with soft EM (marked with the subscripts).

5.2 Lateen Models

Ten models,A{1, 2, 3, 4, 5}{h,s}, correspond to our la-
teen algorithms #1–5 (§2), starting with either hard
or soft EM’s objective, to be used as the primary.

6 Results
Soft EM Hard EM

Model ∆a ∆i ∆a ∆i
Baselines B3 -2.7 ×0.2 -2.0 ×0.3

B2 +0.6 ×0.7 +0.6 ×1.2
B1 0.0 ×2.0 +0.8 ×3.7

Algorithms A1 0.0 ×1.3 +5.5 ×6.5
A2 -0.0 ×1.3 +1.5 ×3.6
A3 0.0 ×0.7 -0.1 ×0.7
A4 0.0 ×0.8 +3.0 ×2.1
A5 0.0 ×1.2 +2.9 ×3.8

Table 2: Estimated additive changes in directed depen-
dency accuracy (∆a) and multiplicative changes in the
number of iterations before terminating (∆i) for all base-
line models and lateen algorithms, relative to standard
training: soft EM (left) and hard EM (right). Bold en-
tries are statistically different (p < 0.01) from zero, for
∆a, and one, for∆i (details in Table 4 and Appendix A).

Not one baseline attained a statistically significant
performance improvement. Shallow modelsB3{h,s},
in fact, significantly lowered accuracy: by 2.0%, on
average (p ≈ 7.8 × 10−4), for B3h, which began with
hard EM; and down 2.7% on average (p ≈ 6.4×10−7),
for B3s, started with soft EM. They were, however,
3–5x faster than standard training, on average (see
Table 4 for all estimates and associatedp-values;
above, Table 2 shows a preview of the full results).

6.1 A1{h,s} — Simple Lateen EM

A1h runs 6.5x slower, but scores 5.5% higher, on av-
erage, compared to standard Viterbi training;A1s is
only 30% slower than standard soft EM, but does not
impact its accuracy at all, on average.

Figure 2 depicts a sample training run: Italian ’07
with A1h. Viterbi EM converges after 47 iterations,

9It approximates a mixture (the average of soft and hard
objectives) — a natural comparison, computable via gradients
and standard optimization algorithms, such as L-BFGS (Liu and
Nocedal, 1989). We did not explore exact interpolations, how-
ever, because replacing EM is itself a significant confounder,
even with unchanged objectives (Berg-Kirkpatrick et al., 2010).

1272



50 100 150 200 250 300

3.0
3.5
4.0
4.5

3.39

3.26

(3.42)

(3.19)

3.33

3.23

(3.39)

(3.18)

3.29

3.21

(3.39)

(3.18)

3.29

3.22

bpt

iteration

cross-entropies (in bits per token)

Figure 2: Cross-entropies for Italian ’07, initialized uni-
formly and trained on sentences up to length 45. The two
curves are primary and secondary objectives (soft EM’s
lies below, as sentence yields are at least as likely as parse
trees): shaded regions indicate iterations of hard EM (pri-
mary); and annotated values are measurements upon each
optimizer’s convergence (soft EM’s are parenthesized).

reducing the primary objective to 3.39 bpt (the sec-
ondary is then at 3.26); accuracy on the held-out set
is 41.8%. Three alternations of lateen EM (totaling
265 iterations) further decrease the primary objec-
tive to 3.29 bpt (the secondary also declines, to 3.22)
and accuracy increases to 56.2% (14.4% higher).

6.2 A2{h,s} — Shallow Lateen EM

A2h runs 3.6x slower, but scores only 1.5% higher,
on average, compared to standard Viterbi training;
A2s is again 30% slower than standard soft EM and
also has no measurable impact on parsing accuracy.

6.3 A3{h,s} — Early-Stopping Lateen EM

Both A3h andA3s run 30% faster, on average, than
standard training with hard or soft EM; and neither
heuristic causes a statistical change to accuracy.

Table 3 shows accuracies and iteration counts for
10 (of 23) train/test splits that terminate early with
A3s (in one particular, example setting). These runs
are nearly twice as fast, and only two score (slightly)
lower, compared to standard training using soft EM.

6.4 A4{h,s} — Early-Switching Lateen EM

A4h runs only 2.1x slower, but scores only 3.0%
higher, on average, compared to standard Viterbi
training;A4s is, in fact, 20% faster than standard soft
EM, but still has no measurable impact on accuracy.

6.5 A5{h,s} — Partly-Switching Lateen EM

A5h runs 3.8x slower, scoring 2.9% higher, on av-
erage, compared to standard Viterbi training;A5s is
20% slower than soft EM, but, again, no more accu-
rate. Indeed,A4 strictly dominates bothA5 variants.

CoNLL Year Soft EM A3s

& Language DDA iters DDA iters
Arabic 2006 28.4 180 28.4 118
Bulgarian ’06 39.1 253 39.6 131
Chinese ’06 49.4 268 49.4 204
Dutch ’06 21.3 246 27.8 35
Hungarian ’07 17.1 366 17.4 213
Italian ’07 39.6 194 39.6 164
Japanese ’06 56.6 113 56.6 93
Portuguese ’06 37.9 180 37.5 102
Slovenian ’06 30.8 234 31.1 118
Spanish ’06 33.3 125 33.1 73

Average: 35.4 216 36.1 125

Table 3: Directed dependency accuracies (DDA) and iter-
ation counts for the 10 (of 23) train/test splits affected by
early termination (setting: soft EM’s primary objective,
trained using shorter sentences and ad-hoc initialization).

7 Discussion

Lateen strategies improve dependency grammar in-
duction in several ways. Early stopping offers a
clear benefit: 30% higher efficiency yet same perfor-
mance as standard training. This technique could be
used to (more) fairly compare learners with radically
different objectives (e.g., lexicalized and unlexical-
ized), requiring quite different numbers of steps (or
magnitude changes in cross-entropy) to converge.

The second benefit is improved performance, but
only starting with hard EM. Initial local optima dis-
covered by soft EM are such that the impact on ac-
curacy of all subsequent heuristics is indistinguish-
able from noise (it’s not even negative). But for hard
EM, lateen strategies consistently improve accuracy
— by 1.5, 3.0 or 5.5% — as an algorithm follows the
secondary objective longer (a single step, until the
primary objective gets worse, or to convergence).

Our results suggest that soft EM should use early
termination to improve efficiency. Hard EM, by con-
trast, could use any lateen strategy to improve either
efficiency or performance, or to strike a balance.

8 Related Work

8.1 Avoiding and/or Escaping Local Attractors

Simple lateen EM is similar to Dhillon et al.’s (2002)
refinement algorithm for text clustering with spher-
ical k-means. Their “ping-pong” strategy alternates
batch and incremental EM, exploits the strong points
of each, and improves asharedobjective at every
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step. Unlike generalized (GEM) variants (Neal and
Hinton, 1999), lateen EM uses multiple objectives:
it sacrifices the primary in the short run, to escape
local optima; in the long run, it also does no harm,
by construction (as it returns the best model seen).

Of the meta-heuristics that use more than a stan-
dard, scalar objective, deterministic annealing (DA)
(Rose, 1998) is closest to lateen EM. DA perturbs
objective functions, instead of manipulating solu-
tions directly. As other continuation methods (All-
gower and Georg, 1990), it optimizes an easy (e.g.,
convex) function first, then “rides” that optimum by
gradually morphing functions towards the difficult
objective; each step reoptimizes from the previous
approximate solution. Smith and Eisner (2004) em-
ployed DA to improve part-of-speech disambigua-
tion, but found that objectives had to be further
“skewed,” using domain knowledge, before it helped
(constituent) grammar induction. (For this reason,
we did not experiment with DA, despite its strong
similarities to lateen EM.) Smith and Eisner (2004)
used a “temperature”β to anneal a flat uniform dis-
tribution (β = 0) into soft EM’s non-convex objec-
tive (β = 1). In their framework, hard EM corre-
sponds toβ −→ ∞, so the algorithms differ only in
theirβ-schedule: DA’s is continuous, from 0 to 1; la-
teen EM’s is a discrete alternation, of 1 and+∞.10

8.2 Terminating Early, Before Convergence

EM is rarely run to (even numerical) convergence.
Fixing a modest number of iterations a priori (Klein,
2005,§5.3.4), running until successive likelihood ra-
tios become small (Spitkovsky et al., 2009,§4.1) or
using a combination of the two (Ravi and Knight,
2009, §4, Footnote 5) is standard practice in NLP.
Elworthy’s (1994,§5, Figure 1) analysis of part-of-
speech tagging showed that, in most cases, a small
number of iterations is actually preferable to conver-
gence, in terms of final accuracies: “regularization
by early termination” had been suggested for image
deblurring algorithms in statistical astronomy (Lucy,
1974,§2); and validation against held-out data — a
strategy proposed much earlier, in psychology (Lar-
son, 1931), has also been used as a halting crite-
rion in NLP (Yessenalina et al., 2010,§4.2, 5.2).

10One can think of this as a kind of “beam search” (Lowerre,
1976), with soft EM expanding and hard EM pruning a frontier.

Early-stopping lateen EM tethers termination to a
signchange in the direction of a secondary objective,
similarly to (cross-)validation (Stone, 1974; Geisser,
1975; Arlot and Celisse, 2010), but without splitting
data — it trains using all examples, at all times.11,12

8.3 Training with Multiple Views

Lateen strategies may seem conceptually related to
co-training (Blum and Mitchell, 1998). However,
bootstrapping methods generally begin with some
labeled data and gradually label the rest (discrimina-
tively) as they grow more confident, but do not opti-
mize an explicit objective function; EM, on the other
hand, can be fully unsupervised, relabels all exam-
ples on each iteration (generatively), and guarantees
not to hurt a well-defined objective, at every step.13

Co-training classically relies on two views of the
data — redundant feature sets that allow different al-
gorithms to label examples for each other, yielding
“probably approximately correct” (PAC)-style guar-
antees under certain (strong) assumptions. In con-
trast, lateen EM uses the same data, features, model
and essentially the same algorithms, changing only
their objective functions: it makes no assumptions,
but guarantees not to harm the primary objective.

Some of these distinctions have become blurred
with time: Collins and Singer (1999) introduced
an objective function (also based on agreement)
into co-training; Goldman and Zhou (2000), Ng
and Cardie (2003) and Chan et al. (2004) made do
without redundant views; Balcan et al. (2004) re-
laxed other strong assumptions; and Zhou and Gold-
man (2004) generalized co-training to accommodate
three and more algorithms. Several such methods
have been applied to dependency parsing (Søgaard
and Rishøj, 2010), constituent parsing (Sarkar,

11We see in it a milder contrastive estimation (Smith and Eis-
ner, 2005a; 2005b), agnostic to implicit negative evidence, but
caringwhencelearners push probability mass towards training
examples: when most likely parse trees begin to benefit at the
expense of their sentence yields (or vice versa), optimizers halt.

12For a recently proposed instance of EM that uses cross-
validation (CV) to optimizesmootheddata likelihoods (in learn-
ing synchronous PCFGs, for phrase-based machine translation),
see Mylonakis and Sima’an’s (2010,§3.1) CV-EM algorithm.

13Some authors (Nigam and Ghani, 2000; Ng and Cardie,
2003; Smith and Eisner, 2005a,§5.2, 7;§2; §6) draw a hard line
between bootstrapping algorithms, such as self- and co-training,
and probabilistic modeling using EM; others (Dasgupta et al.,
2001; Chang et al., 2007,§1; §5) tend to lump them together.
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2001) and parser reranking (Crim, 2002). Funda-
mentally, co-training exploits redundancies in unla-
beled data and/or learning algorithms. Lateen strate-
giesalso exploit redundancies: in noisy objectives.
Both approaches use a second vantage point to im-
prove their perception of difficult training terrains.

9 Conclusions and Future Work

Lateen strategies can improve performance and effi-
ciency for dependency grammar induction with the
DMV. Early-stopping lateen EM is 30% faster than
standard training, without affecting accuracy — it
reduces guesswork in terminating EM. At the other
extreme, simple lateen EM is slower, but signifi-
cantly improves accuracy — by 5.5%, on average
— for hard EM, escaping some of its local optima.

It would be interesting to apply lateen algorithms
to advanced parsing models (Blunsom and Cohn,
2010; Headden et al., 2009,inter alia) and learn-
ing algorithms (Gillenwater et al., 2010; Cohen and
Smith, 2009,inter alia). Future work could explore
other NLP tasks — such as clustering, sequence la-
beling, segmentation and alignment — that often
employ EM. Our meta-heuristics are multi-faceted,
featuring aspects of iterated local search, determin-
istic annealing, cross-validation, contrastive estima-
tion and co-training. They may be generally useful
in machine learning and non-convex optimization.

Appendix A. Experimental Design

Statistical techniques are vital to many aspects of
computational linguistics (Johnson, 2009; Charniak,
1997; Abney, 1996,inter alia). We used factorial
designs,14 which are standard throughout the natu-
ral and social sciences, to assist with experimental
design and statistical analyses. Combined with or-
dinary regressions, these methods provide succinct
and interpretable summaries that explain which set-
tings meaningfully contribute to changes in depen-
dent variables, such as running time and accuracy.

14We usedfull factorial designs for clarity of exposition. But
many fewer experiments would suffice, especially in regression
models without interaction terms: for the more efficientfrac-
tional factorial designs, as well as for randomized block designs
and full factorial designs, see Montgomery (2005, Ch. 4–9).

9.1 Dependent Variables

We constructed two regressions, for two types of de-
pendent variables: to summarize performance, we
predict accuracies; and to summarize efficiency, we
predict (logarithms of) iterations before termination.

In the performance regression, we used four dif-
ferent scores for the dependent variable. These in-
clude both directed accuracies andundirectedaccu-
racies, each computed in two ways: (i) using a best
parse tree; and (ii) using all parse trees. These four
types of scores provide different kinds of informa-
tion. Undirected scores ignore polarity of parent-
child relations (Paskin, 2001; Klein and Manning,
2004; Schwartz et al., 2011), partially correcting for
some effects of alternate analyses (e.g., systematic
choices between modals and main verbs for heads
of sentences, determiners for noun phrases, etc.).
And integratedscoring, using the inside-outside al-
gorithm (Baker, 1979) to compute expected accu-
racy across all — not just best — parse trees, has the
advantage of incorporating probabilities assigned to
individual arcs: This metric is more sensitive to the
margins that separate best from next-best parse trees,
and is not affected by tie-breaking. We tag scores
using two binary predictors in a simple (first order,
multi-linear) regression, where having multiple rel-
evant quality assessments improves goodness-of-fit.

In the efficiency regression, dependent variables
are logarithms of the numbers of iterations. Wrap-
ping EM in an inner loop of a heuristic has a mul-
tiplicative effect on the total number of models re-
estimated prior to termination. Consequently, loga-
rithms of the final counts better fit the observed data.

9.2 Independent Predictors

All of our predictors are binary indicators (a.k.a.
“dummy” variables). Theundirectedandintegrated
factors only affect the regression for accuracies (see
Table 4, left); remaining factors participate also in
the running times regression (see Table 4, right). In a
default run, all factors are zero, corresponding to the
intercept estimated by a regression; other estimates
reflect changes in the dependent variable associated
with having that factor “on” instead of “off.”

• adhoc — This setting controls initialization.
By default, we use the uninformed uniform ini-
tializer (Spitkovsky et al., 2010a); when it is
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Regression forAccuracies Regression forln(Iterations)
Goodness-of-Fit: (R2

adj ≈ 76.2%) (R2
adj ≈ 82.4%)

Indicator Factors coeff.̂β adj. p-value
undirected 18.1 < 2.0 × 10−16

integrated -0.9 ≈ 7.0 × 10−7 coeff.β̂ mult. eβ̂ adj. p-value
(intercept) 30.9 < 2.0 × 10−16 5.5 255.8 < 2.0 × 10−16

adhoc 1.2 ≈ 3.1 × 10−13 -0.0 1.0 ≈ 1.0

Model sweet 1.0 ≈ 3.1 × 10−9 -0.2 0.8 < 2.0 × 10−16

B3s shallow (soft-first) -2.7 ≈ 6.4 × 10−7 -1.5 0.2 < 2.0 × 10−16

B3h shallow (hard-first) -2.0 ≈ 7.8 × 10−4 -1.2 0.3 < 2.0 × 10−16

B2s shallow smooth 0.6 ≈ 1.0 -0.4 0.7 ≈ 1.4 × 10−12

B1s smooth 0.0 ≈ 1.0 0.7 2.0 < 2.0 × 10−16

A1s simple lateen 0.0 ≈ 1.0 0.2 1.3 ≈ 4.1 × 10−4

A2s shallow lateen -0.0 ≈ 1.0 0.2 1.3 ≈ 5.8 × 10−4

A3s early-stopping lateen 0.0 ≈ 1.0 -0.3 0.7 ≈ 2.6 × 10−7

A4s early-switching lateen 0.0 ≈ 1.0 -0.3 0.8 ≈ 2.6 × 10−7

A5s partly-switching lateen 0.0 ≈ 1.0 0.2 1.2 ≈ 4.2 × 10−3

viterbi -4.0 ≈ 5.7 × 10−16 -1.7 0.2 < 2.0 × 10−16

B2h shallow smooth 0.6 ≈ 1.0 0.2 1.2 ≈ 5.6 × 10−2

B1h smooth 0.8 ≈ 1.0 1.3 3.7 < 2.0 × 10−16

A1h simple lateen 5.5 < 2.0 × 10−16 1.9 6.5 < 2.0 × 10−16

A2h shallow lateen 1.5 ≈ 5.0 × 10−2 1.3 3.6 < 2.0 × 10−16

A3h early-stopping lateen -0.1 ≈ 1.0 -0.4 0.7 ≈ 1.7 × 10−11

A4h early-switching lateen 3.0 ≈ 1.0 × 10−8 0.7 2.1 < 2.0 × 10−16

A5h partly-switching lateen 2.9 ≈ 7.6 × 10−8 1.3 3.8 < 2.0 × 10−16

Table 4: Regressions for accuracies and natural-log-iterations, using 86 binary predictors (allp-values jointly adjusted
for simultaneous hypothesis testing;{langyear} indicators not shown). Accuracies’ estimated coefficientsβ̂ that are
statistically different from 0 — and iteration counts’ multiplierseβ̂ significantly different from 1 — are shown in bold.

on, we use Klein and Manning’s (2004) “ad-
hoc” harmonic heuristic, bootstrapped using
sentences up to length 10, from the training set.

• sweet— This setting controls the length cut-
off. By default, we train with all sentences con-
taining up to 45 tokens; when it is on, we use
Spitkovsky et al.’s (2009) “sweet spot” cutoff
of 15 tokens (recommended for English, WSJ).

• viterbi — This setting controls the primary ob-
jective of the learning algorithm. By default,
we run soft EM; when it is on, we use hard EM.

• {langyeari}22
i=1 — This is a set of 22 mutually-

exclusive selectors for the language/year of a
train/test split; default (all zeros) is English ’07.

Due to space limitations, we excludelangyearpre-
dictors from Table 4. Further, we do not explore
(even two-way) interactions between predictors.15

15This approach may miss some interesting facts, e.g., that
theadhocinitializer is exceptionally good for English, with soft

9.3 Statistical Significance

Our statistical analyses relied on the R package (R
Development Core Team, 2011), which does not,
by default, adjust statistical significance (p-values)
for multiple hypotheses testing.16 We corrected
this using the Holm-Bonferroni method (Holm,
1979), which is uniformly more powerful than the
older (Dunn-)Bonferroni procedure; since we tested
many fewer hypotheses (44 + 42 — one per inter-
cept/coefficient̂β) than settings combinations, its ad-
justments to thep-values are small (see Table 4).17

EM. Instead it yields coarse summaries of regularities supported
by overwhelming evidence across data and training regimes.

16Since we wouldexpectp% of randomly chosen hypotheses
to appear significant at thep% level simply bychance, we must
take precautions against these and other “data-snooping” biases.

17We adjusted thep-values for all 86 hypotheses jointly, us-
ing http://rss.acs.unt.edu/Rdoc/library/multtest/
html/mt.rawp2adjp.html.
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CoNLL Year A3s Soft EM A3h Hard EM A1h

& Language DDA iters DDA iters DDA iters DDA iters DDA iters
Arabic 2006 28.4 118 28.4 162 21.6 19 21.6 21 32.1 200

’7 – – 26.9 171 24.7 17 24.8 24 22.0 239
Basque ’7 – – 39.9 180 32.0 16 32.2 20 43.6 128
Bulgarian ’6 39.6 131 39.1 253 41.6 22 41.5 25 44.3 140
Catalan ’7 – – 58.5 135 50.1 48 50.1 54 63.8 279
Chinese ’6 49.4 204 49.4 268 31.3 24 31.6 55 37.9 378

’7 – – 46.0 262 30.0 25 30.2 64 34.5 307
Czech ’6 – – 50.5 294 27.8 27 27.7 33 35.2 445

’7 – – 49.8 263 29.0 37 29.0 41 31.4 307
Danish ’6 – – 43.5 116 43.8 31 43.9 45 44.0 289
Dutch ’6 27.8 35 21.3 246 24.9 44 24.9 49 32.5 241
English ’7 – – 38.1 180 34.0 32 33.9 42 34.9 186
German ’6 – – 33.3 136 25.4 20 25.4 39 33.5 155
Greek ’7 – – 17.5 230 18.3 18 18.3 21 21.4 117
Hungarian ’7 17.4 213 17.1 366 12.3 26 12.4 36 23.0 246
Italian ’7 39.6 164 39.6 194 32.6 25 32.6 27 37.6 273
Japanese ’6 56.6 93 56.6 113 49.6 20 49.7 23 53.5 91
Portuguese ’6 37.5 102 37.9 180 28.6 27 28.9 41 34.4 134
Slovenian ’6 31.1 118 30.8 234 – – 23.4 22 33.6 255
Spanish ’6 33.1 73 33.3 125 18.2 29 18.4 36 33.3 235
Swedish ’6 – – 41.8 242 36.0 24 36.1 29 42.5 296
Turkish ’6 – – 29.8 303 17.8 19 22.2 38 31.9 134

’7 – – 28.3 227 14.0 9 10.7 31 33.4 242
Average: 37.4 162 37.0 206 30.0 26 30.0 35 37.1 221

Table 5: Performance (directed dependency accuracies measured against all sentences in the evaluation sets) and
efficiency (numbers of iterations) for standard training (soft and hard EM), early-stopping lateen EM (A3) and simple
lateen EM with hard EM’s primary objective (A1h), for all 23 train/test splits, withadhocandsweetsettings on.

9.4 Interpretation

Table 4 shows the estimated coefficients and their
(adjusted)p-values for both intercepts and most pre-
dictors (excluding the language/year of the data sets)
for all 1,840 experiments. The default (English) sys-
tem uses soft EM, trains with both short and long
sentences, and starts from an uninformed uniform
initializer. It is estimated to score 30.9%, converging
after approximately 256 iterations (both intercepts
are statistically different from zero:p < 2.0 × 10−16).

As had to be the case, we detect a gain fromundi-
rected scoring; integrated scoring is slightly (but
significantly: p ≈ 7.0 × 10−7) negative, which is re-
assuring: best parses are scoring higher than the rest
and may be standing out by large margins. Thead-
hocinitializer boosts accuracy by 1.2%, overall (also
significant: p ≈ 3.1 × 10−13), without a measurable
impact on running time (p ≈ 1.0). Training with
fewer, shorter sentences, at thesweetspot gradation,
adds 1.0% and shaves 20% off the total number of it-
erations, on average (both estimates are significant).

We find theviterbi objective harmful — by 4.0%,
on average (p ≈ 5.7 × 10−16) — for the CoNLL sets.
Spitkovsky et al. (2010a) reported that it helps on
WSJ, at least with long sentences and uniform ini-
tializers. Half of our experiments are with shorter
sentences, and half use ad hoc initializers (i.e., three
quarters of settings are not ideal for Viterbi EM),
which may have contributed to this negative result;
still, our estimates do confirm that hard EM is sig-
nificantly (80%,p < 2.0 × 10−16) faster than soft EM.

9.5 More on Viterbi Training

The overall negative impact of Viterbi objectives is
a cause for concern: On average,A1h’s estimated
gain of 5.5% should more than offset the expected
4.0% loss from starting with hard EM. But it is, nev-
ertheless, important to make sure that simple lateen
EM with hard EM’s primary objective is in fact an
improvement overbothstandard EM algorithms.

Table 5 shows performance and efficiency num-
bers forA1h, A3{h,s}, as well as standard soft and
hard EM, using settings that are least favorable for
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CoNLL Year A3s Soft EM A3h Hard EM A1h

& Language DDA iters DDA iters DDA iters DDA iters DDA iters
Arabic 2006 – – 33.4 317 20.8 8 20.2 32 16.6 269

’7 18.6 60 8.7 252 26.5 9 26.4 14 49.5 171
Basque ’7 – – 18.3 245 23.2 16 23.0 23 24.0 162
Bulgarian ’6 27.0 242 27.1 293 40.6 33 40.5 34 43.9 276
Catalan ’7 15.0 74 13.8 159 53.2 30 53.1 31 59.8 176
Chinese ’6 63.5 131 63.6 261 36.8 45 36.8 47 44.5 213

’7 58.5 130 58.5 258 35.2 20 35.0 48 43.2 372
Czech ’6 29.5 125 29.7 224 23.6 18 23.8 41 27.7 179

’7 – – 25.9 215 27.1 37 27.2 64 28.4 767
Danish ’6 – – 16.6 155 28.7 30 28.7 30 38.3 241
Dutch ’6 20.4 51 21.2 174 25.5 30 25.6 38 27.8 243
English ’7 – – 18.0 162 – – 38.7 35 45.2 366
German ’6 – – 24.4 148 30.1 39 30.1 44 30.4 185
Greek ’7 25.5 133 25.3 156 – – 13.2 27 13.2 252
Hungarian ’7 – – 18.9 310 28.9 34 28.9 44 34.7 414
Italian ’7 25.4 127 25.3 165 – – 52.3 36 52.3 81
Japanese ’6 – – 39.3 143 42.2 38 42.4 48 50.2 199
Portuguese ’6 35.2 48 35.6 224 – – 34.5 21 36.7 143
Slovenian ’6 24.8 182 25.3 397 28.8 17 28.8 20 32.2 121
Spanish ’6 – – 27.7 252 – – 28.3 31 50.6 130
Swedish ’6 27.9 49 32.6 287 45.2 22 45.6 52 50.0 314
Turkish ’6 – – 30.5 239 30.2 16 30.6 24 29.0 138

’7 – – 48.8 254 34.3 24 33.1 34 35.9 269
Average: 27.3 161 27.3 225 33.2 28 33.2 35 38.2 236

Table 6: Performance (directed dependency accuracies measured against all sentences in the evaluation sets) and
efficiency (numbers of iterations) for standard training (soft and hard EM), early-stopping lateen EM (A3) and simple
lateen EM with hard EM’s primary objective (A1h), for all 23 train/test splits, with settingadhocoff andsweeton.

Viterbi training: adhocandsweeton. AlthoughA1h

scores 7.1% higher than hard EM, on average, it is
only slightly better than soft EM — up 0.1% (and
worse thanA1s). Withoutadhoc(i.e., using uniform
initializers — see Table 6), however, hard EM still
improves, by 3.2%, on average, whereas soft EM
drops nearly 10%; here,A1h further improves over
hard EM, scoring 38.2% (up 5.0), higher than soft
EM’s accuracies frombothsettings (27.3 and 37.0).

This suggests thatA1h is indeed better than both
standard EM algorithms. We suspect that our exper-
imental set-up may be disadvantageous for Viterbi
training, since half the settings use ad hoc initializ-
ers, and because CoNLL sets are small. (Viterbi EM
works best with more data and longer sentences.)
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Abstract

We show that categories induced by unsuper-
vised word clustering can surpass the perfor-
mance of gold part-of-speech tags in depen-
dency grammar induction. Unlike classic clus-
tering algorithms, our method allows a word
to have different tags in different contexts.
In an ablative analysis, we first demonstrate
that this context-dependence is crucial to the
superior performance of gold tags — requir-
ing a word to always have the same part-of-
speech significantly degrades the performance
of manual tags in grammar induction, elim-
inating the advantage that human annotation
has over unsupervised tags. We then introduce
a sequence modeling technique that combines
the output of a word clustering algorithm with
context-colored noise, to allow words to be
tagged differently in different contexts. With
these new induced tags as input, our state-of-
the-art dependency grammar inducer achieves
59.1% directed accuracy on Section 23 (all
sentences) of the Wall Street Journal (WSJ)
corpus — 0.7% higher than using gold tags.

1 Introduction

Unsupervised learning — machine learning without
manually-labeled training examples — is an active
area of scientific research. In natural language pro-
cessing, unsupervised techniques have been success-
fully applied to tasks such as word alignment for ma-
chine translation. And since the advent of the web,
algorithms that induce structure from unlabeled data
have continued to steadily gain importance. In this
paper we focus on unsupervised part-of-speech tag-
ging and dependency parsing — two related prob-

lems of syntax discovery. Our methods are applica-
ble to vast quantities of unlabeled monolingual text.

Not all research on these problems has been fully
unsupervised. For example, to the best of our knowl-
edge, every new state-of-the-art dependency gram-
mar inducer since Klein and Manning (2004) relied
on gold part-of-speech tags. For some time, multi-
point performance degradations caused by switching
to automatically induced word categories have been
interpreted as indications that “good enough” parts-
of-speech induction methods exist, justifying the fo-
cus on grammar induction with supervised part-of-
speech tags (Bod, 2006), pace (Cramer, 2007). One
of several drawbacks of this practice is that it weak-
ens any conclusions that could be drawn about how
computers (and possibly humans) learn in the ab-
sence of explicit feedback (McDonald et al., 2011).

In turn, not all unsupervised taggers actually in-
duce word categories: Many systems — known as
part-of-speechdisambiguators(Merialdo, 1994) —
rely on external dictionaries of possible tags. Our
work builds on two older part-of-speechinducers
— word clustering algorithms of Clark (2000) and
Brown et al. (1992) — that were recently shown to
be more robust than other well-known fully unsuper-
vised techniques (Christodoulopoulos et al., 2010).

We investigate which properties of gold part-of-
speech tags are useful in grammar induction and
parsing, and how these properties could be intro-
duced into induced tags. We also explore the number
of word classes that is good for grammar induction:
in particular, whether categorization is needed at all.
By removing the “unrealistic simplification” of us-
ing gold tags (Petrov et al., 2011,§3.2, Footnote 4),
we will go on to demonstrate why grammar induc-
tion from plain text is no longer “still too difficult.”
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NNS VBD IN NN ♦
Payrolls fell in September .

P = (1 −
0︷ ︸︸ ︷

PSTOP(⋄, L, T)) × PATTACH(⋄, L, VBD)
× (1 − PSTOP(VBD, L, T)) × PATTACH(VBD, L, NNS)
× (1 − PSTOP(VBD, R, T)) × PATTACH(VBD, R, IN)
× (1 − PSTOP(IN, R, T)) × PATTACH(IN, R, NN)
× PSTOP(VBD, L, F) × PSTOP(VBD, R, F)
× PSTOP(NNS, L, T) × PSTOP(NNS, R, T)
× PSTOP(IN, L, T) × PSTOP(IN, R, F)
× PSTOP(NN, L, T) × PSTOP(NN, R, T)
× PSTOP(⋄, L, F)︸ ︷︷ ︸

1

× PSTOP(⋄, R, T)︸ ︷︷ ︸
1

.

Figure 1: A dependency structure for a short WSJ sen-
tence and its probability, factored by the DMV, using gold
tags, after summing outPORDER (Spitkovsky et al., 2009).

2 Methodology

In all experiments, we model the English grammar
via Klein and Manning’s (2004) Dependency Model
with Valence (DMV), induced from subsets of not-
too-long sentences of the Wall Street Journal (WSJ).

2.1 The Model

The original DMV is a single-state head automata
model (Alshawi, 1996) over lexical word classes
{cw} — gold part-of-speech tags. Its generative story
for a sub-tree rooted at a head (of classch) rests on
three types of independent decisions: (i) initial di-
rection dir ∈ {L, R} in which to attach children, via
probability PORDER(ch); (ii) whether to sealdir, stop-
ping with probability PSTOP(ch, dir, adj), conditioned
onadj ∈ {T, F} (true iff consideringdir’s first, i.e.,ad-
jacent, child); and (iii) attachments (of classca), ac-
cording toPATTACH(ch, dir, ca). This recursive process
produces only projective trees. A root token♦ gen-
erates the head of the sentence as its left (and only)
child (see Figure 1 for a simple, concrete example).

2.2 Learning Algorithms

The DMV lends itself to unsupervised learning via
inside-outside re-estimation (Baker, 1979). Klein
and Manning (2004) initialized their system using an
“ad-hoc harmonic” completion, followed by training
using 40 steps of EM (Klein, 2005). We reproduce
this set-up, iterating without actually verifying con-
vergence, in most of our experiments (#1–4,§3–4).

Experiments #5–6 (§5) employ our new state-of-
the-art grammar inducer (Spitkovsky et al., 2011),
which uses constrained Viterbi EM (details in§5).

2.3 Training Data

The DMV is usually trained on a customized sub-
set of Penn English Treebank’s Wall Street Jour-
nal portion (Marcus et al., 1993). Following Klein
and Manning (2004), we begin with reference con-
stituent parses, prune out all empty sub-trees and
remove punctuation and terminals (tagged# and$)
that are not pronounced where they appear. We then
train only on the remaining sentenceyieldsconsist-
ing of no more than fifteen tokens (WSJ15), in most
of our experiments (#1–4,§3–4); by contrast, Klein
and Manning’s (2004) original system was trained
using less data: sentences up to length ten (WSJ10).1

Our final experiments (#5–6,§5) employ a simple
scaffolding strategy (Spitkovsky et al., 2010a) that
follows up initial training at WSJ15 (“less is more”)
with an additional training run (“leapfrog”) that in-
corporates most sentences of the data set, at WSJ45.

2.4 Evaluation Methods

Evaluation is against the training set, as is standard
practice in unsupervised learning, in part because
Klein and Manning (2004,§3) did not smooth the
DMV (Klein, 2005, §6.2). For most of our experi-
ments (#1–4,§3–4), this entails starting with the ref-
erence trees from WSJ15 (as modified in§2.3), au-
tomatically converting their labeled constituents into
unlabeled dependencies using deterministic “head-
percolation” rules (Collins, 1999), and then com-
puting (directed) dependency accuracy scores of the
corresponding induced trees. We report overall per-
centages of correctly guessed arcs, including the
arcs from sentence root symbols, as is standard prac-
tice (Paskin, 2001; Klein and Manning, 2004).

For a meaningful comparison with previous work,
we also test some of the models from our earlier ex-
periments (#1,3) — and both models from final ex-
periments (#5,6) — against Section 23 of WSJ∞, af-
ter applying Laplace (a.k.a. “add one”) smoothing.

1WSJ15 contains 15,922 sentences up to length fifteen (a to-
tal of 163,715 tokens, not counting punctuation) — versus 7,422
sentences of at most ten words (only 52,248 tokens) comprising
WSJ10 — and is a better trade-off between the quantity and
complexity of training data in WSJ (Spitkovsky et al., 2009).
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Accuracy Viable
1. manual tags Unsupervised Sky Groups

gold 50.7 78.0 36
mfc 47.2 74.5 34
mfp 40.4 76.4 160

ua 44.3 78.4 328
2. taglesslexicalizedmodels

full 25.8 97.3 49,180
partial 29.3 60.5 176

none 30.7 24.5 1

3. tags from aflat (Clark, 2000) clustering
47.8 83.8 197

4. prefixes of ahierarchical (Brown et al., 1992) clustering
first 7 bits 46.4 73.9 96

8 bits 48.0 77.8 165
9 bits 46.8 82.3 262

Table 1: Directed accuracies for the “less is more” DMV,
trained on WSJ15 (after 40 steps of EM) and evaluated
also against WSJ15, using various lexical categories in
place of gold part-of-speech tags. For each tag-set, we
include its effective number of (non-empty) categories in
WSJ15 and the oracle skylines (supervised performance).

3 Motivation and Ablative Analyses

The concepts of polysemy and synonymy are of fun-
damental importance in linguistics. For words that
can take on multiple parts of speech, knowing the
gold tag can reduce ambiguity, improving parsing by
limiting the search space. Furthermore, pooling the
statistics of words that play similar syntactic roles,
as signaled by shared gold part-of-speech tags, can
simplify the learning task, improving generalization
by reducing sparsity. We begin with two sets of ex-
periments that explore the impact that each of these
factors has on grammar induction with the DMV.

3.1 Experiment #1: Human-Annotated Tags

Our first set of experiments attempts to isolate the
effect that replacing gold part-of-speech tags with
deterministicone class per wordmappings has on
performance, quantifying the cost of switching to a
monosemous clustering (see Table 1: manual; and
Table 4). Grammar induction with gold tags scores
50.7%, while the oracle skyline (an ideal, supervised
instance of the DMV) could attain 78.0% accuracy.

It may be worth noting that only 6,620 (13.5%) of
49,180 unique tokens in WSJ appear with multiple
part-of-speech tags. Most words, likeit, are always
tagged the same way (5,768 timesPRP). Some words,

token mfc mfp ua
it {PRP} {PRP} {PRP}

gains {NNS} {VBZ, NNS} {VBZ, NNS}
the {DT} {JJ, DT} {VBP, NNP, NN, JJ, DT, CD}

Table 2: Example most frequent class, most frequent pair
and union all reassignments for tokensit, theandgains.

like gains, usually serve as one part of speech (227
timesNNS, as inthe gains) but are occasionally used
differently (5 timesVBZ, as inhe gains). Only 1,322
tokens (2.7%) appear with three or more different
gold tags. However, this minority includes the most
frequent word —the (50,959 timesDT, 7 timesJJ,
6 timesNNP and once as each ofCD, NN andVBP).2

We experimented with three natural reassign-
ments of part-of-speech categories (see Table 2).
The first, most frequent class(mfc), simply maps
each token to its most common gold tag in the entire
WSJ (with ties resolved lexicographically). This ap-
proach discards two gold tags (typesPDT andRBR are
not most common for any of the tokens in WSJ15)
and costs about three-and-a-half points of accuracy,
in both supervised and unsupervised regimes.

Another reassignment,union all (ua), maps each
token to the set of all of its observed gold tags, again
in the entire WSJ. This inflates the number of group-
ings by nearly a factor of ten (effectively lexicaliz-
ing the most ambiguous words),3 yet improves the
oracle skyline by half-a-point over actual gold tags;
however, learning is harder with this tag-set, losing
more than six points in unsupervised training.

Our last reassignment,most frequent pair(mfp),
allows up to two of the most common tags into
a token’s label set (with ties, once again, resolved
lexicographically). This intermediate approach per-
forms strictly worse thanunion all, in both regimes.

3.2 Experiment #2: Lexicalization Baselines

Our next set of experiments assesses the benefits of
categorization, turning to lexicalized baselines that
avoid grouping words altogether. All three models
discussed below estimated the DMVwithout using
the gold tags in any way (see Table 1: lexicalized).

2Some of these are annotation errors in the treebank (Banko
and Moore, 2004, Figure 2): such (mis)taggings can severely
degrade the accuracy of part-of-speech disambiguators, without
additional supervision (Banko and Moore, 2004,§5, Table 1).

3Kupiec (1992) found that the 50,000-word vocabulary of
the Brown corpus similarly reduces to∼400 ambiguity classes.
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First, not surprisingly, a fully-lexicalized model
over nearly 50,000 unique words is able to essen-
tially memorize the training set, supervised. (With-
out smoothing, it is possible to deterministically at-
tach most rare words in a dependency tree correctly,
etc.) Of course, local search is unlikely to find good
instantiations for so many parameters, causing unsu-
pervised accuracy for this model to drop in half.

For our next experiment, we tried an intermediate,
partially-lexicalized approach. We mapped frequent
words — those seen at least 100 times in the training
corpus (Headden et al., 2009) — to their own indi-
vidual categories, lumping the rest into a single “un-
known” cluster, for a total of under 200 groups. This
model is significantly worse for supervised learn-
ing, compared even with the monosemous clusters
derived from gold tags; yet it is only slightly more
learnable than the broken fully-lexicalized variant.

Finally, for completeness, we trained a model that
maps every token to the same one “unknown” cat-
egory. As expected, such a trivial “clustering” is
ineffective in supervised training; however, it out-
performs both lexicalized variants unsupervised,4

strongly suggesting that lexicalization alone may be
insufficient for the DMV and hinting that some de-
gree of categorization is essential to its learnability.

Cluster #173 Cluster #188
1. open 1. get
2. free 2. make
3. further 3. take
4. higher 4. find
5. lower 5. give
6. similar 6. keep
7. leading 7. pay
8. present 8. buy
9. growing 9. win

10. increased 10. sell
...

...
37. cool 42. improve

...
...

1,688. up-wind 2,105. zero-out

Table 3: Representative members for two of the flat word
groupings: cluster #173 (left) contains adjectives, espe-
cially ones that take comparative (or other) complements;
cluster #188 comprises bare-stem verbs (infinitive stems).
(Of course, many of the words have other syntactic uses.)

4Note that it also beats supervised training. That isn’t a bug:
Spitkovsky et al. (2010b,§7.2) explain this paradox in the DMV.

4 Grammars over Induced Word Clusters

We have demonstrated the need for grouping simi-
lar words, estimated a bound on performance losses
due to monosemous clusterings and are now ready
to experiment with induced part-of-speech tags. We
use two sets of established, publicly-available hard
clustering assignments, each computed from a much
larger data set than WSJ (approximately a million
words). The first is a flat mapping (200 clusters)
constructed by training Clark’s (2000) distributional
similarity model over several hundred million words
from the British National and the English Gigaword
corpora.5 The second is a hierarchical clustering —
binary strings up to eighteen bits long — constructed
by running Brown et al.’s (1992) algorithm over 43
million words from the BLLIP corpus, minus WSJ.6

4.1 Experiment #3: A Flat Word Clustering

Our main purely unsupervised results are with a flat
clustering (Clark, 2000) that groups words having
similar context distributions, according to Kullback-
Leibler divergence. (A word’s context is an ordered
pair: its left- and right-adjacent neighboring words.)

To avoid overfitting, we employed an implemen-
tation from previous literature (Finkel and Manning,
2009). The number of clusters (200) and the suf-
ficient amount of training data (several hundred-
million words) were tuned to a task (NER) that is
not directly related to dependency parsing. (Table 3
shows representative entries for two of the clusters.)

We added one more category (#0) for unknown
words. Now every token in WSJ could again be re-
placed by a coarse identifier (one of at most 201,
instead of just 36), in both supervised and unsuper-
vised training. (Our training code did not change.)

The resulting supervised model, though not as
good as the fully-lexicalized DMV, was more than
five points more accurate than with gold part-of-
speech tags (see Table 1: flat). Unsupervised accu-
racy was lower than with gold tags (see also Table 4)
but higher than withall three derived hard assign-
ments. This suggests that polysemy (i.e., ability to

5http://nlp.stanford.edu/software/

stanford-postagger-2008-09-28.tar.gz:
models/egw.bnc.200

6http://people.csail.mit.edu/maestro/papers/

bllip-clusters.gz
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Figure 2: Parsing performance (accuracy on WSJ15) as a “function” of the number of syntactic categories, for all prefix
lengths —k ∈ {1, . . . , 18} — of a hierarchical (Brown et al., 1992) clustering, connected by solid lines (dependency
grammar induction in blue; supervised oracle skylines in red, above). Tagless lexicalized models (full, partial and
none) connected by dashed lines. Models based ongold part-of-speech tags, and derived monosemous clusters (mfc,
mfpandua), shown as vertices of gold polygons. Models based on aflat (Clark, 2000) clustering indicated by squares.

tag a word differently in context) may be the primary
advantage of manually constructed categorizations.

4.2 Experiment #4: A Hierarchical Clustering

The purpose of this batch of experiments is to show
that Clark’s (2000) algorithm isn’t unique in its suit-
ability for grammar induction. We found that Brown
et al.’s (1992) older information-theoretic approach,
which does not explicitly address the problems of
rare and ambiguous words (Clark, 2000) and was de-
signed to induce large numbers of plausible syntac-
tic andsemantic clusters, can perform just as well.

Once again, the sufficient amount of data (43 mil-
lion words) was tuned in earlier work (Koo, 2010).
His task of interest was, in fact, dependency parsing.
But since this algorithm is hierarchical (i.e., there
isn’t a parameter for the number of categories), we
doubt that there was a strong enough risk of overfit-
ting to question the clustering’s unsupervised nature.

As there isn’t a set number of categories, we used
binary prefixes of lengthk from each word’s address
in the computed hierarchy as cluster labels. Results
for 7 ≤ k ≤ 9 bits (approximately 100–250 non-
empty clusters, close to the 200 we used before) are

similar to those of flat clusters (see Table 1: hierar-
chical). Outside of this range, however, performance
can be substantially worse (see Figure 2), consistent
with earlier findings: Headden et al. (2008) demon-
strated that (constituent) grammar induction, using
the singular-value decomposition (SVD-based) tag-
ger of Schütze (1995), also works best with 100–200
clusters. Important future research directions may
include learning to automatically select a good num-
ber of word categories (in the case of flat clusterings)
and ways of using multiple clustering assignments,
perhaps of different granularities/resolutions, in tan-
dem (e.g., in the case of a hierarchical clustering).

4.3 Further Evaluation

It is important to enable easy comparison with pre-
vious and future work. Since WSJ15 is not a stan-
dard test set, we evaluated two key experiments —
“less is more” with gold part-of-speech tags (#1, Ta-
ble 1: gold) and with Clark’s (2000) clusters (#3, Ta-
ble 1: flat) — on all sentences (not just length fifteen
and shorter), in Section 23 of WSJ (see Table 4).
This required smoothing both final models (§2.4).

We showed that two classic unsupervised word
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System Description Accuracy
#1 (§3.1) “less is more” (Spitkovsky et al., 2009) 44.0
#3 (§4.1) “less is more” with monosemous induced tags 41.4 (-2.6)

Table 4: Directed accuracies on Section 23 of WSJ (all sentences) for two experiments with the base system.

clusterings — one flat and one hierarchical — can
be better for dependency grammar induction than
monosemous syntactic categories derived from gold
part-of-speech tags. And we confirmed that the un-
supervised tags are worse than the actual gold tags,
in a simple dependency grammar induction system.

5 State-of-the-Art without Gold Tags

Until now, we have deliberately kept our experimen-
tal methods simple and nearly identical to Klein and
Manning’s (2004), for clarity. Next, we will explore
how our main findings generalize beyond this toy
setting. A preliminary test will simply quantify the
effect of replacing gold part-of-speech tags with the
monosemous flat clustering (as in experiment #3,
§4.1) on a modern grammar inducer. And our last
experiment will gauge the impact of using a polyse-
mous (but still unsupervised) clustering instead, ob-
tained by executing standard sequence labeling tech-
niques to introduce context-sensitivity into the origi-
nal (independent) assignment or words to categories.

These final experiments are with our latest state-
of-the-art system (Spitkovsky et al., 2011) — a par-
tially lexicalized extension of the DMV that uses
constrained Viterbi EM to train on nearly all of the
data available in WSJ, at WSJ45 (48,418 sentences;
986,830 non-punctuation tokens). The key contribu-
tion that differentiates this model from its predeces-
sors is that it incorporates punctuation into grammar
induction (by turning it into parsing constraints, in-
stead of ignoring punctuation marks altogether). In
training, the model makes a simplifying assumption
— that sentences can be split at punctuation and that
the resulting fragments of text could be parsed inde-
pendently of one another (these parsed fragments are
then reassembled into full sentence trees, by pars-
ing the sequence of their own head words). Fur-
thermore, the model continues to take punctuation
marks into account in inference (using weaker, more
accurate constraints, than in training). This system
scores 58.4% on Section 23 of WSJ∞ (see Table 5).

5.1 Experiment #5: A Monosemous Clustering

As in experiment #3 (§4.1), we modified the base
system in exactly one way: we swapped out gold
part-of-speech tags and replaced them with a flat dis-
tributional similarity clustering. In contrast to sim-
pler models, which suffer multi-point drops in ac-
curacy from switching to unsupervised tags (e.g.,
2.6%), our new system’s performance degrades only
slightly, by 0.2% (see Tables 4 and 5). This result
improves over substantial performance degradations
previously observed for unsupervised dependency
parsing with induced word categories (Klein and
Manning, 2004; Headden et al., 2008,inter alia).7

One risk that arises from using gold tags is that
newer systems could be finding cleverer ways to ex-
ploit manual labels (i.e., developing an over-reliance
on gold tags) instead of actually learning to acquire
language. Part-of-speech tags areknownto contain
significant amounts of information for unlabeled de-
pendency parsing (McDonald et al., 2011,§3.1), so
we find it reassuring that our latest grammar inducer
is lessdependent on gold tags than its predecessors.

5.2 Experiment #6: A Polysemous Clustering

Results of experiments #1 and 3 (§3.1, 4.1) suggest
that grammar induction stands to gain from relaxing
theone class per wordassumption. We next test this
conjecture by inducing a polysemous unsupervised
word clustering, then using it to induce a grammar.

Previous work (Headden et al., 2008,§4) found
that simple bitag hidden Markov models, classically
trained using the Baum-Welch (Baum, 1972) variant
of EM (HMM-EM), perform quite well,8 on aver-
age, across different grammar induction tasks. Such
sequence models incorporate a sensitivity to context
via state transition probabilitiesPTRAN(ti | ti−1), cap-
turing the likelihood that a tagti immediately fol-
lows the tagti−1; emission probabilitiesPEMIT(wi | ti)

capture the likelihood that a word of typeti is wi.
7We also briefly comment on this result in the “punctuation”

paper (Spitkovsky et al., 2011,§7), published concurrently.
8They are also competitive with Bayesian estimators, on

larger data sets, with cross-validation (Gao and Johnson, 2008).
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System Description Accuracy
(§5) “punctuation” (Spitkovsky et al., 2011) 58.4

#5 (§5.1) “punctuation” with monosemous induced tags 58.2 (-0.2)
#6 (§5.2) “punctuation” withcontext-sensitiveinduced tags 59.1 (+0.7)

Table 5: Directed accuracies on Section 23 of WSJ (all sentences) for experiments with the state-of-the-art system.

We need a context-sensitive tagger, and HMM
models are good — relative to other tag-inducers.
However, they are not better than gold tags, at least
when trained using a modest amount of data.9 For
this reason, we decided to relax the monosemous
flat clustering, plugging it in as an initializer for the
HMM. The main problem with this approach is that,
at least without smoothing, every monosemous la-
beling is trivially at a local optimum, sinceP(ti | wi)

is deterministic. To escape the initial assignment,
we used a “noise injection” technique (Selman et
al., 1994), inspired by the contexts of Clark (2000).
First, we collected the MLE statistics forPR(ti+1 | ti)

andPL(ti | ti+1) in WSJ, using the flat monosemous
tags. Next, we replicated the text of WSJ 100-fold.
Finally, we retagged this larger data set, as follows:
with probability 80%, a word kept its monosemous
tag; with probability 10%, we sampled a new tag
from the left context (PL) associated with the origi-
nal (monosemous) tag of its rightmost neighbor; and
with probability 10%, we drew a tag from the right
context (PR) of its leftmost neighbor.10 Given that
our initializer — and later the input to the grammar
inducer — are hard assignments of tags to words, we
opted for (the faster and simpler) Viterbi training.

In the spirit of reproducibility, we again used an
off-the-shelf component for tagging-related work.11

Viterbi training converged after just 17 steps, re-
placing the original monosemous tags for 22,280 (of
1,028,348 non-punctuation) tokens in WSJ. For ex-

9All of Headden et al.’s (2008) grammar induction experi-
ments with induced parts-of-speech were worse than their best
results using gold part-of-speech tags, most likely because they
used a very small corpus (half of WSJ10) to cluster words.

10We chose the sampling split (80:10:10) and replication pa-
rameter (100) somewhat arbitrarily, so better results could likely
be obtained with tuning. However, we suspect that the real gains
would come from using soft clustering techniques (Hinton and
Roweis, 2003; Pereira et al., 1993,inter alia) and propagating
(joint) estimates of tag distributions into a parser. Our ad-hoc
approach is intended to serve solely as a proof of concept.

11David Elworthy’sC+ tagger, with options-i t -G -l,
available fromhttp://friendly-moose.appspot.com/
code/NewCpTag.zip.

ample, the first changed sentence is #3 (of 49,208):

Some “circuit breakers” installed after
the October 1987 crash failed their first
test, traders say, unable tocool the selling
panic in both stocks and futures.

Above, the wordcool gets relabeled as #188 (from
#173 — see Table 3), since its context is more
suggestive of an infinitive verb than of its usual
grouping with adjectives. (A proper analysis of all
changes, however, is beyond the scope of this work.)

Using this new context-sensitive hard assignment
of tokens to unsupervised categories our gram-
mar inducer attained a directed accuracy of 59.1%,
nearly a full point better than with the monosemous
hard assignment (see Table 5). To the best of our
knowledge it is also the first state-of-the-art unsuper-
vised dependency parser to perform better with in-
duced categories than with gold part-of-speech tags.

6 Related Work

Early work in dependency grammar induction al-
ready relied on gold part-of-speech tags (Carroll and
Charniak, 1992). Some later models (Yuret, 1998;
Paskin, 2001,inter alia) attempted full lexicaliza-
tion. However, Klein and Manning (2004) demon-
strated that effort to be worse at recovering depen-
dency arcs than choosing parse structures at random,
leading them to incorporate gold tags into the DMV.

Klein and Manning (2004,§5, Figure 6) had also
tested their own models with induced word classes,
constructed using a distributional similarity cluster-
ing method (Schütze, 1995). Without gold part-of-
speech tags, their combined DMV+CCM model was
about five points worse, both in (directed) unlabeled
dependency accuracy (42.3% vs. 47.5%)12 and unla-
beled bracketingF1 (72.9% vs. 77.6%), on WSJ10.

In constituent parsing, earlier Seginer (2007a,§6,
Table 1) built a fully-lexicalized grammar inducer

12On the same evaluation set (WSJ10), our context-sensitive
system without gold tags (Experiment #6,§5.2) scores 66.8%.
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that was competitive with DMV+CCM despite not
using gold tags. His CCL parser has since been
improved via a “zoomed learning” technique (Re-
ichart and Rappoport, 2010). Moreover, Abend et
al. (2010) reused CCL’s internal distributional rep-
resentation of words in a cognitively-motivated part-
of-speech inducer. Unfortunately their tagger did
not make it into Christodoulopoulos et al.’s (2010)
excellent and otherwise comprehensive evaluation.

Outside monolingual grammar induction, fully-
lexicalized statistical dependency transduction mod-
els have been trained from unannotated parallel bi-
texts for machine translation (Alshawi et al., 2000).
More recently, McDonald et al. (2011) demonstrated
an impressive alternative to grammar induction by
projecting reference parse trees from languages that
have annotations to ones that are resource-poor.13 It
uses graph-based label propagation over a bilingual
similarity graph for a sentence-aligned parallel cor-
pus (Das and Petrov, 2011), inducing part-of-speech
tags from a universal tag-set (Petrov et al., 2011).

Even in supervised parsing we are starting to see
a shift away from using gold tags. For example,
Alshawi et al. (2011) demonstrated good results for
mapping text to underspecified semantics via depen-
dencies without resorting to gold tags. And Petrov et
al. (2010,§4.4, Table 4) observed only a small per-
formance loss “going POS-less” in question parsing.

We are not aware of any systems that induce both
syntactic trees and their part-of-speech categories.
However, aside from the many systems that induce
trees from gold tags, there are also unsupervised
methods for inducing syntactic categories from gold
trees (Finkel et al., 2007; Pereira et al., 1993), as
well as for inducing dependencies from gold con-
stituent annotations (Sangati and Zuidema, 2009;
Chiang and Bikel, 2002). Considering that Headden
et al.’s (2008) study of part-of-speech taggers found
no correlation between standard tagging metrics and
the quality of induced grammars, it may be time for
a unified treatment of these very related syntax tasks.

13When the target language is English, however, their best ac-
curacy (projected from Greek) is low: 45.7% (McDonald et al.,
2011,§4, Table 2); tested on the same CoNLL 2007 evaluation
set (Nivre et al., 2007), our “punctuation” system with context-
sensitive induced tags (trained on WSJ45, without gold tags)
performs substantially better, scoring 51.6%. Note that this is
also an improvement over our system trained on the CoNLL set
using gold tags: 50.3% (Spitkovsky et al., 2011,§8, Table 6).

7 Discussion and Conclusions

Unsupervised word clustering techniques of Brown
et al. (1992) and Clark (2000) are well-suited to de-
pendency parsing with the DMV. Both methods out-
perform gold parts-of-speech in supervised modes.
And both can do better than monosemous clusters
derived from gold tags in unsupervised training. We
showed how Clark’s (2000) flat tags can be relaxed,
using context, with the resulting polysemous cluster-
ing outperforming gold part-of-speech tags for the
English dependency grammar induction task.

Monolingual evaluation is a significant flaw in our
methodology, however. One (of many) take-home
points made in Christodoulopoulos et al.’s (2010)
study is that results on one language do not neces-
sarily correlate with other languages.14 Assuming
that our results do generalize, it will still remain to
remove the present reliance on gold tokenization and
sentence boundary labels. Nevertheless, we feel that
eliminating gold tags is an important step towards
the goal of fully-unsupervised dependency parsing.

We have cast the utility of a categorization scheme
as a combination of two effects on parsing accuracy:
a synonymy effect and a polysemy effect. Results
of our experiments with both full and partial lexi-
calization suggest that grouping similar words (i.e.,
synonymy) is vital to grammar induction with the
DMV. This is consistent with an established view-
point, that simple tabulation of frequencies of words
participating in certain configurations cannot be reli-
ably used for comparing their likelihoods (Pereira et
al., 1993,§4.2): “The statistics of natural languages
is inherently ill defined. Because of Zipf’s law, there
is never enough data for a reasonable estimation of
joint object distributions.” Seginer’s (2007b,§1.4.4)
argument, however, is that the Zipfian distribution
— a property of words, not parts-of-speech —
should allow frequent words to successfully guide

14Furthermore, it would be interesting to know how sensitive
different head-percolation schemes (Yamada and Matsumoto,
2003; Johansson and Nugues, 2007) would be to gold versus
unsupervised tags, since the Magerman-Collins rules (Mager-
man, 1995; Collins, 1999) agree with gold dependency annota-
tions only 85% of the time, even for WSJ (Sangati and Zuidema,
2009). Proper intrinsic evaluation of dependency grammar in-
ducers is not yet a solved problem (Schwartz et al., 2011).
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parsing and learning: “A relatively small number of
frequent words appears almost everywhere and most
words are never too far from such a frequent word
(this is also the principle behind successful part-of-
speech induction).” We believe that it is important to
thoroughly understand how to reconcile these only
seemingly conflicting insights, balancing them both
in theory and in practice. A useful starting point may
be to incorporate frequency information in the pars-
ing models directly — in particular, capturing the
relationships between words of various frequencies.

The polysemy effect appears smaller but is less
controversial: Our experiments suggest that the pri-
mary drawback of the classic clustering schemes
stems from theirone class per wordnature — and
not a lack of supervision, as may be widely believed.
Monosemous groupings, even if they are themselves
derived from human-annotated syntactic categories,
simply cannot disambiguate words the way gold tags
can. By relaxing Clark’s (2000) flat clustering, us-
ing contextual cues, we improved dependency gram-
mar induction: directed accuracy on Section 23 (all
sentences) of the WSJ benchmark increased from
58.2% to 59.1% — from slightly worse to better than
with gold tags (58.4%, previous state-of-the-art).

Since Clark’s (2000) word clustering algorithm is
already context-sensitive in training, we suspect that
one could do better simply by preserving the polyse-
mous nature of its internal representation. Importing
the relevant distributions into a sequence tagger di-
rectly would make more sense than going through an
intermediate monosemous summary. And exploring
other uses ofsoftclustering algorithms — perhaps as
inputs to part-of-speech disambiguators — may be
another fruitful research direction. We believe that
a joint treatment of grammar and parts-of-speech in-
duction could fuel major advances in both tasks.
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Abstract

We propose a novel way of incorporating de-
pendency parse and word co-occurrence in-
formation into a state-of-the-art web-scale n-
gram model for spelling correction. The syn-
tactic and distributional information provides
extra evidence in addition to that provided by a
web-scale n-gram corpus and especially helps
with data sparsity problems. Experimental
results show that introducing syntactic fea-
tures into n-gram based models significantly
reduces errors by up to 12.4% over the current
state-of-the-art. The word co-occurrence in-
formation shows potential but only improves
overall accuracy slightly.

1 Introduction

The function of context-sensitive text correction is
to identify word-choice errors in text (Bergsma et
al., 2009). It can be viewed as a lexical disambigua-
tion task (Lapata and Keller, 2005), where a system
selects from a predefined confusion word set, such
as {affect, effect} or {complement, compliment},
and provides the most appropriate word choice given
the context. Typically, one determines if a word has
been used correctly based on lexical, syntactic and
semantic information from the context of the word.
One of the top performing models of spelling cor-
rection (Bergsma et al., 2010) is based on web-scale
n-gram counts, which reflect both syntax and mean-
ing. However, even with a large-scale n-gram cor-
pus, data sparsity can hurt performance in two ways.

∗This work was done when the first author was an intern
for Educational Testing Service.

First, n-gram based methods require exact word and
order matches. If there is a low frequency word in
the context, such as a person’s name, there will be
little, if any, evidence in the n-gram data to sup-
port the usage. Second, if the target confusable word
is rare, there will not be enough n-gram support or
training data to render a confident decision. Because
of the data sparsity problem, language modeling is
not always sufficient to capture the meaning of the
sentence and the correct usage of the word.

Take a sentence from The New York Times
(NYT) for example: “‘This fellow’s won a war,’ the
dean of the capital’s press corps, David Broder, an-
nounced on ‘Meet the Press’ after complimenting
the president on the ‘great sense of authority and
command’ he exhibited in a flight suit.” Unfortu-
nately, neither the phrase “complementing the pres-
ident” nor “complimenting the president” exists in
the web-scale Google N-gram corpus (Brants and
Franz, 2006). The n-gram models decide solely
based on the frequency of the bi-grams “after com-
ple(i)menting” and “comple(i)menting the”, which
are common usages for both words. The real ques-
tion is whether we are more likely to “compliment”
or “complement” a person, the “president”. Several
clues could help us answer that question. A de-
pendency parser can identify the word “president”
as the subject of “compliment” or “complement”
which also may be the case in some of the train-
ing data. Lexical co-occurrence (Edmonds, 1997)
and semantic word relatedness measurements, such
as Random Indexing (Sahlgren, 2006), could pro-
vide evidence that “compliment” is more likely to
co-occur with “president” than “complement”. Fur-
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thermore, some important clues can be quite distant
from the target word, e.g. outside the 9-word context
window Bergsma et al. (2010) and Carlson (2007)
used. Consider another sentence in the NYT corpus,
“GM says the addition of OnStar, which includes a
system that automatically notifies an OnStar opera-
tor if the vehicle is involved in a collision, comple-
ments the Vue’s top five-star safety rating for the
driver and front passenger in both front- and side-
impact crash tests.” The dependency parser finds the
object of “complement” is “rating”, which is outside
the 9-word window.

We propose enhancing state-of-the-art web-scale
n-gram models for spelling correction with syntac-
tic structures and distributional information. For our
work, we build on a baseline system that combines
n-gram and lexical features (Bergsma et al., 2010).
Specifically, this paper makes the following contri-
butions:

1. We show that the baseline system can be
improved by augmenting it with dependency
parse features.

2. We show that the impact of parse features can
be further augmented when combined with dis-
tributional information, specifically word co-
occurrence information.

In the following section, we describe related
work and how our approach differs from these ap-
proaches. In Sections 3 and 4, we discuss our meth-
ods for using parse features and word co-occurrence
information. In Section 5, we present experimental
results and analysis.

2 Related Work

A variety of approaches have been proposed for
context-sensitive spelling correction ranging from
semantic methods to machine learning classifiers to
large-scale n-gram models.

Some semantics-based systems have been devel-
oped based on an intuitive assumption that the in-
tended word is more likely to be semantically coher-
ent with the context than is a spelling error. Jones
and Martin (1997) made use of the semantic simi-
larity produced by Latent Semantic Analysis. Bu-
danitsky and Hirst (2001) investigated the effective-
ness of predicting words based on different semantic

similarity/distance measures in WordNet. Both sys-
tems report performance that is lower than systems
developed more recently.

A variety of machine-learning methods have been
proposed in spelling correction and preposition and
article error correction fields, such as Bayesian clas-
sifiers (Golding, 1995; Golding and Roth, 1996),
Winnow-based learning (Golding and Roth, 1999),
decision lists (Golding, 1995), transformation-based
learning (Mangu and Brill, 1997), augmented mix-
ture models (Cucerzan and Yarowsky, 2002) and
maximum entropy classifiers (Izumi et al., 2003;
Han et al., 2006; Chodorow et al., 2007; Tetreault
and Chodorow, 2008; Felice and Pulman, 2008).
Despite their differences, these approaches mainly
use contextual features to capture the lexical, seman-
tic and/or syntactic environment of the target word.

The use of distributional similarity measures for
spelling correction has been previously explored in
(Mohammad and Hist, 2006). In our work, distribu-
tional similarity is not the primary contribution but
we show the impact it can have when used in con-
junction with a large scale n-gram model and with
parse features, which allows the system to select
words outside the local window for distributional
similarity. In the prior work, the words for distri-
butional similarity are constrained to the local win-
dow, and positional information of the words is not
encoded.

Recent work (Carlson and Fette, 2007; Gamon
et al., 2008; Bergsma et al., 2009) has demon-
strated that large-scale language modeling is ex-
tremely helpful for contextual spelling correction
and other lexical disambiguation tasks. These sys-
tems make the word choice depending on how fre-
quently each candidate word has been seen in the
given context in web-scale data. As n-gram data has
become more readily available, such as the Google
N-gram Corpus, the likelihood of a word being used
in a certain context can be better estimated.

Bergsma et al. (2009; 2010) presented a series
of simple but powerful models which relied heavily
on web-scale n-gram counts. From the Google Web
N-gram Corpus, they retrieve counts of n-grams of
different sizes (2-5) and positions that span the tar-
get word w0 within a window of 9 words. For
example, for the following sentence: “The system
tried to decide {among, between} the two confus-
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able words.”, the method would extract the five 5-
gram patterns, shown below in Figure 2, where w0
can be either word in the confusion set {among, be-
tween} in this particular example. Similarly, there
are four 4-grams, three 3-grams, and two 2-grams,
in total, 14 n-grams for each of the words in the con-
fusion set.

system tried to decide w0
tried to decide w0 the

to decide w0 the two
decide w0 the two confusable

w0 the two confusable words

We briefly describe three of Bergsma et al.’s
(2009; 2010) best systems below, which are reported
to achieve state-of-the-art accuracy (NG = n-gram;
LEX = lexical).

1. sumLM: For each candidate word, (Bergsma
et al., 2009) sum the log-counts of all 14 pat-
terns filled with the candidate, and choose the
candidate with the highest total.

2. NG: Bergsma et al. (2009) exploit each can-
didate’s 14 log-counts of n-gram patterns as
features in a Support Vector Machine (SVM)
model.

3. NG+LEX: Bergsma et al. (2010) augment the
NG model with lexical features (described in
detail in Section 3.1).

Bergsma et al. (2009; 2010) restricted their exper-
iments to only five confusion sets where the reported
performance in (Golding and Roth, 1999) was below
90%: {among, between}, {amount, number}, {cite,
sight, site}, {peace, piece} and {raise, rise}. They
reported that the SVM model with NG features out-
performed its unsupervised version, sumLM. How-
ever, the limited confusion word sets they evaluated
may not comprehensively represent the word usage
errors that writers typically make. In this paper, we
test nine additional commonly confused word pairs
to expand the scope of the evaluation. These words
were selected based on their lower frequencies com-
pared to the five pairs in the above work (as shown
later in Table 2).

3 Enhanced N-gram Models with Parse
Features

To our knowledge, only (Elmi and Evans, 1998)
have used parsing for spell correction. They focus
on using a parser as a filter to discriminate between
possible real-world corrections where the part-of-
speech differs. In our work, we show that parse fea-
tures are effective when used directly in the classifi-
cation mode (as opposed to as a final filter) to select
the best correction regardless of whether or not the
part-of-speech of the choices differ.

Statistical parsers have also seen limited use in
the sister tasks of preposition and article error detec-
tion (Hermet et al., 2008; Lee and Knutsson, 2008;
Felice and Pulman, 2009; Tetreault et al., 2010)
and verb sense disambiguation (Dligach and Palmer,
2008). In those instances where parsers have been
used, they have mainly provided shallow analyses
or relations involving specific target words, such as
a preposition or verb. Unlike preposition errors,
spelling errors can occur in any word.

In this paper, we propose a novel way to incor-
porate the parse into spelling correction, applying
the parser to sentences filled by each candidate word
equivalently and extracting salient features. This
overcomes two problem in the existing methods: 1)
the parse trees of the same sentence filled by differ-
ent confusion words can be different. However, in
the test phase, we do not know which word should
be put in the sentences to create parse features for
test examples. Previous studies (Tetreault et al.,
2010) failed to discuss this issue. 2) Some existing
work (Whitelaw et al., 2009; Rozovskaya and Roth,
2010) in the text correction field introduced artificial
errors into training data to adapt the system to bet-
ter handle ill-formed text. But this method will en-
counter serious data sparsity problems when facing
rare words.

3.1 Baseline System

We chose one of the leading spelling correction sys-
tems, (Bergsma et al., 2010), as our primary base-
line. As noted earlier, it is an SVM-based system
combining web-scale n-gram counts (NG) and con-
textual words (LEX) as features. To simplify the ex-
planation, throughout the paper, we will only con-
sider the situation with two confusion words. The
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problem with more than two words in pre-defined
confusion sets can be solved similarly by using a
one-vs.-all strategy. As we mentioned in Section 2,
NG features include log-counts of 3-to-5-gram pat-
terns for each candidate word with the given context.
LEX features can be broken down into three sub-
categories: 1) bag-of-words (words at all positions
in a 9-word window around the target word), 2) in-
dicators for the words preceding or following the tar-
get word, and 3) indicators for all n-grams and their
positions. For the sentence “The system tried to de-
cide {among, between} the two confusable words.”,
examples of bag-of-word features would be “tried”,
“two”, etc., the two positional bigrams would be
“decide” and “the”, and examples of the n-gram fea-
tures would be right-trigram = “among the two” and
left-4-gram = “tried to decide between”.

3.2 Parse Features

The benefit of introducing dependency parse fea-
tures is that 1) parse features capture contextual in-
formation in a larger context window; 2) parse fea-
tures specify which words in the context are salient
to the usage of the target word while purely lexi-
cally based approaches treat all words in the context
equally. We use the Stanford dependency parser (de
Marneffe et al., 2006) to extract six relevant feature
classes.

Parse Features (PAR):

1. relation names (target word as head)

2. complement of the target word

3. combination of 1 and 2

4. relation names (target word as complement)

5. head of the target word

6. combination of 4 and 5

Each of these six classes of PAR features can
contain zero to many values, since the target word
can be involved in none to multiple grammatical
relations and features of different filler words are
merged together. The PAR features, like the LEX
features, are binary. In Table 1, we present the parse
features for an example sentence. The parse fea-
tures here are listed as string values, but are later

converted into binary numbers in the vectors for the
SVM model.

4 Distributional Word Co-occurrence

Though lexical and parse features are complemen-
tary to n-gram models, they are learned from a nor-
mal training corpus and may not have enough cov-
erage due to data sparsity. Take a sentence from the
NYT for example: “An economist, he began his ca-
reer as a professor – he is still called ‘the professor,’
by friends as a compliment and by foes as an insult –
and taught at Harvard and Stanford .” If the most in-
dicative word “friends” does not appear or does not
appear enough times in the local context or depen-
dencies with “compliment” as compared to “com-
plement” in the training corpus, then the classifier
may be unable to make the correct selection.

It is impractical and computationally costly to en-
large the training corpus without limit to include
all possible language phenomena. A good compro-
mise is to use word co-occurrence information from
web-scale data. The other option is to make use of
high-order word co-occurrence, which is included in
many semantic word relatedness measures, such as
Latent Semantic Analysis (LSA) (Landauer et al.,
1998; Deerwester et al., 1990) or Random Indexing,
both of which can be estimated from a moderate-size
corpus.

Our intuition is to choose the confusion word
which is most relevant to a given context. We define
the salient words in context as a set M=m1, m2, m3,
..., and the relevance between two words as a func-
tion Relevance(w1, w2), which can either be calcu-
lated from word co-occurrence or Random Indexing.
The score of each candidate word c in the confusion
set given a context with meaningful words M is cal-
culated by the following formula:

Score(c) =
∑

m∈M
Relevance(c,m)

In this paper, we experiment with first-order word
co-occurrence and Random Indexing as relevance
measures. And we define salient contextual words
as heads or complements in the dependency rela-
tions with the target word. In this way, we use the
parse information to constrain the two distribution
models. Thus the word co-occurrence information

1294



Feature Name PAR Features (compliment) PAR Features (complement)
1. Head Relation Name ccomp appos
2. Head of Relation says collisions
3. Head Combination ccomp says appos collisions
4. Comp Relation Name nsubj dep
5. Comp of Relation addition rating
6. Comp Combination nsub addition dep rating

Table 1: Parse Feature Example for the sentence: “GM says the addition of OnStar, which includes a system that
automatically notifies an OnStar operator if the vehicle is involved in a collision, complements the Vue’s top five-star
safety rating for the driver and front passenger in both front- and side-impact crash tests.”

considerably overlaps with some values of the PAR
features, but provides extra evidence from web-scale
data rather than a limited amount of training data.

4.1 First-order Word Co-occurrence

The relevance based on first-order word co-
occurrence is calculated from the Google Web 5-
gram Corpus in a fashion similar to how we dealt
with n-gram counts in the previous section. Given
two words, w1 and w2, we consider all 8 possible
patterns that appear in a local context (5-word win-
dow), where we use wildcard (*) to indicate any to-
ken:

w1 w2
w1 * w2
w1 * * w2
w1 * * * w2
w2 w1
w2 * w1
w2 * * w1
w2 * * * w1

The relevance is then calculated by summing the
logarithm of each of the 8 different counts. Finally,
we compare the score of each candidate word and
output the one with higher score.

4.2 Random Indexing

The relevance scores based on Random Indexing
are provided by a tool FRanI (Higgins, 2004) and
a model trained on the Touchstone Applied Science
Associates (TASA) corpus which contains 750k sen-
tences and covers diverse topics (from a diversity of
textbooks up to the college level). Take the sentence
at the beginning of this section for example, where
only the words “a” and “friends” are related to the

target word (either “complement” or “compliment”)
by either relevance measure. The relevance based
on Random Indexing for (complement, friends) is
0.08, (compliment, friends) is 0.19 and both (com-
pliment, a) and (complement, a) are 0 because “a”
is in the stop word list. Meanwhile, the relevance
based on first order word co-occurrence for (com-
pliment, friends) is 7.39, (complement, friends) is
5.38, (compliment, a) is 13.25, and (complement, a)
is 13.42. The system with either kind of relevance
outputs “compliment”.

4.3 System Combination
Since the numeric measurement of word co-
occurrence is not as specific as the PAR features and
less trustworthy, adding word co-occurrence infor-
mation as features into the classifier along with n-
gram counts, lexical and parse features will hurt the
overall performance. It is more practical to combine
the two approaches in the following fashion:

1. When the SVM classifier (using NG, LEX and
PAR features) has high confidence (over a cer-
tain threshold) in the output label, output that
label;

2. Otherwise, output the results of the word
relatedness/co-occurrence-based system.

5 Evaluation

We evaluate the effectiveness of syntactic and dis-
tributional information on spelling correction. The
performance of the system is measured by accu-
racy: the percentage of sentences in the test data
for which the system chooses the correct word. We
compare our results against two baselines: 1) MA-
JOR chooses the most frequent candidate from the
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confusion set in the training corpus, and 2) Bergsma
et al.’s (2010) best systems, NG+LEX. We include
inflectional variants (“-ing”, “-ed”, “-s”, “-ly”) of
confusion words in the evaluation, such as comple-
menting, complimenting in addition to complement,
compliment, because this better corresponds to the
range of errors that may be encountered in actual
use and thus increases the scope of the system as a
real world application. Also following Bergsma et
al. (2010), we use a linear SVM, more exactly, the
L2-regularized L2-loss dual SVM in LIBLINEAR
(Fan et al., 2008). Unlike Bergsma et al., who used
development data to optimize parameters, we always
use default parameters, since training data is limited
for many of the words we are dealing with.

5.1 Data
Following Bergsma et al. (2009; 2010), the test
examples are extracted from The New York Times
(NYT) portion of Gigaword1, but constrained to a
9-month publication time frame from October 2005
to July 2006. Unlike Bergsma et al. who use the
same source as training data for the lexical features,
our training data (for both lexical and parse features)
comes from larger and more diverse news sources.
We use the very large database from Sekine’s n-gram
search engine (Sekine, 2008) as training data, which
consists of 1.9B words of newspaper text spanning
89 years from NYT, BBC, WSJ, Xinhua, etc.

We evaluate our systems on 5 confusion sets from
Bergsma et al. (2009; 2010) and 9 commonly con-
fused word pairs with moderate frequency in daily
usage (randomly selected from those listed in En-
glish educational resources2). Shown in Table 2,
these 9 sets of words appear much less frequently
than the words selected by Bergsma et al., even
given the fact that we are using a considerably large
training corpus.

For each confusable word pair, sentences that
contain either of the words are extracted to form
training and test data. The word that appears in the
original sentences of the news article is treated as
the gold standard. For frequently occurring confu-
sion word sets used by Bergsma et al., we extract
up to 10k examples for testing, and up to 100k ex-

1Available from the LDC as LDC2003T05
2Such as an English learning blog post at

http://elisaenglish.pixnet.net/blog/post/1335194

Word Confusion Set # in Training Corpus
adverse / averse 13.5k / 1.8k
advice / advise 62.k / 12.9k
allusion / illusion 1.0k / 5.4k
complement / compliment 6.8k / 3.1k
confidant / confident 2.4k / 63.6k
desert / dessert 24.7k / 3.7k
discreet / discrete 0.7k / 2.4k
elicit / illicit 1.9k / 10.0k
stationary / stationery 2.5k/2.3k
wander / wonder 3.3k / 39.5k

Table 2: Training Data Sizes for Common ESL Confused
Words

amples for training. For the 9 less frequent confu-
sion word sets, we extract all the unique examples
for training and testing from the above sources. The
spelling correction system is evaluated by measur-
ing its accuracy in comparison to the gold standard
in test data. The error rate is the complement of ac-
curacy.

Following Carlson et al. (2007) and Bergsma
et al. (2009; 2010), we obtain the n-gram counts
from the Google Web 1T 5-gram Corpus (Brants and
Franz, 2006).

5.2 Experimental Results

We present the results for each set separately be-
cause each set may behave very differently, depend-
ing upon its frequency, part-of-speech, number of
senses and other differences between the words in
each confusion set. The overall accuracy across con-
fusion sets is also presented to show the effective-
ness of different approaches. The results are tested
for statistical significance using McNemar’s test of
correlated proportions. The performance differences
are marked as significant when p < 0.05.

5.2.1 Effectiveness of Parse Features
We exploit the n-gram counts (NG), lexical fea-

tures (LEX) of Bergsma et al. (2010) and our own
parse features (PAR) in linear SVM models.

The first comparison is between the supervised
learning systems with LEX and LEX+PAR. As
shown in Table 3, by exploiting our unique parse
features, for the total 14 confusion sets, the accuracy
increases on 12 sets and decreases on 2 sets. Over-
all, the spelling correction accuracy improves an ab-
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solute 1.35% for our 9 confusion sets and 0.60% for
Bergsma et al.’s 5 confusion sets.

The second comparison is to see how parse fea-
tures interact with n-gram count features in a su-
pervised classifier. The best system from (Bergsma
et al., 2010) is listed in the table as ”NG+LEX”.
As shown in Table 3, the parse features proved to
be beneficial when augmenting this baseline, except
for the decrease in accuracy on adverse, averse by
only 2 cases out of 368, and among, between by
2 cases out of 10227. For all other confusion sets,
parse features decrease the error rate by as much as
2.74% (absolute) and as much as 38.5% (relative).
Improvements are statistically significant on all con-
fusion sets together, although for each separate set,
improvements are significant on only 5 sets, in part
due to an insufficient number of test cases.

The reason that parse features are occasionally not
helpful is because they sometimes include an un-
common word in dependencies, which happens to
appear once with the wrong word but not with the
correct word in the training data; or they sometimes
include too common words, which bias the classifier
in favor of the more frequent word in the confusion
set. We also noticed that lexical features are not al-
ways helpful when added to n-gram count features,
even for in-domain applications (i.e., with training
data and test data coming from the same domain or
corpus), as marked by underlines. However, lexical
and parse features together show more significant
and constant improvement over n-gram count-based
models, as marked by α.

Of the six systems, every system that uses parse
features gets the example correct in Section 1, “com-
plementing the president”; LEX by itself also gets
the example correct, but NG and NG+LEX fail.

In summary, our system NG+LEX+PAR outper-
forms the state-of-the-art system NG+LEX. It re-
duces the error rate by 12.4% across our 9 confusion
sets and by 8.4% across Bergsma et al.’s 5 confusion
sets. Both improvements are significant (p < 0.05)
by the McNemar test. In addition, while NG+LEX
is not always better than NG, NG+LEX+PAR is con-
sistently better than NG.

5.2.2 Impact of Word Co-occurrence
The LIBLINEAR tool does not provide probabil-

ity estimates for SVM models but Logistic Regres-

sion can. In this set of experiments, we train a Logis-
tic Regression model with NG+LEX+PAR features
and empirically set the confidence threshold at 0.6,
as described in Section 4, based on the performance
on two word pairs. In the combined system, when
the Logistic Regression model estimates a probabil-
ity higher than the threshold we output its results,
otherwise we output the result of the system based
on word co-occurrence.

Surprisingly, although Random Indexing takes
into account more information than first-order word
co-occurrence, it lowered overall performance sub-
stantially. Thus in Table 4, we only present results
of using first-order word co-occurrence rather than
Random Indexing. For all 12 confusion sets, distri-
butional word co-occurrence information improves
9 sets and hurts 5 sets. Overall, it reduces the er-
ror rate slightly by 0.2% for our 9 sets and 1.5% for
Bergsma et al.’s sets.

We believe there are two reasons why Ran-
dom Indexing fared worse than first-order word
co-occurrence: 1) Random Indexing considers co-
occurrence on a document level, while our first-
order word co-occurrence is limited to a 5-word win-
dow context. The latter is more suitable to context-
sensitive spelling correction. 2) The model for Ran-
dom Indexing is trained on a relatively small size
corpus compared to the web-scale data we used to
get n-gram count features for the classifier and thus
is not able to introduce much new evidence besides
the information carried by NG+LEX+PAR features.

Reason 2) also suggests why first-order co-
occurrence helps on some occasions while not on
other occasions. Its impact is limited because the
word co-occurrence information overlaps with some
of the PAR feature values as mentioned earlier. It
improves some cases because it provides some new
evidence from web-scale data to the system based on
NG+LEX+PAR features. It introduces new errors
because it simply favors the word that co-occurred
more often regardless of other factors. Its impact is
also limited because it is only considered when clas-
sifiers with NG+LEX+PAR features are not confi-
dent.
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CONFUSION SET # TEST MAJOR LEX LEX+PAR NG NG+LEX NG+LEX+PAR (&)
9 commonly cited ESL confusion pairs

adverse / averse 368 85.87 97.01 96.74 91.03 97.55 97.01 (+22.2%) α
allusion / illusion 535 76.64 91.22 91.40 91.40 92.52 93.08 (-7.5%) α
complement / compliment 860 51.51 83.84 85.12 88.49 88.37 89.53 (-10.0%)
confidant / confident 2416 94.41 97.97 98.30 98.51 99.05 99.09 (-4.3%) α
desert / dessert 2357 70.81 90.71 91.56 87.31 93.68 94.57 (-14.1%) α*
discreet / discrete 219 79.45 84.48 85.84 85.84 90.41 91.32 (-9.5%) α
elicit / illicit 563 53.46 82.77 95.56 97.51 97.51 98.22 (-28.6%)
stationary / stationery 182 62.64 87.36 92.31* 93.96 92.86 95.60 (-38.5%)
wander / wonder 6506 86.37 96.42 97.42* 97.56 98.23 98.48 (-13.9%) α*
Total 13972 81.08 93.94 95.29* 94.82 96.56 96.99 (-12.4%) α*

5 Original Bergsma pairs
# among / between 10227 57.46 91.89 91.86 88.34 93.60 93.58 (+3.1%) α
# amount / number 7398 76.44 92.34 93.16* 93.03 93.42 94.08 (-10.1%) α*
# cite / site 10185 95.71 99.42 99.53 99.16 99.52 99.63 (-22.4%)α
# peace / piece 7330 56.81 95.01 97.01* 95.55 96.74 97.46 (-22.2%)α *
# raise / rise 9464 55.98 96.12 96.64* 94.45 96.68 97.05 (-11.5%) α
Total 44604 68.92 95.09 95.69* 94.07 96.09 96.42 (-8.4%) α

Table 3: Spelling correction precision (%), impact of adding parse features
SVM trained on 1G words of news text, tested on 9-months of NYT data.
*: Improvement of (NG+)LEX+PAR vs. (NG+)LEX is statistically significant.
α: Improvement of NG+LEX+PAR vs. NG is statistically significant.
&: Relative increase or decrease of error rate compared to ”NG+LEX”
#: As in Bergsma et al. (2009; 2010) no morphological variants of the words are used in evaluation

CONFUSION SET # TEST MAJOR CLASSIFIER COMBINED SYSTEM (&)
9 commonly cited ESL confusion pairs

adverse / averse 368 85.87 97.55 96.74 (+33.3%)
allusion / illusion 535 76.64 92.34 92.34 (- 0.0%)
complement / compliment 860 51.51 89.88 90.81 (-9.2%)
confidant / confident 2416 94.41 99.13 99.05 (+9.5%)
desert / dessert 2357 70.81 93.98 94.23 (-3.7%)
discreet / discrete 219 79.45 90.41 91.78 (-14.3%)
elicit / illicit 563 53.46 98.40 98.76 (-22.2%)
stationary / stationery 182 62.64 93.41 93.96 (-9.1%)
wander / wonder 6506 86.37 98.49 98.36 (+9.2%)

5 Original Bergsma pairs
# among / between 10227 57.46 92.73 92.73 (-0.1%)
# amount / number 7398 76.44 93.44 93.76 (-4.74%)
# cite / site 10185 95.71 99.49 99.47 (+3.8%)
# peace / piece 7330 56.81 96.19 96.38 (-5.0%)
# raise / rise 9464 55.98 96.66 96.59 (+2.2%)

Table 4: Spelling correction accuracy (%), impact of combining word co-occurrence
CLASSIFIER: Logistic Regression trained on 1G words of news text, tested on 9-months NYT data.
COMBINED SYSTEM: CLASSIFER plus system based on first-order word co-occurrence.
&: Relative increase or decrease in error rate compared to CLASSIFIER
#: As in Bergsma et al. (2009; 2010), no morphological variants of the words are used in evaluation
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6 Conclusions

We propose a novel approach that uses parse
features and lexical features together to improve
the performance of web-scale n-gram models for
spelling correction. This method is especially adap-
tive when less training data are available, which is
the case for confusable words that are not very fre-
quently used. We also investigate the effectiveness
of incorporating web-scale word co-occurrence and
corpus-based semantic word relatedness (Random
Indexing).

For future work, we will investigate using seman-
tic information (e.g. WordNet) to extend n-gram
models. It will be interesting to see if the usage of
the word “compliment” in “complimenting the pres-
ident” can be estimated by considering similar us-
ages in the corpus, such as “complimenting the stu-
dent” or by creating an n-gram database of synset
patterns. We will investigate extending, to other ap-
plications, this general methodology combining dis-
tributional, semantic and syntactic information with
language models.
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Abstract

Accurate prediction of demographic attributes from
social media and other informal online content is
valuable for marketing, personalization, and legal in-
vestigation. This paper describes the construction of
a large, multilingual dataset labeled with gender, and
investigates statistical models for determining the
gender of uncharacterized Twitter users. We explore
several different classifier types on this dataset. We
show the degree to which classifier accuracy varies
based on tweet volumes as well as when various
kinds of profile metadata are included in the models.
We also perform a large-scale human assessment us-
ing Amazon Mechanical Turk. Our methods signifi-
cantly out-perform both baseline models and almost
all humans on the same task.

1 Introduction
The rapid growth of social media in recent years, exem-
plified by Facebook and Twitter, has led to a massive
volume of user-generated informal text. This in turn has
sparked a great deal of research interest in aspects of so-
cial media, including automatically identifying latent de-
mographic features of online users. Many latent features
have been explored, but gender and age have generated
great interest (Schler et al., 2006; Burger and Henderson,
2006; Argamon et al., 2007; Mukherjee and Liu, 2010;
Rao et al., 2010). Accurate prediction of these features
would be useful for marketing and personalization con-
cerns, as well as for legal investigation.

In this work, we investigate the development of high-
performance classifiers for identifying the gender of
Twitter users. We cast gender identification as the ob-
vious binary classification problem, and explore the use
of a number of text-based features. In Section 2, we de-
scribe our Twitter corpus, and our methods for labeling
a large subset of this data for gender. In Section 3 we
discuss the features that are used in our classifiers. We
describe our Experiments in Section 4, including our ex-
ploration of several different classifier types. In Section 5

we present and analyze performance results, and discuss
some directions for acquiring additional data by simple
self-training techniques. Finally in Section 6 we summa-
rize our findings, and describe extensions to the work that
we are currently exploring.

2 Data
Twitter is a social networking and micro-blogging plat-
form whose users publish short messages or tweets. In
late 2010, it was estimated that Twitter had 175 million
registered users worldwide, producing 65 million tweets
per day (Miller, 2010). Twitter is an attractive venue
for research into social media because of its large vol-
ume, diverse and multilingual population, and the gener-
ous nature of its Terms of Service. This has led many re-
searchers to build corpora of Twitter data (Petrovic et al.,
2010; Eisenstein et al., 2010). In April 2009, we began
sampling data from Twitter using their API at a rate of
approximately 400,000 tweets per day. This represented
approximately 2% of Twitter’s daily volume at the time,
but this fraction has steadily decreased to less than 1% by
2011. This decrease is because we sample roughly the
same number of tweets every day while Twitter’s overall
volume has increased markedly. Our corpus thus far con-
tains approximately 213 million tweets from 18.5 million
users, in many different languages.

In addition to the tweets that they produce, each Twitter
user has a profile with the following free-text fields:

• Screen name (e.g., jsmith92, kingofpittsburgh)

• Full name (e.g., John Smith, King of Pittsburgh)

• Location (e.g., Earth, Paris)

• URL (e.g., the user’s web site, Facebook page, etc.)

• Description (e.g., Retired accountant and grandfa-
ther)

All of these except screen name are completely op-
tional, and all may be changed at any time. Note that none
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Users Tweets
Training 146,925 3,280,532

Development 18,380 403,830
Test 18,424 418,072

Figure 1: Dataset Sizes

of the demographic attributes we might be interested in
are present, such as gender or age. Thus, the existing
profile elements are not directly useful when we wish to
apply supervised learning approaches to classify tweets
for these target attributes. Other researchers have solved
this problem by using labor-intensive methods. For ex-
ample, Rao et al. (2010) use a focused search methodol-
ogy followed by manual annotation to produce a dataset
of 500 English users labeled with gender. It is infeasible
to build a large multilingual dataset in this way, however.

Previous research into gender variation in online dis-
course (Herring et al., 2004; Huffaker, 2004) has found
it convenient to examine blogs, in part because blog sites
often have rich profile pages, with explicit entries for gen-
der and other attributes of interest. Many Twitter users
use the URL field in their profile to link to another facet
of their online presence. A significant number of users
link to blogging websites, and many of these have well-
structured profile pages indicating our target attributes. In
many cases, these are not free text fields. Users on these
sites must select gender and other attributes from drop-
down menus in order to populate their profile informa-
tion. Accordingly, we automatically followed the Twitter
URL links to several of the most represented blog sites
in our dataset, and sampled the corresponding profiles.
By attributing this blogger profile information to the as-
sociated Twitter account, we created a corpus of approx-
imately 184,000 Twitter users labeled with gender.

We partitioned our dataset by user into three distinct
subsets, training, development, and test, with sizes as in-
dicated in Figure 1. That is, all the tweets from each user
are in a single one of the three subsets. This is the corpus
we use in the remainder of this paper.

This method of gleaning supervised labels for our
Twitter data is only useful if the blog profiles are in turn
accurate. We conducted a small-scale quality assurance
study of these labels. We randomly selected 1000 Twitter
users from our training set and manually examined the
description field for obvious indicators of gender, e.g.,
mother to 3 boys or just a dude. Only 150 descriptions
(15% of the sample) had such an explicit gender cue. 136
of these also had a blog profile with the gender selected,
and in all of these the gender cue from the user’s Twit-
ter description agreed with the corresponding blog pro-
file. This may only indicate that people who misrepresent
their gender are simply consistent across different aspects
of their online presence. However, the effort involved in

maintaining this deception in two different places sug-
gests that the blog labels on the Twitter data are largely
reliable.

Initial analysis using the blog-derived labels showed
that our corpus is composed of 55% females and 45%
males. This is consistent with the results of an earlier
study which used name/gender correlations to estimate
that Twitter is 55% female (Heil and Piskorski, 2009).
Figure 2 shows several statistics broken down by gender,
including the Twitter users who did not indicate their gen-
der on their blog profile. In our dataset females tweet at a
higher rate than males and in general users who provide
their gender on their blog profile produce more tweets
than users who do not. Additionally, of the 150 users
who provided a gender cue in their Twitter user descrip-
tion, 105 were female (70%). Thus, females appear more
likely to provide explicit indicators about their gender in
our corpus.

The average number of tweets per user is 22 and is
fairly consistent across our traing/dev/test splits. There
is wide variance, however, with some users represented
by only a single tweet, while the most prolific user in our
sample has nearly 4000 tweets.

It is worth noting that many Twitter users do not tweet
in English. Table 3 presents an estimated breakdown of
language use in our dataset. We ran automatic language
ID on the concatenated tweet texts of each user in the
training set. The strong preponderance of English in our
dataset departs somewhat from recent studies of Twitter
language use (Wauters, 2010). This is likely due in part to
sampling methodology differences between the two stud-
ies. The subset of Twitter users who also use a blog site
may be different from the Twitter population as a whole,
and may also be different from the users tweeting during
the three days of Wauters’s study. There are also possible
longitudinal differences: English was the dominant lan-
guage on Twitter when the online service began in 2006,
and this was still the case when we began sampling tweets
in 2009, but the proportion of English tweets had steadily
dropped to about 50% in late 2010. Note that we do not
use any explicit encoding of language information in any
of the experiments described below.

Our Twitter-blog dataset may not be entirely represen-
tative of the Twitter population at general, but this has
at least one advantage. As with any part of the Inter-
net, spam is endemic to Twitter. However by sampling
only Twitter users with blogs we have largely filtered out
spammers from our dataset. Informal inspection of a few
thousand tweets revealed a negligible number of commer-
cial tweets.

3 Features
Tweets are tagged with many sources of potentially dis-
criminative metadata, including timestamps, user color
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Users Tweets Mean tweets
Count Percentage Count Percentage per user

Female 100,654 42.3% 2,429,621 47.7% 24.1
Male 83,075 35.0 1,672,813 32.8 20.1
Not provided 53,817 22.7 993,671 19.5 18.5

Figure 2: Gender distribution in our blog-Twitter dataset

Language Users Percentage
English 98,004 66.7%
Portuguese 21,103 14.4
Spanish 8,784 6.0
Indonesian 6,490 4.4
Malay 1,401 1.0
German 1,220 0.8
Chinese 985 0.7
Japanese 962 0.7
French 878 0.6
Dutch 761 0.5
Swedish 686 0.5
Filipino 643 0.4
Italian 631 0.4
Other 4,377 3.0

Figure 3: Language ID statistics from training set

preferences, icons, and images. We have restricted our
experiments to a subset of the textual sources of features
as listed in Figure 4.

We use the content of the tweet text as well as three
fields from the Twitter user profile described in Section 2:
full name, screen name, and description. For each user in
our dataset, a field is in general a set of text strings. This
is obviously true for tweet texts but is also the case for
the profile-based fields since a Twitter user may change
any part of their profile at any time. Because our sam-
ple spans points in time where users have changed their
screen name, full name or description, we include all of
the different values for those fields as a set. In addition,
a user may leave their description and full name blank,
which corresponds to the empty set.

In general, our features are quite simple. Both word-
and character-level ngrams from each of the four fields
are included, with and without case-folding. Our fea-
ture functions do not count multiple occurrences of the
same ngram. Initial experiments with count-valued fea-
ture functions showed no appreciable difference in per-
formance. Each feature is a simple Boolean indicator
representing presence or absence of the word or character
ngram in the set of text strings associated with the partic-
ular field. The extracted set of such features represents
the item to the classifier.

For word ngrams, we perform a simple tokenization

Feature extraction
Char

ngrams
Word

ngrams
Distinct
features

Screen name 1–5 none 432,606
Full name 1–5 1 432,820
Description 1–5 1–2 1,299,556
Tweets 1–5 1–2 13,407,571
Total 15,572,522

Figure 4: Feature types and counts

that separates words at transitions between alphanumeric
characters and non-alphanumeric.1 We make no attempt
to tokenize unsegmented languages such as Chinese, nor
do we perform morphological analysis on language such
as Korean; we do no language-specific processing at all.
We expect the character-level ngrams to extract useful in-
formation in the case of such languages.

Figure 4 indicates the details and feature counts for the
fields from our training data. We ignore all features ex-
hibited by fewer than three users.

4 Experiments
We formulate gender labeling as the obvious binary clas-
sification problem. The sheer volume of data presents
a challenge for many of the available machine learning
toolkits, e.g. WEKA (Hall et al., 2009) or MALLET (Mc-
Callum, 2002). Our 4.1 million tweet training corpus
contains 15.6 million distinct features, with feature vec-
tors for some experiments requiring over 20 gigabytes
of storage. To speed experimentation and reduce the
memory footprint, we perform a one-time feature genera-
tion preprocessing step in which we convert each feature
pattern (such as “caseful screen name character trigram:
Joh”) to an integer codeword. The learning algorithms
do not access the codebook at any time and instead deal
solely with vectors of integers. We compress the data fur-
ther by concatenating all of a user’s features into a single
vector that represents the union of every tweet produced
by that user. This condenses the dataset to about 180,000
vectors occupying 11 gigabytes of storage.

We performed initial feasibility experiments using a
wide variety of different classifier types, including Sup-
port Vector Machines, Naive Bayes, and Balanced Win-

1We use the standard regular expression pattern \b.
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now2 (Littlestone, 1988). These initial experiments were
based only on caseful word unigram features from tweet
texts, which represent less than 3% of the total feature
space but still include large numbers of irrelevant fea-
tures. Performance as measured on the development set
ranged from Naive Bayes at 67.0% accuracy to Balanced
Winnow2 at 74.0% accuracy. A LIBSVM (Chang and
Lin, 2001) implementation of SVM with a linear ker-
nel achieved 71.8% accuracy, but required over fifteen
hours of training time while Winnow needed less than
seven minutes. No classifier that we evaluated was able
to match Winnow’s combination of accuracy, speed, and
robustness to increasing amounts of irrelevant features.

We built our own implementation of the Balanced Win-
now2 algorithm which allowed us to iterate repeatedly
over the training data on disk rather than caching the en-
tire dataset in memory. This reduced our memory re-
quirements to the point that we were able to train on the
entire dataset using a single machine with 8 gigabytes of
RAM.

We performed a grid search to select learning parame-
ters by measuring their affect on Winnow’s performance
on the development set. We found that two sets of pa-
rameters were required: a low learning rate (0.03) was
effective when using only one type of input feature (such
as only screen name features, or only tweet text features),
and a higher learning rate (0.20) was required when mix-
ing multiple types of features in one classifier. In both
cases we used a relatively large margin (35%) and cooled
the learning rate by 50% after each iteration.

These learning parameters were used during all of the
experiments that follow. All gender prediction models
were trained using data from the training set and evalu-
ated on data from the development set. The test set was
held out entirely until we finalized our best performing
models.

4.1 Field combinations

We performed a number of experiments with the Winnow
algorithm described above. We trained it on the train-
ing set and evaluated on the development set for each of
the four user fields in isolation, as well as various com-
binations, in order to simulate different use cases for sys-
tems that perform gender prediction from social media
sources. In some cases we may have all of the metadata
fields available above, while in other cases we may only
have a sample of a user’s tweet content or perhaps just
one tweet. We simulated the latter condition by randomly
selecting a single tweet for each dev and test user; this
tweet was used for all evaluations of that user under the
single-tweet condition. Note, however, that for training
the single tweet classifier, we do not concatenate all of a
user’s tweets as described above. Instead, we pair each
user in the training set with each of their tweets in turn,

in order to take advantage of all the training data. This
amounted to over 3 million training instances for the sin-
gle tweet condition.

We paid special attention to three conditions: single
tweet, all fields, and all tweets. For these conditions, we
evaluated the learned models on the training data, the de-
velopment set, and the test set, to study over-training and
generalization. Note that for all experiments, the evalua-
tion includes some users who have left their full name or
description fields blank in their profile.

In all cases, we compare results to a maximum likeli-
hood baseline that simply labels all users female.

4.2 Human performance

We wished to compare our classifier’s efficacy to human
performance on the same task. A number of researchers
have recently experimented with the use of Amazon Me-
chanical Turk (AMT) to create and evaluate human lan-
guage data (Callison-Burch and Dredze, 2010). AMT
and other crowd-sourcing platforms allow simple tasks to
be posted online for large numbers of anonymous work-
ers to complete.

We used AMT to measure human performance on gen-
der determination for the all tweets condition. Each AMT
worker was presented with all of the tweet texts from
a single Twitter user in our development set and asked
whether the author was male or female. We redundantly
assigned five workers to each Twitter user, for a total of
91,900 responses from 794 different workers. We experi-
mented with a number of ways to combine the five human
labels for each item, including a simple majority vote and
a more sophisticated scheme using an expectation maxi-
mization algorithm.

4.3 Self-training

Our final experiments were focused on exploring the use
of unlabeled data, of which we have a great deal. We
performed some initial experiments on a self-training ap-
proach to labeling more data. We trained the all-fields
classifier on half of our training data, and applied it to the
other half. We trained a new classifier on this full train-
ing set, which now included label errors introduced by the
limitations of the first classifier. This provided a simula-
tion of a self-training setup using half the training data.
Any robust gains due to self-training should be revealed
by this setup.

5 Results

5.1 Field combinations

Figure 5 shows development set performance on various
combinations of the user fields, all of which outperform
the maximum likelihood baseline that classifies all users
as female. The single most informative field with respect
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Baseline (F) 54.9%
One tweet text 67.8
Description 71.2
All tweet texts 75.5
Screen name (e.g. jsmith92) 77.1
Full name (e.g. John Smith) 89.1
Tweet texts + screen name 81.4
Tweet texts + screen name + description 84.3
All four fields 92.0

Figure 5: Development set accuracy using various fields

Condition Train Dev Test
Baseline (F) 54.8% 54.9 54.3
One tweet text 77.8 67.8 66.5
Tweet texts 77.9 75.5 74.5
All fields 98.6 92.0 91.8

Figure 6: Accuracy on the training, development and test sets

to gender is the user’s full name, which provides an accu-
racy of 89.1%. Screen name is often a derivative of full
name, and it too is informative (77.1%), as is the user’s
self-assigned description (71.2).

Using only tweet texts performs better than using only
the user description (75.5% vs. 71.2). Tweet texts are
sufficient to decrease the error by nearly half over the
all-female prior. It appears that the tweet texts con-
vey more about a Twitter user’s gender than their own
self-descriptions. Even a single (randomly selected)
tweet text contains some gender-indicative information
(67.2%). These results are similar to previous work. Rao
et al. (2010) report results of 68.7% accuracy on gender
from tweet texts alone using an ngram-only model, ris-
ing to 72.3 with hand-crafted “sociolinguistic-based” fea-
tures. Test set differences aside, this is comparable with
the “All tweet texts” line in Figure 5, where we achieve
an accuracy of 75.5%.

Performance of models built from various aggregates
of the four basic fields are shown in Figure 5 as well. The
combination of tweet texts and a screen name represents
a use case common to many different social media sites,
such as chat rooms and news article comment streams.
The performance of this combination (81.4%) is signif-
icantly higher than either of the individual components.
As we have observed, full name is the single most infor-
mative field. It out-performs the combination of the other
three fields, which perform at 84.3%. Finally, the classi-
fier that has access to features from all four fields is able
to achieve an accuracy of 92.0%.

The final test set accuracy is shown in Figure 6. This
test set was held out entirely during development and has
been evaluated only with the four final models reported

Rank MI Feature f P (Female|f)
1 0.0170 ! 0.601
2 0.0164 : 0.656
3 0.0163 lov 0.687
4 0.0162 love 0.680
5 0.0161 lov 0.676
6 0.0160 love 0.689
7 0.0160 ! 0.618
8 0.0149 :) 0.697
9 0.0148 y! 0.687

10 0.0145 my 0.637
11 0.0143 love 0.691
12 0.0143 haha 0.705
13 0.0141 my 0.634
14 0.0140 my 0.637
15 0.0140 :) 0.697
16 0.0139 my 0.634
17 0.0138 ! i 0.711
18 0.0138 hah 0.698
19 0.0137 hah 0.714
20 0.0135 so 0.661
21 0.0134 haha 0.714
22 0.0132 so 0.661
23 0.0128 i 0.618
24 0.0127 ooo 0.708
25 0.0126 ! i 0.743
26 0.0123 i lov 0.728
27 0.0120 ove 0.671
28 0.0117 ay! 0.718
29 0.0116 aha 0.678
30 0.0116 <3 0.856
31 0.0115 cute 0.826
32 0.0114 i lo 0.704
33 0.0114 :)$ 0.701
34 0.0110 :( 0.731
35 0.0109 :)$ 0.701
36 0.0109 !$ 0.614
37 0.0107 ahah 0.716
38 0.0106 <3 0.857

464 0.0051 ht | 0.506
465 0.0051 hank 0.641
466 0.0051 too 0.659
467 0.0051 yay! 0.818
468 0.0051 http | 0.506
469 0.0051 htt | 0.506
624 0.0047 Googl | 0.317
625 0.0047 ing! 0.718
626 0.0047 hair 0.749
627 0.0047 b 0.573
628 0.0047 y : 0.725
629 0.0046 Goog | 0.318

Figure 7: A selection of tweet text features, ranked by mutual
information. Character ngrams in Courier, words in bold.
Underscores are spaces, $ matches the end of the tweet text.
| marks “male” features.1305



in this figure. The difference between the scores on the
train and development sets show how well the model can
fit the data. There are features in the user name and user
screen name fields that make the data trivially separable.
The tweet texts, however, present more ambiguity for the
learners. The difference between the development and
test set scores suggest that only minimal hill-climbing oc-
curred during our development.

We have performed experiments to better understand
how performance scales with training data size. Figure 8
shows how performance increases for both the all-fields
and tweet-texts-only classifiers as we train on more users,
with little indication of leveling off.

As discussed in Section 2, there is wide variance in
the number of tweets available from different users. In
Figure 9 we show how the tweet text classifier’s accu-
racy increases as the number of tweets from the user in-
creases. Each point is the average classifier accuracy for
the user cohort with exactly that many tweets in our dev
set. Performance increases given more tweets, although
the averages get noisy for the larger tweet sets, due to
successively smaller cohort sizes.

Some of the most informative features from tweet texts
are shown in Figure 7, ordered by mutual information
with gender. There are far more of these strong features
for the female category than the male: only five of the top
1000 features are associated more strongly with males,
i.e. they have lower P (Female|feature) than the prior,
P (Female) = 0.55.

Some of these features are content-based (hair, and
several fragments of love), while others are stylistic (ooo,
several emoticons). The presence of http as a strong
male feature might be taken to indicate that men include
links in their tweet texts far more often than women,
but a cursory examination seems to show instead that
women are simply more likely to include “bare” links,
e.g., emnlp.org vs. http://emnlp.org.

5.2 Human performance

Figure 10 shows the results of the human performance
benchmarks using Amazon Mechanical Turk. The raw
per-response performance is 60.4%, only moderately bet-
ter than the all-female baseline. When averaged across
workers, however, this improves substantially, to 68.7.
This would seem to indicate that there were a few poor
workers who did many annotations, and in fact when we
limit the performance average to those workers who pro-
duced 100 or more responses, we do see a degradation to
62.2.

The problem of poor quality workers is endemic to
anonymous crowd sourcing platforms like Mechanical
Turk. A common way to combat this is to use redun-
dancy, with a simple majority vote to choose among mul-
tiple responses for each item. This allows us to treat the

Baseline 54.9

Average response 60.4
Average worker 68.7
Average worker (100 or more responses) 62.2

Worker ensemble, majority vote 65.7
Worker ensemble, EM-adjusted vote 67.3

Winnow all-tweet-texts classifier 75.5

Figure 10: Comparing with humans on the all tweet texts task

five workers who responded to each item as an ensem-
ble. As Figure 10 indicates, this provides some improve-
ment over the raw result (65.7% vs. 60.4). A different
approach, first proposed by Dawid and Skene (1979), is
to use an expectation maximization algorithm to estimate
the quality of each source of labels, as well as estimate the
posterior for each item. In this case, the first is an AMT
worker’s capability and the second is the distribution of
gender labels for each Twitter user.

The Dawid and Skene approach has previously been
applied to Mechanical Turk responses (Ipeirotis et al.,
2010). We used their implementation on our AMT re-
sults but with only moderate improvement over the sim-
ple majority ensemble (67.3% vs. 65.7). All of the aggre-
gate human results are substantially below the all-tweet-
texts classifier score, suggesting that this is a difficult
task for people to perform. As Figure 11 indicates, most
workers perform below 80% accuracy, and less than 5%
of the prolific workers out-perform the automatic classi-
fier. These high-scoring workers may indeed be good at
the task, or they may have simply been assigned a less-
difficult subset of the data. Figure 12 illustrates this by
showing aligned worker performance and classifier per-
formance on the precise set of items that each worker
performed on. Here we see that, with few exceptions,
the automatic classifier performs as well or better than
the AMT workers on their subset.

5.3 Self-training

Finally, as described in Section 4.3, we performed some
initial experiments on a self-training approach to label-
ing more data. As described above the all-fields classi-
fier achieves an accuracy of 92% on the development set
when trained on the full training set. Training on half of
the training data results in a drop to 91.1%. The sec-
ond classifier trained on the full training set, but with
some label errors introduced by the first, had further de-
graded performance of 90.9%. Apparently the errorful la-
bels introduced by the simplistic self-training procedure
overwhelmed any new information that might have been
gained from the additional data. We are continuing to ex-
plore ways to use the large amounts of unsupervised data
in our corpus.
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Figure 8: Performance increases when training with more users

Figure 9: Performance increases with more tweets from target user
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Figure 11: Human accuracy in rank order (100 responses or more), with classifier performance (line)

Figure 12: Classifier vs. human accuracy on the same subsets (100 responses or more)
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6 Conclusion
In this paper, we have presented several configurations of
a language-independent classifier for predicting the gen-
der of Twitter users. The large dataset used for construc-
tion and evaluation of these classifiers was drawn from
Twitter users who also completed blog profile pages.

These classifiers were tested on the largest set of
gender-tagged tweets to date that we are aware of. The
best classifier performed at 92% accuracy, and the clas-
sifier relying only on tweet texts performed at 76% ac-
curacy. Human performance was assessed on this latter
condition, and only 5% of 130 humans performed 100 or
more classifications with higher accuracy than this ma-
chine.

In future work, we will explore how well such models
carry over to gender identification in other informal on-
line genres such as chat and forum comments. Further-
more, we have been able to assign demographic features
beside gender, including age and location, to our Twit-
ter dataset. We have begun to build classifiers for these
features as well.
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Abstract

Information published in online stock invest-
ment message boards, and more recently in
stock microblogs, is considered highly valu-
able by many investors. Previous work fo-
cused on aggregation of sentiment from all
users. However, in this work we show that it
is beneficial to distinguish expert users from
non-experts. We propose a general framework
for identifying expert investors, and use it as a
basis for several models that predict stock rise
from stock microblogging messages (stock
tweets). In particular, we present two methods
that combine expert identification and per-user
unsupervised learning. These methods were
shown to achieve relatively high precision in
predicting stock rise, and significantly outper-
form our baseline. In addition, our work pro-
vides an in-depth analysis of the content and
potential usefulness of stock tweets.

1 Introduction

Online investment message boards such as Yahoo!
Finance and Raging Bull allow investors to share
trading ideas, advice and opinions on public com-
panies. Recently, stock microblogging services such
as StockTwits (which started as a filtering service
over the Twitter platform) have become very popu-
lar. These forums are considered by many investors
as highly valuable sources for making their trading
decisions.

This work aims to mine useful investment in-
formation from messages published in stock mi-
croblogs. We shall henceforth refer to these mes-
sages as stock tweets. Ultimately, we would like to

transform those tweets into buy and sell decisions.
Given a set of stock-related messages, this process
typically comprises two steps:

1. Classify each message as “bullish” (having a
positive outlook on the stock), “bearish” (hav-
ing a negative outlook on the stock), or neutral.

2. Make trading decisions based on these message
classifications.

Previous work on stock investment forums and
microblogs usually regarded the first step (message
classification) as a sentiment analysis problem, and
aligned bullish with positive sentiment and bearish
with negative sentiment. Messages were classified
by matching positive and negative terms from sen-
timent lexicons, learning from a hand-labeled set of
messages, or some combination of the two (Das and
Chen, 2007; Antweiler and Frank, 2004; Chua et al.,
2009; Zhang and Skiena, 2010; Sprenger and Welpe,
2010). Trading decisions were made by aggregating
the sentiment for a given stock over all the tweets,
and picking stocks with strongest sentiment signal
(buying the most bullish stocks and short-selling the
most bearish ones).

Sentiment aggregation reflects the opinion of the
investors community as a whole, but overlooks the
variability in user expertise. Clearly, not all investors
are born equal, and if we could tell experts from non-
experts, we would reduce the noise in these forums
and obtain high-quality signals to follow. This pa-
per presents a framework for identifying experts in
stock microblogs by monitoring their performance
in a training period. We show that following the ex-
perts results in more precise predictions.

1310



Based on the expert identification framework, we
experiment with different methods for deriving pre-
dictions from stock tweets. While previous work
largely aligned bullishness with message sentiment,
our in-depth content analysis of stock tweets (to be
presented in section 2.2) suggests that this view is
too simplistic. To start with, one important dif-
ference between bullishness/bearishness and posi-
tive/negative sentiment is that while the former rep-
resents belief about the future, the latter may also
refer to the past or present. For example, a user re-
porting on making profit from a buying stock yester-
day and selling it today is clearly positive about the
stock, but does not express any prediction about its
future performance. Furthermore, messages that do
refer to the future differ considerably in their signif-
icance. A tweet reporting on buying a stock by the
user conveys a much stronger bullishness signal than
a tweet that merely expresses an opinion. Overall, it
would seem that judging bullishness is far more elu-
sive than judging sentiment.

We therefore propose and compare two alterna-
tive approaches that sidestep the complexities of as-
sessing tweets bullishness. These two approaches
can be viewed as representing two extremes. The
first approach restricts our attention to the most ex-
plicit signals of bullishness and bearishness, namely,
tweets that report actual buy and sell transactions
performed by the user. In the second approach we
learn directly the relation between tweets content
and stock prices, following previous work on pre-
dicting stock price movement from factual sources
such as news articles (Lavrenko et al., 2000; Koppel
and Shtrimberg, 2004; Schumaker and Chen, 2010).
This approach poses no restrictions on the tweets
content and avoids any stipulated tweet classifica-
tion. However, user-generated messages are largely
subjective, and their correlation with the stock prices
depends on user’s expertise. This introduces much
noise into the learning process. We show that by
making the learning user-sensitive we can improve
the results substantially. Overall, our work illus-
trates the feasibility of finding expert investors, and
the utility of following them.

2 Stock Tweets

2.1 Stock Tweets Language
Stock tweets, as Twitter messages in general, are
short textual messages of up to 140 characters. They
are distinguished by having one or more references
to stock symbols (tickers), prefixed by a dollar sign.
For instance, the stock of Apple, Inc. is referenced
as $AAPL. Two other noteworthy Twitter conven-
tions that are also found in stock tweets are hashtags,
user-defined labels starting with ‘#’, and references
to other users, starting with ‘@’. Table 1 lists some
examples of stock tweets.

As common with Twitter messages, stock tweets
are typically abbreviated and ungrammatical utter-
ances. The language is informal and includes many
slang expressions, many of which are unique to the
stock tweets community. Thus, many positive and
negative expressions common to stock tweets are not
found in standard sentiment lexicons. Their unique
language and terminology often make stock tweets
hard to understand for an outsider. Many words
are abbreviated and appear in several non-standard
forms. For example, the word bought may also ap-
pear as bot or bght, and today may appear as 2day.
Stock tweets also contain many sentiment expres-
sions which may appear in many variations, e.g.
wow, woooow, woooooooow and so on. These char-
acteristics make the analysis of stock tweets a par-
ticularly challenging task.

2.2 Content Analysis
A preliminary step of this research was an exten-
sive data analysis, aimed to gain better understand-
ing of the major types of content conveyed in stock
tweets. First, we developed a taxonomy of tweet
categories while reading a few thousands of tweets.
Based on this taxonomy we then tagged a sample
of 350 tweets to obtain statistics on the frequency
of each category. The sample contained only tweets
that mention exactly one ticker. The following types
of tweets were considered irrelevant:

• Tweets that express question. These tweets
were labeled as Question.

• Obscure tweets, e.g. “$AAPL fat”, tweets
that contain insufficient information (e.g.
“http://url.com $AAPL”) and tweets that seem
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Example %

Fact

News $KFRC: Deutsche Bank starts at Buy 14.3%
Chart Pattern $C (Citigroup Inc) $3.81 crossed its 2nd Pivot Point Support

http://empirasign.com/s/x4c
10.9%

Trade bot back some $AXP this morning 12.9%
Trade Outcome Sold $CELG at 55.80 for day-trade, +0.90 (+1.6%)X 2.9%

Opinion

Speculation thinking of hedging my shorts by buying some oil. thinking of
buying as much $goog as i can in my IRA. but i need more doing,
less thinking.

4.0%

Chart Prediction http://chart.ly/wsy5ny $GS - not looking good for this one -
breaks this support line on volume will nibble a few short

12.9%

Recommendation $WFC if you have to own financials, WFC would be my choice.
http://fsc.bz/448 #WORDEN

1.7%

Sentiment $ivn is rocking 8.6%
Question $aapl breaking out but in this mkt should wait till close? 7.1%
Irrelevant $CLNE follow Mr. Clean $$ 24.9%

Table 1: Tweets categories and their relative frequencies

to contain no useful information (e.g “Even
Steve Jobs is wrong sometimes... $AAPL
http://ow.ly/1Tw0Z”). These tweets were la-
beled Irrelevant.

The rest of the tweets were classified into two major
categories: Facts and Opinions.

Facts can be divided into four main subcategories:

1. News: such tweets are generally in the form of
a tweeted headline describing news or a current
event generally drawn from mass media. As
such they are reliable but, since the information
is available in far greater detail elsewhere, their
added value is limited.

2. Chart Pattern: technical analysis aims to pro-
vide insight into trends and emerging patterns
in a stock’s price. These tweets describe pat-
terns in the stock’s chart without the inclusion
of any predicted or projected movement, an im-
portant contrast to Chart Prediction, which is
an opinion tweet described below. Chart pat-
tern tweets, like news, are a condensed form of
information already available through more in-
depth sources and as such their added value is
limited.

3. Trade: reports an actual purchase or sale of a
stock by the user. We consider this as the most
valuable form of tweet.

4. Trade Outcome: provides details of an “inverse
trade”, the secondary trade to exit the initial
position along with the outcome of the over-
all trade (profit/loss). The value of these tweets
is debatable since although they provide details
of a trade, they generally describe the “exit”
transaction. This creates a dilemma for ana-
lysts since traders will often exit not because
of a perceived change in the stock’s potential
but as a result of many short-term trading ac-
tivities. For this reason trade outcome provides
a moderate insight into a user’s position which
should be viewed with some degree of caution.

Opinions can also be divided into four main subcat-
egories:

1. Speculation: provides individual predictions of
future events relating to a company or actions
of the company. These are amongst the least
reliable categories, as the individual user is typ-
ically unable to justify his or her insight into the
predicted action.

2. Chart Prediction: describes a user’s prediction
of a future chart movement based on technical
analysis of the stock’s chart.

3. Recommendation: As with analyst recommen-
dations, this category represents users who
summarize their understanding and insight into
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a stock with a simple and effective recommen-
dation to take a certain course of action with
regard to a particular share. Recommendation
is the less determinate counterpart to Trade.

4. Sentiment: These tweets express pure senti-
ment toward the stock, rather than any factual
content.

Table 1 shows examples for each of the tweet cate-
gories, as well as their relative frequency in the ana-
lyzed sample.

3 An Expert Finding Framework

In this section we present a general procedure for
finding experts in stock microblogs. Based on this
procedure, we will develop in the next sections sev-
eral models for extracting reliable trading signals
from tweets.

We assume that a stock tweet refers to exactly one
stock, and therefore there is a one-to-one mapping
between tweets and stocks. Other tweets are dis-
carded. We define expertise as the ability to pre-
dict stock rise with high precision. Thus, a user is
an expert if a high percentage of his or her bullish
tweets is followed by a stock rise. In principle, we
could analogously follow bearish tweets, and see if
they are followed by a stock fall. However, bearish
tweets are somewhat more difficult to interpret: for
example, selling a share may indicate a negative out-
look on the stock, but it may also result from other
considerations, e.g. following a trading strategy that
holds the stock for a fixed period (cf. the discussion
on Trade Outcome tweets in the previous section).

We now describe a procedure that determines
whether a user u is an expert. The procedure re-
ceives a training set T of tweets posted by u, where
each tweet is annotated with its posting time. It is
also given a classifier C, which classifies each tweet
as bullish or not bullish (either bearish or neutral).

The procedure first applies the classifier C to iden-
tify the bullish tweets in T . It then determines the
correctness of each bullish tweet. Given a tweet t,
we observe the price change of the stock referenced
by t over a one day period starting at the next trading
day. The exact definition of mapping tweets to stock
prices is given in section 5.1. A one-day holding
period was chosen as it was found to perform well

in previous works on tweet-based trading (Zhang
and Skiena, 2010; Sprenger and Welpe, 2010), in
particular for long positions (buy transactions). A
bullish tweet is considered correct if it is followed
by a stock rise, and as incorrect otherwise1. Given a
set of tweets, we define its precision as the percent-
age of correct tweets in the set. Let Cu, Iu denote
the number of correct and incorrect bullish tweets
of user u, respectively. The precision of u’s bullish
tweets is therefore:

Pu =
Cu

Cu + Iu

Let Pbl be the baseline precision. In this work we
chose the baseline precision to be the proportion of
tweets that are followed by a stock rise in the whole
training set (including all the users). This represents
the expected precision when picking tweets at ran-
dom. Clearly, if Pu ≤ Pbl then u is not an expert.
If Pu > Pbl, we apply the following statistical test
to assess whether the difference is statistically sig-
nificant. First, we compute the expected number of
correct and incorrect transactions Cbl, Ibl according
to the baseline:

Cbl = Pbl × (Cu + Iu)

Ibl = (1− Pbl)× (Cu + Iu)

We then compare the observed counts (Cu, Iu) to
the expected counts (Cbl, Ibl), using Pearson’s Chi-
square test. Since it is required for this test that
Cbl and Ibl are at least 5, cases that do not meet
this requirement are discarded. If the resulting p-
value satisfies the required significance level α, then
u is considered an expert. In this work we take
α = 0.05. Note that since the statistical test takes
into account the number of observations, it will re-
ject cases where the number of the observations is
very small, even if the precision is very high. The
output of the procedure is a classification of u as
expert/non-expert, as well as the p-value (for ex-
perts). The expert finding procedure is summarized
in Algorithm 1.

In the next two sections we propose several alter-
natives for the classifier C.

1For about 1% of the tweets the stock price did not change
in the next trading day. These tweets are also considered correct
throughout this work.
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Algorithm 1 Determine if a user u is an expert
Input: set of tweets T posted by u, bullishness

classifier C, baseline probability Pbl, significance
level α

Output: NON-EXPERT/(EXPERT, p-value)

Tbullish ← tweets in T classified by C as bullish
Cu ← 0 ; Iu ← 0
for each t ∈ Tbullish do

if t is followed by a stock rise then
Cu++

else
Iu++

end if
end for
Pu = Cu

Cu+Iu

if Pu ≤ Pbl then
return NON-EXPERT

else
Cbl ← Pbl × (Cu + Iu)
Ibl ← (1− Pbl)× (Cu + Iu)
p ← ChiSquareTest(Cu, Iu, Cbl, Ibl)
if p > α then

return NON-EXPERT

else
return (EXPERT, p)

end if
end if

4 Following Explicit Transactions

The first approach we attempt for classifying bullish
(and bearish) tweets aims to identify only tweets that
report buy and sell transactions (that is, tweets in
the Trade category). According to our data analysis
(reported in section 2.2), about 13% of the tweets
belong to this category. There are two reasons to
focus on these tweets. First, as we already noted,
actual transactions are clearly the strongest signal
of bulishness/bearishness. Second, the buy and sell
actions are usually reported using a closed set of
expressions, making these tweets relatively easy to
identify. A few examples for buy and sell tweets are
shown in Table 2.

While buy and sell transactions can be captured
reasonably well by a relatively small set of patterns,
the examples in Table 2 show that stock tweets have

sell sold sum $OMNI 2.14 +12%
buy bot $MSPD for earnings testing

new indicator as well.
sell Out 1/2 $RIMM calls @ 1.84

(+0.81)
buy added to $joez 2.56
buy I picked up some $X JUL 50 Puts @

3.20 for gap fill play about an hour
ago.

buy long $BIDU 74.01
buy $$ Anxiously sitting at the bid on

$CWCO @ 11.85 It seems the ask
and I are at an impasse. 20 min of
this so far. Who will budge? (not
me)

buy In 300 $GOOG @ 471.15.
sell sold $THOR 41.84 for $400 the

FreeFactory is rocking
sell That was quick stopped out $ICE
sell Initiated a short position in $NEM.

Table 2: Buy and sell tweets

their unique language for reporting these transac-
tions, which must be investigated in order to come
by these patterns. Thus, in order to develop a clas-
sifier for these tweets, we created a training and test
corpora as follows. Based on our preliminary anal-
ysis of several thousand tweets, we composed a vo-
cabulary of keywords which trade tweets must in-
clude2. This vocabulary contained words such as in,
out, bot, bght, sld and so on. Filtering out tweets that
match none of the keywords removed two thirds of
the tweets. Out of the remaining tweets, about 5700
tweets were tagged. The training set contains about
3700 tweets, 700 of which are transactions. The test
set contains about 2000 tweets, 350 of which are
transactions.

Since the transaction tweets can be characterized
by a closed set of recurring patterns, we developed
a classifier that is based on a few dozens of man-
ually composed pattern matching rules, formulated
as regular expressions. The classifier works in three
stages:

1. Normalization: The tweet is transformed into
a canonical form. For example, user name

2That is, we did not come across any trade tweet that does
not include at least one of the keywords in the large sample we
analyzed, so we assume that such tweets are negligible.
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Dataset Transaction P R F1

Train Buy 94.0% 84.0% 0.89
Sell 96.0% 83.0% 0.89

Test Buy 85.0% 70.0% 0.77
Sell 88.5% 79.0% 0.84

Table 3: Results for buy/sell transactition classifier. Pre-
cision (P), Recall (R), and F-measure (F1) are reported.

is transformed into USERNAME; ticker name
is transformed into TICKER; buy, buying,
bought, bot, bght are transformed into BUY,
and so on.

2. Matching: Trying to match one of the buy/sell
patterns in the normalized tweet.

3. Filtering: Filtering out tweets that match “dis-
qualifying” patterns. The simplest examples
are a tweet starting with an “if” or a tweet con-
taining a question mark.

The results of the classifier on the train and test set
are summarized in Table 3. The results show that
our classifier identifies buy/sell transactions with a
good precision and a reasonable recall.

5 Unsupervised Learning from Stock
Prices

The drawback of the method presented in the pre-
vious section is that it only considers a small part
of the available tweets. In this section we propose
an alternative method, which considers all the avail-
able tweets, and does not require any tagged corpus
of tweets. Instead, we use actual stock price move-
ments as our labels.

5.1 Associating Tweets with Stock Prices

We used stock prices to label tweets as follows. Each
tweet message has a time stamp (eastern time), indi-
cating when it was published. Our policy is to buy
in the opening price of the next trading day (PB),
and sell on the opening price of the following trad-
ing day (PS). Tweets that are posted until 9:25 in the
morning (market hours begin at 9:30) are associated
with the same day, while those are posted after that
time are associated with the next trading date.

5.2 Training
Given the buy and sell prices associated with each
tweet, we construct positive and negative training
examples as follows: positive examples are tweets
where PS−PB

PB
≥ 3%, and negative examples are

tweets where PS−PB
PB

≤ −3%.
We used the SVM-light package (Joachims,

1999), with the following features:

• The existence of the following elements in the
message text:

– Reference to a ticker
– Reference to a user
– URL
– Number
– Hashtag
– Question mark

• The case-insensitive words in the message after
dropping the above elements.

• The 3, 4, 5 letter prefixes of each word.

• The name of the user who authored the tweet,
if it is a frequent user (at least 50 messages in
the training data). Otherwise, the user name is
taken to be “anonymous”.

• Whether the stock price was up or down 1% or
more in the previous trading day.

• 2, 3, 4-word expressions which are typical to
tweets (that is, their relative frequency in tweets
is much higher than in general news text).

6 Empirical Evaluation

In this section we focus on the empirical task of
tweet ranking: ordering the tweets in the test set ac-
cording to their likelihood to be followed by a stock
rise. This is similar to the common IR task of rank-
ing documents according to their relevance. A per-
fect ranking would place all the correct tweets before
all the incorrect ones.

We present several ranking models that use the
expert finding framework and the bullishness classi-
fication methods discussed in the previous sections
as building blocks. The performance of these mod-
els is evaluated on the test set. By considering the
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precision at various points along the list of ranked
tweets, we can compare the precision-recall trade-
offs achieved by each model.

Before we discuss the ranking models and the em-
pirical results, we describe the datasets used to train
and test these models.

6.1 Datasets
Stock tweets were downloaded from the StockTwits
website3, during two periods: from April 25, 2010
to November 1, 2011, and from December 14, 2010
to February 3, 2011. A total of 700K tweets mes-
sages were downloaded. Tweets that do not contain
exactly one stock ticker (traded in NYSE or NAS-
DAQ) were filtered out. The remaining 340K tweets
were divided as follows:

• Development set: April 25, 2010 to August 31,
2010: 124K messages

• Held out set: September 1, 2010 to November
1, 2010: 110K messages

• Test set: December 14, 2010 to February 3,
2011: 106K messages

We consider the union of the development and held
out sets as our training set.

6.2 Ranking Models
6.2.1 Joint-All Model

This is our baseline model, as it does not attempt
to identify experts. It learns a single SVM model
as described in Section 5 from all the tweets in the
training set. It then applies the SVM model to each
tweet in the test set, and ranks them according to the
SVM classification score.

6.2.2 Transaction Model
This model finds expert users in the training set

(Algorithm 1), using the buy/sell classifier described
in Section 4. Tweets classified as buy are considered
bullish, and the rest are considered non-bullish. Ex-
pert users are ranked according to their p value (in
ascending order). The same classifier is then applied
to the tweets of the expert users in the test set. The
tweets classified as bullish are ordered according to
the ranking of their author (first all the bullish tweets

3stocktwits.com

of the highest-ranked expert user, then all the bullish
tweets of the expert ranked second, and so on).

6.2.3 Per-User Model

The joint all model suffers from the tweets of
non-experts twice: at training time, these tweets in-
troduce much noise into the training of the SVM
model. At test time, we follow these unreliable
tweets along with the more reliable tweets of the ex-
perts. The per-user model addresses both problems.

This model learns from the development set a sep-
arate SVM model Cu for each user u, based solely
on the user’s tweets. We then optimize the clas-
sification threshold of the learnt SVM model Cu

as follows. Setting the threshold to θ results in a
new classifier Cu,θ. Algorithm 1 is applied to u’s
tweets in the held-out set (denoted Hu), using the
classifier Cu,θ. For the ease of presentation, we de-
fine ExpertPValue(Hu, Cu,θ,Pbl,α) as a function that
calls Algorithm 1 with the given parameters, and re-
turns the obtained p-value if u is an expert and 1
otherwise. We search exhaustively for the thresh-
old θ̂ for which this function is minimized (in other
words, the threshold that results in the best p-value).
The threshold of Cu is then set to θ̂, and the user’s
p-value is set to the best p-value found. If u is a
non-expert for all of the attempted θ values then u is
discarded. Otherwise, u is identified as an expert.

The rest of the process is similar to the transac-
tion model: the tweets of each expert u in the test
set are classified using the optimized per-user clas-
sifier Cu. The final ranking is obtained by sorting
the tweets that were classified as bullish according
to the p-value of their author. The per-user ranking
procedure is summarized in Algorithm 2.

6.2.4 Joint-Experts Model

The joint experts model makes use of the experts
identified by the per-user model, and builds a sin-
gle joint SVM model from the tweets of these users.
This results in a model that is trained on more exam-
ples than in the previous per-user method, but unlike
the joint all method, it learns only from high-quality
users. As with the joint all model, test tweets are
ranked according to the SVM’s score. However, the
model considers only the tweets of expert users in
the test set.
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Figure 1: Empirical model comparison

Algorithm 2 Per-user ranking model
Input: dev. set D, held-out set H, test set S , base-

line probability Pbl, significance level α
Output: A ranked listR of tweets in S

// Learning from the training set
E ← ∅ // set of expert users
for each user u do
Du ← u’s tweets in D
Cu ← SVM classifier learnt from Du

Hu ← u’s tweets inH
θ̂ = arg minθ ExpertPValue(Hu, Cu,θ,Pbl,α)
Cu ← Cu,θ̂
pu ←ExpertPValue(Hu, Cu,θ̂,Pbl,α)
if pu ≤ α then

add u to E
end if

end for

// Classifying and ranking the test set
for each user u ∈ E do
Sbullish,u ← u’s tweets in S that were classified
as bullish by Cu

end for
R ← tweets in

⋃
u Sbullish,u sorted by pu

return R

6.3 Results

Figure 1 summarizes the results obtained for the
various models. Each model was used to rank the

tweets according to the confidence that they predict
a positive stock price movement. Each data point
corresponds to the precision obtained for the first k
tweets ranked by the model, and the results for vary-
ing k values illustrate the precision/recall tradeoff of
the model. These data points were obtained as fol-
lows:

• For methods that learn a single SVM model
(joint all and joint experts), the graph was ob-
tained by decreasing the threshold of the SVM
classifier, at fixed intervals of 0.05. For each
threshold value, k is the number of tweets clas-
sified as bullish by the model.

• For methods that rank the users by their p value
and order the tweets accordingly (transaction
and per user), the i-th data point corresponds
to the cumulative precision for the tweets clas-
sified as bullish by the first i users. For the per
user method we show the cumulative results for
the first 20 users. For the transaction method
we show all the users that were identified as ex-
perts.

The random line is our baseline. It shows the ex-
pected results for randomly ordering the tweets in
the test set. The expected precision at any point is
equal to the percentage of tweets in the test set that
were followed by a stock rise, which was found to
be 51.4%.

We first consider the joint all method, which
learns a single model from all the tweets. The only
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Correct Incorrect P p
87 46 65.4 0.001
142 86 62.3 0.001
162 103 61.1 0.002
220 158 58.2 0.008
232 168 58.0 0.008
244 176 58.1 0.006
299 229 56.6 0.016
335 255 56.8 0.009
338 268 55.8 0.031
344 269 56.1 0.019
419 346 54.8 0.062
452 387 53.9 0.152
455 389 53.9 0.145
479 428 52.8 0.395
481 430 52.8 0.398
487 435 52.8 0.388
675 564 54.5 0.030
683 569 54.6 0.026
690 573 54.6 0.022
720 591 54.9 0.011

Table 4: Per user model: cumulative results for first 20
users. The table lists the number of correct and incorrect
tweets, the precision P and the significance level p.

per-user information available to this model is a fea-
ture fed to the SVM classifier, which, as we found,
does not contribute to the results. Except for the
first 58 tweets, which achieved precision of 55%,
the precision quickly dropped to a level of around
52%, which is just a little better than the random
baseline. Next, we consider the transaction configu-
ration, which is based on detecting buy transactions.
Only 10 users were found to be experts according to
this method, and in the test period these users had a
total of 173 tweets. These 173 tweets achieve good
precision (57.1% for the first 161 tweets, and 54.9%
for the first 173 tweets). However this method re-
sulted in a low number of transactions. This happens
because it is able to utilize only a small fraction of
the tweets (explicit buy transactions).

Remarkably, per user and joint experts, the two
methods which rely on identifying the experts via
unsupervised learning are by far the best methods.
Both models seem to have comparable performance,
where the results of the join experts model are some-
what smoother, as expected. Table 4 shows cumu-
lative results for the first 20 users in the per-user
model. The results show that this model achieves

good precision for a relatively large number of
tweets, and for most of the data points reported in the
table the results significantly outperform the base-
line (as indicated by the p value). Overall, these re-
sults show the effectiveness of our methods for find-
ing experts through unsupervised learning.

7 Related Work

A growing body of work aims at extracting senti-
ment and opinions from tweets, and exploit this in-
formation in a variety of application domains. Davi-
dov et al. (2010) propose utilizing twitter hash-
tag and smileys to learn enhanced sentiment types.
O’Connor et al. (2010) propose a sentiment detec-
tor based on Twitter data that may be used as a re-
placement for public opinion polls. Bollen et al.
(2011) measure six different dimensions of public
mood from a very large tweet collection, and show
that some of these dimensions improve the predica-
tion of changes in the Dow Jones Industrial Average
(DJIA).

Sentiment analysis of news articles and financial
blogs and their application for stock prediction were
the subject of several studies in recent years. Some
of these works focus on document-level sentiment
classification (Devitt and Ahmad, 2007; O’Hare et
al., 2009). Other works also aimed at predicting
stock movement (Lavrenko et al., 2000; Koppel
and Shtrimberg, 2004; Schumaker and Chen, 2010).
All these methods rely on predefined sentiment lex-
icons, manually classified training texts, or their
combination. Lavrenko et al. (2000), Koppel and
Shtrimberg (2004), and Schumaker and Chen (2010)
exploit stock prices for training, and thus save the
need in supervised learning.

Previous work on stock message boards include
(Das and Chen, 2007; Antweiler and Frank, 2004;
Chua et al., 2009). (Sprenger and Welpe, 2010) is, to
the best of our knowledge, the first work to address
specifically stock microblogs. All these works take
a similar approach for classifying message bullish-
ness: they train a classifier (Naı̈ve Bayes, which Das
and Chen combined with additional classifiers and
a sentiment lexicon, and Chua et al. presented im-
provement for) on a collection of manually labeled
messages (classified into Buy, Sell, Hold). Interest-
ingly, Chua et al. made use of an Australian mes-
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sage board (HotCopper), where, unlike most of the
stock message boards, these labels are added by the
message author. Another related work is (Zhang and
Skiena, 2010), who apply lexicon-based sentiment
analysis to several sources of news and blogs, in-
cluding tweets. However, their data set does not in-
clude stock microblogs, but tweets mentioning the
official company name.

Our work differs from previous work on stock
messages in two vital aspects. Firstly, these works
did not attempt to distinguish between experts and
non-expert users, but aggregated the sentiment over
all the users when studying the relation between sen-
timent and the stock market. Secondly, unlike these
works, our best-performing methods are completely
unsupervised, and require no manually tagged train-
ing data or sentiment lexicons.

8 Conclusion

This paper investigated the novel task of finding ex-
pert investors in online stock forums. In particular,
we focused on stock microblogs. We proposed a
framework for finding expert investors, and exper-
imented with several methods for tweet classifica-
tion using this framework. We found that combin-
ing our framework with user-specific unsupervised
learning allows us to predict stock price movement
with high precision, and the results were shown to be
statistically significant. Our results illustrate the im-
portance of distinguishing experts from non-experts.
An additional contribution of this work is an in-
depth analysis of stock tweets, which sheds light on
their content and its potential utility.

In future work we plan to improve the features of
the SVM classifier, and further investigate the use-
fulness of our approach for trading.
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Abstract

In this paper we present a method for unsuper-
vised semantic role induction which we for-
malize as a graph partitioning problem. Ar-
gument instances of a verb are represented as
vertices in a graph whose edge weights quan-
tify their role-semantic similarity. Graph par-
titioning is realized with an algorithm that it-
eratively assigns vertices to clusters based on
the cluster assignments of neighboring ver-
tices. Our method is algorithmically and con-
ceptually simple, especially with respect to
how problem-specific knowledge is incorpo-
rated into the model. Experimental results on
the CoNLL 2008 benchmark dataset demon-
strate that our model is competitive with other
unsupervised approaches in terms of F1 whilst
attaining significantly higher cluster purity.

1 Introduction

Recent years have seen increased interest in the shal-
low semantic analysis of natural language text. The
term is most commonly used to describe the au-
tomatic identification and labeling of the seman-
tic roles conveyed by sentential constituents (Gildea
and Jurafsky, 2002). Semantic roles describe the se-
mantic relations that hold between a predicate and
its arguments (e.g., “who” did “what” to “whom”,
“when”, “where”, and “how”) abstracting over sur-
face syntactic configurations.

In the example sentences below, window occu-
pies different syntactic positions — it is the object of
broke in sentences (1a,b), and the subject in (1c) —
while bearing the same semantic role, i.e., the phys-

ical object affected by the breaking event. Analo-
gously, ball is the instrument of break both when
realized as a prepositional phrase in (1a) and as a
subject in (1b).

(1) a. [Jim]A0 broke the [window]A1 with a
[ball]A2.

b. The [ball]A2 broke the [window]A1.
c. The [window]A1 broke [last night]TMP.

The semantic roles in the examples are labeled in
the style of PropBank (Palmer et al., 2005), a broad-
coverage human-annotated corpus of semantic roles
and their syntactic realizations. Under the Prop-
Bank annotation framework (which we will assume
throughout this paper) each predicate is associated
with a set of core roles (named A0, A1, A2, and so
on) whose interpretations are specific to that predi-
cate1 and a set of adjunct roles such as location or
time whose interpretation is common across predi-
cates (e.g., last night in sentence (1c)).

The availability of PropBank and related re-
sources (e.g., FrameNet; Ruppenhofer et al. (2006))
has sparked the development of great many seman-
tic role labeling systems most of which conceptu-
alize the task as a supervised learning problem and
rely on role-annotated data for model training. Most
of these systems implement a two-stage architec-
ture consisting of argument identification (determin-
ing the arguments of the verbal predicate) and ar-
gument classification (labeling these arguments with
semantic roles). Despite being relatively shallow, se-

1More precisely, A0 and A1 have a common interpretation
across predicates as proto-agent and proto-patient in the sense
of Dowty (1991).
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mantic role analysis has the potential of benefiting a
wide spectrum of applications ranging from infor-
mation extraction (Surdeanu et al., 2003) and ques-
tion answering (Shen and Lapata, 2007), to machine
translation (Wu and Fung, 2009) and summarization
(Melli et al., 2005).

Current approaches have high performance — a
system will recall around 81% of the arguments cor-
rectly and 95% of those will be assigned a cor-
rect semantic role (see Màrquez et al. (2008) for
details), however only on languages and domains
for which large amounts of role-annotated training
data are available. For instance, systems trained on
PropBank demonstrate a marked decrease in per-
formance (approximately by 10%) when tested on
out-of-domain data (Pradhan et al., 2008). Unfortu-
nately, the reliance on role-annotated data which is
expensive and time-consuming to produce for every
language and domain, presents a major bottleneck to
the widespread application of semantic role labeling.

In this paper we argue that unsupervised meth-
ods offer a promising yet challenging alternative. If
successful, such methods could lead to significant
savings in terms of annotation effort and ultimately
yield more portable semantic role labelers that re-
quire overall less engineering effort. Our approach
formalizes semantic role induction as a graph parti-
tioning problem. Given a verbal predicate, it con-
structs a weighted graph whose vertices correspond
to argument instances of the verb and whose edge
weights quantify the similarity between these in-
stances. The graph is partitioned into vertex clus-
ters representing semantic roles using a variant of
Chinese Whispers, a graph-clustering algorithm pro-
posed by Biemann (2006). The algorithm iteratively
assigns cluster labels to graph vertices by greedily
choosing the most common label amongst the neigh-
bors of the vertex being updated. Beyond extend-
ing Chinese Whispers to the semantic role induc-
tion task, we also show how it can be understood
as a type of Gibbs sampling when our graph is inter-
preted as a Markov random field.

Experimental results on the CoNLL 2008 bench-
mark dataset demonstrate that our method, de-
spite its simplicity, improves upon competitive ap-
proaches in terms of F1 and achieves significantly
higher cluster purity.

2 Related Work

Although the bulk of previous work on semantic role
labeling has primarily focused on supervised meth-
ods (Màrquez et al., 2008), a few semi-supervised
and unsupervised approaches have been proposed
in the literature. The majority of semi-supervised
models have been developed within a framework
known as annotation projection. The idea is to com-
bine labeled and unlabeled data by projecting an-
notations from a labeled source sentence onto an
unlabeled target sentence within the same language
(Fürstenau and Lapata, 2009) or across different lan-
guages (Padó and Lapata, 2009). Outwith annota-
tion projection, Gordon and Swanson (2007) pro-
pose to increase the coverage of PropBank to un-
seen verbs by finding syntactically similar (labeled)
verbs and using their annotations as surrogate train-
ing data.

Swier and Stevenson (2004) were the first to intro-
duce an unsupervised semantic role labeling system.
Their algorithm induces role labels following a boot-
strapping scheme where the set of labeled instances
is iteratively expanded using a classifier trained on
previously labeled instances. Their method starts
with a dataset containing no role annotations at all,
but crucially relies on VerbNet (Kipper et al., 2000)
for identifying the arguments of predicates and mak-
ing initial role assignments. VerbNet is a manually
constructed lexicon of verb classes each of which is
explicitly associated with argument realization and
semantic role specifications.

Subsequent work has focused on unsupervised
methods for argument identification and classifica-
tion. Abend et al. (2009) recognize the arguments of
predicates by relying solely on part of speech anno-
tations whereas Abend and Rappoport (2010) distin-
guish between core and adjunct roles, using an unsu-
pervised parser and part-of-speech tagger. Grenager
and Manning (2006) address the role induction prob-
lem and propose a directed graphical model which
relates a verb, its semantic roles, and their possible
syntactic realizations. Latent variables represent the
semantic roles of arguments and role induction cor-
responds to inferring the state of these latent vari-
ables.

Following up on this work, Lang and Lapata
(2010) formulate role induction as the process of de-
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tecting alternations and finding a canonical syntactic
form for them. Verbal arguments are then assigned
roles, according to their position in this canonical
form, since each position references a specific role.
Their model extends the logistic classifier with hid-
den variables and is trained in a manner that takes
advantage of the close relationship between syntac-
tic functions and semantic roles. More recently,
Lang and Lapata (2011) propose a clustering algo-
rithm which first splits the argument instances of
a verb into fine-grained clusters based on syntac-
tic cues and then executes a series of merge steps
(mainly) based on lexical cues. The split phase cre-
ates a large number of small clusters with high purity
but low collocation, i.e., while the instances in a par-
ticular cluster typically belong to the same role the
instances for a particular role are commonly scat-
tered amongst many clusters. The subsequent merge
phase conflates clusters with the same role in order
to increase collocation.

Like Grenager and Manning (2006) and Lang
and Lapata (2010; 2011), this paper describes an
unsupervised method for semantic role induction,
i.e., one that does not require any role annotated data
or additional semantic resources for training. Con-
trary to these previous approaches, we conceptualize
role induction in a novel way, as a graph partitioning
problem. Our method is simple, computationally ef-
ficient, and does not rely on hidden variables. More-
over, the graph-based representation for verbs and
their arguments affords greater modeling flexibility.
A wide range of methods exist for finding partitions
in graphs (Schaeffer, 2007), besides Chinese Whis-
pers (Biemann, 2006), which could be easily applied
to the semantic role induction problem. However,
we leave this to future work.

Graph-based methods are popular in natural lan-
guage processing, especially with unsupervised
learning problems (Chen and Ji, 2010). The Chinese
Whispers algorithm itself (Biemann, 2006) has been
previously applied to several tasks including word
sense induction (Klapaftis and M., 2010) and unsu-
pervised part-of-speech tagging (Christodoulopou-
los et al., 2010). The same algorithm is also de-
scribed in Abney (2007, pp. 146-147) under the
name “clustering by propagation”. The term makes
explicit the algorithm’s connection to label propa-

gation, a general framework2 for semi-supervised
learning (Zhu et al., 2003) with applications to
machine translation (Alexandrescu and Kirchhoff,
2009), information extraction (Talukdar and Pereira,
2010) and structured part-of-speech tagging (Sub-
ramanya et al., 2010). The basic idea behind la-
bel propagation is to represent labeled and unlabeled
instances as vertices in an undirected graph with
edges whose weights express similarity (and possi-
bly dissimilarity) between the instances. Label in-
formation is then propagated between the vertices
in such a way that similar instances tend to be as-
signed the same label. Analogously, Chinese Whis-
pers works by propagating cluster membership in-
formation along the edges of a graph, even though
the graph does not contain any human-labeled in-
stance vertices.

3 Problem Setting

We adopt the standard architecture of supervised se-
mantic role labeling systems where argument identi-
fication and argument classification are treated sep-
arately. Our role labeler is fully unsupervised with
respect to both tasks — it does not rely on any role
annotated data or semantic resources. However, our
system does not learn from raw text. In common
with most semantic role labeling research, we as-
sume that the input is syntactically analyzed in the
form of dependency trees.

We view argument identification as a syntactic
processing step that can be largely undertaken deter-
ministically through structural analysis of the depen-
dency tree. We therefore use a small set of rules to
detect arguments with high precision and recall (see
Section 4). Argument classification is more chal-
lenging and must take into account syntactic as well
as lexical-semantic information. Both types of in-
formation are incorporated into our model through
a similarity function that assigns similarity scores
to pairs of argument instances. Following previous
work (Lang and Lapata, 2010; Grenager and Man-
ning, 2006), our system outputs verb-specific roles
by grouping argument instances into clusters and la-
beling each argument instance with an identifier cor-

2For example, Haffari and Sarkar (2007) use label propa-
gation to analyze other semi-supervised algorithms such as the
Yarowsky (1995) algorithm.
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responding to the cluster it has been assigned to.
Such identifiers are similar to PropBank-style core
labels (e.g., A0, A1).

4 Argument Identification

Supervised semantic role labelers often employ a
classifier in order to decide for each node in the
parse tree whether or not it represents a semantic
argument. Nodes classified as arguments are then
assigned a semantic role. In the unsupervised set-
ting, we slightly reformulate argument identification
as the task of discarding as many non-semantic ar-
guments as possible. This means that the argument
identification component does not make a final posi-
tive decision for any of the argument candidates; in-
stead, a final decision is only made in the subsequent
argument classification stage.

We discard or select argument candidates us-
ing the set of rules developed in Lang and Lap-
ata (2011). These are mainly based on the parts
of speech and syntactic relations encountered when
traversing a dependency tree from the predicate
node to the argument node. For each candidate,
rules are considered in a prespecified order and the
first matching rule is applied. When evaluated on
its own, the argument identification component ob-
tained 88.1% precision (percentage of semantic ar-
guments out of those identified) and 87.9% recall
(percentage of identified arguments out of all gold
arguments).

5 Argument Classification

After identifying likely arguments for each verb,
the next step is to infer a label for each argument
instance. Since we aim to induce verb-specific
roles (see Section 3), we construct an undirected,
weighted graph for each verb. Vertices corre-
spond to verb argument instances and edge weights
quantify the similarities between them. This
argument-instance graph is then partitioned into
clusters of vertices representing semantic roles and
each argument instance is assigned a label that indi-
cates the cluster it belongs to. In what follows we
first describe how the graph is constructed and then
provide the details of our graph partitioning algo-
rithm.

CA

E D

B

0.4
0.1

0.8 −1

1

0.3

0.2 0.7

Figure 1: Simplified example of an argument-instance
graph. All pairs of vertices with non-zero similarity are
connected through edges that are weighted with a simi-
larity score φ(vi,v j). Upon updating the label for a vertex
all neighboring vertices propagate their label to the vertex
being updated. The score for each label is determined by
summing together the weighted votes for that label and
the label with the maximal score is chosen.

5.1 Graph Construction

For each verb we construct an undirected, weighted
graph G = (V,E,φ) with vertices V , edges E, and
edge weight function φ as follows. Each argu-
ment instance in the corpus that belongs to the
verb is added as a vertex. Then, for each possi-
ble pair of vertices (vi,v j) we compute a weight
φ(vi,v j) ∈ R according to the function φ. If the
weight is non-zero, an undirected edge e = (vi,v j)
with weight φ(vi,v j) is added to the graph. The func-
tion φ quantifies the similarity or dissimilarity be-
tween instances; positive values indicate that roles
are likely to be the same, negative values indicate
that roles are likely to differ, and zero values indicate
that there is no evidence for either case. Our simi-
larity function is symmetric, i.e., φ(vi,v j) = φ(v j,vi)
and permits negative values (see Section 5.4 for a
detailed description).

Figure 1 shows an example of a graph for a verb
with five argument instances (vertices A–E). Edges
are drawn between pairs of vertices with non-zero
similarity values. For instance, vertex D is con-
nected to vertex A with weight 0.2, to vertex E
with 1, and vertex C with−1. Since edges are drawn
between all pairs of vertices with non-zero simi-
larity, the resulting graphs tend to be densely con-
nected, which for large datasets may be prohibitively
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inefficient. A solution would be to sample a subset
from all possible pairs, but we did not make use of
any kind of edge pruning in our experiments.

5.2 Graph Partitioning
Graph partitioning is realized with a variant of Chi-
nese Whispers (Biemann, 2006) whose details are
given below. In addition, we discuss how our algo-
rithm relates to other graph-based models in order to
help provide a better theoretical understanding.

We assume each vertex vi is assigned a label
li ∈ {1 . . .L} indicating the cluster it belongs to. Ini-
tially, each vertex belongs to its own cluster, i.e., we
let the number of clusters L = |V | and set li← i.
Given this initial vertex labeling, the algorithm pro-
ceeds by iteratively updating the label for each ver-
tex. The update is based on the labels of neighbor-
ing vertices and reflects their similarity to the vertex
being updated. Intuitively, each neighboring vertex
votes for the cluster it is currently assigned to, where
the strength of the vote is determined by the similar-
ity (i.e., edge weight) to the vertex being updated.
The label li of vertex vi is thus updated according to
the following equation:

li← arg max
l∈{1...L} ∑

v j∈Ni(l)

φ(vi,v j) (2)

where Ni(l) = {v j|(vi,v j) ∈ E ∧ l = l j} denotes the
set of vi’s neighbors with label l. In other words,
for each label we compute a score by summing to-
gether the weights of edges to neighboring vertices
with that label and select the label with the maximal
score. Note that negative edges decrease the score
for a particular label, thus demoting the label.

Consider again Figure 1. Assume we wish to up-
date vertex A. In addition, assume that B and E are
currently assigned the same label (i.e., they belong
to the same cluster) whereas C and D are each in
different clusters. The score for cluster {B,E} is
0.4 + 0.8 = 1.2, the score for cluster {C} is 0.3 and
the score for cluster {D} is 0.2. We would thus as-
sign A to cluster {B,E} as it has the highest score.

The algorithm is run for several iterations. At
each iteration it passes over all vertices, and the up-
date order of the vertices is chosen randomly. As
the updates proceed, labels can disappear from the
graph, whereby the number of clusters decreases.
Empirically, we observe that for sufficiently many

iterations the algorithm converges to a fixed labeling
or oscillates between labelings that differ only in a
few vertices. The result of the algorithm is a hard
partitioning of the given graph, where the number of
clusters is determined automatically.

5.3 Propagation Prioritization
We make one important modification to the basic al-
gorithm described so far based on the intuition that
higher scores for a label indicate more reliable prop-
agations. More precisely, when updating vertex vi to
label l we define the confidence of the update as the
average similarity to neighbors with label l:

con f (li← l) =
1

|Ni(l)| ∑
v j∈Ni(l)

φ(vi,v j) (3)

We can then prioritize high-confidence updates by
setting a threshold θ and allowing only updates with
confidence greater or equal to θ. The threshold is
initially set to 1 (i.e., the maximal possible confi-
dence) and then lowered by some small constant ∆
after each iteration until it reaches a minimum θmin,
at which point the algorithm terminates. This im-
proves the resulting clustering, since it promotes
reliable updates in earlier phases of the algorithm
which in turn has a positive effect on successive up-
dates.

5.4 Argument-Instance Similarity
As described earlier, the edge weights in our graph
are similarity scores, with positive values indicating
similarity and negative values indicating dissimilar-
ity. Determining the similarity function φ without
access to labeled training data poses a major diffi-
culty which we resolve by relying on prior linguis-
tic knowledge. Specifically, we measure the sim-
ilarity of argument instances based on three sim-
ple and intuitive criteria: (1) whether the instances
are lexically similar; (2) whether the instances oc-
cur in the same syntactic position; and (3) whether
the instances occur in the same frame (i.e., are argu-
ments in the same clause). The same criteria were
used in (Lang and Lapata, 2011) and shown effec-
tive in quantifying role-semantic similarity between
clusters of argument instances. Lexical and syntac-
tic similarity are scored through functions lex(vi,v j)
and syn(vi,v j) with range [−1,1], whereas the third
criterion enters the scoring function directly:
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φ(vi,v j)=

{
−∞ if vi and v j are in same frame (4)

αlex(vi,v j)+(1−α)syn(vi,v j) otherwise.

The first case in the function expresses a com-
mon linguistic assumption, i.e., that two argument
instances vi and v j occurring in the same frame can-
not have the same semantic role. The function im-
plements this constraint by returning−∞.3 The syn-
tactic similarity function s(vi,v j) indicates whether
two argument instances occur in a similar syntactic
position. We define syntactic positions through four
cues: the relation of the argument head word to its
governor, verb voice (active/passive), the linear po-
sition of the argument relative to the verb (left/right)
and the preposition used for realizing the argument
(if any). The score is S

4 where S is the number of cues
which agree, i.e., have the same value. The syntac-
tic score is set to zero when the governor relation
of the arguments is not the same. Lexical similar-
ity l(vi,v j) is measured in terms of the cosine of the
angle between vectors hi and h j representing the ar-
gument head words:

lex(vi,v j) = cos(hi,h j) =
hi·h j

‖hi‖‖h j‖
(5)

We obtain hi and h j from a simple semantic space
model (Turney and Pantel, 2010) which requires no
supervision (Section 6 describes the details of the
model used in our experiments).

Our similarity function weights the contribution
of syntax vs. semantics equally, i.e., α is set to 0.5.
This reflects the linguistic intuition that lexical and
syntactic information are roughly of equal impor-
tance.

5.5 Relation to Other Models
This section briefly points out some connections to
related models. The averaging procedure used for
updating the graph vertices (Equation 2) appears in
some form in most label propagation algorithms (see
Talukdar (2010) for details). Label propagation al-
gorithms are commonly interpreted as random walks

3Formally, φ has range ran(φ) = [−1,1] ∪ {−∞} and for
x ∈ ran(φ) we define x+(−∞) =−∞. This means that the over-
all score computed for a label (Equation 2) is −∞ if one of the
summands is −∞.

2?

3 3

1

Figure 2: The update rule (Equation 2) can be under-
stood as choosing a minimal edge-cut, thereby greedily
maximizing intra-cluster similarity and minimizing inter-
cluster similarity. Assuming equal weight for all edges
above, label 3 is chosen for the vertex being updated such
that the sum of weights of edges crossing the cut is mini-
mal.

on graphs. In our case such an interpretation is
not directly possible due to the presence of negative
edge weights. This could be changed by transform-
ing the edge weights onto a non-negative scale, but
we find the current setup more expedient for model-
ing dissimilarity.

Our model could be also transformed into a prob-
abilistic graphical model that specifies a distribution
over vertex labels. In the transformed model each
vertex corresponds to a random variable over labels
and edges are associated with binary potential func-
tions over vertex-pairs. Let 1(vi = v j) denote an in-
dicator function which takes value 1 iff. li = l j and
value 0, otherwise. Then pairwise potentials can be
defined in terms of the original edge weights4 as
ψ(vi,v j) = exp(1(vi = v j)φ(vi,v j)). A Gibbs sam-
pler used to sample from the distribution of the
resulting pairwise Markov random field (Bishop,
2006; Wainwright and Jordan, 2008) would employ
almost the same update procedure as in Equation 2,
the difference being that labels would be sampled
according to their probabilities, rather than chosen
deterministically based on scores.

A third way of understanding the update rule
is as a heuristic for maximizing intra-cluster sim-
ilarity and minimizing inter-cluster similarity. By

4Including weights with value zero and thus connecting all
vertex pairs.

1325



assigning the label with maximal score to vi, we
greedily maximize the sum of intra-cluster edge
weights while minimizing the sum of inter-cluster
edge weights, i.e., the weight of the edge-cut. This
is illustrated in Figure 2. Cut-based methods are
a common method in graph clustering (Schaeffer,
2007) and are also used for inference in pairwise
Markov random fields like the one described in the
previous paragraph (Boykov et al., 2001).

Note that while it would be possible to transform
our model into a model with a formal probabilistic
interpretation (either as a graph random walk or as a
probabilistic graphical model) this would not change
the non-empirical nature of the similarity function,
which is unavoidable in the unsupervised setting and
is also common in the semi-supervised methods dis-
cussed in Section 2.

6 Experimental Setup

In this section we describe how we assessed the
performance of our model. We discuss the dataset
on which our experiments were carried out, explain
how our system’s output was evaluated and present
the methods used for comparison with our approach.

Data We compared the output of our model
against the PropBank gold standard annotations con-
tained in the CoNLL 2008 shared task dataset (Sur-
deanu et al., 2008). The latter was taken from the
Wall Street Journal portion of the Penn Treebank
and converted into a dependency format (Surdeanu
et al., 2008). In addition to gold standard depen-
dency parses, the dataset also contains automatic
parses obtained from the MaltParser (Nivre et al.,
2007). The dataset provides annotations for ver-
bal and nominal predicate-argument constructions,
but we only considered the former, following previ-
ous work on semantic role labeling (Màrquez et al.,
2008). All the experiments described in this paper
use the CoNLL 2008 training dataset.

Evaluation Metrics For each verb, we determine
the extent to which argument instances in the clus-
ters share the same gold standard role (purity) and
the extent to which a particular gold standard role is
assigned to a single cluster (collocation).

More formally, for each group of verb-specific
clusters we measure the purity of the clusters as the

percentage of instances belonging to the majority
gold class in their respective cluster. Let N denote
the total number of instances, G j the set of instances
belonging to the j-th gold class and Ci the set of in-
stances belonging to the i-th cluster. Purity can be
then written as:

PU =
1
N ∑

i
max

j
|G j ∩Ci| (6)

Collocation is defined as follows. For each gold
role, we determine the cluster with the largest num-
ber of instances for that role (the role’s primary clus-
ter) and then compute the percentage of instances
that belong to the primary cluster for each gold role:

CO =
1
N ∑

j
max

i
|G j ∩Ci| (7)

Per-verb scores are aggregated into an overall
score by averaging over all verbs. We use the
micro-average obtained by weighting the scores for
individual verbs proportionately to the number of in-
stances for that verb.

Finally, we use the harmonic mean of purity and
collocation as a single measure of clustering quality:

F1 =
2·CO·PU
CO + PU

(8)

Model Parameters Recall that our algorithm pri-
oritizes updates with confidence higher than a
threshold θ. Initially, θ is set to 1 and its value
decreases at each iteration by a small constant ∆
which we set to 0.0025. The algorithm terminates
when a minimum confidence θmin is reached. While
choosing a value for ∆ is straightforward — it sim-
ply has to be a small fraction of the maximal pos-
sible confidence — specifying θmin on the basis of
objective prior knowledge is less so. And although
a human judge could determine the optimal termina-
tion point based on several criteria such as clustering
quality or the number of clusters, we used a develop-
ment set instead for the sake of reproducibility and
comparability. Specifically, we optimized θmin on
the CoNLL test set and obtained best results with
θmin = 1

3 . This value was used for all our experi-
ments and was also kept fixed for all verbs. Impor-
tantly, the development set was not used for any kind
of supervised training.

1326



Syntactic Function Latent Logistic Split-Merge Graph Partitioning
PU CO F1 PU CO F1 PU CO F1 PU CO F1

auto/auto 72.9 73.9 73.4 73.2 76.0 74.6 81.9 71.2 76.2 82.5 68.8 75.0
gold/auto 77.7 80.1 78.9 75.6 79.4 77.4 84.0 74.4 78.9 84.0 73.5 78.4
auto/gold 77.0 71.0 73.9 77.9 74.4 76.2 86.5 69.8 77.3 87.4 65.9 75.2
gold/gold 81.6 77.5 79.5 79.5 76.5 78.0 88.7 73.0 80.1 88.6 70.7 78.6

Table 1: Evaluation of the output of our graph partitioning algorithm compared to our previous models and a baseline
that assigns arguments to clusters based on their syntactic function.
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Figure 3: Purity (vertical axis) against average number
of clusters per verb (horizontal axis) on the auto/auto
dataset.

Recall that one of the components in our simi-
larity function is lexical similarity which we mea-
sure using a vector-based model (see Section 5.4).
We created such a model from the Google N-Grams
corpus (Brants and Franz, 2006) using a context
window of two words on both sides of the target
word and co-occurrence frequencies as vector com-
ponents (no weighting was applied). The large size
of this corpus allows us to use bigram frequencies,
rather than frequencies of individual words and to
distinguish between left and right bigrams. We used
randomized algorithms (Ravichandran et al., 2005)
to build the semantic space efficiently.

Comparison Models We compared our graph par-
titioning algorithm against three competitive ap-
proaches. The first one assigns argument instances
to clusters according to their syntactic function
(e.g., subject, object) as determined by a parser. This
baseline has been previously used as a point of com-
parison by other unsupervised semantic role induc-
tion systems (Grenager and Manning, 2006; Lang
and Lapata, 2010) and shown difficult to outperform.
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Figure 4: F1 (vertical axis) against number of iterations
(horizontal axis) on the auto/auto dataset.

Our implementation allocates up to N = 21 clusters5

for each verb, one for each of the 20 most frequent
syntactic functions and a default cluster for all other
functions. We also compared our approach to Lang
and Lapata (2010) using the same model settings
(with 10 latent variables) and feature set proposed
in that paper. Finally, our third comparison model
is Lang and Lapata’s (2011) split-merge clustering
algorithm. Again we used the same parameters and
number of clusters (on average 10 per verb). Our
graph partitioning method uses identical cues for as-
sessing role-semantic similarity as the method de-
scribed in Lang and Lapata (2011).

7 Results

Our results are summarized in Table 1. We report
cluster purity (PU), collocation (CO) and their har-
monic mean (F1) for the baseline (Syntactic Func-
tion), our two previous models (the Latent Logistic
classifier and Split-Merge) and the graph partition-
ing algorithm on four datasets. These result from the
combination of automatic parses with automatically
identified arguments (auto/auto), gold parses with

5This is the number of gold standard roles.
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Syntactic Function
PU 91.4 68.6 45.1 59.7 62.4 61.9 63.5 75.9 76.7 69.6 63.1 53.7
CO 91.3 71.9 56.0 68.4 72.7 76.8 65.6 79.7 76.0 63.8 73.4 58.9
F1 91.4 70.2 49.9 63.7 67.1 68.6 64.5 77.7 76.3 66.6 67.9 56.2

Graph Partitioning
PU 95.6 83.5 72.3 75.4 83.3 84.4 74.8 84.8 89.5 83.0 73.2 66.3
CO 89.1 62.7 42.1 64.2 56.2 66.3 57.2 73.2 64.1 54.3 66.0 57.7
F1 92.2 71.6 53.2 69.4 67.1 74.3 64.8 78.5 74.7 65.7 69.4 61.7
Verb say make go increase know tell consider acquire meet send open break
Freq 15238 4250 2109 1392 983 911 753 704 574 506 482 246

Table 2: Clustering results for individual verbs on the auto/auto dataset with our graph partitioning algorithm and the
syntactic function baseline; the scores were taken from a single run.

automatic arguments (gold/auto), automatic parses
with gold arguments (auto/gold) and gold parses
with gold arguments (gold/gold). Table 1 reports
averages across multiple runs. This was necessary
in order to ensure that the results of our randomized
graph partitioning algorithm are stable.6 The argu-
ments for the auto/auto and gold/auto datasets were
identified using the rules described in Lang and Lap-
ata (2011) (see Section 4). Bold-face is used to high-
light the best performing system under each measure
(PU, CO, or F1) on each dataset.

Compared to the Syntactic Function baseline,
the Graph Partitioning algorithm has higher F1 on
the auto/auto and auto/gold datasets but lags be-
hind by 0.5 points on the gold/auto dataset and
by 0.9 points on the gold/gold dataset. It attains
highest purity on all datasets except for gold/gold,
where it is 0.1 points below Split-Merge. When con-
sidering F1 in conjunction with purity and colloca-
tion, we observe that Graph Partitioning can attain
higher purity than the comparison models by trading
off collocation. If we were to hand label the clusters
output by our system, purity would correspond to the
quality of the resulting labeling, while collocation
would determine the labeling effort. The relation-
ship is illustrated more explicitly in Figure 3, which
plots purity against the average number of clusters
per verb on the auto/auto dataset. As the algorithm

6For example, on the auto/auto dataset and over 10 runs,
the standard deviation in F1 was 0.11 points in collocation 0.16
points and in purity 0.08 points. The worst F1 was 0.20 points
below the average, the worst collocation was 0.32 points be-
low the average and the worst purity was 0.17 points below the
average.

proceeds the number of clusters is reduced which
results in a decrease of purity. The latter decreases
more rapidly once the number of 20 clusters per verb
is reached. This is accompanied by a decreasing
tradeoff ratio between collocation and purity: at this
stage decreasing purity by one point increases collo-
cation by roughly one point, whereas in earlier itera-
tions a decrease of purity by one point goes together
with several points increase in collocation. This is
most likely due to the fact that the number of gold
standard classes is around 20.

Figure 4 shows the complete learning curve of our
graph partitioning method on the auto/auto dataset
(F1 is plotted against the number of iterations).
The algorithm naturally terminates at iteration 266
(when θmin = 1/3), but we have also plotted itera-
tions beyond that point. Since lower values of θ per-
mit unreliable propagations, F1 eventually falls be-
low the baseline (see Section 5.2). The importance
of our propagation prioritization mechanism is fur-
ther underlined by the fact that when it is not em-
ployed (i.e., when using the vanilla Chinese Whis-
pers algorithm without any modifications), it per-
forms substantially worse than the comparison mod-
els. On the auto/auto dataset, F1 converges to 59.1
(purity is 55.5 and collocation 63.2) within 10 itera-
tions.

Finally, Table 2 shows how performance varies
across verbs. We report results for the Syntac-
tic Function baseline and Graph Partitioning on the
auto/auto dataset for 12 verbs. These were selected
so as to exhibit varied occurrence frequencies and
alternation patterns. As can be seen, the macro-
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scopic result — increase in F1 and purity — also
holds across verbs.

8 Conclusions

In this paper we described an unsupervised method
for semantic role induction, in which argument-
instance graphs are partitioned into clusters repre-
senting semantic roles. The approach is conceptu-
ally and algorithmically simple and novel in its for-
malization of role induction as a graph partitioning
problem. We believe this constitutes an interesting
alternative for two reasons. Firstly, eliciting and
encoding problem-specific knowledge in the form
of instance-wise similarity judgments can be easier
than encoding it into model structure e.g., by mak-
ing statistical independence assumptions or assump-
tions about latent structure. Secondly, the approach
is general and amenable to other graph partitioning
algorithms and relates to well-known graph-based
semi-supervised learning methods.

The similarity function in this paper is by neces-
sity rudimentary, since it cannot be estimated from
data. Nevertheless, the resulting system attains com-
petitive F1 and notably higher purity than the com-
parison models. Arguably, performance could be
improved by developing a better similarity function.
Therefore, in the future we intend to investigate how
our system performs in a weakly supervised setting,
where the similarity function is estimated from a
small amount of labeled instances, since this would
allow us to incorporate richer syntactic features and
result in more precise similarity scores.
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2008. The CoNLL-2008 Shared Task on Joint Parsing
of Syntactic and Semantic Dependencies. In Proceed-
ings of the 12th CoNLL, pages 159–177, Manchester,
England.

R. Swier and S. Stevenson. 2004. Unsupervised Seman-
tic Role Labelling. In Proceedings of the Conference
on Empirical Methods on Natural Language Process-
ing, pages 95–102, Barcelona, Spain.

P. Talukdar and F. Pereira. 2010. Experiments in graph-
based semi-supervised learning methods for class-
instance acquisition. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics, pages 1473–1481, Uppsala, Sweden.

P. Talukdar. 2010. Graph-Based Weakly Supervised
Methods for Information Extraction & Integration.
Ph.D. thesis, CIS Department, University of Pennsyl-
vania.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37:141–
188.

M. Wainwright and M. Jordan. 2008. Graphical Mod-
els, Exponential Families, and Variational Inference.
Foundations and Trends in Machine Learning, 1(1-
2):1–305.

D. Wu and P. Fung. 2009. Semantic Roles for SMT:
A Hybrid Two-Pass Model. In Proceedings of North

1330



American Annual Meeting of the Association for Com-
putational Linguistics HLT 2009: Short Papers, pages
13–16, Boulder, Colorado.

D. Yarowsky. 1995. Unsupervised Word Sense Disam-
biguation Rivaling Supervised Methods. In Proceed-
ings of the 33rd Annual Meeting of the Association
for Computational Linguistics, pages 189–196, Cam-
bridge, MA.

X. Zhu, Z. Ghahramani, and J. Lafferty. 2003. Semi-
Supervised Learning Using Gaussian Fields and Har-
monic Functions. In Proceedings of the 20th Interna-
tional Conference on Machine Learning, Washington,
DC.

1331



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1332–1341,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Structural Opinion Mining for Graph-based Sentiment Representation

Yuanbin Wu, Qi Zhang, Xuanjing Huang, Lide Wu
Fudan University

School of Computer Science
{ybwu,qz,xjhuang,ldwu}@fudan.edu.cn

Abstract

Based on analysis of on-line review corpus
we observe that most sentences have compli-
cated opinion structures and they cannot be
well represented by existing methods, such as
frame-based and feature-based ones. In this
work, we propose a novel graph-based rep-
resentation for sentence level sentiment. An
integer linear programming-based structural
learning method is then introduced to produce
the graph representations of input sentences.
Experimental evaluations on a manually la-
beled Chinese corpus demonstrate the effec-
tiveness of the proposed approach.

1 Introduction

Sentiment analysis has received much attention in
recent years. A number of automatic methods have
been proposed to identify and extract opinions, emo-
tions, and sentiments from text. Previous researches
on sentiment analysis tackled the problem on vari-
ous levels of granularity including document, sen-
tence, phrase and word (Pang et al., 2002; Riloff et
al., 2003; Dave et al., 2003; Takamura et al., 2005;
Kim and Hovy, 2006; Somasundaran et al., 2008;
Dasgupta and Ng, 2009; Hassan and Radev, 2010).
They mainly focused on two directions: sentiment
classification which detects the overall polarity of a
text; sentiment related information extraction which
tries to answer the questions like “who expresses
what opinion on which target”.

Most of the current studies on the second direc-
tion assume that an opinion can be structured as a
frame which is composed of a fixed number of slots.
Typical slots include opinion holder, opinion expres-
sion, and evaluation target. Under this representa-

tion, they defined the task as a slots filling prob-
lem for each of the opinions. Named entity recog-
nition and relation extraction techniques are usually
applied in this task (Hu and Liu, 2004; Kobayashi
et al., 2007; Wu et al., 2009).

However, through data analysis, we observe that
60.5% of sentences in our corpus do not follow the
assumption used by them. A lot of important infor-
mation about an opinion may be lost using those rep-
resentation methods. Consider the following exam-
ples, which are extracted from real online reviews:

Example 1: The interior is a bit noisy on the free-
way1.

Example 2: Takes good pictures during the day-
time. Very poor picture quality at night2.

Based on the definition of opinion unit proposed
by Hu and Liu (2004), from the first example, the
information we can get is the author’s negative opin-
ion about “interior” using an opinion expression
“noisy”. However, the important restriction “on the
freeway”, which narrows the scope of the opinion,
is ignored. In fact, the tuple (“noisy”,“on the free-
way”) cannot correctly express the original opinion:
it is negative but under certain condition. The sec-
ond example is similar. If the conditions “during the
daytime” and “at night” are dropped, the extracted
elements cannot correctly represent user’s opinions.

Example 3: The camera is actually quite good for
outdoors because of the software.

Besides that, an opinion expression may induce
other opinions which are not expressed directly. In
example 3, the opinion expression is “good” whose

1http://reviews.carreview.com/blog/2010-ford-focus-
review-the-compact-car-that-can/

2http://www.dooyoo.co.uk/digital-camera/sony-cyber-shot-
dsc-s500/1151680/
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target is “camera”. But the “software” which trig-
gers the opinion expression “good” is also endowed
with a positive opinion. In practice, this induced
opinion on “software” is actually more informative
than its direct counterpart. Mining those opinions
may help to form a complete sentiment analysis re-
sult.

Example 4: The image quality is in the middle of
its class, but it can still be a reasonable choice for
students.

Furthermore, the relations among individual opin-
ions also provide additional information which is
lost when they are considered separately. Example
4 is such a case that the whole positive comment of
camera is expressed by a transition from a negative
opinion to a positive one.

In order to address those issues, this paper de-
scribes a novel sentiment representation and analysis
method. Our main contributions are as follows:

1. We investigate the use of graphs for repre-
senting sentence level sentiment. The ver-
tices are evaluation target, opinion expression,
modifiers of opinion. The Edges represent
relations among them. The semantic rela-
tions among individual opinions are also in-
cluded. Through the graph, various informa-
tion on opinion expressions which is ignored
by current representation methods can be well
handled. And the proposed representation is
language-independent.

2. We propose a supervised structural learning
method which takes a sentence as input and the
proposed sentiment representation for it as out-
put. The inference algorithm is based on in-
teger linear programming which helps to con-
cisely and uniformly handle various properties
of our sentiment representation. By setting ap-
propriate prior substructure constraints of the
graph, the whole algorithm achieves reasonable
performances.

The remaining part of this paper is organized as
follows: In Section 2 we discuss the proposed rep-
resentation method. Section 3 describes the com-
putational model used to construct it. Experimental
results in test collections and analysis are shown in

Section 4. In Section 5, we present the related work
and Section 6 concludes the paper.

2 Graph-based Sentiment Representation

In this work, we propose using directed graph to
represent sentiments. In the graph, vertices are
text spans in the sentences which are opinion ex-
pressions, evaluation targets, conditional clauses etc.
Two types of edges are included in the graph: (1)
relations among opinion expressions and their mod-
ifiers; (2) relations among opinion expressions. The
edges of the first type exist within individual opin-
ions. The second type of the edges captures the re-
lations among individual opinions. The following
sections detail the definition.

2.1 Individual Opinion Representation

Let r be an opinion expression in a sentence, the rep-
resentation unit for r is a set of relations {(r, dk)}.
For each relation (r, dk), dk is a modifier which is a
span of text specifying the change of r’s meaning.

The relations between modifier and opinion ex-
pression can be the type of any kind. In this work,
we mainly consider two basic types:

• opinion restriction. (r, dk) is called an opin-
ion restriction if dk narrows r’s scope, adds a
condition, or places limitations on r’s original
meaning.

• opinion expansion. (r, dk) is an opinion expan-
sion if r’s scope expands to dk, r induces an-
other opinion on dk, or the opinion on dk is im-
plicitly expressed by r.

Mining the opinion restrictions can help to get ac-
curate meaning of an opinion, and the opinion ex-
pansions are useful to cover more indirect opinions.
As with previous sentiment representations, we ac-
tually consider the third type of modifier which dk is
the evaluation target of r.

Figure 1 shows a concrete example. In this ex-
ample, there are three opinion expressions: “good”,
“sharp”, “slightly soft”. The modifiers of “good”
are “indoors” and “Focus accuracy”, where relation
(“good”,“indoors”) is an opinion restriction because
“indoors” is the condition under which “Focus ac-
curacy” is good. On the other hand, the relation
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(“sharp”, “little 3x optical zooms”) is an opinion ex-
pansion because the “sharp” opinion on “shot” im-
plies a positive opinion on “little 3x optical zooms”.

It is worth to remark that: 1) a modifier dk can re-
late to more than one opinion expression. For exam-
ple, multiple opinion expressions may share a same
condition; 2) dk itself can employ a set of relations,
although the case appears occasionally. The follow-
ing is an example:

Example 5: The camera wisely get rid of many
redundant buttons.

In the example, “redundant buttons” is the eval-
uation target of opinion expression “wisely get rid
of”, but itself is a relation between “redundant”
and “buttons”. Such nested semantic structure is
described by a path: “wisely get rid of”

target−−−−→
[“redundant”

target−−−−→“buttons”]nested target.

2.2 Relations between Individual Opinion
Representation

Assume 〈ri〉 are opinion expressions ordered by
their positions in sentence, and each of them has
been represented by relations {(ri, dik)} individu-
ally (the nested relations for dik have also been de-
termined). Then we define two relations on adja-
cent pair ri, ri+1: coordination when the polarities
of ri and ri+1 are consistent, and transition when
they are opposite. Those relations among ri form a
set B called opinion thread. In Figure 1, the opin-
ion thread is: {(“good”, “sharp”), (“sharp”, “slightly
soft”)}.

The whole sentiment representation for a sentence
can be organized by a direct graph G = (V,E). Ver-
tex set V includes all opinion expressions and mod-
ifiers. Edge set E collects both relations of each
individual opinion and relations in opinion thread.
The edges are labeled with relation types in label set
L={“restriction”, “expansion”, “target”, “coordina-
tion”, “transition”} 3.

Compared with previous works, the advantages of
using G as sentiment representation are: 1) for in-
dividual opinions, the modifiers will collect more
information than using opinion expression alone.

3We don’t define any “label” on vertices: if two span of text
satisfy a relation in L, they are chosen to be vertices and an
edge with proper label will appear in E. In other words, vertices
are identified by checking whether there exist relations among
them.

Focus accuracy was good indoors, and although the 
little 3x optical zooms produced sharp shots, the 
edges were slightly soft on the Canon. 

Focus 
accuracy 

edges 

slightly soft shots 

sharp 

little 3x optical 
zooms 

indoors 

good 

Expansion Target 

Coordinate 

Transition 

Target 

Target Restriction 

r1 

r2 

r3 

d11 d12 

d21 d22 

d31 

Figure 1: Sentiment representation for an example sen-
tence

Thus G is a relatively complete and accurate rep-
resentation; 2) the opinion thread can help to catch
global sentiment information, for example the gen-
eral polarity of a sentence, which is dropped when
the opinions are separately represented.

3 System Description

To produce the representation graph G for a sen-
tence, we need to extract candidate vertices and
build the relations among them to get a graph struc-
ture. For the first task, the experimental results in
Section 4 demonstrate that the standard sequential
labeling method with simple features can achieve
reasonable performance. In this section, we focus
on the second task, and assume the vertices in the
graph have already been correctly collected in the
following formulation of algorithm.

3.1 Preliminaries

In order to construct graph G, we use a structural
learning method. The framework is from the first or-
der discriminative dependency parsing model (Mc-
donald and Pereira, 2005). A sentence is denoted by
s; x are text spans which will be vertices of graph;
xi is the ith vertex in x ordered by their positions in
s. For a set of vertices x, y is the graph of its sen-
timent representation, and e = (xi, xj) ∈ y is the
direct edge from xi to xj in y. In addition, x0 is a
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virtual root node without inedge. G = {(xn,yn)}N
n

is training set.
Following the edge based factorization, the score

of a graph is the sum of its edges’ scores,

score(x,y) =
∑

(xi,xj)∈y

score(xi, xj)

=
∑

(xi,xj)∈y

αT f(xi, xj), (1)

f(xi, xj) is a high dimensional feature vector of the
edge (xi, xj). The components of f are either 0 or 1.
For example the k-th component could be

fk(xi, xj) =





1 if xi.POS = JJ and xj .POS = NN
and label of (xi, xj)is restriction

0 otherwise
.

Then the score of an edge is the linear combination
of f ’s components, and the coefficients are in vector
α.

Algorithm 1 shows the parameter learning pro-
cess. It aims to get parameter α which will assign
the correct graph y with the highest score among all
possible graphs of x (denoted by Y).

Algorithm 1 Online structural learning
Training Set:G = {(xn, yn)}N

n

1: α0 = 0, r = 0, T =maximum iteration
2: for t = 0 to T do
3: for n = 0 to N do
4: ŷ = arg maxy∈Y score(xn, y) B Inference
5: if ŷ 6= yn then
6: update αt to αt+1 B PA
7: r = r + αt+1

8: end if
9: end for

10: end for
11: return α = r/(N ∗ T )

3.2 Inference
Like other structural learning tasks, the “arg max”
operation in the algorithm (also called inference)

ŷ = arg max
y∈Y

score(x,y)

= arg max
y∈Y

∑

(xi,xj)∈y

αT f(xi, xj) (2)

is hard because all possible values of y form a huge
search space. In our case, Y is all possible directed
acyclic graphs of the given vertex set, which num-
ber is exponential. Directly solving the problem of
finding maximum weighted acyclic graph is equiva-
lent to finding maximum feedback arc set, which is a
NP-hard problem (Karp, 1972). We will use integer
linear programming (ILP) as the framework for this
inference problem.

3.2.1 Graph Properties
We first show some properties of graph G either

from the definition of relations or corpus statistics.
Property 1. The graph is connected and without

directed cycle. From individual opinion represen-
tation, each subgraph of G which takes an opinion
expression as root is connected and acyclic. Thus
the connectedness is guaranteed for opinion expres-
sions are connected in opinion thread; the acyclic is
guaranteed by the fact that if a modifier is shared by
different opinion expressions, the inedges from them
always keep (directed) acyclic.

Property 2. Each vertex can have one outedge
labeled with coordination or transition at most. The
opinion thread B is a directed path in graph.

Property 3. The graph is sparse. The average
in-degree of a vertex is 1.03 in our corpus, thus the
graph is almost a rooted tree. In other words, the
cases that a modifier connects to more than one opin-
ion expression rarely occur comparing with those
vertices which have a single parent. An explaination
for this sparseness is that opinions in online reviews
always concentrate in local context and have local
semantic connections.

3.2.2 ILP Formulation
Based on the property 3, we divide the inference

algorithm into two steps: i) constructing G’s span-
ning tree (arborescence) with property 1 and 2; ii)
finding additional non-tree edges as a post process-
ing task. The first step is close to the works on ILP
formulations of dependency parsing (Riedel and
Clarke, 2006; Martins et al., 2009). In the second
step, we use a heuristic method which greedily adds
non-tree edges. A similar approximation method
is also used in (Mcdonald and Pereira, 2006) for
acyclic dependency graphs.

Step 1. Find MST. Following the multicommodity
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flow formulation of maximum spanning tree (MST)
problem in (Magnanti and Wolsey, 1994), the ILP
for MST is:

max.
∑

i,j

yij · score(xi, xj) (3)

s.t.
∑

i,j

yij = |V | − 1 (4)

∑

i

fu
ij −

∑

k

fu
jk = δu

j ,1 ≤ u, j ≤ |V | (5)

∑

k

fu
0k = 1, 1 ≤ u ≤ |V | (6)

fu
ij ≤ yij , 1 ≤ u, j ≤ |V |,

0 ≤ i ≤ |V | (7)

fu
ij ≥ 0, 1 ≤ u, j ≤ |V |,

0 ≤ i ≤ |V | (8)

yij ∈ { 0, 1}, 0 ≤ i, j ≤ |V |. (9)

In this formulation, yij is an edge indicator vari-
able that (xi, xj) is a spanning tree edge when yij =
1, (xi, xj) is a non-tree edge when yij = 0. Then
output y is represented by the set {yij , 0 ≤ i, j ≤
|V |} 4. Eq(4) ensures that there will be exactly
|V | − 1 edges are chosen. Thus if the edges cor-
responding to those non zero yij is a connected sub-
graph, y is a well-formed spanning tree. Objective
function just says the optimal solution of yij have
the maximum weight.

The connectedness is guaranteed if for every ver-
tex, there is exactly one path from root to it. It is for-
mulated by using |V | − 1 flows {fu, 1 ≤ u ≤ |V |}.
fu starts from virtual root x0 towards vertex xu.
Each flow fu = {fu

ij , 0 ≤ i, j ≤ |V |}. fu
ij indi-

cates whether flow fu is through edge (xi, xj). so
it should be 0 if edge (xi, xj) does not exist (by
(7)). The Kronecker’s delta δu

j in (5) guarantees fu

is only assumed by vertex xu, so fu is a well-formed
path from root to xu. (6) ensures there is only one
flow (path) from root to xu. Thus the subgraph is
connected. The following are our constraints:

c1: Constraint on edges in opinion thread (10)-
(11).

From the definition of opinion thread, we impose
a constraint on every vertex’s outedges in opinion
thread, which are labeled with “coordination” or

4For simplicity, we overload symbol y from the graph of the
sentiment represetation to the MST of it.

“transition”. Let Iob be a characteristic function on
edges: Iob((j, k)) = 1 when edge (xj , xk) is labeled
with “coordination” or “transition”, otherwise 0. We
denote q variables for vertices:

qj =
∑

k

yjk · Iob((j, k)), 0 ≤ j ≤ |V |. (10)

Then following linear inequalities bound the number
of outedges in opinion thread (≤ 1) on each vertex:

qj ≤ 1, 0 ≤ j ≤ |V |. (11)

c2: Constraint on target edge (12).
We also bound the number of evaluation targets

for a vertex in a similar way. Let It be characteris-
tic function on edges identifing whether it is labeled
with “target”,

∑

k

yjk · It((j, k)) ≤ Ct, 0 ≤ j ≤ |V |. (12)

The parameter Ct can be adjusted according to the
style of document. In online reviews, authors tend
to use simple and short comments on individual tar-
gets, so Ct could be set small.

c3: Constraint on opinion thread (13)-(18).
From graph property 2, the opinion thread should

be a directed path. It implies the number of con-
nected components whose edges are “coordination”
or “transition” should be less than 1. Two set of ad-
ditional variables are needed: {cj , 0 ≤ j ≤ |V |} and
{hj , 0 ≤ j ≤ |V |}, where

cj =

{
1 if an opinion thread starts at xj

0 otherwise
,

and

hj =
∑

i

yij · Iob((i, j)). (13)

Then cj = ¬hj ∧ qj , which can be linearized by

cj≥ qj − hj , (14)

cj≤ 1 − hj , (15)

cj≤ qj , (16)

cj≥ 0. (17)

If the sum of cj is no more than 1, the opinion thread
of graph is a directed path.

∑

j

cj ≤ 1. (18)
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Figure 2: The effects of c1 and c3. Assume solid lines
are edges labeled with “coordination” and “transition”,
dot lines are edges labeled with other types. (a) is an
arbitrary tree. (b) is a tree with c1 constraints. (c) is a
tree with c1 and c3. It shows c1 are not sufficient for
graph property 2: the edges in opinion thread may not be
connected.

Figure 2 illustrates the effects of c1 and c3.
Equations (10)-(18), together with basic multi-

commodity flow model build up the inference algo-
rithm. The entire ILP formulation involves O(|V |3)
variables and O(|V |2) constraints. Generally, ILP
falls into NPC, but as an important result, in the mul-
ticommodity flow formulation of maximum span-
ning tree problem, the integer constraints (9) on yij

can be dropped. So the problem reduces to a linear
programming which is polynomial solvable (Mag-
nanti and Wolsey, 1994). Unfortunately, with our
additional constraints the LP relaxation is not valid.

Step 2. Adding non-tree edges. We examine the
case that a modifier attaches to different opinion ex-
pressions. That often occurs as the result of the
sharing of modifiers among adjacent opinion expres-
sions. We add those edges in the following heuristic
way: If a vertex ri in opinion thread does not have
any modifier, we search the modifiers of its adjacent
vertices ri+1, ri−1 in the opinion thread, and add
edge (ri, d∗) where

d∗ = arg max
d∈S

score(ri, d),

and S are the modifiers of ri−1 and ri+1.

3.3 Training

We use online passive aggressive algorithm (PA)
with Hamming cost of two graphs in training (Cram-
mer et al., 2006).

Unigram Feature Template
xi.text w0.text w1.text
w0.POS w1.POS
wk−1.text wk.text

Inside wk−1.POS wk.POS
Features xi.hasDigital

xi.isSingleWord
xi.hasSentimentWord
xi.hasParallelPhrase
w−1.text w−2.text
w−1.POS w−2.POS
wk+1.text wk+2.text

Outside wk+1.POS wk+2.POS
Features c−1.text c−2.text

c−1.POS c−2.POS
cl+1.text cl+2.text
cl+1.POS cl+2.POS

Other Features
distance between parent and child
dependency parsing relations

Table 1: Feature set

3.4 Feature Construction

For each vertex xi in graph, we use 2 sets of fea-
tures: inside features which are extracted inside the
text span of xi; outside features which are outside
the text span of xi. A vertex xi is described both in
word sequence (w0, w1, · · · , wk) and character se-
quence (c0, c1, · · · , cl), for the sentences are in Chi-
nese.

· · · , w−1, w0, w1, w2, · · · , wk−1, wk︸ ︷︷ ︸
xi

, wk+1 · · ·

· · · , c−1, c0, c1, c2, · · · , cl−1, cl︸ ︷︷ ︸
xi

, cl+1 · · ·

For an edge (xi, xj), the high dimensional feature
vector f(xi, xj) is generated by using unigram fea-
tures in Table 1 on xi and xj respectively. The dis-
tance between parent and child in sentence is also
attached in features. In order to involve syntactic
information, whether there is certain type of depen-
dency relation between xi and xj is also used as a
feature.
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4 Experiments

4.1 Corpus

We constructed a Chinese online review corpus from
Pcpop.com, Zol.com.cn, and It168.com, which have
a large number of reviews about digital camera. The
corpus contains 138 documents and 1735 sentences.
Since some sentences do not contain any opinion,
1390 subjective sentences were finally chosen and
manually labeled.

Two annotators labeled the corpus independently.
The annotators started from locating opinion expres-
sions, and for each of them, they annotated other
modifiers related to it. In order to keep the relia-
bility of annotations, another annotator was asked
to check the corpus and determine the conflicts. Fi-
nally, we extracted 6103 elements, which are con-
nected by 6284 relations.

Relation Number
Target 2479
Coordinate 1173
Transition 154
Restriction 693
Expansion 386

Table 2: Statistics of relation types

Table 2 shows the number of various relation
types appearing in the labeled corpus. We observe
60.5% of sentences and 32.1% of opinion expres-
sions contain other modifiers besides “target”. Thus
only mining the relations between opinion expres-
sions and evaluation target is actually at risk of inac-
curate and incomplete results.

4.2 Experiments Configurations

In all the experiments below, we take 90% of the cor-
pus as training set, 10% as test set and run 10 folder
cross validation. In feature construction, we use
an external Chinese sentiment lexicon which con-
tains 4566 positive opinion words and 4370 nega-
tive opinion words. For Chinese word segment, we
use ctbparser 5. Stanford parser (Klein and Man-
ning, 2003) is used for dependency parsing. In the
settings of PA, the maximum iteration number is

5http://code.google.com/p/ctbparser/

set to 2, which is chosen by maximizing the test-
ing performances, aggressiveness parameter C is set
to 0.00001. For parameters in inference algorithm,
Ct = 2, the solver of ILP is lpsolve6.

We evaluate the system from the following as-
pects: 1) whether the structural information helps
to mining opinion relations. 2) How the proposed
inference algorithm performs with different con-
straints. 3) How the various features affect the sys-
tem. Except for the last one, the feature set used for
different experiments are the same (“In+Out+Dep”
in Table 5). The criteria for evaluation are simi-
lar to the unlabeled attachment score in parser eval-
uations, but due to the equation |E| = |V | − 1
is not valid if G is not a tree, we evaluate pre-
cision P = #true edges in result graph

#edges in result graph , recall
R = #true edges in result graph

#edges in true graph , and F-score
F = 2P ·R

P+R .

4.3 Results

1. The effects of structural information. An alter-
native method to extract relations is directly using
a classifier to judge whether there is a relation be-
tween any two elements. Those kinds of methods
were used in previous opinion mining works (Wu
et al., 2009; Kobayashi et al., 2007). To show the
entire structural information is important for min-
ing relations, we use SVM for binary classification
on candidate pairs. The data point representing a
pair (xi, xj) is the same as the high dimensional fea-
ture vectors f(xi, xj). The setting of our algorithm
“MST+c1+c2+c3” is the basic MST with all the con-
straints. The results are shown in the Table 3.

P R F
SVM 64.9 24.0 35.0
MST+c1+c2+c3-m 61.5 74.0 67.2
MST+c1+c2+c3 73.1 71.0 72.1

Table 3: Binary classifier and structural learning

From the results, the performance of SVM (espe-
cially recall) is relatively poor. A possible reason
is that the huge imbalance of positive and negative
training samples (only Θ(n) positive pairs among
all n2 pairs). And the absence of global structural

6http://sourceforge.net/projects/lpsolve/
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knowledge makes binary classifier unable to use
the information provided by classification results of
other pairs.

In order to examine whether the complicated sen-
timent representation would disturb the classifier in
finding relations between opinion expressions and
its target, we evaluate the system by discarding the
modifiers of opinion restriction and expansion from
the corpus. The result is shown in the second row of
Table 3. We observe that “MST+c1+c2+c3” is still
better which means at least on overall performance
the additional modifiers do not harm.

2. The effect of constraints on inference algo-
rithm. In the inference algorithm, we utilized the
properties of graph G and adapted the basic multi-
commodity flow ILP to our specific task. To evaluate
how the constraints affect the system, we decompose
the algorithm and combine them in different ways.

P R F
MST 69.3 67.3 68.3
MST+c1 70.0 68.0 69.0
MST+c2 69.8 67.8 68.8
MST+c1+c2 70.6 68.6 69.6
MST+c1+c3 72.4 70.4 71.4
MST+c1+c2+c3 73.1 71.0 72.1
MST+c1+c2+c3+g 72.5 72.3 72.4

Table 4: Results on inference methods. “MST” is the ba-
sic multicommodity flow formulation of maximum span-
ning tree; c1, c2, c3 are groups of constraint from Section
3.2.2; “g” is our heuristic method for additional non span-
ning tree edges.

From Table 4, we observe that with any additional
constraints the inference algorithm outperforms the
basic maximum spanning tree method. It implies al-
though we did not use high order model (e.g. involv-
ing grandparent and sibling features), prior struc-
tural constraints can also help to get a better out-
put graph. By comparing with different constraint
combinations, the constraints on opinion thread (c1,
c3) are more effective than constraints on evaluation
targets (c2). It is because opinion expressions are
more important in the entire sentiment representa-
tion. The main structure of a graph is clear once the
relations between opinion expressions are correctly
determined.

3. The effects of various features. We evaluate the

performances of different feature configurations in
Table 5. From the results, the outside feature set is
more effective than inside feature set, even if it does
not use any external resource. A possible reason is
that the content of a vertex can be very complicated
(a vertex even can be a clause), but the features sur-
rounding the vertex are relatively simple and easy
to identify (for example, a single preposition can
identify a complex condition). The dependency fea-
ture has limited effect, due to that lots of online re-
view sentences are ungrammatical and parsing re-
sults are unreliable. And the complexity of vertices
also messes the dependency feature.

P R F
In-s 66.3 66.3 66.3
In 66.7 66.4 66.6
Out 67.8 67.4 67.6
In+Out 72.0 70.5 71.0
In+Out+Dep 72.5 72.3 72.4

Table 5: Results with different features. “In” repre-
sents the result of inside feature set; “In-s” is “In” with-
out the external opinion lexicon feature; “Out” uses the
outside feature set; “In+Out” uses both “In” and “Out”,
“In+Out+Dep” adds the dependency feature. The infer-
ence algorithm is “MST+c1+c2+c3+g” in Table 4.

We analyze the errors in test results. A main
source of errors is the confusion of classifier be-
tween “target” relations and “coordination”, “tran-
sition” relations. The reason may be that for a mod-
ification on opinion expression (r, dk), we allow
dk recursively has its own modifiers (Example 5).
Thus an opinion expression can be a modifier which
brings difficulties to classifier.

4. Extraction of vertices. Finally we conduct an
experiment on vertex extraction using standard se-
quential labeling method. The tag set is simply {B,
I, O} which are signs of begin, inside, outside of a
vertex. The underlying model is conditional random
field 7. Feature templates involved are in Table 6.
We only use basic features in the experiment. 10
folder cross validation results are in table 7. We sus-
pect that the performances (especially recall) could
be improved if some external resources(i.e. ontol-
ogy, domain related lexicon, etc.) are involved.

7We use CRF++ toolkit, http://crfpp.sourceforge.net/
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Unigram Template
ci.char character

ci.isDigit digit
ci.isAlpha english letter
ci.isPunc punctuation
ci.inDict in a sentiment word
ci.BWord start of a word
ci.EWord end of a word

Table 6: Features for vertex extraction. The sequential
labeling is conducted on character level (ci). The senti-
ment lexicon used in ci.inDict is the same as Table1. We
also use bigram feature templates on ci.char, ci.isAlpha,
ci.inDict with respect to ci−1 and ci+1.

P R F
E+Unigram 56.8 45.1 50.3
E+Unigram+Bigram 57.3 47.9 52.1
O+Unigram 71.9 57.2 63.7
O+Unigram+Bigram 72.3 60.2 65.6

Table 7: Results on vertices extraction with 10 folder
cross validation. We use two criterion: 1) the vertex is
correct if it is exactly same as ground truth(“E”), 2) the
vertex is correct if it overlaps with ground truth(“O”).

5 Related Work

Opinion mining has recently received considerable
attentions. Large amount of work has been done on
sentimental classification in different levels and sen-
timent related information extraction. Researches on
different types of sentences such as comparative sen-
tences (Jindal and Liu, 2006) and conditional sen-
tences (Narayanan et al., 2009) have also been pro-
posed.

Kobayashi et al. (2007) presented their work on
extracting opinion units including: opinion holder,
subject, aspect and evaluation. They used slots
to represent evaluations, converted the task to two
kinds of relation extraction tasks and proposed a ma-
chine learning-based method which used both con-
textual and statistical clues.

Jindal and Liu (2006) studied the problem of iden-
tifying comparative sentences. They analyzed dif-
ferent types of comparative sentences and proposed
learning approaches to identify them.

Sentiment analysis of conditional sentences were
studied by Narayanan et al. (2009). They aimed

to determine whether opinions expressed on dif-
ferent topics in a conditional sentence are posi-
tive, negative or neutral. They analyzed the con-
ditional sentences in both linguistic and computi-
tional perspectives and used learning method to do
it. They followed the feature-based sentiment anal-
ysis model (Hu and Liu, 2004), which also use flat
frames to represent evaluations.

Integer linear programming was used in many
NLP tasks (Denis and Baldridge, 2007), for its
power in both expressing and approximating various
inference problems, especially in parsing (Riedel
and Clarke, 2006; Martins et al., 2009). Martins
etc. (2009) also applied ILP with flow formulation
for maximum spanning tree, besides, they also han-
dled dependency parse trees involving high order
features(sibling, grandparent), and with projective
constraint.

6 Conclusions

This paper introduces a representation method for
opinions in online reviews. Inspections on corpus
show that the information ignored in previous sen-
timent representation can cause incorrect or incom-
plete mining results. We consider opinion restric-
tion, opinion expansions, relations between opin-
ion expressions, and represent them with a directed
graph. Structural learning method is used to produce
the graph for a sentence. An inference algorithm is
proposed based on the properties of the graph. Ex-
perimental evaluations with a manually labeled cor-
pus are given to show the importance of structural
information and effectiveness of proposed inference
algorithm.
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Abstract

Most traditional summarization methods treat
their outputs as static and plain texts, which
fail to capture user interests during summa-
rization because the generated summaries are
the same for different users. However, users
have individual preferences on a particular
source document collection and obviously a
universal summary for all users might not al-
ways be satisfactory. Hence we investigate
an important and challenging problem in sum-
mary generation, i.e., Interactive Personalized
Summarization (IPS), which generates sum-
maries in an interactive and personalized man-
ner. Given the source documents, IPS captures
user interests by enabling interactive clicks
and incorporates personalization by model-
ing captured reader preference. We develop
experimental systems to compare 5 rival al-
gorithms on 4 instinctively different datasets
which amount to 5197 documents. Evalua-
tion results in ROUGE metrics indicate the
comparable performance between IPS and the
best competing system but IPS produces sum-
maries with much more user satisfaction ac-
cording to evaluator ratings. Besides, low
ROUGE consistency among these user pre-
ferred summaries indicates the existence of
personalization.

1 Introduction

In the era of information explosion, people need new
information to update their knowledge whilst infor-
mation on Web is updating extremely fast. Multi-
document summarization has been proposed to ad-
dress such dilemma by producing a summary de-

livering the majority of information content from a
document set, and hence is a necessity.

Traditional summarization methods play an im-
portant role with the exponential document growth
on the Web. However, for the readers, the impact of
human interests has seldom been considered. Tra-
ditional summarization utilizes the same methodol-
ogy to generate the same summary no matter who is
reading. However, users may have bias on what they
prefer to read due to their potential interests: they
need personalization. Therefore, traditional summa-
rization methods are to some extent insufficient.

Topic biased summarization tries for personaliza-
tion by pre-defining human interests as several gen-
eral categories, such as health or science. Readers
are required to select their possible interests before
summary generation so that the chosen topic has
priority during summarization. Unfortunately, such
topic biased summarization is not sufficient for two
reasons: (1) interests cannot usually be accurately
pre-defined by ambiguous topic categories and (2)
user interests cannot always be foreknown. Often
users do not really know what general ideas or detail
information they are interested in until they read the
summaries. Therefore, more flexible interactions
are required to establish personalization.

Due to all the insufficiencies of existed sum-
marization approaches, we introduce a new multi-
document summarization task of Interactive Person-
alized Summarization (IPS) and a novel solution for
the task. Taking a document collection as input, the
system outputs a summary aligned both with source
corpus and with user personalization, which is cap-
tured by flexible human−system interactions. We
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build an experimental system on 4 real datasets to
verify the effectiveness of our methods compared
with 4 rivals. The contribution of IPS is manifold
by addressing following challenges:
• The 1st challenge for IPS is to integrate user

interests into traditional summary components. We
measure the utilities of these components and com-
bine them. We formulate the task into a balanced
optimization framework via iterative substitution to
generate summaries with maximum overall utilities.
• The 2nd challenge is to capture user inter-

ests through interaction. We develop an interactive
mechanism of “click” and “examine” between read-
ers and summaries and address sparse data by “click
smoothing” under the scenario of few user clicks.

We start by reviewing previous works. In Section
3 we provide IPS overview, describe user interac-
tion and optimize component combination with per-
sonalization. We conduct empirical evaluation and
demonstrate the experimental system in Section 4.
Finally we draw conclusions in Section 5.

2 Related Work

Multi-Document Summarization (MDS) has drawn
much attention in recent years and gained emphasis
in conferences such as ACL, EMNLP and SIGIR,
etc. General MDS can either be extractive or ab-
stractive. The former assigns salient scores to se-
mantic units (e.g. sentences, paragraphs) of the doc-
uments indicating their importance and then extracts
top ranked ones, while the latter demands informa-
tion fusion(e.g. sentence compression and reformu-
lation). Here we focus on extractive summarization.

Centroid-based method is one of the most popular
extractive summarization method. MEAD (Radev
et al., 2004) and NeATS (Lin and Hovy, 2002) are
such implementations, using position and term fre-
quency, etc. MMR (Goldstein et al., 1999) algorithm
is used to remove redundancy. Most recently, the
graph-based ranking methods have been proposed to
rank sentences or passages based on the “votes” or
“recommendations” between each other. The graph-
based methods first construct a graph representing
the sentence relationships at different granularities
and then evaluate the saliency score of the sentences
based on the graph. TextRank (Mihalcea and Tarau,
2005) and LexPageRank (Erkan and Radev, 2004)

use algorithms similar to PageRank and HITS to
compute sentence importance. Wan et al. improve
the graph-ranking algorithm by differentiating intra-
document and inter-document links between sen-
tences (2007b) and incorporate cluster information
in the graph model to evaluate sentences (2008).

To date, topics (or themes, clusters) in documents
have been discovered and used for sentence selec-
tion for topic biased summarization (Wan and Yang,
2008; Gong and Liu, 2001). Wan et al. have
proposed a manifold-ranking method to make uni-
form use of sentence-to-sentence and sentence-to-
topic relationships to generate topic biased sum-
maries (2007a). Leuski et al. in (2003) pre-define
several topic concepts, assuming users will foresee
their interested topics and then generate the topic
biased summary. However, such assumption is not
quite reasonable because user interests may not be
forecasted, or pre-defined accurately as we have ex-
plained in last section.

The above algorithms are usually traditional ex-
tensions of generic summarizers. They do not in-
volve interactive mechanisms to capture reader in-
terests, nor do they utilize user preference for per-
sonalization in summarization. Wan et al. in (2008)
have proposed a summarization biased to neighbor-
ing reading context through anchor texts. How-
ever, such scenario does not apply to contexts with-
out human-edited anchor texts like Wikipedia they
have used. Our approach can naturally and simulta-
neously take into account traditional summary ele-
ments and user interests and combine both in opti-
mization under a wider practical scenario.

3 Interactive Personalized Summarization

Personalization based on user preference can be
captured via various alternative ways, such as eye-
tracking or mouse-tracking instruments used in (Guo
and Agichtein, 2010). In this study, we utilize inter-
active user clicks/examinations for personalization.

Unlike traditional summarization, IPS supports
human−system interaction by clicking into the sum-
mary sentences and examining source contexts. The
implicit feedback of user clicks indicates what they
are interested in and the system collects preference
information to update summaries if readers wish to.
We obtain an associated tuple <q, c> between a
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clicked sentence q and the examined contexts c.
As q has close semantic coherence with neigh-

boring contexts due to consistency in human natural
language, we consider a window of sentences cen-
tered at the clicked sentence q as c, which is a bag of
sentences. The window size k is a parameter to set.

However, click data is often sparse: users are not
likely to click more than 1/10 of total summary sen-
tences within a single generation. We amplify these
tiny hints of user interest by click smoothing.

We change the flat summary structure into a hi-
erarchical organization by extracting important se-
mantic units (denoted as u) and establishing link-
age between them. If the clicked sentence q con-
tains u, we diffuse the click impact to the correlated
units, which makes a single click perform as multi-
ple clicks and the sparse data is smoothed.

Problem Formulation
Input: Given the sentence collection D decom-

posed by documents, D = {s1, s2, . . . , s|D|} and
the clicked sentence record Q = {q1, q2, . . . }, we
generate summaries in sentences. A user click is
associated with a tuple <q, (u), c> where the exis-
tence of u depends on whether q contains u. The
collection of semantic units is denoted as M =
{u1, u2, . . . , u|M |}.

Output: A summary S as a set of sentences
{s1, s2, . . . , s|S|} and S ⊂ D according to the pre-
specified compression rate φ (0 < φ < 1).

After the overview and formulation of IPS prob-
lem, we move on to the major components of User
Interaction and Personalized Summarization.

3.1 User Interaction
Hypertexify Summaries. We hypertexify the sum-
mary structure by establishing linkage between se-
mantic units. There are several possible formats for
semantic units, such as words or n-grams, etc. As
single words are proved to be not illustrative of se-
mantic meanings (Zhao et al., 2011) and n-grams are
rigid in length, we choose to extract semantic units
at a phrase granularity. Among all phrases from
source texts, some are of higher importance to at-
tract user interests, such as hot concepts or popu-
lar event names. We utilize the toolkit provided by
(Zhao et al., 2011) based on graph proximity LDA
(Blei et al., 2003) to extract key phrases and their
corresponding topic. A topic T is represented by

{(u1, π(u1, T )), (u2, π(u2, T )), . . . }where π(u, T )
is the probability of u belonging to topic T . We in-
vert the topic-unit representation in Table 1, where
each u is represented as a topic vector. The corre-
lation corr(.) between ui, uj is measured by cosine
similarity sim(.) on topic distribution vector ~ui, ~uj .

corr(ui, uj) = simtopic(~ui, ~uj) (1)

Table 1: Inverted representation of topic-unit vector.
~u1 π(u1, T1) π(u1, T2) . . . π(u1, Tn)
~u2 π(u2, T1) π(u2, T2) . . . π(u2, Tn)
...

...
...

...
...

~u|M | π(u|M |, T1) π(u|M |, T2) . . . π(u|M |, Tn)

When the summary is hypertexified by established
linkage, users click into the generated summary to
examine what they are interested in. A single click
on one sentence become multiple clicks via click
smoothing when the indicative function I(u|q) = 1.

I(u|q) =

{
1 q contains u;

0 otherwise.
(2)

The click smoothing brings pseudo clicks q′ asso-
ciated with u′ and contexts c′. The entire user feed-
back texts A from q can be written as:

A(q) = I(u|q)
|M |∑

j=1

corr(u′, u)(u′+γ ·c′)+γ ·c (3)

where γ is the weight tradeoff between u and asso-
ciated contexts c. If I(u|q) = 0, only the examined
context c is feedbacked for user preference; other-
wise, correlative contexts with u are taken into con-
sideration, which is a process of impact diffusion.

3.2 Personalized Summarization
Traditional summarization involves two essential re-
quirements: (1) coverage: the summary should
keep alignment with the source collection, which is
proved to be significant (Li et al., 2009). (2) di-
versity: according to MMR principle (Goldstein et
al., 1999) and its applications (Wan et al., 2007b;
Wan and Yang, 2008), a good summary should be
concise and contain as few redundant sentences as
possible, i.e., two sentences providing similar infor-
mation should not both present. According to our
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investigation, we observe that a well generated sum-
mary should properly consider a key component of
(3) user interests, which captures user preference to
summarize what they are interested in.

All above requirements involve a measurement
of similarity between two word distributions Θ1

and Θ2. Cosine, Kullback-Leibler divergence DKL

and Jensen Shannon divergence DJS are all able
to measure the similarity, but (Louis and Nenkova,
2009) indicate the superiority of DJS in summa-
rization task. We also introduce a pair of decreas-
ing/increasing logistic functions, L1(x) = 1/(1 +
ex) and L2(x) = ex/(1 + ex), to map the diver-
gence into interval [0,1]. V is the vocabulary set
and tf denotes the term frequency for word w.

DJS(Θ1||Θ2) =
1

2
[DKL(Θ1||Θ2)+DKL(Θ2||Θ1)]

where

DKL(Θ1||Θ2) =
∑

k∈V
p(w|Θ1)log

p(w|Θ1)

p(w|Θ2)

where

p(w|Θ) =
tf(w,Θ)∑
w′ tf(w′,Θ)

.

Modeling Interest for User Utility. Given a gener-
ated summary S, users tend to scrutinize texts rele-
vant to their interests. Texts related to user implicit
feedback are collected as A =

∑|Q|
i=1A(qi). Intu-

itively, the smaller distance between the word distri-
bution of final summary (ΘS) and the word distri-
bution of user preference (ΘA), the higher utility of
user interests Uuser(S) will be, i.e.,

Uuser(S) = L1(DJS(ΘS ||ΘA)). (4)

We model the utility of traditional summarization
Utrad(S) using a linear interpolation controlled by
parameter δ between utility from coverage Uc(S)
and utility Ud(S) from diversity:

Utrad(S) = Uc(S) + δ · Ud(S). (5)

Coverage Utility. The summary should share a
closer word distribution with the source collection
(Allan et al., 2001; Li et al., 2009). A good summary
focuses on minimizing the loss of main information
from the whole collection D. Utility from coverage

Uc(S) is defined as follows and for coverage utility,
smaller divergence is desired.

Uc(S) = L1(DJS(ΘS ||ΘD)). (6)

Diversity Utility. Diversity measures the novelty
degree of any sentence s compared with all other
sentences within S, i.e., the distances between all
other sentences and itself. Diversity utility Ud(S) is
an average novelty score for all sentences in S. For
diversity utility, larger distance is desired, and hence
we use the increasing function L2 as follows:

Ud(S) =
1

|S|
∑

s∈S
L2(DJS(Θs||Θ(S−s))). (7)

3.3 Balanced Optimization Framework
A well generated summary S should be sufficiently
aligned with the original source corpus, and also
be optimized given the user interests. The utility
of an individual summary U(S) is evaluated by the
weighted combination of these components, con-
trolled by parameter λ for balanced weights.

U(S) = Utrad(S) + λ · Uuser(S) (8)

Given the sentence setD and the compression rate
φ, there are φ·|D| out of |D| possibilities to generate
S. The IPS task is to predict the optimized sentence
subset of S∗ from the space of all combinations. The
objective function is as follows:

S∗ = argmax
S

U(S). (9)

As U(S) is measured based on preferred interests
from user interaction within a generation in our sys-
tem, we extract S iteratively to approximate S∗, i.e,
maximize U(S) based on the user feedbacks from
the interaction sessions. Each session is an iteration.
We use a similar framework as we have proposed in
(Yan et al., 2011).

During every session, the top ranked sentences are
strong candidates for the summary to generate and
the rank methodology is based on the metrics U(.).
The algorithm tends to highly rank sentences which
are with both coverage utility and interest utility, and
are diversified in balance: we rank each sentence s
according to U(s) under such metrics.

Consider S(n−1) generated in the (n-1)-th session
which consists of top φ|D| ranked sentences, as well
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as the top φ|D| ranked sentences in the n-th iteration
(denoted by O(n)), they have an intersection set of
Z(n) = Sn−1∩On. There is a substitutable sentence
set X (n) = S(n−1) −Z(n) and a new candidate sen-
tence set Y(n) = O(n) − Z(n). We substitute x(n)

sentences with y(n), where x(n) ⊆ X (n) and y(n)

⊆ Y(n). During every iteration, our goal is to find a
substitutive pair <x,y> for S:

<x,y> : X × Y → R.

To measure the performance of such a substitu-
tion, a discriminant utility gain function ∆Ux,y

∆U (n)

x(n),y(n) = U(S(n))− U(S(n−1))

= U((S(n−1) − x(n)) ∪ y(n))− U(S(n−1))
(10)

is employed to quantify the penalty. Therefore, we
predict the substitutive pair by maximizing the gain
function ∆Ux,y over the state set R, with a size of∑Y

k=0A
k
XC

k
Y , where <x,y>∈ R. Finally the ob-

jective function of Equation (9) changes into maxi-
mization of utility gain by substitute x̂ with ŷ during
each iteration:

< x̂, ŷ >= argmax
x⊆X ,y⊆Y

∆Ux,y. (11)

Note that the objectives of interest utility opti-
mization and traditional utility optimization are not
always the same because the word distributions in
these texts are usually different. The substitutive
pair <x,y> may perform well based on the user
preference component while not on the traditional
summary part and vice versa. There is a tradeoff
between both user optimization and traditional opti-
mization and hence we need to balance them by λ.

The objective Equation (11) is actually to maxi-
mize ∆U(S) from all possible substitutive pairs be-
tween two iteration sessions to generate S. The al-
gorithm is shown in Algorithm 1. The threshold ε is
set at 0.001 in this study.

4 Experiments and Evaluation

4.1 Datasets
IPS can be tested on any document set but a tiny
corpus to summarize may not cover abundant effec-
tive interests to attract user clicks indicating their

Algorithm 1 Regenerative Optimization
1: Input: D, ε, φ
2: for all s ∈ D do
3: calculate Utrad(s)
4: end for
5: S ← top φ|D| ranked sentences
6: while new generation=TRUE do
7: collect clicks and update utility from U ′ to U
8: if |U(S)− U ′(S)| > ε then
9: for all s ∈ D do

10: calculate U(s)
11: end for
12: O ← top φ|D| ranked sentences by U(s)
13: Z ← S ∩ O
14: X ← S −Z , Y ← O −Z
15: for all <x,y> pair where x ⊆ X ,y ⊆ Y

do
16: ∆Ux,y = U((S − x) ∪ y)− U(S)
17: end for
18: < x̂, ŷ >= argmax ∆Ux,y
19: S ← (S − x̂) ∪ ŷ
20: end if
21: end while

preference. Besides, the scenario of small corpus is
not quite practical for the exponential growing web.
Therefore, we test IPS on large real world datasets.
We build 4 news story sets which consist of docu-
ments and reference summaries to evaluate our pro-
posed framework empirically. We downloaded 5197
news articles from 10 selected sources. As shown in
Table 2, three of the sources are in UK, one of them
is in China and the rest are in US. We choose them
because many of these websites provide handcrafted
summaries for their special reports, which serve as
reference summaries. These events belong to differ-
ent categories of Rule of Interpretation (ROI) (Ku-
maran and Allan, 2004). Statistics are in Table 3.

4.2 Experimental System Setups
• Preprocessing. Given a collection of documents,
we first decompose them into sentences. Stop-words
are removed and words stemming is performed.
Then the word distributions can be calculated.
• User Interface Design. Users are required to
specify the overall compression rate φ and the sys-
tem extracts φ|D| sentences according to user utility
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Figure 1: A demonstration system for Interactive Personalized Summarization when compression rate φ is specified
(e.g. 5%). For convenience of browsing, we number the selected sentences (see in part 3). Extracted semantic units,
such as “drilling mud”, are in bold and underlined format (see in part 1). When the user clicks a sentence (part 4), the
clicked sentence ID is kept in the click record (part 2). Mis-clicked records revocation can be operated by clicking
the deletion icon “X” (see in part 3). Once a sentence is clicked, user can track the sentence into the popup source
document to examine the contexts. The selected sentences are highlighted in the source documents (see in part 5).

Table 2: News sources of 4 datasets
News Sources Nation News Sources Nation

BBC UK Fox News US
Xinhua China MSNBC US
CNN US Guardian UK
ABC US New York Times US

Reuters UK Washington Post US

Table 3: Detailed basic information of 4 datasets.
News Subjects #size #docs #RS Avg.L
1.Influenza A 115026 2557 5 83
2.BP Oil Spill 63021 1468 6 76

3.Haiti Earthquake 12073 247 2 32
4.Jackson Death 37819 925 3 64

#size: total sentence counts; #RS: the number of reference summaries;
Avg.L: average length of reference summary measured in sentences.

and traditional utility. User utility is obtained from
interaction. The system keeps the clicked sentence
records and calculates the user feedback by Equa-
tion (3) during every session. Consider sometimes

users click into the summary due to confusion or
mis-operations, but not their real interests. The sys-
tem supports click records revocation. More details
of the user interface is demonstrated in Figure 1.

4.3 Evaluation Metrics

We include both subjective evaluation from 3 evalu-
ators based on their personalized interests and pref-
erence, and the objective evaluation based on the
widely used ROUGE metrics (Lin and Hovy, 2003).

Evaluator Judgments
Evaluators are requested to express an opinion

over all summaries based on the sentences which
they deem to be important for the news. In general
a summary can be rated in a 5-point scale, where
“1” for “terrible”, “2” for “bad”, “3” for “normal”,
“4” for “good” and “5” for “excellent”. Evaluators
are allowed to judge at any scores between 1 and 5,
e.g. a score of “3.3” is adopted when the evaluator
feels difficult to decide whether “3” or “4” is more

1347



appropriate but with preference towards “3”.
ROUGE Evaluation
The DUC usually officially employs ROUGE

measures for summarization evaluation, which mea-
sures summarization quality by counting overlap-
ping units such as the N-gram, word sequences, and
word pairs between the candidate summary and the
reference summary. We use ROUGE-N as follows:

ROUGE-N =

∑
S∈{RefSum}

∑
N-gram∈S

Countmatch(N-gram)

∑
S∈{RefSum}

∑
N-gram∈S

Count (N-gram)

whereN stands for the length of the N-gram and N-
gram∈RefSum denotes the N-grams in the reference
summaries while N-gram∈CandSum denotes the N-
grams in the candidate summaries. Countmatch(N-
gram) is the maximum number of N-gram in the
candidate summary and in the set of reference sum-
maries. Count(N-gram) is the number of N-grams in
the reference summaries or candidate summary.

According to (Lin and Hovy, 2003), among all
sub-metrics in ROUGE, ROUGE-N (N=1, 2) is rela-
tively simple and works well. In this paper, we eval-
uate our experiments using all methods provided by
the ROUGE package (version 1.55) and only report
ROUGE-1, since the conclusions drawn from differ-
ent methods are quite similar. Intuitively, the higher
the ROUGE scores, the similar two summaries are.

4.4 Algorithms for Comparison

We implement the following widely used multi-
document summarization algorithms as the baseline
systems, which are all designed for traditional sum-
marization without user interaction. For fairness we
conduct the same preprocessing for all algorithms.

Random: The method selects sentences ran-
domly for each document collection.

Centroid: The method applies MEAD algorithm
(Radev et al., 2004) to extract sentences according to
the following parameters: centroid value, positional
value, and first-sentence overlap.

GMDS: The Graph-based MDS proposed by
(Wan and Yang, 2008) first constructs a sentence
connectivity graph based on cosine similarity and
then selects important sentences based on the con-
cept of eigenvector centrality.

IPSini: The initial generated summary from IPS
merely models coverage and diversity utility, which

is similar to the previous work described in (Allan et
al., 2001) with different goals and frameworks.

IPS: Our proposed algorithms with personaliza-
tion component to capture interest by user feed-
backs. IPS generates summaries via iterative sen-
tence substitutions within user interactive sessions.

RefSum: As we have used multiple reference
summaries from websites, we not only provide
ROUGE evaluations of the competing systems but
also of the reference summaries against each other,
which provides a good indicator of not only the
upper bound ROUGE score that any system could
achieve, but also human inconsistency among refer-
ence summaries, indicating personalization.

4.5 Overall Performance Comparison

We take the average ROUGE-1 performance and hu-
man ratings on all sets. The overall results are shown
in Figure 2 and details are listed in Tables 4∼6.

Figure 2: Overall performance on 6 datasets.

From the results, we have following observations:
• Random has the worst performance as expected,

both in ROUGE-1 scores and human judgements.
• The ROUGE-1 and human ratings of Centroid

and GMDS are better than those of Random. This is
mainly because the Centroid based algorithm takes
into account positional value and first-sentence over-
lap, which facilitates main aspects summarization
and PageRank-based GMDS ranks the sentence us-
ing eigenvector centrality which implicitly accounts
for information subsumption among all sentences.
• In general, the GMDS system slightly outper-

forms Centroid system in ROUGE-1, but the human
judgements of GMDS and Centroid are of no signifi-
cant difference. This is probably due to the difficulty
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Table 4: Overall performance comparison on Influenza A.
ROI∗ category: Science.

Systems R-1 95%-conf. H-1 H-2 H-3
RefSum 0.491 0.44958 3.5 3.0 3.9
Random 0.257 0.75694 1.2 1.0 1.0
Centroid 0.331 0.45073 2.5 3.0 3.5
GMDS 0.364 0.33269 3.0 2.7 3.5
IPSini 0.302 0.21213 2.0 2.5 2.5
IPS 0.337 0.46757 4.8 4.5 4.5

Table 5: Overall performance comparison on BP Oil
Leak. ROI category: Accidents.

Systems R-1 95%-conf. H-1 H-2 H-3
RefSum 0.517 0.48618 4.0 3.3 3.9
Random 0.262 0.64406 1.5 1.0 1.5
Centroid 0.369 0.34743 3.2 3.0 3.5
GMDS 0.389 0.43877 3.5 3.0 3.9
IPSini 0.327 0.53722 3.0 2.5 3.0
IPS 0.372 0.35681 4.8 4.5 4.5

Table 6: Overall performance comparison on Haiti Earth-
quake. ROI category: Disasters.

Systems R-1 95%-conf. H-1 H-2 H-3
RefSum 0.528 0.30450 3.8 4.0 4.0
Random 0.266 0.75694 1.5 1.5 1.8
Centroid 0.362 0.43045 3.6 3.0 4.0
GMDS 0.380 0.33694 3.9 3.5 4.0
IPSini 0.331 0.34120 2.8 2.5 3.0
IPS 0.391 0.40069 5.0 4.7 5.0

Table 7: Overall performance comparison on Michael
Jackson Death. ROI category: Legal Cases.

Systems R-1 95%-conf. H-1 H-2 H-3
RefSum 0.482 0.47052 3.5 3.5 4.0
Random 0.232 0.52426 1.2 1.0 1.5
Centroid 0.320 0.21045 3.0 2.5 2.7
GMDS 0.341 0.30070 3.5 3.3 3.9
IPSini 0.287 0.48526 2.5 2.0 2.2
IPS 0.324 0.36897 5.0 4.5 4.8

∗ROI: news categorization defined by Linguistic Data Consortium.
Available at http://www.ldc.upenn.edu/projects/tdt4/annotation

of human judgements on comparable summaries.
• The results of ROUGE-1 and ratings for IPSini

are better than Random but worse than Centroid and
GMDS. The reason in this case may be that IPSini
does not capture sufficient attributes: coverage and
diversity are merely fundamental requirements.
• Traditional summarization considers sentence

selection based on corpus only, and hence neglects

Table 8: Ratings consistency between evaluators: mean
± standard deviation over the 4 datasets.

RefSum Evaluator 1 Evaluator 2 Evaluator 3
Evaluator 1 0.35±0.09 0.30±0.33
Evaluator 2 0.50±0.14

Random Evaluator 1 Evaluator 2 Evaluator 3
Evaluator 1 0.23±0.04 0.20±0.02
Evaluator 2 0.33±0.06

Centroid Evaluator 1 Evaluator 2 Evaluator 3
Evaluator 1 0.45±0.03 0.50±0.12
Evaluator 2 0.55±0.11

GMDS Evaluator 1 Evaluator 2 Evaluator 3
Evaluator 1 0.35±0.02 0.35±0.03
Evaluator 2 0.70±0.03

IPSini Evaluator 1 Evaluator 2 Evaluator 3
Evaluator 1 0.45±0.01 0.25±0.04
Evaluator 2 0.30±0.06

IPS Evaluator 1 Evaluator 2 Evaluator 3
Evaluator 1 0.35±0.01 0.18±0.02
Evaluator 2 0.28±0.04

user interests. Many sentences are extracted due to
arbitrary assumption of reader preference, which re-
sults in a low user satisfaction. Human judgements
under our proposed IPS framework greatly outper-
form baselines, indicating that the appropriate use
of human interests for summarization are beneficial.

The ROUGE-1 performance for IPS is not as ideal
as that of GMDS. This situation may result from the
divergence between user interests and general infor-
mation provided by mass media propaganda, which
again motivates the need for personalization.

Although the high disparities between different
human evaluators have been observed in (Gong and
Liu, 2001), we still examine the consistency among
3 evaluators and their preferred summaries to prove
the motivation of personalization in our work.

4.6 Consistency Analysis for Personalization

The low ROUGE-1 scores of RefSum indicate the
inconsistency among reference summaries. We con-
duct personalization analysis from two perspectives:
(1) human rating consistency and (2) content consis-
tency among human supervised summaries.

We calculate the mean and variance of rating vari-
ations among evaluator judgements, listed in Table
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Table 9: Content consistency among evaluators super-
vised summaries.

Evaluator 1 Evaluator 2 Evaluator 3
Evaluator 1 0.273 0.398
Evaluator 2 0.289 0.257
Evaluator 3 0.407 0.235

RefSum 0.365 0.302 0.394

8. We see that for Random the average rating vari-
ation is 0.25, for IPS is 0.27, for IPSini is 0.33, for
RefSum is 0.38, for GMDS is 0.47 and for Centroid
is the highest, 0.50. Such phenomenon indicates
for poor generated summaries, such as Random or
IPSini, humans have consensus, but for normal sum-
maries without personalized interests, they are likely
to have disparities, surprisingly, even for RefSum.
General summaries provided by mass media satisfy
part of audiences, but obviously not all of them.

The high rating consistency of IPS indicates peo-
ple tend to favor summaries generated according to
their interests. We next examine content consistency
of these summaries with high rating consistency.

As shown in Table 9, although highly scored,
these human supervised summaries still have low
content consistency (especially Evaluator 2). The
low content consistency between RefSum and su-
pervised summaries shows reader have individual
personalization. Note that the inconsistency among
evaluators is larger than that between RefSum and
supervised summaries, indicating interests take a
high proportion in evaluator supervised summaries.

4.7 Parameter Settings

δ controls coverage/diversity tradeoff. We tune δ on
IPSini and apply the optimal δ directly in IPS. Ac-
cording to the statistics in (Yan et al., 2010), the se-
mantic coherent context is about 7 sentences. There-
fore, we empirically choose k=3 for the examined
context window. The number of topics is set at
n=50. We assign an equal weight (γ = 1) to seman-
tic units and examined contexts according to analog-
ical research of summarization from implicit feed-
backs via clickthrough data (Sun et al., 2005).
λ is the key parameter in IPS approach, control-

ling the weight of user utility during the process of
interactive personalized summarization.

Through Figure 3, we see that when λ is small

Figure 3: λ v.s. human ratings and ROUGE scores.

(λ ∈ [0.01, 0.1]), both human judgements and
ROUGE evaluation scores have little difference.
When λ ∈ [0.1, 1], ROUGE scores increase signifi-
cantly but human satisfaction shows little response.
λ ∈ [1, 10] brings large user utility enhancement be-
cause user may find what they are interested in but
ROUGE scores start to decay. When λ ∈ [10, 100],
ROUGE scores drop much because the emphasized
user interests may guide the generated summaries
divergent away from the original corpus.

In Figure 4 we examine how λ attracts user clicks
and regeneration counts until satisfaction. As the re-
sult indicates, both counts increase as λ increases.
When λ is small (from 0.01 to 0.1), readers find
no more interesting aspects through clicks and re-
generations and stop due to the bad user experience.
As λ increases, the system mines more relevant sen-
tences according to personalized interests and hence
attracts user clicks and intention to regenerate.

Figure 4: λ v.s. click counts and regeneration counts.
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5 Conclusion

We present an important and novel summariza-
tion problem, Interactive Personalized Summariza-
tion (IPS), which generates summaries based on
human−system interaction for “interests” and per-
sonalization. We formally formulate IPS as a combi-
nation of user utility and traditional summary utility,
such as coverage and diversity. We implement a sys-
tem under such framework for experiments on real
web datasets to compare all approaches. Through
our experiments we notice that user personalization
of interests plays an important role in summary gen-
eration, which largely increase human ratings due to
user satisfaction. Besides, our experiments indicate
the inconsistency between user preferred summaries
and reference summaries measured by ROUGE, and
hence prove the effectiveness of personalization.
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Abstract

We offer a simple, effective, and scalable
method for statistical machine translation pa-
rameter tuning based on the pairwise approach
to ranking (Herbrich et al., 1999). Unlike
the popular MERT algorithm (Och, 2003), our
pairwise ranking optimization (PRO) method
is not limited to a handful of parameters and
can easily handle systems with thousands of
features. Moreover, unlike recent approaches
built upon the MIRA algorithm of Crammer
and Singer (2003) (Watanabe et al., 2007; Chi-
ang et al., 2008b), PRO is easy to imple-
ment. It uses off-the-shelf linear binary classi-
fier software and can be built on top of an ex-
isting MERT framework in a matter of hours.
We establish PRO’s scalability and effective-
ness by comparing it to MERT and MIRA and
demonstrate parity on both phrase-based and
syntax-based systems in a variety of language
pairs, using large scale data scenarios.

1 Introduction

The MERT algorithm (Och, 2003) is currently the
most popular way to tune the parameters of a sta-
tistical machine translation (MT) system. MERT
is well-understood, easy to implement, and runs
quickly, but can behave erratically and does not scale
beyond a handful of features. This lack of scalability
is a significant weakness, as it inhibits systems from
using more than a couple dozen features to discrimi-
nate between candidate translations and stymies fea-
ture development innovation.

Several researchers have attempted to address
this weakness. Recently, Watanabe et al. (2007)

and Chiang et al. (2008b) have developed tuning
methods using the MIRA algorithm (Crammer and
Singer, 2003) as a nucleus. The MIRA technique of
Chiang et al. has been shown to perform well on
large-scale tasks with hundreds or thousands of fea-
tures (2009). However, the technique is complex and
architecturally quite different from MERT. Tellingly,
in the entire proceedings of ACL 2010 (Hajič et al.,
2010), only one paper describing a statistical MT
system cited the use of MIRA for tuning (Chiang,
2010), while 15 used MERT.1

Here we propose a simpler approach to tuning that
scales similarly to high-dimensional feature spaces.
We cast tuning as a ranking problem (Chen et al.,
2009), where the explicit goal is to learn to correctly
rank candidate translations. Specifically, we follow
the pairwise approach to ranking (Herbrich et al.,
1999; Freund et al., 2003; Burges et al., 2005; Cao et
al., 2007), in which the ranking problem is reduced
to the binary classification task of deciding between
candidate translation pairs.

Of primary concern to us is the ease of adoption of
our proposed technique. Because of this, we adhere
as closely as possible to the established MERT ar-
chitecture and use freely available machine learning
software. The end result is a technique that scales
and performs just as well as MIRA-based tuning,
but which can be implemented in a couple of hours
by anyone with an existing MERT implementation.
Mindful that many would-be enhancements to the

1The remainder either did not specify their tuning method
(though a number of these used the Moses toolkit (Koehn et al.,
2007), which uses MERT for tuning) or, in one case, set weights
by hand.
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state-of-the-art are false positives that only show im-
provement in a narrowly defined setting or with lim-
ited data, we validate our claims on both syntax and
phrase-based systems, using multiple language pairs
and large data sets.

We describe tuning in abstract and somewhat for-
mal terms in Section 2, describe the MERT algo-
rithm in the context of those terms and illustrate its
scalability issues via a synthetic experiment in Sec-
tion 3, introduce our pairwise ranking optimization
method in Section 4, present numerous large-scale
MT experiments to validate our claims in Section 5,
discuss some related work in Section 6, and con-
clude in Section 7.

2 Tuning

In Figure 1, we show an example candidate space,
defined as a tuple 〈∆, I, J, f, e,x〉 where:

• ∆ is a positive integer referred to as the dimen-
sionality of the space

• I is a (possibly infinite) set of positive integers,
referred to as sentence indices

• J maps each sentence index to a (possibly infi-
nite) set of positive integers, referred to as can-
didate indices

• f maps each sentence index to a sentence from
the source language

• e maps each pair 〈i, j〉 ∈ I × J(i) to the jth

target-language candidate translation of source
sentence f(i)

• x maps each pair 〈i, j〉 ∈ I × J(i) to a
∆-dimension feature vector representation of
e(i, j)

The example candidate space has two source sen-
tences, three candidate translations for each source
sentence, and feature vectors of dimension 2. It is
an example of a finite candidate space, defined as
a candidate space for which I is finite and J maps
each index of I to a finite set.

A policy of candidate space 〈∆, I, J, f, e,x〉 is a
function that maps each member i ∈ I to a member
of J(i). A policy corresponds to a choice of one
candidate translation for each source sentence. For

the example in Figure 1, policy p1 = {1 7→ 2, 2 7→
3} corresponds to the choice of “he does not go” for
the first source sentence and “I do not go” for the
second source sentence. Obviously some policies
are better than others. Policy p2 = {1 7→ 3, 2 7→ 1}
corresponds to the inferior translations “she not go”
and “I go not.”

We assume the MT system distinguishes between
policies using a scoring function for candidate trans-
lations of the form hw(i, j) = w · x(i, j), where w
is a weight vector of the same dimension as feature
vector x(i, j). This scoring function extends to a
policy p by summing the cost of each of the policy’s
candidate translations: Hw(p) =

∑
i∈I hw(i, p(i)).

As can be seen in Figure 1, using w = [−2, 1],
Hw(p1) = 9 and Hw(p2) = −8.

The goal of tuning is to learn a weight vector w
such that Hw(p) assigns a high score to good poli-
cies, and a low score to bad policies.2 To do so,
we need information about which policies are good
and which are bad. This information is provided by
a “gold” scoring function G that maps each policy
to a real-valued score. Typically this gold function
is BLEU (Papineni et al., 2002), though there are
several common alternatives (Lavie and Denkowski,
2009; Melamed et al., 2003; Snover et al., 2006;
Chiang et al., 2008a).

We want to find a weight vector w such that Hw

behaves “similarly” to G on a candidate space s.
We assume a loss function ls(Hw, G) which returns
the real-valued loss of using scoring function Hw

when the gold scoring function is G and the candi-
date space is s. Thus, we may say the goal of tuning
is to find the weight vector w that minimizes loss.

3 MERT

In general, the candidate space may have infinitely
many source sentences, as well as infinitely many
candidate translations per source sentence. In prac-
tice, tuning optimizes over a finite subset of source
sentences3 and a finite subset of candidate transla-
tions as well. The classic tuning architecture used
in the dominant MERT approach (Och, 2003) forms
the translation subset and learns weight vector w via

2Without loss of generality, we assume that a higher score
indicates a better translation.

3See Section 5.2 for the tune sets used in this paper’s exper-
iments.
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Source Sentence Candidate Translations
i f(i) j e(i, j) x(i, j) hw(i, j) g(i, j)

1 “il ne va pas” 1 “he goes not” [2 4] 0 0.28
2 “he does not go” [3 8] 2 0.42
3 “she not go” [6 1] -11 0.12

2 “je ne vais pas” 1 “I go not” [-3 -3] 3 0.15
2 “we do not go” [1 -5] -7 0.18
3 “I do not go” [-5 -3] 7 0.34

Figure 1: Example candidate space of dimensionality 2. Note: I = {1, 2}, J(1) = J(2) = {1, 2, 3}. We also show a
local scoring function hw(i, j) (where w = [−2, 1]) and a local gold scoring function g(i, j).

Algorithm TUNE(s, G):
1: initialize pool: let s′ = 〈∆, I ′, J ′, f, e,x〉,

where I ′ ⊆ I and J ′ = ∅
2: for the desired number of iterations do
3: candidate generation: choose index pairs

(i, j); for each, add j to J ′(i)
4: optimization: find vector w that minimizes

ls′(Hw, G)
5: return w

Figure 2: Schema for iterative tuning of base candidate
space s = 〈∆, I, J, f, e,x〉 w.r.t. gold function G.

a feedback loop consisting of two phases. Figure 2
shows the pseudocode. During candidate genera-
tion, candidate translations are selected from a base
candidate space s and added to a finite candidate
space s′ called the candidate pool. During optimiza-
tion, the weight vector w is optimized to minimize
loss ls′(Hw, G).

For its candidate generation phase, MERT gener-
ates the k-best candidate translations for each source
sentence according to hw, where w is the weight
vector from the previous optimization phase (or an
arbitrary weight vector for the first iteration).

For its optimization phase, MERT defines the loss
function as follows:

ls(Hw, G) = max
p
G(p)−G(arg max

p
Hw(p))

In other words, it prefers weight vectors w such
that the gold function G scores Hw’s best policy as
highly as possible (if Hw’s best policy is the same
as G’s best policy, then there is zero loss). Typically
the optimization phase is implemented using Och’s
line optimization algorithm (2003).

MERT has proven itself effective at tuning candi-
date spaces with low dimensionality. However, it is
often claimed that MERT does not scale well with
dimensionality. To test this claim, we devised the
following synthetic data experiment:

1. We created a gold scoring function G that is
also a linear function of the same form as Hw,
i.e.,G(p) = Hw∗(p) for some gold weight vec-
tor w∗. Under this assumption, the role of the
optimization phase reduces to learning back the
gold weight vector w∗.

2. We generated a ∆-dimensionality candidate
pool with 500 source “sentences” and 100 can-
didate “translations” per sentence. We created
the corresponding feature vectors by drawing
∆ random real numbers uniformly from the in-
terval [0, 500].

3. We ran MERT’s line optimization on this syn-
thetic candidate pool and compared the learned
weight vector w to the gold weight vector w∗

using cosine similarity.

We used line optimization in the standard way,
by generating 20 random starting weight vectors and
hill-climbing on each independently until no further
progress is made, then choosing the final weight vec-
tor that minimizes loss. We tried various dimen-
sionalities from 10 to 1000. We repeated each set-
ting three times, generating different random data
each time. The results in Figure 3 indicate that as
the dimensionality of the problem increases MERT
rapidly loses the ability to learn w∗. Note that this
synthetic problem is considerably easier than a real
MT scenario, where the data is noisy and interdepen-
dent, and the gold scoring function is nonlinear. If
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MERT cannot scale in this simple scenario, it has lit-
tle hope of succeeding in a high-dimensionality de-
ployment scenario.

4 Optimization via Pairwise Ranking

We would like to modify MERT so that it scales well
to high-dimensionality candidate spaces. The most
prominent example of a tuning method that per-
forms well on high-dimensionality candidate spaces
is the MIRA-based approach used by Watanabe et
al. (2007) and Chiang et al. (2008b; 2009). Unfortu-
nately, this approach requires a complex architecture
that diverges significantly from the MERT approach,
and consequently has not been widely adopted. Our
goal is to achieve the same performance with mini-
mal modification to MERT.

With MERT as a starting point, we have a choice:
modify candidate generation, optimization, or both.
Although alternative candidate generation methods
have been proposed (Macherey et al., 2008; Chiang
et al., 2008b; Chatterjee and Cancedda, 2010), we
will restrict ourselves to MERT-style candidate gen-
eration, in order to minimize divergence from the
established MERT tuning architecture. Instead, we
focus on the optimization phase.

4.1 Basic Approach

While intuitive, the MERT optimization module fo-
cuses attention on Hw’s best policy, and not on its
overall prowess at ranking policies. We will cre-
ate an optimization module that directly addresses
Hw’s ability to rank policies in the hope that this
more holistic approach will generalize better to un-
seen data.

Assume that the gold scoring function G decom-
poses in the following way:

G(p) =
∑

i∈I
g(i, p(i)) (1)

where g(i, j) is a local scoring function that scores
the single candidate translation e(i, j). We show an
example g in Figure 1. For an arbitrary pair of can-
didate translations e(i, j) and e(i, j′), the local gold
function g tells us which is the better translation.
Note that this induces a ranking on the candidate
translations for each source sentence.

We follow the pairwise approach to ranking (Her-
brich et al., 1999; Freund et al., 2003; Burges et al.,
2005; Cao et al., 2007). In the pairwise approach,
the learning task is framed as the classification of
candidate pairs into two categories: correctly or-
dered and incorrectly ordered. Specifically, for can-
didate translation pair e(i, j) and e(i, j′), we want:
g(i, j) > g(i, j′) ⇔ hw(i, j) > hw(i, j′). We can
re-express this condition:
g(i, j) > g(i, j′)⇔ hw(i, j) > hw(i, j′)

⇔ hw(i, j)− hw(i, j′) > 0

⇔ w · x(i, j)−w · x(i, j′) > 0

⇔ w · (x(i, j)− x(i, j′)) > 0

Thus optimization reduces to a classic binary clas-
sification problem. We create a labeled training in-
stance for this problem by computing difference vec-
tor x(i, j) − x(i, j′), and labeling it as a positive
or negative instance based on whether, respectively,
the first or second vector is superior according to
gold function g. To ensure balance, we consider
both possible difference vectors from a pair. For ex-
ample, given the candidate space of Figure 1, since
g(1, 1) > g(1, 3), we would add ([−4, 3],+) and
([4,−3],−) to our training set. We can then feed this
training data directly to any off-the-shelf classifica-
tion tool that returns a linear classifier, in order to ob-
tain a weight vector w that optimizes the above con-
dition. This weight vector can then be used directly
by the MT system in the subsequent candidate gen-
eration phase. The exact loss function ls′(Hw, G)
optimized depends on the choice of classifier.4

Typical approaches to pairwise ranking enumer-
ate all difference vectors as training data. For tuning
however, this means O(|I| ∗ J2

max) vectors, where
Jmax is the cardinality of the largest J(i). Since
I and Jmax commonly range in the thousands, a
full enumeration would produce billions of feature
vectors. Out of tractability considerations, we sam-
ple from the space of difference vectors, using the
sampler template in Figure 4. For each source sen-
tence i, the sampler generates Γ candidate transla-
tion pairs 〈j, j′〉, and accepts each pair with proba-
bility αi(|g(i, j) − g(i, j′)|). Among the accepted
pairs, it keeps the Ξ with greatest g differential, and
adds their difference vectors to the training data.5

4See (Chen et al., 2009) for a brief survey.
5The intuition for biasing toward high score differential is
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Figure 3: Result of synthetic data learning experiment
for MERT and PRO, with and without added noise. As
the dimensionality increases MERT is unable to learn the
original weights but PRO still performs adequately.

4.2 Scalability
We repeated the scalability study from Section 3,
now using our pairwise ranking optimization (here-
after, PRO) approach. Throughout all experiments
with PRO we choose Γ = 5000, Ξ = 50, and the
following step function α for each αi: 6

α(n) =

{
0 if n < 0.05

1 otherwise

We used MegaM (Daumé III, 2004) as a binary
classifier in our contrasting synthetic experiment and
ran it “out of the box,” i.e., with all default settings
for binary classification.7 Figure 3 shows that PRO
is able to learn w∗ nearly perfectly at all dimension-
alities from 10 to 1000.

As noted previously, though, this is a rather sim-
ple task. To encourage a disconnect between g and
hw and make the synthetic scenario look more like
MT reality, we repeated the synthetic experiments

that our primary goal is to ensure good translations are preferred
to bad translations, and not to tease apart small differences.

6We obtained these parameters by trial-and-error experi-
mentation on a single MT system (Urdu-English SBMT), then
held them fixed throughout our experiments. We obtained sim-
ilar results using Γ = Ξ = 100, and for each αi, a logistic sig-
moid function centered at the mean g differential of candidate
translation pairs for the ith source sentence. This alternative ap-
proach has the advantage of being agnostic about which gold
scoring function is used.

7With the sampling settings previously described and
MegaM as our classifier we were able to optimize two to three
times faster than with MERT’s line optimization.

Algorithm SAMPLERs,g( Γ, Ξ, i, αi ):
1: V = 〈〉
2: for Γ samplings do
3: Choose 〈j, j′〉 ∈ J(i)×J(i) uniformly at ran-

dom.
4: With probability αi(|g(i, j)-g(i, j′)|), add

(x(i, j),x(i, j′), |g(i, j)-g(i, j′)|) to V .
5: Sort V decreasingly by |g(i, j)-g(i, j′)|.
6: return (x(i, j) − x(i, j′), sign(g(i, j)-g(i, j′))

and (x(i, j′)-x(i, j), sign(g(i, j′)-g(i, j))) for
each of the first Ξ members of V .

Figure 4: Pseudocode for our sampler. Arguments: s =
〈∆, I, J, f, e,x〉 is a finite candidate space; g is a scoring
function; Γ, Ξ, i are nonnegative integers; αi is a func-
tion from the nonnegative real numbers to the real interval
[0, 1].

but added noise to each feature vector, drawn from
a zero-mean Gaussian with a standard deviation of
500. The results of the noisy synthetic experiments,
also in Figure 3 (the lines labeled “Noisy”), show
that the pairwise ranking approach is less successful
than before at learning w∗ at high dimensionality,
but still greatly outperforms MERT.

4.3 Discussion

The idea of learning from difference vectors also lies
at the heart of the MIRA-based approaches (Watan-
abe et al., 2007; Chiang et al., 2008b) and the ap-
proach of Roth et al. (2010), which, similar to our
method, uses sampling to select vectors. Here, we
isolate these aspects of those approaches to create
a simpler tuning technique that closely mirrors the
ubiquitous MERT architecture. Among other sim-
plifications, we abstract away the choice of MIRA
as the classification method (our approach can use
any classification technique that learns a separating
hyperplane), and we eliminate the need for oracle
translations.

An important observation is that BLEU does not
satisfy the decomposability assumption of Equa-
tion (1). An advantage of MERT is that it can di-
rectly optimize for non-decomposable scoring func-
tions like BLEU. In our experiments, we use
the BLEU+1 approximation to BLEU (Liang et al.,
2006) to determine class labels. We will neverthe-
less use BLEU to evaluate the trained systems.
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PBMT

Language Experiment BLEU
feats method tune test

Urdu-English
base

MERT 20.5 17.7
MIRA 20.5 17.9
PRO 20.4 18.2

ext
MIRA 21.8 17.8
PRO 21.6 18.1

Arabic-English
base

MERT 46.8 41.2
MIRA 47.0 41.1
PRO 46.9 41.1

ext
MIRA 47.5 41.7
PRO 48.5 41.9

Chinese-English
base

MERT 23.8 22.2
MIRA 24.1 22.5
PRO 23.8 22.5

ext
MIRA 24.8 22.6
PRO 24.9 22.7

SBMT

Language Experiment BLEU
feats method tune test

Urdu-English
base

MERT 23.4 21.4
MIRA 23.6 22.3
PRO 23.4 22.2

ext
MIRA 25.2 22.8
PRO 24.2 22.8

Arabic-English
base

MERT 44.7 39.0
MIRA 44.6 39.0
PRO 44.5 39.0

ext
MIRA 45.8 39.8
PRO 45.9 40.3

Chinese-English
base

MERT 25.5 22.7
MIRA 25.4 22.9
PRO 25.5 22.9

ext
MIRA 26.0 23.3
PRO 25.6 23.5

Table 1: Machine translation performance for the experiments listed in this paper. Scores are case-sensitive IBM
BLEU. For every choice of system, language pair, and feature set, PRO performs comparably with the other methods.

5 Experiments

We now turn to real machine translation condi-
tions to validate our thesis: We can cleanly replace
MERT’s line optimization with pairwise ranking op-
timization and immediately realize the benefits of
high-dimension tuning. We now detail the three
language pairs, two feature scenarios, and two MT
models used for our experiments. For each language
pair and each MT model we used MERT, MIRA, and
PRO to tune with a standard set of baseline features,
and used the latter two methods to tune with an ex-
tended set of features.8 At the end of every experi-
ment we used the final feature weights to decode a
held-out test set and evaluated it with case-sensitive
BLEU. The results are in Table 1.

5.1 Systems

We used two systems, each based on a different MT
model. Our syntax-based system (hereafter, SBMT)
follows the model of Galley et al. (2004). Our

8MERT could not run to a satisfactory completion in any
extended feature scenario; as implied in the synthetic data ex-
periment of Section 3, the algorithm makes poor choices for
its weights and this leads to low-quality k-best lists and dismal
performance, near 0 BLEU in every iteration.

phrase-based system (hereafter, PBMT) follows the
model of Och and Ney (2004). In both systems
we learn alignments with GIZA++ (Och and Ney,
2000) using IBM Model 4; for Urdu-English and
Chinese-English we merged alignments with the re-
fined method, and for Arabic-English we merged
with the union method.

5.2 Data

Table 2 notes the sizes of the datasets used in our ex-
periments. All tune and test data have four English
reference sets for the purposes of scoring.

Data U-E A-E C-E

Train
lines 515K 6.5M 7.9M

words 2.2M 175M 173M

Tune
lines 923 1994 1615

words 16K 65K 42K

Test
lines 938 1357 1357

words 18K 47K 37K

Table 2: Data sizes for the experiments reported in this
paper (English words shown).
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Class
Urdu-English Arabic-English Chinese-English

PBMT SBMT PBMT SBMT PBMT SBMT
base ext base ext base ext base ext base ext base ext

baseline 15 15 19 19 15 15 19 19 15 15 19 19
target word – 51 – 50 – 51 – 50 – 51 – 299

discount – 11 – 11 – 11 – 10 – 11 – 10
node count – – – 99 – – – 138 – – – 96
rule overlap – – – 98 – – – 136 – – – 93
word pair – 2110 – – – 6193 – – – 1688 – –

phrase length – 63 – – – 63 – – – 63 – –
total 15 2250 19 277 15 6333 18 352 15 1828 19 517

Table 3: Summary of features used in experiments in this paper.

5.2.1 Urdu-English
The training data for Urdu-English is that made

available in the constrained track in the NIST 2009
MT evaluation. This includes many lexicon entries
and other single-word data, which accounts for the
large number of lines relative to word count. The
NIST 2008 evaluation set, which contains newswire
and web data, is split into two parts; we used roughly
half each for tune and test. We trained a 5-gram
English language model on the English side of the
training data.

5.2.2 Arabic-English
The training data for Arabic English is that made

available in the constrained track in the NIST 2008
MT evaluation. The tune set, which contains only
newswire data, is a mix from NIST MT evaluation
sets from 2003–2006 and from GALE development
data. The test set, which contains both web and
newswire data, is the evaluation set from the NIST
2008 MT evaluation. We trained a 4-gram English
language model on the English side of the training
data.

5.2.3 Chinese-English
For Chinese-English we used 173M words of

training data from GALE 2008. For SBMT we used
a 32M word subset for extracting rules and building
a language model, but used the entire training data
for alignments, and for all PBMT training. The tune
and test sets both contain web and newswire data.
The tune set is selected from NIST MT evaluation
sets from 2003–2006. The test set is the evaluation
set from the NIST 2008 MT evaluation. We trained a

3-gram English language model on the English side
of the training data.

5.3 Features

For each of our systems we identify two feature sets:
baseline, which correspond to the typical small fea-
ture set reported in current MT literature, and ex-
tended, a superset of baseline, which adds hundreds
or thousands of features. Specifically, we use 15
baseline features for PBMT, similar to the baseline
features described by Watanabe et al. (2007). We
use 19 baseline features for SBMT, similar to the
baseline features described by Chiang et al. (2008b).

We used the following feature classes in SBMT
and PBMT extended scenarios:

• Discount features for rule frequency bins (cf.
Chiang et al. (2009), Section 4.1)

• Target word insertion features9

We used the following feature classes in SBMT ex-
tended scenarios only (cf. Chiang et al. (2009), Sec-
tion 4.1):10

• Rule overlap features

• Node count features
9For Chinese-English and Urdu-English SBMT these fea-

tures only fired when the inserted target word was unaligned to
any source word.

10The parser used for Arabic-English had a different nonter-
minal set than that used for the other two SBMT systems, ac-
counting for the wide disparity in feature count for these feature
classes.
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Figure 5: Comparison of MERT, PRO, and MIRA on tuning Urdu-English SBMT systems, and test results at every
iteration. PRO performs comparably to MERT and MIRA.

We used the following feature classes in PBMT
extended scenarios only:

• Unigram word pair features for the 80 most fre-
quent words in both languages plus tokens for
unaligned and all other words (cf. Watanabe et
al. (2007), Section 3.2.1)11

• Source, target, and joint phrase length fea-
tures from 1 to 7, e.g. “tgt=4”, “src=2”, and
“src/tgt=2,4”

The feature classes and number of features used
within those classes for each language pair are sum-
marized in Table 3.

5.4 Tuning settings
Each of the three approaches we compare in this
study has various details associated with it that may
prove useful to those wishing to reproduce our re-
sults. We list choices made for the various tuning
methods here, and note that all our decisions were
made in keeping with best practices for each algo-
rithm.

5.4.1 MERT
We used David Chiang’s CMERT implementation

of MERT that is available with the Moses system
(Koehn et al., 2007). We ran MERT for up to 30 it-
erations, using k = 1500, and stopping early when

11This constitutes 6,723 features in principle (822 − 1 since
“unaligned-unaligned” is not considered) but in practice far
fewer co-occurrences were seen. Table 3 shows the number of
actual unigram word pair features observed in data.

the accumulated k-best list does not change in an it-
eration. In every tuning iteration we ran MERT once
with weights initialized to the last iteration’s chosen
weight set and 19 times with random weights, and
chose the the best of the 20 ending points according
to G on the development set. The G we optimize
is tokenized, lower-cased 4-gram BLEU (Papineni et
al., 2002).

5.4.2 MIRA
We for the most part follow the MIRA algorithm

for machine translation as described by Chiang et al.
(2009)12 but instead of using the 10-best of each of
the best hw, hw +g, and hw-g, we use the 30-best
according to hw.13 We use the same sentence-level
BLEU calculated in the context of previous 1-best
translations as Chiang et al. (2008b; 2009). We ran
MIRA for 30 iterations.

5.4.3 PRO
We used the MegaM classifier and sampled as de-

scribed in Section 4.2. As previously noted, we used
BLEU+1 (Liang et al., 2006) for g. MegaM was easy
to set up and ran fairly quickly, however any linear
binary classifier that operates on real-valued features
can be used, and in fact we obtained similar results

12and acknowledge the use of David Chiang’s code
13This is a more realistic scenario for would-be implementers

of MIRA, as obtaining the so-called “hope” and “fear” transla-
tions from the lattice or forest is significantly more complicated
than simply obtaining a k-best list. Other tests comparing these
methods have shown between 0.1 to 0.3 BLEU drop using 30-
best hw on Chinese-English (Wang, 2011).
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using the support vector machine module of WEKA
(Hall et al., 2009) as well as the Stanford classifier
(Manning and Klein, 2003). We ran for up to 30 iter-
ations and used the same k and stopping criterion as
was used for MERT, though variability of sampling
precluded list convergence.

While MERT and MIRA use each iteration’s final
weights as a starting point for hill-climbing the next
iteration, the pairwise ranking approach has no ex-
plicit tie to previous iterations. To incorporate such
stability into our process we interpolated the weights
w′ learned by the classifier in iteration t with those
from iteration t − 1 by a factor of Ψ, such that
wt = Ψ ·w′ + (1−Ψ) ·wt−1. We found Ψ = 0.1
gave good performance across the board.

5.5 Discussion

We implore the reader to avoid the natural tendency
to compare results using baseline vs. extended fea-
tures or between PBMT and SBMT on the same lan-
guage pair. Such discussions are indeed interesting,
and could lead to improvements in feature engineer-
ing or sartorial choices due to the outcome of wagers
(Goodale, 2008), but they distract from our thesis.
As can be seen in Table 1, for each of the 12 choices
of system, language pair, and feature set, the PRO
method performed nearly the same as or better than
MIRA and MERT on test data.

In Figure 5 we show the tune and test BLEU us-
ing the weights learned at every iteration for each
Urdu-English SBMT experiment. Typical of the rest
of the experiments, we can clearly see that PRO ap-
pears to proceed more monotonically than the other
methods. We quantified PRO’s stability as compared
to MERT by repeating the Urdu-English baseline
PBMT experiment five times with each configura-
tion. The tune and test BLEU at each iteration is
depicted in Figure 6. The standard deviation of the
final test BLEU of MERT was 0.13 across the five
experiment instances, while PRO had a standard de-
viation of just 0.05.

6 Related Work

Several works (Shen et al., 2004; Cowan et al.,
2006; Watanabe et al., 2006) have used discrimina-
tive techniques to re-rank k-best lists for MT. Till-
mann and Zhang (2005) used a customized form of
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Figure 6: Tune and test curves of five repetitions of the
same Urdu-English PBMT baseline feature experiment.
PRO is more stable than MERT.

multi-class stochastic gradient descent to learn fea-
ture weights for an MT model. Och and Ney (2002)
used maximum entropy to tune feature weights but
did not compare pairs of derivations. Ittycheriah and
Roukos (2005) used a maximum entropy classifier to
train an alignment model using hand-labeled data.
Xiong et al. (2006) also used a maximum entropy
classifier, in this case to train the reordering com-
ponent of their MT model. Lattice- and hypergraph-
based variants of MERT (Macherey et al., 2008; Ku-
mar et al., 2009) are more stable than traditional
MERT, but also require significant engineering ef-
forts.

7 Conclusion
We have described a simple technique for tuning
an MT system that is on par with the leading tech-
niques, exhibits reliable behavior, scales gracefully
to high-dimension feature spaces, and is remark-
ably easy to implement. We have demonstrated, via
a litany of experiments, that our claims are valid
and that this technique is widely applicable. It is
our hope that the adoption of PRO tuning leads to
fewer headaches during tuning and motivates ad-
vanced MT feature engineering research.
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Abstract

We propose a general method to water-
mark and probabilistically identify the
structured outputs of machine learning al-
gorithms. Our method is robust to lo-
cal editing operations and provides well
defined trade-offs between the ability to
identify algorithm outputs and the qual-
ity of the watermarked output. Unlike
previous work in the field, our approach
does not rely on controlling the inputs to
the algorithm and provides probabilistic
guarantees on the ability to identify col-
lections of results from one’s own algo-
rithm. We present an application in statis-
tical machine translation, where machine
translated output is watermarked at mini-
mal loss in translation quality and detected
with high recall.

1 Motivation

Machine learning algorithms provide structured
results to input queries by simulating human be-
havior. Examples include automatic machine
translation (Brown et al., 1993) or automatic
text and rich media summarization (Goldstein
et al., 1999). These algorithms often estimate
some portion of their models from publicly avail-
able human generated data. As new services
that output structured results are made avail-
able to the public and the results disseminated
on the web, we face a daunting new challenge:
Machine generated structured results contam-
inate the pool of naturally generated human
data. For example, machine translated output

and human generated translations are currently
both found extensively on the web, with no auto-
matic way of distinguishing between them. Al-
gorithms that mine data from the web (Uszko-
reit et al., 2010), with the goal of learning to
simulate human behavior, will now learn mod-
els from this contaminated and potentially self-
generated data, reinforcing the errors commit-
ted by earlier versions of the algorithm.

It is beneficial to be able to identify a set of
encountered structured results as having been
generated by one’s own algorithm, with the pur-
pose of filtering such results when building new
models.
Problem Statement: We define a struc-

tured result of a query q as r = {z1 · · · zL} where
the order and identity of elements zi are impor-
tant to the quality of the result r. The structural
aspect of the result implies the existence of alter-
native results (across both the order of elements
and the elements themselves) that might vary in
their quality.

Given a collection of N results, CN =
r1 · · · rN , where each result ri has k ranked alter-
natives Dk(qi) of relatively similar quality and
queries q1 · · · qN are arbitrary and not controlled
by the watermarking algorithm, we define the
watermarking task as:
Task. Replace ri with r′i ∈ Dk(qi) for some sub-
set of results in CN to produce a watermarked
collection C′N

such that:

• C′N is probabilistically identifiable as having
been generated by one’s own algorithm.
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• the degradation in quality from CN to the
watermarked C′N should be analytically con-
trollable, trading quality for detection per-
formance.

• C′N should not be detectable as water-
marked content without access to the gen-
erating algorithms.

• the detection of C′N should be robust to sim-
ple edit operations performed on individual
results r ∈ C′N .

2 Impact on Statistical Machine
Translation

Recent work(Resnik and Smith, 2003; Munteanu
and Marcu, 2005; Uszkoreit et al., 2010) has
shown that multilingual parallel documents can
be efficiently identified on the web and used as
training data to improve the quality of statisti-
cal machine translation.

The availability of free translation services
(Google Translate, Bing Translate) and tools
(Moses, Joshua), increase the risk that the con-
tent found by parallel data mining is in fact gen-
erated by a machine, rather than by humans. In
this work, we focus on statistical machine trans-
lation as an application for watermarking, with
the goal of discarding documents from training
if they have been generated by one’s own algo-
rithms.

To estimate the magnitude of the problem,
we used parallel document mining (Uszkoreit et
al., 2010) to generate a collection of bilingual
document pairs across several languages. For
each document, we inspected the page content
for source code that indicates the use of trans-
lation modules/plug-ins that translate and pub-
lish the translated content.

We computed the proportion of the content
within our corpus that uses these modules. We
find that a significant proportion of the mined
parallel data for some language pairs is gener-
ated via one of these translation modules. The
top 3 languages pairs, each with parallel trans-
lations into English, are Tagalog (50.6%), Hindi
(44.5%) and Galician (41.9%). While these
proportions do not reflect impact on each lan-
guage’s monolingual web, they are certainly high

enough to affect machine translations systems
that train on mined parallel data. In this work,
we develop a general approach to watermark
structured outputs and apply it to the outputs
of a statistical machine translation system with
the goal of identifying these same outputs on the
web. In the context of the watermarking task
defined above, we output selecting alternative
translations for input source sentences. These
translations often undergo simple edit and for-
matting operations such as case changes, sen-
tence and word deletion or post editing, prior to
publishing on the web. We want to ensure that
we can still detect watermarked translations de-
spite these edit operations. Given the rapid pace
of development within machine translation, it
is also important that the watermark be robust
to improvements in underlying translation qual-
ity. Results from several iterations of the system
within a single collection of documents should be
identifiable under probabilistic bounds.

While we present evaluation results for sta-
tistical machine translation, our proposed ap-
proach and associated requirements are applica-
ble to any algorithm that produces structured
results with several plausible alternatives. The
alternative results can arise as a result of inher-
ent task ambiguity (for example, there are mul-
tiple correct translations for a given input source
sentence) or modeling uncertainty (for example,
a model assigning equal probability to two com-
peting results).

3 Watermark Structured Results

Selecting an alternative r′ from the space of al-
ternatives Dk(q) can be stated as:

r′ = arg max
r∈Dk(q)

w(r,Dk(q), h) (1)

where w ranks r ∈ Dk(q) based on r’s presen-
tation of a watermarking signal computed by a
hashing operation h. In this approach, w and
its component operation h are the only secrets
held by the watermarker. This selection crite-
rion is applied to all system outputs, ensuring
that watermarked and non-watermarked version
of a collection will never be available for compar-
ison.
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A specific implementation of w within our wa-
termarking approach can be evaluated by the
following metrics:

• False Positive Rate: how often non-
watermarked collections are falsely identi-
fied as watermarked.

• Recall Rate: how often watermarked col-
lections are correctly identified as water-
marked.

• Quality Degradation: how significantly
does C′N differ from CN when evaluated by
task specific quality metrics.

While identification is performed at the col-
lection level, we can scale these metrics based
on the size of each collection to provide more
task sensitive metrics. For example, in machine
translation, we count the number of words in
the collection towards the false positive and re-
call rates.

In Section 3.1, we define a random hashing
operation h and a task independent implemen-
tation of the selector function w. Section 3.2
describes how to classify a collection of water-
marked results. Section 3.3 and 3.4 describes re-
finements to the selection and classification cri-
teria that mitigate quality degradation. Follow-
ing a comparison to related work in Section 4,
we present experimental results for several lan-
guages in Section 5.

3.1 Watermarking: CN → C′N
We define a random hashing operation h that is
applied to result r. It consists of two compo-
nents:

• A hash function applied to a structured re-
sult r to generate a bit sequence of a fixed
length.

• An optional mapping that maps a single
candidate result r to a set of sub-results.
Each sub-result is then hashed to generate
a concatenated bit sequence for r.

A good hash function produces outputs whose
bits are independent. This implies that we can
treat the bits for any input structured results

as having been generated by a binomial distri-
bution with equal probability of generating 1s
vs 0s. This condition also holds when accu-
mulating the bit sequences over a collection of
results as long as its elements are selected uni-
formly from the space of possible results. There-
fore, the bits generated from a collection of un-
watermarked results will follow a binomial dis-
tribution with parameter p = 0.5. This result
provides a null hypothesis for a statistical test
on a given bit sequence, testing whether it is
likely to have been generated from a binomial
distribution binomial(n, p) where p = 0.5 and n
is the length of the bit sequence.

For a collection CN = r1 · · · rN , we can define
a watermark ranking function w to systemati-
cally select alternatives r′i ∈ Dk(q), such that
the resulting C′N is unlikely to produce bit se-
quences that follow the p = 0.5 binomial distri-
bution. A straightforward biasing criteria would
be to select the candidate whose bit sequence ex-
hibits the highest ratio of 1s. w can be defined
as:

w(r,Dk(q), h) =
#(1, h(r))

|h(r)| (2)

where h(r) returns the randomized bit sequence
for result r, and #(x, ~y) counts the number of
occurrences of x in sequence ~y. Selecting alter-
natives results to exhibit this bias will result in
watermarked collections that exhibit this same
bias.

3.2 Detecting the Watermark

To classify a collection CN as watermarked or
non-watermarked, we apply the hashing opera-
tion h on each element in CN and concatenate
the sequences. This sequence is tested against
the null hypothesis that it was generated by a
binomial distribution with parameter p = 0.5.
We can apply a Fisherian test of statistical sig-
nificance to determine whether the observed dis-
tribution of bits is unlikely to have occurred by
chance under the null hypothesis (binomial with
p = 0.5).

We consider a collection of results that rejects
the null hypothesis to be watermarked results
generated by our own algorithms. The p-value
under the null hypothesis is efficiently computed
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by:

p− value = Pn(X ≥ x) (3)

=
n∑

i=x

(
n

i

)
pi(1− p)n−i (4)

where x is the number of 1s observed in the col-
lection, and n is the total number of bits in the
sequence. Comparing this p-value against a de-
sired significance level α, we reject the null hy-
pothesis for collections that have Pn(X ≥ x) <
α, thus deciding that such collections were gen-
erated by our own system.

This classification criteria has a fixed false
positive rate. Setting α = 0.05, we know that
5% of non-watermarked bit sequences will be
falsely labeled as watermarked. This parameter
α can be controlled on an application specific ba-
sis. By biasing the selection of candidate results
to produce more 1s than 0s, we have defined
a watermarking approach that exhibits a fixed
false positive rate, a probabilistically bounded
detection rate and a task independent hashing
and selection criteria. In the next sections, we
will deal with the question of robustness to edit
operations and quality degradation.

3.3 Robustness and Inherent Bias

We would like the ability to identify water-
marked collections to be robust to simple edit
operations. Even slight modifications to the ele-
ments within an item r would yield (by construc-
tion of the hash function), completely different
bit sequences that no longer preserve the biases
introduced by the watermark selection function.

To ensure that the distributional biases intro-
duced by the watermark selector are preserved,
we can optionally map individual results into a
set of sub-results, each one representing some lo-
cal structure of r. h is then applied to each sub-
result and the results concatenated to represent
r. This mapping is defined as a component of
the h operation.

While a particular edit operation might af-
fect a small number of sub-results, the majority
of the bits in the concatenated bit sequence for
r would remain untouched, thereby limiting the
damage to the biases selected during watermark-

ing. This is of course no defense to edit opera-
tions that are applied globally across the result;
our expectation is that such edits would either
significantly degrade the quality of the result or
be straightforward to identify directly.

For example, a sequence of words r = z1 · · · zL
can be mapped into a set of consecutive n-gram
sequences. Operations to edit a word zi in r will
only affect events that consider the word zi. To
account for the fact that alternatives in Dk(q)
might now result in bit sequences of different
lengths, we can generalize the biasing criteria to
directly reflect the expected contribution to the
watermark by defining:

w(r,Dk(q), h) = Pn(X ≥ #(1, h(r))) (5)

where Pn gives probabilities from binomial(n =
|h(r)|, p = 0.5).

Inherent collection level biases: Our null
hypothesis is based on the assumption that col-
lections of results draw uniformly from the space
of possible results. This assumption might not
always hold and depends on the type of the re-
sults and collection. For example, considering
a text document as a collection of sentences,
we can expect that some sentences might repeat
more frequently than others.

This scenario is even more likely when ap-
plying a mapping into sub-results. n-gram se-
quences follow long-tailed or Zipfian distribu-
tions, with a small number of n-grams contribut-
ing heavily toward the total number of n-grams
in a document.

A random hash function guarantees that in-
puts are distributed uniformly at random over
the output range. However, the same input will
be assigned the same output deterministically.
Therefore, if the distribution of inputs is heav-
ily skewed to certain elements of the input space,
the output distribution will not be uniformly
distributed. The bit sequences resulting from
the high frequency sub-results have the potential
to generate inherently biased distributions when
accumulated at the collection level. We want to
choose a mapping that tends towards generating
uniformly from the space of sub-results. We can
empirically measure the quality of a sub-result
mapping for a specific task by computing the
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false positive rate on non-watermarked collec-
tions. For a given significance level α, an ideal
mapping would result in false positive rates close
to α as well.

Figure 1 shows false positive rates from 4 al-
ternative mappings, computed on a large corpus
of French documents (see Table 1 for statistics).
Classification decisions are made at the collec-
tion level (documents) but the contribution to
the false positive rate is based on the number
of words in the classified document. We con-
sider mappings from a result (sentence) into its
1-grams, 1 − 5-grams and 3 − 5 grams as well
as the non-mapping case, where the full result
is hashed.

Figure 1 shows that the 1-grams and 1 − 5-
gram generate sub-results that result in heav-
ily biased false positive rates. The 3 − 5 gram
mapping yields false positive rates close to their
theoretically expected values. 1 Small devia-
tions are expected since documents make differ-
ent contributions to the false positive rate as a
function of the number of words that they repre-
sent. For the remainder of this work, we use the
3-5 gram mapping and the full sentence map-
ping, since the alternatives generate inherently
distributions with very high false positive rates.

3.4 Considering Quality

The watermarking described in Equation 3
chooses alternative results on a per result basis,
with the goal of influencing collection level bit
sequences. The selection criteria as described
will choose the most biased candidates available
in Dk(q). The parameter k determines the ex-
tent to which lesser quality alternatives can be
chosen. If all the alternatives in each Dk(q) are
of relatively similar quality, we expect minimal
degradation due to watermarking.

Specific tasks however can be particularly sen-
sitive to choosing alternative results. Discrimi-
native approaches that optimize for arg max se-
lection like (Och, 2003; Liang et al., 2006; Chi-
ang et al., 2009) train model parameters such

1In the final version of this paper we will perform sam-
pling to create a more reliable estimate of the false posi-
tive rate that is not overly influenced by document length
distributions.

that the top-ranked result is well separated from
its competing alternatives. Different queries also
differ in the inherent ambiguity expected from
their results; sometimes there really is just one
correct result for a query, while for other queries,
several alternatives might be equally good.

By generalizing the definition of the w func-
tion to interpolate the estimated loss in quality
and the gain in the watermarking signal, we can
trade-off the ability to identify the watermarked
collections against quality degradation:

w(r,Dk(q), fw) = λ ∗ gain(r,Dk(q), fw)

−(1− λ) ∗ loss(r,Dk(q))
(6)

Loss: The loss(r,Dk(q)) function reflects the
quality degradation that results from selecting
alternative r as opposed to the best ranked can-
didate in Dk(q)). We will experiment with two
variants:

lossrank(r,Dk(q)) = (rank(r)− k)/k

losscost(r,Dk(q)) = (cost(r)−cost(r1))/ cost(r1)

where:

• rank(r): returns the rank of r within Dk(q).

• cost(r): a weighted sum of features (not
normalized over the search space) in a log-
linear model such as those mentioned in
(Och, 2003).

• r1: the highest ranked alternative in Dk(q).

lossrank provides a generally applicable criteria
to select alternatives, penalizing selection from
deep within Dk(q). This estimate of the qual-
ity degradation does not reflect the generating
model’s opinion on relative quality. losscost con-
siders the relative increase in the generating
model’s cost assigned to the alternative trans-
lation.
Gain: The gain(r,Dk(q), fw) function reflects

the gain in the watermarking signal by selecting
candidate r. We simply define the gain as the
Pn(X ≥ #(1, h(r))) from Equation 5.
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(a) 1-grams mapping
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(b) 1− 5-grams mapping
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(c) 3− 5-grams mapping
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(d) Full result hashing

Figure 1: Comparison of expected false positive rates against observed false positive rates for different
sub-result mappings.

4 Related Work

Using watermarks with the goal of transmitting
a hidden message within images, video, audio
and monolingual text media is common. For
structured text content, linguistic approaches
like (Chapman et al., 2001; Gupta et al., 2006)
use language specific linguistic and semantic
expansions to introduce hidden watermarks.
These expansions provide alternative candidates
within which messages can be encoded. Re-
cent publications have extended this idea to ma-
chine translation, using multiple systems and
expansions to generate alternative translations.
(Stutsman et al., 2006) uses a hashing function
to select alternatives that encode the hidden
message in the lower order bits of the transla-
tion. In each of these approaches, the water-
marker has control over the collection of results
into which the watermark is to be embedded.

These approaches seek to embed a hidden
message into a collection of results that is se-
lected by the watermarker. In contrast, we ad-
dress the condition where the input queries are
not in the watermarker’s control.

The goal is therefore to introduce the water-
mark into all generated results, with the goal of
probabilistically identifying such outputs. Our
approach is also task independent, avoiding the
need for templates to generate additional al-
ternatives. By addressing the problem directly
within the search space of a dynamic program-
ming algorithm, we have access to high quality
alternatives with well defined models of qual-
ity loss. Finally, our approach is robust to local
word editing. By using a sub-result mapping, we
increase the level of editing required to obscure
the watermark signal; at high levels of editing,
the quality of the results themselves would be
significantly degraded.

5 Experiments

We evaluate our watermarking approach applied
to the outputs of statistical machine translation
under the following experimental setup.

A repository of parallel (aligned source and
target language) web documents is sampled to
produce a large corpus on which to evaluate the
watermarking classification performance. The
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corpora represent translations into 4 diverse tar-
get languages, using English as the source lan-
guage. Each document in this corpus can be
considered a collection of un-watermarked struc-
tured results, where source sentences are queries
and each target sentence represents a structured
result.

Using a state-of-the-art phrase-based statisti-
cal machine translation system (Och and Ney,
2004) trained on parallel documents identified
by (Uszkoreit et al., 2010), we generate a set
of 100 alternative translations for each source
sentence. We apply the proposed watermarking
approach, along with the proposed refinements
that address task specific loss (Section 3.4) and
robustness to edit operations (Section 3.3) to
generate watermarked corpora.

Each method is controlled via a single param-
eter (like k or λ) which is varied to generate
alternative watermarked collections. For each
parameter value, we evaluate the Recall Rate
and Quality Degradation with the goal of find-
ing a setting that yields a high recall rate, min-
imal quality degradation. False positive rates
are evaluated based on a fixed classification sig-
nificance level of α = 0.05. The false posi-
tive and recall rates are evaluated on the word
level; a document that is misclassified or cor-
rectly identified contributes its length in words
towards the error calculation. In this work, we
use α = 0.05 during classification corresponding
to an expected 5% false positive rate. The false
positive rate is a function of h and the signifi-
cance level α and therefore constant across the
parameter values k and λ.

We evaluate quality degradation on human
translated test corpora that are more typical for
machine translation evaluation. Each test cor-
pus consists of 5000 source sentences randomly
selected from the web and translated into each
respective language.

We chose to evaluate quality on test corpora
to ensure that degradations are not hidden by
imperfectly matched web corpora and are con-
sistent with the kind of results often reported for
machine translation systems. As with the clas-
sification corpora, we create watermarked ver-
sions at each parameter value. For a given pa-
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Figure 2: BLEU loss against recall of watermarked
content for the baseline approach (max K-best),
rank and cost interpolation.

rameter value, we measure false positive and re-
call rates on the classification corpora and qual-
ity degradation on the evaluation corpora.

Table 1 shows corpus statistics for the classi-
fication and test corpora and non-watermarked
BLEU scores for each target language. All
source texts are in English.

5.1 Loss Interpolated Experiments

Our first set of experiments demonstrates base-
line performance using the watermarking crite-
ria in Equation 5 versus the refinements sug-
gested in Section 3.4 to mitigate quality degra-
dation. The h function is computed on the full
sentence result r with no sub-event mapping.
The following methods are evaluated in Figure 2.

• Baseline method (labeled “max K-best”):
selects r′ purely based on gain in water-
marking signal (Equation 5) and is param-
eterized by k: the number of alternatives
considered for each result.

• Rank interpolation: incorporates rank into
w, varying the interpolation parameter λ.

• Cost interpolation: incorporates cost into
w, varying the interpolation parameter λ.

The observed false positive rate on the French
classification corpora is 1.9%.
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Classification Quality

Target # words # sentences # documents # words # sentences BLEU %

Arabic 200107 15820 896 73592 5503 12.29
French 209540 18024 600 73592 5503 26.45
Hindi 183676 13244 1300 73409 5489 20.57

Turkish 171671 17155 1697 73347 5486 13.67

Table 1: Content statistics for classification and quality degradation corpora. Non-watermarked BLEU
scores are reported for the quality corpora.

We consider 0.2% BLEU loss as a thresh-
old for acceptable quality degradation. Each
method is judged by its ability to achieve high
recall below this quality degradation threshold.

Applying cost interpolation yields the best
results in Figure 2, achieving a recall of 85%
at 0.2% BLEU loss, while rank interpolation
achieves a recall of 76%. The baseline approach
of selecting the highest gain candidate within a
depth of k candidates does not provide sufficient
parameterization to yield low quality degrada-
tion. At k = 2, this method yields almost 90%
recall, but with approximately 0.4% BLEU loss.

5.2 Robustness Experiments

In Section 5.2, we proposed mapping results into
sub-events or features. We considered alterna-
tive feature mappings in Figure 1, finding that
mapping sentence results into a collection of 3-
5 grams yields acceptable false positive rates at
varied levels of α.

Figure 3 presents results that compare mov-
ing from the result level hashing to the 3-5 gram
sub-result mapping. We show the impact of the
mapping on the baseline max K-best method as
well as for cost interpolation. There are sub-
stantial reductions in recall rate at the 0.2%
BLEU loss level when applying sub-result map-
pings in cases. The cost interpolation method
recall drops from 85% to 77% when using the
3-5 grams event mapping. The observed false
positive rate of the 3-5 gram mapping is 4.7%.

By using the 3-5 gram mapping, we expect
to increase robustness against local word edit
operations, but we have sacrificed recall rate due
to the inherent distributional bias discussed in
Section 3.3.
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Figure 3: BLEU loss against recall of watermarked
content for the baseline and cost interpolation meth-
ods using both result level and 3-5 gram mapped
events.

5.3 Multilingual Experiments

The watermarking approach proposed here in-
troduces no language specific watermarking op-
erations and it is thus broadly applicable to
translating into all languages. In Figure 4, we
report results for the baseline and cost interpola-
tion methods, considering both the result level
and 3-5 gram mapping. We set α = 0.05 and
measure recall at 0.2% BLEU degradation for
translation from English into Arabic, French,
Hindi and Turkish. The observed false posi-
tive rates for full sentence hashing are: Arabic:
2.4%, French: 1.8%, Hindi: 5.6% and Turkish:
5.5%, while for the 3-5 gram mapping, they are:
Arabic: 5.8%, French: 7.5%, Hindi:3.5% and
Turkish: 6.2%. Underlying translation qual-
ity plays an important role in translation qual-
ity degradation when watermarking. Without
a sub-result mapping, French (BLEU: 26.45%)
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vs sentence level mapping for Arabic, French, Hindi
and Turkish translations.

achieves recall of 85% at 0.2% BLEU loss, while
the other languages achieve over 90% recall at
the same BLEU loss threshold. Using a sub-
result mapping degrades quality for each lan-
guage pair, but changes the relative perfor-
mance. Turkish experiences the highest rela-
tive drop in recall, unlike French and Arabic,
where results are relatively more robust to using
sub-sentence mappings. This is likely a result of
differences in n-gram distributions across these
languages. The languages considered here all
use space separated words. For languages that
do not, like Chinese or Thai, our approach can
be applied at the character level.

6 Conclusions

In this work we proposed a general method
to watermark and probabilistically identify the
structured outputs of machine learning algo-
rithms. Our method provides probabilistic
bounds on detection ability, analytic control on
quality degradation and is robust to local edit-
ing operations. Our method is applicable to
any task where structured outputs are generated
with ambiguities or ties in the results. We ap-
plied this method to the outputs of statistical
machine translation, evaluating each refinement
to our approach with false positive and recall
rates against BLEU score quality degradation.

Our results show that it is possible, across sev-
eral language pairs, to achieve high recall rates
(over 80%) with low false positive rates (between
5 and 8%) at minimal quality degradation (0.2%

BLEU), while still allowing for local edit opera-
tions on the translated output. In future work
we will continue to investigate methods to mit-
igate quality loss.
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Abstract

This paper compares several translation rep-
resentations for a synchronous context-free
grammar parse including CFGs/hypergraphs,
finite-state automata (FSA), and pushdown
automata (PDA). The representation choice is
shown to determine the form and complex-
ity of target LM intersection and shortest-path
algorithms that follow. Intersection, shortest
path, FSA expansion and RTN replacement al-
gorithms are presented for PDAs. Chinese-to-
English translation experiments using HiFST
and HiPDT, FSA and PDA-based decoders,
are presented using admissible (or exact)
search, possible for HiFST with compact
SCFG rulesets and HiPDT with compact LMs.
For large rulesets with large LMs, we intro-
duce a two-pass search strategy which we then
analyze in terms of search errors and transla-
tion performance.

1 Introduction

Hierarchical phrase-based translation, using asyn-
chronous context-free translation grammar(SCFG)
together with ann-gram target language model
(LM), is a popular approach in machine transla-
tion (Chiang, 2007). Given a SCFGG and ann-
gram language modelM , this paper focuses on how
to decodewith them, i.e. how to apply them to the
source text to generate a target translation. Decod-
ing has three basic steps, which we first describe
in terms of the formal languages and relations in-
volved, with data representations and algorithms to
follow.

1. Translating the source sentences with G
to give target translations: T = {s} ◦ G,
a (weighted) context-free language resulting

from the composition of a finite language and
the algebraic relationG for SCFGG.

2. Applying the language model to these target
translations:L=T ∩M, a (weighted) context-
free language resulting from the intersection
of a context-free language and the regular lan-
guageM for M .

3. Searching for the translation and language
model combination with the highest-probablity
path: L̂=argmaxl∈LL

Of course, decoding requires explicit data represen-
tations and algorithms for combining and searching
them. In common to the approaches we will con-
sider here,s is applied toG by using the CYK algo-
rithm in Step 1 andM is represented by a finite au-
tomaton in Step 2. The choice of the representation
of T in many ways determines the remaining de-
coder representations and algorithms needed. Since
{s} is a finite language and we assume through-
out that G does not allow unbounded insertions,
T andL are, in fact, regular languages. As such,
T and L have finite automaton representationsTf

andLf . In this case, weighted finite-state intersec-
tion and single-source shortest path algorithms (us-
ing negative log probabilities) can be used to solve
Steps 2 and 3 (Mohri, 2009). This is the approach
taken in (Iglesias et al., 2009a; de Gispert et al.,
2010). InsteadT andL can be represented byhy-
pergraphsTh andLh (or very similarly context-free
rules, and-or trees, or deductive systems). In this
case, hypergraph intersection with a finite automa-
ton and hypergraph shortest path algorithms can be
used to solve Steps 2 and 3 (Huang, 2008). This
is the approach taken by Chiang (2007). In this
paper, we will consider another representation for
context-free languagesT andL as well,pushdown
automata(PDA) Tp and Lp, familiar from formal
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language theory (Aho and Ullman, 1972). We will
describe PDA intersection with a finite automaton
and PDA shortest-path algorithms in Section 2 that
can be used to solve Steps 2 and 3. It cannot be
over-emphasized that the CFG, hypergraph and PDA
representations ofT are used for their compactness
rather than for expressing non-regular languages.

As presented so far, the search performed in Step
3 is admissible(or exact) – the true shortest path
is found. However, the search space in MT can be
quite large. Many systems employ aggressive prun-
ing during the shortest-path computation with little
theoretical or empirical guarantees of correctness.
Further, such pruning can greatly complicate any
complexity analysis of the underlying representa-
tions and algorithms. In this paper, we will exclude
any inadmissible pruning in the shortest-path algo-
rithm itself. This allows us in Section 3 to compare
the computational complexity of using these differ-
ent representations. We show that the PDA represen-
tation is particularly suited for decoding with large
SCFGs and compact LMs.

We present Chinese-English translation results
under the FSA and PDA translation representations.
We describe a two-pass translation strategy which
we have developed to allow use of the PDA repre-
sentation in large-scale translation. In the first pass,
translation is done using a lattice-generating version
of the shortest path algorithm. The full translation
grammar is used but with a compact, entropy-pruned
version (Stolcke, 1998) of the full language model.
This first-step uses admissible pruning and lattice
generation under the compact language model. In
the second pass, the original, unpruned LM is simply
applied to the lattices produced in the first pass. We
find that entropy-pruning and first-pass translation
can be done so as to introduce very few search errors
in the overall process; we can identify search errors
in this experiment by comparison to exact transla-
tion under the full translation grammar and language
model using the FSA representation. We then inves-
tigate a translation grammar which is large enough
that exact translation under the FSA representation
is not possible. We find that translation is possible
using the two-pass strategy with the PDA translation
representation and that gains in BLEU score result
from using the larger translation grammar.

1.1 Related Work

There is extensive prior work on computational ef-
ficiency and algorithmic complexity in hierarchical
phrase-based translation. The challenge is to find al-
gorithms that can be made to work with large trans-
lation grammars and large language models.

Following the original algorithms and analysis of
Chiang (2007), Huang and Chiang (2007) devel-
oped the cube-growing algorithm, and more recently
Huang and Mi (2010) developed an incremental de-
coding approach that exploits left-to-right nature of
the language models.

Search errors in hierarchical translation, and in
translation more generally, have not been as exten-
sively studied; this is undoubtedly due to the diffi-
culties inherent in finding exact translations for use
in comparison. Using a relatively simple phrase-
based translation grammar, Iglesias et al. (2009b)
compared search via cube-pruning to an exact FST
implementation (Kumar et al., 2006) and found that
cube-pruning suffered significant search errors. For
Hiero translation, an extensive comparison of search
errors between the cube pruning and FSA imple-
mentation was presented by Iglesias et al. (2009a)
and de Gispert et al. (2010). Relaxation techniques
have also recently been shown to finding exact so-
lutions in parsing (Koo et al., 2010) and in SMT
with tree-to-string translation grammars and trigram
language models (Rush and Collins, 2011), much
smaller models compared to the work presented in
this paper.

Although entropy-pruned language models have
been used to produce real-time translation sys-
tems (Prasad et al., 2007), we believe our use of
entropy-pruned language models in two-pass trans-
lation to be novel. This is an approach that is widely-
used in automatic speech recognition (Ljolje et al.,
1999) and we note that it relies on efficient represen-
tation of very large search spacesT for subsequent
rescoring, as is possible with FSAs and PDAs.

2 Pushdown Automata

In this section, we formally define pushdown au-
tomata and give intersection, shortest-path and re-
lated algorithms that will be needed later.

Informally, pushdown automata are finite au-
tomata that have been augmented with a stack. Typ-
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Figure 1: PDA Examples: (a) Non-regular PDA accept-
ing {anbn|n ∈ N}. (b) Regular (but not bounded-stack)
PDA acceptinga∗b∗. (c) Bounded-stack PDA accepting
a∗b∗ and (d) its expansion as an FSA.

ically this is done by adding a stack alphabet and la-
beling each transition with a stack operation (a stack
symbol to be pushed onto, popped or read from the
stack) in additon to the usual input label (Aho and
Ullman, 1972; Berstel, 1979) and weight (Kuich
and Salomaa, 1986; Petre and Salomaa, 2009). Our
equivalent representation allows a transition to be la-
beled by a stack operation or a regular input symbol
but not both. Stack operations are represented by
pairs of open and close parentheses (pushing a sym-
bol on and popping it from the stack). The advantage
of this representation is that is identical to the finite
automaton representation except that certain sym-
bols (the parentheses) have special semantics. As
such, several finite-state algorithms either immedi-
ately generalize to this PDA representation or do so
with minimal changes. The algorithms described in
this section have been implemented in the PDT ex-
tension (Allauzen and Riley, 2011) of the OpenFst
library (Allauzen et al., 2007).

2.1 Definitions

A (restricted) Dyck language consist of “well-
formed” or “balanced” strings over a finite num-
ber of pairs of parentheses. Thus the string
( [ ( ) ( ) ] { } [ ] ) ( ) is in the Dyck language over 3
pairs of parentheses.

More formally, letA andA be two finite alpha-
bets such that there exists a bijectionf from A to

A. Intuitively, f maps an open parenthesis to its cor-
responding close parenthesis. Letā denotef(a) if
a ∈ A and f−1(a) if a ∈ A. The Dyck language
DA over the alphabet̂A = A ∪ A is then the lan-
guage defined by the following context-free gram-
mar: S → ǫ, S → SS andS → aSā for all a∈ A.
We define the mappingcA : Â∗ → Â∗ as follow.
cA(x) is the string obtained by iteratively deleting
from x all factors of the formaā with a ∈ A. Ob-
serve thatDA =c−1

A (ǫ).
Let A and B be two finite alphabets such that

B ⊆ A, we define the mappingrB : A∗ → B∗

by rB(x1 . . . xn) = y1 . . . yn with yi = xi if xi ∈ B
andyi =ǫ otherwise.

A weighted pushdown automaton(PDA) T over
the tropical semiring(R ∪ {∞},min,+,∞, 0) is
a 9-tuple(Σ,Π,Π, Q,E, I, F, ρ) whereΣ is the fi-
nite input alphabet,Π andΠ are the finite open and
close parenthesis alphabets,Q is a finite set of states,
I ∈Q the initial state,F ⊆ Q the set of final states,
E ⊆ Q × (Σ ∪ Π̂ ∪ {ǫ}) × (R ∪ {∞}) × Q a fi-
nite set of transitions, andρ : F → R ∪ {∞} the
final weight function. Lete = (p[e], i[e], w[e], n[e])
denote a transition inE.

A pathπ is a sequence of transitionsπ=e1 . . . en

such thatn[ei]=p[ei+1] for 1 ≤ i < n. We then de-
fine p[π] = p[e1], n[π] = n[en], i[π] = i[e1] · · · i[en],
andw[π]=w[e1] + . . . + w[en].

A path π is accepting ifp[π] = I andn[π] ∈ F .
A pathπ is balanced ifrΠ̂(i[π]) ∈ DΠ. A balanced
pathπ accepts the stringx ∈ Σ∗ if it is a balanced
accepting path such thatrΣ(i[π])=x.

The weight associated byT to a stringx ∈ Σ∗

is T (x) = minπ∈P (x) w[π] + ρ(n[π]) whereP (x)
denotes the set of balanced paths acceptingx. A
weighted language is recognizable by a weighted
pushdown automaton iff it is context-free. We de-
fine thesizeof T as|T |= |Q|+|E|.

A PDA T hasa bounded stackif there existsK ∈
N such that for any sub-pathπ of any balanced path
in T : |cΠ(rΠ̂(i[π]))| ≤ K. If T has a bounded stack,
then it represents a regular language. Figure 1 shows
non-regular, regular and bounded-stack PDAs.

A weighted finite automaton(FSA) can be viewed
as a PDA where the open and close parentheses al-
phabets are empty, see (Mohri, 2009) for a stand-
alone definition.
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2.2 Expansion Algorithm

Given a bounded-stack PDAT , theexpansionof T
is the FSAT ′ equivalent toT defined as follows.

A state inT ′ is a pair(q, z) whereq is a state inT
andz ∈ Π∗. A transition(q, a, w, q′) in T results in
a transition((q, z), a′, w, (q′, z′)) in T ′ only when:
(a) a∈Σ ∪ {ǫ}, z′ =z anda′ =a, (b) a∈Π, z′ =za
and a′ = ǫ, or (c) a ∈ Π, z′ is such thatz = z′a
anda′ = ǫ. The initial state ofT ′ is I ′ = (I, ǫ). A
state(q, z) in T ′ is final if q is final in T andz = ǫ
(ρ′((q, ǫ))=ρ(q)). The set of states ofT ′ is the set of
pairs(q, z) that can be reached from an initial state
by transitions defined as above. The condition that
T has a bounded stack ensures that this set is finite
(since it implies that for any(q, z), |z| ≤ K).

The complexity of the algorithm is linear in
O(|T ′|)= O(e|T |). Figure 1d show the result of the
algorithm when applied to the PDA of Figure 1c.

2.3 Intersection Algorithm

The class of weighted pushdown automata is closed
under intersection with weighted finite automata
(Bar-Hillel et al., 1964; Nederhof and Satta, 2003).
Considering a pair(T1, T2) where one element is an
FSA and the other element a PDA, then there exists
a PDAT1 ∩T2, the intersectionof T1 andT2, such
that for all x ∈ Σ∗: (T1 ∩T2)(x) = T1(x)+T2(x).
We assume in the following thatT2 is an FSA. We
also assume thatT2 has no input-ǫ transitions. When
T2 has input-ǫ transitions, an epsilon filter (Mohri,
2009; Allauzen et al., 2011) generalized to handle
parentheses can be used.

A state inT =T1∩T2 is a pair(q1, q2) whereq1 is
a state ofT1 andq2 a state ofT2. The initial state is
I =(I1, I2). Given a transitione1 =(q1, a, w1, q

′
1) in

T1, transitions out of(q1, q2) in T are obtained using
the following rules.

If a ∈ Σ, then e1 can be matched with a tran-
sition (q2, a, w2, q

′
2) in T2 resulting a transition

((q1, q2), a, w1+w2, (q
′
1, q

′
2)) in T .

If a = ǫ, thene1 is matched with staying inq2

resulting in a transition((q1, q2), ǫ, w1, (q
′
1, q2)).

Finally, if a ∈ Π̂, e1 is also matched
with staying in q2, resulting in a transition
((q1, q2), a, w1, (q

′
1, q2)) in T .

A state(q1, q2) in T is final when bothq1 andq2

are final, and thenρ((q1, q2))=ρ1(q1)+ρ2(q2).

SHORTESTDISTANCE(T )

1 for eachq ∈ Q anda ∈ Π do
2 B[q, a]← ∅
3 GETDISTANCE(T, I)
4 return d[f, I ]

RELAX(q, s, w,S)

1 if d[q, s] > w then
2 d[q, s]← w
3 if q 6∈ S then
4 ENQUEUE(S , q)

GETDISTANCE(T,s)

1 for eachq ∈ Q do
2 d[q, s]←∞
3 d[s, s]← 0
4 Ss ← s
5 while Ss 6=∅ do
6 q ← HEAD(Ss)
7 DEQUEUE(Ss)
8 for eache ∈ E[q] do
9 if i[e] ∈ Σ ∪ {ǫ} then

10 RELAX(n[e], s, d[q, s] + w[e],Ss)

11 elseifi[e] ∈ Π then
12 B[s, i[e]]← B[s, i[e]] ∪ {e}
13 elseifi[e] ∈ Π then
14 if d[n[e], n[e]] is undefinedthen
15 GETDISTANCE(T, n[e])
16 for eache′ ∈ B[n[e], i[e]] do
17 w← d[q, s] + w[e] + d[p[e′], n[e]] + w[e′]
18 RELAX(n[e′], s, w,Ss)

Figure 2: PDA shortest distance algorithm. We assume
thatF ={f} andρ(f)=0 to simplify the presentation.

The complexity of the algorithm is inO(|T1||T2|).

2.4 Shortest Distance and Path Algorithms

A shortest pathin a PDAT is a balanced accepting
path with minimal weight and theshortest distance
in T is the weight of such a path. We show that when
T has a bounded stack, shortest distance and short-
est path can be computed inO(|T |3 log |T |) time
(assumingT has no negative weights) andO(|T |2)
space.

Given a states in T with at least one incoming
open parenthesis transition, we denote byCs the set
of states that can be reached froms by a balanced
path. If s has several incoming open parenthesis
transitions, a naive implementation might lead to the
states inCs to be visited up to exponentially many
times. The basic idea of the algorithm is to memo-
ize the shortest distance froms to states inCs. The
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pseudo-code is given in Figure 2.
GETDISTANCE(T, s) starts a new instance of the

shortest-distance algorithm froms using the queue
Ss, initially containing s. While the queue is not
empty, a state is dequeued and its outgoing transi-
tions examined (line 5-9). Transitions labeled by
non-parenthesis are treated as in Mohri (2009) (line
9-10). When the considered transitione is labeled by
a close parenthesis, it is remembered that it balances
all incoming open parentheses ins labeled byi[e]
by addinge to B[s, i[e]] (line 11-12). Finally, when
e is labeled with an open parenthesis, if its destina-
tion has not already been visited, a new instance is
started fromn[e] (line 14-15). The destination states
of all transitions balancinge are then relaxed (line
16-18).

The space complexity of the algorithm is
quadratic for two reasons. First, the number of
non-infinity d[q, s] is |Q|2. Second, the space re-
quired for storingB is at most inO(|E|2) since
for each open parenthesis transitione, the size of
|B[n[e], i[e]]| is O(|E|) in the worst case. This
last observation also implies that the cumulated
number of transitions examined at line 16 is in
O(N |Q| |E|2) in the worst case, whereN denotes
the maximal number of times a state is inserted in
the queue for a given call of GETDISTANCE. As-
suming the cost of a queue operation isΓ(n) for a
queue containingn elements, the worst-case time
complexity of the algorithm can then be expressed
asO(N |T |3 Γ(|T |)). WhenT contains no negative
weights, using a shortest-first queue discipline leads
to a time complexity inO(|T |3 log |T |). When all
theCs’s are acyclic, using a topological order queue
discipline leads to aO(|T |3) time complexity.

In effect, we are solving ak-sources shortest-
path problem withk single-source solutions. A po-
tentially better approach might be to solve thek-
sources ork-pairs problem directly (Hershberger et
al., 2003).

WhenT has been obtained by converting an RTN
or an hypergraph into a PDA (Section 2.5), the poly-
nomial dependency in|T | becomes a linear depen-
dency both for the time and space complexities. In-
deed, for eachq in T , there exists a uniques such
thatd[q, s] is non-infinity. Moreover, for each close
parenthesis transistione, there exists a unique open
parenthesis transitione′ such thate ∈ B[n[e′], i[e′]].

When each component of the RTN is acyclic, the
complexity of the algorithm is hence inO(|T |) in
time and space.

The algorithm can be modified to compute the
shortest path by keeping track of parent pointers.

2.5 Replacement Algorithm

A recursive transition network(RTN) can be speci-
fied by (N,Σ, (Tν)ν∈N , S) whereN is an alphabet
of nonterminals,Σ is the input alphabet,(Tν)ν∈N is
a family of FSAs with input alphabetΣ ∪ N , and
S ∈N is the root nonterminal.

A string x ∈ Σ∗ is accepted byR if there exists
an accepting pathπ in TS such that recursively re-
placing any transition with input labelν ∈ N by an
accepting path inTν leads to a pathπ∗ with inputx.
The weight associated byR is the minimum over all
suchπ∗ of w[π∗]+ρS(n[π∗]).

Given an RTNR, the replacementof R is the
PDA T equivalent toR defined by the 9-tuple
(Σ,Π,Π, Q,E, I, F, σ, ρ) with Π = Q =

⋃
ν∈N Qν ,

I = IS, F = FS , ρ = ρS , andE =
⋃

ν∈N

⋃
e∈Eν

Ee

where Ee = {e} if i[e] 6∈ N and Ee =
{(p[e], n[e], w[e], Iµ), (f, n[e], ρµ(f), n[e])|f ∈ Fµ}
with µ= i[e]∈N otherwise.

The complexity of the construction is inO(|T |).
If |Fν | = 1, then |T | = O(

∑
ν∈N |Tν |) = O(|R|).

Creating a superfinal state for eachTν would lead to
aT whose size is always linear in the size ofR.

3 Hierarchical Phrase-Based Translation
Representation

In this section, we compare several different repre-
sentations for the target translationsT of the source
sentences by synchronous CFGG prior to language
modelM application. As discussed in the introduc-
tion,T is a context-free language. For example, sup-
pose it corresponds to:

S→abXdg, S→acXfg, andX→bc.

Figure 3 shows several alternative representations of
T : Figure 3a shows the hypergraph representation of
this grammar; there is a 1:1 correspondence between
each production in the CFG and each hyperedge in
the hypergraph. Figure 3b shows the RTN represen-
tation of this grammar with a 1:1 correspondence be-
tween each production in the CFG and each path in
the RTN; this is the translation representation pro-
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Figure 3: Alternative translation representations

duced by the HiFST decoder (Iglesias et al., 2009a;
de Gispert et al., 2010). Figure 3c shows the push-
down automaton representation generated from the
RTN with the replacement algorithm of Section 2.5.
Sinces is a finite language andG does not allow
unbounded insertion,Tp has a bounded stack and
T is, in fact, a regular language. Figure 3d shows
the finite-state automaton representation ofT gen-
erated by the PDA using the expansion algorithm
of Section 2.2. The HiFST decoder converts its
RTN translation representation immediately into the
finite-state representation using an algorithm equiv-
alent to converting the RTN into a PDA followed by
PDA expansion.

As shown in Figure 4, an advantage of the RTN,
PDA, and FSA representations is that they can bene-
fit from FSA epsilon removal, determinization and
minimization algorithms applied to their compo-
nents (for RTNs and PDAs) or their entirety (for
FSAs). For the complexity discussion below, how-
ever, we disregard these optimizations. Instead we
focus on the complexity of each MT step described
in the introduction:

1. SCFG Translation:Assuming that the parsing
of the input is performed by a CYK parse, then
the CFG, hypergraph, RTN and PDA represen-
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Figure 4: Optimized translation representations

tations can be generated inO(|s|3|G|) time and
space (Aho and Ullman, 1972). The FSA rep-
resentation can require an additionalO(e|s|3|G|)
time and space since the PDA expansion can be
exponential.

2. Intersection: The intersection of a CFGTh

with a finite automatonM can be performed by
the classical Bar-Hillel algorithm (Bar-Hillel
et al., 1964) with time and space complex-
ity O(|Th||M |3).1 The PDA intersection algo-
rithm from Section 2.3 has time and space com-
plexity O(|Tp||M |). Finally, the FSA intersec-
tion algorithm has time and space complexity
O(|Tf ||M |) (Mohri, 2009).

3. Shortest Path:The shortest path algorithm on
the hypergraph, RTN, and FSA representations
requires linear time and space (given the under-
lying acyclicity) (Huang, 2008; Mohri, 2009).
As presented in Section 2.4, the PDA rep-
resentation can require time cubic and space
quadratic in|M |.2

Table 1 summarizes the complexity results. Note
the PDA representation is equivalent in time and su-
perior in space to the CFG/hypergraph representa-
tion, in general, and it can be superior in both space

1The modified Bar-Hillel construction described by Chi-
ang (2007) has time and space complexityO(|Th||M |4); the
modifications were introduced presumably to benefit the subse-
quent pruning method employed (but see Huang et al. (2005)).

2The time (resp. space) complexity is not cubic (resp.
quadratic) in|Tp||M |. Given a stateq in Tp, there exists a
uniquesq such thatq belongs toCsq . Given a state(q1, q2)
in Tp ∩M , (q1, q2) ∈ C(s1,s2) only if s1 = sq1 , and hence
(q1, q2) belongs to at most|M | components.
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Representation Time Complexity Space Complexity
CFG/hypergraph O(|s|3 |G| |M |3) O(|s|3 |G| |M |3)
PDA O(|s|3 |G| |M |3) O(|s|3 |G| |M |2)
FSA O(e|s|3|G| |M |) O(e|s|3|G| |M |)

Table 1: Complexity using various target translation rep-
resentations.

and time to the FSA representation depending on the
relative SCFG and LM sizes. The FSA representa-
tion favors smaller target translation sets and larger
language models. Should a better complexity PDA
shortest path algorithm be found, this conclusion
could change. In practice, the PDA and FSA rep-
resentations benefit hugely from the optimizations
mentioned above, these optimizations improve the
time and space usage by one order of magnitude.

4 Experimental Framework

We use two hierarchical phrase-based SMT de-
coders. The first one is a lattice-based decoder im-
plemented with weighted finite-state transducers (de
Gispert et al., 2010) and described in Section 3. The
second decoder is a modified version using PDAs
as described in Section 2. In order to distinguish
both decoders we call them HiFST and HiPDT, re-
spectively. The principal difference between the two
decoders is where the finite-stateexpansionstep is
done. In HiFST, the RTN representation is immedi-
ately expanded to an FSA. In HiPDT, this expansion
is delayed as late as possible - in the output of the
shortest path algorithm. Another possible configu-
ration is to expand after the LM intersection step but
before the shortest path algorithm; in practice this is
quite similar to HiFST.

In the following sections we report experiments
in Chinese-to-English translation. For translation
model training, we use a subset of the GALE 2008
evaluation parallel text;3 this is 2.1M sentences and
approximately 45M words per language. We re-
port translation results on a development settune-nw
(1,755 sentences) and a test settest-nw(1,671 sen-
tences). These contain translations produced by the
GALE program and portions of the newswire sec-
tions of MT02 through MT06. In tuning the sys-

3See http://projects.ldc.upenn.edu/gale/data/catalog.html.
We excluded the UN material and the LDC2002E18,
LDC2004T08, LDC2007E08 and CUDonga collections.

0 7.5× 10−9 7.5× 10−8 7.5× 10−7

207.5 20.2 4.1 0.9

Table 2:Number of ngrams (in millions) in the 1st pass 4-gram
language models obtained with differentθ values (top row).

tems, standard MERT (Och, 2003) iterative param-
eter estimation under IBM BLEU4 is performed on
the development set.

The parallel corpus is aligned using MTTK (Deng
and Byrne, 2008) in both source-to-target and
target-to-source directions. We then follow stan-
dard heuristics (Chiang, 2007) and filtering strate-
gies (Iglesias et al., 2009b) to extract hierarchical
phrases from the union of the directional word align-
ments. We call a translation grammar the set of rules
extracted from this process. We extract two transla-
tion grammars:

• A restricted grammar where we apply the fol-
lowing additional constraint: rules are only
considered if they have a forward translation
probabilityp > 0.01. We call thisG1. As will
be discussed later, the interest of this grammar
is that decoding under it can be exact, that is,
without any pruning in search.

• An unrestricted one without the previous con-
straint. We call thisG2. This is a superset of
the previous grammar, and exact search under
it is not feasible for HiFST: pruning is required
in search.

The initial English language model is a Kneser-
Ney 4-gram estimated over the target side of the par-
allel text and the AFP and Xinhua portions of mono-
lingual data from the English Gigaword Fourth Edi-
tion (LDC2009T13). This is a total of 1.3B words.
We will call this language modelM1. For large lan-
guage model rescoring we also use the LMM2 ob-
tained by interpolatingM1 with a zero-cutoff stupid-
backoff (Brants et al., 2007) 5-gram estimated using
6.6B words of English newswire text.

We next describe how we build translation sys-
tems using entropy-pruned language models.

1. We build a baseline HiFST system that usesM1

and a hierarchical grammarG, parameters be-
ing optimized with MERT under BLEU.

4See ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl
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2. We then use entropy-based pruning of the lan-
guage model (Stolcke, 1998) under a relative
perplexity threshold ofθ to reduce the size of
M1. We will call the resulting language model
asMθ

1 . Table 2 shows the number of n-grams
(in millions) obtained for differentθ values.

3. We translate withMθ
1 using the same param-

eters obtained in MERT in step 1, except for
the word penalty, tuned over the lattices under
BLEU performance. This produces a transla-
tion lattice in the topmost cell that contains hy-
potheses with exact scores under the translation
grammar andMθ

1 .
4. Translation lattices in the topmost cell are

pruned with a likelihood-based beam widthβ.
5. We remove theMθ

1 scores from the pruned
translation lattices and reapplyM1, moving the
word penalty back to the original value ob-
tained in MERT. These operations can be car-
ried out efficiently via standard FSA opera-
tions.

6. Additionally, we can rescore the translation lat-
tices obtained in steps 1 or 5 with the larger
language modelM2. Again, this can be done
via standard FSA operations.

Note that ifβ=∞ or if θ=0, the translation lattices
obtained in step 1 should be identical to the ones of
step 5. While the goal is to increaseθ to reduce the
size of the language model used at Step 3,β will
have to increase accordingly so as to avoid pruning
away desirable hypotheses in Step 4. Ifβ defines
a sufficiently wide beam to contain the hypotheses
which would be favoured byM1, faster decoding
with Mθ

1 would be possible without incurring search
errorsM1. This is investigated next.

5 Entropy-Pruned LM in Rescoring

In Table 3 we show translation performance under
grammarG1 for different values ofθ. Performance
is reported after first-pass decoding withMθ

1 (see
step 3 in Section 4), after rescoring withM1 (see
step 5) and after rescoring withM2 (see step 6). The
baseline (experiment number 1) usesθ = 0 (that is,
M1) for decoding.

Under translation grammarG1, HiFST is able to
generate an FSA with the entire space of possible
candidate hypotheses. Therefore, any degradation

in performance is only due to theMθ
1 involved in

decoding and theβ applied prior to rescoring.
As shown in row number2, for θ ≤ 10−9 the

system provides the same performance to the base-
line whenβ > 8, while decoding time is reduced
by roughly 40%. This is becauseMθ

1 is 10% of the
size of the original language modelM1, as shown
in Table 2. AsMθ

1 is further reduced by increas-
ing θ (see rows number3 and4), decoding time is
also reduced. However, the beam widthβ required
in order to recover the good hypotheses in rescoring
increases, reaching12 for experiment 3 and15 for
experiment 4.

Regarding rescoring with the largerM2 (step 6
in Section 4), the system is also able to match the
baseline performance as long asβ is wide enough,
given the particularMθ

1 used in first-pass decoding.
Interestingly, results show that a similarβ value is
needed when rescoring either withM1 or M2.

The usage of entropy-pruned language models in-
crements speed at the risk of search errors. For in-
stance, comparing the outputs of systems1 and 2
with β=10 in Table 3 we find 45 different 1-best hy-
potheses, even though the BLEU score is identical.
In other words, we have 45 cases in which system2
is not able to recover the baseline output because the
1st-pass likelihood beamβ is not wide enough. Sim-
ilarly, system3 fails in 101 cases (β = 12) and sys-
tem4 fails in 95 cases. Interestingly, some of these
sentences would require impractically huge beams.
This might be due to the Kneser-Ney smoothing,
which interacts badly with entropy pruning (Chelba
et al., 2010).

6 Hiero with PDAs and FSAs

In this section we contrast HiFST with HiPDT under
the same translation grammar and entropy-pruned
language models. Under the constrained grammar
G1 their performance is identical as both decoders
can generate the entire search space which can then
be rescored withM1 or M2 as shown in the previous
section.

Therefore, we now focus on the unconstrained
grammarG2, where exact search is not feasible for
HiFST. In order to evaluate this problem, we run
both decoders overtune-nw, restricting memory us-
age to 10 gigabytes. If this limit is reached in decod-
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HiFST (G1 + Mθ
1 ) +M1 +M2

# θ tune-nw test-nw time β tune-nw test-nw tune-nw test-nw
1 0 (M1) 34.3 34.5 0.68 - - - 34.8 35.6
2 7.5 × 10−9 32.0 32.8 0.38 10 34.8 35.6

9 34.3 34.5 34.9 35.5
8

3 7.5 × 10−8 29.5 30.0 0.28 12 34.2 34.5 34.7 35.6
9 34.3 34.4 34.8 35.2
8 34.2 35.1

4 7.5 × 10−7 26.0 26.4 0.20 15 34.2 34.5 34.7 35.6
12 34.4 35.5

Table 3: Results (lowercase IBM BLEU scores) underG1 with variousMθ
1 as obtained with several values ofθ.

Performance in subsequent rescoring withM1 andM2 after likelihood-based pruning of the translation lattices for
variousβ is also reported. Decoding time, in seconds/word overtest-nw, refers strictly to first-pass decoding.

Exact search forG2 + Mθ
1 with memory usage under 10 GB

# θ HiFST HiPDT
Success Failure Success Failure

Expand Compose Compose Expand
2 7.5× 10−9 12 51 37 40 8 52
3 7.5× 10−8 16 53 31 76 1 23
4 7.5× 10−7 18 53 29 99.8 0 0.2

Table 4: Percentage of success in producing the 1-best translation underG2 with variousMθ
1 when applying a hard

memory limitation of 10 GB, as measured overtune-nw(1755 sentences). If decoder fails, we report what step was
being done when the limit was reached. HiFST could be expanding into an FSA or composing the FSA withMθ

1 ;
HiPDT could be PDA composing withMθ

1 or PDA expanding into an FSA.

HiPDT (G2 + Mθ
1 ) +M1 +M2

θ tune-nw test-nw β tune-nw test-nw tune-nw test-nw
7.5× 10−7 25.7 26.3 15 34.6 34.8 35.2 36.1

Table 5: HiPDT performance on grammarG2 with θ = 7.5 × 10−7. Exact search with HiFST is not possible under
these conditions: pruning during search would be required.

ing, the process is killed5. We report what internal
decoding operation caused the system to crash. For
HiFST, these include expansion into an FSA (Ex-
pand) and subsequent intersection with the language
model (Compose). For HiPDT, these include PDA
intersection with the language model (Compose) and
subsequent expansion into an FSA (Expand), using
algorithms described in Section 2.

Table 4 shows the number of times each decoder
succeeds in finding a hypothesis given the memory
limit, and the operations being carried out when they
fail to do so, when decoding with variousMθ

1 . With
θ=7.5 × 10−9 (row 2), HiFST can only decode 218
sentences, while HiPDT succeeds in 703 cases. The

5We usedulimit command. The experiment was carried out
over machines with different configurations and load. There-
fore, these numbers must be considered as approximate values.

differences between both decoders increase as the
Mθ

1 is more reduced, and forθ=7.5×10−7 (row 4),
HiPDT is able to perform exact search over all but
three sentences.

Table 5 shows performance using the latter con-
figuration (Table 4, row 4). After large language
model rescoring, HiPDT improves 0.5 BLEU over
baseline withG1 (Table 3, row 1).

7 Discussion and Conclusion

HiFST fails to decode mainly because the expansion
into an FST leads to far too big search spaces (e.g.
fails 938 times underθ = 7.5 × 10−8). If it suc-
ceeds in expanding the search space into an FST,
the decoder still has to compose with the language
model, which is also critical in terms of memory us-
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age (fails 536 times). In contrast, HiPDT creates a
PDA, which is a more compact representation of the
search space and allows efficient intersection with
the language model before expansion into an FST.
Therefore, the memory usage is considerably lower.
Nevertheless, the complexity of the language model
is critical for the PDA intersection and very specially
the PDA expansion into an FST (fails 403 times for
θ=7.5 × 10−8).

With the algorithms presented in this paper, de-
coding with PDAs is possible for any translation
grammar as long as an entropy pruned LM is used.
While this allows exact decoding, it comes at the
cost of making decisions based on less complex
LMs, although this has been shown to be an ad-
equate strategy when applying compact CFG rule-
sets. On the other hand, HiFST cannot decode under
large translation grammars, thus requiring pruning
during lattice construction, but it can apply an un-
pruned LM in this process. We find that with care-
fully designed pruning strategies, HiFST can match
the performance of HiPDT reported in Table 5. But
without pruning in search, expansion directly into an
FST would lead to an explosion in terms of memory
usage. Of course, without memory constraints both
strategies would reach the same performance.

Overall, these results suggest that HiPDT is more
robust than HiFST when using complex hierarchi-
cal grammars. Conversely, FSTs might be more
efficient for search spaces described by more con-
strained hierarchical grammars. This suggests that
a hybrid solution could be effective: we could use
PDAs or FSTs e.g. depending on the number of
states of the FST representing the expanded search
space, or other conditions.
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Abstract 

Mining of transliterations from comparable 

or parallel text can enhance natural 

language processing applications such as 

machine translation and cross language 

information retrieval. This paper presents 

an enhanced transliteration mining 

technique that uses a generative graph 

reinforcement model to infer mappings 

between source and target character 

sequences. An initial set of mappings are 

learned through automatic alignment of 

transliteration pairs at character sequence 

level. Then, these mappings are modeled 

using a bipartite graph. A graph 

reinforcement algorithm is then used to 

enrich the graph by inferring additional 

mappings. During graph reinforcement, 

appropriate link reweighting is used to 

promote good mappings and to demote bad 

ones. The enhanced transliteration mining 

technique is tested in the context of mining 

transliterations from parallel Wikipedia 

titles in 4 alphabet-based languages pairs, 

namely English-Arabic, English-Russian, 

English-Hindi, and English-Tamil. The 

improvements in F1-measure over the 

baseline system were 18.7, 1.0, 4.5, and 

32.5 basis points for the four language 

pairs respectively. The results herein 

outperform the best reported results in the 

literature by 2.6, 4.8, 0.8, and 4.1 basis 

points for the four language pairs 

respectively. 

Introduction 

Transliteration Mining (TM) is the process of 

finding transliterated word pairs in parallel or 

comparable corpora. TM has many potential 

applications such as mining training data for 

transliteration, improving lexical coverage for 

machine translation, and cross language retrieval 

via translation resource expansion. TM has been 

gaining some attention lately with a shared task in 

the ACL 2010 NEWS workshop (Kumaran, et al. 

2010). 

One popular statistical TM approach is performed 

in two stages. First, a generative model is trained 

by performing automatic character level alignment 

of parallel transliterated word pairs to find 

character segment mappings between source and 

target languages. Second, given comparable or 

parallel text, the trained generative model is used 

to generate possible transliterations of a word in 

the source language while constraining the 

transliterations to words that exist in the target 

language. 

However, two problems arise in this approach: 

1. Many possible character sequence mappings 

between source and target languages may not be 

observed in training data, particularly when limited 

training data is available – hurting recall. 

2. Conditional probability estimates of obtained 

mappings may be inaccurate, because some 

mappings and some character sequences may not 

1384



appear a sufficient number of times in training to 

properly estimate their probabilities – hurting 

precision. 

In this paper we focus on overcoming these two 

problems to improve overall TM. To address the 

first problem, we modeled the automatically 

obtained character sequence mappings (from 

alignment) as a bipartite graph and then we 

performed graph reinforcement to enrich the graph 

and predict possible mappings that were not 

directly obtained from training data. The example 

in Figure 1 motivates graph reinforcement. In the 

example, the Arabic letter ―ق‖ (pronounced as 

―qa‖) was not aligned to the English letter ―c‖ in 

training data. Such a mapping seems probable 

given that another Arabic letter, ―ك‖ (pronounced 

as ―ka‖), maps to two English letters, ―q‖ and ―k‖, 

to which ―ق‖ also maps. In this case, there are 

multiple paths that would lead to a mapping 

between the Arabic letter ―ق‖ and the English letter 

―c‖, namely ق  q  ك  c and ق  k  ك  

c. By using multiple paths as sources of evidence, 

we can infer the new mapping and estimate its 

probability.   

Another method for overcoming the missing 

mappings problem entails assigning small 

smoothing probabilities to unseen mappings. 

However, from looking at the graph, it is evident 

that some mappings could be inferred and should 

be assigned probabilities that are higher than a 

small smoothing probability. 

The second problem has to do primarily with some 

characters in one language, typically vowels, 

mapping to many character sequences in the other 

language, with some of these mappings assuming 

very high probabilities (due to limited training 

data). To overcome this problem, we used link 

reweighting in graph reinforcement to scale down 

the likelihood of mappings to target character 

sequences in proportion to how many source 

sequences map to them. 

We tested the proposed method using the ACL 

2010 NEWS workshop data for English-Arabic, 

English-Russian, English-Hindi, and English-

Tamil (Kumaran et al., 2010). For each language 

pair, the standard ACL 2010 NEWS workshop data 

contained a base set of 1,000 transliteration pairs 

for training, and set of 1,000 parallel Wikipedia 

titles for testing. 

The contributions of the paper are: 

1. Employing graph reinforcement to improve the 

coverage of automatically aligned data – as they 

apply to transliteration mining. This positively 

affects recall. 

2. Applying link reweighting to overcome 

situations where certain tokens – character 

sequences in the case of transliteration – tend to 

have many mappings, which are often erroneous. 

This positively affects precision. 

The rest of the paper is organized as follows: 

Section 2 surveys prior work on transliteration 

mining; Section 3 describes the baseline TM 

approach and reports on its effectiveness; Section 4 

describes the proposed graph reinforcement along 

with link reweighting and reports on the observed 

improvements; and Section 5 concludes the paper. 

 
Figure 1:  Example mappings seen in training 

 

Background 

Much work has been done on TM for different 

language pairs such as English-Chinese (Kuo et al., 

2006; Kuo et al., 2007; Kuo et al., 2008; Jin et al. 

2008;), English-Tamil (Saravanan and Kumaran, 

2008; Udupa and Khapra, 2010), English-Korean 

(Oh and Isahara, 2006; Oh and Choi, 2006), 

English-Japanese (Qu et al., 2000; Brill et al., 

2001; Oh and Isahara, 2006), English-Hindi (Fei et 

al., 2003; Mahesh and Sinha, 2009), and English-

Russian (Klementiev and Roth, 2006). 

TM typically involves two main tasks, namely: 

finding character mappings between two 

languages, and given the mappings ascertaining 

whether two words are transliterations or not. 

When training with a limited number of 

transliteration pairs, two additional problems 

appear: many possible character sequence 

mappings between source and target languages 

may not be observed in training data, and 

conditional probability estimates of obtained 
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mappings may be inaccurate. These two problems 

affect recall and precision respectively. 

1.1 Finding Character Mappings 

To find character sequence mappings between two 

languages, the most common approach entails 

using automatic letter alignment of transliteration 

pairs. Akin to phrasal alignment in machine 

translation, character sequence alignment is treated 

as a word alignment problem between parallel 

sentences, where transliteration pairs are treated as 

if they are parallel sentences and the characters 

from which they are composed are treated as if 

they are words. Automatic alignment can be 

performed using different algorithms such as the 

EM algorithm (Kuo et al., 2008; Lee and Chang, 

2003) or HMM based alignment (Udupa et al., 

2009a; Udupa et al., 2009b). In this paper, we use 

automatic character alignment between 

transliteration pairs using an HMM aligner. 

Another method is to use automatic speech 

recognition confusion tables to extract phonetically 

equivalent character sequences to discover 

monolingual and cross lingual pronunciation 

variations (Kuo and Yang, 2005). Alternatively, 

letters can be mapped into a common character set 

using a predefined transliteration scheme (Oh and 

Choi, 2006). 

1.2 Transliteration Mining 

For the problem of ascertaining if two words can 

be transliterations of each other, a common 

approach involves using a generative model that 

attempts to generate all possible transliterations of 

a source word, given the character mappings 

between two languages, and restricting the output 

to words in the target language (Fei et al., 2003; 

Lee and Chang, 2003, Udupa et al., 2009a). This is 

similar to the baseline approach that we used in 

this paper. Noeman and Madkour (2010) 

implemented this technique using a finite state 

automaton by generating all possible 

transliterations along with weighted edit distance 

and then filtered them using appropriate thresholds 

and target language words. They reported the best 

TM results between English and Arabic with F1-

measure of 0.915 on the ACL-2010 NEWS 

workshop standard TM dataset. A related 

alternative is to use back-transliteration to 

determine if one sequence could have been 

generated by successively mapping character 

sequences from one language into another (Brill et 

al., 2001; Bilac and Tanaka, 2005; Oh and Isahara, 

2006). 

Udupa and Khapra (2010) proposed a method in 

which transliteration candidates are mapped into a 

―low-dimensional common representation space‖. 

Then, similarity between the resultant feature 

vectors for both candidates can be computed. 

Udupa and Kumar (2010) suggested that mapping 

to a common space can be performed using context 

sensitive hashing. They applied their technique to 

find variant spellings of names. 

Jiampojamarn et al. (2010) used classification to 

determine if a source language word and target 

language word are valid transliterations. They used 

a variety of features including edit distance 

between an English token and the Romanized 

versions of the foreign token, forward and 

backward transliteration probabilities, and 

character n-gram similarity. They reported the best 

results for Russian, Tamil, and Hindi with F1-

measure of 0.875, 0.924, and 0.914 respectively on 

the ACL-2010 NEWS workshop standard TM 

datasets. 

1.3 Training with Limited Training Data 

When only limited training data is available to 

train a character mapping model, the resultant 

mappings are typically incomplete (due to 

sparseness in the training data). Further, resultant 

mappings may not be observed a sufficient of 

times and hence their mapping probabilities may 

be inaccurate. 

Different methods were proposed to solve these 

two problems. These methods focused on making 

training data less sparse by performing some kind 

of letter conflation. Oh and Choi (2006) used a 

SOUNDEX like scheme. SOUNDEX is used to 

convert English words into a simplified phonetic 

representation, in which vowels are removed and 

phonetically similar characters are conflated. A 

variant of SOUNDEX along with iterative training 

was proposed by Darwish (2010). Darwish (2010) 

reported significant improvements in TM recall at 

the cost of limited drop in precision. Another 

method involved expanding character sequence 

maps by automatically mining transliteration pairs 

and then aligning these pairs to generate an 

expanded set of character sequence maps (Fei et 

al., 2003). In this work we proposed graph 
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reinforcement with link reweighting to address this 

problem. Graph reinforcement was used in the 

context of different problems such as mining 

paraphrases (Zhao et al., 2008; Kok and Brockett, 

2010; Bannard and  Callison-Burch 2005) and 

named entity translation extraction (You et al., 

2010). 

Baseline Transliteration Mining 

1.4 Description of Baseline System 

The basic TM setup that we employed in this 

work used a generative transliteration model, 

which was trained on a set of transliteration pairs. 

The training involved automatically aligning 

character sequences. The alignment was performed 

using a Bayesian learner that was trained on word 

dependent transition models for HMM based word 

alignment (He, 2007). Alignment produced 

mappings of source character sequences to target 

character sequences along with the probability of 

source given target and vice versa. Source 

character sequences were restricted to be 1 to 3 

characters long. 

For all the work reported herein, given an 

English-foreign language transliteration candidate 

pair, English was treated as the target language and 

the foreign language as the source.  Given a 

foreign source language word sequence   
  and an 

English target word sequence   
 ,      

   could 

be a potential transliteration of      
 .  An 

example of word sequences pair is the Tamil-

English pair:  (முதலாம் ஹைலி செலாெி, 
Haile Selassie I of Ethiopia), where ―முதலாம்” 

could be transliteration for any or none of the 

English words {―Haile‖, ―Selassie‖, ―I‖, ―of‖, 

―Ethiopia‖}.  The pseudo code below describes 

how transliteration mining generates candidates. 

Basically, given a source language word, all 

possible segmentations, where each segment has a 

maximum length of 3 characters, are produced 

along with their associated mappings into the 

target language. Given all mapping combinations, 

combinations producing valid target words are 

retained and sorted according to the product of 

their mapping probabilities. If the product of the 

mapping probabilities for the top combination is 

above a certain threshold, then it is chosen as the 

transliteration candidate. Otherwise, no candidate 

is chosen. To illustrate how TM works, consider 

the following example: Given the Arabic word 

 .(من) and (م ، ن) all possible segmentations are ,‖من―

Given the target words {the, best, man} and the 

possible mappings for the segments and their 

probabilities: 

ـم  = {(m, 0.7), (me, 0.25), (ma, 0.05)} 

 {n, 0.7), (nu, 0.2), (an, 0.1)} = ن

 {(mn, 0.3) ,(man, 0.3) ,(men, 0.4)} = من

The only combinations leading valid target 

words would be: 

  {(man: 0.3)} (من)

( ، ن ـم )  {(m,an: 0.07), (ma, n: 0.035)} 

Consequently, the algorithm would produce the 

tuple with the highest probability: (من , man, 0.3). 

As the pseudo code suggests, the actual 

implementation is optimized via: incremental left 

to right processing of source words; the use of a 

Patricia trie to prune mapping combinations that 

don’t lead to valid words; and the use of a priority 

queue to insure that the best candidate is always at 

the top of the queue. 

1.5 Smoothing and Thresholding  

We implemented the baseline system with and 

without assigning small smoothing probabilities 

for unseen source character to target character 

mappings. Subsequent to training, the smoothing 

probability was selected as the smallest observed 

mapping probability in training.   

We used a threshold on the minimum acceptable 

transliteration score to filter out unreliable 

transliterations. We couldn’t fix a minimum score 

for reliable transliterations to a uniform value for 

all words, because this would have caused the 

model to filter out long transliterations. Thus, we 

tied the threshold to the length of transliterated 

words. We assumed a threshold d for single 

character mappings and the transliteration 

threshold for a target word of length l was 

computed as    . We selected d by sorting the 

mapping probabilities, removing the lowest 10% of 

mapping probabilities (which we assumed to be 

outliers), and then selecting the smallest observed 

probability to be the character threshold d. The 

choice of removing the lowest ranking 10% of 

mapping probabilities was based on intuition, 

because we did not have a validation set. The 

threshold was then applied to filter out 

transliteration with                         . 
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1.6 Effectiveness of Baseline System 

To test the effectiveness of the baseline system, we 

used the standard TM training and test datasets 

from the ACL-2010 NEWS workshop shared task. 

The datasets are henceforth collectively referred to 

as the NEWS dataset. The dataset included 4 

alphabet-based language pairs, namely English-

Arabic, English-Russian, English-Hindi, and 

English-Tamil. For each pair, a dataset included a 

list of 1,000 parallel transliteration word pairs to 

train a transliteration model, and a list of 1,000 

parallel word sequences to test TM. The parallel 

sequences in the test sets were extracted titles from 

Wikipedia article for which cross language links 

exist between both languages. 

We preprocessed the different languages as 

follows: 

 Russian: characters were case-folded 

 Arabic: the different forms of alef (alef, alef 

maad, alef with hamza on top, and alef with 

hamza below it) were normalized to alef, ya 

and alef maqsoura were normalized to ya, and 

ta marbouta was mapped to ha. 

 English: letters were case-folded and the 

following letter conflations were performed: 

ž, ż  z  á, â, ä, à, ã, ā, ą, æ  a 

é, ę, è  e  ć, č, ç c 

ł l  ï, í, ì, î  i 

ó, ō, ö, õ  o ń, ñ, ṅ  n 

ş, ś, ß, š  s ř  r 

ý  y  ū, ü, ú, û  u 

 Tamil and Hindi: no preprocessing was 

performed.  
 

English/ P R F 

Arabic 0.988 0.983 0.583 0.603 0.733 0.748 

Russian 0.975 0.967 0.831 0.862 0.897 0.912 

Hindi 0.986 0.981 0.693 0.796 0.814 0.879 

Tamil 0.984 0.981 0.274 0.460 0.429 0.626 

 

Table 1:  Baseline results for all language pairs.  

Results with smoothing are shaded. 
 

Table 1 reports the precision, recall, and F1-

measure results for using the baseline system in 

TM between English and each of the 4 other 

languages in the NEWS dataset with and without 

smoothing.  As is apparent in the results, without 

smoothing, precision is consistently high for all 

languages, but recall is generally poor, particularly 

for Tamil. When smoothing is applied, we 

observed a slight drop in precision for Arabic, 

Hindi, and Tamil and a significant drop of 5.6 

1: Input:  Mappings, set of source given target mappings with associated Prob.  
2: Input:  SourceWord (    1

 ), Source language word 
3: Input:  TargetWords, Patricia trie containing all target language words ( 1

𝑚 ) 
4: Data Structures:  DFS, Priority queue to store candidate transliterations pair ordered by their transliteration 

score – Each candidate transliteration tuple = (SourceFragment, TargetTransliteration, TransliterationScore). 
5: StartSymbol = (“”, “”, 1.0) 
6: DFS={StartSymbol}  
7: While(DFS is not empty) 
8:  SourceFragment= DFS.Top().SourceFragment 
9:  TargetFragment= DFS.Top().TargetTransliteration 
10:  FragmentProb=DFS.Top().TransliterationScore 
11:  If (SourceWord == SourceFragment ) 
12:   If(FragmentScore > Threshold) 
13:    Return (SourceWord, TargetTransliteration, TransliterationScore) 
14:   Else 
15:    Return Null 
16:  DFS.RemoveTop() 
17:  For SubFragmentLength=1 to 3 
18:   SourceSubString= SubString( SourceWord, SourceFragment.Length , SubFragmentLength) 
19:   Foreach mapping in Mappings[SourceSubString]  
20:    If( (TargetFragment + mapping)  is a sub-string in TargetWords) 
21:     DFS.Add(SourceFragment + SourceSubString, Mapping.Score * FragmentScore) 
22:  DFS.Remove(SourceFragment) 
23: End While 
24: Return Null 

Figure 2:  Pseudo code for transliteration mining 
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basis points for Russian. However, the application 

of smoothing increased recall dramatically for all 

languages, particularly Tamil. For the remainder of 

the paper, the results with smoothing are used as 

the baseline results. 

Background 

1.7 Description of Graph Reinforcement 

In graph reinforcement, the mappings deduced 

from the alignment process were represented using 

a bipartite graph G = (S, T, M), where S was the 

set of source language character sequences, T was 

the set of target language character sequences, and 

M was the set of mappings (links or edges) 

between S and T. The score of each mapping 

m(v1|v2), where m(v1|v2)  M, was initially set to 

the conditional probability of target given source 

p(v1|v2). Graph reinforcement was performed by 

traversing the graph from S  T  S  T in 

order to deduce new mappings. Given a source 

sequence s'  S and a target sequence t' T, the 

deduced mapping probabilities were computed as 

follows (Eq.1):  

𝑚(  |  )    ∏ (  𝑚(  | )𝑚( | )𝑚( |  ))
        

 

where the term (  𝑚(  | )𝑚( | )𝑚( |  )) 

computed the probability that a mapping is not 

correct. Hence, the probability of an inferred 

mapping would be boosted if it was obtained from 

multiple paths. Given the example in Figure 1, 

m(c|ق) would be computed as follows:  

  (  𝑚( |ك)𝑚(ك| )𝑚( |ق))  

(  𝑚( |ك)𝑚(ك| )𝑚( |ق)) 

We were able to apply reinforcement iteratively on 

all mappings from S to T to deduce previously 

unseen mappings (graph edges) and to update the 

probabilities of existing mappings. 

1.8 Link Reweighting  

The basic graph reinforcement algorithm is prone 

to producing irrelevant mappings by using 

character sequences with many different possible 

mappings as a bridge. Vowels were the most 

obvious examples of such character sequences. For 

example, automatic alignment produced 26 Hindi 

character sequences that map to the English letter 

―a‖, most of which were erroneous such as the 

mapping between ―a‖ and ―व” (pronounced va). 

Graph reinforcement resulted in many more such 

mappings. After successive iterations, such 

character sequences would cause the graph to be 

fully connected and eventually the link weights 

will tend to be uniform in their values. To illustrate 

this effect, we experimented with basic graph 

reinforcement on the NEWS dataset. The figures of 

merit were precision, recall, and F1-measure. 

Figures 3, 4, 5, and 6 show reinforcement results 

for Arabic, Russian, Hindi, and Tamil respectively. 

The figures show that: recall increased quickly and 

nearly saturated after several iterations; precision 

continued to drop with more iterations; and F1-

measure peaked after a few iterations and began to 

drop afterwards. This behavior was undesirable 

because overall F1-measure values did not 

converge with iterations, necessitating the need to 

find clear stopping conditions. 

To avoid this effect and to improve precision, we 

applied link reweighting after each iteration. Link 

reweighting had the effect of decreasing the 

weights of target character sequences that have 

many source character sequences mapping to them 

and hence reducing the effect of incorrectly 

inducing mappings. Link reweighting was 

performed as follows (Eq. 2): 

  𝑚 ( | )   

 ( | )

∑  (  | )    
 

Where si  S is a source character sequence that 

maps to t. So in the case of ―a‖ mapping to the ―व‖ 

character in Hindi, the link weight from ―a‖ to ―व‖ 

is divided by the sum of link weights from ―a‖ to 

all 26 characters to which ―a‖ maps. 

We performed multiple experiments on the NEWS 

dataset to test the effect of graph reinforcement 

with link reweighting with varying number of 

reinforcement iterations. Figures 7, 8, 9, and 10 

compare baseline results with smoothing to results 

with graph reinforcement at different iterations. 

As can be seen in the figures, the F1-measure 

values stabilized as we performed multiple graph 

reinforcement iterations. Except for Russian, the 

results across different languages behaved in a 

similar manner. 

For Russian, graph reinforcement marginally 

affected TM F1-measure, as precision and recall 
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marginally changed. The net improvement was 1.1 

basis points. English and Russian do not share the 

same alphabet, and the number of initial mappings 

was bigger compared to the other language pairs.  

Careful inspection of the English-Russian test set, 

with the help of a Russian speaker, suggests that:  

1) the test set reference contained many false 

negatives;  

2) Russian names often have multiple phonetic 

forms (or spellings) in Russian with a single 

standard transliteration in English. For example, 

the Russian name ―Olga‖ is often written and 

pronounced as ―Ola‖ and ―Olga‖ in Russian; and  

3) certain English phones do not exist in Russian, 

leading to inconsistent character mappings in 

Russian.  For example, the English phone for ―g‖, 

as in ―George‖, does not exist in Russian. 
 

For the other languages, graph reinforcement 

yielded steadily improving recall and consequently 

steadily improving F1-measure. Most 

improvements were achieved within the first 5 

iterations, and improvements beyond 10 iterations 

were generally small (less than 0.5 basis points in 

F1-measure). After 15 iterations, the improvements 

in overall F1-measure above the baseline with 

smoothing were 19.3, 5.3, and 32.8 basis points for 

Arabic, Tamil, and Hindi respectively. The F1-

measure values seemed to stabilize with successive 

iterations. The least improvements were observed 

for Hindi. This could be attributed to the fact that 

Hindi spelling is largely phonetic, making letters in 

words pronounceable in only one way. This fact 

makes transliteration between Hindi and English 

easier than Arabic and Tamil. In the case of Tamil, 

the phonetics of letters change depending on the 

position of letters in words. As for Arabic, multiple 

letters sequences in English can map to single 

letters in Arabic and vice versa. Also, Arabic has 

diacritics which are typically omitted, but 

commonly transliterate to English vowels. Thus, 

the greater the difference in phonetics between two 

languages and the greater the phonetic complexity 

of either, the more TM can gain from the proposed 

technique. 

1.9 When Graph Reinforcement Worked  

An example where reinforcement worked entails 

the English-Arabic transliteration pair (Seljuq, 

 In the baseline runs with 1,000 training .(سلاجقه

examples, both were not mapped to each other 

because there were no mappings between the letter 

―q‖ and the Arabic letter sequence ―قه‖ 

(pronounced as ―qah‖). The only mappings that 

were available for ―q‖ were ―كه‖ (pronounced as 

―kah‖), ―ق‖ (pronounced as ―q‖), and ―ك‖ 

(pronounced as ―k‖) with probabilities 54.0, 0.10, 

and 5452 respectively. Intuitively, the third 

mapping is more likely than the second. After 3 

graph reinforcement iterations, the top 5 mappings 

for ―q‖ were ―ق‖ (pronounced as ―q‖), ―قه‖ 

(pronounced as ―qah‖), ―كه‖ (pronounced as 

―kah‖), ―ك‖ (pronounced as ―k‖), and ―الق‖ 

(pronounced as ―alq‖) with mapping probabilities 

of 0.22, 0.19, 0.15, 0.05, and 0.05 respectively. In 

this case, graph reinforcement was able to find the 

missing mapping and properly reorder the 

mappings.  Performing 10 iterations with link 

reweighting for Arabic led to 17 false positives. 

Upon examining them, we found that: 9 were 

actually correct, but erroneously labeled as false in 

the test set; 6 were phonetically similar like ―اسبانيا‖ 

(pronounced espanya) and ―Spain‖ and ―التكنولوجيا‖ 

(pronounced alteknologya) and ―technology‖; and 

the remaining 2 were actually wrong, which were 

 and ―medici‖ and (pronounced beatchi) ‖بيتشي―

― ديسي ‖ (pronounced sidi) and ―taya‖. This seems to 

indicate that graph reinforcement generally 

introduced more proper mappings than improper 

ones. 

1.10 Comparing to the State-of-the-Art  

Table 2 compares the best reported results in ACL-

2010 NEWS TM shared task for Arabic (Noeman 

and Madkour, 2010) and for the other languages 

(Jiampojamarn et al. 2010) and the results obtained 

by the proposed technique using 10 iterations, with 

link reweighting. The comparison shows that the 

proposed algorithm yielded better results than the 

best reported results in the literature by 2.6, 4.8, 

0.8 and 4.1 F1-measure points in Arabic, Russian, 

Hindi and Tamil respectively. For Arabic, the 

improvement over the previously reported result 

was due to improvement in precision, while for the 

other languages the improvements were due to 

improvements in both recall and precision. 
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Figure 3: Graph reinforcement w/o link reweighting 

for Arabic 

 
Figure 4: Graph reinforcement w/o link reweighting 

for Russian 

 
Figure 5: Graph reinforcement w/o link reweighting 

for Hindi 

 
Figure 6: Graph reinforcement w/o link reweighting 

for Tamil 

 
Figure 7:  Graph reinforcement results for Arabic 

 
Figure 8: Graph reinforcement results for Russian 

 
Figure 9:  Graph reinforcement results for Hindi 

 
Figure 10:  Graph reinforcement results for Tamil 
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 Shared Task Proposed Algorithm 

English/ P R F P R F 

Arabic 0.887 0.945 0.915 0.979 0.905 0.941 

Russian 0.880 0.869 0.875 0.921 0.925 0.923 

Hindi 0.954 0.895 0.924 0.972 0.895 0.932 

Tamil 0.923 0.906 0.914 0.964 0.945 0.955 

Table 2: Best results obtained in ACL-2010 NEWS TM 

shared task compared to graph reinforcement with link 

reweighting after 10 iterations 

Conclusion 

In this paper, we presented a graph reinforcement 

algorithm with link reweighting to improve 

transliteration mining recall and precision by 

systematically inferring mappings that were unseen 

in training. We used the improved technique to 

extract transliteration pairs from parallel Wikipedia 

titles. The proposed technique solves two problems 

in transliteration mining, namely: some mappings 

may not be seen in training data – hurting recall, 

and certain mappings may not be seen a sufficient 

number of times to appropriate estimate mapping 

probabilities – hurting precision. The results 

showed that graph reinforcement yielded improved 

transliteration mining from parallel Wikipedia 

titles for all four languages on which the technique 

was tested. 

Generally iterative graph reinforcement was able to 

induce unseen mappings in training data – 

improving recall. Link reweighting favored 

precision over recall counterbalancing the effect of 

graph reinforcement. The proposed system 

outperformed the best reported results in the 

literature for the ACL-2010 NEWS workshop 

shared task for Arabic, Russian, Hindi and Tamil.  

To extend the work, we would like to try 

transliteration mining from large comparable texts. 

The test parts of the NEWS dataset only contained 

short parallel fragments. For future work, graph 

reinforcement could be extended to MT to improve 

the coverage of aligned phrase tables. In doing so, 

it is reasonable to assume that there are multiple 

ways of expressing a singular concept and hence 

multiple translations are possible. Using graph 

reinforcement can help discover such translation 

though they may never be seen in training data. 

Using link reweighting in graph reinforcement can 

help demote unlikely translations while promoting 

likely ones. This could help clean MT phrase 

tables. Further, when dealing with transliteration, 

graph reinforcement can help find phonetic 

variations within a single language, which can 

have interesting applications in spelling correction 

and information retrieval. Applying the same to 

machine translation phrase tables can help identify 

paraphrases automatically. 
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Abstract

Modelling compositional meaning for sen-
tences using empirical distributional methods
has been a challenge for computational lin-
guists. We implement the abstract categorical
model of Coecke et al. (2010) using data from
the BNC and evaluate it. The implementation
is based on unsupervised learning of matrices
for relational words and applying them to the
vectors of their arguments. The evaluation is
based on the word disambiguation task devel-
oped by Mitchell and Lapata (2008) for intran-
sitive sentences, and on a similar new experi-
ment designed for transitive sentences. Our
model matches the results of its competitors
in the first experiment, and betters them in the
second. The general improvement in results
with increase in syntactic complexity show-
cases the compositional power of our model.

1 Introduction

As competent language speakers, we humans can al-
most trivially make sense of sentences we’ve never
seen or heard before. We are naturally good at un-
derstanding ambiguous words given a context, and
forming the meaning of a sentence from the mean-
ing of its parts. But while human beings seem
comfortable doing this, machines fail to deliver.
Search engines such as Google either fall back on
bag of words models—ignoring syntax and lexical
relations—or exploit superficial models of lexical
semantics to retrieve pages with terms related to
those in the query (Manning et al., 2008).

However, such models fail to shine when it comes
to processing the semantics of phrases and sen-

tences. Discovering the process of meaning as-
signment in natural language is among the most
challenging and foundational questions of linguis-
tics and computer science. The findings thereof will
increase our understanding of cognition and intelli-
gence and shall assist in applications to automating
language-related tasks such as document search.

Compositional type-logical approaches (Mon-
tague, 1974; Lambek, 2008) and distributional mod-
els of lexical semantics (Schutze, 1998; Firth, 1957)
have provided two partial orthogonal solutions to the
question. Compositional formal semantic models
stem from classical ideas from mathematical logic,
mainly Frege’s principle that the meaning of a sen-
tence is a function of the meaning of its parts (Frege,
1892). Distributional models are more recent and
can be related to Wittgenstein’s later philosophy of
‘meaning is use’, whereby meanings of words can be
determined from their context (Wittgenstein, 1953).
The logical models relate to well known and robust
logical formalisms, hence offering a scalable theory
of meaning which can be used to reason inferen-
tially. The distributional models have found their
way into real world applications such as thesaurus
extraction (Grefenstette, 1994; Curran, 2004) or au-
tomated essay marking (Landauer, 1997), and have
connections to semantically motivated information
retrieval (Manning et al., 2008). This two-sortedness
of defining properties of meaning: ‘logical form’
versus ‘contextual use’, has left the quest for ‘what is
the foundational structure of meaning?’ even more
of a challenge.

Recently, Coecke et al. (2010) used high level
cross-disciplinary techniques from logic, category
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theory, and physics to bring the above two ap-
proaches together. They developed a unified mathe-
matical framework whereby a sentence vector is by
definition a function of the Kronecker product of its
word vectors. A concrete instantiation of this the-
ory was exemplified on a toy hand crafted corpus
by Grefenstette et al. (2011). In this paper we imple-
ment it by training the model over the entire BNC.
The highlight of our implementation is that words
with relational types, such as verbs, adjectives, and
adverbs are matrices that act on their arguments. We
provide a general algorithm for building (or indeed
learning) these matrices from the corpus.

The implementation is evaluated against the task
provided by Mitchell and Lapata (2008) for disam-
biguating intransitive verbs, as well as a similar new
experiment for transitive verbs. Our model improves
on the best method evaluated in Mitchell and Lapata
(2008) and offers promising results for the transitive
case, demonstrating its scalability in comparison to
that of other models. But we still feel there is need
for a different class of experiments to showcase mer-
its of compositionality in a statistically significant
manner. Our work shows that the categorical com-
positional distributional model of meaning permits
a practical implementation and that this opens the
way to the production of large scale compositional
models.

2 Two Orthogonal Semantic Models

Formal Semantics To compute the meaning of a
sentence consisting of n words, meanings of these
words must interact with one another. In formal se-
mantics, this further interaction is represented as a
function derived from the grammatical structure of
the sentence, but meanings of words are amorphous
objects of the domain: no distinction is made be-
tween words that have the same type. Such models
consist of a pairing of syntactic interpretation rules
(in the form of a grammar) with semantic interpreta-
tion rules, as exemplified by the simple model pre-
sented in Figure 1.

The parse of a sentence such as “cats like milk”
typically produces its semantic interpretation by
substituting semantic representation for their gram-
matical constituents and applying β-reduction where
needed. Such a derivation is shown in Figure 2.

Syntactic Analysis Semantic Interpretation
S→ NP VP |V P |(|NP |)
NP→ cats, milk, etc. |cats|, |milk|, . . .
VP→ Vt NP |V t|(|NP |)
Vt→ like, hug, etc. λyx.|like|(x, y), . . .

Figure 1: A simple model of formal semantics.

|like|(|cats|, |milk|)

|cats| λx.|like|(x, |milk|)

|milk| λyx.|like|(x, y)

Figure 2: A parse tree showing a semantic derivation.

This methodology is used to translate sentences
of natural language into logical formulae, then use
computer-aided automation tools to reason about
them (Alshawi, 1992). One major drawback is that
the result of such analysis can only deal with truth
or falsity as the meaning of a sentence, and says
nothing about the closeness in meaning or topic of
expressions beyond their truth-conditions and what
models satisfy them, hence do not perform well on
language tasks such as search. Furthermore, an un-
derlying domain of objects and a valuation function
must be provided, as with any logic, leaving open
the question of how we might learn the meaning of
language using such a model, rather than just use it.

Distributional Models Distributional models of
semantics, on the other hand, dismiss the interaction
between syntactically linked words and are solely
concerned with lexical semantics. Word meaning
is obtained empirically by examining the contexts1

in which a word appears, and equating the meaning
of a word with the distribution of contexts it shares.
The intuition is that context of use is what we ap-
peal to in learning the meaning of a word, and that
words that frequently have the same sort of context
in common are likely to be semantically related.

For instance, beer and sherry are both drinks, al-
coholic, and often cause a hangover. We expect
these facts to be reflected in a sufficiently large cor-
pus: the words ‘beer’ and ‘sherry’ occur within the

1E.g. words which appear in the same sentence or n-word
window, or words which hold particular grammatical or depen-
dency relations to the word being learned.
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context of identifying words such as ‘drink’, ‘alco-
holic’ and ‘hangover’ more frequently than they oc-
cur with other content words.

Such context distributions can be encoded as vec-
tors in a high dimensional space with contexts as
basis vectors. For any word vector

−−→
word, the scalar

weight cwordi associated with each context basis vec-
tor −→ni is a function of the number of times the
word has appeared in that context. Semantic vectors
(cword1 , cword2 , · · · , cwordn ) are also denoted by sums
of such weight/basis vector pairs:

−−→
word =

∑

i

cwordi
−→ni

Learning a semantic vector is just learning its ba-
sis weights from the corpus. This setting offers ge-
ometric means to reason about semantic similarity
(e.g. via cosine measure or k-means clustering), as
discussed in Widdows (2005).

The principal drawback of such models is their
non-compositional nature: they ignore grammatical
structure and logical words, and hence cannot com-
pute the meanings of phrases and sentences in the
same efficient way that they do for words. Com-
mon operations discussed in (Mitchell and Lapata,
2008) such as vector addition (+) and component-
wise multiplication (�, cf. §4 for details) are com-
mutative, hence if −→vw = −→v + −→w or −→v � −→w , then
−→vw = −→wv, leading to unwelcome equalities such as

−−−−−−−−−−−−−→
the dog bit the man =

−−−−−−−−−−−−−→
the man bit the dog

Non-commutative operations, such as the Kronecker
product (cf. §4 for definition) can take word-order
into account (Smolensky, 1990) or even some more
complex syntactic relations, as described in Clark
and Pulman (2007). However, the dimensionality of
sentence vectors produced in this manner differs for
sentences of different length, barring all sentences
from being compared in the same vector space, and
growing exponentially with sentence length hence
quickly becoming computationally intractable.

3 A Hybrid Logico-Distributional Model

Whereas semantic compositional mechanisms for
set-theoretic constructions are well understood,
there are no obvious corresponding methods for vec-
tor spaces. To solve this problem, Coecke et al.

(2010) use the abstract setting of category theory to
turn the grammatical structure of a sentence into a
morphism compatible with the higher level logical
structure of vector spaces.

One pragmatic consequence of this abstract idea
is as follows. In distributional models, there is a
meaning vector for each word, e.g. −→cats,

−→
like, and−−→

milk. The logical recipe tells us to apply the mean-
ing of the verb to the meanings of subject and object.
But how can a vector apply to other vectors? The so-
lution proposed above implies that one needs to have
different levels of meaning for words with different
types. This is similar to logical models where verbs
are relations and nouns are atomic sets. So verb vec-
tors should be built differently from noun vectors,
for instance as matrices.

The general information as to which words should
be matrices and which words atomic vectors is in
fact encoded in the type-logical representation of the
grammatical structure of the sentence. This is the
linear map with word vectors as input and sentence
vectors as output. Hence, at least theoretically, one
should be able to build sentence vectors and com-
pare their synonymity in exactly the same way as
one measures word synonymity.

Pregroup Grammars The aforementioned linear
maps turn out to be the grammatical reductions
of a type-logic called a Lambek pregroup gram-
mar (Lambek, 2008)2. Pregroups and vector spaces
share the same high level mathematical structure, re-
ferred to as a compact closed category, for a proof
and details of this claim see Coecke et al. (2010); for
a friendly introduction to category theory, see Co-
ecke and Paquette (2011). One consequence of this
parity is that the grammatical reductions of a pre-
group grammar can be directly transformed into lin-
ear maps that act on vectors.

In a nutshell, pregroup types are either atomic
or compound. Atomic types can be simple (e.g. n
for noun phrases, s for statements) or left/right
superscripted—referred to as adjoint types (e.g. nr

and nl). An example of a compound type is that of
a verb nrsnl. The superscripted types express that
the verb is a relation with two arguments of type n,

2The usage of pregroup types is not essential, the types of
any other logic, for instance CCG can be used, but should be
translated into the language of pregroups.
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which have to occur to the right and to the left of
it, and that it outputs an argument of the type s. A
transitive sentence has types as shown in Figure 3.

Each type n cancels out with its right adjoint nr

from the right and its left adjoint nl from the left;
mathematically speaking these mean3

nln ≤ 1 and nnr ≤ 1

Here 1 is the unit of concatenation: 1n = n1 =
n. The corresponding grammatical reduction of a
transitive sentence is nnrsnl ≤ 1s1 = s. Each such
reduction can be depicted as a wire diagram. The
diagram of a transitive sentence is shown in Figure 3.

Cats
n

like
nr s nl

milk.
n

Figure 3: The pregroup types and reduction diagram for
a transitive sentence.

Syntax-guided Semantic Composition Accord-
ing to Coecke et al. (2010) and based on a general
completeness theorem between compact categories,
wire diagrams, and vector spaces, the meaning of
sentences can be canonically reduced to linear alge-
braic formulae. The following is the meaning vector
of our transitive sentence:

−−−−−−−−→
cats like milk = (f)

(−→cats⊗−→like⊗−−→milk
)

(I)

Here f is the linear map that encodes the grammati-
cal structure. The categorical morphism correspond-
ing to it is denoted by the tensor product of 3 compo-
nents: εV ⊗1S⊗εW , where V andW are subject and
object spaces, S is the sentence space, the ε’s are the
cups, and 1S is the straight line in the diagram. The
cups stand for taking inner products, which when
done with the basis vectors imitate substitution. The
straight line stands for the identity map that does
nothing. By the rules of the category, equation (I) re-
duces to the following linear algebraic formula with

3The relation≤ is the partial order of the pregroup. It corre-
sponds to implication =⇒ in a logical reading thereof. If these
inequalities are replaced by equalities, i.e. if nln = 1 = nnr ,
then the pregroup collapses into a group where nl = nr .

lower dimensions, hence the dimensional explosion
problem for Kronecker products is avoided:

∑

itj

citj〈−→cats|−→vi 〉−→st 〈−→wj|
−−→
milk〉 ∈ S (II)

−→vi ,−→wj are basis vectors of V and W . The inner
product 〈−→cats | −→vi 〉 substitutes the weights of −→cats
into the first argument place of the verb (similarly
for object and second argument place). −→st is a basis
vector of the sentence space S in which meanings of
sentences live, regardless of their grammatical struc-
ture.

The degree of synonymity of sentences is ob-
tained by taking the cosine measure of their vectors.
S is an abstract space: it needs to be instantiated
to provide concrete meanings and synonymity mea-
sures. For instance, a truth-theoretic model is ob-
tained by taking the sentence space S to be the 2-
dimensional space with basis vectors |1〉 (True) and
|0〉 (False).

4 Building Matrices for Relational Words

In this section we present a general scheme to build
matrices for relational words. Recall that given
a vector space A with basis {−→ni}i, the Kronecker
product of two vectors −→v =

∑
i c
a
i
−→ni and −→w =∑

i c
b
i
−→ni is defined as follows:

−→v ⊗−→w =
∑

ij

cai c
b
j (−→ni ⊗−→nj)

where (−→ni ⊗−→nj) is just the pairing of the basis of A,
i.e. (−→ni ,−→nj). The Kronecker product vectors belong
in the tensor product of A with itself: A⊗A, hence
ifA has dimension r, these will be of dimensionality
r×r. The point-wise multiplication of these vectors
is defined as follows

−→v �−→w =
∑

i

cai c
b
i
−→ni

The intuition behind having a matrix for a rela-
tional word is that any relation R on sets X and Y ,
i.e. R ⊆ X × Y can be represented as a matrix,
namely one that has as row-bases x ∈ X and as
column-bases y ∈ Y , with weight cxy = 1 where
(x, y) ∈ R and 0 otherwise. In a distributional set-
ting, the weights, which are natural or real numbers,
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will represent more: ‘the extent according to which
x and y are related’. This can be determined in dif-
ferent ways.

Suppose X is the set of animals, and ‘chase’ is a
relation on it: chase ⊆ X × X . Take x = ‘dog’
and y = ‘cat’: with our type-logical glasses on, the
obvious choice would be to take cxy to be the num-
ber of times ‘dog’ has chased ‘cat’, i.e. the number
of times the sentence ‘the dog chases the cat’ has
appeared in the corpus. But in the distributional set-
ting, this method will be too syntactic and dismissive
of the actual meaning of ‘cat’ and ‘dog’. If instead
the corpus contains the sentence ‘the hound hunted
the wild cat’, cxy will be 0, restricting us to only
assign meaning to sentences that have directly ap-
peared in the corpus. We propose to, instead, use a
level of abstraction by taking words such as verbs to
be distributions over the semantic information in the
vectors of their context words, rather than over the
context words themselves.

Start with an r-dimensional vector space N with
basis {−→n i}i, in which meaning vectors of atomic
words, such as nouns, live. The basis vectors of N
are in principle all the words from the corpus, how-
ever in practice and following Mitchell and Lapata
(2008) we had to restrict these to a subset of the
most occurring words. These basis vectors are not
restricted to nouns: they can as well be verbs, adjec-
tives, and adverbs, so that we can define the mean-
ing of a noun in all possible contexts—as is usual
in context-based models—and not only in the con-
text of other nouns. Note that basis words with re-
lational types are treated as pure lexical items rather
than as semantic objects represented as matrices. In
short, we count how many times a noun has occurred
close to words of other syntactic types such as ‘elect’
and ‘scientific’, rather than count how many times it
has occurred close to their corresponding matrices:
it is the lexical tokens that form the context, not their
meaning.

Each relational word P with grammatical type π
and m adjoint types α1, α2, · · · , αm is encoded as
an (r × . . .× r) matrix with m dimensions. Since
our vector space N has a fixed basis, each such ma-

trix is represented in vector form as follows:

−→
P =

∑

ij · · · ζ︸ ︷︷ ︸
m

cij···ζ (−→n i ⊗−→n j ⊗ · · · ⊗ −→n ζ)︸ ︷︷ ︸
m

This vector lives in the tensor space
N ⊗N ⊗ · · · ⊗N︸ ︷︷ ︸

m

. Each cij···ζ is computed

according to the procedure described in Figure 4.

1) Consider a sequence of words containing a re-
lational word ‘P’ and its arguments w1, w2, · · · ,
wm, occurring in the same order as described in
P’s grammatical type π. Refer to these sequences
as ‘P’-relations. Suppose there are k of them.
2) Retrieve the vector −→w l of each argument wl.
3) Suppose w1 has weight c1i on basis vector −→n i,
w2 has weight c2j on basis vector −→n j , · · · , and
wm has weight cmζ on basis vector −→n ζ . Multiply
these weights

c1i × c2j × · · · × cmζ
4) Repeat the above steps for all the k ‘P’-
relations, and suma the corresponding weights

cij···ζ =
∑

k

(
c1i × c2j × · · · × cmζ

)
k

aWe also experimented with multiplication, but the spar-
sity of noun vectors resulted in most verb matrices being
empty.

Figure 4: Procedure for learning weights for matrices of
words ‘P’ with relational types π of m arguments.

Linear algebraically, this procedure corresponds to
computing the following

−→
P =

∑

k

(−→w 1 ⊗−→w 2 ⊗ · · · ⊗ −→wm

)
k

Type-logical examples of relational words are
verbs, adjectives, and adverbs. A transitive verb is
represented as a 2 dimensional matrix since its type
is nrsnl with two adjoint types nr and nl. The cor-
responding vector of this matrix is

−−→
verb =

∑

ij

cij (−→n i ⊗−→n j)
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The weight cij corresponding to basis vector−→n i⊗−→n j , is the extent according to which words that have
co-occurred with −→n i have been the subject of the
‘verb’ and words that have co-occurred with −→n j

have been the object of the ‘verb’. This example
computation is demonstrated in Figure 5.

1) Consider phrases containing ‘verb’, its subject
w1 and object w2. Suppose there are k of them.
2) Retrieve vectors −→w 1 and −→w 2.
3) Suppose −→w 1 has weight c1i on −→n i and −→w 2 has
c2j on −→n j . Multiply these weights c1i × c2j .
4) Repeat the above steps for all k ‘verb’-
relations and sum the corresponding weights∑

k(c
1
i × c2j )k

Figure 5: Procedure for learning weights for matrices of
transitive verbs.

Linear algebraically, we are computing

−−→
verb =

∑

k

(−→w 1 ⊗−→w 2

)
k

As an example, consider the verb ‘show’ and sup-
pose there are two ‘show’-relations in the corpus:

s1 = table show result
s2 = map show location

The vector of ‘show’ is

−−→
show =

−−→
table⊗−−−→result + −−→map⊗−−−−→location

Consider an N space with four basis vectors ‘far’,
‘room’, ‘scientific’, and ‘elect’. The TF/IDF-
weighted values for vectors of the above four nouns
(built from the BNC) are as shown in Table 1.

i −→ni table map result location
1 far 6.6 5.6 7 5.9
2 room 27 7.4 0.99 7.3
3 scientific 0 5.4 13 6.1
4 elect 0 0 4.2 0

Table 1: Sample weights for selected noun vectors.

Part of the matrix of ‘show’ is presented in Table 2.

As a sample computation, the weight c11 for
vector (1, 1), i.e. (

−→
far,
−→
far) is computed by multiply-

ing weights of ‘table’ and ‘result’ on
−→
far, i.e. 6.6×7,

far room scientific elect
far 79.24 47.41 119.96 27.72

room 232.66 80.75 396.14 113.2
scientific 32.94 31.86 32.94 0

elect 0 0 0 0

Table 2: Sample semantic matrix for ‘show’.

multiplying weights of ‘map’ and ‘location’ on
−→
far,

i.e. 5.6 × 5.9 then adding these 46.2 + 33.04 and
obtaining the total weight 79.24.

The same method is applied to build matrices for di-
transitive verbs, which will have 3 dimensions, and
adjectives and adverbs, which will be of 1 dimension
each.

5 Computing Sentence Vectors

Meaning of sentences are vectors computed by tak-
ing the variables of the categorical prescription of
meaning (the linear map f obtained from the gram-
matical reduction of the sentence) to be determined
by the matrices of the relational words. For instance
the meaning of the transitive sentence ‘sub verb obj’
is:

−−−−−−−−→
sub verb obj =

∑

itj

〈−→sub | −→v i〉〈−→w j |
−→
obj〉 citj−→s t

We take V := W := N and S = N ⊗ N , then∑
itj citj

−→s t is determined by the matrix of the verb,
i.e. substitute it by

∑
ij cij(

−→n i ⊗ −→n j)
4. Hence

−−−−−−−−→
sub verb obj becomes:
∑

ij

〈−→sub | −→n i〉〈−→n j |
−→
obj〉cij(−→n i ⊗−→n j) =

∑

ij

csubi cobjj cij(
−→n i ⊗−→n j)

This can be decomposed to point-wise multiplica-
tion of two vectors as follows:
(∑

ij

csubi cobjj (−→n i⊗−→n j)
)
�
(∑

ij

cij(
−→n i⊗−→n j)

)

4Note that by doing so we are also reducing the verb space
from N ⊗ (N ⊗N)⊗N to N ⊗N , since for our construction
we only need tuples of the form −→n i ⊗−→n i ⊗−→n j ⊗−→n j which
are isomorphic to pairs (−→n i ⊗−→n j).
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The left argument is the Kronecker product of sub-
ject and object vectors and the right argument is the
vector of the verb, so we obtain

(−→
sub⊗−→obj

)
�−−→verb

Since � is commutative, this provides us with a dis-
tributional version of the type-logical meaning of the
sentence: point-wise multiplication of the meaning
of the verb to the Kronecker product of its subject
and object:

−−−−−−−−→
sub verb obj =

−−→
verb�

(−→
sub⊗−→obj

)

This mathematical operation can be informally de-
scribed as a structured ‘mixing’ of the information
of the subject and object, followed by it being ‘fil-
tered’ through the information of the verb applied
to them, in order to produce the information of the
sentence.

In the transitive case, S = N ⊗ N , hence −→s t =
−→n i ⊗ −→n j . More generally, the vector space cor-
responding to the abstract sentence space S is the
concrete tensor space (N ⊗ . . .⊗N) for m the di-
mension of the matrix of the ‘verb’. As we have
seen above, in practice we do not need to build this
tensor space, as the computations thereof reduce to
point-wise multiplications and summations.

Similar computations yield meanings of sentences
with adjectives and adverbs. For instance the mean-
ing of a transitive sentence with a modified subject
and a modified verb we have
−−−−−−−−−−−−−→
adj sub verb obj adv =
(−→

adv�−−→verb
)
�
((−→

adj�−→sub
)
⊗−→obj

)

After building vectors for sentences, we can com-
pare their meaning and measure their degree of syn-
onymy by taking their cosine measure.

6 Evaluation

Evaluating such a framework is no easy task. What
to evaluate depends heavily on what sort of applica-
tion a practical instantiation of the model is geared
towards. In (Grefenstette et al., 2011), it is sug-
gested that the simplified model we presented and
expanded here could be evaluated in the same way as
lexical semantic models, measuring compositionally

built sentence vectors against a benchmark dataset
such as that provided by Mitchell and Lapata (2008).
In this section, we briefly describe the evaluation of
our model against this dataset. Following this, we
present a new evaluation task extending the experi-
mental methodology of Mitchell and Lapata (2008)
to transitive verb-centric sentences, and compare our
model to those discussed by Mitchell and Lapata
(2008) within this new experiment.

First Dataset Description The first experiment,
described in detail by Mitchell and Lapata (2008),
evaluates how well compositional models disam-
biguate ambiguous words given the context of a po-
tentially disambiguating noun. Each entry of the
dataset provides a noun, a target verb and landmark
verb (both intransitive). The noun must be com-
posed with both verbs to produce short phrase vec-
tors the similarity of which is measured by the can-
didate. Also provided with each entry is a classifi-
cation (“High” or “Low”) indicating whether or not
the verbs are indeed semantically close within the
context of the noun, as well as an evaluator-set simi-
larity score between 1 and 7 (along with an evaluator
identifier), where 1 is low similarity and 7 is high.

Evaluation Methodology Candidate models pro-
vide a similarity score for each entry. The scores
of high similarity entries and low similarity entries
are averaged to produce a mean High score and
mean Low score for the model. The correlation of
the model’s similarity judgements with the human
judgements is also calculated using Spearman’s ρ, a
metric which is deemed to be more scrupulous, and
ultimately that by which models should be ranked,
by Mitchell and Lapata (2008). The mean for each
model is on a [0, 1] scale, except for UpperBound
which is on the same [1, 7] scale the annotators used.
The ρ scores are on a [−1, 1] scale. It is assumed
that inter-annotator agreement provides the theoret-
ical maximum ρ for any model for this experiment.
The cosine measure of the verb vectors, ignoring the
noun, is taken to be the baseline (no composition).

Other Models The other models we compare
ours to are those evaluated by Mitchell and Lap-
ata (2008). We provide a selection of the results
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from that paper for the worst (Add) and best5 (Mul-
tiply) performing models, as well as the previous
second-best performing model (Kintsch). The ad-
ditive and multiplicative models are simply applica-
tions of vector addition and component-wise multi-
plication. We invite the reader to consult (Mitchell
and Lapata, 2008) for the description of Kintsch’s
additive model and parametric choices.

Model Parameters To provide the most accurate
comparison with the existing multiplicative model,
and exploiting the aforementioned feature that the
categorical model can be built “on top of” existing
lexical distributional models, we used the parame-
ters described by Mitchell and Lapata (2008) to re-
produce the vectors evaluated in the original exper-
iment as our noun vectors. All vectors were built
from a lemmatised version of the BNC. The noun
basis was the 2000 most common context words,
basis weights were the probability of context words
given the target word divided by the overall proba-
bility of the context word. Intransitive verb function-
vectors were trained using the procedure presented
in §4. Since the dataset only contains intransitive
verbs and nouns, we used S = N . The cosine mea-
sure of vectors was used as a similarity metric.

First Experiment Results In Table 3 we present
the comparison of the selected models. Our categor-
ical model performs significantly better than the ex-
isting second-place (Kintsch) and obtains a ρ quasi-
identical to the multiplicative model, indicating sig-
nificant correlation with the annotator scores.

There is not a large difference between the mean
High score and mean Low score, but the distri-
bution in Figure 6 shows that our model makes a
non-negligible distinction between high similarity
phrases and low similarity phrases, despite the ab-
solute scores not being different by more than a few
percentiles.

5The multiplicative model presented here is what is quali-
fied as best in (Mitchell and Lapata, 2008). However, they also
present a slightly better performing (ρ = 0.19) model which
is a combination of their multiplicative model and a weighted
additive model. The difference in ρ is qualified as “not sta-
tistically significant” in the original paper, and furthermore the
mixed model requires parametric optimisation hence was not
evaluated against the entire test set. For these reasons, we chose
not to include it in the comparison.

Model High Low ρ

Baseline 0.27 0.26 0.08
Add 0.59 0.59 0.04
Kintsch 0.47 0.45 0.09
Multiply 0.42 0.28 0.17
Categorical 0.84 0.79 0.17
UpperBound 4.94 3.25 0.40

Table 3: Selected model means for High and Low similar-
ity items and correlation coefficients with human judge-
ments, first experiment (Mitchell and Lapata, 2008). p <
0.05 for each ρ.

High Low
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6: Distribution of predicted similarities for the cat-
egorical distributional model on High and Low similarity
items.

Second Dataset Description The second dataset6,
developed by the authors, follows the format of the
(Mitchell and Lapata, 2008) dataset used for the first
experiment, with the exception that the target and
landmark verbs are transitive, and an object noun
is provided in addition to the subject noun, hence
forming a small transitive sentence. The dataset
comprises 200 entries consisting of sentence pairs
(hence a total of 400 sentences) constructed by fol-
lowing the procedure outlined in §4 of (Mitchell and
Lapata, 2008), using transitive verbs from CELEX7.
For examples of these sentences, see Table 4. The
dataset was split into four sections of 100 entries
each, with guaranteed 50% exclusive overlap with

6http://www.cs.ox.ac.uk/activities/CompD
istMeaning/GS2011data.txt

7http://celex.mpi.nl/
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exactly two other datasets. Each section was given
to a group of evaluators, with a total of 25, who were
asked to form simple transitive sentence pairs from
the verbs, subject and object provided in each entry;
for instance ‘the table showed the result’ from ‘table
show result’. The evaluators were then asked to rate
the semantic similarity of each verb pair within the
context of those sentences, and offer a score between
1 and 7 for each entry. Each entry was given an arbi-
trary classification of HIGH or LOW by the authors,
for the purpose of calculating mean high/low scores
for each model. For example, the first two pairs in
table 4 were classified as HIGH, whereas the second
two pairs as LOW.

Sentence 1 Sentence 2
table show result table express result

map show location map picture location
table show result table picture result

map show location map express location

Table 4: Example entries from the transitive dataset with-
out annotator score, second experiment.

Evaluation Methodology The evaluation
methodology for the second experiment was
identical to that of the first, as are the scales for
means and scores. Here also, Spearman’s ρ is
deemed a more rigorous way of determining how
well a model tracks difference in meaning. This is
both because of the imprecise nature of the classifi-
cation of verb pairs as HIGH or LOW; and since the
objective similarity scores produced by a model that
distinguishes sentences of different meaning from
those of similar meaning can be renormalised in
practice. Therefore the delta between HIGH means
and LOW mean cannot serve as a definite indication
of the practical applicability (or lack thereof) of
semantic models; the means are provided just to aid
comparison with the results of the first experiment.

Model Parameters As in the first experiment, the
lexical vectors from (Mitchell and Lapata, 2008)
were used for the other models evaluated (additive,
multiplicative and baseline)8 and for the noun vec-

8Kintsch was not evaluated as it required optimising model
parameters against a held-out segment of the test set, and we
could not replicate the methodology of Mitchell and Lapata

tors of our categorical model. Transitive verb vec-
tors were trained as described in §4 with S = N⊗N .

Second Experiment Results The results for the
models evaluated against the second dataset are pre-
sented in Table 5.

Model High Low ρ

Baseline 0.47 0.44 0.16
Add 0.90 0.90 0.05
Multiply 0.67 0.59 0.17
Categorical 0.73 0.72 0.21
UpperBound 4.80 2.49 0.62

Table 5: Selected model means for High and Low similar-
ity items and correlation coefficients with human judge-
ments, second experiment. p < 0.05 for each ρ.

We observe a significant (according to p < 0.0.5)
improvement in the alignment of our categorical
model with the human judgements, from 0.17 to
0.21. The additive model continues to make lit-
tle distinction between senses of the verb during
composition, and the multiplicative model’s align-
ment does not change, but becomes statistically in-
distinguishable from the non-compositional baseline
model.

Once again we note that the high-low means are
not very indicative of model performance, as the dif-
ference between high mean and the low mean of the
categorical model is much smaller than that of the
both the baseline model and multiplicative model,
despite better alignment with annotator judgements.

7 Discussion

In this paper, we described an implementation of the
categorical model of meaning (Coecke et al., 2010),
which combines the formal logical and the empiri-
cal distributional frameworks into a unified seman-
tic model. The implementation is based on build-
ing matrices for words with relational types (ad-
jectives, verbs), and vectors for words with atomic
types (nouns), based on data from the BNC. We
then show how to apply verbs to their subject/object,
in order to compute the meaning of intransitive and
transitive sentences.

(2008) with full confidence.
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Other work uses matrices to model meaning (Ba-
roni and Zamparelli, 2010; Guevara, 2010), but only
for adjective-noun phrases. Our approach easily ap-
plies to such compositions, as well as to sentences
containing combinations of adjectives, nouns, verbs,
and adverbs. The other key difference is that they
learn their matrices in a top-down fashion, i.e. by re-
gression from the composite adjective-noun context
vectors, whereas our model is bottom-up: it learns
sentence/phrase meaning compositionally from the
vectors of the compartments of the composites. Fi-
nally, very similar functions, for example a verb with
argument alternations such as ‘break’ in ‘Y breaks’
and ‘X breaks Y’, are not treated as unrelated. The
matrix of the intransitive ‘break’ uses the corpus-
observed information about the subject of break, in-
cluding that of ‘Y’, similarly the matrix of the tran-
sitive ‘break’ uses information about its subject and
object, including that of ‘X’ and ‘Y’. We leave a
thorough study of these phenomena, which fall un-
der providing a modular representation of passive-
active similarities, to future work.

We evaluated our model in two ways: first against
the word disambiguation task of Mitchell and Lap-
ata (2008) for intransitive verbs, and then against a
similar new experiment for transitive verbs, which
we developed.

Our findings in the first experiment show that
the categorical method performs on par with the
leading existing approaches. This should not sur-
prise us given that the context is so small and our
method becomes similar to the multiplicative model
of Mitchell and Lapata (2008). However, our ap-
proach is sensitive to grammatical structure, lead-
ing us to develop a second experiment taking this
into account and differentiating it from models with
commutative composition operations.

The second experiment’s results deliver the ex-
pected qualitative difference between models, with
our categorical model outperforming the others and
showing an increase in alignment with human judge-
ments in correlation with the increase in sentence
complexity. We use this second evaluation princi-
pally to show that there is a strong case for the devel-
opment of more complex experiments measuring not
only the disambiguating qualities of compositional
models, but also their syntactic sensitivity, which is
not directly measured in the existing experiments.

These results show that the high level categori-
cal distributional model, uniting empirical data with
logical form, can be implemented just like any other
concrete model. Furthermore it shows better results
in experiments involving higher syntactic complex-
ity. This is just the tip of the iceberg: the mathe-
matics underlying the implementation ensures that
it uniformly scales to larger, more complicated sen-
tences and enables it to compare synonymity of sen-
tences that are of different grammatical structure.

8 Future Work

Treatment of function words such as ‘that’, ‘who’,
as well as logical words such as quantifiers and con-
junctives are left to future work. This will build
alongside the general guidelines of Coecke et al.
(2010) and concrete insights from the work of Wid-
dows (2005). It is not yet entirely clear how ex-
isting set-theoretic approaches, for example that of
discourse representation and generalised quantifiers,
apply to our setting. Preliminary work on integration
of the two has been presented by Preller (2007) and
more recently also by Preller and Sadrzadeh ( 2009).

As mentioned by one of the reviewers, our pre-
group approach to grammar flattens the sentence
representation, in that the verb is applied to its sub-
ject and object at the same time; whereas in other
approaches such as CCG, it is first applied to the
object to produce a verb phrase, then applied to the
subject to produce the sentence. The advantages and
disadvantages of this method and comparisons with
other systems, in particular CCG, constitutes ongo-
ing work.
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Abstract

Context-dependent word similarity can be
measured over multiple cross-cutting dimen-
sions. For example, lung and breath are sim-
ilar thematically, while authoritative and su-
perficial occur in similar syntactic contexts,
but share little semantic similarity. Both of
these notions of similarity play a role in deter-
mining word meaning, and hence lexical se-
mantic models must take them both into ac-
count. Towards this end, we develop a novel
model, Multi-View Mixture (MVM), that rep-
resents words as multiple overlapping clus-
terings. MVM finds multiple data partitions
based on different subsets of features, sub-
ject to the marginal constraint that feature sub-
sets are distributed according to Latent Dirich-
let Allocation. Intuitively, this constraint fa-
vors feature partitions that have coherent top-
ical semantics. Furthermore, MVM uses soft
feature assignment, hence the contribution of
each data point to each clustering view is vari-
able, isolating the impact of data only to views
where they assign the most features. Through
a series of experiments, we demonstrate the
utility of MVM as an inductive bias for captur-
ing relations between words that are intuitive
to humans, outperforming related models such
as Latent Dirichlet Allocation.

1 Introduction

Humans categorize objects using multiple orthogo-
nal taxonomic systems, where category generaliza-
tion depends critically on what features are relevant
to one particular system. For example, foods can be
organized in terms of their nutritional value (high in
fiber) or situationally (commonly eaten for Thanks-

giving; Shafto et al. (2006)). Human knowledge-
bases such as Wikipedia also exhibit such multiple
clustering structure (e.g. people are organized by oc-
cupation or by nationality). The effects of these
overlapping categorization systems manifest them-
selves at the lexical semantic level (Murphy, 2002),
implying that lexicographical word senses and tra-
ditional computational models of word-sense based
on clustering or exemplar activation are too impov-
erished to capture the rich dynamics of word usage.

In this work, we introduce a novel probabilis-
tic clustering method, Multi-View Mixture (MVM),
based on cross-cutting categorization (Shafto et al.,
2006) that generalizes traditional vector-space or
distributional models of lexical semantics (Curran,
2004; Padó and Lapata, 2007; Schütze, 1998; Tur-
ney, 2006). Cross-cutting categorization finds multi-
ple feature subsets (categorization systems) that pro-
duce high quality clusterings of the data. For exam-
ple words might be clustered based on their part of
speech, or based on their thematic usage. Context-
dependent variation in word usage can be accounted
for by leveraging multiple latent categorization sys-
tems. In particular, cross-cutting models can be used
to capture both syntagmatic and paradigmatic no-
tions of word relatedness, breaking up word features
into multiple categorization systems and then com-
puting similarity separately for each system.

MVM leverages primitives from Dirichlet-Process
Mixture Models (DPMMs) and Latent Dirichlet Al-
location (LDA). Each clustering (view) in MVM con-
sists of a distribution over features and data and
views are further subdivided into clusters based on a
DPMM. View marginal distributions are determined
by LDA, allowing data features to be distributed over
multiple views, explaining subsets of features.
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We evaluate MVM against several other model-
based clustering procedures in a series of human
evaluation tasks, measuring its ability to find mean-
ingful syntagmatic and paradigmatic structure. We
find that MVM finds more semantically and syntac-
tically coherent fine-grained structure, using both
common and rare n-gram contexts.

2 Mixture Modeling and Lexical
Semantics

Distributional, or vector space methods attempt to
model word meaning by embedding words in a com-
mon metric space, whose dimensions are derived
from, e.g., word collocations (Schütze, 1998), syn-
tactic relations (Padó and Lapata, 2007), or latent
semantic spaces (Finkelstein et al., 2001; Landauer
and Dumais, 1997; Turian et al., 2010). The distribu-
tional hypothesis addresses the problem of modeling
word similarity (Curran, 2004; Miller and Charles,
1991; Schütze, 1998; Turney, 2006), and can be ex-
tended to selectional preference (Resnik, 1997) and
lexical substitution (McCarthy and Navigli, 2007) as
well. Such methods are highly scalable (Gorman
and Curran, 2006) and have been applied in infor-
mation retrieval (Manning et al., 2008), large-scale
taxonomy induction (Snow et al., 2006), and knowl-
edge acquisition (Van Durme and Paşca, 2008).

Vector space models fail to capture the richness
of word meaning since similarity is not a globally
consistent metric. It violates, e.g., the triangle in-
equality: the sum of distances from bat to club and
club to association is less than the distance from bat
to association (Griffiths et al., 2007; Tversky and
Gati, 1982).1 Erk (2007) circumvents this problem
by representing words as multiple exemplars derived
directly from word occurrences and embedded in a
common vector space to capture context-dependent
usage. Likewise Reisinger and Mooney (2010) take
a similar approach using mixture modeling com-
bined with a background variation model to generate
multiple prototype vectors for polysemous words.

Both of these approaches still ultimately embed
all words in a single metric space and hence argue
for globally consistent metrics that capture human

1Similarity also has been shown to violate symmetry (e.g.
people have the intuition that China is more similar to North
Korea than North Korea is to China).

intuitive notions of “similarity.” Rather than assum-
ing a global metric embedding exists, in this work
we simply leverage the cluster assumption, e.g. that
similar words should appear in the same clusters, in
particular extending it to multiple clusterings. The
cluster assumption is a natural fit for lexical seman-
tics, as partitions can account for metric violations.
The end result is a model capable of representing
multiple, overlapping similarity metrics that result
in disparate valid clusterings leveraging the

Subspace Hypothesis: For any pair of
words, the set of “active” features govern-
ing their apparent similarity differs. For
example wine and bottle are similar and
wine and vinegar are similar, but it would
not be reasonable to expect that the fea-
tures governing such similarity computa-
tions to overlap much, despite occurring
in similar documents.

MVM can extract multiple competing notions of sim-
ilarity, for example both paradigmatic, or thematic
similarity, and syntagmatic or syntactic similarity, in
addition to more fine grained relations.

3 Multi-View Clustering with MVM

As feature dimensionality increases, the number of
ways the data can exhibit interesting structure goes
up exponentially. Clustering is commonly used to
explain data, but often there are several equally
valid, competing clusterings, keying off of different
subsets of features, especially in high-dimensional
settings such as text mining (Niu et al., 2010). For
example, company websites can be clustered by sec-
tor or by geographic location, with one particular
clustering becoming predominant when a majority
of features correlate with it. In fact, informative fea-
tures in one clustering may be noise in another, e.g.
the occurrence of CEO is not necessarily discrimi-
native when clustering companies by industry sec-
tor, but may be useful in other clusterings. Multi-
ple clustering is one approach to inferring feature
subspaces that lead to high quality data partitions.
Multiple clustering also improves the flexibility of
generative clustering models, as a single model is
no longer required to explain all the variance in the
feature dimensions (Mansinghka et al., 2009).
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results for ___
the latest ___

to buy ___

brand new ___
selection of ___

___ for sale

Figure 1: Example clusterings from MVM applied to
Google n-gram data. Top contexts (features) for each
view are shown, along with examples of word clusters.
Although these particular examples are interpretable, in
general the relationship captured by the view’s context
subspace is not easily summarized.

MVM is a multinomial-Dirichlet multiple clus-
tering procedure for distributional lexical seman-
tics that fits multiple, overlapping Dirichlet Process
Mixture Models (DPMM) to a set of word data. Fea-
tures are distributed across the set of clusterings
(views) using LDA, and each DPMM is fit using a
subset of the features. This reduces clustering noise
and allows MVM to capture multiple ways in which
the data can be partitioned. Figure 1 shows a sim-
ple example, and Figure 2 shows a larger sample of
feature-view assignments from a 3-view MVM fit to
contexts drawn from the Google n-gram corpus.

We implement MVM using generative model
primitives drawn from Latent Dirichlet Allocation
(LDA) and the Dirichlet Process (DP). |M | disparate
clusterings (views) are inferred jointly from a set of
data D � twd|d P r1 . . . Dsu. Each data vector
wd is associated with a probability distribution over
views θ|M |

d . Empirically, θ|M |
d is represented as a

set of feature-view assignments zd, sampled via the
standard LDA collapsed Gibbs sampler. Hence, each
view maintains a separate distribution over features.
The generative model for feature-view assignment is

given by

θ
|M |
d |α � Dirichletpαq, d P D,
φm|β � Dirichletpβq, m P |M |,
zdn|θd � Discretepθdq, n P |wd|,
wdn|φzdnm

� Discretepφzdnm
q, n P |wd|,

where α and β are hyperparameters smoothing the
per-document topic distributions and per-topic word
distributions respectively.

Conditional on the feature-view assignment tzu,
a clustering is inferred for each view using the Chi-
nese Restaurant Process representation of the DP.
The clustering probability is given by

ppc|z,wq 9 pptcmu, z,wq

�
M¹

m�1

|D|¹

d�1

ppw
rz�ms
d |cm, zqppcm|zq.

where ppcm|zq is a prior on the clustering for view
m, i.e. the DPMM, and ppwrz�ms

d |cm, zq is the like-
lihood of the clustering cm given the data point wd

restricted to the features assigned to view m:

w
rz�ms
d

def
� twid|zid � mu.

Thus, we treat them clusterings cm as conditionally
independent given the feature-view assignments.

The feature-view assignments tzu act as a set of
marginal constraints on the multiple clusterings, and
the impact that each data point can have on each
clustering is limited by the number of features as-
signed to it. For example, in a two-view model,
zid � 1 might be set for all syntactic features (yield-
ing a syntagmatic clustering) while zid � 2 is set for
document features (paradigmatic clustering).

By allowing the clustering model capacity to vary
via the DPMM, MVM can naturally account for the
semantic variance of the view. This provides a novel
mechanism for handling feature noise: noisy fea-
tures can be assigned to a separate view with poten-
tially a small number of clusters. This phenomenon
is apparent in cluster 1, view 1 in the example in
figure 2, where place names and adjectives are clus-
tered together using rare contexts

From a topic modeling perspective, MVM finds
topic refinements within each view, similar to hier-
archical methods such as the nested Chinese Restau-
rant Process (Blei et al., 2003). The main differ-
ence is that the features assigned to the second “re-
fined topics” level are constrained by the higher
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Figure 2: Topics with Senses: Shows top 20% of features for each view in a 3-view MVM fit to Google n-gram context
data; different views place different mass on different sets of features. Cluster groupings within each view are shown.
View 1 cluster 2 and View 3 cluster 1 both contain past-tense verbs, but only overlap on a subset of syntactic features.
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level, similar to hierarchical clustering. Unlike hi-
erarchical clustering, however, the top level top-
ics/views form an admixture, allowing individual
features from a single data point to be assigned to
multiple views.

The most similar model to ours is Cross-cutting
categorization (CCC), which fits multiple DPMMs to
non-overlapping partitions of features (Mansinghka
et al., 2009; Shafto et al., 2006). Unlike MVM,
CCC partitions features among multiple DPMMs,
hence all occurrences of a particular feature will
end up in a single clustering, instead of assigning
them softly using LDA. Such hard feature partition-
ing does not admit an efficient sampling procedure,
and hence Shafto et al. (2006) rely on Metropolis-
Hastings steps to perform feature assignment, mak-
ing the model less scalable.

3.1 Word Representation
MVM is trained as a lexical semantic model on
Web-scale n-gram and semantic context data. N-
gram contexts are drawn from a combination of the
Google n-gram and Google books n-gram corpora,
with the head word removed: e.g. for the term ar-
chitect, we collect contexts such as the of the
house, an is a, and the of the universe. Se-
mantic contexts are derived from word occurrence
in Wikipedia documents: each document a word ap-
pears in is added as a potential feature for that word.
This co-occurrence matrix is the transpose of the
standard bag-of-words document representation.

In this paper we focus on two representations:

1. Syntax-only – Words are represented as bags
of ngram contexts derived slot-filling procedure
described above.

2. Syntax+Documents – The syntax-only repre-
sentation is augmented with additional docu-
ment contexts drawn from Wikipedia.

Models trained on the syntax-only set are only ca-
pable of capturing syntagmatic similarity relations,
that is, words that tend to appear in similar contexts.
In contrast, the syntax+documents set broadens the
scope of modelable similarity relations, allowing for
paradigmatic similarity (e.g. words that are topically
related, but do not necessarily share common syntac-
tic contexts).

Given such word representation data, MVM gener-
ates a fixed set of M context views corresponding to
dominant eigenvectors in local syntactic or seman-
tic space. Within each view, MVM partitions words
into clusters based on each word’s local representa-
tion in that view; that is, based on the set of con-
text features it allocates to the view. Words have a
non-uniform affinity for each view, and hence may
not be present in every clustering (Figure 2). This
is important as different ways of drawing distinc-
tions between words do not necessarily apply to all
words. In contrast, LDA finds locally consistent col-
lections of contexts but does not further subdivide
words into clusters given that set of contexts. Hence,
it may miss more fine-grained structure, even with
increased model complexity.

4 Experimental Setup

4.1 Corpora

We derive word features from three corpora: (1) the
English Google Web n-gram corpus, containing n-
gram contexts up to 5-gram that occur more than 40
times in a 1T word corpus of Web text, (2) the En-
glish Google Books n-gram corpus2, consisting of
n-gram contexts up to 5-gram that occur more than
40 times in a 500B word corpus of books, and (3) a
snapshot of the English Wikipedia3 taken on Octo-
ber 11, 2010 containing over 3M articles.

MVM is trained on a sample of 20k English words
drawn uniformly at random from the top 200k En-
glish terms appearing in Wikipedia (different parts
of speech were sampled from the Google n-gram
corpus according to their observed frequency). Two
versions of the syntax-only dataset are created from
different subsets of the Google n-gram corpora: (1)
the common subset contains all syntactic contexts
appearing more than 200 times in the combined cor-
pus, and (2) the rare subset, containing only contexts
that appear 50 times or fewer.

4.2 Human Evaluation

Our main goal in this work is to find models that
capture aspects of the syntactic and semantic orga-
nization of word in text that are intuitive to humans.

2http://ngrams.googlelabs.com/datasets
3http://wikipedia.org
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Context Intrusion

is characterized top of the country to
symptoms of of understood or less
cases of along the a year
in cases of portion of the per day
real estate in side of the or more

Word Intrusion

metal dues humor
floral premiums ingenuity
nylon pensions advertisers
what did delight
ruby damages astonishment

Document Intrusion

Puerto Rican cuisine Adolf Hitler History of the Han Dynasty
Greek cuisine List of General Hospital characters Romance of the Three Kingdoms
ThinkPad History of France List of dog diseases
Palestinian cuisine Joachim von Ribbentrop Conquest of Wu by Jin
Field ration World War I Mongolia

Table 1: Example questions from the three intrusion tasks, in order of difficulty (left to right, easy to hard; computed
from inter-annotator agreement). Italics show intruder items.

According to the use theory of meaning, lexical se-
mantic knowledge is equivalent to knowing the con-
texts that words appear in, and hence being able to
form reasonable hypotheses about the relatedness of
syntactic contexts.

Vector space models are commonly evaluated by
comparing their similarity predictions to a nom-
inal set of human similarity judgments (Curran,
2004; Padó and Lapata, 2007; Schütze, 1998; Tur-
ney, 2006). In this work, since we are evaluating
models that potentially yield many different simi-
larity scores, we take a different approach, scoring
clusters on their semantic and syntactic coherence
using a set intrusion task (Chang et al., 2009).

In set intrusion, human raters are shown a set of
options from a coherent group and asked to identify
a single intruder drawn from a different group. We
extend intrusion to three different lexical semantic
tasks: (1) context intrusion, where the top contexts
from each cluster are used, (3) document intrusion,
where the top document contexts from each clus-
ter are used, and (2) word intrusion, where the top
words from each cluster are used. For each clus-
ter, the top four contexts/words are selected and ap-
pended with another context/word from a different
cluster.4 The resulting set is then shuffled, and the
human raters are asked to identify the intruder, af-

4Choosing four elements from the cluster uniformly at ran-
dom instead of the top by probability led to lower performance
across all models.

ter being given a short introduction (with common
examples) to the task. Table 1 shows sample ques-
tions of varying degrees of difficulty. As the seman-
tic coherence and distinctness from other clusters in-
creases, this task becomes easier.

Set intrusion is a more robust way to account for
human similarity judgments than asking directly for
a numeric score (e.g., the Miller and Charles (1991)
set) as less calibration is required across raters. Fur-
thermore, the additional cluster context significantly
reduces the variability of responses.

Human raters were recruited from Amazon’s Me-
chanical Turk. A total of 1256 raters completed
30438 evaluations for 5780 unique intrusion tasks
(5 evaluations per task). 2736 potentially fraudulent
evaluations from 11 raters were rejected.5 Table 3
summarizes inter-annotator agreement. Overall we
found κ � 0.4 for most tasks; a set of comments
about the task difficulty is given in Table 2, drawn
from an anonymous public message board.

5 Results

We trained DPMM, LDA and MVM models
on the syntax-only and syntax+documents
data across a wide range of settings for M P
t3, 5, 7, 10, 20, 30, 50, 100, 200, 300, 500, 1000u,6

5(Rater Quality) Fraudulent Turkers were identified using
a combination of average answer time, answer entropy, average
agreement with other raters, and adjusted answer accuracy.

6LDA is run on a different range of M settings from MVM

(50-1000 vs 3-100) in order to keep the effective number of
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(c) Syntax+Documents, common n-gram contexts.

Figure 3: Average scores for each model broken down by parameterization and data source. Error bars depict 95%
confidence intervals. X-axis labels show Model-views-α-β. Dots show average rater scores; bar-charts show standard
quantile ranges and median score.
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U1 I just tried 30 of the what doesn’t belong ones.
They took about 30 seconds each due to think-
ing time so not worth it for me.

U2 I don’t understand the fill in the blank ones to
be honest. I just kinda pick one,since I don’t
know what’s expected lol

U3 Your not filling in the blank just ignore the
blank and think about how the words they show
relate to each other and choose the one that
relates least. Some have just words and no
blanks.

U4 These seem very subjective to mw. i hope
there isn’t definite correct answers because
some of them make me go [emoticon of head-
scratching]

U5 I looked and have no idea. I guess I’m a word
idiot because I don’t see the relation between
the words in the preview HIT - too scared to try
any of these.

U6 I didn’t dive in but I did more than I should have
they were just too easy. Most of them I could
tell what did not belong, some were pretty iffy
though.

Table 2: Sample of comments about the task taken verba-
tim from a public Mechanical Turk user message board
(TurkerNation). Overall the raters report the task to be
difficult, but engaging.

α P t0.1, 0.01u, and β P t0.1, 0.05, 0.01u in
order to understand how they perform relatively
on the intrusion tasks and also how sensitive they
are to various parameter settings.7 Models were
run until convergence, defined as no increase in
log-likelihood on the training set for 100 Gibbs
samples. Average runtimes varied from a few hours
to a few days, depending on the number of clusters
or topics. There is little computational overhead
for MVM compared to LDA or DPMM with a similar
number of clusters.

Overall, MVM significantly outperforms both LDA

and DPMM (measured as % of intruders correctly
identified) as the number of clusters increases.
Coarse-grained lexical semantic distinctions are
easy for humans to make, and hence models with
fewer clusters tend to outperform models with more
clusters. Since high granularity predictions are more

clusters (and hence model capacity) roughly comparable.
7We did not compare directly to Cross-cutting categoriza-

tion, as the Metropolis-Hasting steps required that model were
too prohibitively expensive to scale to the Google n-gram data.
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Figure 4: Scatterplot of model size vs. avg score for MVM
(dashed, purple) and LDA (dotted, orange).

useful for downstream tasks, we focus on the inter-
play between model complexity and performance.

5.1 Syntax-only Model

For common n-gram context features, MVM perfor-
mance is significantly less variable than LDA on both
the word intrusion and context intrusion tasks, and
furthermore significantly outperforms DPMM (Fig-
ure 3(a)). For context intrusion, DPMM, LDA, and
MVM average 57.4%, 49.5% and 64.5% accuracy
respectively; for word intrusion, DPMM, LDA, and
MVM average 66.7%, 66.1% and 73.6% accuracy
respectively (averaged over all parameter settings).
These models vary significantly in the average num-
ber of clusters used: 373.5 for DPMM, 358.3 for LDA

and 639.8 for MVM, i.e. the MVM model is signifi-
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Model Syntax Syntax+Documents Overall

DPMM 0.30 0.40 0.33
LDA 0.33 0.39 0.35
MVM 0.44 0.49 0.46
Overall 0.37 0.43 0.39

Table 3: Fleiss’ κ scores for various model and data com-
binations. Results from MVM have higher κ scores than
LDA or DPMM; likewise Syntax+Documents data yields
higher agreement, primarily due to the relative ease of the
document intrusion task.

cantly more granular. Figure 4(a) breaks out model
performance by model complexity, demonstrating
that MVM has a significant edge over LDA as model
complexity increases.

For rare n-gram contexts, we obtain similar re-
sults, with MVM scores being less variable across
model parameterizations and complexity (Figure
3(b)). In general, LDA performance degrades faster
as model complexity increases for rare contexts, due
to the increased data sparsity (Figure 4(b)). For
context intrusion, DPMM, LDA, and MVM average
45.9%, 36.1% and 50.9% accuracy respectively;
for word intrusion, DPMM, LDA, and MVM aver-
age 67.4%, 45.6% and 67.9% accuracy; MVM per-
formance does not differ significantly from DPMM,
but both outperform LDA. Average cluster sizes are
more uniform across model types for rare contexts:
384.0 for DPMM, 358.3 for LDA and 391 for MVM.

Human performance on the context intrusion task
is significantly more variable than on the word-
intrusion task, reflecting the additional complexity.

In all models, there is a high correlation between
rater scores and per-cluster likelihood, indicating
that model confidence reflects noise in the data.

5.2 Syntax+Documents Model

With the syntax+documents training set, MVM sig-
nificantly outperforms LDA across a wide range of
model settings. MVM also outperforms DPMM for
word and document intrusion. For context intru-
sion, DPMM, LDA, and MVM average 68.0%, 51.3%
and 66.9% respectively;8 for word intrusion, DPMM,
LDA, and MVM average 56.3%, 64.0% and 74.9%
respectively; for document intrusion, DPMM, LDA,

8High DPMM accuracy is driven by the low number of clus-
ters: 46.5 for DPMM vs. 358.3 for LDA and 725.6 for MVM.
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Figure 5: Scatterplot of model size vs. avg score for
MVM (dashed, purple) and LDA (dotted, orange); Syn-
tax+Documents data.

and MVM average 41.5%, 49.7% and 60.6% re-
spectively. Qualitatively, models trained on syn-
tax+document yield a higher degree of paradig-
matic clusters which have intuitive thematic struc-
ture. Performance on document intrusion is sig-
nificantly lower and more variable, reflecting the
higher degree of world knowledge required. As with
the previous data set, performance of MVM mod-
els trained on syntax+documents data degrades less
slowly as the cluster granularity increases (Figure 5).

One interesting question is to what degree MVM

views partition syntax and document features versus
LDA topics. That is, to what degree do the MVM

views capture purely syntagmatic or purely paradig-
matic variation? We measured view entropy for all
three models, treating syntactic features and docu-
ment features as different class labels. MVM with
M � 50 views obtained an entropy score of 0.045,
while LDA with M � 50 obtained 0.073, and the
best DPMM model 0.082.9 Thus MVM views may in-
deed capture pure syntactic or thematic clusterings.

9The low entropy scores reflect the higher percentage of syn-
tactic contexts overall.
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5.3 Discussion
As cluster granularity increases, we find that MVM

accounts for feature noise better than either LDA

or DPMM, yielding more coherent clusters. (Chang
et al., 2009) note that LDA performance degrades
significantly on a related task as the number of top-
ics increases, reflecting the increasing difficulty for
humans in grasping the connection between terms
in the same topic. This suggests that as topics be-
come more ne-grained in models with larger num-
ber of topics, they are less useful for humans. In
this work, we find that although MVM and LDA per-
form similarity on average, MVM clusters are signif-
icantly more interpretable than LDA clusters as the
granularity increases (Figures 4 and 5). We argue
that models capable of making such fine-grained se-
mantic distinctions are more desirable.

The results presented in the previous two sections
hold both for unbiased cluster selection (e.g. where
clusters are drawn uniformly at random from the
model) and when cluster selection is biased based
on model probability (results shown). Biased selec-
tion potentially gives an advantage to MVM, which
generates many more small clusters than either LDA

or DPMM, helping it account for noise.

6 Future Work

Models based on cross-cutting categorization is
a novel approach to lexical semantics and hence
should be evaluated on standard baseline tasks, e.g.
contextual paraphrase or lexical substitution (Mc-
Carthy and Navigli, 2007). Additional areas for fu-
ture work include:

(Latent Relation Modeling) Clusterings formed
from feature partitions in MVM can be viewed as a
form of implicit relation extraction; that is, instead
of relying on explicit surface patterns in text, rela-
tions between words or concepts are identified in-
directly based on common syntactic patterns. For
example, clusterings that divide cities by geography
or clusterings partition adjectives by their polarity.

(Latent Semantic Language Modeling) Genera-
tive models such as MVM can be used to build bet-
ter priors for class-based language modeling (Brown
et al., 1992). The rare n-gram results demonstrate
that MVM is potentially useful for tail contexts; i.e.
inferring tail probabilities from low counts.

(Explicit Feature Selection) In this work we rely on
smoothing to reduce the noise of over-broad extrac-
tion rather than performing feature selection explic-
itly. All of the models in this paper can be combined
with feature selection methods to remove noisy fea-
tures, and it would be particularly interesting to draw
parallels to models of “clutter” in vision.

(Hierarchical Cross-Categorization) Human con-
cept organization consists of multiple overlapping
local ontologies, similar to the loose ontological
structure of Wikipedia. Furthermore, each ontologi-
cal system has a different set of salient properties. It
would be interesting to extend MVM to model hier-
archy explicitly, and compare against baselines such
as Brown clustering (Brown et al., 1992), the nested
Chinese Restaurant Process (Blei et al., 2003) and
the hierarchical Pachinko Allocation Model (Mimno
et al., 2007).

7 Conclusion

This paper introduced MVM, a novel approach to
modeling lexical semantic organization using mul-
tiple cross-cutting clusterings capable of captur-
ing multiple lexical similarity relations jointly in
the same model. In addition to robustly handling
homonymy and polysemy, MVM naturally captures
both syntagmatic and paradigmatic notions of word
similarity. MVM performs favorably compared to
other generative lexical semantic models on a set of
human evaluations, over a wide range of model set-
tings and textual data sources.
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Abstract

It is often assumed that ‘grounded’ learning
tasks are beyond the scope of grammatical in-
ference techniques. In this paper, we show
that the grounded task of learning a seman-
tic parser from ambiguous training data as dis-
cussed in Kim and Mooney (2010) can be re-
duced to a Probabilistic Context-Free Gram-
mar learning task in a way that gives state
of the art results. We further show that ad-
ditionally letting our model learn the lan-
guage’s canonical word order improves its
performance and leads to the highest seman-
tic parsing f-scores previously reported in the
literature.1

1 Introduction

One of the most fundamental ideas about language
is that we use it to express our thoughts. Learning a
natural language, then, amounts to (at least) learning
a mapping between the things we utter and the things
we think, and can therefore be seen as the task of
learning a semantic parser, i.e. something that maps
natural language expressions such as sentences into
meaning representations such as logical forms. Ob-
viously, this learning can neither take place in a fully
supervised nor in a fully unsupervised fashion: the
learner does not ‘hear’ the meanings of the sentences
she observes, but she is also not treating them as
merely meaningless strings. Rather, it seems plau-
sible to assume that she uses extra-linguistic context

1The source code used for our experiments and the evalua-
tion is available as supplementary material for this article.

to assign certain meanings to the linguistic input she
is confronted with.

In this sense, learning a semantic parser seems
to go beyond the well-studied task of unsupervised
grammar induction. It involves not only learning
a grammar for the form-side of language, i.e. lan-
guage expressions such as sentences, but also the
‘grounding’ of this structure in meaning represen-
tations. It requires going beyond the mere linguistic
input to incorporate, for example, perceptual infor-
mation that provides a clue to the meaning of the ob-
served forms. Essentially, it seems as if ‘grounded’
learning tasks like this require dealing with two
different kinds of information, the purely formal
(phonemic) and meaningful (semantic) aspects of
language. Grammatical inference seems to be lim-
ited to dealing with one level of formal information
(Chang and Maia, 2001). For this reason, probably,
approaches to the task of learning a semantic parser
employ a variety of sophisticated and task-specific
techniques that go beyond (but often elaborate on)
the techniques used for grammatical inference (Lu
et al., 2008; Chen and Mooney, 2008; Liang et al.,
2009; Kim and Mooney, 2010; Chen et al., 2010).

In this paper, we show that one can reduce the
task of learning a semantic parser to a Probabilistic
Context Free Grammar (PCFG) learning task, and
more generally, that grounded learning tasks are not
in principle beyond the scope of grammatical infer-
ence techniques. In particular, we show how to for-
mulate the task of learning a semantic parser as dis-
cussed by Chen, Kim and Mooney (2008, 2010) as
the task of learning a PCFG from strings. Our model
does not only constitute a proof of concept that this
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reduction is possible for certain cases, it also yields
highly competitive results.2

By reducing the problem to the well understood
PCFG formalism, it also becomes easy to consider
extensions, leading to our second contribution. We
demonstrate that a slight modification to our model
so that it also learns the language’s canonical word
order improves its performance even beyond the best
results previously reported in the literature. This
language-independent and linguistically well moti-
vated elaboration allows the model to learn a global
fact about the language’s syntax, its canonical word
order.

Our contribution is two-fold. We provide an illus-
tration of how to reduce grounded learning tasks to
grammatical inference. Secondly, we show that ex-
tending the model so that it can learn linguistically
well motivated generalizations such as the canonical
word order can lead to better results.

The structure of the paper is as follows. First we
give a short overview of the previous work by Chen,
Kim and Mooney and describe their dataset. Then,
we show how to reduce the parsing task addressed
by them to a PCFG-learning task. Finally, we ex-
plain how to let our model additionally learn the lan-
guage’s canonical word order.

2 Previous Work by Chen, Kim and
Mooney

In a series of recent papers, Chen, Kim and Mooney
approach the task of learning a semantic parser from
ambiguous training data (Chen and Mooney, 2008;
Kim and Mooney, 2010; Chen et al., 2010). This
goes beyond previous work on semantic parsing
such as Lu et al. (2008) or Zettlemoyer and Collins
(2005) which rely on unambiguous training data
where every sentence is paired only with its mean-
ing. In contrast, Chen, Kim and Mooney allow
their training examples to exhibit the kind of uncer-
tainty about sentence meanings human learners are
likely to have to deal with by allowing for sentences
to be associated with a set of candidate-meanings,

2It has been pointed out to us by one reviewer that the task
we address falls short of what is often called ‘grounded learn-
ing’. We acknowledge that semantic parsing constitutes a very
limited kind of grounded learning but want to point out that the
task has been introduced as an instance of grounded learning in
the previous literature such as Chen and Mooney (2008).

and the correct meaning might not even be in this
set. They create the training data by first collect-
ing humanly generated written language comments
on four different RoboCup games. The comments
are recorded with a time-stamp and then associated
with all game events automatically extracted from
the games which occured up to five seconds before
the comment was made. This leads to an ambigu-
ous pairing of comments with candidate meanings
that can be considered similar to the "linguistic in-
put in the context of a rich, relevant, perceptual en-
vironment" to which real language learners prob-
ably have access (Chen and Mooney, 2008). For
evaluation purposes, they manually create a gold-
standard which contains unambiguous natural lan-
guage comment / event pairs. Due to the fact
that some comments refer to events not detected
by their extraction-algorithm, not every natural lan-
guage sentence has a gold matching meaning repre-
sentation. In addition to the inherent ambiguity of
the training examples, the learner therefore has to
somehow deal with those examples which only have
‘wrong’ meanings associated with them.

Datasets exist for both Korean and English, each
comprising training and gold data for four games.3

Some details about this data are given in Table 1,
such as the number of examples, their average am-
biguity and the number of misleading examples.

For the following short discussion of previous ap-
proaches, we mainly focus on Kim and Mooney
(2010). This is the most recent publication and re-
ports the highest scores.

2.1 The parsing task
Learning a semantic parser from the ambiguous data
is, in fact, just one of three tasks discussed by Kim
and Mooney (2010), henceforth KM. In addition to
parsing, they discuss matching and natural language
generation. We are ignoring the generation task as
we are currently only interested in the parsing prob-
lem, and we treat the matching task, picking the cor-
rect meaning from the set of candidates, merely as
a byproduct of parsing, rather than as a completely
separate task: parsing implicitly requires the model
to disambiguate the data it is learning from.

3The datasets are freely available at http://www.cs.
utexas.edu/~ml/clamp/sportscasting/. We re-
trieved the data used here on March 29th, 2011.
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Number of comments Ambiguity
# Training # Training with

Gold Match
# Training with
correct MR

# Gold Noise Avg. # of MRs

English dataset
total 1872 1492 1360 1539 0.2735 2.20

Korean dataset
total 1914 1763 1733 1763 0.0946 2.39

Table 1: Statistics for the Korean and the English datasets. The numbers are basically identical to those reported in
Chen et al. (2010) except for minimal differences in the number of training examples (we give one more for every
English training set, and one more for the 2004 Korean training set). In addition, our calculation of the average
sentential ambiguity (Avg. # of MRs) differs because we assume that mutiple occurences of the same event in a
context do not add to the overall ambiguity, and our calculation of the noise (fraction of training examples without
the correct meaning in their context) takes into account that there are training examples which do not have their gold
meaning associated with them in the training data and is therefore slightly higher than the one reported in Chen et al.
(2010).

KM’s model builds on previous work by Lu et al.
(2008) and is a generative model which defines a
joint probability distribution over natural language
sentences (NLs), meaning representations (MRs)
and hybrid trees. The NLs are the natural language
comments to the games, the MRs are simple log-
ical formulae describing game events and playing
the role of sentence meanings, and a hybrid tree is
a tree structure that represents the correspondence
between a sentence and its meaning. More specif-
ically, if some NL W has as its meaning an MR
m, and m has been generated by a meaning gram-
mar (MG) G, the hybrid tree corresponding to the
pair 〈W,m〉 has as its internal nodes those rules of
G used in the derivation of m, and as its leaves the
words making up W.4 An example hybrid tree for
the pair 〈THE PINK GOALIE PASSES THE BALL TO

PINK11,pass(pink1,pink11)〉 is given in Figure 1.
Their model is trained by a variant of the Inside-
Outside algorithm which deals with the hybrid tree
structure and takes into account the ambiguity of the
training examples.

In addition to learning directly from the ambigu-
ous training data, they also train a semantic parser
in a supervised fashion on data that has been pre-
viously disambiguated by their matching model.
This slightly improves their system’s performance.
Consequently, there are two scores for each of the

4We use SMALL CAPS for words, sans serif for MRs and
MR constituents (concepts), and italics for non-terminals and
Grammars.

S

S→ pass PLAYER PLAYER

PLAYER

PLAYER→ pink11

PINK11

PASSES THE BALL TOPLAYER

PLAYER→ pink1

THE PINK GOALIE

Figure 1: A hybrid tree for the sentence-meaning
pair 〈THE PINK GOALIE PASSES THE BALL TO
PINK11,pass(pink1,pink11)〉 . The internal nodes cor-
respond to the rules used to derive pass(pink1,pink11)
from a given Meaning Grammar, and the leaves corre-
spond to the words or substrings that make up the sen-
tence.

two languages (English and Korean) with which
we compare our own model: those of the parsers
trained directly from the ambiguous data, and those
of the ‘supervised’ parsers which constitute the cur-
rent state of the art. The details of their evaluation
method are disccused in Section 3.3, and their scores
are given in Table 2, together with our own scores.

3 Learning a Semantic Parser as a
PCFG-learning problem

Given that one can effectively represent both a sen-
tence’s form and its meaning in a hybrid tree, it is in-
teresting to ask whether one can do with a structure
that can be learned by grammatical inference tech-
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niques from strings which incorporate the contextual
information. In this section, we show how to reduce
hybrid trees to such ‘standard’ trees. In effect, we
show via construction that ‘grounded’ learning tasks
such as learning a semantic parser from semantically
enriched and ambiguous data can be reduced to ‘un-
grounded’ tasks such as grammatical inference.

Instead of taking the internal nodes of the trees
generated by our model as corresponding to MG
production rules, we take them to correspond to MR
constituents. The MR pass(pink1,pink11), for exam-
ple, has 4 constituents: the whole MR, the predicate
pass, and the two arguments pink1 and pink11. Fig-
ure 2 gives the tree we assume instead of Figure 1
for the sentence-meaning pair 〈THE PINK GOALIE

PASSES THE BALL TO PINK11,pass(pink1,pink11)〉.
Its root is assumed to correspond to the whole
MR and is labeled Spass(pink1,pink11). The remain-
ing three MR constituents correspond to the root’s
daughters which we label Phrasepink1, Phrasepass
and Phrasepink11. Generally speaking, we assume a
special non-terminal Sm for every MR m generated
by the MG, and a special non-terminal Phrasecon for
each of the terminals of the MG (which loosely cor-
respond to concepts). This is only possible for MGs
which create a finite set of MRs, but the MG used by
Kim and Mooney (2010) obeys this restriction.5

The tree’s terminals are the words that make up
the sentence, and we assume them to be dominated
by concept-specific pre-terminals Wordcon which
correspond to concept-specific probability distribu-
tions over the language’s vocabulary. Since each
Phrasecon may span multiple words, we give trees
rooted in Phrasecon a left-recursive structure that
corresponds to a unigram Markov-process. This
process generates an arbitrary sequence of words
semantically related to con, dominated by the cor-
responding pre-terminal Wordcon in our model, and
words not directly semantically related to con, dom-
inated by a special word pre-terminal Word∅. The
sole further restriction is that every Phrasecon must
contain at least one Wordcon.

Trees like the one in Figure 2 can be generated by
a Context-Free Grammar (CFG) which, in turn, can
be trained on strings to yield a PCFG which embod-

5This grammar is given in the Appendix to Chen et al.
(2010) and generates a total of 2048 MRs.

ies a semantic parser as will be discussed in Section
3.3. We now describe how to set up such a CFG in a
systematic way and how to train it on the data used
by KM.

3.1 Setting up the PCFG
The training data expresses information of two dif-
ferent kinds – form and meaning. Every training ex-
ample consists of a natural language string (the for-
mal information) and a set of candidate meanings
for the string (the semantic information, its context),
allowing for the possibility that none of the mean-
ings in the context is the correct one. In order to
learn from data like this within a grammatical in-
ference framework, we have to encode the semantic
information as part of the string. Assigning a spe-
cific MR m to a string corresponds, in our frame-
work, to analyzing it as a tree with Sm as its root.
A sentence’s context constrains which of the many
possible meanings might be expressed by the string.
Thus the role played by the context is adequately
modelled if we ensure that if a string W is associated
with a context {m1,...,mn}, the model only considers
the possibilities that this string might be analyzed as
Sm1

,...,Smn
.

There are 959 different contexts, i.e. 959 dif-
ferent sets of MRs, in the English data set (984
for the Korean data), and we therefore introduce
959 new terminal symbols which play the role of
context-identifiers, for example C1 to C959.6 For-
mally speaking, a context-identifier is a terminal
like any other word of the language and we can
therefore prefix every comment in the training data
with the context-identifier standing for the set of
MRs associated with this comment, an idea taken
from previous work such as Johnson et al. (2010).
Thus having incorporated the contextual informa-
tion into the string, we go on to show how our model
makes use of this information, considering the MR
pass(pink1,pink11) as an example. A formal de-
scription of the model is given Figure 3.

Assume that pass(pink1,pink11) is associated
with only one training example and therefore occurs
only in one specific context. If the context-identifier
introduced for this context is C1, we require the

6If we were to consider every possible context, we would
have to consider 22048 contexts because the MG generates 2048
MRs.
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Root

Spass(pink1,pink11)

Phrasepink11

PINK11

Phrasepass

Wordpass

TO

PhXpass

Word∅

BALL

PhXpass

Word∅

THE

PhXpass

Wordpass

PASSES

Phrasepink1

THE PINK GOALIE

C76

Figure 2: The tree-structure we propose instead of the Hybrid Tree structure used by (Kim and Mooney, 2010). The
non-terminal nodes do not correspond to MG productions, but to MR constituents. The internal structure of the
Phrasecon constituents, shown in full detail for Phrasepass, corresponds to a Markov process that generates the words
that make up the sentence. The terminal C76 is a context-identifier that restricts the range of Sm non-terminals that
might dominate the sentence and is only used during training, as described in Section 3.1. The grammar that generates
this trees is described in Figure 3.

right-hand side of all rules with Spass(pink1,pink11) on
their left-hand side to begin with C1. More gener-
ally, if an MR m occurs in the contexts associated
with the context-identifiers CK,...,CL, we require the
right-hand side of all rules with Sm on their left-hand
side to begin with exactly one of CK,...,CL.

In this sense, the context-identifiers can be seen
as providing the model with a top-down constraint
– if it encounters a context-identifier, it can only
try analyses leading to MRs which are licensed by
this context-identifier. On the other hand, the words
have to be generated by concept-specific word-
distributions, and the concepts that are present re-
strict the range of possible Sm non-terminals which
might dominate the whole string. In this sense, the
words the model observes provide it with a bottom-
up constraint – if it sees words which are semanti-
cally related to certain concepts con1,...,conn, it has
to arrive at an MR which licenses the presence of the
corresponding Phraseconx

non-terminals. Of course,
the model has to also learn which words are seman-
tically related to which concepts. To enable it to do
this, our grammar allows every Wordx non-terminal

to be rewritten as every word of the language.

Since there are sentences in the training data with-
out the correct meaning in their context, we want
to give our model the possibility of not assigning to
a sentence any of the MRs licensed by its context-
identifier. To do this, we employ another trick of
previous work by Johnson et. al and assume a spe-
cial null meaning ∅ to be present in every context.
S∅ may only span words generated by Word∅, the
language-specific distribution for words not directly
related to any concept; this also has to be learned by
the model.

As a last complication, we deal with the fact that
syntactic constituents are linearized with respect to
each other. For example, if an MR has 3 proper con-
stituents (i.e. excluding the MR itself), our grammar
allows the corresponding 3 syntactic constituents –
which we might label Phrasepredicate, Phrasearg1
and Phrasearg2 – to occur in any of the 6 possible
orders. Therefore, we have an Sm rule for every con-
text in which m occurs and for every possible order
of the proper constituents of m.

A formally explicit description of the rule
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schemata used to generate the CFG is given in Fig-
ure 3.7 Instantiating all those schemata leads to a
grammar with 33,101 rules for the English data and
30,731 rules for the Korean data. The difference in
size is due to differences in the size of the vocabu-
lary and the different number of contexts in the data
sets.

These CFGs can now be trained on the training
data using the Inside-Outside algorithm (Lari and
Young, 1990). After training, the resulting PCFG
embodies a semantic parser in the sense that, with
a slight modification we describe in section 3.3, it
can be used to parse a string into its meaning rep-
resentation by determining the most likely syntactic
analysis and reading off the meaning assigned by our
model at the Sm-node.

3.2 Possible objections to our reduction

Before we go on to discuss the details of training
and evaluation of our model, we want to address an
objection that might seem tempting. Isn’t our reduc-
tion impractical and unrealistic as even a highly ab-
stract model of language learning – after all, setting
up the huge CFG requires knowledge about the vo-
cabulary, the MG and all the complicated rules dis-
cussed which, presumably, is more knowledge than
we want to provide a language learner with, lest we
trivialize the task. To this we reply firstly, that it is
true that our reduction only works for offline or batch
grounded learning tasks where all the data is avail-
able to the model before the actual learning begins
so that it ‘knows’ the words, the meanings and the
contexts present in the data. This offline constraint
is, however, true of all models which are trained by
iterating multiple times over training data such as
KM’s model. Secondly, the intimidating CFG can in
principle be reduced to a hand-full of intuitive prin-
ciples and is easy to generate automatically.

First of all, the many specific Sm-rewrite rules re-
duce to the heuristic that every semantic constituent
should correspond to a syntactic constituent, and the
fact that natural language expressions are linearly or-
dered. Note that our model does not contain knowl-
edge about the specific word order of the language.

7In our description, we use context-identifiers such as C1
with a systematic ambiguity, letting them stand for the terminal
symbol representing a context and, in contexts such as m∈C1,
for the represented context itself.

It simply allows for the constituents of an MR to oc-
cur in every possible order which is a very unbiased
and empiricist assumption. Of course, this leads to
some limited kind of ‘implicit learning’ of word or-
der in the sense that for every meaning and for every
context, our model might (and in most cases will) as-
sign different probabilities to the different rules for
every word order; so it can learn that certain specific
MRs such as pass(pink1,pink11) are more often lin-
earized in one way than in any other. It cannot, how-
ever, generalize this to other (or even unseen) MRs,
i.e. it does not learn a global fact about the language.
In a way, it lacks the knowledge that there is such a
thing as word order, a point which we will elaborate
on in Section 4.

The many re-write rules for the pre-terminal
Wordxs are nothing but an explicit version of the
assumption that every word the model encounters
might, in principle, be semantically related to every
concept it knows. Again, this seems to us to be a
reasonable assumption.

Finally, the complicated looking set of rules for
the internal structure of Phrasexs corresponds to
a simple unigram Markov-process for generating
strings. All in all, we do not see that we make any
more assumptions than other approaches; our for-
mulation may make explicit how rich those assump-
tions are but we have not qualitatively changed them.

3.3 Training and Evaluation
The CFG described in the previous section is trained
on the same training data used by KM, except that
we reduce it to strings (without changing the infor-
mation present in the original data) by prefixing ev-
ery sentence with a context-identifier. For training
we run the Inside-Outside algorithm8 with uniform
initialization weights until convergence. For En-
glish, this results in an average number of 76 itera-
tions for each fold, for Korean the average number of
iterations is 50. To deal with the fact that the model
might not observe certain meanings during training,
we apply a simple smoothing technique by using a
Dirichlet prior of α=0.1 on the rule probabilities. In
effect, this provides our system with a small number
of pseudo-observations for each rule which prevents

8We use Mark Johnson’s freely available implementa-
tion, available at http://web.science.mq.edu.au/
~mjohnson/Software.htm.
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Root→ Sm m ∈M ∪ {∅}
Sm → c Phrasep(m) c ∈ C,m ∈ c,m ∈ Pred0(M)
Sm → c {Phrasep(m), Phrasea1(m)} c ∈ C,m ∈ c,m ∈ Pred1(M)
Sm → c {Phrasep(m), Phrasea1(m), Phrasea2(m)} c ∈ C,m ∈ c,m ∈ Pred2(M)
S∅ → c Phrase∅ c ∈ C
Phrase∅ →Word∅
Phrase∅ → Phrase∅Word∅
Phrasex →Wordx x ∈ T
Phrasex → PhXxWordx x ∈ T
Phrasex → PhxWord∅ x ∈ T
PhXx →Wordr x ∈ T, r ∈ {x, ∅}
PhXx → PhXxWordr x ∈ T, r ∈ {x, ∅}
Phx → PhXxWordx x ∈ T
Phx → PhxWord∅ x ∈ T
Phx →Wordx x ∈ T
Wordx → v x ∈ T ∪ {∅}, v ∈ V

Figure 3: The rule-schemata used to generate the NoWo-PCFG. Root is the unique start-symbol, M is the set of all
MRs present in the corpus, C is set the of all context-identifiers present in the corpus, T is the set of terminals of the
MG, V is the vocabulary of the corpus. Pred0(M) is the subset of all MRs in M of the form predicate, Pred1(M)
is the subset of all MRs in M of the form predicate(arg1) and Pred2(M) is the subset of all MRs in M of the form
predicate(arg1,arg2). p(m) is the predicate of the MR m, a1(m) is the first argument of the MR m, a2(m) is the
second argument of the MR m. The rules expanding Phrasex ensure that it contains at least one Wordx. A set on the
right-hand side of a rule is shorthand for all possible orderings of the elements of the set.

the automatic assignment of zero probability to rules
not used during training.9

For parsing, the resulting PCFG is slightly mod-
ified by removing the context-identifiers. This is
done because the task of a semantic parser is to es-
tablish a mapping between NLs and MRs, irrespec-
tive of contexts which were only used for learning
the parser and should not play a role in its final per-
formance. To do this, we add up the probability of
all rules which differ only in the context-identifier
which can be thought of as marginalizing out the dif-
ferent contexts, giving our first model which we call
NoWo-PCFG.10

Note that the context-deletion (and the simple
smoothing) enables NoWo-PCFG to parse sentences
into meanings not present in the data it was trained
on which, in fact, happens. For example, there are
81 meanings in the training data for the first English

9We experimented with α=0.1, α=0.5 and α=1.0 and found
that overall, 0.1 yields the best results. We also tried jittering
the initial rule weights during training and found that our re-
sults are very robust and seem to be independent of a specific
initialization.

10NoWo because this model, unlike the one described in Sec-
tion 4, does not make explicit use of word order generalisa-
tions.

match that are not present in any of the other games’
training data. The PCFG trained on games 2, 3 and 4
is still able to correctly assign 12 of those 81 mean-
ings which it has not seen during the training phase
which shows the effectiveness of the bottom-up con-
straint.

For evaluation, we employ 4-fold cross validation
as described in detail in Chen and Mooney (2008)
and used by KM: the model is trained on all possible
combinations of 3 of the 4 games and is then used
to produce an MR for all sentences of the held-out
game for which there is a matching gold-standard
meaning. For an NL W, our model produces an MR
m by finding the most probable parse of W with the
CKY algorithm and reading off m at the Sm-node.11

An MR is considered correct if and only if it matches
the gold-standard MR exactly; the final evaluation
result is averaged over all 4 folds. Our evaluation
results for NoWo-PCFG are given in Table 2. All
scores are reported in F-measure which is the har-
monic mean of Precision and Recall. In this specific
case, precision is the fraction of correct parses out

11For parsing, we use Mark Johnson’s freely available CKY
implementation which can be downloaded at http://web.
science.mq.edu.au/~mjohnson/Software.htm.
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English Korean
KM 0.742 0.764

KM ‘supervised’ 0.810 0.808
Chen et al. (2010) 0.801 0.812

NoWo-PCFG 0.742 0.718
WO-PCFG 0.860 0.829

Table 2: A summary of results for the parsing task, in F-
measure. We also show the results of Chen et al. (2010),
as given in Kim and Mooney (2010), which to our knowl-
edge are the highest previously reported scores for Ko-
rean. WO-PCFG, described in Section 4 performs better
than all previously reported models, but only slightly so
for Korean.

of the total number of parses the model returns. Re-
call is the fraction of correct parses out of the total
number of test sentences.12

NoWo-PCFG performs a little worse than KM’s
model. Its scores are virtually identical for English
(0.742) and worse for Korean (0.718 vs 0.764). We
are not sure as to why our model performs worse on
the Korean data, but it might have to do with the fact
that the Korean average ambiguity is higher than for
the English data.

This shows that it is not only possible to re-
duce the task of learning a semantic parser to stan-
dard grammatical inference, but that this way of ap-
proaching the problem yields comparable results.

The remainder of the paper focuses on our second
main point: that letting the model learn additional
kinds of information, such as the language’s canoni-
cal word order, can further improve its performance.
In order to do this we propose a model that learns
the word order as well as the mapping from NLs
to MRs, and compare its performance to that of the
other models.

4 Extending NoWo-PCFG to WO-PCFG

We already pointed out that our model considers ev-
ery possible linear order of syntactic constituents.
Our NoWo-PCFG model considers each of the pos-
sible word orders for every meaning and context in
isolation: it is unable to infer from the fact that most
meanings it has observed are most likely to be ex-
pressed with a certain word order that new meanings

12Because our model parses every sentence, for it Recall and
Precision are identical and F-measure is identical to Accuracy.

it will encounter are also more likely to be expressed
with this word order. It seems, however, to be at
least a soft fact about languages that they do have
a canonical word order that is more likely to be re-
alized in its sentences than any other possible word
order. In order to test whether trying to learn this
order helps our model, we modify the CFG used for
NoWo-PCFG so it can learn word order generaliza-
tions, and train it in the same way to yield another
semantic parser, WO-PCFG.

4.1 Setting up WO-PCFG

For every possible ordering of the constituents cor-
responding to an MR, our grammar contains a rule.
In NoWo-PCFG, these different rules all share the
same parent which prevents the model from learn-
ing the probability of the different word orders cor-
responding to the many rules. A straight-forward
way to overcome this is to annotate every Sm node
with the word order of its daughter. We split every
Sm non-terminal in multiple Swo_m non-terminals,
where wo ∈ {v,sv,vs,svo,sov,osv,ovs,vso,vos} indi-
cates the linear order of the constituents the non-
terminal rewrites as.13

This in itself does not yet allow our model to use
word order as a means of generalization. To model
that whenever it encounters a specific example that
is indicative of a certain word order, this word or-
der becomes slightly more probable for every other
example as well, we have to make a further slight
change to the CFG which we now describe. A for-
mally explicit description of the necessary changes
which we go on to describe is given in Figure 4.

We introduce six new non-terminals, correspond-
ing to the six possible word orders SVO, SOV, VSO,
VOS, OSV and OVS and require every Swo_m non-
terminal to be dominated by the non-terminal com-
patible with its daughters linear order. As an exam-
ple, consider the two syntactic non-terminals cor-
responding to the MR kick(pink1), Svs_kick(pink11)
and Ssv_kick(pink11). Whenever an example is suc-
cessfully analyzed as Svs_kick(pink11), this should
strengthen our model’s expectation of encountering

13We assume, somewhat simplifying, that an MR’s predicate
corresponds to a V(erb), its first argument corresponds to the
S(ubject) and its second argument corresponds to the O(bject).
These are purely formal categories that are not constrained to
correspond to specific linguistic categories.

1423



Root→ wo wo ∈WO
wo→ Sx_m wo ∈WO,x ∈WOS, x ⊂ wo,m ∈M
Sv_m → c Phrasep(m) c ∈ C,m ∈ c,m ∈ Pred0(M)
Sx_m → c {Phrasep(m), Phrasea1(m)} c ∈ C,m ∈ c,m ∈ Pred1(M), x ∈ {sv, vs}
Sx_m → c {Phrasep(m), Phrasea1(m), Phrasea2(m)} c ∈ C,m ∈ c,m ∈ Pred2(M), x ∈WOS
Sv_∅ → c Phrase∅ c ∈ C

Figure 4: In order to turn NoWo-PCFG described in Figure 3 into the WO-PCFG described in the
text, substitute the first five rule-schemata with the schemata given here. WO is the set of word
order non-terminals {SV O, SOV,OSV,OV S, V SO, V OS}, WOS is the set of word order annotations
{v, sv, vs, svo, svo, ovs, osv, vso, vos}. We take x ⊂ wo to mean that x is compatible with wo, where v is com-
patible with all word orders, sv is compatible with SVO,SOV and OSV, and so on. For rule-schemata 4 and 5, the
choice of x determines the order of the elements of the set on the right-hand side. All other symbols have the same
meaning as explained in Figure 3.

more examples where the verb precedes the sub-
ject, i.e. of the language being pre-dominantly VSO,
VOS or OVS. Therefore, we allow VSO, VOS and
OVS to be rewritten as Svs_kick(pink11). More gener-
ally, every word order non-terminal can rewrite as
any of the Swo_m non-terminals that are compatible
with it. Adding this additional layer of word order
abstraction leads to a grammar with 36,019 rules for
English and a grammar with 33,715 rules for Ko-
rean.

4.2 Evaluation of WO-PCFG

Training and evaluating WO-PCFG in exactly the
same way as the previous grammar gives an F-
measure of 0.860 for English and an F-measure of
0.829 for Korean. Those scores are, to our knowl-
edge, the highest scores previously reported for this
parsing task and establish our second main point:
letting the model learn the language’s word order in
addition to learning the mapping from sentences to
MR increases semantic parsing accuracy.14

An intuitive explanation for the increase in perfor-
mance is that by allowing the model to learn word
order, we are providing it with a new dimension
along which it can generalize.

In this sense, we can look at our refinement as
providing the model with abstract linguistic knowl-
edge, namely that languages tend to have a canon-

14Liang et al. (2009)’s model can be seen as capturing some-
thing similar to our word order generalization with the help of
a Field Choice Model which primarily captures discourse co-
herence and salience properties. It differs, however, in that it
can only learn one generalization for each predicate type and
no language wide generalization.

ical word order. The usefulness of this kind of in-
formation is impressive – for English, it improves
the accuracy of semantic parsing by almost 12% in
F-measure and for Korean by 11.1%. In addition,
our model correctly learns that English’s predomi-
nant word order is SVO and that Korean is predomi-
nantly SOV, assigning by far the highest probability
to the corresponding Root rewrite rule (0.91 for En-
glish and 0.98 for Korean). This kind of information
is useful in its own right and could, for example, be
exploited by coupling word order with other linguis-
tic properties, perhaps following Greenberg (1966)’s
implicational universals.

In this sense, the reduction of grounded learning
problems to grammatical inference does not only
make possible the application of a wide variety of
tools and insights developed over years of research,
it might also make it easier to bring abstract (and not
so abstract) linguistic knowledge to bear on those
tasks.

The overall slightly worse performance of our
system on Korean data might stem from the fact that
Korean, unlike English, has a rich morphology, and
that our model does not learn anything about mor-
phology at all. We plan on further investigating ef-
fects like this in the future, as well as applying more
advanced grammatical inference algorithms.

5 Conclusion and Future Work

We have shown that certain grounded learning tasks
such as learning a semantic parser from semantically
enriched training data can be reduced to a gram-
matical inference problem over strings. This allows
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for the application of techniques and insights devel-
oped for grammatical inference to grounded learn-
ing tasks. In addition, we have shown that letting
the model learn the language’s canonical word or-
der improves parsing performance, beyond the top
scores previously reported, thus illustrating the use-
fullnes of linguistic knowledge for tasks like this.

In future research, we plan to address the limi-
tation of our model to a finite set of meaning rep-
resentations, in particular through the use of non-
parametric Bayesian models such as the Infinite
PCFG model of Liang et al. (2007) and the Infi-
nite Tree model of Finkel et al. (2007); both allow
for a potentially infinite set of non-terminals, hence
directly addressing this problem. In addition, we
are thinking about using an extension of the PCFG
formalism that allows for some kind of ‘feature-
passing’ which could lead to much smaller and more
general grammars.
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Abstract

This paper describes a novel approach to the
semantic relation detection problem. Instead
of relying only on the training instances for
a new relation, we leverage the knowledge
learned from previously trained relation detec-
tors. Specifically, we detect a new semantic
relation by projecting the new relation’s train-
ing instances onto a lower dimension topic
space constructed from existing relation de-
tectors through a three step process. First, we
construct a large relation repository of more
than 7,000 relations from Wikipedia. Second,
we construct a set of non-redundant relation
topics defined at multiple scales from the re-
lation repository to characterize the existing
relations. Similar to the topics defined over
words, each relation topic is an interpretable
multinomial distribution over the existing re-
lations. Third, we integrate the relation topics
in a kernel function, and use it together with
SVM to construct detectors for new relations.
The experimental results on Wikipedia and
ACE data have confirmed that background-
knowledge-based topics generated from the
Wikipedia relation repository can significantly
improve the performance over the state-of-the-
art relation detection approaches.

1 Introduction

Detecting semantic relations in text is very useful
in both information retrieval and question answer-
ing because it enables knowledge bases to be lever-
aged to score passages and retrieve candidate an-
swers. To extract semantic relations from text, three
types of approaches have been applied. Rule-based

methods (Miller et al., 2000) employ a number of
linguistic rules to capture relation patterns. Feature-
based methods (Kambhatla, 2004; Zhao and Grish-
man, 2005) transform relation instances into a large
amount of linguistic features like lexical, syntactic
and semantic features, and capture the similarity be-
tween these feature vectors. Recent results mainly
rely on kernel-based approaches. Many of them fo-
cus on using tree kernels to learn parse tree struc-
ture related features (Collins and Duffy, 2001; Cu-
lotta and Sorensen, 2004; Bunescu and Mooney,
2005). Other researchers study how different ap-
proaches can be combined to improve the extraction
performance. For example, by combining tree ker-
nels and convolution string kernels, (Zhang et al.,
2006) achieved the state of the art performance on
ACE (ACE, 2004), which is a benchmark dataset for
relation extraction.

Although a large set of relations have been iden-
tified, adapting the knowledge extracted from these
relations for new semantic relations is still a chal-
lenging task. Most of the work on domain adapta-
tion of relation detection has focused on how to cre-
ate detectors from ground up with as little training
data as possible through techniques such as boot-
strapping (Etzioni et al., 2005). We take a differ-
ent approach, focusing on how the knowledge ex-
tracted from the existing relations can be reused to
help build detectors for new relations. We believe by
reusing knowledge one can build a more cost effec-
tive relation detector, but there are several challenges
associated with reusing knowledge.

The first challenge to address in this approach is
how to construct a relation repository that has suffi-
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cient coverage. In this paper, we introduce a method
that automatically extracts the knowledge charac-
terizing more than 7,000 relations from Wikipedia.
Wikipedia is comprehensive, containing a diverse
body of content with significant depth and grows
rapidly. Wikipedia’s infoboxes are particularly in-
teresting for relation extraction. They are short,
manually-created, and often have a relational sum-
mary of an article: a set of attribute/value pairs de-
scribing the article’s subject.

Another challenge is how to deal with overlap of
relations in the repository. For example, Wikipedia
authors may make up a name when a new relation
is needed without checking if a similar relation has
already been created. This leads to relation duplica-
tion. We refine the relation repository based on an
unsupervised multiscale analysis of the correlations
between existing relations. This method is parame-
ter free, and able to produce a set of non-redundant
relation topics defined at multiple scales. Similar to
the topics defined over words (Blei et al., 2003), we
define relation topics as multinomial distributions
over the existing relations. The relation topics ex-
tracted in our approach are interpretable, orthonor-
mal to each other, and can be used as basis relations
to re-represent the new relation instances.

The third challenge is how to use the relation top-
ics for a relation detector. We map relation instances
in the new domains to the relation topic space, re-
sulting in a set of new features characterizing the
relationship between the relation instances and ex-
isting relations. By doing so, background knowl-
edge from the existing relations can be introduced
into the new relations, which overcomes the limi-
tations of the existing approaches when the training
data is not sufficient. Our work fits in to a class of re-
lation extraction research based on “distant supervi-
sion”, which studies how knowledge and resources
external to the target domain can be used to im-
prove relation extraction. (Mintz et al., 2009; Jiang,
2009; Chan and Roth, 2010). One distinction be-
tween our approach and other existing approaches is
that we represent the knowledge from distant super-
vision using automatically constructed topics. When
we test on new instances, we do not need to search
against the knowledge base. In addition, our top-
ics also model the indirect relationship between re-
lations. Such information cannot be directly found

from the knowledge base.
The contributions of this paper are three-fold.

Firstly, we extract a large amount of training
data for more than 7,000 semantic relations from
Wikipedia (Wikipedia, 2011) and DBpedia (Auer
et al., 2007). A key part of this step is how we
handle noisy data with little human effort. Sec-
ondly, we present an unsupervised way to con-
struct a set of relation topics at multiple scales.
This step is parameter free, and results in a non-
redundant, multiscale relation topic space. Thirdly,
we design a new kernel for relation detection by
integrating the relation topics into the relation de-
tector construction. The experimental results on
Wikipedia and ACE data (ACE, 2004) have con-
firmed that background-knowledge-based features
generated from the Wikipedia relation repository
can significantly improve the performance over the
state-of-the-art relation detection approaches.

2 Extracting Relations from Wikipedia

Our training data is from two parts: relation in-
stances from DBpedia (extracted from Wikipedia
infoboxes), and sentences describing the relations
from the corresponding Wikipedia pages.

2.1 Collecting the Training Data

Since our relations correspond to Wikipedia infobox
properties, we use an approach similar to that de-
scribed in (Hoffmann et al., 2010) to collect positive
training data instances. We assume that a Wikipedia
page containing a particular infobox property is
likely to express the same relation in the text of
the page. We further assume that the relation is
most likely expressed in the first sentence on the
page which mentions the arguments of the relation.
For example, the Wikipedia page for “Albert Ein-
stein” contains an infobox property “alma mater”
with value “University of Zurich”, and the first sen-
tence mentioning the arguments is the following:
“Einstein was awarded a PhD by the University of
Zurich”, which expresses the relation. When look-
ing for relation arguments on the page, we go be-
yond (sub)string matching, and use link information
to match entities which may have different surface
forms. Using this technique, we are able to collect a
large amount of positive training instances of DBpe-
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dia relations.
To get precise type information for the argu-

ments of a DBpedia relation, we use the DBpedia
knowledge base (Auer et al., 2007) and the asso-
ciated YAGO type system (Suchanek et al., 2007).
Note that for every Wikipedia page, there is a cor-
responding DBpedia entry which has captured the
infobox-properties as RDF triples. Some of the
triples include type information, where the subject
of the triple is a Wikipedia entity, and the object
is a YAGO type for the entity. For example, the
DBpedia entry for the entity “Albert Einstein” in-
cludes YAGO types such as Scientist, Philosopher,
Violinist etc. These YAGO types are also linked
to appropriate WordNet concepts, providing for ac-
curate sense disambiguation. Thus, for any en-
tity argument of a relation we are learning, we ob-
tain sense-disambiguated type information (includ-
ing super-types, sub-types, siblings etc.), which be-
come useful generalization features in the relation
detection model. Given a common noun, we can
also retrieve its type information by checking against
WordNet (Fellbaum, 1998).

2.2 Extracting Rules from the Training Data
We use a set of rules together with their popular-
ities (occurrence count) to characterize a relation.
A rule representing the relations between two ar-
guments has five components (ordered): argument1
type, argument2 type, noun, preposition and verb. A
rule example of ActiveYearsEndDate relation (about
the year that a person retired) is:

person100007846|year115203791|-|in|retire.

In this example, argument1 type is per-
son100007846, argument2 type is year115203791,
both of which are from YAGO type system. The
key words connecting these two arguments are in
(preposition) and retire (verb). This rule does not
have a noun, so we use a ‘-’ to take the position of
noun. The same relation can be represented in many
different ways. Another rule example characterizing
the same relation is

person100007846|year115203791|retirement|-|announce.

This paper only considers three types of words:
noun, verb and preposition. It is straightforward to
expand or simplify the rules by including more or
removing some word types. The keywords are ex-
tracted from the shortest path on the dependency

Figure 1: A dependency tree example.

tree between the two arguments. A dependency
tree (Figure 1) represents grammatical relations be-
tween words in a sentence. We used a slot grammar
parser (McCord, 1995) to generate the parse tree of
each sentence. Note that there could be multiple
paths between two arguments in the tree. We only
take the shortest path into consideration. The pop-
ularity value corresponding to each rule represents
how many times this rule applies to the given rela-
tion in the given data. Multiple rules can be con-
structed from one relation instance, if multiple argu-
ment types are associated with the instance, or mul-
tiple nouns, prepositions or verbs are in the depen-
dency path.

2.3 Cleaning the Training Data

To find a sentence on the Wikipedia page that is
likely to express a relation in its infobox, we con-
sider the first sentence on the page that mentions
both arguments of the relation. This heuristic ap-
proach returns reasonably good results, but brings in
about 20% noise in the form of false positives, which
is a concern when building an accurate statistical re-
lation detector. To address this issue, we have devel-
oped a two-step technique to automatically remove
some of the noisy data. In the first step, we extract
popular argument types and keywords for each DB-
pedia relation from the given data, and then use the
combinations of those types and words to create ini-
tial rules. Many of the argument types and keywords
introduced by the noisy data are often not very pop-
ular, so they can be filtered out in the first step. Not
all initial rules make sense. In the second step, we
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check each rule against the training data to see if that
rule really exists in the training data or not. If it does
not exist, we filter it out. If a sentence does not have
a single rule passing the above procedure, that sen-
tence will be removed. Using the above techniques,
we collect examples characterizing 7,628 DBpedia
relations.

3 Learning Multiscale Relation Topics

An extra step extracting knowledge from the raw
data is needed for two reasons: Firstly, many DB-
pedia relations are inter-related. For example, some
DBpedia relations have a subclass relationship, e.g.
“AcademyAward” and “Award”; others overlap in
their scope and use, e.g., “Composer” and “Artist”;
while some are equivalent, e.g., “DateOfBirth” and
“BirthDate”. Secondly, a fairly large amount of the
noisy labels are still in the training data.

To reveal the intrinsic structure of the current DB-
pedia relation space and filter out noise, we car-
ried out a correlation analysis of relations in the
training data, resulting in a relation topic space.
Each relation topic is a multinomial distribution
over the existing relations. We adapted diffusion
wavelets (Coifman and Maggioni, 2006) for this
task. Compared to the other well-known topic ex-
traction methods like LDA (Blei et al., 2003) and
LSI (Deerwester et al., 1990), diffusion wavelets can
efficiently extract a hierarchy of interpretable topics
without any user input parameter (Wang and Ma-
hadevan, 2009).

3.1 An Overview of Diffusion Wavelets

The diffusion wavelets algorithm constructs a com-
pressed representation of the dyadic powers of a
square matrix by representing the associated matri-
ces at each scale not in terms of the original (unit
vector) basis, but rather using a set of custom gener-
ated bases (Coifman and Maggioni, 2006). Figure
2 summarizes the procedure to generate diffusion
wavelets. Given a matrix T , the QR (a modified
QR decomposition) subroutine decomposes T into
an orthogonal matrix Q and a triangular matrix R
such that T ≈ QR, where |Ti,k − (QR)i,k| < ε
for any i and k. Columns in Q are orthonormal ba-
sis functions spanning the column space of T at the
finest scale. RQ is the new representation of T with

{[φj ]φ0
} = DWT (T, ε, J)

//INPUT:
//T : The input matrix.
//ε: Desired precision, which can be set to a small

number or simply machine precision.
//J : Number of levels (optional).
//OUTPUT:
//[φj ]φ0

: extended diffusion scaling functions at
scale j.

φ0 = I;
For j = 0 to J − 1 {

([φj+1]φj
, [T 2j

]
φj+1

φj
)← QR([T 2j

]
φj

φj
, ε);

[φj+1]φ0
= [φj+1]φj

[φj ]φ0
;

[T 2j+1

]
φj+1

φj+1
= ([T 2j

]
φj+1

φj
[φj+1]φj

)2;
}

Figure 2: Diffusion Wavelets construct multiscale repre-
sentations of the input matrix at different scales. QR is a
modified QR decomposition. J is the max step number
(this is optional, since the algorithm automatically ter-
minates when it reaches a matrix of size 1 × 1). The
notation [T ]φb

φa
denotes matrix T whose column space is

represented using basis φb at scale b, and row space is
represented using basis φa at scale a. The notation [φb]φa

denotes basis φb represented on the basis φa. At an arbi-
trary scale j, we have pj basis functions, and length of
each function is lj . The number of pj is determined by
the intrinsic structure of the given dataset in QR routine.
[T ]φb

φa
is a pb × la matrix, and [φb]φa

is an la × pb matrix.

respect to the space spanned by the columns of Q
(this result is based on the matrix invariant subspace
theory). At an arbitrary level j,DWT learns the ba-
sis functions from T 2j

using QR. Compared to the
number of basis functions spanning T 2j

’s original
column space, we usually get fewer basis functions,
since some high frequency information (correspond-
ing to the “noise” at that level) can be filtered out.
DWT then computes T 2j+1

using the low frequency
representation of T 2j

and the procedure repeats.

3.2 Constructing Multiscale Relation Topics

Learning Relation Correlations

Assume we have M relations, and the ith of them
is characterized by mi <rule, popularity> pairs. We
use s(a, b) to represent the similarity between the
ath and bth relations. To compute s(a, b), we first
normalize the popularities for each relation, and then
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look for the rules that are shared by both relation a
and b. We use the product of corresponding pop-
ularity values to represent the similarity score be-
tween two relations with respect to each common
rule. s(a, b) is set to the sum of such scores over
all common rules. The relation-relation correlation
matrix S is constructed as follows:

S = [
s(1, 1) · · · s(1,M)
· · · · · · · · ·

s(M, 1) · · · s(M,M)
]

We have more than 200, 000 argument types, tens
of thousands of distinct nouns, prepositions, and
verbs, so we potentially have trillions of distinct
rules. One rule may appear in multiple relations.
The more rules two relations share, the more related
two relations should be. The rules shared across dif-
ferent relations offer us a novel way to model the
correlations between different relations, and further
allow us to create relation topics. The rules can also
be simplified. For example, we may treat argument1,
argument2, noun, preposition and verb separately.
This results in simple rules that only involve in one
argument type or word. The correlations between
relations are then computed only based on one par-
ticular component like argument1, noun, etc.

Theoretical Analysis
Matrix S models the correlations between rela-

tions in the training data. Once S is constructed, we
adapt diffusion wavelets (Coifman and Maggioni,
2006) to automatically extract the basis functions
spanning the original column space of S at multi-
ple scales. The key strength of the approach is that
it is data-driven, largely parameter-free and can au-
tomatically determine the number of levels of the
topical hierarchy, as well as the topics at each level.
However, to apply diffusion wavelets to S, we first
need to show that S is a positive semi-definite ma-
trix. This property guarantees that all eigenvalues
of S are ≥ 0. Depending on the way we formal-
ize the rules, the methods to validate this property
are slightly different. When we treat argument1,
argument2, noun, preposition and verb separately, it
is straightforward to see the property holds. In The-
orem 1, we show the property also holds when we
use more complicated rules (using the 5-tuple rule
in Section 2.2 as an example in the proof).

Theorem 1. S is a Positive Semi-Definite matrix.

Proof: An arbitrary rule ri is uniquely characterized
by a five tuple: argument1 type| argument2 type|
noun| preposition| verb. Since the number of dis-
tinct argument types and words are constants, the
number of all possible rules is also a constant: R.

If we treat each rule as a feature, then the set of
rules characterizing an arbitrary relation ri can be
represented as a point [p1

i , · · · , p
R
i ] in a latent R di-

mensional rule space, where pj
i represents the popu-

larity of rule j in relation ri in the given data.
We can verify that the way to compute s(a, b) is

the same as s(a, b) =< [p1
a · · · p

R
a ], [p1

b · · · p
R
b ] >,

where < ·, · > is the cosine similarity (kernel). It
follows directly from the definition of positive semi-
definite matrix (PSD) that S is PSD (Schölkopf and
Smola, 2002).

In our approach, we construct multiscale re-
lation topics by applying DWT to decompose
S/λmax(S), where λmax(S) represents the largest
eigenvalue of S. Theorem 2 shows that this decom-
position will converge, resulting in a relation topic
hierarchy with one single topic at the top level.

Theorem 2. Let λmax(S) represent the largest
eigenvalue of matrix S, then DWT (S/λmax(S), ε)
produces a set of nested subspaces of the column
space of S, and the highest level of the resulting sub-
space hierarchy is spanned by one basis function.

Proof: From Theorem 1, we know that S is a PSD
matrix. This means λmax(S) ∈ [0, +∞) (all eigen-
values of S are non-negative). This further implies
that Λ(S)/λmax(S) ∈ [0, 1], where Λ(S) represents
any eigenvalue of S.

The idea underlying diffusion wavelets is based
on decomposing the spectrum of an input matrix
into various spectral bands, spanned by basis func-
tions (Coifman and Maggioni, 2006). Let T =
S/λmax(S). In Figure 2, we construct spectral
bands of eigenvalues, whose associated eigenvectors
span the corresponding subspaces. Define dyadic
spatial scales tj as

tj =

j∑

t=0

2t = 2j+1 − 1, j ≥ 0 .

At each spatial scale, the spectral band is defined as:

Ωj(T ) = {λ ∈ Λ(T ), λ
tj ≥ ε},
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where Λ(T ) represents any eigenvalue of T , and ε ∈
(0, 1) is a pre-defined threshold in Figure 2. We can
now associate with each of the spectral bands a vec-
tor subspace spanned by the corresponding eigen-
vectors:

Vj = 〈{ξλ : λ ∈ Λ(T ), λ
tj ≥ ε}〉, j ≥ 0 .

In the limit, we obtain

lim
j→∞

Vj = 〈{ξλ : λ = 1}〉

That is, the highest level of the resulting subspace
hierarchy is spanned by the eigenvector associated
with the largest eigenvalue of T .

This result shows that the multiscale analysis of
the relation space will automatically terminate at the
level spanned by one basis, which is the most popu-
lar relation topic in the training data.

3.3 High Level Explanation
We first create a set of rules to characterize each in-
put relation. Since these rules may occur in multi-
ple relations, they provide a way to model the co-
occurrence relationship between different relations.
Our algorithm starts with the relation co-occurrence
matrix and then repeatedly applies QR decomposi-
tion to learn the topics at the current level while at
the same time modifying the matrix to focus more on
low-frequency indirect co-occurrences (between re-
lations) for the next level. Running DWT is equiv-
alent to running a Markov chain on the input data
forward in time, integrating the local geometry and
therefore revealing the relevant geometric structures
of the whole data set at different scales. At scale
j, the representation of T 2j+1

is compressed based
on the amount of remaining information and the de-
sired precision. This procedure is illustrated in Fig-
ure 3. In the resulting topic space, instances with
related relations will be grouped together. This ap-
proach may significantly help us detect new rela-
tions, since it potentially expands the information
brought in by new relation instances from making
use of the knowledge extracted from the existing re-
lation repository.

3.4 Benefits
As shown in Figure 3, the topic spaces at different
levels are spanned by a different number of basis
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Figure 3: Learning Relation Topics at Multiple Scales.

functions. These numbers reveal the dimensions of
the relevant geometric structures of data at different
levels. These numbers are completely data-driven:
the diffusion wavelets approach can automatically
find the number of levels and simultaneously gen-
erate the topics at each level. Experiments show that
most multiscale topics are interpretable (due to the
sparsity of the scaling functions), such that we can
interpret the topics at different scales and select the
best scale for embedding. Compared to bootstrap-
ping approach, our approach is accumulative; that
is as the system learns more relations, it gets bet-
ter at learning new relations. Because our approach
takes advantage of the previously learned relations,
and the topic space is enriched as we learn more and
more relations.

We use diffusion wavelets (DWT) rather than
other hierarchy topic models like hLDA (Blei et
al., 2004) to extract relation topics for two rea-
sons. First, DWT is parameter free while other
models need some user-input parameters like hier-
archy level. Second, DWT is more efficient than the
other models. After the relation correlation matrix
is constructed, DWT only needs a couple of min-
utes to extract multiscale topics on a regular com-
puter. A direct experimental comparison between
DWT and hLDA can be found in (Wang and Ma-
hadevan, 2009).
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4 Constructing Relation Detectors with
Multiscale Relation Topics

4.1 Project Relation Instances onto Topics

When we design detectors for new relations, we
treat arg1, arg2, noun, and verb separately to
get stronger correlations between relations. We
do not directly use preposition. Any DBpe-
dia relation r ∈ {1, · · · , M} is represented with
4 vectors rt = [rt(1), · · · , rt(Nt)], where t ∈
{arg1, arg2, noun, verb}, Nt represents the size of
the vocabulary set of the type t component in the
Wikipedia training data, and rt(j) represents the oc-
currence count of type t component in relation r. For
example, Nverb is the size of the verb vocabulary set
in the training data and rverb(j) represents the occur-
rence count of the jth verb in relation r. When a new
relation instance x is given, we extract the depen-
dency path between two arguments, and create four
vectors xt, where t ∈ {arg1, arg2, noun, verb},
following the same format as rt. The projection re-
sult of xt onto the DBpedia relation space Xt is as
follows:

Xt = [< rt(1), xt(1) >, · · · , < rt(M), xt(M) >],
where < ·, · > is the cosine similarity of two vec-
tors. At level k, the embedding of x is Ek

x =
[Ek

Xarg1
, Ek

Xarg2
, Ek

Xnoun
, Ek

Xverb
], where Ek

Xt
=

([φk]φ0)
T Xt, and [φk]φ0 is defined in Figure 2.

4.2 Design New Kernel Using Topic Features

We combine Ek
x with 3 existing kernels (KArgument,

KPath and KBOW ) to create a new kernel for rela-
tion detection.
(1) KArgument matches two arguments, it returns the
number of common argument types that the input ar-
guments share.
(2) KPath matches two dependency paths. This
kernel is formally defined in (Zhao and Grishman,
2005). We extended this kernel by also matching
the common nouns, prepositions and verbs in the de-
pendency paths. We assign weight 1 to verbs, 0.5 to
nouns and prepositions.
(3) KBOW models the number of common nouns,
prepositions and verbs in the given sentences but
not in the dependency paths. Since these words are
not as important as the words inside the dependency
path, we assign weight 0.25 to them.

(4) KTFk
(x, y) =< Ek

x , Ek
y >, where x, y are two

input relation instances, and < ·, · > models the co-
sine similarity of two vectors. TF stands for topic
feature.
(5) The final kernel used in this paper is

α1KArgument + α2KPath + α3KBOW + α4KTFk
,

where αi can be tuned for each individual domain.
In this paper, we set αi = 1 for i ∈ {1, 2, 3, 4}.

4.3 Algorithm to Construct Relation Detectors
1. Construct a relation repository from Wikipedia.

(a) Collect training data from Wikipedia and DB-
pedia (Section 2.1);

(b) Clean the data representing each input relation
(Section 2.2 and 2.3);

(c) Create relation correlation matrix S following
the approach described in Section 3.2, result-
ing in an M ×M matrix.

2. Create multiscale relation topics.

[φk]φ0
= DWT (S/λmax(S), ε), where DWT () is

the diffusion wavelets implementation described in
Section 3.1. [φk]φ0

are the scaling function bases
at level k represented as an M × pk matrix, k =
1, · · · , h represents the level in the topic hierarchy.
The value of pk is determined in DWT () based on
the intrinsic structure of the given dataset. Columns
of [φk]φ0

are used as relation topics at level k.

3. Construct relation detectors for new relations.

Given the training data from a new relation, project
the data onto level k of the multiscale topic hierar-
chy, where k is chosen by users (Section 4.1). Ap-
ply SVM classifiers together with our kernel (Sec-
tion 4.2) to create detectors for new relations.

5 Experimental Results

We used SVMLight (Joachims, 1999) together with
the user defined kernel setting in our approach. The
trade-off parameter between training error and mar-
gin c is 1 for all experiments. Our approach to
learn multiscale relation topics is largely parameter
free. The only parameter to be set is the precision
ε = 10−5, which is also the default value in the dif-
fusion wavelets implementation.

5.1 Learning Multiscale Relation Topics

Following the approach discussed in Section 2.1,
we collect more than 620,000 training instances for
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Table 1: Number of topics at different levels (DBpe-
dia Relations) under 5 different settings: use args, noun,
preposition and verb; arg1 only; arg2 only; noun only and
verb only.

Level args & words arg1 arg2 noun verb
1 7628 7628 7628 7628 7628
2 269 119 155 249 210
3 32 17 19 25 35
4 7 5 5 7 10
5 3 2 3 4 4
6 2 1 2 2 2
7 1 1 1 1

7,628 DBpedia relations. For any given topic vec-
tor v, we know it is a column vector of length M ,
where M is the size of the DBpedia relation set
and ‖v‖ = 1. The entry v[i] represents the contri-
bution of relation i to this topic. To explain the
main concept of topic v, we sort the entries on
v and print out the relations corresponding to the
top entries. These relations summarize the top-
ics in the relation repository. One topic exam-
ple is as follows: [doctoraladvisor (0.683366), doc-
toralstudents (0.113201), candidate (0.014662), academ-
icadvisors (0.008623), notablestudents (0.003829), col-
lege (0.003021), operatingsystem (0.002964), combatant
(0.002826), influences (0.002285), training (0.002148),
· · · ], where doctoraladvisor is a DBpedia relation
and 0.683366 is its contribution to the topic. The
length of this relation vector is 7,628. We only list
the top 10 relations here.

Our approach identifies 5 different topic hierar-
chies under different settings (use args, noun, prepo-
sition and verb; arg1 only; arg2 only; noun only and
verb only). The number of the topics at each level is
shown in Table 1. At the first level, each input rela-
tion is treated as a topic. At the second level, num-
bers of topics go down to reasonable numbers like
269. Finally at the top level, the number of topic is
down to 1 (Theorem 2 also proves this). We show
some topic examples under the first setting. The 3
topics at level 5 are shown in Table 2. They represent
the most popular DBpedia relation topics. Almost
all 269 topics at level 5 look semantically meaning-
ful. They nicely capture the related relations. Some
examples are in Table 3.

Table 2: 3 topics at level 5 (all word types and args).
Top 4 Relations and Their Contributions

starring 86.6%, writer 3.8%, producer 3.2%, director 1.6%
birthplace 75.3%, clubs 6.1%, deathplace 5.1%, location 4.1%

clubs 55.3%, teams 9.3%, nationalteam 6.3% college 6.0%

Table 3: Some topics at level 2 (all word types and args).
Top Relations

activeyearsenddate, careerend, finalyear, retired
commands, partof, battles, notablecommanders
occupation, shortdescription, profession, dates

influenced, schooltradition, notableideas, maininterests
destinations, end, through, posttown

prizes, award, academyawards, highlights
inflow, outflow, length, maxdepth
after, successor, endingterminus
college, almamater, education

5.2 Relation Detection on Wikipedia Data

In previous experiment, 20,000 relation instances
were held and not used to construct the topic space.
These instances are randomly selected from 100 re-
lations (200 instances from each relation). This set
is used as a benchmark to compare different rela-
tion detection approaches. In this experiment, 100
instances from each relation are used for training,
and the other 100 are for testing. In training, we try
three different settings: n = 5, 20 and 100, where n
is the size of the training set for each relation. When
we train a model for one relation, we use the train-
ing positive instances from the other 99 relations as
training negatives. For example, we use 5 training
positive instances and 5*99=495 training negatives
to train a detector for each relation.

We compare our approach against the regular
rule-based approach (Lin and Pantel, 2001) and two
other kernel-based approaches (presented in Sec-
tion 4.2) for relation detection task. The comparison
results are summarized in Table 4. The approach
using relation topics (level 2) consistently outper-
forms the other three approaches in all three settings.
When n = 5, it achieves the largest improvement
over the other three. This indicates that using re-
lation topics that integrate the knowledge extracted
from the existing relations, can significantly benefit
us when the training data is insufficient. This is rea-
sonable, since the prior knowledge becomes more
valuable in this scenario.
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The users can select the level that is the most ap-
propriate for their applications. In this example, we
only have alignment results at 7 levels. Choosing the
space at level 2 spanned by a couple of hundreds of
basis functions is a natural choice, since the levels
below and above this have too many or too few fea-
tures, respectively. A user can also select the most
appropriate level by checking if the related relation
topics are meaningful for their applications.

5.3 Relation Detection on ACE Data

In this experiment, we use the news domain docu-
ments of the ACE 2004 corpus (ACE, 2004) to com-
pare our approaches against the state-of-the-art ap-
proaches. This dataset includes 348 documents and
around 4400 relation instances. 7 relation types,
7 entity types, numerous relation sub-types, entity
sub-types, and mention types are defined on this
set. The task is to classify the relation instances
into one of the 7 relation types or “NONE”, which
means there is no relation. For comparison, we use
the same setting as (Zhang et al., 2006), by apply-
ing a 5-fold cross-validation. The scores reported
here are the average of all 5 folds. This is also how
the other approaches are evaluated. In this test, we
treat entity types, entity sub-types and mention types
equally as argument types. Table 5 summarizes
the performance after applying the kernels presented
in Section 4.2 incrementally, showing the improve-
ment from each individual kernel. We also com-
pare our approaches to the other state-of-the-art ap-
proaches including Convolution Tree kernel (Collins
and Duffy, 2001), Syntactic kernel (Zhao and Grish-
man, 2005), Composite kernel (linear) (Zhang et al.,
2006) and the best kernel in (Nguyen et al., 2009).
Our approach with relation topics at level 2 has the
best performance, achieving a 73.24% F-measure.
The impact of the relation topics is huge. They im-
prove the F-measure from 61.15% to 73.24%. We
also test our approach using the topics at level 3.
The performance is slightly worse than using level
2, but still better than the others.

This paper studies how relation topics extracted
from Wikipedia relation repository can help improve
relation detection performance. We do not want to
tune our approach to one particular relation detec-
tion task, like ACE 2004. In our experiments, no
parameter tuning was taken and no domain specific

heuristic rules were applied. We are aware of some
methods that could stack on our approach to further
improve the performance on ACE test. The Com-
posite kernel result in Table 5 is based on a linear
combination of the Argument kernel and Convolu-
tion Tree kernel. (Zhang et al., 2006) showed that
by carefully choosing the weight of each compo-
nent and using a polynomial expansion, they could
achieve the best performance on this data: 72.1% F-
measure. (Nguyen et al., 2009) further showed that
the performance can be improved by taking syntac-
tic and semantic structures into consideration. They
used several types of syntactic information includ-
ing constituent and dependency syntactic parse trees
to improve the state of the art approaches to 71.5%
on F-measure. Heuristic rules extracted from the
target data can also help improve the performance.
(Jiang and Zhai, 2007) reported that by taking sev-
eral heuristic rules they can improve the F-measure
of Composite Kernel to 70.4%. They also showed
that using maximum entropy classifier rather than
SVM achieved the best performance on this task:
72.9% F-measure. To the best of our knowledge, the
most recent result was reported by (Zhou and Zhu,
2011), who extended their previous work in (Zhou
et al., 2007). By using several heuristics to define
an effective portion of constituent trees, and training
the classifiers using ACE relation sub-types (rather
than on types), they achieved an impressive 75.8%
F-measure. However, as pointed out in (Nguyen et
al., 2009), such heuristics are tuned on the target re-
lation extraction task and might not be appropriate to
compare against the automatic learning approaches.
Even though we have not done any domain specific
parameter tuning or applied any heuristics, our ap-
proach still achieve significant improvements over
all approaches mentioned above except one, which
is based on heuristics extracted from the target do-
main. This also implies that by combining some of
the above ideas with relation topics, the performance
on ACE data may be further improved.

6 Conclusions

This paper proposes a novel approach to create de-
tectors for new relations integrating the knowledge
extracted from the existing relations. The contribu-
tions of this paper are three-fold. Firstly, we pro-
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Table 4: F-measure comparison of different approaches
over 100 DBpedia relations with 5, 20 and 100 posi-
tive examples per relation. AG: KArgument, DP: KPath,
BOW: KBOW , TFk: KTFk

.
Approaches 100 20 5
Rule Based 37.70% 27.45% 13.20%

AG+ DP 73.64% 51.85% 22.95%
AG+ DP+ BOW 78.74% 62.76% 31.98%

AG+ DP+ BOW+ TF2 81.18% 68.03% 41.60%

Table 5: Performance comparison of different approaches
with SVM over the ACE 2004 data. P: Precision, R: Re-
call, F: F-measure, AG: KArgument, DP: KPath, BOW:
KBOW , TFk: KTFk

.
Approaches P(%) R(%) F(%)

Convolution Tree Kernel 72.5 56.7 63.6
Composite Kernel (linear) 73.50 67.00 70.10

Syntactic Kernel 69.23 70.50 69.86
Nguyen, et al. (2009) 76.60 67.00 71.50

AG 59.56 46.22 52.02
AG + DP 64.44 54.93 59.28

AG + DP + BOW 62.00 61.19 61.15
AG + DP + BOW + TF3 69.63 76.51 72.90
AG + DP + BOW + TF2 69.15 77.88 73.24

vide an automatic way to collect training data for
more than 7,000 relations from Wikipedia and DB-
pedia. Secondly, we present an unsupervised way to
construct a set of relation topics at multiple scales.
Different from the topics defined over words, rela-
tion topics are defined over the existing relations.
Thirdly, we design a new kernel for relation detec-
tion by integrating the relation topics in the repre-
sentation of the relation instances. By leveraging
the knowledge extracted from the Wikipedia rela-
tion repository, our approach significantly improves
the performance over the state-of-the-art approaches
on ACE data. This paper makes use of all DBpedia
relations to create relation topics. It is possible that
using a subset of them (more related to the target
relations) might improve the performance. We will
explore this in future work.
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Abstract 

We report on empirical results in extreme 

extraction. It is extreme in that (1) from re-

ceipt of the ontology specifying the target 

concepts and relations, development is li-

mited to one week and that (2) relatively 

little training data is assumed. We are able 

to surpass human recall and achieve an F1 

of 0.51 on a question-answering task with 

less than 50 hours of effort using a hybrid 

approach that mixes active learning, boot-

strapping, and limited (5 hours) manual 

rule writing. We compare the performance 

of three systems: extraction with handwrit-

ten rules, bootstrapped extraction, and a 

combination. We show that while the recall 

of the handwritten rules surpasses that of 

the learned system, the learned system is 

able to improve the overall recall and F1.      

1 Introduction 

Throughout the Automatic Content Extraction
1
 

(ACE) evaluations and the Message Understanding 

Conferences
2
 (MUC), teams typically had a year or 

more from release of the target to submitting sys-

tem results. One exception was MUC-6 (Grishman 

& Sundheim, 1996), in which scenario templates 

for changing positions were extracted given only 

one month. Our goal was to confine development 

to a calendar week, in fact, <50 person hours. This 
                                                           
1 http://www.nist.gov/speech/tests/ace/ 
2 http://www-nlpir.nist.gov/related_projects/muc/ 

is significant in two ways: the less effort it takes to 

bring up a new domain, (1) the more broadly ap-

plicable the technology is and (2) the less effort 

required to run a diagnostic research experiment. 

Our second goal concerned minimizing training 

data. Rather than approximately 250k words of 

entity and relation annotation as in ACE, only ~20 

example pairs per relation-type were provided as 

training. Reducing the training requirements has 

the same two desirable outcomes: demonstrating 

that the technology can be broadly applicable and 

reducing the overhead for running experiments. 

The system achieved recall of 0.49 and precision 

of 0.53 (for an F1 of 0.51) on a blind test set of 60 

queries of the form Ri(arg1, arg2), where Ri is one 

of the 5 new relations and exactly one of arg1 or 

arg2 is a free variable for each query. 

Key to this achievement was a hybrid of:   
 a variant of (Miller, et al., 2004) to learn two 

new classes of entities via automatically induced 

word classes and active learning (6 hours) 

 bootstrap relation learning (Freedman et al, 

2010) to learn 5 new relation classes (2.5 hours),  

 handwritten patterns over predicate-argument 

structure (5 hours), and 

 coreference (20 hours) 

Our bootstrap learner is initialized with relation 

tuples (not annotated text) and uses LDC‘s Giga-

word and Wikipedia as a background corpus to 

learn patterns for relation detection that are based 

on normalized predicate argument structure as well 

as surface strings.  

These early empirical results suggest the follow-

ing: (1) It is possible to specify a domain, adapt 

our system, and complete manual scoring, includ-
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ing human performance, within a month. Experi-

ments in machine reading (and in extraction) can 

be performed much more quickly and cheaply than 

ever before. (2) Through machine learning and 

limited human pattern writing (6 hours), we 

adapted a machine reading system within a week 

(using less than 50 person hours), achieving ques-

tion answering performance with an F1 of 0.5 and 

with recall 11% higher (relative) to a human read-

er. (3) Unfortunately, machine learning, though 

achieving 80% precision,
3
 significantly lags behind 

a gifted human pattern writer in recall. Thus, boot-

strap learning with much higher recall at minimal 

sacrifice in precision is highly desirable. 

2 Related Work 

This effort is evaluated extrinsically via formal 

questions expressed as a binary relation with one 

free variable. This contrasts with TREC Question 

Answering,
4
 where the questions are in natural 

language, and not restricted to a single binary rela-

tion. Like the ―list‖ queries of TREC QA, the re-

quirement is to find all answers, not just one. 

Though question interpretation is not required in 

our work, interpretation of the text corpus is. 

The goal of rapid adaptation has been tested in 

other contexts. In 2003, a series of experiments in 

adapting to a new language in less than month 

tested system performance on Cebuano and Hindi. 

The primary goal was to adapt to a new language, 

rather than a new domain. The extraction partici-

pants focused on named-entity recognition, not 

relation extraction (May, et al, 2003; Sekine & 

Grishman, 2003; Li & McCallum, 2003; Maynard 

et al, 2003). The scenario templates of MUC-6 

(Grishman & Sundheim, 1996) are more similar to 

our relation extraction task, although the domain is 

quite different. Our experiment allowed for 1 week 

of development time, while MUC-6 allowed a 

month. The core entities in the MUC-6 task 

(people and organizations) had been worked on 

previously. In contrast all of our relations included 

at least one novel class. While MUC-6 systems 

tended to use finite-state patterns, they did not in-

corporate bootstrapping or patterns based on the 

output of a statistical parser.   

                                                           
3 Handwritten patterns achieved 52% precision. 
4 http://trec.nist.gov/data/qamain.html 

For learning entity classes, we follow Miller, et 

al., (2004), using word clustering and active learn-

ing to train a perceptron model, but unlike that 

work we apply the technique not just to names but 

also to descriptions. An alternative approach to 

learning classes, applying structural patterns to 

bootstrap description recognition without active 

learning, is seen in Riloff (1996) and Kozareva et 

al., (2008)   

Much research (e.g. Ramshaw 2001) has fo-

cused on learning relation extractors using large 

amounts of supervised training, as in ACE. The 

obvious weakness of such approaches is the result-

ing reliance on manually annotated examples, 

which are expensive and time-consuming to create.  

Others have explored bootstrap relation learn-

ing from seed examples. Agichtein & Gravano 

(2000) and Ravichandran & Hovy (2002) reported 

results for generating surface patterns for relation 

identification; others have explored similar ap-

proaches (e.g. Pantel & Pennacchiotti, 2006). Mit-

chell et al. (2009) showed that for macro-reading, 

precision and recall can be improved by learning a 

large set of interconnected relations and concepts 

simultaneously. None use coreference to find train-

ing examples; all use surface (word) patterns. 

Freedman et. al (2010) report improved perfor-

mance from using predicate structure for boot-

strappped relation learning.  

Most approaches to automatic pattern genera-

tion have focused on precision, e.g., Ravichandran 

and Hovy (2002) report results in TREC QA, 

where extracting one instance of a relation can be 

sufficient, rather than detecting all instances. Mit-

chell et al. (2009), while demonstrating high preci-

sion, do not measure recall. 

By contrast, our work emphasizes recall, not 

just precision. Our question answering task asks 

list-like questions that require multiple answers.  

We also include the results of a secondary, extrac-

tion evaluation which requires that the system 

identify every mention of the relations in a small 

set of documents. This evaluation is loosely based 

on the relation mention detection task in ACE.  

3 Task Set-Up and Evaluation 

Our effort was divided into four phases. During the 

first phase, a third party produced an ontology and 

the resources, which included: brief (~1 paragraph) 

guidelines for each relation and class in the ontolo-
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gy; ~20 examples for each relation in the ontology; 

2K documents that are rich in domain relations. 

Table 1 lists the 5 new relations and number of ex-

amples provided for each. Arguments in italics 

were known by the system prior to the evaluation.  

Relation Ex. 
possibleTreatment(Substance, Condition) 23 

expectedDateOnMarket(Substance, Date) 11 

responsibleForTreatment(Substance, Agent) 19 

studiesDisease(Agent, Condition) 16 

hasSideEffect(Substance, Condition) 27 

Table 1: New Relations and Number of Examples 

In phase two, we spent one week extending our 

extraction system for the new ontology. During the 

third phase, we ran our system over 10K docu-

ments to extract all instances of domain relations 

from those documents. In the fourth phase, our 

question answering system used the extracted in-

formation to answer queries.  

4 Approach to Domain Specialization 

Our approach to extracting domain relations inte-

grated novel relation and class detectors into an 

existing extraction system, designed primarily 

around the ACE tasks. The existing system uses a 

discriminatively trained classifier to detect the enti-

ty and value types of ACE. It also produces a syn-

tactic parse for each sentence; normalizes these 

parses to find logical predicate argument structure; 

and detects and coreferences pronominal, nominal, 

and name mentions for each of the 7 ACE entity 

types (Person, Organization, Geopolitical Entity, 

Location, Facility, Weapon, and Vehicle).
5
  

The extraction system has three components that 

allow for rapid adaptation to a new domain:  
 Class detectors trained using word classes de-

rived from unsupervised clustering and sentence-

selected training data. 

 A bootstrap relation learner which given a few 

seed examples learns patterns that indicate the 

presence of relations.  

 An expressive pattern language which allows a 

developer to express rules for relation extraction 

in a simple, but fast manner.  

 
 

Component Approach Effort 

Class Recognizer Active Learning 6 hrs 

                                                           
5
 The extraction system detects relations and events in the 

ACE ontology, but these were not used in the current work.  

 

Class Recognizer Web-Mined List 1 hrs 

Relation Recognizer 
Semi-supervised 

Bootstrapping 
8.5 hrs 

Relation Recognizer Manual Patterns 5 hrs 

Coreference Heuristics 20 hrs 

Table 2: Effort and Approach for New Domain 

4.1 Class Extraction  

Each of the relations in the new domain included at 

least one argument that was new. While question 

answering requires the system to identify the 

classes only when they appear in a relation, know-

ledge of when a class is present provides important 

information for relation extraction. For example in 

our ontology, Y is a treatment for X only if Y is a 

substance. Thus, ‗Group counseling sessions are 

effective treatments for depression’ does not con-

tain an instance of possibleTreatment(), while 

‗SSRIs are effective treatments for depression‘ 

does. The bootstrap learner allows constraints 

based on argument type. To use this capability, we 

trained the recognizer at the beginning of the week 

of domain adaptation and used the predicted 

classes during learning.  

We annotated 1064 sentences (~31K words) us-

ing active learning combined with unsupervised 

word clusters (Miller,et al., 2004) for the following 

classes: Substance-Name, Substance-Description, 

Condition-Name, and Condition-Description. Ge-

neric noun-phrases like new drugs, the illness, etc 

were labeled as descriptors. Because of the time 

frame, we did not develop extensive guidelines nor 

measure inter-annotator agreement. Annotation 

took 6 hours. We supplemented our annotation 

with lists of substances and treatments from the 

web, which took 1 hour.  

4.2 Coreference 

Providing a name reference is generally preferable 

to a non-specific string (e.g. the drugs), but not 

always feasible; for instance, reports of new re-

search may appear without a name for the drug. 

Our existing system‘s coreference algorithms op-

erate only on mentions of ACE entity types (per-

sons, organizations, GPEs, other locations, 

facilities, vehicles, and weapons). During the week 

of domain adaption we developed new heuristics 

for coreference over non-ACE types.  Most of our 

heuristics are domain independent (e.g. linking the 

parts of an appositive). Our decision to annotate 

names and descriptions separately was driven par-
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tially by the need to select the best reference (i.e. 

name) for co-referent clusters. Adding coreference 

heuristics for the two new entity types was the sin-

gle most time-consuming activity, taking 20 of the 

total 43 hours. 

4.3 Relation Extraction  

For relation extraction, we used both pattern 

learning and handwritten patterns. We initialized 

our bootstrap relation learner with the example 

instances provided with the domain ontology; Ta-

ble 3 includes examples of the instances provided 

to the system as training. Our bootstrap relation 

learner finds instances of the relation argument 

pairs in text and then proposes both predicate-

argument structure and word-based connections 

between the arguments as possible new patterns for 

the relation. The learner automatically prunes po-

tential patterns using information about the number 

of known-to-be true and novel instances matched 

by a proposed pattern. By running the pattern ex-

tractor over a large corpus, the proposed patterns 

generate new seeds which are in turn are used to 

propose new patterns. For this experiment, we in-

corporated a small amount of supervision during 

the bootstrapping process (roughly 1 hour total per 

relation); we also performed ~30 minutes total in 

pruning domain patterns at the end of learning.  
 Relation Arg-1 Arg-2 

possTreatmnt AZT AIDS 

studyDisease Dr Henri Joyeux cancer 

studyDisease Samir Khleif cancer 

Table 3: Sample Instances for Initializing Learner 

We also used a small amount of human effort 

creating rules for detecting the relations. The pat-

tern writer was given the guidelines, the examples, 

and a 2K document background corpus and spent 1 

hour per relation writing rules.  

The learned patterns use a subset of the full pat-

tern language used by the pattern-writer. The lan-

guage operates over surface-strings as well as 

predicate-argument structure. Figure 1 illustrates 

learned and handwritten patterns for the possible-

TreatmentRelation(). The patterns in rectangles 

match surface-string patterns; the tree-like patterns 

match normalized predicate argument structure.  

The –WORD- token indicates a wild card of 1-3 

words.  The blue rectangles at the root of the trees 

in the handwritten patterns are sets of predicates 

that can be matched by the pattern. 

5 Evaluation  

Our question answering evaluation was inspired 

by the evaluation in DARPA‘s machine reading 

program, which requires systems to map the in-

formation in text into a formal ontology and an-

swer questions based on that ontology. Unlike 

ACE, this allows evaluators to measure perfor-

mance without exhaustively annotating documents, 

allows for balance between rare and common rela-

tions, and implicitly measures coreference without 

requiring explicit annotation of answer keys for 

coreference. However because the evaluation only 

measures performance on the set of queries, many 

relation instances will be unscored. Furthermore, 

the system is not rewarded for finding the same 

relation multiple times; finding 100 instances of 

isPossibleTreatment(Penicillin, Strep Throat) is 

the same as finding 1 (or 10) instances.  

 
Figure 1: Sample Patterns for possibleTreatment() 

 

The evaluation included only queries of the type 

Find all instances for which the relation P(X, Z) is 

true where one of X or Z is constant. For example, 

Find possible treatments for diabetes; or What is 

expected date to market for Abilify? There were 60 

queries in the evaluation set to be answered from a 

10K document corpus. To produce a preliminary 

answer key, annotators were given the queries and 

corpus indexed by Google Desktop. Annotators 

were given 1 hour to find potential answers to each 

query. If no answers were found after 1 hour, the 

annotators were given a second hour to look for 

answers. For two queries, both of the form Find 

treatments with an expected date to market of MM-

YYYY, even after two hours of searching the anno-

tators were unable to find any answers.
6
  

Annotator answers served as the initial gold-

standard. Given this initial answer key, annotators 

reviewed system answers and aligned them with 

gold-standard answers. System output not aligned 

with the initial gold standard was assessed as cor-

rect or incorrect. We assume that the final gold-

standard constitutes a complete answer key, and 

                                                           
6 Evaluators wanted some queries with no answers. 
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are thus able to calculate recall for our system and 

for humans
7
. Because we had only one annotator 

for each query and because we assumed that any 

answer found by an annotator was correct, we 

could not estimate human precision on this task.  

Answers can be specific named concepts (e.g. 

Penicillin) or generic descriptions (e.g. drug, ill-

ness). Given the sentence, ACME produces a wide 

range of drugs including treatments for malaria 

and athletes foot,‘ our reading system would ex-

tract the relations responsibleForTreatment(drugs, 

ACME), possibleTreatment(drugs, malaria), pos-

sibleTreatment(drugs, athletes foot). When a name 

was available in the document, annotators marked 

the answer as correct, but underspecified. We cal-

culated precision and recall treating underspecified 

answers as incorrect and separately calculated pre-

cision and recall counting underspecified answers 

as correct. When treated as correct, there was less 

than a 0.05 absolute increase in both precision and 

recall. Unless otherwise specified, all scores re-

ported here use the stricter condition which treats 

underspecified answers as incorrect.  

We also evaluated extracting all information in a 

small document collection (here human search of 

the 10k documents does not play a role in finding 

answers). Individuals were asked to annotate every 

instance of the 5 relations in a set of 102 docu-

ments. Recall, Precision, and F were calculated by 

aligning system responses to the answer key. Sys-

tem answers that aligned are correct; those that did 

not are incorrect; and answers in the key that were 

not found by the system are misses. Unlike the 

question answering evaluation, this evaluation 

measures the ability to find every instance of a 

fact. If the gold standard includes 100 instances of 

isPossibleTreatment(Penicillin, Strep Throat), re-

call will decrease for each instance missed. The 

―extraction‖ evaluation does not penalize systems 

for missing coreference.  

6 Results 

6.1 Class Detection 

                                                           
7 The answer key may contain some answers that were found 

neither by the annotator nor by the systems described here, 

since the answer key includes answers pooled from other sys-

tems not reported in this paper. The system reported here was 

the highest performing of all those participating in the experi-

ment. Furthermore, if a system answer is marked as correct, 

but underspecified, the specific  answer is put in the key. 

The recall, precision, and F1 for class detection 

using 10-fold cross validation of the ~1K anno-

tated sentences appear in the 3-5
th
 columns of Table 

4. Given the amount of training, our results are 

lower than in Miller et al (2004) (an F1 of 90 with 

less than 25K words of training). Several factors 

could explain this: Finding boundaries and types 

for descriptions is more complex than for names in 

English.
8
 Our classes, pharmaceutical substances 

and physiological conditions, may have been more 

difficult to learn. Our classes are less common in 

news reporting; as such, both word-class clusters 

and active learning may have been less effective. 

Finally, our evaluation was done on a 10-fold split 

of the active-learning selected data; bias in select-

ing the data could explain at least a part of our 

lower performance.  

Type 
# in 

GS 

Without Lists With Lists 

R P F R P F 

Subst-D 789 77 85 80.8 78 85 81.3 

Subst-N 410 70 82 75.5 77 81 78.9 

Cond-D 427 72 78 74.9 72 77 74.4 

Cond-N 963 80 87 83.4 84 83 83.5 

Table 4: Cross Validation:  Condition & Substance 

We noticed that the system frequently reported 

country names to be substance-names. Surprising-

ly, we found that our well-trained name finder 

made the opposite mistake, occasionally reporting 

drugs as geo-political entities.  

We incorporated lists of known substances and 

conditions to improve recall. Performance on the 

same cross-validation split is shown in the final 

three columns of Table 4. Incorporating the lists led 

to recall gains for both substance-name and condi-

tion-name. Because a false-alarm in class recogni-

tion only leads to an incorrect relation extraction if 

it appears in a context indicating a domain relation, 

false alarms of classes may be less important in the 

question answering and extraction evaluations.   

6.2 Question Answering and Extraction 

Figure 2 and Table 6 show system performance 

using only handwritten rules (HW), only learned 

patterns (L), and combining both (C). Figure 2  

includes scores calculated with all of the systems‘ 

answers (in the dotted boxes), and with just those 

answers that were deemed useful (discussed be-

                                                           
8 English names are capitalized; person names have a typical 

form and are frequently signaled by titles; organization names 

frequently have clear signal words, such as Corp. 
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low). We include annotator recall. Handwritten 

patterns outperform learned patterns consistently 

with much higher recall. Encouragingly, however, 

1. The combined system‘s recall and F-Score 

are noticeably higher for 3 of the relations.  

2. The learned patterns generate answers not 

found by handwritten patterns.  

3. The learned patterns have high precision.
9
 

There is variation across the different relations. 

The two best performing relations possibleTreat-

ment() and studiesDisease() have F1 more than 

twice as high as the two worst performing rela-

tions, expectedDateToMarket() and hasSideEf-

fect(). This is primarily due to differences in recall.  

 
Figure 2: Overall Q/A Performance: All answers in  

dotted boxes; 'Useful Answers' unboxed 

The combined system‘s recall (0.49), while low, 

is higher than that of the annotators (0.44). While 

hardly surprising that a machine can process in-

formation much more quickly than a person, it is 

encouraging that higher recall is achieved even 

with only one week‘s effort. In the context of our 

pooled answer-key, the relatively low recall of 

both the system and the annotator suggests that 

there was little overlap between the answers found 

by the annotator and those found by the system.  

As already described, the system answers can 

include both specific references (e.g. Prozac) and 

more generic references (the drug). When a more 

specific answer is present in the document, generic 

references have been treated as incorrect. Howev-

er, sometimes there is not a more specific refer-

ence; for example an article written before a drug 

has been released may never name the drug. Scores 

reported thus far treat such answers as correct. 

These answers would be useful when answering 

more complex queries. For example, given the sen-

                                                           
9 The learned patterns' high precision is to be expected for two 

reasons. First, a few bad patterns were manually removed for 

each relation. More importantly, the learning algorithm strong-

ly favors high precision patterns because it needs to maintain a 

seed set with low noise in order to learn effectively.  

tence ‗ACME spent 5 years developing a pill to 

treat the flu which it will release next week,’ ex-

tracting relations involving ‗the pill’  would allow 

a system to answer questions that use multiple rela-

tions in the ontology to for example ask about  or-

ganizations developing treatments for the flu, or 

the expected date of release for ACME’s drugs. 

However, in our simple question answering 

framework such generic answers never convey 

novel information and thus were probably ignored 

by human annotators.  

 To measure the impact of treating these generic 

references as correct,
10

 we did additional annota-

tion on the correct answers, marking answers as 

‗useful‘ (specific) and ‗not-useful‘ (generic). The 

unboxed bars in Figure 2 show performance when 

‗not-useful‘ answers are removed from the answer-

key and the responses. For the four relations where 

there was a change Table 5 provides the relative 

change performance when only ‗useful‘ answers 

are considered. The annotator‘s recall increases 

noticeably while the combined system‘s drops. 

This results in the overall recall of annotators sur-

passing that of the combined system.   

Relation 
Recall Precision 

A C H L C H L 

possTreat 12 10 10 14 -10 -11 -3 

respTreat 9 0 -5 8 -4 -4 -1 

studyDis 12 -6 -9 13 -11 -13 0 

hasSidEff 3 4 4 4 0 0 0 

Total 11 -2 -4 6 -9 -10 -2 

Table 5: Relative Change in Recall and Precision When 

Non-Useful Answers are Removed 
Table 7 shows the total number of answers pro-

duced by annotators and by each system, as well as 

the percentage of queries with at least one correct 

answer for each system. For one relation expec-

tedDateOnMarket(), the learned system did not 

find any answers. This relation had far fewer an-

swers found by annotators and occurred far more 

rarely in the fully annotated extraction set (see Ta-

ble 8). Anecdotally, extracting this relation fre-

quently required co-referencing ‗it‘ (e.g. ―It will be 

released in March 2011”). Our heuristics for core-

ference of the new classes did not account for pro-

nouns. Learning from such examples would 

require coreference during bootstrapping. Most 

likely, the learned system was unable to generate 

enough novel instances to continue bootstrapping 

                                                           
10 Generic answers were treated as correct only if a more spe-

cific reference was not available in the document.  
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and was thus unable to learn the relation.  

Relation Type 

(# Queries; # Correct Ans.) 

Recall Precision F 

A C HW L C HW L C HW L 

possTreatment (10;247) 0.27 0.63 0.50 0.34 0.51 0.47 0.83 0.56 0.48 0.48 

respForTreat (15;134) 0.73 0.33 0.24 0.22 0.66 0.78 0.73 0.44 0.37 0.33 

expectDateMarkt (11;60) 0.90 0.17 0.17 0.00 0.77 0.83 0.00 0.27 0.28 0 

studiesDisease (13;292) 0.23 0.67 0.59 0.09 0.51 0.50 0.79 0.58 0.54 0.16 

hasSideEffect (11;104) 0.80 0.10 0.13 0.02 0.83 0.70 1.00 0.17 0.23 0.04 

Total (60;837) 0.44 0.49 0.42 0.17 0.53 0.52 0.80 0.51 0.46 0.28 

Table 6: Question Answering Results by Relation Type 

Relation Type 

 

Total Number of Answers % Queries with At Least 1 Corr. Ans 

A C HW L A C HW L 

possTreatment  66 303 261 100 100.0% 90.0% 90.0% 90.0% 

respForTreat  98 67 41 40 100.0% 66.7% 60.0% 60.0% 

expectDateMarkt  54 13 12 0 72.7% 45.5% 45.5% 0.0% 

studiesDisease  68 379 347 33 100.0% 61.5% 46.2% 46.2% 

hasSideEffect  83 12 20 2 72.7% 36.4% 45.5% 18.2% 

Total  369 774 681 175 90.0% 60.0% 56.7% 43.3% 

Table 7: Number of Answers and Number of Queries Answered 

Overall, the system did better on relations hav-

ing more correct answers. Bootstrap learning has 

an easier time discovering new instances and new 

patterns when there are more examples to work 

with. Even a human pattern writer will have more 

examples to generalize from for common relations.  

While possibleTreatment() and hasSideEffect() 

have similar F-scores, their performance is very 

different at the query level. The system was able to 

find at least one correct answer to every possible-

Treatment() query; however only 72.7% of the stu-

diesDisease() queries were answered.  

Table 8 presents results from the extraction 

evaluation where a set of ~100 documents were 

annotated for all mentions of the 5 relations. Be-

cause every mention in the document set must be 

found, the system cannot rely on finding the easiest 

answers for common relations. The results in Table 

8 are significantly lower than for the question ans-

wering tasks; yet some of the same trends are 

present. Handwritten rules outperform learned pat-

terns. For at least some relations, the combination 

of the two improves performance. The three rela-

tions for which the learned system has the lowest 

performance on the question-answering task have 

the fewest instances annotated in the document set. 

Fewer instance in the large corpus make bootstrap-

ping more difficult—the learner is less able to gen-

erate novel instances to expand its pattern set.  

7 Discussion 

7.1 Sources of Error 

The most common source of error is pattern cover-

age. In the following figure, the system identified 

responsibleForTreatment(Janssen Pharmaceutical, 

Sporanox), but missed the corresponding relation 

between Novartis and Lamisil.  

 

 

 

 

 

Relation Type # Relations Found Recall Precision F 

GS C HW L C HW L C HW L C HW L 

possibleTreatment 518 225 187 68 0.15 0.10 0.09 0.34 0.28 0.66 0.21 0.15 0.15 

respForTreatment 387 101 77 36 0.10 0.08 0.05 0.41 0.40 0.50 0.17 0.13 0.08 

expDateOnMarket 66 13 13 0 0.06 0.06 0.00 0.31 0.31 0.00 0.10 0.10 0.00 

studiesDisease 136 95 91 4 0.08 0.09 0.00 0.12 0.13 0.00 0.10 0.11 0.00 

hasSideEffect 256 26 25 2 0.04 0.04 0.00 0.39 0.40 0.50 0.07 0.07 0.01 

Table 8: Extraction Results on the 102 Document Test Set Annotated for All Instances of the Relations 

Sporanox is made by Janssen Pharmaceutica Inc., 

of Titusville, N.J. Lamisil is a product of Novartis 

Pharmaceuticals of East Hanover, N.J. 
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Missed class instances contribute to errors, some-

times originating in errors in tokenization (e.g. not 

removing the ‗_‘ in each drug name in a bulleted 

list of the form ―_Trovan, an antibiotic...; etc.) 

However, many drug-names are simply missed: 

 
The system correctly identifies Rebif and Aricept 

as drugs, but misses Pregabalin and Serono. In 

both misses, the immediately preceding and fol-

lowing words provide little evidence that the word 

refers to a drug rather than some other product. 

Substance detection might be better served with a 

web-scale, list-learning approach like the doubly 

anchored patterns described in (Kozareva et al., 

2008). Alternatively, our approach may need to be 

extended to include a larger context window. 

7.2 Learned Patterns  

One of the ways in which learned patterns supple-

ment handwritten ones is learning highly specific 

surface-string patterns that are insensitive to errors 

in parsing. Figure 3 illustrates two examples of 

what appear to be easy cases of possibleTreat-

ment(). Because the handwritten patterns are not 

exhaustive and make extensive use of syntactic 

structure, parse errors prevented the system based 

on handwritten rules from firing. Learned surface-

string patterns were able to find these relations.  

Even when the syntactic structure is correct, 

learned patterns capture expressions not common 

enough to have been noticed by the rule writer. For 

example, while the handwritten patterns included 

‗withdrew’ as a predicate indicating a company 

was responsible for a drug, they did not include 

‗pulled.’ By including ‗pulled’, learned patterns 

extracted responsibleForTreatment() from ‗Ameri-

can Home Products pulled Duract, a painkiller.’ 

Similarly, the learned patterns include an explicit 

pattern ‗CONDITION drug called SUBSTANCE’, 

and thus extracted a possibleTreatment() relation 

from ‗newly approved narcolepsy drug called 

modafinil’ without relying on the coreference 

component to link drug to modafinil.  

Handwritten Patterns 

Despite the examples above of successfully learned 

patterns, handwritten patterns perform significantly 

better. In the active-learning context used for these 

experiments, the handwritten rules also required 

less manual effort. This comparison is not entirely 

fair-- while learned patterns required more hours, 

supervising the bootstrapping algorithm requires 

no training. The handwritten patterns, in contrast, 

require a trained expert.  

 
Figure 3: Extractions Missed by Handwritten Rules & 

the Erroneous Parses that Hid them 

While handwritten rules and learned patterns use 

the same language, they make use of it differently. 

The handwritten patterns group similar concepts 

together. A human pattern writer adds relevant 

synonyms, as well as words that are not synonym-

ous but in the pattern context can be used inter-

changeably. In Figure 4, the handwritten patterns 

include three word-sets: (patient*, people, partici-

pant*); (given, taken, took, using); and (report*, 

experience*, develop*, suffer*). The ‗*‘ serves as a 

wild-card to further generalize a pattern. The word-

sets in Figure 4 illustrate challenges for a learned 

system: the words are not synonyms, but rather are 

words that can be used to imply the relation.  

A human pattern writer frequently generates 

new classes not in the domain ontology. In Figure 

4, the circled patterns form a class of ‗people tak-

ing a substance.‘ The handwritten patterns for stu-

diesDisease() include classes targeting scientists 

and researchers. These classes are not necessarily 

triggered by nouns. Such classes allow the pattern 

writer to include complex patterns as in Figure 4 

and to write relatively precise, but open-ended pat-

terns such as: if there is a single named-drug and a 

named, non-side-effect disease in the same sen-

tence, the drug is a treatment for the disease.  

Pfizer also hopes to introduce Pregabalin next 

year for treatment of neuropathic pain, epilepsy 

and anxiety…Other deals include co-promoting 

Rebif for multiple sclerosis with its discoverer, 

Serono, and marketing Aricept for Alzheimer's 

disease with its developer, Eisai Co. 
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Figure 4: Learned and Handwritten Patterns for  

hasSideEffect() 

A final difference between handwritten and 

learned patterns is the level of predicate-argument 

complexity used. In general, handwritten patterns 

account for larger spans of predicate argument 

structure while learned patterns tend to limit them-

selves to the connections between the arguments of 

the relation with minor extensions.  

8 Conclusions and Lessons Learned 

First, it is encouraging that the synthesis of learn-

ing algorithms and handwritten algorithms can 

achieve an F1 of 0.51 in a new domain in a week 

(<50 hours of effort). Second, it is exciting that so 

little training data is required: ~20 relation pairs 

out of context (~2.5 hours of effort) and ~6 hours 

of active learning for the new classes.  

Third, the effectiveness of learning algorithms is 

still not competitive with handwritten patterns 

based on predicate-argument structure (~5 hours of 

effort on top of active learning for entities). 

Though the learned patterns have high precision 

(0.80 on average), recall is low (0.17) and varied 

greatly across the relations. Though the dominant 

factor in missing relations is pattern coverage, 

missing instances of classes contributed to low re-

call. Comparing learned patterns to manually writ-

ten patterns, (1) synonyms or other lexical 

alternatives that a human pattern writer would in-

clude, (2) the creation of subclasses for argument 

types, and (3) the scope of patterns
11

 are each ma-

jor sources of the disparity in coverage. Research 

on learning approaches to raise recall without sig-

nificant sacrifice in precision seems essential.  

Fourth, despite the disparity in performance of 

learned versus manual patterns, and despite the low 
                                                           
11 Learned patterns tend to focus on the structure that appears 

between the two arguments, rather than structure surrounding 

the left and right arguments. 

recall of learned patterns, the combined system‘s 

recall and F-Score are higher for three of the rela-

tions because the learned patterns generated an-

swers not found by handwritten patterns. We found 

examples where highly specific, learned, surface-

level patterns (lexical patterns) occasionally found 

information missed by handwritten patterns due to 

parsing errors or general low coverage. 

Fifth, the effort for coreference was the most 

time-consuming, given that every new relation 

contained at least one of the new argument types. 

While we included this in our estimate of domain 

adaptation, the infrastructure we built is domain 

generic. Improving generic coreference will reduce 

domain specific effort in future.  

Perhaps most significant of all, running a com-

plete experiment from definition of the domain 

through creation of training data and measurement 

of end-to-end performance of the system can be 

completed in a month. The ability to rapidly, 

cheaply, and empirically measure the impact of 

extraction research could prove a significant spur 

to research across the board. 

These experiments suggest three possible direc-

tions for improving the ability to quickly develop 

information extraction technology for a new set of 

relations: (1) reducing the amount of supervision 

provided to the bootstrap-learner; (2) improving 

the bootstrapping approach to reach the level of 

recall achieved by the human pattern writer elimi-

nating the need for a trained expert during domain 

adaptation; and (3) focusing improvements to the 

bootstrapping approach on techniques that allow it 

to find more of the instances missed by the pattern 

writer, thus improving the accuracy of the hybrid 

system.   

Acknowledgments 
This work was supported, in part, by DARPA un-

der AFRL Contract FA8750-09-C-179. Distribu-

tion Statement ―A‖ (Approved for Public Release, 

Distribution Unlimited) Thank you to the review-

ers for your insightful comments and to Michelle 

Franchini for coordinating the assessment effort. 

References 
E. Agichtein and L. Gravano. Snowball: extracting rela-

tions from large plain-text collections. In Proceed-

ings of the ACM Conference on Digital Libraries, pp. 

85-94, 2000.  

1445



A. Blum and T. Mitchell. Combining Labeled and Un-

labeled Data with Co-Training. In Proceedings of the 

1998 Conference on Computational Learning 

Theory, July 1998.  

E. Boschee, V. Punyakanok, R. Weischedel. An Explo-

ratory Study Towards ‗Machines that Learn to Read‘. 

Proceedings of AAAI BICA Fall Symposium, No-

vember 2008. 

J. Chen, D. Ji, C. Tan and Z. Niu. (2006). Relation ex-

traction using label propagation based semi-

supervised learning. COLING-ACL 2006: 129-136. 

July 2006. 

M. Freedman, E. Loper, E. Boschee, and R. Weischedel. 

Empirical Studies in Learning to Read. Proceedings 

of NAACL 2010 Workshop on Formalisms and Me-

thodology for Learning by Reading, pp. 61-69, June 

2010. 

W. Li and A. McCallum.  Rapid development of Hindi 

named entity recognition using conditional random 

fields and feature induction. Transactions on Asian 

Language Information Processing (TALIP), Volume 

2 Issue 3  September, 2003. 

R Grishman and B. Sundheim. Message Understanding 

Conference-6 : A Brief History", in COLING-96, 

Proc . of the Int'l Conj. on Computational Linguis-

tics, 1996.  

Z. Kozareva and E. Hovy. Not All Seeds Are Equal: 

Measuring the Quality of Text Mining Seeds. Human 

Language Technologies: The 2010 Annual Confe-

rence of the North American Chapter of the Associa-

tion for Computational Linguistics, June, 2010, pp. 

618-626. 

Z. Kozareva, E. Riloff, and E. Hovy. 2008. Semantic 

class learning from the web with hyponym pattern 

linkage graphs. In Proceedings of ACL-08: HLT, 

pages 1048–1056.  

J. May, A. Brunstein, P. Natarajan,  and R. Weischedel.  

Surprise! What's in a Cebuano or Hindi Name? 

Transactions on Asian Language Information 

Processing (TALIP), Volume 2 Issue 3  September, 

2003. 

D. Maynard, V. Tablan, K. Bontcheva, and H. Cun-

ningham. Rapid customization of an information ex-

traction system for a surprise language. Transactions 

on Asian Language Information Processing (TALIP), 

Volume 2 Issue 3  September, 2003. 

S. Miller, J. Guinness, and A. Zamanian, ―Name Tag-

ging with Word Cluster and Discriminative Train-

ing‖, Proceedings of HLT/NAACL 2004, pp. 337-

342, 2004 

T. Mitchell, J. Betteridge, A. Carlson, E. Hruschka, and 

R. Wang. ―Populating the Semantic Web by Macro-

Reading Internet Text. Invited paper, Proceedings of 

the 8th International Semantic Web Conference 

(ISWC 2009).  

NIST, ACE 2007: 

http://www.itl.nist.gov/iad/mig/tests/ace/2007/softwa

re.html 

P. Pantel and M. Pennacchiotti. Espresso: Leveraging 

Generic Patterns for Automatically Harvesting Se-

mantic Relations. In Proceedings of Conference on 

Computational Linguistics / Association for Compu-

tational Linguistics (COLING/ACL-06). pp. 113-120. 

Sydney, Australia, 2006.  

L. Ramshaw , E. Boschee, S. Bratus, S. Miller, R. 

Stone, R. Weischedel, A. Zamanian, ―Experiments in 

multi-modal automatic content extraction‖, Proceed-

ings of Human Technology Conference, March 2001.  

D. Ravichandran and E. Hovy. Learning surface text 

patterns for a question answering system. In Pro-

ceedings of the 40th Annual Meeting of the Associa-

tion for Computational Linguistics (ACL 2002), 

pages 41–47, Philadelphia, PA, 2002.  

E. Riloff. Automatically generating extraction patterns 

from untagged text. In Proceedings of the Thirteenth 

National Conference on Artificial Intelligence, pages 

1044-1049, 1996.  

S. Sekine and R. Grishman.  Hindi-English cross-lingual 

question-answering  system. Transactions on Asian 

Language Information Processing (TALIP), Volume 

2 Issue 3  September, 2003. 

G. Zhou, J. Li, L. Qian, Q. Zhu. Semi-Supervised 

Learning for Relation Extraction. Proceedings of the 

Third International Joint Conference on Natural 

Language Processing: Volume-I. 2008. 

 

1446



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1447–1455,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Discovering Relations between Noun Categories 
 

Thahir P Mohamed * Estevam R Hruschka Jr. Tom M Mitchell 

University Of Pittsburgh Federal University of Sao Carlos Carnegie Mellon University 

pmthahir@gmail.com estevam@cs.cmu.edu tom.mitchell@cs.cmu.edu 
   

   

Abstract 

Traditional approaches to Relation Extraction 

from text require manually defining the rela-

tions to be extracted.  We propose here an ap-

proach to automatically discovering relevant 

relations, given a large text corpus plus an ini-

tial ontology defining hundreds of noun cate-

gories (e.g., Athlete, Musician, Instrument).  

Our approach discovers frequently stated rela-

tions between pairs of these categories, using a 

two step process. For each pair of categories 

(e.g., Musician and Instrument) it first co-

clusters the text contexts that connect known 

instances of the two categories, generating a 

candidate relation for each resulting cluster.  It 

then applies a trained classifier to determine 

which of these candidate relations is semanti-

cally valid. Our experiments apply this to a text 

corpus containing approximately 200 million 

web pages and an ontology containing 122 cat-

egories from the NELL system [Carlson et al., 

2010b], producing a set of 781 proposed can-

didate relations, approximately half of which 

are semantically valid.  We conclude this is a 

useful approach to semi-automatic extension of 

the ontology for large-scale information extrac-

tion systems such as NELL. 

1 Introduction 

The Never-Ending Language Learner (NELL) 

(Carlson et al., 2010b)) is a computer system that 

learns continuously to extract facts from the web.  

NELL is given as input an initial ontology that 

specifies the semantic categories (e.g. city, compa-

ny, sportsTeam) and semantic relations (e.g. hasOf-

ficesIn(company,city), teamPlay-

sInCity(sportsTeam,city)) it must extract from the 

web.  In addition, it is provided 10-20 seed positive 

training examples for each of these categories and 

relations, along with hundreds of millions of unla-

beled web page.  Given this input, NELL applies a 

large-scale multitask, semisupervised learning 

method to learn to extract new instances of these 

categories (e.g., city(“London”)) and relations 

(e.g., teamPlaysInCity(“Steelers”,”Pittsburgh”)) 

from the web.  During the past 17 months NELL 

has been running nearly continuously, learning to 

extract over 600 categories and relations, and pop-

ulating a knowledge base containing over 700,000 

instances of these categories and relations with a 

precision of approximately 0.85
1
. 

This paper considers the problem of automati-

cally discovering new relations to extend the on-

tology of systems such as NELL, enabling them to 

increase over time their learning and extraction 

capabilities.  More precisely, we consider the fol-

lowing problem: 

 

Input: 

· An ontology specifying a set of categories 

· A knowledge base containing instances of these 

categories (perhaps including errors) 

· A large text corpus 

 

Output: 

· A set of two-argument relations that are fre-

quently mentioned in the text corpus, and 

whose argument types correspond to categories 

in the input ontology (e.g., RiverFlows-

ThroughCity(<River>,<City>). 

· For each proposed relation, a set of instances 

(i.e. RiverFlowsThroughCity(“Nile”,”Cairo”)). 

· For each proposed relation, a set of text extrac-

tion patterns that can be used to extract addi-

tional instances of the relation (e.g., the text “X 

in the heart of Y”, where X is a known river, 

and Y a known City, suggests extracting 

RiverFlowsThroughCity(X,Y)). 

 

Note the above inputs are easily available from 

NELL in the form of its existing ontology and ex-

tracted knowledge base.  Note also that the outputs 

                                                           
*  Thahir P. Mohamed is currently at Amazon Inc. 

1  NELL‟s extracted knowledge can be viewed and 

downloaded at http://rtw.ml.cmu.edu. 
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of our system are sufficient to initiate NELL‟s 

learning of additional extraction methods to further 

populate each proposed relation.  One goal of this 

research is to create a system that can provide 

NELL with an ongoing set of new learning and 

extraction tasks. The system is called OntExt (On-

tology Extension System) 

 

Table 1 shows a sample of successful relations 

and corresponding relation contexts and sample 

seed instances generated by OntExt. 

 

Table 1. Examples of valid relations (generated 

by OntExt), their text extraction patterns and 

extracted instances. 
name(category1- 

main context- 

category2) 

Extraction pat-

terns 

Seed 

Instances 

 

River 

-in heart of- 

City 

 

„in heart of‟ 

„in the center 

of‟ 

„which flows 

through‟ 

“Seine, Paris” 

“Nile, Cairo” 

“Tiber river, Rome” 

“River arno, Florence” 

Food 

-to produce-

Chemical 

„to produce‟ 

„to make‟ 

„to form‟ 

“Salt, Chlorine” 

“Sugar, Carbon diox-

ide” 

“Protein, Serotonin” 

 

StadiumOrVenue 

-in downtown- 

City 

 

„in downtown‟ 

 

“Ford field, Detroit” 

“Superdome, New Or-

leans” 

“Turner field, Atlanta” 

 

Disease 

-caused by- 

Bacteria 

 

„caused by‟ 

„is the causa-

tive agent of‟ 

„is the cause 

of‟ 

“pneumonia, legionel-

la” 

“mastitis, staphylococ-

cus aureus” 

“gonorrhea, neisseria 

gonorrhoeae” 

Disease 

-destroys-

CellType 

„destroys‟ 

„attacks‟ 

"alzheimer, brain cells" 

“vitiligo", melano-

cytes" 

"aids, lymphocytes" 

County 

-county-

StateOrProvince 

„county‟ 

„county of‟ 

„county in‟ 

"sufolk, massachusetts" 

"marin, california" 

"sussex, delaware" 

"osceola, michigan" 

2 Background 

Traditional Relation Extraction 

We define Traditional RE systems as those that 

require the user to specify information about the 

relations to be learned. For instance, SnowBall 

(Agichtein and Gravano 2000) & CPL (Carlson et 

al. 2009) are bootstrapped learning systems that 

require manual input of relation predicates. In the-

se systems, for each relation predicate, the relation 

name (e.g. City „Capital of‟ Country), the seed in-

stances and the category type (e.g. City, Country, 

Celebrity etc) are provided (for domain and range). 

In CPL (Carlson et al. 2009), learning of rela-

tion/category instances is coupled by using con-

straints such as mutual exclusion relationships 

among the predicates. The authors show that this 

coupling reduces semantic drift, which commonly 

occurs with bootstrapping systems, thus leading to 

improved precision. CPL achieved 89% precision 

for the relation instances extracted (Carlson, Bet-

teridge et al. 2009).  KNOWITALL (Etzioni, Ca-

farella et al. 2005) is a web-scale relation extrac-

tion system, which requires as input the relation 

names. Hence, in these “traditional relation extrac-

tion” methods, the need to manually define the re-

lations to be extracted makes it difficult to work in 

applications having thousands of possible relation 

predicates.  

2.1 Open Relation Extraction 

Open RE methods do not require a user to manual-

ly specify the information about the relations to be 

learned, such as their names, seed examples, etc. 

TextRunner (Banko, Cararella et al. 2007) is such 

an Open Information Extraction system that re-

trieves from the web millions of relational tuples 

between noun phrase entities. TextRunner uses a 

deep linguistic parser to perform self-supervised 

learning and extracts a positive set (i.e. valid rela-

tion between entities) and a negative set (i.e. inva-

lid relationships) of relational tuples based on cer-

tain heuristics. Then, a Naive Bayes classifier is 

built having features such as part-of-speech tags of 

the words in the relation tuples, number of tokens, 

stopwords etc., and uses the labeled instances as 

the training set. This classifier runs on sentences 

from a web corpus to extract millions of relational 

tuples. However, of the 11 million high confident 

relational tuples extracted by this system only 1 

million were concrete facts (Banko, Cararella et al. 

2007). Of these concrete facts 88% were estimated 

to be correct. For instance, (Mountain View, head-

quarters of, Google) is a tuple representing a valid 

concrete fact. The remaining 90% of the tuples are 

abstract or do not have well-formed arguments or 

well-formed relations. For instance, (Einstein, de-

rived, theory) is an abstract tuple as it does not 
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have enough information to indicate a concrete fact 

(Banko, Cararella et al. 2007) because the specific 

theory which Einstein derived is missing in that 

tuple. In the tuple (45, „went to‟, „Boston‟), one of 

the arguments (i.e. 45) is not well formed.  

In (Banko and Etzioni, 2008) a Conditional 

Random Field (CRF) classifier is used to perform 

Open Relation Extraction which improves by more 

than 60% the F-score achieved by the Naive Bayes 

model in the TextRunner system. However the 

CRF approach does not solve the problem associ-

ated with extraction of abstract/non-well formed 

tuples. Further, in the same work, it is shown that 

Open RE has a much lower recall in comparison to 

Traditional RE systems. On four common relations 

(Acquisition, Birthplace, InvetorOf, WonAward), 

Open RE attained a recall of 18.4% in comparison 

to 58.4% achieved by Traditional RE (Banko and 

Etzioni 2008). Both Open RE systems discussed 

(Banko, Cararella et al. 2007; Banko and Etzioni 

2008) do not perform learning of the category type 

of the entities involved in the relations. They are 

single-pass and do not perform continuous learning 

to improve/extend on what has been learnt. 

2.2 Unsupervised Methods to Extract Rela-

tions between Named Entities 

In general, traditional RE methods extract concrete 

facts and have much higher recall for a given rela-

tion, than Open RE methods. This is due to the 

knowledge fed into Traditional RE methods such 

as the category type of the entities in the relation 

and seed instances for the relation. Traditional RE 

methods require the relations to be manually de-

fined and extract instances only for them. Open RE 

methods, on the other hand, do not require any 

such domain specific knowledge to be manually 

input.  They extract instances for a wide spectrum 

of relations that are not manually pre-defined.  

To overcome the drawbacks of using Traditional 

and Open RE methods, some researchers have used 

unsupervised learning methods to automatically 

generate new relations (with seeds and contexts) 

between specific categories. These automatically 

generated relations can then be used as input to 

Traditional RE systems.  

Hasegawa et.al (Hasegawa, Sekine et al. 2004), 

propose an unsupervised clustering based ap-

proach. One feature vector for each co-occurring 

NE pair is formed based on the context words in 

which the NE pair co-occurs. Then, a cosine-

similarity metric is applied to each pair of feature 

vectors to generate a “NE-pair x NE-pair” matrix. 

Clustering is done on this matrix and each cluster 

of NE-pairs corresponds to a relation predicate.  

The work by Zhang et.al (Zhang, Su et al. 2005) 

generates a shallow parse tree for each sentence 

containing a NE pair to generate relation instances. 

A tree similarity metric is used to cluster the rela-

tion instances. This method gives improved F-

score over Hasegawa et.al (Hasegawa, Sekine et al. 

2004). Further they use a specialized NE tagger 

built to recognize entities that belong to specific 

predefined categories. The aforementioned meth-

ods (Hasegawa, Sekine et al. 2004) (Zhang, Su et 

al. 2005) were tested on a news corpus to identify 

relations between only a couple of pairs of entity 

types (Person-GeoPoliticalEntity and Company-

Company).  

Both of these methods cluster NE-pairs primari-

ly based on lexical similarity of the context words 

connecting the entities. Hence NE-pairs connected 

by lexically different but semantically similar con-

text patterns (e.g. river „in heart of‟ city and river 

„flows through‟ city) would probably not get clus-

tered together. The web data is, however, much 

noisier and has a larger number of entity types (i.e. 

category predicates), thus, another issue is that for 

web scale data NE pairs X NE pairs similarity ma-

trix would not be scalable for many thousands of 

NE-pairs. 

3 Ontology Extension System - OntExt 

The OntExt system for ontology extension, pro-

posed in this paper, combines characteristics from 

both “Traditional RE” and “Open RE,” to discover 

new relations among categories that are already 

present in the ontology, and for which many in-

stances have already been extracted.  

Our proposed method for automatic relation ex-

traction offers the following advantages over the 

methods discussed above.  

• The key idea in our approach is to make use 

of redundancy of information in web data - the 

same relational fact is often stated multiple 

times in large text corpora, using different con-

text patterns.  We use this redundancy to clus-

ter together context patterns which are seman-

tically similar although they may be lexically 

dissimilar. 
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• Instead of clustering on the ‘NE-pairs X 

NE-pairs’ matrix, clustering is done on a ‘Con-

text-pattern X Context-pattern’ matrix. This is 

much more scalable as the context patterns are 

fewer in number and since our method applies 

several criteria to prune out irrelevant patterns. 

• To accommodate errors in the input catego-

ry instances and ambiguity in web data, we 

build a classifier which learns to distinguish 

valid relations from semantically invalid rela-

tions. 

 

OntExt has 3 components. 1) It starts exploring 

a large web corpus and 2) category instances ex-

tracted by CPL to generate new relations. After the 

relations are generated, 3) a classifier is developed 

to classify semantically valid relations. 

3.1 Pre-processing 

Following along the same strategy used in [Carlson 

et al., 2010], OntExt uses as input a corpus of 2 

billion sentences, which was generated by using 

the OpenNLP
2
 package to extract, tokenize, and 

POS-tag sentences from the 500 million web page 

English portion of the ClueWeb09 data [Callan and 

Hoy, 2009]. Before performing relation extraction, 

this corpus is preprocessed. First, sentences which 

contain a pair of known category instances are re-

trieved (e.g. the sentence “Ottawa is the capital of 

Canada.”, where „Ottawa‟ is a known instance of 

the „City‟ category and „Canada‟ is a known in-

stance of „Country‟).  For every category pair (e.g. 

<City, Country>) the sentences containing known 

instances of both categories are grouped into a set 

S. The text between the two instances is called the 

„context pattern‟ (e.g. „is the capital of‟ is a context 

pattern). Three types of pruning are done on this 

set S. 

1. If the context pattern is a rare one (i.e. if the 

context pattern occurs in less than a threshold 

number of sentences), all sentences with that 

context pattern are removed. Thus we retain 

only frequently occurring contexts.  We use a 

threshold requiring at least 5 sentences in the 

experiments presented in Section 4. 

2. Context patterns which co-occur with very 

few instances of either category type are re-

moved. For example, the category pair <Vehi-

cle,SportsTeam> has several sentences such as 

                                                           
2  http://opennlp.sourceforge.net. 

„Car was engulfed in flames‟,  „Truck was en-

gulfed in flames‟ etc. Note that Flames (Calga-

ry Flames) is a SportsTeam. But here flames 

clearly does not refer to a Sportsteam. This 

context „was engulfed in‟ connects several in-

stance of a „Vehicle‟ category to a single in-

stance of SportsTeam instance. Hence all sen-

tences with this context are removed. Note this 

context would not have been removed in step 1 

as that is just a threshold on the number of sen-

tences in which any pair occurs. We use a 

threshold requiring at least 3 distinct instances 

of both the domain and the range, for each 

context. 

3. Banko et.al, 2008 show that most binary re-

lational contexts fall under certain types of lex-

ico-synctatic patterns. They include context 

patterns like „C1 Verb C2‟, „C1 NP Prep C2‟, 

„C1 Verb Prep C2‟ and „C1 to Verb C2‟ (C1 

and C2 are category instances). Hence context 

patterns which do not fall under the above 

types are removed from the set S as they are 

not likely to produce relation instances.  

3.2 Relation Generation 

From the previous pre-processing step OntExt re-

trieves for each category pair a pruned set S‟ of 

sentences. Each sentence has a pair of category 

instances and the context connecting them. 
 

Algorithm 1: Relation Generator 

 

Input: One pair of Categories (C1, C2) and set of 

sentences, each containing a pair of instances 

known to belong to C1 and C2. The phrase con-

necting the instances in the sentence is the context. 

Output: Relations and their seed instances  
 

Steps: 

1. From the input sentences, build a Context by 

Context co-occurrence matrix (Shown in figure 

1). The matrix is then normalized. 

2.  Apply K-means clustering on the matrix to 

cluster the related contexts together. Each clus-

ter corresponds to a possible new relation be-

tween the two input categories. (Weka Ma-

chine Learning package [Hall et al., 2009] was 

used to perform K-means clustering. The value 

of K was set to 5 based on trial and error ex-

periments.) 
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3. Rank the known instance pairs (belonging to 

C1,C2) for each cluster and take the top 50 as 

seed instances for the relation 
 

The key data structure used by OntExt is a co-

occurrence matrix of the contexts for each category 

pair, as shown in Figure 1. In this matrix, each cell 

corresponds to the number of pairs of category in-

stances that both contexts co-occur with (e.g. the 

sentences “Vioxx can cure Arthritis” and “Vioxx is 

a treatment for Arthritis” provide a case where the 

2 contexts „can cure‟ and „is a treatment for‟ co-

occur with an instance pair [Vioxx, Arthritis]). Ini-

tially, the value of Matrix(I,j) is the number of cat-

egory instance pairs that occur with both context i 

and context j.  We then normalize each cell in the 

matrix, dividing it by by the total count for its row. 





N

j

jiMatrix

jiMatrix
jiMatrix

0

),(

),(
),(

 

We also give higher weight to contexts which co-

occur with only a few contexts over ones which are 

generic and co-occur with most contexts. 

|}0),(:)({|
*),(),(




jiMatrixjContext

N
jiMatrixjiMatrix  

 

Where N is the total number of contexts, and 

|{Context(j) : Matrix(i,j) > 0}| refers to the number 

of cells in the row Matrix(i) which are greater than 

zero. 

For example, for the <drug, disease> category 

pair after 122 contexts were obtained after prepro-

cessing. Contexts such as „to treat‟, „for treatment 

of‟, „medication‟ which all indicate the same rela-

tion (drug-to treat-disease) have high co-

occurrence values (see Figure 1). Similarly con-

texts such as „can cause‟, „may cause‟, „can lead to‟ 

(indicating the relation drug-can cause-disease) 

have high co-occurrence values (see Figure 1). 

When OntExt performs clustering on this co-

occurrence matrix the contexts with large co-

occurrences get clustered together. Each cluster is 

then used to propose a possible new relation. The 

centroid of each cluster is used to build the relation 

name. If the centroid of a cluster is the context „for 

treatment of‟, then the relation name is „drug-for-

treatment-of-disease‟. 

OntExt next generates seed instances for the 

proposed relation. The seed instances which co-

occur with contexts corresponding to the cluster 

centroid or close to centroid will be best repre-

sentative of the relation. So the strength of the seed 

instance is inversely proportional to the standard 

deviation of the context from the centroid of the 

relation contexts cluster.  Also the strength of the 

seed instance is directly proportional to the number 

of times it co-occurs with the context. 

 
 

 

Figure 1: This figure shows the Context by Context 

sub-matrix (with 6 contexts) for the category pair 

(Drug, Disease) and the seed instances for each 

relation.  As described in the text, each entry gives 

the normalized count of the number of known 

<drug, disease> pairs that occur with both the row 

context and the column context. 

 

To summarize, each seed instance s (pair of cat-

egory instances) is weighted as follows  

   
Where, 

Pattern_cluster is the cluster of pattern contexts for 

this given relation 

Occ(c,s) is the number of times instance „s‟ co-

occurs with the pattern context „c‟ 

sd(c) is the standard deviation of the context from 

the centroid of the pattern cluster.   

Using this metric the instances are ranked and the 

top 50 are output as initial seed instances for the 

proposed relation.   
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3.3 Classifying semantically valid relations 

More than half of the relations generated in the 

previous step are invalid due to the following rea-

sons 

1. Error in category instances: The category 

instances input to OntExt come from NELL. In 

the version of the knowledge base used in the-

se experiments, the accuracy of these instances 

was 78%. Due to the erroneous category in-

stances some invalid relations are generated by 

OntExt. For instance the generated relation, 

„condiment-wearing-clothing‟ with seeds 

(pig,dress), (rabbit,pants) etc. Here „pig‟  and 

„rabbit‟ were incorrectly identified by NELL as 

instances of „condiment‟. 

2. Semantic Ambiguity: Consider the generated 

relation „bakedgood-baking-magazine‟ with in-

stances (cookies,time), (cupcakes, people), etc. 

Here the instances „time‟ and „people‟ do not 

refer to magazines, although they can in gen-

eral.  Due to the semantic ambiguity of these 

instances this invalid relation got generated 

3. Semantically Incomplete relations: Some of 

the generated relations require a third entity or 

some more contextual information, in order to 

be considered semantically valid. For instance, 

„personUs-said-company‟ or „newspaper-is-

reporting-that-company‟. These don‟t stand by 

themselves as two-argument relational facts 

and need more information to be complete 

4. Illogical relations: Some generated relations 

simply have no real semantic meaning. These 

relations are generated due to the category in-

stances appearing together in some unrelated 

contexts. E.g. the generated relation „date-

starting-date‟ with seeds such as (Wednesday, 

June), (friday, July) and the relation „country-

minister-of- economicsector‟ with seeds (ja-

pan,agriculture), (india, industry).  

The introduction of these invalid relations can 

adversely affect the performance of NELL. How-

ever, it is a challenging problem to develop auto-

mated ways to distinguish between valid and inva-

lid relations without any domain specific 

knowledge. To approach this problem, we identi-

fied a set of features which can help characterizing 

valid and invalid relations, and which can be gen-

erated automatically. Below is a description of the 

features and the intuition behind their use for this 

classification task. 

Each generated relation has a pair of category 

types (C1, C2), a corresponding set of seed in-

stances (which are pairs of instances belonging to 

C1 and C2) and pattern contexts connecting C1 

and C2.  Let N be the number of seed instance 

pairs and N1 and N2 be number of unique instanc-

es (out of these N instance pairs) belonging to cat-

egories C1 and C2 respectively. 

1. Normalized frequency count: The frequency 

count of each category instance is obtained 

from the corpus and normalized by the catego-

ry instance with maximum count. For a given 

relation, a feature is generated by averaging 

the normalized frequency counts of the in-

stances belonging to C1. Another similar fea-

ture is generated for C2 following the same 

strategy. For example the relation <Profession 

„believe that‟ Movie> was generated due to 

common words like „predator‟, ‟earthquake‟ 

being identified as movie names out of con-

text. These features can help identify such in-

valid relations.   

2. Distribution of extraction patterns: NELL 

learns instances as well as extraction patterns 

for each category (e.g. the category Actor has 

extraction patterns such as „_ got an Oscar 

award‟, „_ is the movie‟s lead actor‟). If a cat-

egory instance co-occurs in the web corpus 

with several extraction patterns belonging to 

other categories, then that instance has large 

ambiguity. We measure ambiguity of an in-

stance (i) belonging to category „C‟ with re-

spect to another category „M‟ (where M is not 

a sub type or super type of „C‟) as   

Ambiguity(i,M) =  

 withoccurs-co i''  that C''in  patterns extraction of #

 withoccurs-co i'' that M''in  patterns extraction of # 

We measure the average ambiguity for the set 

of instances (of size N) belonging to category 

C in the generated seeds as follows, 

  


Ci

M NMiAmbiguityMax /),(( ) 

   

Two features are generated for categories C1  

and C2 in the relation. 

3. Relationship characteristics: We identified a 

few characteristics of the relation which help 

in identifying valid relations.  If in the generat-

ed relation, most instances of C1 co-occur only 

1452



 

 

with very few instances of C2 (or vice versa) 

then the relation could be weak. For example, 

<Organization „Provides‟ EconomicSector> - 

the instance „Information‟ (of category Eco-

nomicSector) connects to a large percentage of 

items in the category „Organization‟ but does 

not express a meaningful relation. So we con-

sider the instance (in this example „Infor-

mation‟, let us call it „maxconnect_instance‟) 

co-occurring with maximum number of in-

stances of the other category. The percentage 

of instances it co-occurs with from among the 

total number of instances of the other category 

which are part of the seed instances is taken as 

a feature. Also if that instance is a very com-

mon word (like „information‟ which in several 

contexts does not refer to „EconomicSector‟) 

then this could indicate the presence of an in-

valid relation. So the normalized frequency 

count of this instance (maxconnect_instance) is 

taken as another feature.  

4. Pattern Contexts: The number of pattern con-

texts attained through pattern clustering for the 

relation is taken as another feature. The pres-

ence of several pattern contexts connecting the 

instances between the two categories could in-

dicate that the relation is a valid one.  The 

presence of Hearst patterns (Hearst M, 1992) 

referring to a hyponym (“is-a”) relation in pat-

tern contexts indicates the possibility of a valid 

relation, and is taken as another feature 

Another feature is regarding how specific is 

the context pattern to this relation. If the same 

context connects say C1 instances to instances 

of several other categories apart from C2, then 

this context is not unique to this relation and 

might not indicate a meaningful valid relation-

ship. So the ratio of the number of instances in 

C2 connected to C1 versus the number of in-

stances from all categories connected to C1 by 

the most significant pattern context (i.e. cen-

troid in pattern cluster) is taken as a feature. A 

similar feature is generated for C2 as well. 

4 Experimental Setup and Results 

4.1 CPL System 

CPL (Carlson et al., 2010) is a semi-supervised 

learning system which takes in an input ontology 

(containing category and relation predicates and 

corresponding seed instances) and constraints 

(such as Mutual exclusion rules between predi-

cates). The system iteratively extracts patterns and 

instances for the category/relation predicates from 

a web corpus of around 500 million web pages.  

CPL is one learning component in NELL (the Nev-

er Ending Language Learner) (Carlson et al., 

2010b). 

4.2 Relation Generation: 

We use approximately 22,000 category instances 

belonging to 122 categories extracted by CPL at 

the end of its 20
th
 iteration and the web corpus as 

input to perform the co-clustering described in 

Section 3.2 and generate the new relations. The 

process generated 781 relations. For each relation, 

the relation name, types of the categories involved 

in the relation and the seed instances and patterns 

for each relation were generated. Table 1 in section 

1 shows a sample of valid relations generated by 

this method. 

Tables 2, 3, 4 and 5 show invalid relations for 

each type of invalidity, “Error in the Category In-

stances”, “Semantic Ambiguity”, “Semantically 

Incomplete Relations” and “Illogical Relations” 

respectively. More specifically, Table 2 shows a 

sample of relations generated due to an entity be-

ing labeled incorrectly as to belong to a category. 

The incorrect category instances are in italics. 

Table 3 presents a sample of relations which 

were generated because of semantic ambiguity. 

Instances with ambiguity are in italics. 

Table 4 shows some of the generated relations 

which are semantically incomplete. 

Table 5 presents samples of illogical relations 

which do not establish any concrete fact. 

Table 2. Examples of Incorrect category in-

stances. 
name(category1 

-main context- 

category2) 

Relation 

Contexts 

Seed 

Instances 

SportsGame 

-Beating- 

Country 

„beating‟ 

 

"tournament,Sri Lanka" 

"champions, France" 

"match, canada" 

Animal 

-will eat-

Condiment 

„will eat‟ 

„eating‟ 

 

"wolf, sheep" 

"fox, rabbit" 

"lion, lamb" 

 

 

 

 

 

1453



 

 

 

Table 3. Examples of Semantically Ambiguous 

relations.  

Name Relation 

Contexts 

Seed 

Instances 

Bird 

-play- 

City 

„play‟ 
 

"Cardinals, Atlanta" 

"Ravens, Miami" 

"Eagles, Chicago" 

BakedGood 

-baking- 

Magazine 

„baking‟ 

"time, cakes" 

"people, cookies" 

 

Table 4. Examples of semantically incomplete 

relations. 

Name Relation 

Contexts 

Seed 

Instances 

Personus 

acknowledged 

Date 
 

„acknowledged‟ 

„warned‟ 

„met‟ 
 

"mr obama, tues-

day" 

"george w . bush, 

tuesday" 

"al gore, thursday" 

NewsPaper 

-is reporting 

that- 

Company 

„is reporting 

that‟ 

„writes that‟ 

„reported that‟ 

"financial times, 

apple" 

"wall street jour-

nal, gm" 

"wall street jour-

nal, yahoo" 

 

Table 5. Examples of relations representing 

facts that are not concrete.  

Name Relation 

Contexts 

Seed 

Instances 

Emotion 

-of living in-

StateOrPro 

vince 

„of living in‟ 

"joy, california" 

"excitement, colora-

do" 

"fear, iowa" 

BodyPart 

-to keep- 

BodyPart 
 

„to keep‟ 

„guard‟ 

“hand, eye” 

“nose, throat” 

“eye, brain” 

“elbow, hand” 

4.3 Relation Classification: 

To determine the feasibility of automatically classi-

fying OntExt‟s proposed relations as valid or inva-

lid, we trained and tested a classifier using the fea-

tures described above, using manually assigned 

class label for some of the generated relations (252 

relations) as valid or invalid (the criteria for which 

was explained before). 115 of these 252 relations 

were found to be valid by manual evaluation. This 

shows the need for a machine learning classifier to 

identify valid/invalid relations. The various fea-

tures described earlier (such as normalized fre-

quency count, relationship characteristics, pattern 

context features, distribution of extraction patterns) 

were generated for each relation. Ten-fold cross 

validation experiments were carried out with vari-

ous classifiers.  A Random Forest classifier per-

formed the best.  Precision, recall and ROC-area is 

shown in the table below (ROC area is the area 

under the ROC curve which plots the classifier 

performance by having the True Positive Rate on 

the Y-axis and False Positive Rate on the X-axis). 

 

Table 6. Classifier performance. 
RelationType Precision Recall ROC Area 

Valid 71.6 72.2 0.804 

Invalid 76.5 75.9 0.804 

Weighted 

Avg. 

74.2 74.2 0.804 

 

These results indicate that the system is able to 

learn to identify semantically valid relations with-

out using any manually input information. The val-

id relations generated can be input to NELL, al-

lowing it to iteratively learn additional instances 

for each proposed relation. 

5 Conclusion and Future work: 

Open Relation Extraction and Traditional Relation 

Extraction have their respective strengths and 

weaknesses. The OntExt system proposed in this 

work combines the strengths of both of those 

methods. The relation predicates automatically 

generated by our approach are typed, have a mean-

ingful name identifying the relation, and are ac-

companied by suggested context patterns and seed 

instances.  These relations can be input to NELL to 

learn more instances for the relation. We propose 

in the future to integrate this relation generation 

system into NELL, to iteratively extend NELL‟s 

initial ontology, providing an ongoing stream of 

new learning tasks.  After every fixed set of 

NELL‟s iterations, its growing knowledge base 

would be input to the relation generation system 

which will in turn feed NELL with new relation 

predicates.  One additional area for future research 

is to extend OntExt to discover new categories in 

addition to new relations. 
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Abstract

We explore unsupervised approaches to rela-
tion extraction between two named entities;
for instance, the semantic bornIn relation be-
tween a person and location entity. Con-
cretely, we propose a series of generative
probabilistic models, broadly similar to topic
models, each which generates a corpus of ob-
served triples of entity mention pairs and the
surface syntactic dependency path between
them. The output of each model is a cluster-
ing of observed relation tuples and their as-
sociated textual expressions to underlying se-
mantic relation types. Our proposed models
exploit entity type constraints within a relation
as well as features on the dependency path be-
tween entity mentions. We examine effective-
ness of our approach via multiple evaluations
and demonstrate 12% error reduction in preci-
sion over a state-of-the-art weakly supervised
baseline.

1 Introduction

Many NLP applications would benefit from large
knowledge bases of relational information about
entities. For instance, knowing that the entity
Steve Balmer bears the leaderOf relation to the
entity Microsoft, would facilitate question answer-
ing (Ravichandran and Hovy, 2002), data mining,
and a host of other end-user applications. Due to
these many potential applications, relation extrac-
tion has gained much attention in information ex-
traction (Kambhatla, 2004; Culotta and Sorensen,
2004; Mintz et al., 2009; Riedel et al., 2010; Yao et

al., 2010). We propose a series of generative prob-
abilistic models, broadly similar to standard topic
models, which generate a corpus of observed triples
of entity mention pairs and the surface syntactic de-
pendency path between them. Our proposed mod-
els exploit entity type constraints within a relation
as well as features on the dependency path between
entity mentions. The output of our approach is a
clustering over observed relation paths (e.g. “X was
born in Y” and “X is from Y”) such that expressions
in the same cluster bear the same semantic relation
type between entities.

Past work has shown that standard supervised
techniques can yield high-performance relation de-
tection when abundant labeled data exists for a
fixed inventory of individual relation types (e.g.
leaderOf ) (Kambhatla, 2004; Culotta and Sorensen,
2004; Roth and tau Yih, 2002). However, less ex-
plored are open-domain approaches where the set
of possible relation types are not fixed and little to
no labeled is given for each relation type (Banko et
al., 2007; Banko and Etzioni, 2008). A more re-
lated line of research has explored inducing rela-
tion types via clustering. For example, DIRT (Lin
and Pantel, 2001) aims to discover different repre-
sentations of the same semantic relation using dis-
tributional similarity of dependency paths. Poon
and Domingos (2008) present an Unsupervised se-
mantic parsing (USP) approach to partition depen-
dency trees into meaningful fragments (or “parts”
to use their terminology). The combinatorial nature
of this dependency partition model makes it difficult
for USP to scale to large data sets despite several
necessary approximations during learning and infer-
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ence. Our work is similar to DIRT and USP in that
we induce relation types from observed dependency
paths, but our approach is a straightforward and
principled generative model which can be efficiently
learned. As we show empirically, our approach out-
performs these related works when trained with the
same amount of data and further gains are observed
when trained with more data.

We evaluate our approach using ‘intrinsic’ clus-
tering evaluation and ‘extrinsic’ evaluation settings.1

The former evaluation is performed using subset of
induced clusters against Freebase relations, a large
manually-built entity and relational database. We
also show some clusters which are not included as
Freebase relations, as well as some entity clusters
found by our approach. The latter evaluation uses
the clustering induced by our models as features for
relation extraction in distant supervision framework.
Empirical results show that we can find coherent
clusters. In relation extraction, we can achieve 12%
error reduction in precision over a state-of-the-art
weakly supervised baseline and we show that using
features from our proposed models can find more
facts for a relation without significant accuracy loss.

2 Problem and Experimental Setup

The task of relation extraction is mapping surface
textual relations to underlying semantic relations.
For instance, the textual expression “X was born in
Y” indicates a semantic relation bornIn between en-
tities “X” and “Y”. This relation can be expressed
textually in several ways: for instance, “X, a native
of Y” or “X grew up in Y”. There are several com-
ponents to a coherent relation type, including a tight
small number of textual expressions as well as con-
straints on the entities involved in the relation. For
instance, in the bornIn relation “X” must be a person
entity and “Y” a location (typically a city or nation).
In this work, we present an unsupervised probabilis-
tic generative model for inducing clusters of relation
types and recognizing their textual expressions. The
set of relation types is not pre-specified but induced
from observed unlabeled data. See Table 4 for ex-
amples of learned semantic relations.

Our observed data consists of a corpus of docu-
ments and each document is represented by a bag

1See Section 4 for a fuller discussion of evaluation.

of relation tuples. Each tuple represents an ob-
served syntactic relationship between two Named
Entities (NE) and consists of three components: the
dependency path between two NE mentions, the
source argument NE, and the destination argument
NE. A dependency path is a concatenation of depen-
dency relations (edges) and words (nodes) along a
path in a dependency tree. For instance, the sentence
“John Lennnon was born in Liverpool” would yield
the relation tuple (Lennon, [↑ −nsubjpass, born, ↓
−in], Liverpool). This relation tuple reflects a se-
mantic bornIn relation between the John Lennon and
Liverpool entities. The dependency path in this ex-
ample corresponds to the “X was born in Y” textual
expression given earlier. Note that for the above ex-
ample, the bornIn relation can only occur between a
person and a location. The relation tuple is the pri-
mary observed random variable in our model and we
construct our models (see Section 3) so that clusters
consist of textual expressions representing the same
underlying relation type.

3 Models

We propose three generative models for modeling
tuples of entity mention pairs and the syntactic de-
pendency path between them (see Section 2). The
first two models, Rel-LDA and Rel-LDA1 are sim-
ple extensions of the standard LDA model (Blei et
al., 2003). At the document level, our model is iden-
tical to standard LDA; a multinomial distribution
is drawn over a fixed number of relation types R.
Changes lie in the observations. In standard LDA,
the atomic observation is a word drawn from a la-
tent topic distribution determined by a latent topic
indicator variable for that word position. In our ap-
proach, a document consists of an exchangeable set
of relation tuples. Each relation tuple is drawn from
a relation type ‘topic’ distribution selected by a la-
tent relation type indicator variable. Relation tuples
are generated using a collection of independent fea-
tures drawn from the underlying relation type distri-
bution. These changes to standard LDA are intended
to have the effect that instead of representing seman-
tically related words, the ‘topic’ latent variable rep-
resents a relation type.

Our third model exploits entity type constraints
within a relation and induces clusters of relations
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and entities jointly. For each tuple, a set of rela-
tion level features and two latent entity type indica-
tors are drawn independently from the relation type
distribution; a collection of entity mention features
for each argument is drawn independently from the
entity type distribution selected by the entity type
indicator.

Path X, made by Y
Source Gamma Knife
Dest Elekta

Trigger make
Lex , made by the Swedish

medical technology firm
POS , VBN IN DT JJ JJ NN NN

NER pair MISC-ORG
Sync pair partmod-pobj

Table 1: The features of tuple ‘(Gamma Knife, made
by, Elekta)’ in sentence “Gamma Knife, made by the
Swedish medical technology firm Elekta, focuses low-
dosage gamma radiation ...”

3.1 Rel-LDA Model

This model is an extension to the standard LDA
model. At the document level, a multinomial dis-
tribution over relations θdoc is drawn from a prior
Dir(α). To generate a relation tuple, we first draw a
relation ‘topic’ r from Multi(θ). Then we generate
each feature f of a tuple independently from a multi-
nomial distribution Multi(φrf ) selected by r. In this
model, each tuple has three features, i.e. its three
components, shown in the first three rows in Table 1.
Figure 1 shows the graphical representation of Rel-
LDA. Table 2 lists all the notation used in describing
our models.

The learning process of the models is an EM pro-
cess. The procedure is similar to that used by the
standard topic model. In the variational E-step (in-
ference), we sample the relation type indicator for
each tuple using p(r|f):

P (r|f(p, s, d)) ∝ p(r)∏f p(f |r)
∝ (αr + nr|d)

∏
f

βf+nf |rP
f ′ (βf ′+nf ′|r)

|R| Number of relations
|D| Number of documents
r A relation
doc A document
p, s, d Dep path, source and dest args
f A feature/feature type
T Entity type of one argument
α Dirichlet prior for θdoc
βx Dirichlet prior for φrx
β Dirichlet prior for φt
θdoc p(r|doc)
φrx p(x|r)
φt p(fs|T ), p(fd|T )

Table 2: The notation used in our models

      
  

             |R|                                           

      
  
  

......

                                        N                                        

r

f

θ

φrf

α

βf

f

      
  
  

                                       

                                         
                                             |D|                                        

Figure 1: Rel-LDA model. Shaded circles are observa-
tions, and unshaded ones are hidden variables. A docu-
ment consists of N tuples. Each tuple has a set of fea-
tures. Each feature of a tuple is generated independently
from a hidden relation variable r.

p(r) and p(f |r) are estimated in the M-step:

θdoc =
α+ nr|doc∑
r′(α+ nr′|doc)

φrf =
βf + nf |r∑
f ′(βf ′ + nf ′|r)

where nf |r indicates the number of times a feature f
is assigned with r.

3.2 Rel-LDA1
Looking at results of Rel-LDA, we find the clus-
ters sometimes are in need of refinement, and we
can address this by adding more features. For in-
stance, adding trigger features can encourage spar-
sity over dependency paths. We define trigger words
as all the words on the dependency path except stop
words. For example, from path “X, based in Y”,
“base” is extracted as a trigger word. The intuition
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for using trigger words is that paths sharing the same
set of trigger words should go to one cluster. Adding
named entity tag pair can refine the cluster too. For
example, a cluster found by Rel-LDA contains “X
was born in Y” and “X lives in Y”; but it also con-
tains “X, a company in Y”. In this scenario, adding
features ‘PER-LOC’ and ‘ORG-LOC’ can push the
model to split the clusters into two and put the third
case into a new cluster.

Hence we propose Rel-LDA1. It is similar to
Rel-LDA, except that each tuple is represented with
more features. Besides p, s, and d, we introduce
trigger words, lexical pattern, POS tag pattern, the
named entity pair and the syntactic category pair fea-
tures for each tuple. Lexical pattern is the word se-
quence between the two arguments of a tuple and
POS tag pattern is the POS tag sequence of the lexi-
cal pattern. See Table 1 as an example.

Following typical EM learning(Charniak and El-
sner, 2009), we start with a much simpler genera-
tive model, expose the model to fewer features first,
and iteratively add more features. First, we train a
Rel-LDA model, i.e. the model only generates the
dependency path, source and destination arguments.
After each interval of 10 iterations, we introduce one
additional feature. We add the features in the order
of trigger, lexical pattern, POS, NER pair, and syn-
tactic pair.

3.3 Type-LDA model
We know that relations can only hold between
certain entity types, known as selectional prefer-
ences (Ritter et al., 2010; Seaghdha, 2010; Kozareva
and Hovy, 2010). Hence we propose Type-LDA
model. This model can capture the selectional pref-
erences of relations to their arguments. In the mean
time, it clusters tuples into relational clusters, and
arguments into different entity clusters. The entity
clusters could be interesting in many ways, for ex-
ample, defining fine-grained entity types and finding
new concepts.

We split the features of a tuple into relation level
features and entity level features. Relation level fea-
tures include the dependency path, trigger, lex and
POS features; entity level features include the entity
mention itself and its named entity tag.

The generative storyline is as follows. At the doc-
ument level, a multinomial distribution over rela-

      
  
  

                                        N                                        

      
  
  

        
                      

                                                   |D|                                                          

      
  

             |R|                                           

r
f

fs

θ

φrf

φt

fd

     
  

              |R|                                           

φrt2

α

βt2

β

βf

T1 T2

     
  

              |T|                                           

     
  

              |R|                                           

φrt1

βt1

Figure 2: Type-LDA model. Each document consists of
N tuples. Each tuple has a set of features, relation level
features f and entity level features of source argument fs
and destination argument fd. Relation level features and
two hidden entity types T1 and T2 are generated from
hidden relation variable r independently. Source entity
features are generated from T1 and destination features
are generated from T2.

tions θdoc is drawn from a Dirichlet prior. A doc-
ument consists of N relation tuples. Each tuple is
represented by relation level features (f ) and entity
level features of source argument (fs) and destina-
tion argument (fd). For each tuple, a relation r is
drawn from Multi(θdoc). The relation level features
and two hidden entity types T1 and T2 are indepen-
dently generated from r. Features fs are generated
from T1 and fd from T2. Figure 2 shows the graphi-
cal representation of this model.

At inference time, we sample r, T1 and T2 for
each tuple. For efficient inference, we first initialize
the model without T1 and T2, i.e. all the features are
generated directly from r. Here the model degener-
ates to Rel-LDA1. After some iterations, we intro-
duce T1 and T2. We sample the relation variable (r)
and two mention types variables (T1,T2) iteratively
for each tuple. We can sample them together, but
this is not very efficient. In addition, we found that
it does not improve performance.

4 Experiments

Our experiments are carried out on New York Times
articles from year 2000 to 2007 (Sandhaus, 2008).
We filter out some noisy documents, for example,
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obituary content, lists and so on. Obituary arti-
cles often contain syntax that diverges from stan-
dard newswire text. This leads to parse errors with
WSJ-trained parsers and in turn, makes extraction
harder. We also filter out documents that contain
lists or tables of items (such as books, movies) be-
cause this semi-structured information is not the fo-
cus of our current work. After filtering we are left
with approximately 428K documents. They are pre-
processed in several steps. First we employ Stanford
tools to tokenize, sentence-split and Part-Of-Speech
tag (Toutanova et al., 2003) a document. Next we
recognize named entities (Finkel et al., 2005) by
labelling tokens with PERSON, ORGANIZATION,
LOCATION, MISC and NONE tags. Consecutive
tokens which share the same category are assembled
into entity mentions. They serve as source and des-
tination arguments of the tuples we seek to model.
Finally we parse each sentence of a document using
MaltParser (Nivre et al., 2004) and extract depen-
dency paths for each pair of named entity mentions
in one sentence.

Following DIRT (Lin and Pantel, 2001), we fil-
ter out tuples that do not satisfy the following con-
straints. First, the path needs to be shorter than
10 edges, since longer paths occur less frequently.
Second, the dependency relations in the path should
connect two content words, i.e. nouns, verbs, ad-
jectives and adverbs. For example, in phrase ‘solve
a problem’, ‘obj(solve, problem)’ is kept, while
‘det(problem, a)’ is discarded. Finally, the de-
pendency labels on the path must not be: ‘conj’,
‘ccomp’, ‘parataxis’, ‘xcomp’, ‘pcomp’, ‘advcl’,
‘punct’, and ‘infmod’. This selection is based on the
observation that most of the times the corresponding
dependency relations do not explicitly state a rela-
tion between two candidate arguments.

After all entity mentions are generated and paths
are extracted, we have nearly 2.5M tuples. After
clustering (inference), each of these tuple will be-
long to one cluster/relation and is associated with its
clusterID.

We experimented with the number of clusters and
find that in a range of 50-200 the performance does
not vary significantly with different numbers. In our
experiments, we cluster the tuples into 100 relation
clusters for all three models. For Type-LDA model,
we use 50 entity clusters.

We evaluate our models in two ways. The first
aims at measuring the clustering quality by mapping
clusters to Freebase relations. The second seeks to
assess the utility of our predicted clusters as features
for relation extraction.

4.1 Relations discovered by different models

Looking closely at the clusters we predict, we find
that some of them can be mapped to Freebase rela-
tions. We discover clusters that roughly correspond
to the parentCom (parent company relation), filmDi-
rector, authorOf, comBase (base of a company rela-
tion) and dieIn relations in Freebase. We treat Free-
base annotations as ground truth and measure recall.
We count each tuple in a cluster as true positive if
Freebase states the corresponding relation between
its argument pair. We find that precision numbers
against Freebase are low, below 10%. However,
these numbers are not reliable mainly because many
correct instances found by our models are missing
in Freebase. One reason why our predictions are
missing in Freebase is coreference. For example,
we predict parentCom relation between ‘Linksys’
and ‘Cisco’, while Freebase only considers ‘Cisco
Systems, Inc.’ as the parent company of ‘Linksys’.
It does not corefer ‘Cisco’ to ‘Cisco Systems, Inc.’.
Incorporating coreference in our model may fix this
problem and is a focus of future work. Instead of
measuring precision against Freebase, we ask hu-
mans to label 50 instances for each cluster and report
precision according to this annotated data. Table 3
shows the scores.

We can see that in most cases Rel-LDA1 and
Type-LDA substantially outperform the Rel-LDA
model. This is due to the fact that both models can
exploit more features to make clustering decisions.
For example, in Rel-LDA1 model, the NER pair fea-
ture restricts the entity types the two arguments can
take.

In the following, we take parentCom relation as
an example to analyze the behaviors of different
models. Rel-LDA includes spurious instances such
as ‘A is the chief executive of B’, while Rel-LDA1
has fewer such instances due to the NER pair fea-
ture. Similarly, by explicitly modeling entity type
constraints, Type-LDA makes fewer such errors. All
our models make mistakes when sentences have co-
ordination structures on which the parser has failed.
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Rel. Sys. Rec. Prec.

parentCom
Rel-LDA 51.4 76.0
Rel-LDA1 49.5 78.0
Type-LDA 55.3 72.0

filmDirector
Rel-LDA 42.5 32.0
Rel-LDA1 70.5 40.0
Type-LDA 74.2 26.0

comBase
Rel-LDA 31.5 12.0
Rel-LDA1 54.2 22.0
Type-LDA 57.1 30.0

authorOf
Rel-LDA 25.2 84.0
Rel-LDA1 46.9 86.0
Type-LDA 20.2 68.0

dieIn
Rel-LDA 26.5 34.0
Rel-LDA1 55.9 40.0
Type-LDA 50.2 28.0

Table 3: Clustering quality evaluation (%), Rec. is mea-
sured against Freebase, Prec. is measured according to
human annotators

For example, when a sentence has the following pat-
tern “The winners are A, a part of B; C, a part of
D; E, a part of F”, our models may predict parent-
Com(A,F), because the parser connects A with F via
the pattern ‘a part of’.

Some clusters found by our models cannot be
mapped to Freebase relations. Consider the Free-
base relation worksFor as one example. This re-
lation subsumes all types of employment relation-
ships, irrespective of the role the employee plays for
the employer. By contrast, our models discover clus-
ters such as leaderOf, editorOf that correspond to
more specific roles an employee can have. We show
some example relations in Table 4. In the table, the
2nd row shows a cluster of employees of news media
companies; the 3rd row shows leaders of companies;
the last one shows birth and death places of persons.
We can see that the last cluster is noisy since we
do not handle antonyms in our models. The argu-
ments of the clusters have noise too. For example,
‘New York’ occurs as a destination argument in the
2nd cluster. This is because ‘New York’ has high
frequency in the corpus and it brings noise to the
clustering results. In Table 5 some entity clusters
found by Type-LDA are shown. We find different
types of companies, such as financial companies and

news companies. We also find subclasses of person,
for example, reviewer and politician, because these
different entity classes participate in different rela-
tions. The last cluster shown in the table is a mix-
ture of news companies and government agencies.
This may be because this entity cluster is affected
by many relations.

4.2 Distant Supervision based Relation
Extraction

Our generative models detect clusters of dependency
paths and their arguments. Such clusters are inter-
esting in their own right, but we claim that they can
also be used to help a supervised relation extractor.
We validate this hypothesis in the context of relation
extraction with distant supervision using predicted
clusters as features.

Following previous work (Mintz et al., 2009), we
use Freebase as our distant supervision source, and
align related entity pairs to the New York Times arti-
cles discussed earlier. Our training and test instances
are pairs of entities for which both arguments appear
in at least one sentence together. Features of each
instance are extracted from all sentences in which
both entities appear together. The gold label for each
instance comes from Freebase. If a pair of entities
is not related according to Freebase, we consider it
a negative example. Note that this tends to create
some amount of noise: some pairs may be related,
but their relationships are not yet covered in Free-
base.

After filtering out relations with fewer than 10 in-
stances we have 65 relations and an additional “O”
label for unrelated pairs of entities. We call related
instances positive examples and unrelated instances
negative examples.

We train supervised classifiers using maximum
entropy. The baseline classifier employs features
that Mintz et al. (2009) used. To extract features
from the generative models we proceed as follows.
For each pair of entities, we collect all tuples asso-
ciated with it. For each of these tuples we extract its
clusterID, and use this ID as a binary feature.

The baseline system without generative model
features is called Distant. The classifiers with ad-
ditional features from generative models are named
after the generative models. Thus we have Rel-LDA,
Rel-LDA1 and Type-LDA classifiers. We compare

1461



Source New York, Euro RSCG Worldwide, BBDO Worldwide, American, DDB Worldwide
Path X, a part of Y; X, a unit of Y; X unit of Y; X, a division of Y; X is a part of Y
Dest Omnicom Group, Interpublic Group of Companies, WPP Group, Publicis Groupe

Source Supreme Court, Anna Wintour, William Kristol, Bill Keller, Charles McGrath
Path X, an editor of Y; X, a publisher of Y; X, an editor at Y; X, an editor in chief of Y; X is an editor of Y;
Dest The Times, The New York Times, Vogue, Vanity Fair, New York

Source Kenneth L. Lay, L. Dennis Kozlowski, Bernard J. Ebbers, Thomas R. Suozzi, Bill Gates
Path X, the executive of Y; X, Y’s executive; X, Y executive; X, the chairman of Y; X, Y’s chairman
Dest Enron, Microsoft, WorldCom, Citigroup, Nassau County

Source Paul J. Browne, John McArdle, Tom Cocola, Claire Buchan, Steve Schmidt
Path X, a spokesman for Y; X, a spokeswoman for Y; X, Y spokesman; X, Y spokeswoman; X, a commissioner of Y
Dest White House, Justice Department, Pentagon, United States, State Department

Source United Nations, Microsoft, Intel, Internet, M. D. Anderson
Path X, based in Y; X, which is based in Y; X, a company in Y; X, a company based in Y; X, a consultant in Y
Dest New York, Washington, Manhattan, Chicago, London

Source Army, Shiite, Navy, John, David
Path X was born in Y; X die at home in Y; X die in Y; X, son of Y; X die at Y
Dest Manhattan, World War II, Brooklyn, Los Angeles, New York

Table 4: The path, source and destination arguments of some relations found by Rel-LDA1.

Company Microsoft, Enron, NBC, CBS, Disney
FinanceCom Merrill Lynch, Morgan Stanley, Goldman Sachs, Lehman Brothers, Credit Suisse First Boston

News Notebook, New Yorker, Vogue, Vanity Fair, Newsweek
SportsTeam Yankees, Mets, Giants, Knicks, Jets
University University of California, Harvard, Columbia University, New York University, University of Penn.

Art Reviewer Stephen Holden, Ken Johnson, Roberta Smith, Anthony Tommasini, Grace Glueck
Games World Series, Olympic, World Cup, Super Bowl, Olympics

Politician Eliot Spitzer, Ari Fleischer, Kofi Annan, Scott McClellan, Karl Rove
Gov. Agency Congress, European Union, NATO, Federal Reserve, United States Court of Appeals
News/Agency The New York Times, The Times, Supreme Court, Security Council, Book Review

Table 5: The entity clusters found by Type-LDA

these against Distant and the DIRT database. For
the latter we parse our data using Minipar (Lin,
1998) and extract dependency paths between pairs
of named entity mentions. For each path, the top 3
similar paths are extracted from DIRT database. The
Minipar path and the similar paths are used as addi-
tional features.

For held-out evaluation, we construct the training
data from half of the positive examples and half of
the negative examples. The remaining examples are
used as test data. Note that the number of negative
instances is more than 10 times larger than the num-
ber of positive instances. At test time, we rank the
predictions by the conditional probabilities obtained
from the Maximum Entropy classifier. We report
precision of top ranked 50 instances for each relation

in table 6. From the table we can see that all systems
using additional features outperform the Distant sys-
tem. In average, our best model achieves 4.1%
improvement over the distant supervision baseline,
12% error reduction. The precision of bornIn is low
because in most cases we predict bornIn instances
as liveIn.

We expect systems using generative model fea-
tures to have higher recall than the baseline. This
is difficult to measure, but precision in the high re-
call area is a signal. We look at top ranked 1000
instances of each system and show the precision in
the last row of the table. We can see that our best
model Type-LDA outperforms the distant supervi-
sion baseline by 4.5%.

Why do generative model features help to im-
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Relation Dist Rel Rel1 Type DIRT
worksFor 80.0 92.0 86.0 90.0 84.0
authorOf 98.0 98.0 98.0 98.0 98.0

containedBy 92.0 96.0 96.0 92.0 96.0
bornIn 16.0 18.0 22.0 24.0 10.0
dieIn 28.0 30.0 28.0 24.0 24.0
liveIn 50.0 52.0 54.0 54.0 56.0

nationality 92.0 94.0 90.0 90.0 94.0
parentCom 94.0 96.0 96.0 96.0 90.0

founder 65.2 76.3 61.2 64.0 68.3
parent 52.0 54.0 50.0 52.0 52.0

filmDirector 54.0 60.0 60.0 64.0 62.0
Avg 65.6 69.7 67.4 68.0 66.8

Prec@1K 82.8 85.8 85.3 87.3 82.8

Table 6: Precision (%) of some frequent relations

prove relation extraction? One reason is that gen-
erative models can transfer information from known
patterns to unseen patterns. For example, given
“Sidney Mintz, the great food anthropologist at
Johns Hopkins University”, we want to predict the
relation between ‘Sidney Mintz’ and ‘Johns Hopkins
University’. The distant supervision system incor-
rectly predicts the pair as ‘O’ since it has not seen
the path ‘X, the anthropologist at Y’ in the training
data. By contrast, Rel-LDA can predict this pair cor-
rectly as worksFor because the dependency path of
this pair is in a cluster which contains the path ‘X, a
professor at Y’.

In addition to held-out evaluation we also carry
out manual evaluation. To this end, we use all the
positive examples and randomly select five times
the number of positive examples as negative ex-
amples to train a classifier. The remaining nega-
tive examples are candidate instances. We rank the
predicted instances according to their classification
scores. For each relation, we ask human annotators
to judge its top ranked 50 instances.

Table 7 lists the manual evaluation results for
some frequent relations. We also list how many in-
stances are found for each relation. For almost all
the relations, systems using generative model fea-
tures find more instances. In terms of precision, our
models perform comparatively to the baseline, even
better for some relations.

We also notice that clustering quality is not con-
sistent with distant supervision performance. Rel-

LDA1 can find better clusters than Rel-LDA but it
has lower precision in held-out evaluation. Type-
LDA underperforms Rel-LDA in average precision
but it gets higher precision in a higher recall area, i.e.
precision at 1K. One possible reason for the incon-
sistency is that the baseline distant supervision sys-
tem already employs features that are used in Rel-
LDA1. Another reason may be that the clusters do
not overlap with Freebase relations very well, see
section 4.1.

4.3 Comparing against USP

We also try to compare against USP (Poon and
Domingos, 2008). Due to memory requirements of
USP, we are only able to run it on a smaller data
set consisting of 1,000 NYT documents; this is three
times the amount of data Poon and Domingos (2008)
used to train USP.2 For distant supervision based re-
lation extraction, we only match about 500 Freebase
instances to this small data set.

USP provides a parse tree for each sentence and
for each mention pair we can extract a path from
the tree. Since USP provides clusters of words and
phrases, we use the USP clusterID associated with
the words on the path as binary features in the clas-
sifier.

All models are less accurate when trained on this
smaller dataset; we can do as well as USP does,
even a little better. USP achieves 8.6% in F1, Rel-
LDA 8.7%, Rel-LDA1 10.3%, Type-LDA 8.9% and
Distant 10.3%. Of course, given larger datasets,
the performance of Rel-LDA, Rel-LDA1, and Type-
LDA improves considerably. In summary, compar-
ing against USP, our approach scales much more
easily to large data.

5 Related Work

Many approaches have been explored in relation ex-
traction, including bootstrapping, supervised classi-
fication, distant supervision, and unsupervised ap-
proaches.

Bootstrapping employs a few labeled examples
for each relation, iteratively extracts patterns from
the labeled seeds, and uses the patterns to extract

2Using the publicly released USP code, training a model
with 1,000 documents resulted in about 45 gigabytes of heap
space in the JVM.
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Relation
Top 50 (%) #Instances

Dist Rel Type Dist Rel Type
worksFor 100.0 100.0 100.0 314 349 349
authorOf 94.0 94.0 96.0 185 208 229

containedBy 98.0 98.0 98.0 670 714 804
bornIn 82.6 88.2 88.0 46 36 56
dieIn 100.0 100.0 100.0 167 176 231
liveIn 98.0 98.0 94.0 77 86 109

nationality 78.0 82.0 76.0 84 92 114
parentCom 79.2 77.4 85.7 24 31 28

founder 80.0 80.0 50.0 5 5 14
parent 97.0 92.3 94.7 33 39 38

filmDirector 92.6 96.9 97.1 27 32 34

Table 7: Manual evaluation, Precision and recall of some frequent relations

more seeds (Brin, 1998). This approach may suffer
from low recall since the patterns can be too specific.

Supervised learning can discover more general
patterns (Kambhatla, 2004; Culotta and Sorensen,
2004). However, this approach requires labeled data,
and most work only carry out experiments on small
data set.

Distant supervision for relation extraction re-
quires no labeled data. The approach takes some
existing knowledge base as supervision source,
matches its relational instances against the text cor-
pus to build the training data, and extracts new in-
stances using the trained classifiers (Mintz et al.,
2009; Bunescu and Mooney, 2007; Riedel et al.,
2010; Yao et al., 2010).

All these approaches can not discover new rela-
tions and classify instances which do not belong to
any of the predefined relations. Other past work has
explored inducing relations using unsupervised ap-
proaches.

For example, DIRT (Lin and Pantel, 2001) aims
to discover different representations of the same se-
mantic relation, i.e. similar dependency paths. They
employ the distributional similarity based approach
while we use generative models. Both DIRT and our
approach take advantage of the arguments of depen-
dency paths to find semantic relations. Moreover,
our approach can cluster the arguments into differ-
ent types.

Unsupervised semantic parsing (USP) (Poon and
Domingos, 2008) discovers relations by merging

predicates which have similar meanings; it proceeds
to recursively cluster dependency tree fragments (or
“parts”) to best explain the observed sentence. It is
not focused on capturing any particular kind of re-
lation between sentence constituents, but to capture
repeated patterns. Our approach differs in that we
are focused on capturing a narrow range of binary
relations between named entities; some of our mod-
els (see Section 3) utilize entity type information to
constraint relation type induction. Also, our models
are built to be scalable and trained on a very large
corpus. In addition, we use a distant supervision
framework for evaluation.

Relation duality (Bollegala et al., 2010) employs
co-clustering to find clusters of entity pairs and pat-
terns. They identify each cluster of entity pairs as a
relation by selecting representative patterns for that
relation. This approach is related to our models,
however, it does not identify any entity clusters.

Generative probabilistic models are widely em-
ployed in relation extraction. For example, they are
used for in-domain relation discovery while incorpo-
rating constraints via posterior regularization (Chen
et al., 2011). We are focusing on open domain re-
lation discovery. Generative models are also ap-
plied to selectional preference discovery (Ritter et
al., 2010; Seaghdha, 2010). In this scenario, the
authors assume relation labels are given while we
automatically discover relations. Generative models
are also used in unsupervised coreference (Haghighi
and Klein, 2010).
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Clustering is also employed in relation extraction.
Hasegawa et al. (2004) cluster pairs of named en-
tities according to the similarity of context words
intervening between them. Their approach is not
probabilistic. Researchers also use topic models to
perform dimension reduction on features when they
cluster relations (Hachey, 2009). However, they do
not explicitly model entity types.

Open information extraction aims to discover re-
lations independent of specific domains and rela-
tions (Banko et al., 2007; Banko and Etzioni, 2008).
A self-learner is employed to extract relation in-
stances but the systems do not cluster the instances
into relations. Yates and Etzioni (2009) present RE-
SOLVER for discovering relational synonyms as a
post processing step. Our approach integrates entity
and relation discovery in a probabilistic model.

6 Conclusion

We have presented an unsupervised probabilistic
generative approach to relation extraction between
two named entities. Our proposed models exploit
entity type constraints within a relation as well
as features on the dependency path between entity
mentions to cluster equivalent textual expressions.
We demonstrate the effectiveness of this approach
by comparing induced relation clusters against a
large knowledge base. We also show that using clus-
ters of our models as features in distant supervised
framework yields 12% error reduction in precision
over a weakly supervised baseline and outperforms
other state-of-the art relation extraction techniques.
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Abstract

This paper describes DUALIST, an active
learning annotation paradigm which solicits
and learns from labels on both features (e.g.,
words) and instances (e.g., documents). We
present a novel semi-supervised training al-
gorithm developed for this setting, which is
(1) fast enough to support real-time interac-
tive speeds, and (2) at least as accurate as pre-
existing methods for learning with mixed fea-
ture and instance labels. Human annotators in
user studies were able to produce near-state-
of-the-art classifiers—on several corpora in a
variety of application domains—with only a
few minutes of effort.

1 Introduction

In active learning, a classifier participates in its own
training process by posing queries, such as request-
ing labels for documents in a text classification task.
The goal is to maximize the accuracy of the trained
system in the most economically efficient way. This
paradigm is well-motivated for natural language ap-
plications, where unlabeled data may be readily
available (e.g., text on the Internet), but the anno-
tation process can be slow and expensive.

Nearly all previous work in active learning, how-
ever, has focused on selecting queries from the
learner’s perspective. For example, experiments are
often run in simulation rather than with user stud-
ies, and results are routinely evaluated in terms of
training set size rather than human annotation time
or labor costs (which are more reasonable measures
of labeling effort). Many state-of-the-art algorithms

are also too slow to run or too tedious to implement
to be useful for real-time interaction with human an-
notators, and few analyses have taken these factors
into account. Furthermore, there is very little work
on actively soliciting domain knowledge from hu-
mans (e.g., information about features) and incorpo-
rating this into the learning process.

While selecting good queries is clearly important,
if our goal is to reduce actual annotation effort these
human factors must be taken into account. In this
work, we propose a new interactive annotation inter-
face which addresses some of these issues; in partic-
ular it has the ability to pose queries on both features
(e.g., words) and instances (e.g., documents). We
present a novel semi-supervised learning algorithm
that is fast, flexible, and accurate enough to support
these interface design constraints interactively.

2 DUALIST: Utility for Active Learning
with Instances and Semantic Terms

Figure 1 shows a screenshot of the DUALIST an-
notation tool, which is freely available as an open-
source software project1. On the left panel, users
are presented with unlabeled documents: in this case
Usenet messages that belong to one of two sports-
related topics: baseball and hockey. Users may label
documents by clicking on the class buttons listed be-
low each text. In cases of extreme ambiguity, users
may ignore a document by clicking the “X” to re-
move it from the pool of possible queries.

On the right panel, users are given a list of fea-
ture queries organized into columns by class label.

1http://code.google.com/p/dualist/

1467



Figure 1: A screenshot of DUALIST.

The rationale for these columns is that they should
reduce cognitive load (i.e., once a user is in the base-
ball mindset, s/he can simply go down the list, label-
ing features in context: “plate,” “pitcher,” “bases,”
etc.). Within each column, words are sorted by how
informative they are the to classifier, and users may
click on words to label them. Each column also con-
tains a text box, where users may “inject” domain
knowledge by typing in arbitrary words (whether
they appear in any of the columns or not). The list
of previously labeled words appears at the bottom of
each list (highlighted), and can be unlabeled at any
time, if users later feel they made any errors.

Finally, a large submit button is located at the top
of the screen, which users must click to re-train the
classifier and receive a new set of queries. The learn-
ing algorithm is actually fast enough to do this au-
tomatically after each labeling action. However, we
found such a dynamically changing interface to be
frustrating for users (e.g., words they wanted to la-
bel would move or disappear).

2.1 A Generative Model for Learning from
Feature and Instance Labels

For the underlying model in this system, we use
multinomial naı̈ve Bayes (MNB) since it is sim-
ple, fast, and known to work well for several nat-
ural language applications—text classification in
particular—despite its simplistic and often violated
independence assumptions (McCallum and Nigam,
1998; Rennie et al., 2003).

MNB models the distribution of features as a
multinomial: documents are sequences of words,

with the “naı̈ve” assumption that words in each
position are generated independently. Each docu-
ment is treated as a mixture of classes, which have
their own multinomial distributions over words. Let
the model be parameterized by the vector θ, with
θj = P (yj) denoting the probability of class yj , and
θjk = P (fk|yj) denoting the probability of generat-
ing word fk given class yj . Note that for class pri-
ors
∑

j θj = 1, and for per-class word multinomials∑
k θjk = 1. The likelihood of document x being

generated by class yj is given by:

Pθ(x|yj) = P (|x|)
∏

k

(θjk)
fk(x),

where fk(x) is the frequency count of word fk in
document x. If we assume P (|x|) is distributed in-
dependently of class, and since document length |x|
is fixed, we can drop the first term for classification
purposes. Then, we can use Bayes’ rule to calculate
the posterior probability under the model of a label,
given the input document for classification:

Pθ(yj |x) =
Pθ(yj)Pθ(x|yj)

Pθ(x)
=
θj
∏
k(θjk)

fk(x)

Z(x)
,

(1)
where Z(x) is shorthand for a normalization con-
stant, summing over all possible class labels.

The task of training such a classifier involves es-
timating the parameters in θ, given a set of labeled
instances L = {〈x(l), y(l)〉}Ll=1. To do this, we use
a Dirichlet prior and take the expectation of each
parameter with respect to the posterior, which is a
simple way to estimate a multinomial (Heckerman,
1995). In other words, we count the fraction of times
the word fk occurs in the labeled set among doc-
uments of class yj , and the prior adds mjk “hallu-
cinated” occurrences for a smoothed version of the
maximum likelihood estimate:

θjk =
mjk +

∑
i P (yj |x(i))fk(x(i))
Z(fk)

. (2)

Here, mjk is the prior for word fk under class yj ,
P (yj |x(i)) ∈ {0, 1} indicates the true labeling of the
ith document in the training set, and Z(fk) is a nor-
malization constant summing over all words in the
vocabulary. Typically, a uniform prior is used, such
as the Laplacian (a value of 1 for all mjk). Class pa-
rameters θj are estimated a similar way, by counting
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the fraction of documents that are labeled with that
class, subject to a prior mj . This prior is important
in the event that no documents are yet labeled with
yj , which can be quite common early on in the active
learning process.

Recall that our scenario lets human annotators
provide not only document labels, but feature labels
as well. To make use of this additional information,
we assume that labeling the word fk with a class yj
increases the probability P (fk|yj) of the word ap-
pearing in documents of that class. The natural in-
terpretation of this under our model is to increase the
prior mjk for the corresponding multinomial. To do
this we introduce a new parameter α, and define the
elements of the Dirichlet prior as follows:

mjk =

{
1 + α if fk is labeled with yj ,
1 otherwise.

This approach is extremely flexible, and offers three
particular advantages over the previous “pooling
multinomials” approach for incorporating feature la-
bels into MNB (Melville et al., 2009). The pooling
multinomials algorithm averages together two sets
of θjk parameters: one that is estimated from labeled
data, and another derived from feature labels under
the assumption of a boolean output variable (treating
labeled features are “polarizing” factors). Therefore,
pooling multinomials can only be applied to binary
classification tasks, while our method works equally
well for problems with multiple classes. The second
advantage is that feature labels need not be mutu-
ally exclusive, so the word “score” could be labeled
with both baseball and hockey, if necessary (e.g.,
if the task also includes several non-sports labels).
Finally, our framework allows users to conceivably
provide feature-specific priors αjk to, for example,
imply that the word “inning” is a stronger indicator
for baseball than the word “score” (which is a more
general sports term). However, we leave this aspect
for future work and employ the fixed-α approach as
described above in this study.

2.2 Exploiting Unlabeled Data
In addition to document and feature labels, we usu-
ally have access to a large unlabeled corpus. In fact,
these texts form the pool of possible instance queries
in active learning. We can take advantage of this ad-
ditional data in generative models like MNB by em-

ploying the Expectation-Maximization (EM) algo-
rithm. Combining EM with pool-based active learn-
ing was previously studied in the context of instance
labeling (McCallum and Nigam, 1998), and we ex-
tend the method to our interactive scenario, which
supports feature labeling as well.

First, we estimate initial parameters θ′ as in Sec-
tion 2.1, but using only the priors (and no instances).
Then, we apply the induced classifier on the unla-
beled pool U = {x(u)}Uu=1 (Eq. 1). This is the “E”
step of EM. Next we re-estimate feature multino-
mials θjk, using both labeled instances from L and
probabilistically-labeled instances from U (Eq. 2).
In other words, P (yj |x) ∈ {0, 1} for x ∈ L, and
P (yj |x) = Pθ′(yj |x) for x ∈ U . We also weight
the data in U by a factor of 0.1, so as not to over-
whelm the training signal coming from true instance
labels in L. Class parameters θj are re-estimated in
the analogous fashion. This is the “M” step.

For speed and interactivity, we actually stop train-
ing after this first iteration. When feature labels are
available, we found that EM generally converges in
four to 10 iterations, requiring more training time
but rarely improving accuracy (the largest gains con-
sistently come in the first iteration). Also, we ignore
labeled data in the initial estimation of θ′ because L
is too small early in active learning to yield good re-
sults with EM. Perhaps this can be improved by us-
ing an ensemble (McCallum and Nigam, 1998), but
that comes at further computational expense. Fea-
ture labels, on the other hand, seem generally more
reliable for probabilistically labeling U .

2.3 Selecting Instance and Feature Queries
The final algorithmic component to our system is
the selection of informative queries (i.e., unlabeled
words and documents) to present to the annotator.

Querying instances is the traditional mode of ac-
tive learning, and is well-studied in the literature;
see Settles (2009) for a review. In this work we use
entropy-based uncertainty sampling, which ranks all
instances in U by the posterior class entropy under
the modelHθ(Y |x) = −∑j Pθ(yj |x) logPθ(yj |x),
and asks the user to label the top D unlabeled doc-
uments. This simple heuristic is an approximation
to querying the instance with the maximum infor-
mation gain (since the class entropy, once labeled,
is zero), under the assumption that each x is repre-
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sentative of the underlying natural data distribution.
Moreover, it is extremely fast to compute, which is
important for our interactive environment.

Querying features, though, is a newer idea with
significantly less research behind it. Previous work
has either assumed that (1) features are not assigned
to classes, but instead flagged for “relevance” to the
task (Godbole et al., 2004; Raghavan et al., 2006),
or (2) feature queries are posed just like instance
queries: a word is presented to the annotator, who
must choose among the labels (Druck et al., 2009;
Attenberg et al., 2010). Recall from Figure 1 that
we want to organize feature queries into columns by
class label. This means our active learner must pro-
duce queries that are class-specific.

To select these feature queries, we first rank ele-
ments in the vocabulary by information gain (IG):

IG(fk) =
∑

Ik

∑

j

P (Ik, yj) log
P (Ik, yj)

P (Ik)P (yj)
,

where Ik ∈ {0, 1} is a variable indicating the pres-
ence or absence of a feature. This is essentially
the common feature-selection method for identify-
ing the most salient features in text classification
(Sebastiani, 2002). However, we use both L and
probabilistically-labeled instances from U to com-
pute IG(fk), to better reflect what the model be-
lieves it has learned. To organize queries into
classes, we take the top V unlabeled features and
pose fk for the class yj with which it occurs most
frequently, as well as any other class with which it
occurs at least 75% as often. Intuitively, this ap-
proach (1) queries features that the model believes
are most informative, and (2) automatically identi-
fies classes that seem most correlated. To our knowl-
edge, DUALIST is the first active learning environ-
ment with both of these properties.

3 Experiments

We conduct four sets of experiments to evaluate our
approach. The first two are “offline” experiments,
designed to better understand (1) how our training
algorithm compares to existing methods for feature-
label learning, and (2) the effects of tuning the α
parameter. The other experiments are user studies
designed to empirically gauge how well human an-
notators make use of DUALIST in practice.

We use a variety of benchmark corpora in the fol-
lowing evaluations. Reuters (Rose et al., 2002) is
a collection of news articles organized into topics,
such as acquisitions, corn, earnings, etc. As in pre-
vious work (Raghavan et al., 2006) we use the 10
most frequent topics, but further process the cor-
pus by removing ambiguous documents (i.e., that
belong to multiple topics) so that all articles have
a unique label, resulting in a corpus of 9,002 arti-
cles. WebKB (Craven et al., 1998) consists of 4,199
university web pages of four types: course, faculty,
project, and student. 20 Newsgroups (Lang, 1995)
is a set of 18,828 Usenet messages from 20 different
online discussion groups. For certain experiments
(such as the one shown in Figure 1), we also use
topical subsets. Movie Reviews (Pang et al., 2002)
is a set of 2,000 online movie reviews categorized as
positive or negative in sentiment. All data sets were
processed using lowercased unigram features, with
punctuation and common stop-words removed.

3.1 Comparison of Learning Algorithms

An important question is how well our learning al-
gorithm, “MNB/Priors,” performs relative to exist-
ing baseline methods for learning with labeled fea-
tures. We compare against two such approaches
from the literature. “MaxEnt/GE” is a maximum en-
tropy classifier trained using generalized expectation
(GE) criteria (Druck et al., 2008), which are con-
straints used in training discriminative linear mod-
els. For labeled features, these take the form of ex-
pected “reference distributions” conditioned on the
presence of the feature (e.g., 95% of documents con-
taining the word “inning” should be labeled base-
ball). For each constraint, a term is added to the
objective function to encourage parameter settings
that yield predictions conforming to the reference
distribution on unlabeled instances. “MNB/Pool” is
naı̈ve Bayes trained using the pooling multinomials
approach (Melville et al., 2009) mentioned in Sec-
tion 2.1. We also expand upon MNB/Pool using an
EM variant to make it semi-supervised.

We use the implementation of GE training from
the open-source MALLET toolkit2, and implement
both MNB variants in the same data-processing
pipeline. Because the GE implementation available

2http://mallet.cs.umass.edu
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Corpus MaxEnt/GE MNB/Pool Pool+EM1 MNB/Priors Priors+EM1

Reuters 82.8 (22.9) – – – – 83.7 (≤0.1) 86.6 (0.3)

WebKB 22.2 (4.9) – – – – 67.5 (≤0.1) 67.8 (0.1)

20 Newsgroups 49.7 (326.6) – – – – 50.1 (0.2) 70.7 (6.9)

Science 86.9 (5.7) – – – – 71.4 (≤0.1) 92.8 (0.1)

Autos/Motorcycles 90.8 (0.8) 90.1 (≤0.1) 97.5 (≤0.1) 89.9 (≤0.1) 97.6 (≤0.1)

Baseball/Hockey 49.9 (0.8) 90.7 (≤0.1) 96.7 (≤0.1) 90.5 (≤0.1) 96.9 (≤0.1)

Mac/PC 50.5 (0.6) 86.7 (≤0.1) 91.2 (≤0.1) 86.6 (≤0.1) 90.2 (≤0.1)

Movie Reviews 68.8 (1.8) 68.0 (≤0.1) 73.4 (0.1) 67.7 (≤0.1) 72.0 (0.1)

Table 1: Accuracies and training times for different feature-label learning algorithms on benchmark corpora. Classi-
fication accuracy is reported for each model, using only the top 10 oracle-ranked features per label (and no labeled
instances) for training. The best model for each corpus is highlighted in bold. Training time (in seconds) is shown in
parentheses on the right side of each column. All results are averaged across 10 folds using cross-validation.

to us only supports labeled features (and not labeled
instances as well), we limit the MNB methods to
features for a fair comparison. To obtain feature la-
bels in this experiment, we simulate a “feature or-
acle” as in previous work (Druck et al., 2008; At-
tenberg et al., 2010), which is essentially the query
selection algorithm from Section 2.3, but using com-
plete labeled data to compute IG(fk). We con-
servatively use only the top 10 features per class,
which is meant to resemble a handful of very salient
features that a human might brainstorm to jump-
start the learning process. We experiment with
EM1 (one-step EM) variants of both MNB/Pool
and MNB/Priors, and set α = 50 for the latter
(see Section 3.2 for details on tuning this parame-
ter). Results are averaged over 10 folds using cross-
validation, and all experiments are conducted on a
single 2.53GHz processor machine.

Results are shown in Table 1. As expected, adding
one iteration of EM for semi-supervised training im-
proves the accuracy of both MNB methods across all
data sets. These improvements come without signif-
icant overhead in terms of time: training still rou-
tinely finishes in a fraction of a second per fold.
MNB/Pool and MNB/Priors, where they can be
compared, perform virtually the same as each other
with or without EM, in terms of accuracy and speed
alike. However, MNB/Pool is only applicable to bi-
nary classification problems. As explained in Sec-
tion 2.1, MNB/Priors is more flexible, and prefer-
able for a more general-use interactive annotation
tool like DUALIST.

The semi-supervised MNB methods are also con-
sistently more accurate than GE training—and are
about 40 times faster as well. The gains of
Priors+EM1 over MaxEnt/GE are statistically sig-
nificant in all cases but two: Autos/Motorcycles and
Movie Reviews3. MNB is superior when using any-
where from five to 20 oracle-ranked features per
class, but as the number of feature labels increases
beyond 30, GE is often more accurate (results not
shown). If we think of MaxEnt/GE as a discrim-
inative analog of MNB/Priors+EM, this is consis-
tent with what is known about labeled set size in su-
pervised learning for generative/discriminative pairs
(Ng and Jordan, 2002). However, the time complex-
ity of GE training increases sharply with each new
labeled feature, since it adds a new constraint to the
objective function whose gradient must be computed
using all the unlabeled data. In short, GE train-
ing is too slow and too inaccurate early in the ac-
tive learning process (where labels are more scarce)
to be appropriate for our scenario. Thus, we select
MNB/Priors to power the DUALIST interface.

3.2 Tuning the Parameter α

A second question is how sensitive the accuracy of
MNB/Priors is to the parameter α. To study this,
we ran experiments varying α from from one to 212,
using different combinations of labeled instances
and/or features (again using the simulated oracle and
10-fold cross-validation).

3Paired 2-tailed t-test, p < 0.05, correcting for multiple tests
using the Bonferroni method.
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Figure 2: The effects of varying α on accuracy for four
corpora, using differing amounts of training data (labeled
features and/or instances). For clarity, vertical axes are
scaled differently for each data set, and horizontal axes
are plotted on a logarithmic scale. Classifier performance
remains generally stable across data sets for α < 100.

Figure 2 plots these results for four of the corpora.
The first thing to note is that in all cases, accuracy is
relatively stable for α < 100, so tuning this value
seems not to be a significant concern; we chose 50
for all other experiments in this paper. A second ob-
servation is that, for all but the Reuters corpus, label-
ing 90 additional features improves accuracy much
more than labeling 100 documents. This is encour-
aging, since labeling features (e.g., words) is known
to be generally faster and easier for humans than la-
beling entire instances (e.g., documents).

For Reuters, however, the additional feature la-
bels appear harmful. The anomaly can be explained
in part by previous work with this corpus, which
found that a few expertly-chosen keywords can
outperform machine learning methods (Cohen and
Singer, 1996), or that aggressive feature selection—
i.e., using only three or four features per class—
helps tremendously (Moulinier, 1996). Corpora like
Reuters may naturally lend themselves to feature se-
lection, which is (in some sense) what happens when
labeling features. The simulated oracle here was
forced to label 100 features, some with very low
information gain (e.g., “south” for acquisitions, or

“proven” for gold); we would not expect humans an-
notators to provide such misleading information. In-
stead, we hypothesize that in practice there may be a
limited set of features with high enough information
content for humans to feel confident labeling, after
which they switch their attention to labeling instance
queries instead. This further indicates that the user-
guided flexibility of annotation in DUALIST is an
appropriate design choice.

3.3 User Experiments
To evaluate our system in practice, we conducted
a series of user experiments. This is in contrast to
most previous work, which simulates active learning
by using known document labels and feature labels
from a simulated oracle (which can be flawed, as we
saw in the previous section). We argue that this is an
important contribution, as it gives us a better sense
of how well the approach actually works in practice.
It also allows us to analyze behavioral results, which
in turn may help inform future protocols for human
interaction in active learning.

DUALIST is implemented as a web-based appli-
cation in Java and was deployed online. We used
three different configurations: active dual (as in Fig-
ure 1, implementing everything from Section 2), ac-
tive instance (instance queries only, no features), and
a passive instance baseline (instances only, but se-
lected at random). We also began by randomly se-
lecting instances in the active configurations, until
every class has at least one labeled instance or one
labeled feature. D = 2 documents and V = 100 fea-
tures were selected for each round of active learning.

We recruited five members of our research group
to label three data sets using each configuration, in
an order of their choosing. Users were first allowed
to spend a minute or two familiarizing themselves
with DUALIST, but received no training regarding
the interface or data sets. All experiments used a
fixed 90% train, 10% test split which was consistent
across all users, and annotators were not allowed to
see the accuracy of the classifier they were train-
ing at any time. Each annotation action was times-
tamped and logged for analysis, and each experi-
ment automatically terminated after six minutes.

Figure 3 shows learning curves, in terms of accu-
racy vs. annotation time, for each trial in the user
study. The first thing to note is that the active
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Figure 3: User experiments involving human annotators for text classification. Each row plots accuracy vs. time
learning curves for a particular user (under all three experimental conditions) for each of the three corpora (one
column per data set). For clarity, vertical axes are scaled differently for each corpus, but held constant across all users.
The thin dashed lines at the top of each plot represents the idealized fully-supervised accuracy. Horizontal axes show
labeling cost in terms of actual elapsed annotation time (in seconds).
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dual configuration yields consistently better learn-
ing curves than either active or passive learning with
instances alone, often getting within 90% of fully-
supervised accuracy (in under six minutes). The
only two exceptions make interesting (and differ-
ent) case studies. User 4 only provided four la-
beled features in the Movie Review corpus, which
partially explains the similarity in performance to
the instance-only cases. Moreover, these were
manually-added features, i.e., he never answered
any of the classifier’s feature queries, thus depriving
the learner of the information it requested. User 5,
on the other hand, never manually added features
and only answered queries. With the WebKB cor-
pus, however, he apparently found feature queries
for the course label to be easier than the other
classes, and 71% of all his feature labels came
from that class (sometimes noisily, e.g., “instructor”
might also indicate faculty pages). This imbalance
ultimately biased the learner toward the course la-
bel, which led to classification errors. These patho-
logical cases represent potential pitfalls that could
be alleviated with additional user studies and train-
ing. However, we note that the active dual interface
is not particularly worse in these cases, it is simply
not significantly better, as in the other 13 trials.

Feature queries were less costly than instances,
which is consistent with findings in previous work
(Raghavan et al., 2006; Druck et al., 2009). The
least expensive actions in these experiments were
labeling (mean 3.2 seconds) and unlabeling (1.8s)
features, while manually adding new features took
only slightly longer (5.9s). The most expensive ac-
tions were labeling (10.8s) and ignoring (9.9s) in-
stance queries. Interestingly, we observed that the
human annotators spent most of the first three min-
utes performing feature-labeling actions ( ), and
switched to more instance-labeling activity for the
final three minutes ( ). As hypothesized in Sec-
tion 3.2, it seems that the active learner is exhausting
the most salient feature queries early on, and users
begin to focus on more interpretable instance queries
over time. However, more study (and longer annota-
tion periods) are warranted to better understand this
phenomenon, which may suggest additional user in-
terface design improvements.

We also saw surprising trends in annotation qual-
ity. In active settings, users made an average of one

instance-labeling error per trial (relative to the gold-
standard labels), but in the passive case this rose to
1.6, suggesting they are more accurate on the active
queries. However, they also explicitly ignored more
instances in the active dual condition (7.7) than ei-
ther active instance (5.9) or passive (2.5), indicating
that they find these queries more ambiguous. This
seems reasonable, since these are the instances the
classifier is least certain about. But if we look at
the time users spent on these actions, they are much
faster to label/ignore (9.7s/7.5s) in the active dual
scenario than in the active instance (10.0s/10.7s) or
passive (12.3s/15.4s) cases, which means they are
being more efficient. The differences in time be-
tween dual and passive are statistically significant4.

3.4 Additional Use Cases

Here we discuss the application of DUALIST to a
few other natural language processing tasks. This
section is not meant to show its superiority relative
to other methods, but rather to demonstrate the flex-
ibility and potential of our approach in a variety of
problems in human language technology.

3.4.1 Word Sense Disambiguation
Word Sense Disambiguation (WSD) is the prob-

lem of determining which meaning of a word is be-
ing used in a particular context (e.g., “hard” in the
sense of a challenging task vs. a marble floor). We
asked a user to employ DUALIST for 10 minutes
for each of three benchmark WSD corpora (Moham-
mad and Pedersen, 2004): Hard (3 senses), Line
(6 senses), and Serve (4 senses). Each instance rep-
resents a sentence using the ambiguous word, and
features are lowercased unigram and bigram terms
from the surrounding context in the sentence. The
learned models’ prediction accuracies (on the sen-
tences not labeled by the user) were: 83.0%, 78.4%,
and 78.7% for Hard, Line, and Serve (respectively),
which appears to be comparable to recent supervised
learning results in the WSD literature on these data
sets. However, our results were achieved in less than
10 minutes of effort each, by labeling an average of
76 sentences and 32 words or phrases per task (com-
pared to the thousands of labeled training sentences
used in previous work).

4Kolmogorov-Smirnov test, p < 0.01.
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3.4.2 Information Extraction
DUALIST is also well-suited to a kind of large-

scale information extraction known as semantic
class learning: given a set of semantic categories
and a very large unlabeled text corpus, learn to pop-
ulate a knowledge base with words or phrases that
belong to each class (Riloff and Jones, 1999; Carl-
son et al., 2010). For this task, we first processed
500 million English Web pages from the ClueWeb09
corpus (Callan and Hoy, 2009) by using a shallow
parser. Then we represented noun phrases (e.g., “Al
Gore,” “World Trade Organization,” “upholstery”)
as instances, using a vector of their co-occurrences
with heuristic contextual patterns (e.g., “visit to X”
or “X’s mission”) as well as a few orthographic pat-
terns (e.g., capitalization, head nouns, affixes) as
features. We filtered out instances or contexts that
occurred fewer than 200 times in the corpus, result-
ing in 49,923 noun phrases and 87,760 features.

We then had a user annotate phrases and patterns
into five semantic classes using DUALIST: person,
location, organization, date/time, and other (the
background or null class). The user began by insert-
ing simple hyponym patterns (Hearst, 1992) for their
corresponding classes (e.g., “people such as X” for
person, or “organizations like X” for organization)
and proceeded from there for 20 minutes. Since
there was no gold-standard for evaluation, we ran-
domly sampled 300 predicted extractions for each
of the four non-null classes, and hired human eval-
uators using the Amazon Mechanical Turk service5

to estimate precision. Each instance was assigned
to three evaluators, using majority vote to score for
correctness.

Table 2 shows the estimated precision, total ex-
tracted instances, and the number of user-labeled
features and instances for each class. While there
is room for improvement (published results for this
kind of task are often above 80% precision), it is
worth noting that in this experiment the user did not
provide any initial “seed examples” for each class,
which is fairly common in semantic class learning.
In practice, such additional seeding should help, as
the active learner acquired 115 labeled instances for
the null class, but fewer than a dozen for each non-
null class (in the first 20 minutes).

5http://www.mturk.com

Class Prec. # Ext. # Feat. # Inst.
person 74.7 6,478 37 6
location 76.3 5,307 47 5
organization 59.7 4,613 51 7
date/time 85.7 494 51 12
other – 32,882 13 115

Table 2: Summary of results using DUALIST for web-
scale information extraction.

3.4.3 Twitter Filtering and Sentiment Analysis
There is growing interest in language analysis

for online social media services such as Twitter6

(Petrović et al., 2010; Ritter et al., 2010), which al-
lows users to broadcast short messages limited to
140 characters. Two basic but interesting tasks in
this domain are (1) language filtering and (2) sen-
timent classification, both of which are difficult be-
cause of the extreme brevity and informal use of lan-
guage in the messages.

Even though Twitter attempts to provide language
metadata for its “tweets,” English is the default set-
ting for most users, so about 35% of English-tagged
tweets are actually in a different language. Further-
more, the length constraints encourage acronyms,
emphatic misspellings, and orthographic shortcuts
even among English-speaking users, so many tweets
in English actually contain no proper English words
(e.g., “OMG ur sooo gr8!! #luvya”). This may
render existing lexicon-based language filters—and
possibly character n-gram filters—ineffective.

To quickly build an English-language filter for
Twitter, we sampled 150,000 tweets from the Twit-
ter Streaming API and asked an annotator spend 10
minutes with DUALIST labeling English and non-
English messages and features. Features were rep-
resented as unigrams and bigrams without any stop-
word filtering, plus a few Twitter-specific features
such as emoticons (text-based representations of fa-
cial expressions such as :) or :( used to convey feel-
ing or tone), the presence of anonymized usernames
(preceded by ‘@’) or URL links, and hashtags (com-
pound words preceded by ‘#’ and used to label mes-
sages, e.g., “#loveit”). Following the same method-
ology as Section 3.4.2, we evaluated 300 random
predictions using the Mechanical Turk service. The

6http://twitter.com
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estimated accuracy of the trained language filter was
85.2% (inter-annotator agreement among the evalu-
ators was 94.3%).

We then took the 97,813 tweets predicted to be in
English and used them as the corpus for a sentiment
classifier, which attempts to predict the mood con-
veyed by the author of a piece of text (Liu, 2010).
Using the same feature representation as the lan-
guage filter, the annotator spent 20 minutes with
DUALIST, labeling tweets and features into three
mood classes: positive, negative, and neutral. The
annotator began by labeling emoticons, by which
the active learner was able to uncover some interest-
ing domain-specific salient terms, e.g., “cant wait”
and “#win” for positive tweets or “#tiredofthat” for
negative tweets. Using a 300-instance Mechanical
Turk evaluation, the estimated accuracy of the sen-
timent classifier was 65.9% (inter-annotator agree-
ment among the evaluators was 77.4%).

4 Discussion and Future Work

We have presented DUALIST, a new type of dual-
strategy annotation interface for semi-supervised ac-
tive learning. To support this dual-query interface,
we developed a novel, fast, and practical semi-
supervised learning algorithm, and demonstrated
how users can employ it to rapidly develop use-
ful natural language systems for a variety of tasks.
For several of these applications, the interactively-
trained systems are able to achieve 90% of state-
of-the-art performance after only a few minutes of
labeling effort on the part of a human annotator.
By releasing DUALIST as an open-source tool, we
hope to facilitate language annotation projects and
encourage more user experiments in active learning.

This represents one of the first studies of an ac-
tive learning system designed to compliment the
strengths of both learner and annotator. Future di-
rections along these lines include user studies of effi-
cient annotation behaviors, which in turn might lead
to new types of queries or improvements to the user
interface design. An obvious extension in the natural
language domain is to go beyond classification tasks
and query domain knowledge for structured predic-
tion in this way. Another interesting potential appli-
cation is human-driven active feature induction and
engineering, after Della Pietra et al. (1997).

From a machine learning perspective, there is an
open empirical question of how useful the labels
gathered by DUALIST’s internal naı̈ve Bayes model
might be in later training machine learning systems
with different inductive biases (e.g., MaxEnt models
or decision trees), since the data are not IID. So far,
attempts to “reuse” active learning data have yielded
mixed results (Lewis and Catlett, 1994; Baldridge
and Osborne, 2004). Practically speaking, DUAL-
IST is designed to run on a single machine, and
supports a few hundred thousand instances and fea-
tures at interactive speeds on modern hardware. Dis-
tributed data storage (Chang et al., 2008) and paral-
lelized learning algorithms (Chu et al., 2007) may
help scale this approach into the millions.

Finally, modifying the learning algorithm to better
cope with violated independence assumptions may
be necessary for interesting language applications
beyond those presented here. TAN-Trees (Fried-
man et al., 1997), for example, might be able to ac-
complish this while retaining speed and interactiv-
ity. Alternatively, one could imagine online stochas-
tic learning algorithms for discriminatively-trained
classifiers, which are semi-supervised and can ex-
ploit feature labels. To our knowledge, such flexi-
ble and efficient learning algorithms do not currently
exist, but they could be easily incorporated into the
DUALIST framework in the future.
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Abstract

We propose a novel forest reranking algorithm
for discriminative dependency parsing based
on a variant of Eisner’s generative model. In
our framework, we define two kinds of gener-
ative model for reranking. One is learned from
training data offline and the other from a for-
est generated by a baseline parser on the fly.
The final prediction in the reranking stage is
performed using linear interpolation of these
models and discriminative model. In order to
efficiently train the model from and decode
on a hypergraph data structure representing a
forest, we apply extended inside/outside and
Viterbi algorithms. Experimental results show
that our proposed forest reranking algorithm
achieves significant improvement when com-
pared with conventional approaches.

1 Introduction

Recently, much of research on statistical parsing
has been focused on k-best (or forest) reranking
(Collins, 2000; Charniak and Johnson, 2005; Huang,
2008). Typically, reranking methods first generate
a list of top-k candidates (or a forest) from a base-
line system, then rerank the candidates with arbi-
trary features that are intractable within the baseline
system. In the reranking framework, the baseline
system is usually modeled with a generative model,
and a discriminative model is used for reranking.
Sangati et al. (2009) reversed the usual order of the
two models for dependency parsing by employing
a generative model to rescore the k-best candidates
provided by a discriminative model. They use a vari-
ant of Eisner’s generative model C (Eisner, 1996b;

Eisner, 1996a) for reranking and extend it to capture
higher-order information than Eisner’s second-order
generative model. Their reranking model showed
large improvements in dependency parsing accu-
racy. They reported that the discriminative model is
very effective at filtering out bad candidates, while
the generative model is able to further refine the se-
lection among the few best candidates.

In this paper, we propose a forest generative
reranking algorithm, opposed to Sangati et al.
(2009)’s approach which reranks only k-best candi-
dates. Forests usually encode better candidates more
compactly than k-best lists (Huang, 2008). More-
over, our reranking uses not only a generative model
obtained from training data, but also a sentence spe-
cific generative model learned from a forest. In the
reranking stage, we use linearly combined model
of these models. We call this variational rerank-
ing model. The model proposed in this paper is
factored in the third-order structure, therefore, its
non-locality makes it difficult to perform the rerank-
ing with an usual 1-best Viterbi search. To solve
this problem, we also propose a new search algo-
rithm, which is inspired by the third-order dynamic
programming parsing algorithm (Koo and Collins,
2010). This algorithm enables us an exact 1-best
reranking without any approximation. We summa-
rize our contributions in this paper as follows.

• To extend k-best to forest generative reranking.
• We introduce variational reranking which is a

combination approach of generative reranking
and variational decoding (Li et al., 2009).

• To obtain 1-best tree in the reranking stage, we
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propose an exact 1-best search algorithm with
the third-order model.

In experiments on English Penn Treebank data,
we show that our proposed methods bring signif-
icant improvement to dependency parsing. More-
over, our variational reranking framework achieves
consistent improvement, compared to conventional
approaches, such as simple k-best and forest-based
generative reranking algorithms.

2 Dependency Parsing

Given an input sentence x ∈ X , the task of statis-
tical dependency parsing is to predict output depen-
dencies ŷ for x. The task is usually modeled within a
discriminative framework, defined by the following
equation:

ŷ = argmax
y∈Y

s(x, y)

= argmax
y∈Y

λ⊤ · F(y, x) (1)

where Y is the output space, λ is a parameter vector,
and F() is a set of feature functions.

We denote a set of candidates as G(x). By using
G(x), the conditional probability p(y|x) is typically
derived as follows:

p(y|x) =
eγ·s(x,y)

Z(x)
=

eγ·s(x,y)

∑
y∈G(x) eγ·s(x,y)

(2)

where s(x, y) is the score function shown in Eq.1
and γ is a scaling factor to adjust the sharpness of
the distribution and Z(x) is a normarization factor.

2.1 Hypergraph Representation

We propose to encode many hypotheses in a com-
pact representation called dependency forest. While
there may be exponentially many dependency trees,
the forest represents them in polynomial space. A
dependency forest (or tree) can be defined as a hy-
pergraph data strucure HG (Tu et al., 2010).

Figure 1 shows an example of a hypergraph for a
dependency tree. A shaded hyperedge e is defined
as the following form:

e : ⟨(I1,2, girl3,5, with5,8), saw1,8⟩.
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.. .. ..
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Figure 1: An example of dependency tree for a sentence
“I saw a girl with a telescope”.

The node saw1,8 is a head node of e. The nodes, I1,2,
girl3,5 and with5,8, are tail nodes of e. The hyper-
edge e is an incoming edge for saw1,8 and outgoing
edge for each of I1,2, girl3,5 and with5,8

1.
More formally, HG(x) of a forest is a pair

⟨V, E⟩, where V is a set of nodes and E is a set
of hyperedges. Given a length m sentence x =
(w1 . . . wm), each node v ∈ V is in the form of
wi,j (= (wi . . . wj+1)) which denotes that a word
w dominates the substring from positions i to j. In
our implementation, each word is paired with POS-
tag tag(w). We denote the root node of dependency
tree y as top. Each hyperedge e ∈ E is a pair
⟨tails(e), head(e)⟩, where head(e) ∈ V is the head
and tails(e) ∈ V + are its dependants. For nota-
tional brevity of algorithmic description, we do not
distinguish left and right tails in the definition, but,
our implementation implicitly distinguishes left tails
tailsL(e) and right tails tailsR(e). We define the set
of incoming edges of a node v as IE(v) and the set
of outgoing edges of a node v as OE(v).

3 Forest Reranking

3.1 Generative Model for Reranking

Given a node v in a dependency tree y, the left and
right children are generated as two separate Markov
sequences, each conditioned on ancestral and sibling
information (context). Like a variation of Eisner’s
generative model C (Eisner, 1996b; Eisner, 1996a),

1In Figure 1, according to custom of dependency tree
description, the direction of hyperedge is written as from
head to tail nodes. However, in this paper, “incoming” and
“outgoing” have the same meanings as those in (Huang, 2006).

1480



Table 1: An event list of tri-sibling model whose event
space is v|h, sib, tsib, dir, extracted from hyperedge e in
Figure 1. EOC is an end symbol of sequence.

event space
I | saw NONE NONE L
EOC | saw I NONE L

girl | saw NONE NONE R
with | saw girl NONE R
EOC | saw with girl R

the probability of our model q is defined as follows:

q(v) =

|tailsL(e)|∏

l=1

q(vl|C(vl)) · q(vl)

×
|tailsR(e)|∏

r=1

q(vr|C(vr)) · q(vr) (3)

where |tailsL(e)| and |tailsR(e)| are the number of
left and right children of v, vl and vr are the left and
right child of position l and r in each side. C(v) is
a context event space of v. We explain the context
event space later in more detail. The probability of
the entire dependency tree y is recursively computed
by q(y(top)) where y(top) denotes a top node of y.

The probability q(v|C(v)) is dependent on a con-
text space C(v) for a node v. We define two kinds of
context spaces. First, we define a tri-sibling model
whose context space consists of the head node, sib-
ling node, tri-sibling node and direction of a node
v:

q1(v|C(v)) = q1(v|h, sib, tsib, dir) (4)

where h, sib and tsib are head, sibling and tri-sibling
node of v, and dir is a direction of v from h. Table
1 shows an example of an event list of the tri-sibling
model, which is extracted from hyperedge e in Fig-
ure 1. EOC indicates the end of the left or right child
sequence. This is factored in a tri-sibling structure
shown in the left side of Figure 2.

Eq.4 is further decomposed into a product of the
form consisting of three terms:

q1(v|h, sib, tsib, dir) (5)

= q1(dist(v, h), wrd(v), tag(v)|h, sib, tsib, dir)

= q1(tag(v)|h, sib, tsib, dir)

×q1(wrd(v)|tag(v), h, sib, tsib, dir)

×q1(dist(v, h)|wrd(v), tag(v), h, sib, tsib, dir)

where tag(v) and wrd(v) are the POS-tag and word
of v and dist(v, h) is the distance between positions
of v and h. The values of dist(v, h) are partitioned
into 4 categories: 1, 2, 3 − 6, 7 − ∞.

Second, following Sangati et al. (2009), we define
a grandsibling model whose context space consists
of the head node, sibling node, grandparent node and
direction of a node v.

q2(v|C(v)) = q2(v|h, sib, g, dir) (6)

where g is a grandparent node of v. Analogous to
Eq.5, Eq.6 is decomposed into three terms:

q2(v|h, sib, g, dir) (7)

= q2(dist(v, h), wrd(v), tag(v)|h, sib, g, dir)

= q2(tag(v)|h, sib, g, dir)

×q2(wrd(v)|tag(v), h, sib, g, dir)

×q2(dist(v, h)|wrd(v), tag(v), h, sib, g, dir)

where notations are the same as those in Eq.5 with
the exception of tri-sibling tsib and grandparent g.
This model is factored in a grandsibling structure
shown in the right side of Figure 2.

The direct estimation of tri-sibling and grandsib-
ling models from a corpus suffers from serious data
sparseness issues. To overcome this, Eisner (1996a)
proposed a back-off strategy which reduces the con-
ditioning of a model. We show the reductions list
for each term of two models in Table 2. The usage
of reductions list is identical to Eisner (1996a) and
readers may refer to it for further details.

The final prediction is performed using a log-
linear interpolated model. It interpolates the base-
line discriminative model and two (tri-sibling and
grandsibling) generative models.

ŷ = argmax
y∈G(x)

2∑

n=1

log qn(top(y))θn

+ log p(y|x)θbase (8)

where θ are parameters to adjust the weight of each
term in prediction. These parameters are tuned using
MERT algorithm (Och, 2003) on development data
using a criterion of accuracy maximization. The rea-
son why we chose MERT is that it effectively tunes
dense parameters with a line search algorithm.
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Table 2: Reduction lists for tri-sibling and grandsibling models: wt(), w() and t() mean word and POS-tag, word,
POS-tag for a node. d indicates the direction. The first reduction on the list keeps all or most of the original condition;
later reductions throw away more and more of this information.

tri-sibling grandsibling
1-st term 2-nd term 3-rd term 1-st term 2-nd term 3-rd term

wt(h),wt(sib),wt(tsib),d wt(h),t(sib),d wt(v),t(h),t(sib),d wt(h),wt(sib),wt(g),d wt(h),t(sib),d wt(v),t(h),t(sib),d

wt(h),wt(sib),t(tsib),d t(h),t(sib),d t(v),t(h),t(sib),d wt(h),wt(sib),t(g),d t(h),t(sib),d t(v),t(h),t(sib),d

t(h),wt(sib),t(tsib),d — — t(h),wt(sib),t(g),d — —
wt(h),t(sib),t(tsib),d wt(h),t(sib),t(g),d
t(h),t(sib),t(tsib),d — — t(h),t(sib),t(g),d — —

..h .tsib .sib .v ..g .h .sib .v

Figure 2: The left side denotes tri-sibling structure and
the right side denotes grandsibling structure.

Table 3: A summarization of the model factorization and
order

first-order McDonald et al. (2005)
second-order Eisner (1996a)

(sibling) McDonald et al. (2005)
third-order tri-sibling model
(tri-sibling) Model 2 (Koo and Collins, 2010)
third-order grandsibling model (Sangati et al., 2009)

(grandsibling) Model 1 (Koo and Collins, 2010)

3.2 Exact Search Algorithm

Our baseline discriminative model uses first- and
second-order features provided in (McDonald et al.,
2005; McDonald and Pereira, 2006). Therefore,
both our tri-sibling model and baseline discrimina-
tive model integrate local features that are factored
in one hyperedge. On the other hand, the grandsib-
ling model has non-local features because the grand-
parent is not factored in one hyperedge. We sum-
marize the order of each model in Table 3. Our
reranking models are generative versions of Koo and
Collins (2010)’s third-order factorization model.

Non-locality of weight function makes it difficult
to perform the search of Eq.8 with an usual exact
Viterbi 1-best algorithm. One solution to resolve
the intractability is an approximate k-best Viterbi
search. For a constituent parser, Huang (2008) ap-
plied cube pruning techniques to forest reranking
with non-local features. Cube pruning is originally
proposed for the decoding of statistical machine
translation (SMT) with an integrated n-gram lan-

guage model (Chiang, 2007). It is an approximate
k-best Viterbi search algorithm using beam search
and lazy computation (Huang and Chiang, 2005).

In the case of a dependency parser, Koo and
Collins (2010) proposed dynamic-programming-
based third-order parsing algorithm, which enumer-
ates all grandparents with an additional loop. Our
hypergraph based search algorithm for Eq.8 share
the same spirit to their third-order parsing algo-
rithm since the grandsibling model is similar to their
model 1 in that it is factored in grandsibling struc-
ture. Algorithm 1 shows the search algorithm. This
is almost the same bottom-up 1-best Viterbi algo-
rithm except an additional loop in line 4. Line 4 ref-
erences outgoing edge e′ of node h from a set of out-
going edges OE(h). tails(e) contains a node v, the
sibling node sib and tri-sibling node tsib of v, more-
over, the head of e′ (head(e′)) is the grandparent for
v and sib. Thus, in line 5, we can capture tri-sibling
and grandsibling information and compute the cur-
rent inside estimate of Eq.8.

In our actual implementation, each score of com-
ponents in Eq.8 is represented as a cost. This is writ-
ten as a shortest path search algorithm with a tropi-
cal (real) semiring framework (Mohri, 2002; Huang,
2006). Therefore, ⊕ denotes the min operater and ⊗
denotes the + operater. The function f is defined as
follows:

f(d(v1, e), . . . , d(v|e|, e))) =

|e|⊗

i=1

d(vi, e) (9)

where d(vi, e) denotes the current estimate of the
best cost for a pair of node vi and a hyperedge e.⊗

sums the best cost of a pair of a sub span node
and hyperedge e. Each ctsib and cgsib in line 5 and
7 indicates the cost of tri-sibling and grandsibling
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Algorithm 1 Exact DP-Search Algorithm(HG(x))
1: for h ∈ V in bottom-up topological order do
2: for e ∈ IE(h) do
3: // tails(e) is

{
v1, . . . , v|e|

}
.

4: for e′ ∈ OE(h) do
5: d(h, e′) = ⊕f(d(v1, e), . . . , d(v|e|, e)) ⊗ we ⊗ ctsib(h, tails(e)) ⊗ cgsib(head(e′), h, tails(e))
6: if h == top then
7: d(h) = ⊕f(d(v1, e), . . . , d(v|e|, e)) ⊗ we ⊗ ctsib(h, tails(e))

model. we indicates the cost of hyperedge e com-
puted from a baseline discriminative model. Lines
6-7 denote the calculation of the best cost for a top
node. We do not compute the cost of the grandsib-
ling model when h is top node because top node has
no outgoing edges.

Our baseline k-best second-order parser is imple-
mented using Huang and Chiang (2005)’s algorithm
2 whose time complexity is O(m3 +mk log k). Koo
and Collins (2010)’s third-order parser has O(m4)
time complexity and is theoretically slower than our
baseline k-best parser for a long sentence. Our
search algorithm is based on the third-order parsing
algorithm, but, the search space is previously shrank
by a baseline parser’s k-best approximation and a
forest pruning algorithm presented in the next sec-
tion. Therefore, the time efficiency of our reranking
is unimpaired.

3.3 Forest Pruning

Charniak and Johnson (2005) and Huang (2008)
proposed forest pruning algorithms to reduce the
size of a forest. Huang (2008)’s pruning algo-
rithm uses a 1-best Viterbi inside/outside algorithm
to compute an inside probability β(v) and an out-
side probability α(v), while Charniak and Johnson
(2005) use the usual inside/outside algorithm.

In our experiments, we use Charniak and Johnson
(2005)’s forest pruning criterion because the varia-
tional model needs traditional inside/outside proba-
bilities for its ML estimation. We prune away all
hyperedges that have score < ρ for a threshold ρ.

score =
αβ(e)

β(top)
. (10)

Following Huang (2008), we also prune away nodes
with all incoming and outgoing hyperedges pruned.

4 Variational Reranking Model

In place of a maximum a posteriori (MAP) decision
based on Eq.2, the minimum Bayes risk (MBR) deci-
sion rule (Titov and Henderson, 2006) is commonly
used and defined as following equation:

ŷ = argmin
y∈G(x)

∑

y′∈G(x)

loss(y, y′)p(y′|x) (11)

where loss(y, y′) represents a loss function2. As an
alternative to the MBR decision rule, Li et al. (2009)
proposed a variational decision rule that rescores
candidates with an approximate distribution q∗ ∈ Q.

ŷ = argmax
y∈G(x)

q∗(y) (12)

where q∗ minimizes the KL divergence KL(p||q)
q∗ = argmin

q∈Q
KL(p||q)

= argmax
q∈Q

∑

y∈G(x)

p log q (13)

where each p and q represents p(y|x) and q(y). For
SMT systems, q∗ is modeled by n-gram language
model over output strings. While the decoding based
on q∗ is an approximation of intractable MAP de-
coding3, it works as a rescoring function for candi-
dates generated from a baseline model. Here, we
propose to apply the variational decision rule to de-
pendency parsing. For dependency parsing, we can
choose to model q∗ as the tri-sibling and grandsib-
ling generative models in section 3.

2In case of dependency parsing, Titov and Henderson (2006)
proposed that a loss function is simply defined using a depen-
dency attachment score.

3In SMT, a marginalization of all derivations which yield
a paticular translation needs to be carried out for each trans-
lation. This makes the MAP decoding NP-hard in SMT. This
variational approximate framework can be applied to other tasks
collapsing spurious ambiguity, such as latent-variable parsing
(Matsuzaki et al., 2005).
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Algorithm 2 DP-ML Estimation(HG(x))
1: run inside and outside algorithm on HG(x)
2: for v ∈ V do
3: for e ∈ IE(v) do
4: ctsib = pe · α(v)/β(top)
5: for u ∈ tails(e) do
6: ctsib = ctsib · β(u)
7: for e′ ∈ IE(u) do
8: cgsib = pe · pe′ · α(v)/β(top)
9: for u′ ∈ tails(e) \ u do

10: cgsib = cgsib · β(u′)
11: for u′′ ∈ tails(e′) do
12: cgsib = cgsib · β(u′′)
13: for u′′ ∈ tails(e′) do
14: c2(u

′′|C(u′′))+ = cgsib

15: c2(C(u′′))+ = cgsib

16: for u ∈ tails(e) do
17: c1(u|C(u))+ = ctsib

18: c1(C(u))+ = ctsib

19: MLE estimate q∗
1 , q∗

2 using formula Eq.14

4.1 ML Estimation from a Forest
q∗(v|C(v)) is estimated from a forest using a max-
imum likelihood estimation (MLE). The count of
events is no longer an integer count, but an expected
count under p, which is formulated as follows:

q∗(v|C(v)) =
c(v|C(v))

c(C(v))

=

∑
y p(y|x)cv|C(v)(y)∑
y p(y|x)cC(v)(y)

(14)

where ce(y) is the number of event e in y. The es-
timation of Eq.14 can be efficiently performed on a
hypergraph data structure HG(x) of a forest.

Algorithm 2 shows the estimation algorithm.
First, it runs the inside/outside algorithm on HG(x).
We denote inside weight for a node v as β(v) and
outside weight as α(v). For each hyperedge e, we
denote ctsib as the posterior weight for computing
expected count c1 of events in the tri-sibling model
q∗
1 . Lines 16-18 compute c1 for all events occuring

in a hyperedge e.
The expected count c2 needed for the estimation

of grandsibling model q∗
2 is extracted in lines 7-15.

c2 for a grandsibling model must be extracted over
two hyperedges e and e′ because it needs grandpar-
ent information. Lines 8-12 show the algorithm to
compute the posterior weight cgsib of e and e′, which
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Figure 3: The relationship between tha data size (the
number of hyperedges) and oracle scores on develop-
ment data: Forests encode candidates with high accuracy
scores more compactly than k-best lists.

is similar to that to compute the posterior weight
of rules of tree substitution grammars used in tree-
based MT systems (Mi and Huang, 2008). Lines
13-15 compute expected counts c2 of events occur-
ing over two hyperedges e and e′. Finally, line 19
estimates q∗

1 and q∗
2 using the form in Eq.14.

Li et al. (2009) assumes n-gram locality of the
forest to efficiently train the model, namely, the
baseline n-gram model has larger n than that of vari-
ational n-gram model. In our case, grandsibling lo-
cality is not embedded in the forest generated from
the baseline parser. Therefore, we need to reference
incoming hyperedges of tail nodes in line 7.

y∗ of Eq.12 may be locally appropriate but glob-
ally inadequate because q∗ only approximates p.
Therefore, we log-linearly combine q∗ with a global
generative model estimated from the training data
and the baseline discriminative model.

ŷ = argmax
y∈G(x)

2∑

n=1

log qn(top(y))θn

+

2∑

n=1

log q∗
n(top(y))θ∗

n

+ log p(y|x)θbase (15)

Algorithm1 is also applicable to the decoding of
Eq.15. Note that this framework is a combination of
variational decoding and generative reranking. We
call this framework variational reranking.
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Table 4: The statistics of forests and 20-best lists on de-
velopment data: this shows the average number of hyper-
edges and nodes per sentence and oracle scores.

forest 20-best
pruning threshold ρ = 10−3 —

ave. num of hyperedges 180.67 255.04
ave. num of nodes 135.74 491.42

oracle scores 98.76 96.78

5 Experiments

Experiments are performed on English Penn Tree-
bank data. We split WSJ part of the Treebank into
sections 02-21 for training, sections 22 for develop-
ment, sections 23 for testing. We use Yamada and
Matsumoto (2003)’s head rules to convert phrase
structure to dependency structure. We obtain k-best
lists and forests generated from the baseline discrim-
inative model which has the same feature set as pro-
vided in (McDonald et al., 2005), using the second-
order Eisner algorithms. We use MIRA for training
as it is one of the learning algorithms that achieves
the best performance in dependency parsing. We set
the scaling factor γ = 1.0.

We also train a generative reranking model from
the training data. To reduce the data sparseness
problem, we use the back-off strategy proposed in
(Eisner, 1996a). Parameters θ are trained using
MERT (Och, 2003) and for each sentence in the de-
velopment data, 300-best dependency trees are ex-
tracted from its forest. Our variational reranking
does not need much time to train the model be-
cause the training is performed over not the train-
ing data (39832 sentences) but the development data
(1700 sentences)4. After MERT was performed un-
til the convergence, the variational reranking finally
achieved a 94.5 accuracy score on development data.

5.1 k-best Lists vs. Forests

Figure 3 shows the relationship between the size of
data structure (the number of hyperedges) and accu-
racy scores on development data. Obviously, forests
can encode a large number of potential candidates
more compactly than k-best lists. This means that

4To generate forests, sentences are parsed only once before
the training. MERT is performed over the forests. We can also
apply a more efficient hypergraph MERT algorithm (Kumar et
al., 2009) to the training than a simple MERT algorithm.

for reranking, there is more possibility of selecting
good candidates in forests than k-best lists.

Table 4 shows the statistics of forests and 20-
best lists on development data. This setting, thresh-
old ρ = 10−3 for pruning, is also used for testing.
Forests, which have an average of 180.67 hyper-
edges per sentence, achieve oracle score of 98.76,
which is about 1.0% higher than the 96.78 oracle
score of 20-best lists with 255.04 hyperedges per
sentence. Though the size of forests is smaller than
that of k-best lists, the oracle scores of forests are
much higher than those of k-best lists.

5.2 The Performance of Reranking
First, we compare the performance of variational de-
coding with that of MBR decoding. The results are
shown in Table 5. Variational decoding outperforms
MBR decodings. However, compared with base-
line, the gains of variational and MBR decoding are
small. Second, we also compare the performance of
variational reranking with k-best and forest gener-
ative reranking algorithms. Table 6 shows that our
variational reranking framework achieves the high-
est accuracy scores.

Being different from the decoding framework,
reranking achieves significant improvements. This
result is intuitively reasonable because the rerank-
ing model obtained from training data has the ability
to select a globally consistent candidate, while the
variational approximate model obtained from a for-
est only supports selecting a locally consistent can-
didate. On the other hand, the fact that variational
reranking achieves the best results clearly indicates
that the combination of sentence specific generative
model and that obtained from training data is suc-
cessful in selecting both locally and globally appro-
priate candidate from a forest.

Table 7 shows the parsing time (on 2.66GHz
Quad-Core Xeon) of the baseline k-best, generative
reranking and variational reranking parsers (java im-
plemented). The variational reranking parser con-
tains the following procedures.

1. k-best forest creation (baseline)
2. Estimation of variational model
3. Forest pruning
4. Search with the third-order model

Our reranking parser incurred little overhead to the
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Table 5: The comparison of the decoding frameworks:
MBR decoding seeks a candidate which has the high-
est accuracy scores over a forest (Kumar et al., 2009).
Variational decoding is performed based on Eq.8.

XXXXXXXXXXDecoding
Eval

Unlabeled

baseline 91.9
MBR (8-best forest) 91.99

Variational (8-best forest) 92.17

Table 6: The comparison of the reranking frameworks:
Generative means k-best or forest reranking algorithm
based on a generative model estimated from a corpus.
Variational reranking is performed based on Eq.15.

XXXXXXXXXXReranking
Eval

Unlabeled

Generative (8-best) 92.66
Generative (8-best forest) 92.72
Variational (8-best forest) 92.87

Table 7: The parsing time (CPU second per sentence) and
accuracy score of the baseline k-best, generative rerank-
ing and variational reranking parsers

k baseline generative variational
2 0.09 (91.9) +0.03 (92.67) +0.05 (92.76)
4 0.1 (91.9) +0.05 (92.68) +0.09 (92.81)
8 0.13 (91.9) +0.06 (92.72) +0.11 (92.87)
16 0.18 (91.9) +0.07 (92.75) +0.12 (92.89)
32 0.29 (91.9) +0.07 (92.73) +0.13 (92.89)
64 0.54 (91.9) +0.08 (92.72) +0.15 (92.87)

Table 8: The comparison of tri-sibling and grandsibling
models: the performance of the grandsibling model out-
performs that of the tri-sibling model.

PPPPPPPPModel
Eval

Unlabeled

tri-sibling 92.63
grandsibling 92.74

baseline parser in terms of runtime. This means that
our reranking parser can parse sentences at reason-
able times.

5.3 The Effects of Third-order Factors and
Error Analysis

From results in section 5.2, our variational rerank-
ing model achieves higher accuracy scores than the
others. To analyze the factors that improve accu-
racy scores, we further investigate whether varia-
tional reranking is performed better with the tri-
sibling or grandsibling model. Table 8 indicates that
grandsibling model achieves a larger gain than that
of tri-sibling model. Table 9 shows the examples
whose accuracy scores improved by the grandsib-
ling model. For example, the dependency relation-
ship from Verb to Noun phrase was corrected by our
proposed model.

On the other hand, many errors remain still in

Table 10: Comparison of our best result (using 16-best
forests) with other best-performing Systems on the whole
section 23

Parser English
McDonald et al. (2005) 90.9

McDonald and Pereira (2006) 91.5
Koo et al. (2008) standard 92.02
Huang and Sagae (2010) 92.1

Koo and Collins (2010) model1 93.04
Koo and Collins (2010) model2 92.93

this work 92.89
Koo et al. (2008) semi-sup 93.16

Suzuki et al. (2009) 93.79

our results. In our experiments, 48% of sentences
which contain errors have Prepositional word errors.
In fact, well-known PP-Attachment is a problem to
be solved for natural language parsers. Other re-
maining errors are caused by symbols such as .,:“”().
45% sentences contain such a dependency mistake.
Adding features to solve these problems may poten-
tially improve our parser more.

5.4 Comparison with Other Systems

Table 10 shows the comparison of the performance
of variational reranking (16-best forests) with that of
other systems. Our method outperforms supervised
parsers with second-order features, and achieves
comparable results compared to a parser with third-
order features (Koo and Collins, 2010). We can not
directly compare our method with semi-supervised
parsers such as Koo et al. (2008)’s semi-sup and
Suzuki et al. (2009), because ours does not use addi-
tional unlabeled data for training. The model trained
from unlabeled data can be easily incorporated into
our reranking framework. We plan to investigate
semi-supervised learning in future work.
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Table 9: Examples of outputs for input sentence No.148 and No.283 in section 23 from baseline and variational
reranking parsers. The underlined portions show the effect of the grandsibling model.

sent (No.148) A quick turnaround is crucial to Quantum because its cash requirements remain heavy .
correct 3 3 4 0 4 5 6 4 11 11 12 8 12 4

baseline 3 3 4 0 4 5 6 4 11 11 8 8 12 4
proposed 3 3 4 0 4 5 6 4 11 11 12 8 12 4

sent (No.283) Many called it simply a contrast in styles .
correct 2 0 2 6 6 2 6 7 2

baseline 2 0 2 2 6 2 6 7 2
proposed 2 0 2 6 6 2 6 7 2

6 Related Work

Collins (2000) and Charniak and Johnson (2005)
proposed a reranking algorithm for constituent
parsers. Huang (2008) extended it to a forest rerank-
ing algorithm with non-local features. Our frame-
work is for a dependency parser and the decoding in
the reranking stage is done with an exact 1-best dy-
namic programming algorithm. Sangati et al. (2009)
proposed a k-best generative reranking algorithm for
dependency parsing. In this paper, we use a similar
generative model, but combined with a variational
model learned on the fly. Moreover, our framework
is applicable to forests, not k-best lists.

Koo and Collins (2010) presented third-order de-
pendency parsing algorithm. Their model 1 is de-
fined by an enclosing grandsibling for each sibling
or grandchild part used in Carreras (2007). Our
grandsibling model is similar to the model 1, but
ours is defined by a generative model. The decod-
ing in the reranking stage is also similar to the pars-
ing algorithm of their model 1. In order to capture
grandsibling factors, our decoding calculates inside
probablities for not the current head node but each
pair of the node and its outgoing edges.

Titov and Henderson (2006) reported that the
MBR approach could be applied to a projective de-
pendency parser. In the field of SMT, for an approx-
imation of MAP decoding, Li et al. (2009) proposed
variational decoding and Kumar et al. (2009) pre-
sented hypergraph MBR decoding. Our variational
model is inspired by the study of Li et al. (2009) and
we apply it to a dependency parser in order to select
better candidates with third-order information. We
also propose an efficient algorithm to estimate the

non-local third-order model structure.

7 Conclusions

In this paper, we propose a novel forest reranking
algorithm for dependency parsing. Our reranking
algorithm is a combination approach of generative
reranking and variational decoding. The search al-
gorithm in the reranking stage can be performed
using dynamic programming algorithm. Our vari-
ational reranking is aimed at selecting a candidate
from a forest, which is correct both in local and
global. Our experimental results show more signif-
icant improvements than conventional approaches,
such as k-best and forest generative reranking.

In the future, we plan to investigate more ap-
propriate generative models for reranking. PP-
Attachment is one of the most difficult problems
for a natural language parser. We plan to exam-
ine to model such a complex structure (granduncle)
(Goldberg and Elhadad, 2010) or higher-order struc-
ture than third-order for reranking which is compu-
tationally expensive for a baseline parser. As we
mentioned in Section 5.4, we also plan to incorpo-
rate semi-supervised learning into our framework,
which may potentially improve our reranking per-
formance.

Acknowledgments

We would like to thank Graham Neubig and Masashi
Shimbo for their helpful comments and to the anony-
mous reviewers for their effort of reviewing our pa-
per and giving valuable comments. This work was
supported in part by Grant-in-Aid for Japan Society
for the Promotion of Science (JSPS) Research Fel-
lowship for Young Scientists.

1487



References
X. Carreras. 2007. Experiments with a higher-order

projective dependency parser. In Proc. the CoNLL-
EMNLP, pages 957–961.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-
best parsing and maxent discriminative reranking. In
Proc. the 43rd ACL, pages 173–180.

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33:201–228.

M. Collins. 2000. Discriminative reranking for natural
language parsing. In Proc. the ICML.

J. M. Eisner. 1996a. An empirical comparison of prob-
ability models for dependency grammar. In Technical
Report, pages 1–18.

J. M. Eisner. 1996b. Three new probabilistic models for
dependency parsing: An exploration. In Proc. the 16th
COLING, pages 340–345.

Y. Goldberg and M. Elhadad. 2010. An efficient algo-
rithm for easy-first non-directional dependency pars-
ing. In Proc. the HLT-NAACL, pages 742–750.

L. Huang and D. Chiang. 2005. Better k-best parsing. In
Proc. the IWPT, pages 53–64.

L. Huang and K. Sagae. 2010. Dynamic programming
for linear-time incremental parsing. In Proc. the ACL,
pages 1077–1086.

L. Huang. 2006. Dynamic programming al-
gorithms in semiring and hypergraph frame-
works. Qualification Exam Report, pages 1–19.
http://www.cis.upenn.edu/ lhuang3/wpe2/.

L. Huang. 2008. Forest reranking: Discriminative pars-
ing with non-local features. In Proc. the 46th ACL,
pages 586–594.

T. Koo and M. Collins. 2010. Efficient third-order de-
pendency parsers. In Proc. the 48th ACL, pages 1–11.

T. Koo, X. Carreras, and M. Collins. 2008. Simple semi-
supervised dependency parsing. In Proc. the ACL,
pages 595–603.

S. Kumar, W. Macherey, C. Dyer, and F. Och. 2009. Effi-
cient minimum error rate training and minimum bayes-
risk decoding for translation hypergraphs and lattices.
In Proc. the 47th ACL, pages 163–171.

Z. Li, J. Eisner, and S. Khudanpur. 2009. Variational
decoding for statistical machine translation. In Proc.
the 47th ACL, pages 593–601.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis-
tic cfg with latent annotations. In Proc. the ACL, pages
75–82.

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. In Proc.
EACL, pages 81–88.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. In Proc.
the 43rd ACL, pages 91–98.

H. Mi and L. Huang. 2008. Forest-based translation rule
extraction. In Proceedings of EMNLP, pages 206–
214.

M. Mohri. 2002. Semiring framework and algorithms
for shortest-distance problems. Automata, Languages
and Combinatorics, 7:321–350.

F. J. Och. 2003. Minimum error rate training in statisti-
cal machine translation. In Proc. the 41st ACL, pages
160–167.

F. Sangati, W. Zuidema, and R. Bod. 2009. A generative
re-ranking model for dependency parsing. In Proc. the
11th IWPT, pages 238–241.

J. Suzuki, H. Isozaki, X. Carreras, and M. Collins. 2009.
An empirical study of semi-supervised structured con-
ditional models for dependency parsing. In Proc. the
EMNLP, pages 551–560.

I. Titov and J. Henderson. 2006. Bayes risk minimiza-
tion in natural language parsing. In Technical Report,
pages 1–9.

Z. Tu, Y. Liu, Y. Hwang, Q. Liu, and S. Lin. 2010. De-
pendency forest for statistical machine translation. In
Proc. the 23rd COLING, pages 1092–1100.

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
the IWPT, pages 195–206.

1488



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1489–1499,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Training dependency parsers by jointly optimizing multiple objectives

Keith Hall Ryan McDonald Jason Katz-Brown Michael Ringgaard
Google Research

{kbhall|ryanmcd|jasonkb|ringgaard}@google.com

Abstract

We present an online learning algorithm for
training parsers which allows for the inclusion
of multiple objective functions. The primary
example is the extension of a standard su-
pervised parsing objective function with addi-
tional loss-functions, either based on intrinsic
parsing quality or task-specific extrinsic mea-
sures of quality. Our empirical results show
how this approach performs for two depen-
dency parsing algorithms (graph-based and
transition-based parsing) and how it achieves
increased performance on multiple target tasks
including reordering for machine translation
and parser adaptation.

1 Introduction

The accuracy and speed of state-of-the-art depen-
dency parsers has motivated a resumed interest in
utilizing the output of parsing as an input to many
downstream natural language processing tasks. This
includes work on question answering (Wang et al.,
2007), sentiment analysis (Nakagawa et al., 2010),
MT reordering (Xu et al., 2009), and many other
tasks. In most cases, the accuracy of parsers de-
grades when run on out-of-domain data (Gildea,
2001; McClosky et al., 2006; Blitzer et al., 2006;
Petrov et al., 2010). But these accuracies are mea-
sured with respect to gold-standard out-of-domain
parse trees. There are few tasks that actually depend
on the complete parse tree. Furthermore, when eval-
uated on a downstream task, often the optimal parse
output has a model score lower than the best parse
as predicted by the parsing model. While this means

that we are not properly modeling the downstream
task in the parsers, it also means that there is some
information from small task or domain-specific data
sets which could help direct our search for optimal
parameters during parser training. The goal being
not necessarily to obtain better parse performance,
but to exploit the structure induced from human la-
beled treebank data while targeting specific extrinsic
metrics of quality, which can include task specific
metrics or external weak constraints on the parse
structure.

One obvious approach to this problem is to em-
ploy parser reranking (Collins, 2000). In such a
setting, an auxiliary reranker is added in a pipeline
following the parser. The standard setting involves
training the base parser and applying it to a devel-
opment set (this is often done in a cross-validated
jack-knife training framework). The reranker can
then be trained to optimize for the downstream or
extrinsic objective. While this will bias the reranker
towards the target task, it is limited by the oracle
performance of the original base parser.

In this paper, we propose a training algorithm for
statistical dependency parsers (Kübler et al., 2009)
in which a single model is jointly optimized for a
regular supervised training objective over the tree-
bank data as well as a task-specific objective – or
more generally an extrinsic objective – on an ad-
ditional data set. The case where there are both
gold-standard trees and a task-specific objective for
the entire training set is a specific instance of the
larger problem that we address here. Specifically,
the algorithm takes the form of an online learner
where a training instance is selected and the param-
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eters are optimized based on the objective function
associated with the instance (either intrinsic or ex-
trinsic), thus jointly optimizing multiple objectives.
An update schedule trades-off the relative impor-
tance of each objective function. We call our algo-
rithm augmented-loss training as it optimizes mul-
tiple losses to augment the traditional supervised
parser loss.

There have been a number of efforts to exploit
weak or external signals of quality to train better pre-
diction models. This includes work on generalized
expectation (Mann and McCallum, 2010), posterior
regularization (Ganchev et al., 2010) and constraint
driven learning (Chang et al., 2007; Chang et al.,
2010). The work of Chang et al. (2007) on constraint
driven learning is perhaps the closest to our frame-
work and we draw connections to it in Section 5.
In these studies the typical goal is to use the weak
signal to improve the structured prediction models
on the intrinsic evaluation metrics. For our setting
this would mean using weak application specific sig-
nals to improve dependency parsing. Though we
explore such ideas in our experiments, in particular
for semi-supervised domain adaptation, we are pri-
marily interested in the case where the weak signal
is precisely what we wish to optimize, but also de-
sire the benefit from using both data with annotated
parse structures and data specific to the task at hand
to guide parser training.

In Section 2 we outline the augmented-loss algo-
rithm and provide a convergence analysis. In Sec-
tion 3 and 4 we present a set of experiments defin-
ing diffent augmented losses covering a task-specific
extrinsic loss (MT reordering), a domain adapta-
tion loss, and an alternate intrinsic parser loss. In
all cases we show the augmented-loss framework
can lead to significant gains in performance. In
Section 5 we tie our augmented-loss algorithm to
other frameworks for encoding auxiliary informa-
tion and/or joint objective optimization.

2 Methodology

We present the augmented-loss algorithm in the con-
text of the structured perceptron. The structured
perceptron (Algorithm 1) is an on-line learning al-
gorithm which takes as input: 1) a set of training
examples di = (xi, yi) consisting of an input sen-

Algorithm 1 Structured Perceptron
{Input data sets: D = {d1 = (x1, y1) . . . dN = (xN , yN )}}
{Input 0/1 loss: L(Fθ(x), y) = [Fθ(x) 6= y ? 1 : 0]}
{Let: Fθ(x) = arg maxy∈Y θ · Φ(y)}
{Initialize model parameters: θ = ~0}
repeat

for i = 1 . . . N do
{Compute structured loss}
ŷi = Fθ(xi)
if L(ŷi, yi) > 0 then
{Update model Parameters}
θ = θ + Φ(yi)− Φ(ŷi)

end if
end for

until converged
{Return model θ}

tence xi and an output yi; and 2) a loss-function,
L(ŷ, y), that measures the cost of predicting out-
put ŷ relative to the gold standard y and is usu-
ally the 0/1 loss (Collins, 2002). For dependency
parser training, this set-up consists of input sen-
tences x and the corresponding gold dependency
tree y ∈ Yx, where Yx is the space of possible
parse trees for sentence x. In the perceptron setting,
Fθ(x) = arg maxy∈Yx θ ·Φ(y) where Φ is mapping
from a parse tree y for sentence x to a high dimen-
sional feature space. Learning proceeds by predict-
ing a structured output given the current model, and
if that structure is incorrect, updating the model: re-
warding features that fire in the gold-standard Φ(yi),
and discounting features that fire in the predicted
output, Φ(ŷi).

The structured perceptron, as given in Algo-
rithm 1, only updates when there is a positive loss,
meaning that there was a prediction mistake. For
the moment we will abstract away from details such
as the precise definition of F (x) and Φ(y). We
will show in the next section that our augmented-
loss method is general and can be applied to any de-
pendency parsing framework that can be trained by
the perceptron algorithm, such as transition-based
parsers (Nivre, 2008; Zhang and Clark, 2008) and
graph-based parsers (McDonald et al., 2005).

2.1 Augmented-Loss Training

The augmented-loss training algorithm that we pro-
pose is based on the structured perceptron; however,
the augmented-loss training framework is a general
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mechanism to incorporate multiple loss functions in
online learner training. Algorithm 2 is the pseudo-
code for the augmented-loss structured perceptron
algorithm. The algorithm is an extension to Algo-
rithm 1 where there are 1) multiple loss functions
being evaluated L1, . . . , LM ; 2) there are multiple
datasets associated with each of these loss functions
D1, . . . ,DM ; and 3) there is a schedule for pro-
cessing examples from each of these datasets, where
Sched(j, i) is true if the jth loss function should be
updated on the ith iteration of training. Note that
for data point dji = (x, y), which is the ith training
instance of the jth data set, that y does not neces-
sarily have to be a dependency tree. It can either
be a task-specific output of interest, a partial tree, or
even null, in the case where learning will be guided
strictly by the loss Lj . The training algorithm is ef-
fectively the same as the perceptron, the primary dif-
ference is that if Lj is an extrinsic loss, we cannot
compute the standard updates since we do not nec-
essarily know the correct parse (the line indicated by
†). Section 2.2 shows one method for updating the
parser parameters for extrinsic losses.

In the experiments in this paper, we only consider
the case where there are two loss functions: a super-
vised dependency parsing labeled-attachment loss;
and an additional loss, examples of which are pre-
sented in Section 3.

2.2 Inline Ranker Training

In order to make Algorithm 2 more concrete, we
need a way of defining the loss and resulting pa-
rameter updates for the case when Lj is not a stan-
dard supervised parsing loss († from Algorithm 2).
Assume that we have a cost function C(xi, ŷ, yi)
which, given a training example (xi, yi) will give a
score for a parse ŷ ∈ Yxi relative to some output
yi. While we can compute the score for any parse,
we are unable to determine the features associated
with the optimal parse, as yi need not be a parse
tree. For example, consider a machine translation re-
ordering system which uses the parse ŷ to reorder the
words of xi, the optimal reordering being yi. Then
C(xi, ŷ, yi) is a reordering cost which is large if the
predicted parse induces a poor reordering of xi.

We propose a general purpose loss function which
is based on parser k-best lists. The inline reranker
uses the currently trained parser model θ to parse

Algorithm 2 Augmented-Loss Perceptron
{Input data sets}:
D1 = {d11 = (x11, y

1
1) . . . d1N1 = (x1N1 , y

1
N1)},

. . .
DM = {dM1 = (xM1 , y

M
1 ) . . . dMNM = (xMNM , y

M
NM )}

{Input loss functions: L1 . . . LM}
{Initialize indexes: c1 . . . cM = ~0}
{Initialize model parameters: θ = ~0}
i = 0
repeat

for j = 1 . . .M do
{Check whether to update Lj on iteration i}
if Sched(j, i) then
{Compute index of instance – reset if cj ≡ N j}
cj = [(cj ≡ N j) ? 0 : cj + 1]
{Compute structured loss for instance}
if Lj is intrinsic loss then
ŷ = Fθ(x

j
cj )

if Lj(ŷ, yjcj ) > 0 then
θ = θ + Φ(yjcj )− Φ(ŷ) {yjcj is a tree}

end if
else if Lj is an extrinsic loss then
{See Section 2.2}†

end if
end if

end for
i = i+ 1

until converged
{Return model θ}

the external input, producing a k-best set of parses:
Fk-best
θ (xi) = {ŷ1, . . . , ŷk}. We can compute the

cost function C(xi, ŷ, yi) for all ŷ ∈ Fk-best
θ (xi). If

the 1-best parse, ŷ1, has the lowest cost, then there is
no lower cost parse in this k-best list. Otherwise, the
lowest-cost parse in Fk-best

θ (xi) is taken to be the
correct output structure yi, and the 1-best parse is
taken to be an incorrect prediction. We can achieve
this by substituting the following into Algorithm 2
at line †.

Algorithm 3 Reranker Loss

{ŷ1, . . . , ŷk} = Fk-best
θ (xi)

τ = minτ C(xjcj , ŷτ , y
j
cj ) {τ is min const index}

Lj(ŷ1, y
j
cj ) = C(xjcj , ŷ1, y

j
cj )− C(xjcj , ŷτ , y

j
cj )

if Lj(ŷ1, yjcj ) > 0 then
θ = θ + Φ(ŷτ )− Φ(ŷ1)

end if

Again the algorithm only updates when there is
an error – when the 1-best output has a higher cost
than any other output in the k-best list – resulting
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in positive Lj . The intuition behind this method is
that in the presence of only a cost function and a
k-best list, the parameters will be updated towards
the parse structure that has the lowest cost, which
over time will move the parameters of the model to
a place with low extrinsic loss.

We exploit this formulation of the general-
purpose augmented-loss function as it allows one to
include any extrinsic cost function which is depen-
dent of parses. The scoring function used does not
need to be factored, requiring no internal knowledge
of the function itself. Furthermore, we can apply this
to any parsing algorithm which can generate k-best
lists. For each parse, we must retain the features
associated with the parse (e.g., for transition-based
parsing, the features associated with the transition
sequence resulting in the parse).

There are two significant differences from the in-
line reranker loss function and standard reranker
training. First, we are performing this decision per
example as each data item is processed (this is done
in the inner loop of the Algorithm 2). Second, the
feedback function for selecting a parse is based on
an external objective function. The second point is
actually true for many minimum-error-rate training
scenarios, but in those settings the model is updated
as a post-processing stage (after the base-model is
trained).

2.3 Convergence of Inline Ranker Training
A training setD is loss-separable with margin γ > 0
if there exists a vector u with ‖u‖ = 1 such that
for all y′, y′′ ∈ Yx and (x, y) ∈ D, if L(y′, y) <
L(y′′, y), then u·Φ(y′)−u·Φ(y′′) ≥ γ. Furthermore,
let R ≥ ||Φ(y)− Φ(y′)||, for all y, y′.
Assumption 1. Assume training set D is loss-
separable with margin γ.
Theorem 1. Given Assumption 1. Letm be the num-
ber of mistakes made when training the perceptron
(Algorithm 2) with inline ranker loss (Algorithm 3)
on D, where a mistake occurs for (x, y) ∈ D with
parameter vector θ when ∃ŷj ∈ F k-best

θ (x) where
ŷj 6= ŷ1 and L(ŷj , y) < L(ŷ1, y). If training is run
indefinitely, then m ≤ R2

γ2
.

Proof. Identical to the standard perceptron proof,
e.g., Collins (2002), by inserting in loss-separability
for normal separability.

Like the original perceptron theorem, this implies
that the algorithm will converge. However, unlike
the original theorem, it does not imply that it will
converge to a parameter vector θ such that for all
(x, y) ∈ D, if ŷ = arg maxŷ θ ·Φ(ŷ) then L(ŷ, y) =
0. Even if we assume for every x there exists an out-
put with zero loss, Theorem 1 still makes no guar-
antees. Consider a training set with one instance
(x, y). Now, set k = 2 for the k-best output list and
let ŷ1, ŷ2, and ŷ3 be the top-3 scoring outputs and
let L(ŷ1, y) = 1, L(ŷ2, y) = 2 and L(ŷ3, y) = 0.
In this case, no updates will ever be made and ŷ1
will remain unchanged even though it doesn’t have
minimal loss. Consider the following assumption:

Assumption 2. For any parameter vector θ that ex-
ists during training, either 1) for all (x, y) ∈ D,
L(ŷ1, y) = 0 (or some optimal minimum loss),
or 2) there exists at least one (x, y) ∈ D where
∃ŷj ∈ F k-best

θ (x) such that L(ŷj , y) < L(ŷ1, y).

Assumption 2 states that for any θ that exists
during training, but before convergence, there is at
least one example in the training data where k is
large enough to include one output with a lower loss
when ŷ1 does not have the optimal minimal loss. If
k = ∞, then this is the standard perceptron as it
guarantees the optimal loss output to be in the k-best
list. But we are assuming something much weaker
here, i.e., not that the k-best list will include the min-
imal loss output, only a single output with a lower
loss than the current best guess. However, it is strong
enough to show the following:

Theorem 2. Given Assumption 1 and Assumption 2.
Training the perceptron (Algorithm 2) with inline
ranker loss (Algorithm 3) on D 1) converges in fi-
nite time, and 2) produces parameters θ such that
for all (x, y) ∈ D, if ŷ = arg maxŷ θ · Φ(ŷ) then
L(ŷ, y) = 0 (or equivalent minimal loss).

Proof. It must be the case for all (x, y) ∈ D that
L(ŷ1, y) = 0 (and ŷ1 is the argmax) after a finite
amount of time. Otherwise, by Assumption 2, there
exists some x, such that when it is next processed,
there would exist an output in the k-best list that
had a lower loss, which will result in an additional
mistake. Theorem 1 guarantees that this can not
continue indefinitely as the number of mistakes is
bounded.
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Thus, the perceptron algorithm will converge to
optimal minimal loss under the assumption that k
is large enough so that the model can keep improv-
ing. Note that this does not mean k must be large
enough to include a zero or minimum loss output,
just large enough to include a better output than
the current best hypothesis. Theorem 2, when cou-
pled with Theorem 1, implies that augmented-loss
learning will make at most R2/γ2 mistakes at train-
ing, but does not guarantee the rate at which these
mistakes will be made, only that convergence is fi-
nite, providing that the scheduling time (defined by
Sched()) between seeing the same instance is always
finite, which is always true in our experiments.

This analysis does not assume anything about the
loss L. Every instance (x, y) can use a different loss.
It is only required that the loss for a specific input-
output pair is fixed throughout training. Thus, the
above analysis covers the case where some training
instances use an extrinsic loss and others an intrin-
sic parsing loss. This also suggests more efficient
training methods when extracting the k-best list is
prohibitive. One can parse with k = 2, 4, 8, 16, . . .
until an k is reached that includes a lower loss parse.
It may be the case that for most instances a small
k is required, but the algorithm is doing more work
unnecessarily if k is large.

3 Experimental Set-up

3.1 Dependency Parsers
The augmented-loss framework we present is gen-
eral in the sense that it can be combined with any
loss function and any parser, provided the parser can
be parameterized as a linear classifier, trained with
the perceptron and is capable of producing a k-best
list of trees. For our experiments we focus on two
dependency parsers.

• Transition-based: An implementation of the
transition-based dependency parsing frame-
work (Nivre, 2008) using an arc-eager transi-
tion strategy and are trained using the percep-
tron algorithm as in Zhang and Clark (2008)
with a beam size of 8. Beams with varying
sizes can be used to produce k-best lists. The
features used by all models are: the part-of-
speech tags of the first four words on the buffer
and of the top two words on the stack; the word

identities of the first two words on the buffer
and of the top word on the stack; the word iden-
tity of the syntactic head of the top word on the
stack (if available); dependency arc label iden-
tities for the top word on the stack, the left and
rightmost modifier of the top word on the stack,
and the left most modifier of the first word in
the buffer (if available). All feature conjunc-
tions are included.

• Graph-based: An implementation of graph-
based parsing algorithms with an arc-factored
parameterization (McDonald et al., 2005). We
use the non-projective k-best MST algorithm to
generate k-best lists (Hall, 2007), where k = 8
for the experiments in this paper. The graph-
based parser features used in the experiments
in this paper are defined over a word, wi at po-
sition i; the head of this word wρ(i) where ρ(i)
provides the index of the head word; and part-
of-speech tags of these words ti. We use the
following set of features similar to McDonald
et al. (2005):

isolated features: wi, ti, wρ(i), tρ(i)
word-tag pairs: (wi, ti); (wρ(i), tρ(i))
word-head pairs: (wi, wρ(i)), (ti, tρ(i))
word-head-tag triples: (tρ(i), wi, ti)

(wρ(i), wi, ti)
(wρ(i), tρ(i), ti)
(wρ(i), tρ(i), wi)

tag-neighbourhood: (tρ(i), tρ(i)+1, ti−1, ti)
(tρ(i), tρ(i)+1, ti+1, ti)
(tρ(i), tρ(i)−1, ti−1, ti)
(tρ(i), tρ(i)−1, ti+1, ti)

between features: ∀j i < j < ρ(i) || ρ(i) < j < i

(tρ(i), tj , ti)
arc-direction/length : (i− ρ(i) > 0, |i− ρ(i)|)

3.2 Data and Tasks
In the next section, we present a set of scoring func-
tions that can be used in the inline reranker loss
framework, resulting in a new augmented-loss for
each one. Augmented-loss learning is then applied
to target a downstream task using the loss functions
to measure gains. We show empirical results for two
extrinsic loss-functions (optimizing for the down-
stream task): machine translation and domain adap-
tation; and for one intrinsic loss-function: an arc-
length parsing score. For some experiments we also
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measure the standard intrinsic parser metrics unla-
beled attachment score (UAS) and labeled attach-
ment score (LAS) (Buchholz and Marsi, 2006).

In terms of treebank data, the primary training
corpus is the Penn Wall Street Journal Treebank
(PTB) (Marcus et al., 1993). We also make use
of the Brown corpus, and the Question Treebank
(QTB) (Judge et al., 2006). For PTB and Brown
we use standard training/development/testing splits
of the data. For the QTB we split the data into
three sections: 2000 training, 1000 development,
and 1000 test. All treebanks are converted to de-
pendency format using the Stanford converter v1.6
(de Marneffe et al., 2006).

4 Experiments

4.1 Machine Translation Reordering Score

As alluded to in Section 2.2, we use a reordering-
based loss function to improve word order in a ma-
chine translation system. In particular, we use a sys-
tem of source-side reordering rules which, given a
parse of the source sentence, will reorder the sen-
tence into a target-side order (Collins et al., 2005).
In our experiments we work with a set of English-
Japanese reordering rules1 and gold reorderings
based on human generated correct reordering of an
aligned target sentences. We use a reordering score
based on the reordering penalty from the METEOR
scoring metric. Though we could have used a fur-
ther downstream measure like BLEU, METEOR has
also been shown to directly correlate with translation
quality (Banerjee and Lavie, 2005) and is simpler to
measure.

reorder-score = 1− # chunks− 1

# unigrams matched− 1

reorder-cost = 1− reorder-score

All reordering augmented-loss experiments are
run with the same treebank data as the baseline
(the training portions of PTB, Brown, and QTB).
The extrinsic reordering training data consists of
10930 examples of English sentences and their cor-
rect Japanese word-order. We evaluate our results on
an evaluation set of 6338 examples of similarly cre-
ated reordering data. The reordering cost, evaluation

1Our rules are similar to those from Xu et al. (2009).

Exact Reorder
trans–PTB + Brown + QTB 35.29 76.49
trans–0.5×aug.-loss 38.71 78.19
trans–1.0×aug.-loss 39.02 78.39
trans–2.0×aug.-loss 39.58 78.67
graph–PTB + Brown + QTB 25.71 69.84
graph–0.5× aug.-loss 28.99 72.23
graph–1.0×aug.-loss 29.99 72.88
graph–2.0×aug.-loss 30.03 73.15

Table 1: Reordering scores for parser-based reordering
(English-to-Japanese). Exact is the number of correctly
reordered sentences. All models use the same treebank-
data (PTB, QTB, and the Brown corpus). Results for
three augmented-loss schedules are shown: 0.5 where for
every two treebank updates we make one augmented-loss
update, 1 is a 1-to-1 mix, and 2 is where we make twice
as many augmented-loss updates as treebank updates.

criteria and data used in our experiments are based
on the work of Talbot et al. (2011).

Table 1 shows the results of using the reordering
cost as an augmented-loss to the standard treebank
objective function. Results are presented as mea-
sured by the reordering score as well as a coarse
exact-match score (the number of sentences which
would have correct word-order given the parse and
the fixed reordering rules). We see continued im-
provements as we adjust the schedule to process the
extrinsic loss more frequently, the best result being
when we make two augmented-loss updates for ev-
ery one treebank-based loss update.

4.2 Semi-supervised domain adaptation

Another application of the augmented-loss frame-
work is to improve parser domain portability in the
presence of partially labeled data. Consider, for ex-
ample, the case of questions. Petrov et al. (2010)
observed that dependency parsers tend to do quite
poorly when parsing questions due to their lim-
ited exposure to them in the news corpora from
the PennTreebank. Table 2 shows the accuracy
of two parsers (LAS, UAS and the F1 of the root
dependency attachment) on the QuestionBank test
data. The first is a parser trained on the standard
training sections of the PennTreebank (PTB) and
the second is a parser trained on the training por-
tion of the QuestionBank (QTB). Results for both
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LAS UAS Root-F1
trans–PTB 67.97 73.52 47.60
trans–QTB 84.59 89.59 91.06
trans–aug.-loss 76.27 86.42 83.41
graph–PTB 65.27 72.72 43.10
graph–QTB 82.73 87.44 91.58
graph–aug.-loss 72.82 80.68 86.26

Table 2: Domain adaptation results. Table shows (for
both transition and graph-based parsers) the labeled ac-
curacy score (LAS), unlabeled accuracy score (UAS)
and Root-F1 for parsers trained on the PTB and QTB
and tested on the QTB. The augmented-loss parsers are
trained on the PTB but with a partial tree loss on QTB
that considers only root dependencies.

transition-based parsers and graph-based parsers are
given. Clearly there is significant drop in accu-
racy for a parser trained on the PTB. For example,
the transition-based PTB parser achieves a LAS of
67.97% relative to 84.59% for the parser trained on
the QTB.

We consider the situation where it is possible to
ask annotators a single question about the target do-
main that is relatively easy to answer. The question
should be posed so that the resulting answer pro-
duces a partially labeled dependency tree. Root-F1
scores from Table 2 suggest that one simple ques-
tion is “what is the main verb of this sentence?” for
sentences that are questions. In most cases this task
is straight-forward and will result in a single depen-
dency, that from the root to the main verb of the sen-
tence. We feel this is a realistic partial labeled train-
ing setting where it would be possible to quickly col-
lect a significant amount of data.

To test whether such weak information can signif-
icantly improve the parsing of questions, we trained
an augmented-loss parser using the training set of
the QTB stripped of all dependencies except the de-
pendency from the root to the main verb of the sen-
tence. In other words, for each sentence, the parser
may only observe a single dependency at training
from the QTB – the dependency to the main verb.
Our augmented-loss function in this case is a simple
binary function: 0 if a parse has the correct root de-
pendency and 1 if it does not. Thus, the algorithm
will select the first parse in the k-best list that has the

correct root as the proxy to a gold standard parse.2

The last row in each section of Table 2 shows the
results for this augmented-loss system when weight-
ing both losses equally during training. By simply
having the main verb annotated in each sentence –
the sentences from the training portion of the QTB
– the parser can eliminate half of the errors of the
original parser. This is reflected by both the Root-
F1 as well as LAS/UAS. It is important to point out
that these improvements are not limited to simply
better root predictions. Due to the fact that parsing
algorithms make many parsing decisions jointly at
test time, all such decisions influence each other and
improvements are seen across the board. For exam-
ple, the transition-based PTB parser has an F1 score
of 41.22% for verb subjects (nsubj), whereas the
augmented-loss parser has an F1 of 73.52%. Clearly
improving just a single (and simple to annotate) de-
pendency leads to general parser improvements.

4.3 Average Arc Length Score
The augmented-loss framework can be used to in-
corporate multiple treebank-based loss functions as
well. Labeled attachment score is used as our base
model loss function. In this set of experiments we
consider adding an additional loss function which
weights the lengths of correct and incorrect arcs, the
average (labeled) arc-length score:

ALS =

∑
i δ(ρ̂i, ρi)(i− ρi)∑

i(i− ρi)
For each word of the sentence we compute the dis-
tance between the word’s position i and the posi-
tion of the words head ρi. The arc-length score is
the summed length of all those with correct head as-
signments (δ(ρ̂i, ρi) is 1 if the predicted head and
the correct head match, 0 otherwise). The score is
normalized by the summed arc lengths for the sen-
tence. The labeled version of this score requires that
the labels of the arc are also correct. Optimizing
for dependency arc length is particularly important
as parsers tend to do worse on longer dependencies
(McDonald and Nivre, 2007) and these dependen-
cies are typically the most meaningful for down-
stream tasks, e.g., main verb dependencies for tasks

2For the graph-based parser one can also find the higest scor-
ing tree with correct root by setting the score of all competing
arcs to −∞.
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LAS UAS ALS
trans–PTB 88.64 91.64 82.96
trans–unlabeled aug.-loss 88.74 91.91 83.65
trans–labeled aug.-loss 88.84 91.91 83.46
graph–PTB 85.75 88.70 73.88
graph–unlabeled aug.-loss 85.80 88.81 74.26
graph–labeled aug.-loss 85.85 88.93 74.40

Table 3: Results for both parsers on the development set
of the PTB. When training with ALS (labeled and unla-
beled), we see an improvement in UAS, LAS, and ALS.
Furthermore, if we use a labeled-ALS as the metric for
augmented-loss training, we also see a considerable in-
crease in LAS.

like information extraction (Yates and Etzioni, 2009)
and textual entailment (Berant et al., 2010).

In Table 3 we show results for parsing with the
ALS augmented-loss objective. For each parser, we
consider two different ALS objective functions; one
based on unlabeled-ALS and the other on labeled-
ALS. The arc-length score penalizes incorrect long-
distance dependencies more than local dependen-
cies; long-distance dependencies are often more de-
structive in preserving sentence meaning and can be
more difficult to predict correctly due to the larger
context on which they depend. Combining this with
the standard attachment scores biases training to fo-
cus on the difficult head dependencies.

For both experiments we see that by adding the
ALS augmented-loss we achieve an improvement in
LAS and UAS in addition to ALS. The augmented-
loss not only helps us improve on the longer depen-
dencies (as reflected in the increased ALS), but also
in the main parser objective function of LAS and
UAS. Using the labeled loss function provides better
reinforcement as can be seen in the improvements
over the unlabeled loss-function. As with all experi-
ments in this paper, the graph-based parser baselines
are much lower than the transition-based parser due
to the use of arc-factored features. In these experi-
ments we used an inline-ranker loss with 8 parses.
We experimented with larger sizes (16 and 64) and
found very similar improvements: for example, the
transition parser’s LAS for the labeled loss is 88.68
and 88.84, respectively).

We note that ALS can be decomposed locally and
could be used as the primary objective function for

parsing. A parse with perfect scores under ALS
and LAS will match the gold-standard training tree.
However, if we were to order incorrect parses of a
sentence, ALS and LAS will suggest different order-
ings. Our results show that by optimizing for losses
based on a combination of these metrics we train a
more robust parsing model.

5 Related Work

A recent study by Katz-Brown et al. (2011) also in-
vestigates the task of training parsers to improve MT
reordering. In that work, a parser is used to first
parse a set of manually reordered sentences to pro-
duce k-best lists. The parse with the best reordering
score is then fixed and added back to the training set
and a new parser is trained on resulting data. The
method is called targeted self-training as it is simi-
lar in vein to self-training (McClosky et al., 2006),
with the exception that the new parse data is targeted
to produce accurate word reorderings. Our method
differs as it does not statically fix a new parse, but
dynamically updates the parameters and parse selec-
tion by incorporating the additional loss in the inner
loop of online learning. This allows us to give guar-
antees of convergence. Furthermore, we also evalu-
ate the method on alternate extrinsic loss functions.

Liang et al. (2006) presented a perceptron-based
algorithm for learning the phrase-translation param-
eters in a statistical machine translation system.
Similar to the inline-ranker loss function presented
here, they use a k-best lists of hypotheses in order to
identify parameters which can improve a global ob-
jective function: BLEU score. In their work, they
are interested in learning a parameterization over
translation phrases (including the underlying word-
alignment) which optimizes the BLEU score. Their
goal is considerably different; they want to incor-
porate additional features into their model and de-
fine an objective function which allows them to do
so; whereas, we are interested in allowing for mul-
tiple objective functions in order to adapt the parser
model parameters to downstream tasks or alternative
intrinsic (parsing) objectives.

The work that is most similar to ours is that
of Chang et al. (2007), who introduced the Con-
straint Driven Learning algorithm (CODL). Their al-
gorithm specifically optimizes a loss function with
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the addition of constraints based on unlabeled data
(what we call extrinsic datasets). For each unla-
beled example, they use the current model along
with their set of constraints to select a set of k au-
tomatically labeled examples which best meet the
constraints. These induced examples are then added
to their training set and, after processing each unla-
beled dataset, they perform full model optimization
with the concatenation of training data and newly
generated training items. The augmented-loss al-
gorithm can be viewed as an online version of this
algorithm which performs model updates based on
the augmented-loss functions directly (rather than
adding a set of examples to the training set). Un-
like the CODL approach, we do not perform com-
plete optimization on each iteration over the unla-
beled dataset; rather, we incorporate the updates in
our online learning algorithm. As mentioned earlier,
CODL is one example of learning algorithms that
use weak supervision, others include Mann and Mc-
Callum (2010) and Ganchev et al. (2010). Again,
these works are typically interested in using the ex-
trinsic metric – or, in general, extrinsic information
– to optimize the intrinsic metric in the absence of
any labeled intrinsic data. Our goal is to optimize
both simultaneously.

The idea of jointly training parsers to optimize
multiple objectives is related to joint learning and in-
ference for tasks like information extraction (Finkel
and Manning, 2009) and machine translation (Bur-
kett et al., 2010). In such works, a large search space
that covers both the space of parse structures and
the space of task-specific structures is defined and
parameterized so that standard learning and infer-
ence algorithms can be applied. What sets our work
apart is that there is still just a single parameter set
that is being optimized – the parser parameters. Our
method only uses feedback from task specific objec-
tives in order to update the parser parameters, guid-
ing it towards better downstream performance. This
is advantageous for two reasons. First, it decouples
the tasks, making inference and learning more effi-
cient. Second, it does not force arbitrary paraemter
factorizations in order to define a joint search space
that can be searched efficiently.

Finally, augmented-loss training can be viewed
as multi-task learning (Caruana, 1997) as the model
optimizes multiple objectives over multiple data sets

with a shared underlying parameter space.

6 Discussion

The empirical results show that incorporating an
augmented-loss using the inline-ranker loss frame-
work achieves better performance under metrics as-
sociated with the external loss function. For the in-
trinsic loss, we see that the augmented-loss frame-
work can also result in an improvement in parsing
performance; however, in the case of ALS, this is
due to the fact that the loss function is very closely
related to the standard evaluation metrics of UAS
and LAS.

Although our analysis suggests that this algorithm
is guaranteed to converge only for the separable
case, it makes a further assumption that if there is
a better parse under the augmented-loss, then there
must be a lower cost parse in the k-best list. The em-
pirical evaluation presented here is based on a very
conservative approximation by choosing lists with
at most 8 parses. However, in our experiments, we
found that increasing the size of the lists did not sig-
nificantly increase our accuracy under the external
metrics. If we do have at least one improvement
in our k-best lists, the analysis suggests that this is
enough to move in the correct direction for updating
the model. The assumption that there will always
be an improvement in the k-best list if there is some
better parse breaks down as training continues. We
suspect that an increasing k, as suggested in Sec-
tion 2.3, will allow for continued improvements.

Dependency parsing, as presented in this pa-
per, is performed over (k-best) part-of-speech tags
and is therefore dependent on the quality of the
tagger. The experiments presented in this paper
made use of a tagger trained on the source treebank
data which severely limits the variation in parses.
The augmented-loss perceptron algorithm presented
here can be applied to any online learning prob-
lem, including part-of-speech tagger training. To
build a dependency parser which is better adapted
to a downstream task, one would want to perform
augmented-loss training on the tagger as well.

7 Conclusion

We introduced the augmented-loss training algo-
rithm and show that the algorithm can incorporate
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additional loss functions to adapt the model towards
extrinsic evaluation metrics. Analytical results are
presented that show that the algorithm can opti-
mize multiple objective functions simultaneously.
We present an empirical analysis for training depen-
dency parsers for multiple parsing algorithms and
multiple loss functions.

The augmented-loss framework supports both in-
trinsic and extrinsic losses, allowing for both com-
binations of objectives as well as multiple sources
of data for which the results of a parser can be eval-
uated. This flexibility makes it possible to tune a
model for a downstream task. The only requirement
is a metric which can be defined over parses of the
downstream data. Our dependency parsing results
show that we are not limited to increasing parser
performance via more data or external domain adap-
tation techniques, but that we can incorporate the
downstream task into parser training.

Acknowledgements: We would like to thank Kuz-
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{afm,nasmith}@cs.cmu.edu, aguiar@isr.ist.utl.pt, mtf@lx.it.pt

Abstract

Linear models have enjoyed great success in
structured prediction in NLP. While a lot of
progress has been made on efficient train-
ing with several loss functions, the problem
of endowing learners with a mechanism for
feature selection is still unsolved. Common
approaches employ ad hoc filtering or L1-
regularization; both ignore the structure of the
feature space, preventing practicioners from
encoding structural prior knowledge. We fill
this gap by adopting regularizers that promote
structured sparsity, along with efficient algo-
rithms to handle them. Experiments on three
tasks (chunking, entity recognition, and de-
pendency parsing) show gains in performance,
compactness, and model interpretability.

1 Introduction

Models for structured outputs are in demand across
natural language processing, with applications in in-
formation extraction, parsing, and machine transla-
tion. State-of-the-art models usually involve linear
combinations of features and are trained discrim-
inatively; examples are conditional random fields
(Lafferty et al., 2001), structured support vector
machines (Altun et al., 2003; Taskar et al., 2003;
Tsochantaridis et al., 2004), and the structured per-
ceptron (Collins, 2002a). In all these cases, the un-
derlying optimization problems differ only in the
choice of loss function; choosing among them has
usually a small impact on predictive performance.

In this paper, we are concerned with model se-
lection: which features should be used to define the
prediction score? The fact that models with few
features (“sparse” models) are desirable for several

reasons (compactness, interpretability, good gener-
alization) has stimulated much research work which
has produced a wide variety of methods (Della Pietra
et al., 1997; Guyon and Elisseeff, 2003; McCallum,
2003). Our focus is on methods which embed this
selection into the learning problem via the regular-
ization term. We depart from previous approaches
in that we seek to make decisions jointly about all
candidate features, and we want to promote sparsity
patterns that go beyond the mere cardinality of the
set of features. For example, we want to be able to
select entire feature templates (rather than features
individually), or to make the inclusion of some fea-
tures depend on the inclusion of other features.

We achieve the goal stated above by employ-
ing regularizers which promote structured sparsity.
Such regularizers are able to encode prior knowl-
edge and guide the selection of features by model-
ing the structure of the feature space. Lately, this
type of regularizers has received a lot of attention
in computer vision, signal processing, and compu-
tational biology (Zhao et al., 2009; Kim and Xing,
2010; Jenatton et al., 2009; Obozinski et al., 2010;
Jenatton et al., 2010; Bach et al., 2011). Eisenstein
et al. (2011) employed structured sparsity in com-
putational sociolinguistics. However, none of these
works have addressed structured prediction. Here,
we combine these two levels of structure: struc-
ture in the output space, and structure in the feature
space. The result is a framework that allows build-
ing structured predictors with high predictive power,
while reducing manual feature engineering. We ob-
tain models that are interpretable, accurate, and of-
ten much more compact than L2-regularized ones.
Compared with L1-regularized models, ours are of-
ten more accurate and yield faster runtime.
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2 Structured Prediction

We address structured prediction problems, which
involve an input set X (e.g., sentences) and an out-
put set Y, assumed large and structured (e.g., tags or
parse trees). We assume that each x ∈ X has a set
of candidate outputs Y(x) ⊆ Y. We consider linear
models, in which predictions are made according to

ŷ = arg maxy∈Y(x) θ · φ(x, y), (1)

where φ(x, y) ∈ RD is a vector of features, and θ ∈
RD is the vector of corresponding weights. Let D =
{〈xi, yi〉}Ni=1 be a training sample. We assume a cost
function is defined such that c(ŷ, y) is the cost of
predicting ŷ when the true output is y; our goal is to
learn θ with small expected cost on unseen data. To
achieve this goal, linear models are usually trained
by solving a problem of the form

θ̂ = arg minθ Ω(θ) + 1
N

∑N
i=1 L(θ, xi, yi), (2)

where Ω is a regularizer and L is a loss function.
Examples of losses are: the negative conditional log-
likelihood used in CRFs (Lafferty et al., 2001),

LCRF(θ, x, y) = − logPθ(y|x), (3)

where Pθ(y|x) ∝ exp(θ · φ(x, y)) is a log-linear
model; the margin rescaled loss of structured SVMs
(Taskar et al., 2003; Tsochantaridis et al., 2004),

LSVM(θ, x, y) = max
y′∈Y(x)

θ · δφ(y′) + c(y′, y), (4)

where δφ(y′) = φ(x, y′)−φ(x, y); and the loss un-
derlying the structured perceptron (Collins, 2002a),

LSP(θ, x, y) = maxy′∈Y(x) θ · δφ(y′). (5)

Empirical comparison among these loss functions
can be found in the literature (see, e.g., Martins et al.,
2010, who also consider interpolations of the losses
above). In practice, it has been observed that the
choice of loss has far less impact than the model de-
sign and choice of features. Hence, in this paper,
we focus our attention on the regularization term in
Eq. 2. We specifically address ways in which this
term can be used to help design the model by pro-
moting structured sparsity. While this has been a
topic of intense research in signal processing and

computational biology (Jenatton et al., 2009; Liu
and Ye, 2010; Bach et al., 2011), it has not yet re-
ceived much attention in the NLP community, where
the choice of regularization for supervised learning
has essentially been limited to the following:

• L2-regularization (Chen and Rosenfeld, 2000):

ΩL2
λ (θ) , λ

2‖θ‖22 = λ
2

∑D
d=1 θ

2
d; (6)

• L1-regularization (Kazama and Tsujii, 2003;
Goodman, 2004):

ΩL1
τ (θ) , τ‖θ‖1 = τ

∑D
d=1 |θd|. (7)

The latter is known as “Lasso,” as popularized by
Tibshirani (1996) in the context of sparse regres-
sion. In the two cases above, λ and τ are nonneg-
ative coefficients controlling the intensity of the reg-
ularization. ΩL2

λ usually leads to easier optimization
and robust performance; ΩL1

τ encourages sparser
models, where only a few features receive nonzero
weights; see Gao et al. (2007) for an empirical com-
parison. More recently, Petrov and Klein (2008b)
applied L1 regularization for structure learning in
phrase-based parsing; a comparison with L2 appears
in Petrov and Klein (2008a). Elastic nets interpolate
between L1 and L2, having been proposed by Zou
and Hastie (2005) and used by Lavergne et al. (2010)
to regularize CRFs.

Neither of the regularizers just described “looks”
at the structure of the feature space, since they all
treat each dimension independently—we call them
unstructured regularizers, as opposed to the struc-
tured ones that we next describe.

3 Structured Sparsity

We are interested in regularizers that share with ΩL1
τ

the ability to promote sparsity, so that they can be
used for selecting features. In addition, we want to
endow the feature space RD with additional struc-
ture, so that features are not penalized individually
(as in the L1-case) but collectively, encouraging en-
tire groups of features to be discarded. The choice of
groups will allow encoding prior knowledge regard-
ing the kind of sparsity patterns that are intended in
the model. This can be achieved with group-Lasso
regularization, which we next describe.
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3.1 The Group Lasso
To capture the structure of the feature space, we
group our D features into M groups G1, . . . , GM ,
where each Gm ⊆ {1, . . . , D}. Ahead, we dis-
cuss meaningful ways of choosing group decompo-
sitions; for now, let us assume a sensible choice is
obvious to the model designer. Denote by θm =
〈θd〉d∈Gm the subvector of those weights that cor-
respond to the features in the m-th group, and let
d1, . . . , dM be nonnegative scalars (one per group).
We consider the following group-Lasso regularizers:

ΩGL
d =

∑M
m=1 dm‖θm‖2. (8)

These regularizers were first proposed by Bakin
(1999) and Yuan and Lin (2006) in the context of re-
gression. If d1 = . . . = dM , ΩGL

d becomes the “L1

norm of the L2 norms.” Interestingly, this is also
a norm, called the mixed L2,1-norm.1 These regu-
larizers subsume the L1 and L2 cases, which corre-
spond to trivial choices of groups:

• If each group is a singleton, i.e., M = D and
Gd = {θd}, and d1 = . . . = dM = τ , we recover
L1-regularization (cf. Eqs. 7–8).

• If there is a single group spanning all the features,
i.e., M = 1 and G1 = {1, . . . , D}, then the right
hand side of Eq. 8 becomes d1‖θ‖2. This is equiv-
alent to L2 regularization.2

We next present some non-trivial examples con-
cerning different topologies of G = {G1, . . . , GM}.
Non-overlapping groups. Let us first consider
the case where G is a partition of the feature
space: the groups cover all the features (

⋃
mGm =

{1, . . . , D}), and they do not overlap (Ga∩Gb = ∅,
∀a 6= b). Then, ΩGL

d is termed a non-overlapping
group-Lasso regularizer. It encourages sparsity pat-
terns in which entire groups are discarded. A ju-
dicious choice of groups can lead to very compact

1In the statistics literature, such mixed-norm regularizers,
which group features and then apply a separate norm for each
group, are called composite absolute penalties (Zhao et al.,
2009); other norms besides L2,1 can be used, such as L∞,1

(Quattoni et al., 2009; Wright et al., 2009; Eisenstein et al.,
2011).

2Note that Eqs. 8 and 6 do not become exactly the same: in
Eq. 6, the L2 norm is squared. However it can be shown that
both regularizers lead to identical learning problems (Eq. 2) up
to a transformation of the regularization constant.

models and pinpoint relevant groups of features.
The following examples lie in this category:

• The two cases above (L1 and L2 regularization).

• Label-based groups. In multi-label classification,
where Y = {1, . . . , L}, features are typically de-
signed as conjunctions of input features with la-
bel indicators, i.e., they take the form φ(x, y) =
ψ(x)⊗ ey, where ψ(x) ∈ RDX , ey ∈ RL has all
entries zero except the y-th entry, which is 1, and
⊗ denotes the Kronecker product. Hence φ(x, y)
can be reshaped as aDX -by-Lmatrix, and we can
let each group correspond to a row. In this case,
all groups have the same size and we typically set
d1 = . . . = dM . A similar design can be made
for sequence labeling problems, by considering a
similar grouping for the unigram features.3

• Template-based groups. In NLP, features are com-
monly designed via templates. For example, a
template such as w0 ∧ p0 ∧ p−1 denotes the word
in the current position (w0) conjoined with its
part-of-speech (p0) and that of the previous word
(p−1). This template encloses many features cor-
responding to different instantiantions of w0, p0,
and p−1. In §5, we learn feature templates from
the data, by associating each group to a feature
template, and letting that group contain all fea-
tures that are instantiations of this template. Since
groups have different sizes, it is a good idea to
let dm increase with the group size, so that larger
groups pay a larger penalty for being included.

Tree-structured groups. More generally, we may
let the groups in G overlap but be nested, i.e., we may
want them to form a hierarchy (two distinct groups
either have empty intersection or one is contained in
the other). This induces a partial order on G (the set
inclusion relation ⊇), endowing it with the structure
of a partially ordered set (poset).

A convenient graphical representation of the poset
〈G,⊇〉 is its Hasse diagram. Each group is a node
in the diagram, and an arc is drawn from group Ga
to group Gb if Gb ⊂ Ga and there is no b′ s.t.
Gb ⊂ Gb′ ⊂ Ga. When the groups are nested, this
diagram is a forest (a union of directed trees). The
corresponding regularizer enforces sparsity patterns

3The same idea is also used in multitask learning, where
labels correspond to tasks (Caruana, 1997).
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where a group of features is only selected if all its
ancestors are also selected.4 Hence, entire subtrees
in the diagram can be pruned away. Examples are:

• The elastic net. The diagram of G has a root node
for G1 = {1, . . . , D} and D leaf nodes, one per
each singleton group (see Fig. 1).

• The sparse group-Lasso. This regularizer was
proposed by Friedman et al. (2010):

ΩSGL
d,τ (θ) =

∑M ′
m=1 (dm‖θm‖2 + τm‖θm‖1) ,

(9)
where the total number of groups is M = M ′ +
D, and the components θ1, . . . ,θM ′ are non-
overlapping. This regularizer promotes sparsity
at both group and feature levels (i.e., it eliminates
entire groups and sparsifies within each group).

Graph-structured groups. In general, the groups
in G may overlap without being nested. In this case,
the Hasse diagram of G is a directed acyclic graph
(DAG). As in the tree-structured case, a group of
features is only selected if all its ancestors are also
selected. Based on this property, Jenatton et al.
(2009) suggested a way of reverse engineering the
groups from the desired sparsity pattern. We next
describe a strategy for coarse-to-fine feature tem-
plate selection that directly builds on that idea.

Suppose that we are given M feature templates
T = {T1, . . . , TM} which are partially ordered ac-
cording to some criterion, such that if Ta � Tb we
would like to include Tb in our model only if Ta
is also included. This criterion could be a measure
of coarseness: we may want to let coarser part-of-
speech features precede finer lexical features, e.g.,
p0 ∧ p1 � w0 ∧ w1, or conjoined features come af-
ter their elementary parts, e.g., p0 � p0 ∧ p1. The
order does not need to be total, so some templates
may not be comparable (e.g., we may want p0 ∧ p−1

and p0 ∧ p1 not to be comparable). To achieve
the sparsity pattern encoded in 〈T,�〉, we choose
G = 〈G1, . . . , GM 〉 as follows: let I(Ta) be the
set of features that are instantiations of template Ta;
then define Ga =

⋃
b:a�b I(Tb), for a = 1, . . . ,M .

It is easy to see that 〈G,⊇〉 and 〈T,�〉 are isomorph
posets (their Hasse diagrams have the same shape;

4We say that a group of features Gm is selected if some fea-
ture in Gm (but not necessarily all) has a nonzero weight.

see Fig. 1). The result is a “coarse-to-fine” regular-
izer, which prefers to select feature templates that
are coarser before zooming into finer features.

3.2 Bayesian Interpretation
The prior knowledge encoded in the group-Lasso
regularizer (Eq. 8) comes with a Bayesian inter-
pretation, as we next describe. In a probabilistic
model (e.g. in the CRF case, where L = LCRF),
the optimization problem in Eq. 2 can be seen as
maximum a posteriori estimation of θ, where the
regularization term Ω(θ) corresponds to the neg-
ative log of a prior distribution (call it p(θ)). It
is well-known that L2-regularization corresponds to
choosing independent zero-mean Gaussian priors,
θd ∼ N(0, λ−1), and that L1-regularization results
from adopting zero-mean Laplacian priors, p(θd) ∝
exp(τ |θd|).

Figueiredo (2002) provided an alternative inter-
pretation of L1-regularization in terms of a two-
level hierarchical Bayes model, which happens to
generalize to the non-overlapping group-Lasso case,
where Ω = ΩGL

d . As in the L2-case, we also assume
that each parameter receives a zero-mean Gaussian
prior, but now with a group-specific variance τm,
i.e., θm ∼ N(0, τmI) for m = 1, . . . ,M . This
reflects the fact that some groups should have their
feature weights shrunk more towards zero than oth-
ers. The variances τm ≥ 0 are not pre-specified but
rather generated by a one-sided exponential hyper-
prior p(τm|dm) ∝ exp(−d2

mτm/2). It can be shown
that after marginalizing out τm, we obtain

p(θm|dm) =

∫ ∞

0
p(θm|τm)p(τm|dm)dτm

∝ exp (−dm‖θm‖) . (10)

Hence, the non-overlapping group-Lasso corre-
sponds to the following two-level hierachical Bayes
model: independently for each m = 1, . . . ,M ,

τm ∼ Exp(d2
m/2), θm ∼ N(0, τmI). (11)

3.3 Prox-operators
Before introducing our learning algorithm for han-
dling group-Lasso regularization, we need to define
the concept of a Ω-proximity operator. This is the
function proxΩ : RD → RD defined as follows:

proxΩ(θ) = arg minθ′
1
2‖θ′ − θ‖2 + Ω(θ′). (12)
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Figure 1: Hasse diagrams of several group-
based regularizers. For all tree-structured
cases, we use the same plate notation that
is traditionally used in probabilistic graphical
models. The rightmost diagram represents a
coarse-to-fine regularizer: each node is a tem-
plate involving contiguous sequences of words
(w) and POS tags (p); the symbol order ∅ �
p � w induces a template order (Ta � Tb
iff at each position i [Ta]i � [Tb]i). Digits
below each node are the group indices where
each template belongs.

Proximity operators generalize Euclidean projec-
tions and have many interesting properties; see Bach
et al. (2011) for an overview. By requiring zero to be
a subgradient of the objective function in Eq. 12, we
obtain the following closed expression (called soft-
thresholding) for the ΩL1

τ -proximity operator:

[prox
Ω
L1
τ

(θ)]d =





θd − τ if θd > τ
0 if |θd| ≤ τ
θd + τ if θd < −τ .

(13)

For the non-overlapping group Lasso case, the prox-
imity operator is given by

[proxΩGL
d

(θ)]m =

{
0 if ‖θm‖2 ≤ dm
‖θm‖2−dm
‖θm‖2 θm otherwise.

(14)
which can be seen as a generalization of Eq. 13: if
the L2-norm of the m-th group is less than dm, the
entire group is discarded; otherwise it is scaled so
that its L2-norm decreases by an amount of dm.

When groups overlap, the proximity operator
lacks a closed form. When G is tree-structured, it
can still be efficiently computed by a recursive pro-
cedure (Jenatton et al., 2010). When G is not tree-
structured, no specialized procedure is known, and a
convex optimizer is necessary to solve Eq. 12.

4 Online Prox-Grad Algorithm

We now turn our attention to efficient ways of han-
dling group-Lasso regularizers. Several fast and
scalable algorithms having been proposed for train-
ing L1-regularized CRFs, based on quasi-Newton
optimization (Andrew and Gao, 2007), coordinate
descent (Sokolovska et al., 2010; Lavergne et al.,
2010), and stochastic gradients (Carpenter, 2008;

Langford et al., 2009; Tsuruoka et al., 2009). The
algorithm that we use in this paper (Alg. 1) extends
the stochastic gradient methods for group-Lasso reg-
ularization; a similar algorithm was used by Martins
et al. (2011) for multiple kernel learning.

Alg. 1 addresses the learning problem in Eq. 2 by
alternating between online (sub-)gradient steps with
respect to the loss term, and proximal steps with
respect to the regularizer. Proximal-gradient meth-
ods are very popular in sparse modeling, both in
batch (Liu and Ye, 2010; Bach et al., 2011) and on-
line (Duchi and Singer, 2009; Xiao, 2009) settings.
The reason we have chosen the algorithm of Martins
et al. (2011) is that it effectively handles overlap-
ping groups, without the need of evaluating proxΩ

(which, as seen in §3.3, can be costly if G is not tree-
structured). To do so, it decomposes Ω as

Ω(θ) =
∑J

j=1 σjΩj(θ) (15)

for some J ≥ 1, and nonnegative σ1, . . . , σJ ; each
Ωj-proximal operator is assumed easy to compute.
Such a decomposition always exists: if G does not
have overlapping groups, take J = 1. Otherwise,
find J ≤ M disjoint sets G1, . . . ,GJ such that⋃J
j=1 Gj = G and the groups on each Gj are non-

overlapping. The proximal steps are then applied
sequentially, one per each Ωj . Overall, Alg. 1 satis-
fies the following important requirements:

• Computational efficiency. Each gradient step at
round t is linear in the number of features that
fire for that instance and independent of the total
number of features D. Each proximal step is lin-
ear in the number of groupsM , and does not need
be to performed every round (as we will see later).
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Algorithm 1 Online Sparse Prox-Grad Algorithm
1: input: D, 〈Ωj〉Jj=1, T , gravity sequence
〈〈σjt〉Jj=1〉Tt=1, stepsize sequence 〈ηt〉Tt=1

2: initialize θ = 0
3: for t = 1 to T do
4: take training pair 〈xt, yt〉 ∈ D

5: θ ← θ − ηt∇L(θ;xt, yt) (gradient step)
6: for j = 1 to J do
7: θ = proxηtσjtΩj

(θ) (proximal step)
8: end for
9: end for

10: output: θ

• Memory efficiency. Only a small active set of fea-
tures (those that have nonzero weights) need to
be maintained. Entire groups of features can be
deleted after each proximal step. Furthermore,
only the features which correspond to nonzero en-
tries in the gradient vector need to be inserted in
the active set; for some losses (LSVM and LSP)
many irrelevant features are never instantianted.

• Convergence. With high probability, Alg. 1 pro-
duces an ε-accurate solution after T ≤ O(1/ε2)
rounds, for a suitable choice of stepsizes and hold-
ing σjt constant, σjt = σj (Martins et al., 2011).
This result can be generalized to any sequence
〈σjt〉Tt=1 such that σj = 1

T

∑T
t=1 σjt.

We next describe several algorithmic ingredients
that make Alg. 1 effective in sparse modeling.

Budget-Driven Shrinkage. Alg. 1 requires the
choice of a “gravity sequence.” We follow Lang-
ford et al. (2009) and set 〈σjt〉Jj=1 to zero for all t
which is not a multiple of some prespecified integer
K; this way, proximal steps need only be performed
eachK rounds, yielding a significant speed-up when
the number of groups M is large. A direct adop-
tion of the method of Langford et al. (2009) would
set σjt = Kσj for those rounds; however, we have
observed that such a strategy makes the number of
groups vary substantially in early epochs. We use a
different strategy: for each Gj , we specify a budget
of Bj ≥ 0 groups (this may take into consideration
practical limitations, such as the available memory).
If t is a multiple of K, we set σjt as follows:

1. If Gj does not have more than Bj nonzero
groups, set σjt = 0 and do nothing.

2. Otherwise, sort the groups in Gj by decreasing
order of their L2-norms. Check the L2-norms
of the Bj-th and Bj+1-th entries in the list and
set σjt as the mean of these two divided by ηt.

3. Apply a ηtσjtΩj-proximal step using Eq. 14.
At the end of this step, no more than Bj groups
will remain nonzero.5

If the average of the gravity steps converge,
limT→∞ 1

T

∑T
t=1 σjt → σj , then the limit points

σj implicitly define the regularizer, via Ω =∑J
j=1 σjΩj .6 Hence, we have shifted the control of

the amount of regularization to the budget constants
Bj , which unlike the σj have a clear meaning and
can be chosen under practical considerations.

Space and Time Efficiency. The proximal steps
in Alg. 1 have a scaling effect on each group, which
affects all features belonging to that group (see
Eq. 14). We want to avoid explicitly updating each
feature in the active set, which could be time con-
suming. We mention two strategies that can be used
for the non-overlapping group Lasso case.

• The first strategy is suitable when M is large and
only a few groups (� M ) have features that fire
in each round; this is the case, e.g., of label-based
groups (see §3.1). It consists of making lazy up-
dates (Carpenter, 2008), i.e., to delay the update
of all features in a group until at least one of
them fires; then apply a cumulative penalty. The
amount of the penalty can be computed if one as-
signs a timestamp to each group.

• The second strategy is suitable when M is small
and some groups are very populated; this is the
typical case of template-based groups (§3.1). Two
operations need to be performed: updating each
feature weight (in the gradient steps), and scaling
entire groups (in the proximal steps). We adapt
a trick due to Shalev-Shwartz et al. (2007): repre-
sent the weight vector of them-th group, θm, by a
5When overlaps exist (e.g. the coarse-to-fine case), we spec-

ify a total pseudo-budget B ignoring the overlaps, which in-
duces budgets B1, . . . , BJ which sum to B. The number of
actually selected groups may be less than B, however, since in
this case some groups can be shrunk more than once. Other
heuristics are possible.

6The convergence assumption can be sidestepped by freez-
ing the σj after a fixed number of iterations.
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triple 〈ξm, cm, ρm〉 ∈ R|Gm|×R+×R+, such that
θm = cmξm and ‖θm‖2 = ρm. This representa-
tion allows performing the two operations above
in constant time, and it keeps track of the group
L2-norms, necessary in the proximal updates.

For sufficient amounts of regularization, our al-
gorithm has a low memory footprint. Only features
that, at some point, intervene in the gradient com-
puted in line 5 need to be instantiated; and all fea-
tures that receive zero weights after some proximal
step can be deleted from the model (cf. Fig. 2).

Sparseptron and Debiasing. Although Alg. 1 al-
lows to simultaneously select features and learn the
model parameters, it has been observed in the sparse
modeling literature that Lasso-like regularizers usu-
ally have a strong bias which may harm predictive
performance. A post-processing stage is usually
taken (called debiasing), in which the model is re-
fitted without any regularization and using only the
selected features (Wright et al., 2009). If a final de-
biasing stage is to be performed, Alg. 1 only needs
to worry about feature selection, hence it is appeal-
ing to choose a loss function that makes this pro-
cedure as simple as possible. Examining the input
of Alg. 1, we see that both a gravity and a stepsize
sequence need to be specified. The former can be
taken care of by using budget-driven shrinkage, as
described above. The stepsize sequence can be set
as ηt = η0/

√
dt/Ne, which ensures convergence,

however η0 requires tuning. Fortunately, for the
structured perceptron loss LSP (Eq. 5), Alg. 1 is in-
dependent of η0, up to a scaling of θ, which does not
affect predictions (see Eq. 1).7 We call the instanti-
ation of Alg. 1 with a group-Lasso regularizer and
the loss LSP the sparseptron. Overall, we propose
the following two-stage approach:

1. Run the sparsepton for a few epochs and dis-
card the features with zero weights.

2. Refit the model without any regularization and
using the loss L which one wants to optimize.

7To see why this is the case, note that both gradient and
proximal updates come scaled by η0; and that the gradient of
the loss is∇LSP(θ, xt, yt) = φ(xt, ŷt)− φ(xt, yt), where ŷt
is the prediction under the current model, which is insensitive to
the scaling of θ. This independence on η0 does not hold when
the loss is LSVM or LCRF.

5 Experiments

We present experiments in three structured predic-
tion tasks for several group choices.

Text Chunking. We use the English dataset pro-
vided in the CoNLL 2000 shared task (Sang and
Buchholz, 2000), which consists of 8,936 training
and 2,012 testing sentences (sections 15–18 and 20
of the WSJ.) The input observations are the token
words and their POS tags; we want to predict the
sequences of IOB tags representing phrase chunks.
We built 96 contextual feature templates as follows:

• Up to 5-grams of POS tags, in windows of 5 to-
kens on the left and 5 tokens on the right;

• Up to 3-grams of words, in windows of 3 tokens
on the left and 3 tokens on the right;

• Up to 2-grams of word shapes, in windows of
2 tokens on the left and 2 tokens on the right.
Each shape replaces characters by their types
(case sensitive letters, digits, and punctuation),
and deletes repeated types—e.g., Confidence
and 2,664,098 are respectively mapped to Aa
and 0,0+,0+ (Collins, 2002b).

We defined unigram features by conjoining these
templates with each of the 22 output labels. An ad-
ditional template was defined to account for label
bigrams—features in this template do not look at the
input string, but only at consecutive pairs of labels.8

We evaluate the ability of group-Lasso regular-
ization to perform feature template selection. To
do that, we ran 5 epochs of the sparseptron algo-
rithm with template-based groups and budget-driven
shrinkage (budgets of 10, 20, 30, 40, and 50 tem-
plates were tried). For each group Gm, we set dm =
log2 |Gm|, which is the average number of bits nec-
essary to encode a feature in that group, if all fea-
tures were equiprobable. We set K = 1000 (the
number of instances between consecutive proximal
steps). Then, we refit the model with 10 iterations
of the max-loss 1-best MIRA algorithm (Crammer
et al., 2006).9 Table 1 compares the F1 scores and

8State-of-the-art models use larger output contexts, such as
label trigrams and 4-grams. We resort to bigram labels as we
are mostly interested in identifying relevant unigram templates.

9This variant optimizes theLSVM loss (Martins et al., 2010).
For the refitting, we used unregularized MIRA. For the baseline
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Table 1: Results for
text chunking.

MIRA Group Lasso B = 10 B = 20 B = 30 B = 40 B = 50
F1 (%) 93.10 92.99 93.28 93.59 93.42 93.40

model size (# features) 5,300,396 71,075 158,844 389,065 662,018 891,378

MIRA Lasso C = 0.1 C = 0.5 C = 1 Group-Lasso B = 100 B = 200 B = 300
Spa. dev/test 70.38/74.09 69.19/71.9 70.75/72.38 71.7/74.03 71.79/73.62 72.08/75.05 71.48/73.3

8,598,246 68,565 1,017,769 1,555,683 83,036 354,872 600,646
Dut. dev/test 69.15/71.54 64.07/66.35 66.82/69.42 70.43/71.89 69.48/72.83 71.03/73.33 71.2/72.59

5,727,004 164,960 565,704 953,668 128,320 447,193 889,660
Eng. dev/test 83.95/79.81 80.92/76.95 82.58/78.84 83.38/79.35 85.62/80.26 85.86/81.47 85.03/80.91

8,376,901 232,865 870,587 1,114,016 255,165 953,178 1,719,229

Table 2: Results for named entity recognition. Each cell shows F1 (%) and the number of features.
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Figure 2: Memory footprints of the MIRA and sparsep-
tron algorithms in text chunking. The oscillation in the
first 5 epochs (bottom line) comes from the proximal
steps each K = 1000 rounds. The features are then
frozen and 10 epochs of unregularized MIRA follow.
Overall, the sparseptron requires < 7.5% of the memory
as the MIRA baseline.

the model sizes obtained with the several budgets
against those obtained by running 15 iterations of
MIRA with the original set of features. Note that
the total number of iterations is the same; yet, the
group-Lasso approach has a much smaller memory
footprint (see Fig. 2) and yields much more com-
pact models. The small memory footprint comes
from the fact that Alg. 1 may entertain a large num-
ber of features without ever instantiating all of them.
The predictive power is comparable (although some
choices of budget yield slightly better scores for the
group-Lasso approach).10

Named Entity Recognition. We experiment with
the Spanish, Dutch, and English datasets pro-
vided in the CoNLL 2002/2003 shared tasks (Sang,
2002; Sang and De Meulder, 2003). For Span-
ish, we use the POS tags provided by Car-

(described next), we used L2-regularized MIRA and tuned the
regularization constant with cross-validation.

10We also tried label-based group-Lasso and sparse group-
Lasso (§3.1), with less impressive results (omitted for space).

reras (http://www.lsi.upc.es/˜nlp/tools/
nerc/nerc.html); for English, we ignore the syn-
tactic chunk tags provided with the dataset. Hence,
all datasets have the same sort of input observations
(words and POS) and all have 9 output labels. We
use the feature templates described above plus some
additional ones (yielding a total of 452 templates):

• Up to 3-grams of shapes, in windows of size 3;

• For prefix/suffix sizes of 1, 2, 3, up to 3-grams of
word prefixes/suffixes, in windows of size 3;

• Up to 5-grams of case, punctuation, and digit in-
dicators, in windows of size 5.

As before, an additional feature template was de-
fined to account for label bigrams. We do feature
template selection (same setting as before) for bud-
get sizes of 100, 200, and 300. We compare with
both MIRA (using all the features) and the sparsep-
tron with a standard Lasso regularizer ΩL1

τ , for sev-
eral values of C = 1/(τN). Table 2 shows the re-
sults. We observe that template-based group-Lasso
wins both in terms of accuracy and compactness.
Note also that the ability to discard feature tem-
plates (rather than individual features) yields faster
test runtime than models regularized with the stan-
dard Lasso: fewer templates will need to be instan-
tiated, with a speed-up in score computation.

Multilingual Dependency Parsing. We trained
non-projective dependency parsers for 6 languages
using the CoNLL-X shared task datasets (Buchholz
and Marsi, 2006): Arabic, Danish, Dutch, Japanese,
Slovene, and Spanish. We chose the languages with
the smallest datasets, because regularization is more
important when data is scarce. The output to be pre-
dicted from each input sentence is the set of depen-
dency links, which jointly define a spanning tree.
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Figure 3: Comparison between non-overlapping group-Lasso, coarse-to-fine group-Lasso (C2F), and a filter-based
method based on information gain for selecting feature templates in multilingual dependency parsing. The x-axis is
the total number of features at different regularization levels, and the y-axis is the unlabeled attachment score. The
plots illustrate how accurate the parsers are as a function of the model sparsity achieved, for each method. The standard
Lasso (which does not select templates, but individual features) is also shown for comparison.

We use arc-factored models, for which exact infer-
ence is tractable (McDonald et al., 2005). We de-
fined M = 684 feature templates for each candi-
date arc by conjoining the words, shapes, lemmas,
and POS of the head and the modifier, as well as
the contextual POS, and the distance and direction
of attachment. We followed the same two-stage
approach as before, and compared with a baseline
which selects feature templates by ranking them ac-
cording to the information gain criterion. This base-
line assigns a score to each template Tm which re-
flects an empirical estimate of the mutual informa-
tion between Tm and the binary variable A that indi-
cates the presence/absence of a dependency link:

IGm ,
∑

f∈Tm

∑

a∈{0,1}
P (f, a) log2

P (f, a)

P (f)P (a)
, (16)

where P (f, a) is the joint probability of feature f
firing and an arc being active (a = 1) or innactive
(a = 0), and P (f) and P (a) are the corresponding
marginals. All probabilities are estimated from the
empirical counts of events observed in the data.

The results are plotted in Fig. 3, for budget sizes
of 200, 300, and 400. We observe that for all
but one language (Spanish is the exception), non-
overlapping group-Lasso regularization is more ef-
fective at selecting feature templates than the in-
formation gain criterion, and slightly better than
coarse-to-fine group-Lasso. For completeness, we
also display the results obtained with a standard
Lasso regularizer. Table 3 shows what kind of
feature templates were most selected for each lan-
guage. Some interesting patterns can be observed:
morphologically-rich languages with small datasets
(such as Turkish and Slovene) seem to avoid lexi-
cal features, arguably due to potential for overfitting;
in Japanese, contextual POS appear to be specially
relevant. It should be noted, however, that some
of these patterns may be properties of the datasets
rather than of the languages themselves.

6 Related Work

A variant of the online proximal gradient algorithm
used in this paper was proposed by Martins et al.
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Ara. Dan. Jap. Slo. Spa. Tur.
Bilexical ++ + +
Lex.→ POS + +
POS→ Lex. ++ + + + +
POS→ POS ++ +
Middle POS ++ ++ ++ ++ ++ ++
Shape ++ ++ ++ ++
Direction + + + + +
Distance ++ + + + + +

Table 3: Variation of feature templates that were selected
accross languages. Each line groups together similar tem-
plates, involving lexical, contextual POS, word shape in-
formation, as well as attachment direction and length.
Empty cells denote that very few or none of the templates
in that category was selected; + denotes that some were
selected; ++ denotes that most or all were selected.

(2011), along with a theoretical analysis. The fo-
cus there, however, was multiple kernel learning,
hence overlapping groups were not considered in
their experiments. Budget-driven shrinkage and the
sparseptron are novel techniques, at the best of our
knowledge. Apart from Martins et al. (2011), the
only work we are aware of which combines struc-
tured sparsity with structured prediction is Schmidt
and Murphy (2010); however, their goal is to pre-
dict the structure of graphical models, while we
are mostly interested in the structure of the feature
space. Schmidt and Murphy (2010) used to gener-
ative models, while our approach emphasizes dis-
criminative learning.

Mixed norm regularization has been used for a
while in statistics as a means to promote structured
sparsity. Group Lasso is due to Bakin (1999) and
Yuan and Lin (2006), after which a string of variants
and algorithms appeared (Bach, 2008; Zhao et al.,
2009; Jenatton et al., 2009; Friedman et al., 2010;
Obozinski et al., 2010). The flat (non-overlapping)
case has tight links with learning formalisms such
as multiple kernel learning (Lanckriet et al., 2004)
and multi-task learning (Caruana, 1997). The tree-
structured case has been addressed by Kim and Xing
(2010), Liu and Ye (2010) and Mairal et al. (2010),
along with L∞,1 and L2,1 regularization. Graph-
structured groups are discussed in Jenatton et al.
(2010), along with a DAG representation. In NLP,
mixed norms have been used recently by Graça et al.
(2009) in posterior regularization, and by Eisenstein
et al. (2011) in a multi-task regression problem.

7 Conclusions

In this paper, we have explored two levels of struc-
ture in NLP problems: structure on the outputs, and
structure on the feature space. We have shown how
the latter can be useful in model design, through the
use of regularizers which promote structured spar-
sity. We propose an online algorithm with mini-
mal memory requirements for exploring large fea-
ture spaces. Our algorithm, which specializes into
the sparseptron, yields a mechanism for selecting
entire groups of features. We apply sparseptron
for selecting feature templates in three structured
prediction tasks, with advantages over filter-based
methods, L1, and L2 regularization in terms of per-
formance, compactness, and model interpretability.
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Abstract

We consider the problem of learning fac-
tored probabilistic CCG grammars for seman-
tic parsing from data containing sentences
paired with logical-form meaning representa-
tions. Traditional CCG lexicons list lexical
items that pair words and phrases with syntac-
tic and semantic content. Such lexicons can
be inefficient when words appear repeatedly
with closely related lexical content. In this
paper, we introduce factored lexicons, which
include both lexemes to model word meaning
and templates to model systematic variation in
word usage. We also present an algorithm for
learning factored CCG lexicons, along with a
probabilistic parse-selection model. Evalua-
tions on benchmark datasets demonstrate that
the approach learns highly accurate parsers,
whose generalization performance benefits
greatly from the lexical factoring.

1 Introduction
Semantic parsers automatically recover representa-
tions of meaning from natural language sentences.
Recent work has focused on learning such parsers
directly from corpora made up of sentences paired
with logical meaning representations (Kate et al.,
2005; Kate and Mooney, 2006; Wong and Mooney,
2006, 2007; Zettlemoyer and Collins, 2005, 2007;
Lu et al., 2008; Kwiatkowski et al., 2010).

For example, in a flight booking domain we
might have access to training examples such as:

Sentence: I want flights from Boston
Meaning: λx. f light(x)∧ f rom(x,bos)

and the goal is to learn a grammar that can map new,
unseen, sentences onto their corresponding mean-
ings, or logical forms.

One approach to this problem has developed al-
gorithms for leaning probabilistic CCG grammars
(Zettlemoyer and Collins, 2005, 2007; Kwiatkowski
et al., 2010). These grammars are well-suited to the
task of semantic parsing, as they closely link syn-
tax and semantics. They can be used to model a
wide range of complex linguistic phenomena and are
strongly lexicalized, storing all language-specific
grammatical information directly with the words in
the lexicon. For example, a typical learned lexicon
might include entries such as:

(1) f light `N :λx. f light(x)

(2) f light `N/(S|NP) :λ f λx. f light(x)∧ f (x)

(3) f light `N\N :λ f λx. f light(x)∧ f (x)

(4) f are`N :λx.cost(x)

(5) f are`N/(S|NP) :λ f λx.cost(x)∧ f (x)

(6) f are`N\N :λ f λx.cost(x)∧ f (x)

(7) Boston`NP :bos
(8) Boston`N\N :λ f λx. f rom(x,bos)∧ f (x)

(9) New York `NP :nyc
(10) New York `N\N :λ f λx. f rom(x,nyc)∧ f (x)

Although lexicalization of this kind is useful
for learning, as we will see, these grammars can
also suffer from sparsity in the training data, since
closely related entries must be repeatedly learned for
all members of a certain class of words. For exam-
ple, the list above shows a selection of lexical items
that would have to be learned separately.

In this list, the word “flight” is paired with the
predicate flight in three separate lexical items which
are required for different syntactic contexts. Item
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(1) has the standard N category for entries of this
type, item (2) allows the use of the word “flight”
with that-less relative clauses such as “flight depart-
ing Boston”, and item (3) is useful for phrases with
unconventional word order such as “from Boston
flight to New York”. Representing these three lexi-
cal items separately is inefficient, since each word of
this class (such as “fare”) will require three similarly
structured lexical entries differing only in predicate
name. There may also be systemtatic semantic vari-
ation between entries for a certain class of words.
For example, in (6) “Boston” is paired with the con-
stant bos that represents its meaning. However, item
(7) also adds the predicate from to the logical form.
This might be used to analyse somewhat elliptical,
unedited sentences such as “Show me flights Boston
to New York,” which can be challenging for seman-
tic parsers (Zettlemoyer and Collins, 2007).

This paper builds upon the insight that a large pro-
portion of the variation between lexical items for
a given class of words is systematic. Therefore it
should be represented once and applied to a small set
of basic lexical units. 1 We develop a factored lex-
icon that captures this insight by distinguishing lex-
emes, which pair words with logical constants, from
lexical templates, which map lexemes to full lexical
items. As we will see, this can lead to a significantly
more compact lexicon that can be learned from less
data. Each word or phrase will be associated with a
few lexemes that can be combined with a shared set
of general templates.

We develop an approach to learning factored,
probabilistic CCG grammars for semantic pars-
ing. Following previous work (Kwiatkowski et al.,
2010), we make use of a higher-order unification
learning scheme that defines a space of CCG gram-
mars consistent with the (sentence, logical form)
training pairs. However, instead of constructing
fully specified lexical items for the learned grammar,
we automatically generate sets of lexemes and lexi-
cal templates to model each example. This is a dif-
ficult learning problem, since the CCG analyses that

1A related tactic is commonly used in wide-coverage CCG
parsers derived from treebanks, such as work by Hockenmaier
and Steedman (2002) and Clark and Curran (2007). These
parsers make extensive use of category-changing unary rules,
to avoid data sparsity for systematically related categories (such
as those related by type-raising). We will automatically learn to
represent these types of generalizations in the factored lexicon.

are required to construct the final meaning represen-
tations are not explicitly labeled in the training data.
Instead, we model them with hidden variables and
develop an online learning approach that simultane-
ously estimates the parameters of a log-linear pars-
ing model, while inducing the factored lexicon.

We evaluate the approach on the benchmark Atis
and GeoQuery domains. This is a challenging setup,
since the GeoQuery data has complex meaning rep-
resentations and sentences in multiple languages,
while the Atis data contains spontaneous, unedited
text that can be difficult to analyze with a formal
grammar representation. Our approach achieves at
or near state-of-the-art recall across all conditions,
despite having no English or domain-specific infor-
mation built in. We believe that ours is the only sys-
tem of sufficient generality to run with this degree of
success on all of these datasets.

2 Related work

There has been significant previous work on learn-
ing semantic parsers from training sentences la-
belled with logical form meaning representations.

We extend a line of research that has addressed
this problem by developing CCG grammar induc-
tion techniques. Zettlemoyer and Collins (2005,
2007) presented approaches that use hand gener-
ated, English-language specific rules to generate lex-
ical items from logical forms as well as English
specific type-shifting rules and relaxations of the
CCG combinators to model spontaneous, unedited
sentences. Zettlemoyer and Collins (2009) extends
this work to the case of learning in context depen-
dent environments. Kwiatkowski et al. (2010) de-
scribed an approach for language-independent learn-
ing that replaces the hand-specified templates with
a higher-order-unification-based lexical induction
method, but their approach does not scale well to
challenging, unedited sentences. The learning ap-
proach we develop for inducing factored lexicons is
also language independent, but scales well to these
challenging sentences.

There have been a number of other approaches
for learning semantic parsers, including ones based
on machine translation techniques (Papineni et al.,
1997; Ramaswamy and Kleindienst, 2000; Wong
and Mooney, 2006), parsing models (Miller et al.,
1996; Ge and Mooney, 2006; Lu et al., 2008), in-
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ductive logic programming algorithms (Zelle and
Mooney, 1996; Thompson and Mooney, 2002; Tang
and Mooney, 2000), probabilistic automata (He and
Young, 2005, 2006), and ideas from string kernels
and support vector machines (Kate and Mooney,
2006; Nguyen et al., 2006).

More recent work has focused on training se-
mantic parsers without supervision in the form of
logical-form annotations. Clarke et al. (2010) and
Liang et al. (2011) replace semantic annotations in
the training set with target answers which are more
easily available. Goldwasser et al. (2011) present
work on unsupervised learning of logical form struc-
ture. However, all of these systems require signifi-
cantly more domain and language specific initializa-
tion than the approach presented here.

Other work has learnt semantic analyses from text
in the context of interactions in computational envi-
ronments (Branavan et al. (2010), Vogel and Juraf-
sky (2010)); text grounded in partial observations of
a world state (Liang et al., 2009); and from raw text
alone (Poon and Domingos, 2009, 2010).

There is also related work that uses the CCG
grammar formalism. Clark and Curran (2003)
present a method for learning the parameters of a
log-linear CCG parsing model from fully annotated
normal–form parse trees. Watkinson and Manand-
har (1999) describe an unsupervised approach for
learning syntactic CCG lexicons. Bos et al. (2004)
present an algorithm for building semantic represen-
tations from CCG parses but requires fully–specified
CCG derivations in the training data.

3 Overview of the Approach
Here we give a formal definition of the problem and
an overview of the learning approach.

Problem We will learn a semantic parser that
takes a sentences x and returns a logical form z repre-
senting its underlying meaning. We assume we have
input data {(xi,zi)|i = 1 . . .n} containing sentences
xi and logical forms zi, for example xi =“Show me
flights to Boston” and zi = λx. f light(x)∧ to(x,bos).

Model We will represent the parser as a factored,
probabilistic CCG (PCCG) grammar. A traditional
CCG lexical item would fully specify the syntax and
semantics for a word (reviewed in Section 4). For
example, Boston`NP : bos represents the entry for

the word “Boston” with syntactic category NP and
meaning represented by the constant bos. Where a
lexicon would usually list lexical items such as this,
we instead use a factored lexicon (L,T ) containing:

• A list of lexemes L. Each lexeme pairs a word
or phrase with a list of logical constants that can
be used to construct its meaning. For example,
one lexeme might be (Boston, [bos]).

• A list of lexical templates T . Each template
takes a lexeme and maps it on to a full lexical
item. For example, there is a single template
that can map the lexeme above to the final lex-
ical entry Boston `NP : bos.

We will make central use of this factored repre-
sentation to provide a more compact representation
of the lexicon that can be learned efficiently.

The factored PCCG will also contain a parameter
vector, θ , that defines a log-linear distribution over
the possible parses y, conditioned on the sentence x.

Learning Our approach for learning factored PC-
CGs extends the work of Kwiatkowski et al. (2010),
as reviewed in Section 7. Specifically, we modify
the lexical learning, to produce lexemes and tem-
plates, as well as the feature space of the model, but
reuse the existing parameter estimation techniques
and overall learning cycle, as described in Section 7.

We present the complete approach in three parts
by describing the factored representation of the lex-
icon (Section 5), techniques for proposing potential
new lexemes and templates (Section 6), and finally
a complete learning algorithm (Section 7). How-
ever, the next section first reviews the required back-
ground on semantic parsing with CCG.

4 Background
4.1 Lambda Calculus

We represent the meanings of sentences, words
and phrases with logical expressions that can con-
tain constants, quantifiers, logical connectors and
lambda abstractions. We construct the meanings of
sentences from the meanings of words and phrases
using lambda-calculus operations. We use a version
of the typed lambda calculus (Carpenter, 1997), in
which the basic types include e, for entities; t, for
truth values; and i for numbers. We also have func-
tion types that are assigned to lambda expressions.
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The expression λx. f light(x) takes an entity and re-
turns a truth value, and has the function type 〈e, t〉.
4.2 Combinatory Categorial Grammar
CCG (Steedman, 1996, 2000) is a linguistic formal-
ism that tightly couples syntax and semantics, and
can be used to model a wide range of language phe-
nomena. A traditional CCG grammar includes a lex-
icon Λ with entries like the following:

f lights`N :λx. f light(x)

to` (N\N)/NP :λy.λ f .λx. f (x)∧ to(x,y)

Boston`NP :bos

where each lexical item w`X : h has words w, a syn-
tactic category X , and a logical form h. For the first
example, these are “flights,” N, and λx. f light(x).
In this paper, we introduce a new way of represent-
ing lexical items as (lexeme, template) pairs, as de-
scribed in section 5.

CCG syntactic categories may be atomic (such
as S or NP) or complex (such as (N\N)/NP)
where the slash combinators encode word order
information. CCG uses a small set of combinatory
rules to build syntactic parses and semantic repre-
sentations concurrently. Two example combinatory
rules are forward (>) and backward (<) application:

X/Y : f Y : g ⇒ X : f (g) (>)
Y : g X\Y : f ⇒ X : f (g) (<)

These rules apply to build syntactic and semantic
derivations under the control of the word order infor-
mation encoded in the slash directions of the lexical
entries. For example, given the lexicon above, the
phrase “flights to Boston” can be parsed to produce:

flights to Boston

N (N\N)/NP NP
λx. f light(x) λyλ f λx. f (x)∧ to(x,y) bos

>
(N\N)

λ f λx. f (x)∧ to(x,bos)
<

N
λx. f light(x)∧ to(x,bos)

where each step in the parse is labeled with the com-
binatory rule (−> or −<) that was used.

CCG also includes combinatory rules of forward
(> B) and backward (< B) composition:

X/Y : f Y/Z : g⇒ X/Z : λx. f (g(x)) (> B)
Y\Z : g X\Y : f ⇒ X\Z : λx. f (g(x)) (< B)

These rules allow a relaxed notion of constituency
which helps limit the number of distinct CCG lexical
items required.

To the standard forward and backward slashes of
CCG we also add a vertical slash for which the di-
rection of application is underspecified. We shall see
examples of this in Section 10.

4.3 Probabilistic CCGs

Due to ambiguity in both the CCG lexicon and the
order in which combinators are applied, there will
be many parses for each sentence. We discriminate
between competing parses using a log-linear model
which has a feature vector φ and a parameter vector
θ . The probability of a parse y that returns logical
form z, given a sentence x is defined as:

P(y,z|x;θ ,Λ) =
eθ ·φ(x,y,z)

∑(y′,z′) eθ ·φ(x,y′,z′)
(1)

Section 8 fully defines the set of features used in the
system presented. The most important of these con-
trol the generation of lexical items from (lexeme,
template) pairs. Each (lexeme, template) pair used
in a parse fires three features as we will see in more
detail later.

The parsing, or inference, problem done at test
time requires us to find the most likely logical form
z given a sentence x, assuming the parameters θ and
lexicon Λ are known:

f (x) = argmax
z

p(z|x;θ ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x;θ ,Λ) = ∑
y

p(y,z|x;θ ,Λ) (3)

In this approach the distribution over parse trees y
is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi,zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
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Oi = logP(zi|xi;θ ,Λ). The local gradient of the in-
dividual parameter θ j associated with feature φ j and
training instance (xi,zi) is given by:

∂Oi

∂θ j
= Ep(y|xi,zi;θ ,Λ)[φ j(xi,y,zi)]

−Ep(y,z|xi;θ ,Λ)[φ j(xi,y,z)]
(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. For a sentence
of length m, each parse chart span is pruned using
a beam width proportional to m

2
3 , to allow larger

beams for shorter sentences.

5 Factored Lexicons
A factored lexicon includes a set L of lexemes and
a set T of lexical templates. In this section, we for-
mally define these sets, and describe how they are
used to build CCG parses. We will use a set of lex-
ical items from our running example to discuss the
details of how the following lexical items:

(1) f light `N :λx. f light(x)

(2) f light `N/(S|NP) :λ f λx. f light(x)∧ f (x)
. . .

(6) Boston`NP :bos
(7) Boston`N\N :λ f λx. f rom(x,bos)∧ f (x)

are constructed from specific lexemes and templates.

5.1 Lexemes

A lexeme (w,~c) pairs a word sequence w with an
ordered list of logical constants ~c = [c1 . . .cm]. For
example, item (1) and (2) above would come from
a single lexeme (flight, [ f light]). Similar lexemes
would be represented for other predicates, for exam-
ple (fare, [cost]). Lexemes also can contain multiple
constants, for example (cheapest, [argmin,cost]),
which we will see more examples of later.

5.2 Lexical Templates

A lexical template takes a lexeme and produces a
lexical item. Templates have the general form

λ (ω,~v).[ω `X : h~v]

where h~v is a logical expression that contains vari-
ables from the list ~v. Applying this template to the
input lexeme (w,~c) gives the full lexical item w `
X :h where the variable ω has been replaced with the
wordspan w and the logical form h has been created

by replacing each of the variables in~v with the coun-
terpart constant from ~c. For example, the lexical
item (6) above would be constructed from the lex-
eme (Boston, [bos]) using the template λ (ω,~v).[ω `
NP :v1]. Items (1) and (2) would both be constructed
from the single lexeme (flight, [ f light]) with the two
different templates λ (ω,~v).[ω ` N : λx.v1(x)] and
λ (ω,~v).[ω `N/(S|NP) : λ f λx.v1(x)∧ f (x)]

5.3 Parsing with a Factored Lexicon

In general, there can by many different (lexeme,
template) pairs that produce the same lexical item.
For example, lexical item (7) in our running ex-
ample above can be constructed from the lexemes
(Boston, [bos]) and (Boston, [ f rom,bos]), given ap-
propriate templates.

To model this ambiguity, we include the selection
of a (lexeme, template) pair as a decision to be made
while constructing a CCG parse tree. Given the lex-
ical item produced by the chosen lexeme and tem-
plate, parsing continues with the traditional combi-
nators, as reviewed in Section 4.2. This direct inte-
gration allows for features that signal which lexemes
and templates have been used while also allowing
for well defined marginal probabilities, by summing
over all ways of deriving a specific lexical item.

6 Learning Factored Lexicons
To induce factored lexicons, we will make use of two
procedures, presented in this section, that factor lexi-
cal items into lexemes and templates. Section 7 will
describe how this factoring operation is integrated
into the complete learning algorithm.

6.1 Maximal Factorings

Given a lexical item l of the form w `X : h with
words w, a syntactic category X , and a logical form
h, we define the maximal factoring to be the unique
(lexeme, template) pair that can be used to recon-
struct l and includes all of the constants of h in
the lexeme (listed in a fixed order based on an
ordered traversal of h). For example, the maxi-
mal factoring for the lexical item Boston ` NP :
bos is the pair we saw before: (Boston, [bos]) and
λ (ω,~v).[ω ` NP : v1]. Similarly, the lexical item
Boston ` N\N : λ f .λx. f (x)∧ f rom(x,bos) would
be factored to produce (Boston, [ f rom,bos]) and
λ (ω,~v).[ω ` N\N : λ f .λx. f (x)∧ v1(x,v2)].

As we will see in Section 7, this notion of factor-
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ing can be directly incorporated into existing algo-
rithms that learn CCG lexicons. When the original
algorithm would have added an entry l to the lexi-
con, we can instead compute the factoring of l and
add the corresponding lexeme and template to the
factored lexicon.

6.2 Introducing Templates with Content

Maximal factorings, as just described, provide for
significant lexical generalization but do not handle
all of the cases needed to learn effectively. For
instance, the maximal split for the item Boston `
N\N : λ f .λx. f (x) ∧ f rom(x,bos) would introduce
the lexeme (Boston, [ f rom,bos]), which is subopti-
mal since each possible city would need a lexeme
of this type, with the additional from constant in-
cluded. Instead, we would ideally like to learn the
lexeme (Boston, [bos]) and have a template that in-
troduces the from constant. This would model the
desired generalization with a single lexeme per city.

In order to permit the introduction of extra con-
stants into lexical items, we allow the creation of
templates that contain logical constants through par-
tial factorings. For instance, the template below can
introduce the predicate from

λ (ω,~v).[ω `N\N : λ f .λx. f (x)∧ f rom(x,v1)]

The use of templates to introduce extra semantic
constants into a lexical item is similar to, but more
general than, the English-specific type-shifting rules
used in Zettlemoyer and Collins (2007), which were
introduced to model spontaneous, unedited text.
They are useful, as we will see, in learning to re-
cover semantic content that is implied, but not ex-
plicitly stated, such as our original motivating phrase
“flights Boston to New York.”

To propose templates which introduce semantic
content, during learning, we build on the intuition
that we need to recover from missing words, such
as in the example above. In this scenario, there
should also be other sentences that actually include
the word, in our example this would be something
like “flights from Boston.” We will also assume
that we have learned a good factored lexicon for the
complete example that could produce the parse:

flights from Boston

N (N\N)/NP NP
λx. f light(x) λyλ f λx. f (x)∧ f rom(x,y) bos

>
(N\N)

λ f λx. f (x)∧ f rom(x,bos)
<

N
λx. f light(x)∧ f rom(x,bos)

Given analyses of this form, we introduce new
templates that will allow us to recover from miss-
ing words, for example if “from” was dropped. We
identify commonly occurring nodes in the best parse
trees found during training, in this case the non-
terminal spanning “from Boston,” and introduce
templates that can produce the nonterminal, even if
one of the words is missing. Here, this approach
would introduce the desired template λ (ω,~v).[ω `
N\N : λ f .λx. f (x) ∧ f rom(x,v1)] for mapping the
lexeme (Boston, [bos]) directly to the intermediate
structure.

Not all templates introduced this way will model
valid generalizations. However, we will incorporate
them into a learning algorithm with indicator fea-
tures that can be weighted to control their use. The
next section presents the complete approach.

7 Learning Factored PCCGs
Our Factored Unification Based Learning (FUBL)
method extends the UBL algorithm (Kwiatkowski
et al., 2010) to induce factored lexicons, while also
simultanously estimating the parameters of a log-
linear CCG parsing model. In this section, we first
review the NEW-LEX lexical induction procedure
from UBL, and then present the FUBL algorithm.

7.1 Background: NEW-LEX

NEW-LEX generates lexical items by splitting and
merging nodes in the best parse tree of each training
example. Each parse node has a CCG category X : h
and a sequence of words w that it spans. We will
present an overview of the approach using the run-
ning example with the phrase w =“in Boston” and
the category X : h = S\NP : λx.loc(x,bos), which is
of the type commonly seen during learning. The
splitting procedure is a two step process that first
splits the logical form h, then splits the CCG syn-
tactic category X and finally splits the string w.

The first step enumerates all possible splits of
the logical form h into a pair of new expressions
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( f ,g) that can be used to reconstruct h by ei-
ther function application (h = f (g)) or composition
(h = λx. f (g(x))). For example, one possible split is:

( f = λy.λx.loc(x,y) , g = bos)

which corresponds to the function application case.
The next two steps enumerate all ways of splitting

the syntactic category X and words w to introduce
two new lexical items which can be recombined with
CCG combinators (application or composition) to
recreate the original parse node X : h spanning w. In
our example, one possibility would be:

(in` (S\NP)/NP :λy.λx.loc(x,y) , Boston`NP :bos)

which could be recombined with the forward appli-
cation combinator from Section 4.2.

To assign categories while splitting, the grammar
used by NEW-LEX only uses two atomic syntac-
tic categories S and NP. This allows NEW-LEX to
make use of a direct mapping from semantic type
to syntactic category when proposing syntactic cate-
gories. In this schema, the standard syntactic cat-
egory N is replaced by the category S|NP which
matches the type 〈e, t〉 and uses the vertical slash in-
troduced in Section 4.2. We will see categories such
as this in the evaluation.

7.2 The FUBL Algorithm

Figure 1 shows the FUBL learning algorithm. We
assume training data {(xi,zi) : i = 1 . . .n}where each
example is a sentence xi paired with a logical form
zi. The algorithm induces a factored PCCG, includ-
ing the lexemes L, templates T , and parameters θ .

The algorithm is online, repeatedly performing
both lexical expansion (Step 1) and a parameter up-
date (Step 2) for each training example. The over-
all approach is closely related to the UBL algo-
rithm (Kwiatkowski et al., 2010), but includes exten-
sions for updating the factored lexicon, as motivated
in Section 6.

Initialization The model is initialized with a fac-
tored lexicon as follows. MAX-FAC is a function
that takes a lexical item l and returns the maximal
factoring of it, that is the unique, maximal (lexeme,
template) pair that can be combined to construct l,
as described in Section 6.1. We apply MAX-FAC to
each of the training examples (xi,zi), creating a sin-
gle way of producing the desired meaning zi from a

Inputs: Training set {(xi,zi) : i = 1 . . .n} where each
example is a sentence xi paired with a logical form
zi. Set of entity name lexemes Le. Number of itera-
tions J. Learning rate parameter α0 and cooling rate
parameter c. Empty lexeme set L. Empty template
set T .

Definitions: NEW-LEX(y) returns a set of new lex-
ical items from a parse y as described in Sec-
tion 7.1. MAX-FAC(l) generates a (lexeme, tem-
plate) pair from a lexical item l. PART-FAC(y)
generates a set of templates from parse y. Both of
these are described in Section 7.2. The distributions
p(y|x,z;θ ,(L,T )) and p(y,z|x;θ ,(L,T )) are defined
by the log-linear model described in Section 4.3.

Initialization:

• For i = 1 . . .n

• (ψ,π) = MAX-FAC(xi ` S : zi)

• L = L∪ψ , T = T ∪π
• Set L = L∪Le.
• Initialize θ using coocurrence statistics, as de-

scribed in Section 8.

Algorithm:
For t = 1 . . .J, i = 1 . . .n :

Step 1: (Add Lexemes and Templates)

• Let y∗ = argmaxy p(y|xi,zi;θ ,(L,T ))

• For l ∈ NEW-LEX(y∗)

• (ψ,π) = MAX-FAC(l)

• L = L∪ψ , T = T ∪π

• Π = PART-FAC(y∗) , T = T ∪Π
Step 2: (Update Parameters)

• Let γ = α0
1+c×k where k = i + t×n.

• Let ∆ = Ep(y|xi,zi;θ ,(L,T ))[φ(xi,y,zi)]
−Ep(y,z|xi;θ ,(L,T ))[φ(xi,y,z)]

• Set θ = θ + γ∆

Output: Lexemes L, templates T , and parameters θ .
Figure 1: The FUBL learning algorithm.

lexeme containing all of the words in xi. The lex-
emes and templates created in this way provide the
initial factored lexicon.

Step 1 The first step of the learning algorithm in
Figure 1 adds lexemes and templates to the fac-
tored model given by performing manipulations on
the highest scoring correct parse y∗ of the current
training example (xi,zi). First the NEW-LEX pro-
cedure is run on y∗ as described in Section 6.1 to
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generate new lexical items. We then use the func-
tion MAX-FAC to create the maximal factorings of
each of these new lexical items as described in Sec-
tion 6 and these are added to the factored represen-
tation of the lexicon. New templates can also be in-
troduced through partial factorings of internal parse
nodes as described in Section 6.2. These templates
are generated by using the function PART-FAC to
abstract over the wordspan and a subset of the con-
stants contained in the internal parse nodes of y∗.
This step allows for templates that introduce new
semantic content to model elliptical language, as de-
scribed in Section 6.2.

Step 2 The second step does a stochastic gradient
descent update on the parameters θ used in the pars-
ing model. This update is described in Section 4.3

Discussion The FUBL algorithm makes use of a
direct online approach, where lexemes and tem-
plates are introduced in place while analyzing spe-
cific sentences. In general, this will overgeneralize;
not all ways of combining lexemes and templates
will produce high quality lexical items. However,
the overall approach includes features, presented in
Section 8, that can be used to learn which ones are
best in practice. The complete algorithm iterates be-
tween adding new lexical content and updating the
parameters of the parsing model with each proce-
dure guiding the other.

8 Experimental setup
Data Sets We evaluate on two benchmark seman-
tic parsing datasets: GeoQuery, which is made up of
natural language queries to a database of geograph-
ical information; and Atis, which contains natural
language queries to a flight booking system. The
Geo880 dataset has 880 (English-sentence, logical-
form) pairs split into a training set of 600 pairs and
a test set of 280. The Geo250 data is a subset of
the Geo880 sentences that have been translated into
Japanese, Spanish and Turkish as well as the original
English. We follow the standard evaluation proce-
dure for Geo250, using 10-fold cross validation ex-
periments with the same splits of the data as Wong
and Mooney (2007). The Atis dataset contains 5410
(sentence, logical-form) pairs split into a 4480 ex-
ample training set, a 480 example development set
and a 450 example test set.

Evaluation Metrics We report exact match Re-
call (percentage of sentences for which the correct
logical-form was returned), Precision (percentage of
returned logical-forms that are correct) and F1 (har-
monic mean of Precision and Recall). For Atis we
also report partial match Recall (percentage of cor-
rect literals returned), Precision (percentage of re-
turned literals that are correct) and F1, computed as
described by Zettlemoyer and Collins (2007).

Features We introduce two types of features to
discriminate between parses: lexical features and
logical-form features.

Lexical features fire on the lexemes and templates
used to build the lexical items used in a parse. For
each (lexeme,template) pair used to create a lexi-
cal item we have indicator features φl for the lex-
eme used, φt for the template used, and φ(l,t) for the
pair that was used. We assign the features on lexi-
cal templates a weight of 0.1 to prevent them from
swamping the far less frequent but equally informa-
tive lexeme features.

Logical-form features are computed on the
lambda-calculus expression z returned at the root of
the parse. Each time a predicate p in z takes an
argument a with type Ty(a) in position i, it trig-
gers two binary indicator features: φ(p,a,i) for the
predicate-argument relation; and φ(p,Ty(a),i) for the
predicate argument-type relation. Boolean opera-
tor features look at predicates that occurr together
in conjunctions and disjunctions. For each variable
vi that fills argument slot i in two conjoined pred-
icates p1 and p2 we introduce a binary indicator
feature φcon j(i,p1,p2). We introduce similar features
φdis j(i,p1,p2) for variables vi that are shared by predi-
cates in a disjunction.

Initialization The weights for lexeme features are
initialized according to coocurrance statistics be-
tween words and logical constants. These are esti-
mated with the Giza++ (Och and Ney, 2003) imple-
mentation of IBM Model 1. The initial weights for
templates are set by adding −0.1 for each slash in
the syntactic category and −2 if the template con-
tains logical constants. Features on lexeme-template
pairs and all parse features are initialized to zero.

Systems We compare performance to all recently-
published, directly-comparable results. For Geo-
Query, this includes the ZC05, ZC07 (Zettlemoyer
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System Exact Match
Rec. Pre. F1

ZC07 74.4 87.3 80.4
UBL 65.6 67.1 66.3

FUBL 81.9 82.1 82.0
Table 1: Performance on the Atis development set.

System Exact Match Partial Match
Rec. Pre. F1. Rec. Pre. F1

ZC07 84.6 85.8 85.2 96.7 95.1 95.9
HY06 - - - - - 90.3
UBL 71.4 72.1 71.7 78.2 98.2 87.1

FUBL 82.8 82.8 82.8 95.2 93.6 94.6

Table 2: Performance on the Atis test set.

and Collins, 2005, 2007), λ -WASP (Wong and
Mooney, 2007), UBL (Kwiatkowski et al., 2010)
systems and DCS (Liang et al., 2011). For Atis,
we report results from HY06 (He and Young, 2006),
ZC07, and UBL.

9 Results
Tables 1-4 present the results on the Atis and Geo-
query domains. In all cases, FUBL achieves at or
near state-of-the-art recall (overall number of correct
parses) when compared to directly comparable sys-
tems and it significantly outperforms UBL on Atis.

On Geo880 the only higher recall is achieved
by DCS with prototypes - which uses signifi-
cant English-specific resources, including manually
specified lexical content, but does not require train-
ing sentences annotated with logical-forms. On
Geo250, FUBL achieves the highest recall across
languages. Each individual result should be inter-
preted with care, as a single percentage point cor-
responds to 2-3 sentences, but the overall trend is
encouraging.

On the Atis development set, FUBL outperforms
ZC07 by 7.5% of recall but on the Atis test set
FUBL lags ZC07 by 2%. The reasons for this dis-
crepancy are not clear, however, it is possible that
the syntactic constructions found in the Atis test set
do not exhibit the same degree of variation as those
seen in the development set. This would negate the
need for the very general lexicon learnt by FUBL.

Across the evaluations, despite achieving high re-
call, FUBL achieves significantly lower precision
than ZC07 and λ -WASP. This illustrates the trade-
off from having a very general model of proposing
lexical structure. With the ability to skip unseen

System Rec. Pre. F1

Labelled Logical Forms
ZC05 79.3 96.3 87.0
ZC07 86.1 91.6 88.8
UBL 87.9 88.5 88.2

FUBL 88.6 88.6 88.6
Labelled Question Answers
DCS 91.1 - -

Table 3: Exact match accuracy on the Geo880 test set.

System English Spanish
Rec. Pre. F1 Rec. Pre. F1

λ -WASP 75.6 91.8 82.9 80.0 92.5 85.8
UBL 81.8 83.5 82.6 81.4 83.4 82.4

FUBL 83.7 83.7 83.7 85.6 85.8 85.7

System Japanese Turkish
Rec. Pre. F1 Rec. Pre. F1

λ -WASP 81.2 90.1 85.8 68.8 90.4 78.1
UBL 83.0 83.2 83.1 71.8 77.8 74.6

FUBL 83.2 83.8 83.5 72.5 73.7 73.1

Table 4: Exact-match accuracy on the Geo250 data set.

words, FUBL returns a parse for all of the Atis test
sentences, since the factored lexicons we are learn-
ing can produce a very large number of lexical items.
These parses are, however, not always correct.

10 Analysis
The Atis results in Tables 1 and 2 highlight the ad-
vantages of factored lexicons. FUBL outperforms
the UBL baseline by 16 and 11 points respectively
in exact-match recall. Without making any modi-
fication to the CCG grammars or parsing combina-
tors, we are able to induce a lexicon that is general
enough model the natural occurring variations in the
data, for example due to sloppy, unedited sentences.

Figure 2 shows a parse returned by FUBL for
a sentence on which UBL failed. While
the word “cheapest” is seen 208 times in the
training data, in only a handful of these in-
stances is it seen in the middle of an utter-
ance. For this reason, UBL never proposes
the lexical item, cheapest ` NP\(S|NP)/(S|NP) :
λ f λg.argmin(λx. f (x)∧ g(x),λy.cost(y)), which is
used to parse the sentence in Figure 2. In contrast,
FUBL uses a lexeme learned from the same word in
different contexts, along with a template learnt from
similar words in a similar context, to learn to per-
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pittsburgh to atlanta the cheapest on july twentieth

NP (S|NP)\NP/NP NP NP\(S|NP)/(S|NP) (S|NP)/NP/NP NP NP
pit λxλyλ z.to(z,x) atl λ f λg.argmin(λx. f (x)∧g(x),λy.cost(y)) λxλyλ z.month(z,x) jul 20

∧ f rom(z,y) ∧day(z,y)
> >

(S|NP)\NP (S|NP)/NP
λxλy.to(y,atl)∧ f rom(y,x) λxλy.month(y, jul)∧day(y,x)

< >
(S|NP) (S|NP)

λx.to(x,atl)∧ f rom(x, pit) λx.month(x, jul)∧day(x,20)
>

NP\(S|NP)
λ f .argmin(λx. f (x)∧month(x, jul)∧day(x,20),λy.cost(y))

<
NP

argmin(λx. f rom(x, pit)∧ to(x,atl)∧month(x, jul)∧day(x,20),λy.cost(y))

Figure 2: An example learned parse. FUBL can learn this type of analysis with novel combinations of lexemes and
templates at test time, even if the individual words, like “cheapest,” were never seen in similar syntactic constructions
during training, as described in Section 10.

form the desired analysis.
As well as providing a new way to search the lex-

icon during training, the factored lexicon provides a
way of proposing new, unseen, lexical items at test
time. We find that new, non-NP, lexical items are
used in 6% of the development set parses.

Interestingly, the addition of templates that intro-
duce semantic content (as described in Section 6.2)
account for only 1.2% of recall on the Atis develop-
ment set. This is suprising as elliptical constructions
are found in a much larger proportion of the sen-
tences than this. In practice, FUBL learns to model
many elliptical constructions with lexemes and tem-
plates introduced through maximal factorings. For
example, the lexeme (to, [ f rom, to]) can be used
with the correct lexical template to deal with our
motivating example “flights Boston to New York”.
Templates that introduce content are therefore only
used in truly novel elliptical constructions for which
an alternative analysis could not be learned.

Table 5 shows a selection of lexemes and tem-
plates learned for Atis. Examples 2 and 3 show that
morphological variants of the same word must still
be stored in separate lexemes. However, as these
lexemes now share templates, the total number of
lexical variants that must be learned is reduced.

11 Discussion

We argued that factored CCG lexicons, which in-
clude both lexemes and lexical templates, provide
a compact representation of lexical knowledge that
can have advantages for learning. We also described
a complete approach for inducing factored, prob-
abilistic CCGs for semantic parsing, and demon-

Most common lexemes by type of constants in~c.
1 e (Boston, [bos]) (Denver, [den])
2 〈e, t〉 (flight, [ f light]) (flights, [ f light])
3 〈e, i〉 (fare, [cost]) (fares, [cost])
4 〈e,〈e, t〉〉 (from, [ f rom]) (to, [to])

5 〈e, i〉, (cheapest, [argmin,cost])
〈e, t〉 (earliest, [argmin,dep time])

6 〈i,〈i, t〉〉, (after, [>,dep time])
〈e, i〉 (before, [<,dep time])

Most common templates matching lexemes above.
1 λ (ω,~v).ω `NP :v1
2 λ (ω,~v).ω `S|NP :λx.v1(x)
3 λ (ω,~v).ω `NP|NP :λx.v1(x)
4 λ (ω,~v).ω `S|NP/NP\(S|NP) :λxλy.v1(x,y)
5 λ (ω,~v).ω `NP/(S|NP) :λ f .v1(λx. f (x),λy,v2(y))
6 λ (ω,~v).ω `S|NP\(S|NP)/NP :

λxλyλ z.v1(v2(z),x)∧ y(x)

Table 5: Example lexemes and templates learned from
the Atis development set.

strated strong performance across a wider range of
benchmark datasets that any previous approach.

In the future, it will also be important to ex-
plore morphological models, to better model vari-
ation within the existing lexemes. The factored lex-
ical representation also has significant potential for
lexical transfer learning, where we would need to
learn new lexemes for each target application, but
much of the information in the templates could, po-
tentially, be ported across domains.
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Abstract

People tweet more than 100 Million times
daily, yielding a noisy, informal, but some-
times informative corpus of 140-character
messages that mirrors the zeitgeist in an un-
precedented manner. The performance of
standard NLP tools is severely degraded on
tweets. This paper addresses this issue by
re-building the NLP pipeline beginning with
part-of-speech tagging, through chunking, to
named-entity recognition. Our novel T-NER
system doubles F1 score compared with the
Stanford NER system. T-NER leverages the
redundancy inherent in tweets to achieve this
performance, using LabeledLDA to exploit
Freebase dictionaries as a source of distant
supervision. LabeledLDA outperforms co-
training, increasing F1 by 25% over ten com-
mon entity types.

Our NLP tools are available at: http://
github.com/aritter/twitter_nlp

1 Introduction

Status Messages posted on Social Media websites
such as Facebook and Twitter present a new and
challenging style of text for language technology
due to their noisy and informal nature. Like SMS
(Kobus et al., 2008), tweets are particularly terse
and difficult (See Table 1). Yet tweets provide a
unique compilation of information that is more up-
to-date and inclusive than news articles, due to the
low-barrier to tweeting, and the proliferation of mo-
bile devices.1 The corpus of tweets already exceeds

1See the “trending topics” displayed on twitter.com

the size of the Library of Congress (Hachman, 2011)
and is growing far more rapidly. Due to the vol-
ume of tweets, it is natural to consider named-entity
recognition, information extraction, and text mining
over tweets. Not surprisingly, the performance of
“off the shelf” NLP tools, which were trained on
news corpora, is weak on tweet corpora.

In response, we report on a re-trained “NLP
pipeline” that leverages previously-tagged out-of-
domain text, 2 tagged tweets, and unlabeled tweets
to achieve more effective part-of-speech tagging,
chunking, and named-entity recognition.

1 The Hobbit has FINALLY started filming! I
cannot wait!

2 Yess! Yess! Its official Nintendo announced
today that they Will release the Nintendo 3DS
in north America march 27 for $250

3 Government confirms blast n nuclear plants n
japan...don’t knw wht s gona happen nw...

Table 1: Examples of noisy text in tweets.

We find that classifying named entities in tweets is
a difficult task for two reasons. First, tweets contain
a plethora of distinctive named entity types (Compa-
nies, Products, Bands, Movies, and more). Almost
all these types (except for People and Locations) are
relatively infrequent, so even a large sample of man-
ually annotated tweets will contain few training ex-
amples. Secondly, due to Twitter’s 140 character
limit, tweets often lack sufficient context to deter-
mine an entity’s type without the aid of background

2Although tweets can be written on any subject, following
convention we use the term “domain” to include text styles or
genres such as Twitter, News or IRC Chat.

1524



knowledge.
To address these issues we propose a distantly su-

pervised approach which applies LabeledLDA (Ra-
mage et al., 2009) to leverage large amounts of unla-
beled data in addition to large dictionaries of entities
gathered from Freebase, and combines information
about an entity’s context across its mentions.

We make the following contributions:

1. We experimentally evaluate the performance of
off-the-shelf news trained NLP tools when ap-
plied to Twitter. For example POS tagging
accuracy drops from about 0.97 on news to
0.80 on tweets. By utilizing in-domain, out-
of-domain, and unlabeled data we are able to
substantially boost performance, for example
obtaining a 52% increase in F1 score on seg-
menting named entities.

2. We introduce a novel approach to distant super-
vision (Mintz et al., 2009) using Topic Models.
LabeledLDA is applied, utilizing constraints
based on an open-domain database (Freebase)
as a source of supervision. This approach in-
creases F1 score by 25% relative to co-training
(Blum and Mitchell, 1998; Yarowsky, 1995) on
the task of classifying named entities in Tweets.

The rest of the paper is organized as follows.
We successively build the NLP pipeline for Twitter
feeds in Sections 2 and 3. We first present our ap-
proaches to shallow syntax – part of speech tagging
(§2.1), and shallow parsing (§2.2). §2.3 describes a
novel classifier that predicts the informativeness of
capitalization in a tweet. All tools in §2 are used
as features for named entity segmentation in §3.1.
Next, we present our algorithms and evaluation for
entity classification (§3.2). We describe related work
in §4 and conclude in §5.

2 Shallow Syntax in Tweets

We first study two fundamental NLP tasks – POS
tagging and noun-phrase chunking. We also discuss
a novel capitalization classifier in §2.3. The outputs
of all these classifiers are used in feature generation
for named entity recognition in the next section.

For all experiments in this section we use a dataset
of 800 randomly sampled tweets. All results (Tables

Accuracy Error
Reduction

Majority Baseline (NN) 0.189 -
Word’s Most Frequent Tag 0.760 -
Stanford POS Tagger 0.801 -
T-POS(PTB) 0.813 6%
T-POS(Twitter) 0.853 26%
T-POS(IRC + PTB) 0.869 34%
T-POS(IRC + Twitter) 0.870 35%
T-POS(PTB + Twitter) 0.873 36%
T-POS(PTB + IRC + Twitter) 0.883 41%

Table 2: POS tagging performance on tweets. By training
on in-domain labeled data, in addition to annotated IRC
chat data, we obtain a 41% reduction in error over the
Stanford POS tagger.

2, 4 and 5) represent 4-fold cross-validation experi-
ments on the respective tasks.3

2.1 Part of Speech Tagging

Part of speech tagging is applicable to a wide range
of NLP tasks including named entity segmentation
and information extraction.

Prior experiments have suggested that POS tag-
ging has a very strong baseline: assign each word
to its most frequent tag and assign each Out of Vo-
cabulary (OOV) word the most common POS tag.
This baseline obtained a 0.9 accuracy on the Brown
corpus (Charniak et al., 1993). However, the appli-
cation of a similar baseline on tweets (see Table 2)
obtains a much weaker 0.76, exposing the challeng-
ing nature of Twitter data.

A key reason for this drop in accuracy is that Twit-
ter contains far more OOV words than grammatical
text. Many of these OOV words come from spelling
variation, e.g., the use of the word “n” for “in” in Ta-
ble 1 example 3. Although NNP is the most frequent
tag for OOV words, only about 1/3 are NNPs.

The performance of off-the-shelf news-trained
POS taggers also suffers on Twitter data. The state-
of-the-art Stanford POS tagger (Toutanova et al.,
2003) improves on the baseline, obtaining an accu-
racy of 0.8. This performance is impressive given
that its training data, the Penn Treebank WSJ (PTB),
is so different in style from Twitter, however it is a
huge drop from the 97% accuracy reported on the

3We used Brendan O’Connor’s Twitter tokenizer
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Gold Predicted Stanford
Error

T-POS Error Error
Reduction

NN NNP 0.102 0.072 29%
UH NN 0.387 0.047 88%
VB NN 0.071 0.032 55%
NNP NN 0.130 0.125 4%
UH NNP 0.200 0.036 82%

Table 3: Most common errors made by the Stanford POS
Tagger on tweets. For each case we list the fraction of
times the gold tag is misclassified as the predicted for
both our system and the Stanford POS tagger. All verbs
are collapsed into VB for compactness.

PTB. There are several reasons for this drop in per-
formance. Table 3 lists common errors made by
the Stanford tagger. First, due to unreliable capi-
talization, common nouns are often misclassified as
proper nouns, and vice versa. Also, interjections
and verbs are frequently misclassified as nouns. In
addition to differences in vocabulary, the grammar
of tweets is quite different from edited news text.
For instance, tweets often start with a verb (where
the subject ‘I’ is implied), as in: “watchng american
dad.”

To overcome these differences in style and vocab-
ulary, we manually annotated a set of 800 tweets
(16K tokens) with tags from the Penn TreeBank tag
set for use as in-domain training data for our POS
tagging system, T-POS.4 We add new tags for the
Twitter specific phenomena: retweets, @usernames,
#hashtags, and urls. Note that words in these cate-
gories can be tagged with 100% accuracy using sim-
ple regular expressions. To ensure fair comparison
in Table 2, we include a postprocessing step which
tags these words appropriately for all systems.

To help address the issue of OOV words and
lexical variations, we perform clustering to group
together words which are distributionally similar
(Brown et al., 1992; Turian et al., 2010). In particu-
lar, we perform hierarchical clustering using Jcluster
(Goodman, 2001) on 52 million tweets; each word
is uniquely represented by a bit string based on the
path from the root of the resulting hierarchy to the
word’s leaf. We use the Brown clusters resulting
from prefixes of 4, 8, and 12 bits. These clusters are
often effective in capturing lexical variations, for ex-

4Using MMAX2 (Müller and Strube, 2006) for annotation.

ample, following are lexical variations on the word
“tomorrow” from one cluster after filtering out other
words (most of which refer to days):

‘2m’, ‘2ma’, ‘2mar’, ‘2mara’, ‘2maro’,
‘2marrow’, ‘2mor’, ‘2mora’, ‘2moro’, ‘2mo-
row’, ‘2morr’, ‘2morro’, ‘2morrow’, ‘2moz’,
‘2mr’, ‘2mro’, ‘2mrrw’, ‘2mrw’, ‘2mw’,
‘tmmrw’, ‘tmo’, ‘tmoro’, ‘tmorrow’, ‘tmoz’,
‘tmr’, ‘tmro’, ‘tmrow’, ‘tmrrow’, ‘tm-
rrw’, ‘tmrw’, ‘tmrww’, ‘tmw’, ‘tomaro’,
‘tomarow’, ‘tomarro’, ‘tomarrow’, ‘tomm’,
‘tommarow’, ‘tommarrow’, ‘tommoro’, ‘tom-
morow’, ‘tommorrow’, ‘tommorw’, ‘tomm-
row’, ‘tomo’, ‘tomolo’, ‘tomoro’, ‘tomorow’,
‘tomorro’, ‘tomorrw’, ‘tomoz’, ‘tomrw’,
‘tomz’

T-POS uses Conditional Random Fields5 (Laf-
ferty et al., 2001), both because of their ability to
model strong dependencies between adjacent POS
tags, and also to make use of highly correlated fea-
tures (for example a word’s identity in addition to
prefixes and suffixes). Besides employing the Brown
clusters computed above, we use a fairly standard set
of features that include POS dictionaries, spelling
and contextual features.

On a 4-fold cross validation over 800 tweets,
T-POS outperforms the Stanford tagger, obtaining a
26% reduction in error. In addition we include 40K
tokens of annotated IRC chat data (Forsythand and
Martell, 2007), which is similar in style. Like Twit-
ter, IRC data contains many misspelled/abbreviated
words, and also more pronouns, and interjections,
but fewer determiners than news. Finally, we also
leverage 50K POS-labeled tokens from the Penn
Treebank (Marcus et al., 1994).

Overall T-POS trained on 102K tokens (12K from
Twitter, 40K from IRC and 50K from PTB) results
in a 41% error reduction over the Stanford tagger,
obtaining an accuracy of 0.883. Table 3 lists gains
on some of the most common error types, for ex-
ample, T-POS dramatically reduces error on inter-
jections and verbs that are incorrectly classified as
nouns by the Stanford tagger.

2.2 Shallow Parsing
Shallow parsing, or chunking is the task of identi-
fying non-recursive phrases, such as noun phrases,

5We use MALLET (McCallum, 2002).
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Accuracy Error
Reduction

Majority Baseline (B-NP) 0.266 -
OpenNLP 0.839 -
T-CHUNK(CoNLL) 0.854 9%
T-CHUNK(Twitter) 0.867 17%
T-CHUNK(CoNLL + Twitter) 0.875 22%

Table 4: Token-Level accuracy at shallow parsing tweets.
We compare against the OpenNLP chunker as a baseline.

verb phrases, and prepositional phrases in text. Ac-
curate shallow parsing of tweets could benefit sev-
eral applications such as Information Extraction and
Named Entity Recognition.

Off the shelf shallow parsers perform noticeably
worse on tweets, motivating us again to annotate in-
domain training data. We annotate the same set of
800 tweets mentioned previously with tags from the
CoNLL shared task (Tjong Kim Sang and Buchholz,
2000). We use the set of shallow parsing features de-
scribed by Sha and Pereira (2003), in addition to the
Brown clusters mentioned above. Part-of-speech tag
features are extracted based on cross-validation out-
put predicted by T-POS. For inference and learning,
again we use Conditional Random Fields. We utilize
16K tokens of in-domain training data (using cross
validation), in addition to 210K tokens of newswire
text from the CoNLL dataset.

Table 4 reports T-CHUNK’s performance at shal-
low parsing of tweets. We compare against the off-
the shelf OpenNLP chunker6, obtaining a 22% re-
duction in error.

2.3 Capitalization

A key orthographic feature for recognizing named
entities is capitalization (Florian, 2002; Downey et
al., 2007). Unfortunately in tweets, capitalization
is much less reliable than in edited texts. In addi-
tion, there is a wide variety in the styles of capital-
ization. In some tweets capitalization is informative,
whereas in other cases, non-entity words are capital-
ized simply for emphasis. Some tweets contain all
lowercase words (8%), whereas others are in ALL
CAPS (0.6%).

To address this issue, it is helpful to incorporate
information based on the entire content of the mes-

6http://incubator.apache.org/opennlp/

P R F1

Majority Baseline 0.70 1.00 0.82
T-CAP 0.77 0.98 0.86

Table 5: Performance at predicting reliable capitalization.

sage to determine whether or not its capitalization
is informative. To this end, we build a capitaliza-
tion classifier, T-CAP, which predicts whether or not
a tweet is informatively capitalized. Its output is
used as a feature for Named Entity Recognition. We
manually labeled our 800 tweet corpus as having
either “informative” or “uninformative” capitaliza-
tion. The criteria we use for labeling is as follows:
if a tweet contains any non-entity words which are
capitalized, but do not begin a sentence, or it con-
tains any entities which are not capitalized, then its
capitalization is “uninformative”, otherwise it is “in-
formative”.

For learning , we use Support Vector Ma-
chines.7 The features used include: the frac-
tion of words in the tweet which are capitalized,
the fraction which appear in a dictionary of fre-
quently lowercase/capitalized words but are not low-
ercase/capitalized in the tweet, the number of times
the word ‘I’ appears lowercase and whether or not
the first word in the tweet is capitalized. Results
comparing against the majority baseline, which pre-
dicts capitalization is always informative, are shown
in Table 5. Additionally, in §3 we show that fea-
tures based on our capitalization classifier improve
performance at named entity segmentation.

3 Named Entity Recognition

We now discuss our approach to named entity recog-
nition on Twitter data. As with POS tagging and
shallow parsing, off the shelf named-entity recog-
nizers perform poorly on tweets. For example, ap-
plying the Stanford Named Entity Recognizer to one
of the examples from Table 1 results in the following
output:

[Yess]ORG! [Yess]ORG! Its official
[Nintendo]LOC announced today that they
Will release the [Nintendo]ORG 3DS in north
[America]LOC march 27 for $250

7http://www.chasen.org/˜taku/software/
TinySVM/
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The OOV word ‘Yess’ is mistaken as a named en-
tity. In addition, although the first occurrence of
‘Nintendo’ is correctly segmented, it is misclassi-
fied, whereas the second occurrence is improperly
segmented – it should be the product “Nintendo
3DS”. Finally “north America” should be segmented
as a LOCATION, rather than just ‘America’. In gen-
eral, news-trained Named Entity Recognizers seem
to rely heavily on capitalization, which we know to
be unreliable in tweets.

Following Collins and Singer (1999), Downey et
al. (2007) and Elsner et al. (2009), we treat classi-
fication and segmentation of named entities as sepa-
rate tasks. This allows us to more easily apply tech-
niques better suited towards each task. For exam-
ple, we are able to use discriminative methods for
named entity segmentation and distantly supervised
approaches for classification. While it might be ben-
eficial to jointly model segmentation and (distantly
supervised) classification using a joint sequence la-
beling and topic model similar to that proposed by
Sauper et al. (2010), we leave this for potential fu-
ture work.

Because most words found in tweets are not part
of an entity, we need a larger annotated dataset to ef-
fectively learn a model of named entities. We there-
fore use a randomly sampled set of 2,400 tweets for
NER. All experiments (Tables 6, 8-10) report results
using 4-fold cross validation.

3.1 Segmenting Named Entities

Because capitalization in Twitter is less informative
than news, in-domain data is needed to train models
which rely less heavily on capitalization, and also
are able to utilize features provided by T-CAP.

We exhaustively annotated our set of 2,400 tweets
(34K tokens) with named entities.8 A convention on
Twitter is to refer to other users using the @ sym-
bol followed by their unique username. We deliber-
ately choose not to annotate @usernames as entities
in our data set because they are both unambiguous,
and trivial to identify with 100% accuracy using a
simple regular expression, and would only serve to
inflate our performance statistics. While there is am-
biguity as to the type of @usernames (for example,

8We found that including out-of-domain training data from
the MUC competitions lowered performance at this task.

P R F1 F1 inc.
Stanford NER 0.62 0.35 0.44 -
T-SEG(None) 0.71 0.57 0.63 43%
T-SEG(T-POS) 0.70 0.60 0.65 48%
T-SEG(T-POS, T-CHUNK) 0.71 0.61 0.66 50%
T-SEG(All Features) 0.73 0.61 0.67 52%

Table 6: Performance at segmenting entities varying the
features used. “None” removes POS, Chunk, and capital-
ization features. Overall we obtain a 52% improvement
in F1 score over the Stanford Named Entity Recognizer.

they can refer to people or companies), we believe
they could be more easily classified using features
of their associated user’s profile than contextual fea-
tures of the text.

T-SEG models Named Entity Segmentation as a
sequence-labeling task using IOB encoding for rep-
resenting segmentations (each word either begins, is
inside, or is outside of a named entity), and uses
Conditional Random Fields for learning and infer-
ence. Again we include orthographic, contextual
and dictionary features; our dictionaries included a
set of type lists gathered from Freebase. In addition,
we use the Brown clusters and outputs of T-POS,
T-CHUNK and T-CAP in generating features.

We report results at segmenting named entities in
Table 6. Compared with the state-of-the-art news-
trained Stanford Named Entity Recognizer (Finkel
et al., 2005), T-SEG obtains a 52% increase in F1

score.

3.2 Classifying Named Entities

Because Twitter contains many distinctive, and in-
frequent entity types, gathering sufficient training
data for named entity classification is a difficult task.
In any random sample of tweets, many types will
only occur a few times. Moreover, due to their
terse nature, individual tweets often do not contain
enough context to determine the type of the enti-
ties they contain. For example, consider following
tweet:

KKTNY in 45min..........

without any prior knowledge, there is not enough
context to determine what type of entity “KKTNY”
refers to, however by exploiting redundancy in the
data (Downey et al., 2010), we can determine it is
likely a reference to a television show since it of-
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ten co-occurs with words such as watching and pre-
mieres in other contexts.9

In order to handle the problem of many infre-
quent types, we leverage large lists of entities and
their types gathered from an open-domain ontology
(Freebase) as a source of distant supervision, allow-
ing use of large amounts of unlabeled data in learn-
ing.
Freebase Baseline: Although Freebase has very
broad coverage, simply looking up entities and their
types is inadequate for classifying named entities in
context (0.38 F-score, §3.2.1). For example, accord-
ing to Freebase, the mention ‘China’ could refer to
a country, a band, a person, or a film. This prob-
lem is very common: 35% of the entities in our data
appear in more than one of our (mutually exclusive)
Freebase dictionaries. Additionally, 30% of entities
mentioned on Twitter do not appear in any Freebase
dictionary, as they are either too new (for example a
newly released videogame), or are misspelled or ab-
breviated (for example ‘mbp’ is often used to refer
to the “mac book pro”).
Distant Supervision with Topic Models: To
model unlabeled entities and their possible types, we
apply LabeledLDA (Ramage et al., 2009), constrain-
ing each entity’s distribution over topics based on
its set of possible types according to Freebase. In
contrast to previous weakly supervised approaches
to Named Entity Classification, for example the Co-
Training and Naı̈ve Bayes (EM) models of Collins
and Singer (1999), LabeledLDA models each entity
string as a mixture of types rather than using a single
hidden variable to represent the type of each men-
tion. This allows information about an entity’s dis-
tribution over types to be shared across mentions,
naturally handling ambiguous entity strings whose
mentions could refer to different types.

Each entity string in our data is associated with a
bag of words found within a context window around
all of its mentions, and also within the entity itself.
As in standard LDA (Blei et al., 2003), each bag of
words is associated with a distribution over topics,
Multinomial(θe), and each topic is associated with a
distribution over words, Multinomial(βt). In addi-
tion, there is a one-to-one mapping between topics
and Freebase type dictionaries. These dictionaries

9Kourtney & Kim Take New York.

constrain θe, the distribution over topics for each en-
tity string, based on its set of possible types, FB[e].
For example, θAmazon could correspond to a distribu-
tion over two types: COMPANY, and LOCATION,
whereas θApple might represent a distribution over
COMPANY, and FOOD. For entities which aren’t
found in any of the Freebase dictionaries, we leave
their topic distributions θe unconstrained. Note that
in absence of any constraints LabeledLDA reduces
to standard LDA, and a fully unsupervised setting
similar to that presented by Elsner et. al. (2009).

In detail, the generative process that models our
data for Named Entity Classification is as follows:

for each type: t = 1 . . . T do
Generate βt according to symmetric Dirichlet

distribution Dir(η).
end for
for each entity string e = 1 . . . |E| do

Generate θe over FB[e] according to Dirichlet
distribution Dir(αFB[e]).

for each word position i = 1 . . . Ne do
Generate ze,i from Mult(θe).
Generate the word we,i from Mult(βze,i).

end for
end for
To infer values for the hidden variables, we apply

Collapsed Gibbs sampling (Griffiths and Steyvers,
2004), where parameters are integrated out, and the
ze,is are sampled directly.

In making predictions, we found it beneficial to
consider θtrain

e as a prior distribution over types for
entities which were encountered during training. In
practice this sharing of information across contexts
is very beneficial as there is often insufficient evi-
dence in an isolated tweet to determine an entity’s
type. For entities which weren’t encountered dur-
ing training, we instead use a prior based on the dis-
tribution of types across all entities. One approach
to classifying entities in context is to assume that
θtrain
e is fixed, and that all of the words inside the

entity mention and context, w, are drawn based on
a single topic, z, that is they are all drawn from
Multinomial(βz). We can then compute the poste-
rior distribution over types in closed form with a
simple application of Bayes rule:

P (z|w) ∝
∏

w∈w

P (w|z : β)P (z : θtrain
e )

During development, however, we found that rather
than making these assumptions, using Gibbs Sam-
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Type Top 20 Entities not found in Freebase dictionaries
PRODUCT nintendo ds lite, apple ipod, generation black, ipod nano, apple iphone, gb black, xperia, ipods, verizon

media, mac app store, kde, hd video, nokia n8, ipads, iphone/ipod, galaxy tab, samsung galaxy, playstation
portable, nintendo ds, vpn

TV-SHOW pretty little, american skins, nof, order svu, greys, kktny, rhobh, parks & recreation, parks & rec, dawson
’s creek, big fat gypsy weddings, big fat gypsy wedding, winter wipeout, jersey shores, idiot abroad, royle,
jerseyshore, mr . sunshine, hawaii five-0, new jersey shore

FACILITY voodoo lounge, grand ballroom, crash mansion, sullivan hall, memorial union, rogers arena, rockwood
music hall, amway center, el mocambo, madison square, bridgestone arena, cat club, le poisson rouge,
bryant park, mandalay bay, broadway bar, ritz carlton, mgm grand, olympia theatre, consol energy center

Table 7: Example type lists produced by LabeledLDA. No entities which are shown were found in Freebase; these are
typically either too new to have been added, or are misspelled/abbreviated (for example rhobh=”Real Housewives of
Beverly Hills”). In a few cases there are segmentation errors.

pling to estimate the posterior distribution over types
performs slightly better. In order to make predic-
tions, for each entity we use an informative Dirich-
let prior based on θtrain

e and perform 100 iterations of
Gibbs Sampling holding the hidden topic variables
in the training data fixed (Yao et al., 2009). Fewer
iterations are needed than in training since the type-
word distributions, β have already been inferred.

3.2.1 Classification Experiments

To evaluate T-CLASS’s ability to classify entity
mentions in context, we annotated the 2,400 tweets
with 10 types which are both popular on Twitter,
and have good coverage in Freebase: PERSON,
GEO-LOCATION, COMPANY, PRODUCT, FACIL-
ITY, TV-SHOW, MOVIE, SPORTSTEAM, BAND,
and OTHER. Note that these type annotations are
only used for evaluation purposes, and not used dur-
ing training T-CLASS, which relies only on distant
supervision. In some cases, we combine multi-
ple Freebase types to create a dictionary of entities
representing a single type (for example the COM-
PANY dictionary contains Freebase types /busi-
ness/consumer company and /business/brand). Be-
cause our approach does not rely on any manually
labeled examples, it is straightforward to extend it
for a different sets of types based on the needs of
downstream applications.
Training: To gather unlabeled data for inference,
we run T-SEG, our entity segmenter (from §3.1), on
60M tweets, and keep the entities which appear 100
or more times. This results in a set of 23,651 dis-
tinct entity strings. For each entity string, we col-
lect words occurring in a context window of 3 words

from all mentions in our data, and use a vocabulary
of the 100K most frequent words. We run Gibbs
sampling for 1,000 iterations, using the last sample
to estimate entity-type distributions θe, in addition
to type-word distributions βt. Table 7 displays the
20 entities (not found in Freebase) whose posterior
distribution θe assigns highest probability to selected
types.
Results: Table 8 presents the classification re-
sults of T-CLASS compared against a majority base-
line which simply picks the most frequent class
(PERSON), in addition to the Freebase baseline,
which only makes predictions if an entity appears
in exactly one dictionary (i.e., appears unambigu-
ous). T-CLASS also outperforms a simple super-
vised baseline which applies a MaxEnt classifier us-
ing 4-fold cross validation over the 1,450 entities
which were annotated for testing. Additionally we
compare against the co-training algorithm of Collins
and Singer (1999) which also leverages unlabeled
data and uses our Freebase type lists; for seed rules
we use the “unambiguous” Freebase entities. Our
results demonstrate that T-CLASS outperforms the
baselines and achieves a 25% increase in F1 score
over co-training.

Tables 9 and 10 present a breakdown of F1 scores
by type, both collapsing types into the standard
classes used in the MUC competitions (PERSON,
LOCATION, ORGANIZATION), and using the 10
popular Twitter types described earlier.
Entity Strings vs. Entity Mentions: DL-Cotrain
and LabeledLDA use two different representations
for the unlabeled data during learning. LabeledLDA
groups together words across all mentions of an en-
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System P R F1

Majority Baseline 0.30 0.30 0.30
Freebase Baseline 0.85 0.24 0.38
Supervised Baseline 0.45 0.44 0.45
DL-Cotrain 0.54 0.51 0.53
LabeledLDA 0.72 0.60 0.66

Table 8: Named Entity Classification performance on the
10 types. Assumes segmentation is given as in (Collins
and Singer, 1999), and (Elsner et al., 2009).

Type LL FB CT SP N
PERSON 0.82 0.48 0.65 0.83 436
LOCATION 0.74 0.21 0.55 0.67 372
ORGANIZATION 0.66 0.52 0.55 0.31 319
overall 0.75 0.39 0.59 0.49 1127

Table 9: F1 classification scores for the 3 MUC types
PERSON, LOCATION, ORGANIZATION. Results are
shown using LabeledLDA (LL), Freebase Baseline (FB),
DL-Cotrain (CT) and Supervised Baseline (SP). N is the
number of entities in the test set.

Type LL FB CT SP N
PERSON 0.82 0.48 0.65 0.86 436
GEO-LOC 0.77 0.23 0.60 0.51 269
COMPANY 0.71 0.66 0.50 0.29 162
FACILITY 0.37 0.07 0.14 0.34 103
PRODUCT 0.53 0.34 0.40 0.07 91
BAND 0.44 0.40 0.42 0.01 54
SPORTSTEAM 0.53 0.11 0.27 0.06 51
MOVIE 0.54 0.65 0.54 0.05 34
TV-SHOW 0.59 0.31 0.43 0.01 31
OTHER 0.52 0.14 0.40 0.23 219
overall 0.66 0.38 0.53 0.45 1450

Table 10: F1 scores for classification broken down by
type for LabeledLDA (LL), Freebase Baseline (FB), DL-
Cotrain (CT) and Supervised Baseline (SP). N is the num-
ber of entities in the test set.

P R F1

DL-Cotrain-entity 0.47 0.45 0.46
DL-Cotrain-mention 0.54 0.51 0.53
LabeledLDA-entity 0.73 0.60 0.66
LabeledLDA-mention 0.57 0.52 0.54

Table 11: Comparing LabeledLDA and DL-Cotrain
grouping unlabeled data by entities vs. mentions.

System P R F1

COTRAIN-NER (10 types) 0.55 0.33 0.41
T-NER(10 types) 0.65 0.42 0.51
COTRAIN-NER (PLO) 0.57 0.42 0.49
T-NER(PLO) 0.73 0.49 0.59
Stanford NER (PLO) 0.30 0.27 0.29

Table 12: Performance at predicting both segmentation
and classification. Systems labeled with PLO are evalu-
ated on the 3 MUC types PERSON, LOCATION, ORGA-
NIZATION.

tity string, and infers a distribution over its possi-
ble types, whereas DL-Cotrain considers the entity
mentions separately as unlabeled examples and pre-
dicts a type independently for each. In order to
ensure that the difference in performance between
LabeledLDA and DL-Cotrain is not simply due to
this difference in representation, we compare both
DL-Cotrain and LabeledLDA using both unlabeled
datasets (grouping words by all mentions vs. keep-
ing mentions separate) in Table 11. As expected,
DL-Cotrain performs poorly when the unlabeled ex-
amples group mentions; this makes sense, since Co-
Training uses a discriminative learning algorithm,
so when trained on entities and tested on individual
mentions, the performance decreases. Additionally,
LabeledLDA’s performance is poorer when consid-
ering mentions as “documents”. This is likely due
to the fact that there isn’t enough context to effec-
tively learn topics when the “documents” are very
short (typically fewer than 10 words).
End to End System: Finally we present the end
to end performance on segmentation and classifica-
tion (T-NER) in Table 12. We observe that T-NER

again outperforms co-training. Moreover, compar-
ing against the Stanford Named Entity Recognizer
on the 3 MUC types, T-NER doubles F1 score.

4 Related Work

There has been relatively little previous work on
building NLP tools for Twitter or similar text styles.
Locke and Martin (2009) train a classifier to recog-
nize named entities based on annotated Twitter data,
handling the types PERSON, LOCATION, and OR-
GANIZATION. Developed in parallel to our work,
Liu et al. (2011) investigate NER on the same 3
types, in addition to PRODUCTs and present a semi-
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supervised approach using k-nearest neighbor. Also
developed in parallel, Gimpell et al. (2011) build a
POS tagger for tweets using 20 coarse-grained tags.
Benson et. al. (2011) present a system which ex-
tracts artists and venues associated with musical per-
formances. Recent work (Han and Baldwin, 2011;
Gouws et al., 2011) has proposed lexical normaliza-
tion of tweets which may be useful as a preprocess-
ing step for the upstream tasks like POS tagging and
NER. In addition Finin et. al. (2010) investigate
the use of Amazon’s Mechanical Turk for annotat-
ing Named Entities in Twitter, Minkov et. al. (2005)
investigate person name recognizers in email, and
Singh et. al. (2010) apply a minimally supervised
approach to extracting entities from text advertise-
ments.

In contrast to previous work, we have demon-
strated the utility of features based on Twitter-
specific POS taggers and Shallow Parsers in seg-
menting Named Entities. In addition we take a dis-
tantly supervised approach to Named Entity Classi-
fication which exploits large dictionaries of entities
gathered from Freebase, requires no manually anno-
tated data, and as a result is able to handle a larger
number of types than previous work. Although we
found manually annotated data to be very beneficial
for named entity segmentation, we were motivated
to explore approaches that don’t rely on manual la-
bels for classification due to Twitter’s wide range of
named entity types. Additionally, unlike previous
work on NER in informal text, our approach allows
the sharing of information across an entity’s men-
tions which is quite beneficial due to Twitter’s terse
nature.

Previous work on Semantic Bootstrapping has
taken a weakly-supervised approach to classifying
named entities based on large amounts of unla-
beled text (Etzioni et al., 2005; Carlson et al., 2010;
Kozareva and Hovy, 2010; Talukdar and Pereira,
2010; McIntosh, 2010). In contrast, rather than
predicting which classes an entity belongs to (e.g.
a multi-label classification task), LabeledLDA esti-
mates a distribution over its types, which is then use-
ful as a prior when classifying mentions in context.

In addition there has been been work on Skip-
Chain CRFs (Sutton, 2004; Finkel et al., 2005)
which enforce consistency when classifying multi-
ple occurrences of an entity within a document. Us-

ing topic models (e.g. LabeledLDA) for classifying
named entities has a similar effect, in that informa-
tion about an entity’s distribution of possible types
is shared across its mentions.

5 Conclusions

We have demonstrated that existing tools for POS
tagging, Chunking and Named Entity Recognition
perform quite poorly when applied to Tweets. To
address this challenge we have annotated tweets and
built tools trained on unlabeled, in-domain and out-
of-domain data, showing substantial improvement
over their state-of-the art news-trained counterparts,
for example, T-POS outperforms the Stanford POS
Tagger, reducing error by 41%. Additionally we
have shown the benefits of features generated from
T-POS and T-CHUNK in segmenting Named Entities.

We identified named entity classification as a par-
ticularly challenging task on Twitter. Due to their
terse nature, tweets often lack enough context to
identify the types of the entities they contain. In ad-
dition, a plethora of distinctive named entity types
are present, necessitating large amounts of training
data. To address both these issues we have presented
and evaluated a distantly supervised approach based
on LabeledLDA, which obtains a 25% increase in F1

score over the co-training approach to Named En-
tity Classification suggested by Collins and Singer
(1999) when applied to Twitter.

Our POS tagger, Chunker Named Entity Rec-
ognizer are available for use by the research
community: http://github.com/aritter/
twitter_nlp
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Abstract

Open Information Extraction (IE) is the task
of extracting assertions from massive corpora
without requiring a pre-specified vocabulary.
This paper shows that the output of state-of-
the-art Open IE systems is rife with uninfor-
mative and incoherent extractions. To over-
come these problems, we introduce two sim-
ple syntactic and lexical constraints on bi-
nary relations expressed by verbs. We im-
plemented the constraints in the REVERB
Open IE system, which more than doubles the
area under the precision-recall curve relative
to previous extractors such as TEXTRUNNER
and WOEpos. More than 30% of REVERB’s
extractions are at precision 0.8 or higher—
compared to virtually none for earlier systems.
The paper concludes with a detailed analysis
of REVERB’s errors, suggesting directions for
future work.1

1 Introduction and Motivation

Typically, Information Extraction (IE) systems learn
an extractor for each target relation from la-
beled training examples (Kim and Moldovan, 1993;
Riloff, 1996; Soderland, 1999). This approach to IE
does not scale to corpora where the number of target
relations is very large, or where the target relations
cannot be specified in advance. Open IE solves this
problem by identifying relation phrases—phrases
that denote relations in English sentences (Banko
et al., 2007). The automatic identification of rela-

1The source code for REVERB is available at http://
reverb.cs.washington.edu/

tion phrases enables the extraction of arbitrary re-
lations from sentences, obviating the restriction to a
pre-specified vocabulary.

Open IE systems have achieved a notable measure
of success on massive, open-domain corpora drawn
from the Web, Wikipedia, and elsewhere. (Banko et
al., 2007; Wu and Weld, 2010; Zhu et al., 2009). The
output of Open IE systems has been used to support
tasks like learning selectional preferences (Ritter et
al., 2010), acquiring common sense knowledge (Lin
et al., 2010), and recognizing entailment (Schoen-
mackers et al., 2010; Berant et al., 2011). In ad-
dition, Open IE extractions have been mapped onto
existing ontologies (Soderland et al., 2010).

We have observed that two types of errors are fre-
quent in the output of Open IE systems such as TEX-
TRUNNER and WOE: incoherent extractions and un-
informative extractions.

Incoherent extractions are cases where the ex-
tracted relation phrase has no meaningful interpre-
tation (see Table 1 for examples). Incoherent ex-
tractions arise because the learned extractor makes a
sequence of decisions about whether to include each
word in the relation phrase, often resulting in incom-
prehensible predictions. To solve this problem, we
introduce a syntactic constraint: every multi-word
relation phrase must begin with a verb, end with a
preposition, and be a contiguous sequence of words
in the sentence. Thus, the identification of a relation
phrase is made in one fell swoop instead of on the
basis of multiple, word-by-word decisions.

Uninformative extractions are extractions that
omit critical information. For example, consider the
sentence “Faust made a deal with the devil.” Previ-
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ous Open IE systems return the uninformative
(Faust, made, a deal)

instead of
(Faust, made a deal with, the devil).

This type of error is caused by improper handling
of relation phrases that are expressed by a combi-
nation of a verb with a noun, such as light verb
constructions (LVCs). An LVC is a multi-word ex-
pression composed of a verb and a noun, with the
noun carrying the semantic content of the predi-
cate (Grefenstette and Teufel, 1995; Stevenson et al.,
2004; Allerton, 2002). Table 2 illustrates the wide
range of relations expressed this way, which are not
captured by existing open extractors. Our syntactic
constraint leads the extractor to include nouns in the
relation phrase, solving this problem.

Although the syntactic constraint significantly re-
duces incoherent and uninformative extractions, it
allows overly-specific relation phrases such as is of-
fering only modest greenhouse gas reduction targets
at. To avoid overly-specific relation phrases, we in-
troduce an intuitive lexical constraint: a binary rela-
tion phrase ought to appear with at least a minimal
number of distinct argument pairs in a large corpus.

In summary, this paper articulates two simple but
surprisingly powerful constraints on how binary re-
lationships are expressed via verbs in English sen-
tences, and implements them in the REVERB Open
IE system. We release REVERB and the data used in
our experiments to the research community.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes previous work. Section 3 defines our
constraints precisely. Section 4 describes REVERB,
our implementation of the constraints. Section 5 re-
ports on our experimental results. Section 6 con-
cludes with a summary and discussion of future
work.

2 Previous Work

Open IE systems like TEXTRUNNER (Banko et al.,
2007), WOEpos, and WOEparse (Wu and Weld, 2010)
focus on extracting binary relations of the form
(arg1, relation phrase, arg2) from text. These sys-
tems all use the following three-step method:

1. Label: Sentences are automatically labeled
with extractions using heuristics or distant su-
pervision.

Sentence Incoherent Relation
The guide contains dead links
and omits sites.

contains omits

The Mark 14 was central to the
torpedo scandal of the fleet.

was central torpedo

They recalled that Nungesser
began his career as a precinct
leader.

recalled began

Table 1: Examples of incoherent extractions. In-
coherent extractions make up approximately 13% of
TEXTRUNNER’s output, 15% of WOEpos’s output, and
30% of WOEparse’s output.

is is an album by, is the author of, is a city in
has has a population of, has a Ph.D. in, has a cameo in
made made a deal with, made a promise to
took took place in, took control over, took advantage of
gave gave birth to, gave a talk at, gave new meaning to
got got tickets to, got a deal on, got funding from

Table 2: Examples of uninformative relations (left) and
their completions (right). Uninformative relations oc-
cur in approximately 4% of WOEparse’s output, 6% of
WOEpos’s output, and 7% of TEXTRUNNER’s output.

2. Learn: A relation phrase extractor is learned
using a sequence-labeling graphical model
(e.g., CRF).

3. Extract: the system takes a sentence as in-
put, identifies a candidate pair of NP arguments
(arg1, arg2) from the sentence, and then uses
the learned extractor to label each word be-
tween the two arguments as part of the relation
phrase or not.

The extractor is applied to the successive sentences
in the corpus, and the resulting extractions are col-
lected.

This method faces several challenges. First,
the training phase requires a large number of la-
beled training examples (e.g., 200, 000 heuristically-
labeled sentences for TEXTRUNNER and 300, 000
for WOE). Heuristic labeling of examples obviates
hand labeling but results in noisy labels and distorts
the distribution of examples. Second, the extrac-
tion step is posed as a sequence-labeling problem,
where each word is assigned its own label. Because
each assignment is uncertain, the likelihood that the
extracted relation phrase is flawed increases with
the length of the sequence. Finally, the extractor
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chooses an extraction’s arguments heuristically, and
cannot backtrack over this choice. This is problem-
atic when a word that belongs in the relation phrase
is chosen as an argument (for example, deal from
the “made a deal with” sentence).

Because of the feature sets utilized in previous
work, the learned extractors ignore both “holistic”
aspects of the relation phrase (e.g., is it contiguous?)
as well as lexical aspects (e.g., how many instances
of this relation are there?). Thus, as we show in Sec-
tion 5, systems such as TEXTRUNNER are unable
to learn the constraints embedded in REVERB. Of
course, a learning system, utilizing a different hy-
pothesis space, and an appropriate set of training ex-
amples, could potentially learn and refine the con-
straints in REVERB. This is a topic for future work,
which we consider in Section 6.

The first Open IE system was TEXTRUNNER

(Banko et al., 2007), which used a Naive Bayes
model with unlexicalized POS and NP-chunk fea-
tures, trained using examples heuristically generated
from the Penn Treebank. Subsequent work showed
that utilizing a linear-chain CRF (Banko and Et-
zioni, 2008) or Markov Logic Network (Zhu et al.,
2009) can lead to improved extraction. The WOE

systems introduced by Wu and Weld make use of
Wikipedia as a source of training data for their ex-
tractors, which leads to further improvements over
TEXTRUNNER (Wu and Weld, 2010). Wu and Weld
also show that dependency parse features result in a
dramatic increase in precision and recall over shal-
low linguistic features, but at the cost of extraction
speed.

Other approaches to large-scale IE have included
Preemptive IE (Shinyama and Sekine, 2006), On-
Demand IE (Sekine, 2006), and weak supervision
for IE (Mintz et al., 2009; Hoffmann et al., 2010).
Preemptive IE and On-Demand IE avoid relation-
specific extractors, but rely on document and en-
tity clustering, which is too costly for Web-scale IE.
Weakly supervised methods use an existing ontol-
ogy to generate training data for learning relation-
specific extractors. While this allows for learn-
ing relation-specific extractors at a larger scale than
what was previously possible, the extractions are
still restricted to a specific ontology.

Many systems have used syntactic patterns based
on verbs to extract relation phrases, usually rely-

ing on a full dependency parse of the input sentence
(Lin and Pantel, 2001; Stevenson, 2004; Specia and
Motta, 2006; Kathrin Eichler and Neumann, 2008).
Our work differs from these approaches by focus-
ing on relation phrase patterns expressed in terms
of POS tags and NP chunks, instead of full parse
trees. Banko and Etzioni (Banko and Etzioni, 2008)
showed that a small set of POS-tag patterns cover a
large fraction of relationships in English, but never
incorporated the patterns into an extractor. This pa-
per reports on a substantially improved model of bi-
nary relation phrases, which increases the recall of
the Banko-Etzioni model (see Section 3.3). Further,
while previous work in Open IE has mainly focused
on syntactic patterns for relation extraction, we in-
troduce a lexical constraint that boosts precision and
recall.

Finally, Open IE is closely related to semantic role
labeling (SRL) (Punyakanok et al., 2008; Toutanova
et al., 2008) in that both tasks extract relations and
arguments from sentences. However, SRL systems
traditionally rely on syntactic parsers, which makes
them susceptible to parser errors and substantially
slower than Open IE systems such as REVERB. This
difference is particularly important when operating
on the Web corpus due to its size and heterogeneity.
Finally, SRL requires hand-constructed semantic re-
sources like Propbank and Framenet (Martha and
Palmer, 2002; Baker et al., 1998) as input. In con-
trast, Open IE systems require no relation-specific
training data. ReVerb, in particular, relies on its ex-
plicit lexical and syntactic constraints, which have
no correlate in SRL systems. For a more detailed
comparison of SRL and Open IE, see (Christensen
et al., 2010).

3 Constraints on Relation Phrases

In this section we introduce two constraints on re-
lation phrases: a syntactic constraint and a lexical
constraint.

3.1 Syntactic Constraint

The syntactic constraint serves two purposes. First,
it eliminates incoherent extractions, and second, it
reduces uninformative extractions by capturing rela-
tion phrases expressed by a verb-noun combination,
including light verb constructions.
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V | V P | VW ∗P
V = verb particle? adv?
W = (noun | adj | adv | pron | det)
P = (prep | particle | inf. marker)

Figure 1: A simple part-of-speech-based regular expres-
sion reduces the number of incoherent extractions like
was central torpedo and covers relations expressed via
light verb constructions like gave a talk at.

The syntactic constraint requires the relation
phrase to match the POS tag pattern shown in Fig-
ure 1. The pattern limits relation phrases to be either
a verb (e.g., invented), a verb followed immediately
by a preposition (e.g., located in), or a verb followed
by nouns, adjectives, or adverbs ending in a preposi-
tion (e.g., has atomic weight of). If there are multiple
possible matches in a sentence for a single verb, the
longest possible match is chosen. Finally, if the pat-
tern matches multiple adjacent sequences, we merge
them into a single relation phrase (e.g., wants to ex-
tend). This refinement enables the model to readily
handle relation phrases containing multiple verbs. A
consequence of this pattern is that the relation phrase
must be a contiguous span of words in the sentence.

The syntactic constraint eliminates the incoherent
relation phrases returned by existing systems. For
example, given the sentence

Extendicare agreed to buy Arbor Health Care for
about US $432 million in cash and assumed debt.

TEXTRUNNER returns the extraction
(Arbor Health Care, for assumed, debt).

The phrase for assumed is clearly not a valid rela-
tion phrase: it begins with a preposition and splices
together two distant words in the sentence. The syn-
tactic constraint prevents this type of error by sim-
ply restricting relation phrases to match the pattern
in Figure 1.

The syntactic constraint reduces uninformative
extractions by capturing relation phrases expressed
via LVCs. For example, the POS pattern matched
against the sentence “Faust made a deal with the
Devil,” would result in the relation phrase made a
deal with, instead of the uninformative made.

Finally, we require the relation phrase to appear
between its two arguments in the sentence. This is a
common constraint that has been implicitly enforced
in other open extractors.

3.2 Lexical Constraint

While the syntactic constraint greatly reduces unin-
formative extractions, it can sometimes match rela-
tion phrases that are so specific that they have only a
few possible instances, even in a Web-scale corpus.
Consider the sentence:

The Obama administration is offering only modest
greenhouse gas reduction targets at the conference.

The POS pattern will match the phrase:

is offering only modest greenhouse gas reduction targets at
(1)

Thus, there are phrases that satisfy the syntactic con-
straint, but are not relational.

To overcome this limitation, we introduce a lexi-
cal constraint that is used to separate valid relation
phrases from overspecified relation phrases, like the
example in (1). The constraint is based on the in-
tuition that a valid relation phrase should take many
distinct arguments in a large corpus. The phrase in
(1) is specific to the argument pair (Obama admin-
istration, conference), so it is unlikely to represent a
bona fide relation. We describe the implementation
details of the lexical constraint in Section 4.

3.3 Limitations

Our constraints represent an idealized model of re-
lation phrases in English. This raises the question:
How much recall is lost due to the constraints?

To address this question, we analyzed Wu and
Weld’s set of 300 sentences from a set of random
Web pages, manually identifying all verb-based re-
lationships between noun phrase pairs. This resulted
in a set of 327 relation phrases. For each rela-
tion phrase, we checked whether it satisfies our con-
straints. We found that 85% of the relation phrases
do satisfy the constraints. Of the remaining 15%,
we identified some of the common cases where the
constraints were violated, summarized in Table 3.

Many of the example relation phrases shown in
Table 3 involve long-range dependencies between
words in the sentence. These types of dependen-
cies are not easily representable using a pattern over
POS tags. A deeper syntactic analysis of the input
sentence would provide a much more general lan-
guage for modeling relation phrases. For example,
one could create a model of relations expressed in
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Binary Verbal Relation Phrases
85% Satisfy Constraints

8% Non-Contiguous Phrase Structure
Coordination: X is produced and maintained by Y
Multiple Args: X was founded in 1995 by Y
Phrasal Verbs: X turned Y off

4% Relation Phrase Not Between Arguments
Intro. Phrases: Discovered by Y, X . . .
Relative Clauses: . . . the Y that X discovered

3% Do Not Match POS Pattern
Interrupting Modifiers: X has a lot of faith in Y
Infinitives: X to attack Y

Table 3: Approximately 85% of the binary verbal relation
phrases in a sample of Web sentences satisfy our con-
straints.

terms of dependency parse features that would cap-
ture the non-contiguous relation phrases in Table 3.
Previous work has shown that dependency paths do
indeed boost the recall of relation extraction systems
(Wu and Weld, 2010; Mintz et al., 2009). While us-
ing dependency path features allows for a more flex-
ible model of relations, it significantly increases pro-
cessing time, which is problematic for Web-scale ex-
traction. Further, we have found that this increased
recall comes at the cost of lower precision on Web
text (see Section 5).

The results in Table 3 are similar to Banko and Et-
zioni’s findings that a set of eight POS patterns cover
a large fraction of binary verbal relation phrases.
However, their analysis was based on a set of sen-
tences known to contain either a company acquisi-
tion or birthplace relationship, while our results are
on a random sample of Web sentences. We applied
Banko and Etzioni’s verbal patterns to our random
sample of 300 Web sentences, and found that they
cover approximately 69% of the relation phrases in
the corpus. The gap in recall between this and the
85% shown in Table 3 is largely due to LVC relation
phrases (made a deal with) and phrases containing
multiple verbs (refuses to return to), which their pat-
terns do not cover.

In sum, our model is by no means complete.
However, we have empirically shown that the ma-
jority of binary verbal relation phrases in a sample
of Web sentences are captured by our model. By
focusing on this subset of language, our model can

be used to perform Open IE at significantly higher
precision than before.

4 REVERB

This section introduces REVERB, a novel open ex-
tractor based on the constraints defined in the previ-
ous section. REVERB first identifies relation phrases
that satisfy the syntactic and lexical constraints, and
then finds a pair of NP arguments for each identified
relation phrase. The resulting extractions are then
assigned a confidence score using a logistic regres-
sion classifier.

This algorithm differs in three important ways
from previous methods (Section 2). First, the re-
lation phrase is identified “holistically” rather than
word-by-word. Second, potential phrases are fil-
tered based on statistics over a large corpus (the
implementation of our lexical constraint). Finally,
REVERB is “relation first” rather than “arguments
first”, which enables it to avoid a common error
made by previous methods—confusing a noun in the
relation phrase for an argument, e.g. the noun deal in
made a deal with.

4.1 Extraction Algorithm
REVERB takes as input a POS-tagged and NP-
chunked sentence and returns a set of (x, r, y)
extraction triples.2 Given an input sentence s,
REVERB uses the following extraction algorithm:

1. Relation Extraction: For each verb v in s,
find the longest sequence of words rv such that
(1) rv starts at v, (2) rv satisfies the syntactic
constraint, and (3) rv satisfies the lexical con-
straint. If any pair of matches are adjacent or
overlap in s, merge them into a single match.

2. Argument Extraction: For each relation
phrase r identified in Step 1, find the nearest
noun phrase x to the left of r in s such that x is
not a relative pronoun, WHO-adverb, or exis-
tential “there”. Find the nearest noun phrase y
to the right of r in s. If such an (x, y) pair could
be found, return (x, r, y) as an extraction.

We check whether a candidate relation phrase
rv satisfies the syntactic constraint by matching it
against the regular expression in Figure 1.

2REVERB uses OpenNLP for POS tagging and NP chunk-
ing: http://opennlp.sourceforge.net/
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To determine whether rv satisfies the lexical con-
straint, we use a large dictionary D of relation
phrases that are known to take many distinct argu-
ments. In an offline step, we construct D by find-
ing all matches of the POS pattern in a corpus of
500 million Web sentences. For each matching re-
lation phrase, we heuristically identify its arguments
(as in Step 2 above). We set D to be the set of all
relation phrases that take at least k distinct argument
pairs in the set of extractions. In order to allow for
minor variations in relation phrases, we normalize
each relation phrase by removing inflection, auxil-
iary verbs, adjectives, and adverbs. Based on ex-
periments on a held-out set of sentences, we found
that a value of k = 20 works well for filtering out
overspecified relations. This results in a set of ap-
proximately 1.7 million distinct normalized relation
phrases, which are stored in memory at extraction
time.

As an example of the extraction algorithm in ac-
tion, consider the following input sentence:

Hudson was born in Hampstead, which is a
suburb of London.

Step 1 of the algorithm identifies three relation
phrases that satisfy the syntactic and lexical con-
straints: was, born in, and is a suburb of. The first
two phrases are adjacent in the sentence, so they are
merged into the single relation phrase was born in.
Step 2 then finds an argument pair for each relation
phrase. For was born in, the nearest NPs are (Hud-
son, Hampstead). For is a suburb of, the extractor
skips over the NP which and chooses the argument
pair (Hampstead, London). The final output is

e1: (Hudson, was born in, Hampstead)
e2: (Hampstead, is a suburb of, London).

4.2 Confidence Function
The extraction algorithm in the previous section has
high recall, but low precision. Like with previous
open extractors, we want way to trade recall for pre-
cision by tuning a confidence threshold. We use a
logistic regression classifier to assign a confidence
score to each extraction, which uses the features
shown in Table 4. All of these features are efficiently
computable and relation independent. We trained
the confidence function by manually labeling the ex-
tractions from a set of 1, 000 sentences from the Web
and Wikipedia as correct or incorrect.

Weight Feature
1.16 (x, r, y) covers all words in s
0.50 The last preposition in r is for
0.49 The last preposition in r is on
0.46 The last preposition in r is of
0.43 len(s) ≤ 10 words
0.43 There is a WH-word to the left of r
0.42 r matches VW*P from Figure 1
0.39 The last preposition in r is to
0.25 The last preposition in r is in
0.23 10 words < len(s) ≤ 20 words
0.21 s begins with x
0.16 y is a proper noun
0.01 x is a proper noun

-0.30 There is an NP to the left of x in s
-0.43 20 words < len(s)
-0.61 r matches V from Figure 1
-0.65 There is a preposition to the left of x in s
-0.81 There is an NP to the right of y in s
-0.93 Coord. conjunction to the left of r in s

Table 4: REVERB uses these features to assign a confi-
dence score to an extraction (x, r, y) from a sentence s
using a logistic regression classifier.

Previous open extractors require labeled training
data to learn a model of relations, which is then used
to extract relation phrases from text. In contrast,
REVERB uses a specified model of relations for ex-
traction, and requires labeled data only for assigning
confidence scores to its extractions. Learning a con-
fidence function is a much simpler task than learning
a full model of relations, using two orders of magni-
tude fewer training examples than TEXTRUNNER or
WOE.

4.3 TEXTRUNNER-R

The model of relation phrases used by REVERB

is specified, but could a TEXTRUNNER-like sys-
tem learn this model from training data? While
it is difficult to answer such a question for all
possible permutations of features sets, training ex-
amples, and learning biases, we demonstrate that
TEXTRUNNER itself cannot learn REVERB’s model
even when re-trained using the output of REVERB

as labeled training data. The resulting system,
TEXTRUNNER-R, uses the same feature representa-
tion as TEXTRUNNER, but different parameters, and
a different set of training examples.

To generate positive instances, we ran REVERB
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on the Penn Treebank, which is the same dataset
that TEXTRUNNER is trained on. To generate neg-
ative instances from a sentence, we took each noun
phrase pair in the sentence that does not appear as
arguments in a REVERB extraction. This process
resulted in a set of 67, 562 positive instances, and
356, 834 negative instances. We then passed these
labeled examples to TEXTRUNNER’s training proce-
dure, which learns a linear-chain CRF using closed-
class features like POS tags, capitalization, punctu-
ation, etc.TEXTRUNNER-R uses the argument-first
extraction algorithm described in Section 2.

5 Experiments

We compare REVERB to the following systems:

• REVERB¬lex - The REVERB system described
in the previous section, but without the lexical
constraint. REVERB¬lex uses the same confi-
dence function as REVERB.

• TEXTRUNNER - Banko and Etzioni’s 2008 ex-
tractor, which uses a second order linear-chain
CRF trained on extractions heuristically gener-
ated from the Penn Treebank. TEXTRUNNER

uses shallow linguistic features in its CRF,
which come from the same POS tagger and NP-
chunker that REVERB uses.

• TEXTRUNNER-R - Our modification to
TEXTRUNNER, which uses the same extrac-
tion code, but with a model of relations trained
on REVERB extractions.

• WOEpos - Wu and Weld’s modification to
TEXTRUNNER, which uses a model of re-
lations learned from extractions heuristically
generated from Wikipedia.

• WOEparse - Wu and Weld’s parser-based ex-
tractor, which uses a large dictionary of depen-
dency path patterns learned from heuristic ex-
tractions generated from Wikipedia.

Each system is given a set of sentences as input,
and returns a set of binary extractions as output. We
created a test set of 500 sentences sampled from the
Web, using Yahoo’s random link service.3 After run-

3http://random.yahoo.com/bin/ryl

REVERB REVERB WOE TEXT- WOE TEXT-
0.0

0.1

0.2

0.3

0.4

0.5

A
re

a
U

nd
er

P
R

C
ur

ve

¬lex parse RUNNER-R pos RUNNER
REVERB REVERB WOE TEXT- WOE TEXT-

0.0

0.1

0.2

0.3

0.4

0.5

A
re

a
U

nd
er

P
R

C
ur

ve

¬lex parse RUNNER-R pos RUNNER

Figure 2: REVERB outperforms state-of-the-art open
extractors, with an AUC more than twice that of
TEXTRUNNER or WOEpos, and 38% higher than
WOEparse.
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Figure 3: The lexical constraint gives REVERB
a boost in precision and recall over REVERB¬lex.
TEXTRUNNER-R is unable to learn the model used by
REVERB, which results in lower precision and recall.

ning each extractor over the input sentences, two hu-
man judges independently evaluated each extraction
as correct or incorrect. The judges reached agree-
ment on 86% of the extractions, with an agreement
score of κ = 0.68. We report results on the subset
of the data where the two judges concur.

The judges labeled uninformative extractions con-
servatively. That is, if critical information was
dropped from the relation phrase but included in the
second argument, it is labeled correct. For example,
both the extractions (Ackerman, is a professor of, bi-
ology) and (Ackerman, is, a professor of biology) are
considered correct.

Each system returns confidence scores for its ex-
tractions. For a given threshold, we can measure
the precision and recall of the output. Precision
is the fraction of returned extractions that are cor-
rect. Recall is the fraction of correct extractions in
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Figure 4: REVERB achieves significantly higher preci-
sion than state-of-the-art Open IE systems, and compara-
ble recall to WOEparse.

the corpus that are returned. We use the total num-
ber of extractions labeled as correct by the judges
as our measure of recall for the corpus. In order to
avoid double-counting, we treat extractions that dif-
fer superficially (e.g., different punctuation or drop-
ping inessential modifiers) as a single extraction. We
compute a precision-recall curve by varying the con-
fidence threshold, and then compute the area under
the curve (AUC).

5.1 Results

Figure 2 shows the AUC of each system. REVERB

achieves an AUC that is 30% higher than WOEparse

and is more than double the AUC of WOEpos or
TEXTRUNNER. The lexical constraint provides a
significant boost in performance, with REVERB

achieving an AUC 23% higher than REVERB¬lex.
REVERB proves to be a useful source of train-
ing data, with TEXTRUNNER-R having an AUC
71% higher than TEXTRUNNER and performing
on par with WOEpos. From the training data,
TEXTRUNNER-R was able to learn a model that
predicts contiguous relation phrases, but still re-
turned incoherent relation phrases (e.g., starting with
a preposition) and overspecified relation phrases.
These errors are due to TEXTRUNNER-R overfitting
the training data and not having access to the lexical
constraint.

Figure 3 shows the precision-recall curves of the
systems introduced in this paper. TEXTRUNNER-R
has much lower precision than REVERB and
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Figure 5: On the subtask of identifying relations phrases,
REVERB is able to achieve even higher precision and re-
call than other systems.

REVERB¬lex at all levels of recall. The lexi-
cal constraint gives REVERB a boost in precision
over REVERB¬lex, reducing overspecified extrac-
tions from 20% of REVERB¬lex’s output to 1% of
REVERB’s. The lexical constraint also boosts recall
over REVERB¬lex, since REVERB is able to find a
correct relation phrase where REVERB¬lex finds an
overspecified one.

Figure 4 shows the precision-recall curves of
REVERB and the external systems. REVERB has
much higher precision than the other systems at
nearly all levels of recall. In particular, more than
30% of REVERB’s extractions are at precision 0.8
or higher, compared to virtually none for the other
systems. WOEparse achieves a slightly higher recall
than REVERB (0.62 versus 0.64), but at the cost of
lower precision.

In order to highlight the role of the relational
model of each system, we also evaluate their per-
formance on the subtask of extracting just the rela-
tion phrases from the input text. Figure 5 shows the
precision-recall curves for each system on the rela-
tion phrase-only evaluation. In this case, REVERB

has both higher precision and recall than the other
systems.

REVERB’s biggest improvement came from the
elimination of incoherent extractions. Incoher-
ent extractions were a large fraction of the errors
made by previous systems, accounting for approxi-
mately 13% of TEXTRUNNER’s extractions, 15% of
WOEpos’s, and 30% of WOEparse’s. Uninformative
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REVERB - Incorrect Extractions
65% Correct relation phrase, incorrect arguments
16% N-ary relation
8% Non-contiguous relation phrase
2% Imperative verb
2% Overspecified relation phrase
7% Other, including POS/chunking errors

Table 5: The majority of the incorrect extractions re-
turned by REVERB are due to errors in argument extrac-
tion.

extractions had a smaller effect on other systems’
precision, accounting for 4% of WOEparse’s extrac-
tions, 5% of WOEpos’s, and 7% of TEXTRUNNER’s,
while only appearing in 1% of REVERB’s extrac-
tions. REVERB’s reduction in uninformative extrac-
tions resulted in a boost in recall, capturing many
LVC relation phrases missed by other systems (like
those shown in Table 2).

To test the systems’ speed, we ran each extrac-
tor on a set of 100, 000 sentences using a Pen-
tium 4 machine with 4GB of RAM. The process-
ing times were 16 minutes for REVERB, 21 min-
utes for TEXTRUNNER, 21 minutes for WOEpos, and
11 hours for WOEparse. The times for REVERB,
TEXTRUNNER, and WOEpos are all approximately
the same, since they all use the same POS-tagging
and NP-chunking software. WOEparse processes
each sentence with a dependency parser, resulting
in much longer processing time.

5.2 REVERB Error Analysis
To better understand the limitations of REVERB, we
performed a detailed analysis of its errors in pre-
cision (incorrect extractions returned by REVERB)
and its errors in recall (correct extractions that
REVERB missed).

Table 5 summarizes the types of incorrect extrac-
tions that REVERB returns. We found that 65% of
the incorrect extractions returned by REVERB were
cases where a relation phrase was correctly identi-
fied, but the argument-finding heuristics failed. The
remaining errors were cases where REVERB ex-
tracted an incorrect relation phrase. One common
mistake that REVERB made was extracting a rela-
tion phrase that expresses an n-ary relationship via
a ditransitive verb. For example, given the sentence

REVERB - Missed Extractions
52% Could not identify correct arguments
23% Relation filtered out by lexical constraint
17% Identified a more specific relation
8% POS/chunking error

Table 6: The majority of extractions that were missed by
REVERB were cases where the correct relation phrase
was found, but the arguments were not correctly identi-
fied.

“I gave him 15 photographs,” REVERB extracts (I,
gave, him). These errors are due to the fact that
REVERB only models binary relations.

Table 6 summarizes the correct extractions that
were extracted by other systems and were not ex-
tracted by REVERB. As with the false positive ex-
tractions, the majority of false negatives (52%) were
due to the argument-finding heuristics choosing the
wrong arguments, or failing to extract all possible ar-
guments (in the case of coordinating conjunctions).
Other sources of failure were due to the lexical con-
straint either failing to filter out an overspecified re-
lation phrase or filtering out a valid relation phrase.
These errors hurt both precision and recall, since
each case results in the extractor overlooking a cor-
rect relation phrase and choosing another.

5.3 Evaluation At Scale

Section 5.1 shows that REVERB outperforms ex-
isting Open IE systems when evaluated on a sam-
ple of sentences. Previous work has shown that
the frequency of an extraction in a large corpus is
useful for assessing the correctness of extractions
(Downey et al., 2005). Thus, it is possible a pri-
ori that REVERB’s gains over previous systems will
diminish when extraction frequency is taken into ac-
count.

In fact, we found that REVERB’s advantage over
TEXTRUNNER when run at scale is qualitatively
similar to its advantage on single sentences. We ran
both REVERB and TEXTRUNNER on Banko and Et-
zioni’s corpus of 500 million Web sentences and ex-
amined the effect of redundancy on precision.

As Downey’s work predicts, precision increased
in both systems for extractions found multiple
times, compared with extractions found only once.
However, REVERB had higher precision than
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TEXTRUNNER at all frequency thresholds. In fact,
REVERB’s frequency 1 extractions had a precision
of 0.75, which TEXTRUNNER could not approach
even with frequency 10 extractions, which had a
precision of 0.34. Thus, REVERB is able to return
more correct extractions at a higher precision than
TEXTRUNNER, even when redundancy is taken into
account.

6 Conclusions and Future Work

The paper’s contributions are as follows:

• We have identified and analyzed the problems
of incoherent and uninformative extractions for
Open IE systems, and shown their prevalence
for systems such as TEXTRUNNER and WOE.

• We articulated general, easy-to-enforce con-
straints on binary, verb-based relation phrases
in English that ameliorate these problems and
yield richer and more informative relations
(see, for example, Table 2).

• Based on these constraints, we designed, im-
plemented, and evaluated the REVERB extrac-
tor, which substantially outperforms previous
Open IE systems in both recall and precision.

• We make REVERB and the data used in our
experiments available to the research commu-
nity.4

In future work, we plan to explore utilizing our
constraints to improve the performance of learned
CRF models. Roth et al. have shown how to incor-
porate constraints into CRF learners (Roth and Yih,
2005). It is natural, then, to consider whether the
combination of heuristically labeled training exam-
ples, CRF learning, and our constraints will result
in superior performance. The error analysis in Sec-
tion 5.2 also suggests natural directions for future
work. For instance, since many of REVERB’s errors
are due to incorrect arguments, improved methods
for argument extraction are in order.
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Abstract

Supervised classification needs large amounts
of annotated training data that is expensive to
create. Two approaches that reduce the cost
of annotation areactive learningandcrowd-
sourcing. However, these two approaches
have not been combined successfully to date.
We evaluate the utility of active learning in
crowdsourcing on two tasks, named entity
recognition and sentiment detection, and show
that active learning outperforms random selec-
tion of annotation examples in a noisy crowd-
sourcing scenario.

1 Introduction

Supervised classification is the predominant tech-
nique for a large number of natural language pro-
cessing (NLP) tasks. The large amount of labeled
training data that supervised classification relies on
is time-consuming and expensive to create, espe-
cially when experts perform the data annotation.
Recently, crowdsourcing services like Amazon Me-
chanical Turk (MTurk) have become available as an
alternative that offers acquisition of non-expert an-
notations at low cost. MTurk is a software service
that outsources small annotation tasks – calledHITs
– to a large group of freelance workers. The cost of
MTurk annotation is low, but a consequence of us-
ing non-expert annotators is much lower annotation
quality. This requires strategies for quality control
of the annotations.

Another promising approach to the data acqui-
sition bottleneck for supervised learning is active

learning (AL). AL reduces annotation effort by set-
ting up an annotation loop where, starting from a
small seed set, only the maximally informative ex-
amples are chosen for annotation. With these an-
notated examples, the classifier is then retrained to
again select more informative examples for further
annotation. In general, AL needs a lot fewer anno-
tations to achieve a desired performance level than
random sampling.

AL has been successfully applied to a number of
NLP tasks such as part-of-speech tagging (Ringger
et al., 2007), parsing (Osborne and Baldridge, 2004),
text classification (Tong and Koller, 2002), senti-
ment detection (Brew et al., 2010), and named entity
recognition (NER) (Tomanek et al., 2007). Until
recently, most AL studies focused on simulating the
annotation process by using already available gold
standard data. In reality, however, human annota-
tors make mistakes, leading to noise in the annota-
tions. For this reason, some authors have questioned
the applicability of AL to noisy annotation scenarios
such as MTurk (Baldridge and Palmer, 2009; Re-
hbein et al., 2010).

AL and crowdsourcing are complementary ap-
proaches: AL reduces the number of annotations
used while crowdsourcing reduces the cost per an-
notation. Combined, the two approaches could sub-
stantially lower the cost of creating training sets.

Our main contribution in this paper is that we
show for the first time that AL is significantly bet-
ter than randomly selected annotation examples in
a real crowdsourcing annotation scenario. Our
experiments directly address two tasks, named en-
tity recognition and sentiment detection, but our
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evidence suggests that AL is of general benefit in
crowdsourcing. We also show that the effectiveness
of MTurk annotation with AL can be further en-
hanced by using two techniques that increase label
quality: adaptive votingandfragment recovery.

2 Related Work

2.1 Crowdsourcing

Pioneered by Snow et al. (2008), Crowdsourcing,
especially using MTurk, has become a widely used
service in the NLP community. A number of stud-
ies have looked at crowdsourcing for NER. Voyer et
al. (2010) use a combination of expert and crowd-
sourced annotations. Finin et al. (2010) annotate
Twitter messages – short sequences of words – and
this is reflected in their vertically oriented user in-
terface. Lawson et al. (2010) choose an annotation
interface where annotators have to drag the mouse
to select entities. Carpenter and Poesio (2010) ar-
gue that dragging is less convenient for workers than
marking tokens.

These papers do not address AL in crowdsourc-
ing. Another important difference is that previous
studies on NER have used data sets for which no
“linguistic” gold annotation is available. In con-
trast, we reannotate the CoNLL-2003 English NER
dataset. This allows us to conduct a detailed com-
parison of MTurk AL to conventional expert anno-
tation.

2.2 Active Learning with Noisy Labels

Hachey et al. (2005) were among the first to in-
vestigate the effect of actively sampled instances
on agreement of labels and annotation time. They
demonstrate applicability of AL when annotators are
trained experts. This is an important result. How-
ever, AL depends on accurate assessments of uncer-
tainty and informativeness and such an accurate as-
sessment is made more difficult if labels are noisy
as is the case in crowdsourcing. For this reason, the
problem of AL performance with noisy labels has
become a topic of interest in the AL community. Re-
hbein et al. (2010) investigate AL with human expert
annotators for word sense disambiguation, but do
not find convincing evidence that AL reduces anno-
tation cost in a realistic (non-simulated) annotation
scenario. Brew et al. (2010) carried out experiments

on sentiment active learning through crowdsourcing.
However, they use a small set of volunteer labelers
instead of anonymous paid workers.

Donmez and Carbonell (2008) propose a method
to choose annotators from a set of noisy annotators.
However, in a crowdsourcing scenario, it is not pos-
sible to ask specific annotators for a label, as crowd-
sourcing workers join and leave the site. Further-
more, they only evaluate their approach in simula-
tions. We use the actual labels of human annotators
to avoid the risk of unrealistic assumptions when
modeling annotators.

We are not aware of any study that shows that AL
is significantly better than a simple baseline of hav-
ing annotators annotate randomly selected examples
in a highly noisy annotation setting like crowdsourc-
ing. While AL generally is superior to this base-
line in simulated experiments, it is not clear that
this result carries over to crowdsourcing annotation.
Crowdsourcing differs in a number of ways from
simulated experiments: the difficulty and annotation
consistency of examples drawn by AL differs from
that drawn by random sampling; crowdsourcing la-
bels are noisy; and because of the noisiness of labels
statistical classifiers behave differently in simulated
and real annotation experiments.

3 Annotation System

One fundamental design criterion for our annotation
system was the ability to select examplesin real time
to support, e.g., the interactive annotation experi-
ments presented in this paper. Thus, we could not
use the standard MTurk workflow or services like
CrowdFlower.1

We therefore designed our own system for anno-
tation experiments. It consists of a two-tiered ap-
plication architecture. The frontend tier is a web
application that serves two purposes. First, the ad-
ministrator can manage annotation experiments us-
ing a web interface and publish annotation tasks as-
sociated with an experiment on MTurk. The front-
end also provides tools for efficient review of the
received answers. Second, the frontend web appli-
cation presents annotation tasks to MTurk workers.
Because we wanted to implement interactive anno-
tation experiments, we used the “external question”

1http://crowdflower.com/
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feature of MTurk. An external question contains
an URL to our frontend web application, which is
queried when a worker views an annotation task.
Our frontend then in turn queries our backend com-
ponent for an example to be annotated and renders it
in HTML.

The backend component is responsible for selec-
tion of an example to be annotated in response to a
worker’s request for an annotation task. The back-
end implements a diverse choice of random and ac-
tive selection strategies as well as the multilabel-
ing strategies described in section 3.2. The backend
component runs as a standalone server and is queried
by the frontend via REST-like HTTP calls.

For the NER task, we present one sentence per
HIT, segmented into tokens, with a select box under-
neath each token containing the classes. The defini-
tion of the classes is based on the CoNLL-2003 an-
notation guidelines (Tjong Kim Sang and De Meul-
der, 2003). Examples were given for every class.
Annotators are forced to make a selection for upper-
case tokens. Lowercase tokens are prelabeled with
“O” (no named entity), but annotators are encour-
aged to change this label if the token is in fact part
of an entity phrase.

For sentiment annotation, we found in prelim-
inary experiments that using simple radio button
selection for the choice of the document label
(positive or negative ) leads to a very high
amount of spam submissions, taking the overall clas-
sification accuracy down to around 55%. We then
designed a template that forced annotators to type
the label as well as a randomly chosen word from
the text. Individual label accuracy was around 75%
in this scheme.

3.1 Concurrent example selection

AL works by setting up an interactive annotation
loop where at each iteration, the most informative
example is selected for annotation. We use a pool-
based AL setup where the most informative exam-
ple is selected from a pool of unlabeled examples.
Informativeness is calculated as uncertainty (Lewis
and Gale, 1994) using the margin metric (Schein
and Ungar, 2007). This metric chooses examples for
which the margin of probabilities from the classifier
between the two most probable classes is the small-
est:

Mn = |P̂ (c1|xn) − P̂ (c2|xn)|

Here,xn is the instance to be classified,c1 andc2

are the two most likely classes, andP̂ the classifier’s
estimate of probability.

For NER, the margins of the tokens are averaged
to get an uncertainty assessment of the sentence. For
sentiment, whole documents are classified, thus un-
certainties can be used directly.

After annotation, the selected example is removed
from the unlabeled pool and, together with its la-
bel(s), added to the set of labeled examples. The
classifier is then retrained on the labeled examples
and the informativeness of the remaining examples
in the pool is re-evaluated.

Depending on the classifier and the sizes of pool
and labeled set, retraining and reevaluation can take
some time. To minimize wait times, traditional AL
implementations select examples in batches of the
n most informative examples. However, batch se-
lection might not give the optimum selection (exam-
ples in a batch are likely to be redundant, see Brinker
(2003)) and wait times can still occur between one
batch and the next.

When performing annotation with MTurk, wait
times are unacceptable. Thus, we perform the re-
training and uncertainty rescoring concurrently with
the annotation user interface. The unlabeled pool is
stored in a priority queue that is ordered according to
the examples’ informativeness. The annotation user
interface takes the most informative example from
the pool and presents it to the annotator. The la-
beled example is then inserted into a second queue
that feeds and updates retraining and rescoring pro-
cesses. The pool queue then is resorted according to
the new informativeness. In this way, annotation and
example selection can run in parallel. This is similar
to Haertel et al. (2010).

3.2 Adaptive voting and fragment recovery

MTurk labels often have a high error rate. A com-
mon strategy for improving label quality is to ac-
quire multiple labelsby different workers for each
example and then consolidate the annotations into
a single label of higher quality. To trade off num-
ber of annotated examples against quality of anno-
tations, we adoptadaptive voting. It uses majority
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NER Sentiment
Budget 5820 6931 1130 1756

#train F1 cost/sent w.-accuracy #train F1 #train Acc cost/doc w.-accuracy #train Acc
RS 1 S 5820 59.6 1.00 51.6 – – 1130 70.4 1 74.8 – –

2 3-v 1624 61.4† 3.58 70.1 – – – – – – – –
3 5/4-v 1488 63.0† 3.91 71.6 1774 63.5 450 71.2 2.51 89.6 735 79.2
4 5-v+f 1996 63.6† 2.91 71.8 2385 64.9† – – – – – –

AL 5 S 5820 67.0 1.00 66.5 – – 1130 74.8 1 76.0 – –
6 3-v 1808 70.0† 3.21 78.8 – – – – – – – –
7 5/4-v 1679 70.4† 3.46 79.6 1966 70.6 455 77.4 2.48 89.0 715 81.8
8 5-v+f 2165 70.5 2.68 79.3 2691 71.2 – – – – – –

Table 1: For NER, active learning consistently beats random sampling on MTurk. NERF1 evaluated on
CoNLL test set A. #train = number of sentences in training set, S = single, 3-v = 3-voting, 5/4-voting = 5-
and 4-voting for NER and sentiment resp., +f = using fragments; sentiment budget 1130 for run 1, sentiment
budget 1756 averaged over 2 runs.

voting and is adaptive in the number of repeated an-
notations. For NER, a sentence is first annotated by
two workers. Then majority voting is performed for
each token individually. If there is a majority for ev-
ery token that is greater than an agreement threshold
α, the sentence is accepted with each token labeled
with the majority label. Otherwise additional anno-
tations are requested. A sentence is discarded if the
number of repeated annotations exceeds a discard
thresholdd (d-voting).2 We use the same scheme
for sentiment; note that there is just one decision per
HIT in this case, not several as in NER.

For NER, we also usefragment recovery: we sal-
vage tokens with agreeing labels from discarded sen-
tences. We cut the token sequence of a discarded
sentence into several fragments that have agreeing
tokens and discard only those parts that disagree. We
then include these recovered fragments in the train-
ing data just like complete sentences.

Software release.Our active learning framework
used can be downloaded athttp://www.ims.
uni-stuttgart.de/˜lawsfn/active/ .

4 Experiments, Results and Analysis

4.1 Experiments

In our NER experiments, we have workers reanno-
tate the English corpus of the CoNLL-2003 NER
shared task. We chose this corpus to be able to com-
pare crowdsourced annotations with gold standard

2It can take a while in this scheme for annotators to agree
on a final annotation for a sentence. We maketentativelabels
of a sentence available to the classifier immediately and replace
them with the final labels once voting is completed.

annotations. A HIT is one sentence and is offered
for a base payment of $0.01. We filtered out answers
that contained unannotated tokens or were obvious
spam (e.g., all tokens labeled as MISC). For test-
ing NER performance, we used a system based on
conditional random fields with standard named en-
tity features including the token itself, orthographic
features like the occurrence of capitalization or spe-
cial characters and context information about the to-
kens to the left/right of the current token.

The sentiment detection task was modeled after a
well-known document analysis setup for sentiment
classification, introduced by Pang et al. (2002). We
use their corpus of 1000 positive and 1000 negative
movie reviews and the Stanford maximum entropy
classifier (Manning and Klein, 2003) to predict the
sentiment label of each documentd from a unigram
representation ofd. We randomly split this corpus
into a test set of 500 reviews and an active learn-
ing pool of 1500 reviews. Each HIT consists of one
document, valued at $0.01.

We compare random sampling (RS) and AL in
combination with the proposed voting and fragment
strategies with different parameters. We want to
avoid rerunning experiments on MTurk over and
over again, but on the other hand, we believe that us-
ing synthetic data for simulations is problematic be-
cause it is difficult to generate synthetic data with a
realistic model of annotator errors. Thus, we logged
a play-by-play record of the annotator interactions
and labels. With this recording, we can then rerun
strategies with different parameters.

We chose voting with at mostd = 5 repetitions as
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our main reannotation strategy for both random and
active sampling for NER annotation. We use simple
majority voting (α = .5) for NER.

For sentiment, we setd = 4 and minimum agree-
ment α = .75 because the number of labels is
smaller (2 vs. 5) and so random agreement is more
likely for sentiment.

To get results for 3-voting NER, we take the
recording and discard 5-voting votes not needed in
3-voting. This will result in roughly the same num-
ber of annotated sentences, but at a lower cost. This
simulation of 3-voting is not exactly what would
have happened on MTurk (e.g., the final vote on a
sentence might be different, which then influences
AL example selection), but we will assume that dif-
ferences are rare and simulated and actual results
are similar. The same considerations apply to sin-
gle votes and to the sentiment experiments.

We always compare two strategies for the same
annotation budget. For example, thenumber of
training sentencesin Table 1 differ in the two rel-
evant columns, but all strategies compared use ex-
actly the same annotation budget(5820, 6931, 1130,
and 1756, respectively).

For the single annotation strategy, each interac-
tion record contained only about 40% usable anno-
tations, the rest were repeats. A comparison with
the single annotation strategy over approx. 2000 sen-
tences or 450 documents would not have been mean-
ingful; therefore we chose to run an extra experiment
with the single annotation strategy to match this up
with the budgets of the voting strategies. The re-
sults are presented in two separate columns of Ta-
ble 1 (budgets 6931 and 1756).

4.2 Results

For sentiment detection,worker accuracyor label
quality – the percentage of correctly annotated doc-
uments – is 74.8. In contrast, for NER, worker accu-
racy – the percentage of non-O tokens annotated cor-
rectly – is only 51.6 (Table 1, line 1). This demon-
strates the challenge of using MTurk for NLP an-
notation tasks. When we use single annotations of
each sentence, NER performance is 59.6F1 for ran-
dom sampling (line 1). When training with gold la-
bels on the same sentences, the performance is 80.0
(not shown). This means we lose more than 20%
due to poor worker accuracy. Adaptive voting and

fragment recovery manage to recover a small part of
the lost performance (lines 2–4); each of the three
F1 scores is significantly better than the one above
it as indicated by† (Approximate Randomization
Test (Noreen, 1989; Chinchor et al., 1993) as im-
plemented by Pad́o (2006)).

Using AL turns out to be quite successful for NER
performance. For single annotations, NER perfor-
mance is 67.0 (line 5), an improvement of 7.4%
compared to random sampling. Adaptive voting
and fragment recovery again increase worker accu-
racy (lines 6–8) although total improvement of 3.5%
(lines 8 vs. 5) is smaller than 4% for random (lines
4 vs. 1). The learning curves of AL vs. random in
Figure 1 (top left) confirm this good result for AL.
These learning curves are for tokens – not for sen-
tences – to show that the reason for AL’s better per-
formance is not that it selects slightly longer sen-
tences than random. In addition, the relative advan-
tage of AL vs random decreases over time, which is
typical of pool-based AL experiments.

We carried out two runs of the same experiment
for sentiment to validate our first positive result since
the difference between the two conditions is not as
large as in NER (Figure 1, top right). After about
300 documents, active learning consistently outper-
forms random sampling. The first AL run performs
better because of higher label quality in the begin-
ning. The overall advantage of AL over random
is lower than for NER because the set of labels is
smaller in sentiment, making the classification task
easier. Second, there is a large amount of simple lex-
ical clues for detecting sentiment (cf. Wilson et al.
(2005)). It is likely that some of them can be learned
well through random sampling at first; however, ac-
tive learning can gain accuracy over time because it
selects examples with more difficult clues.

In Figure 1 (bottom), we compare single annota-
tion with adaptive voting. The graphs showF1 as
a function of cost. Adaptive voting trades quantity
of sampled sentences for quality of labels and thus
incurs higher net costs per sentence. This results in
a smaller dataset for a given budget, but this dataset
is still more useful for classifier training. For NER
(Figure 1, bottom left), the single annotation strat-
egy has a faster start; so for small budgets, cover-
ing a somewhat larger portion of the sample space
is beneficial. For larger budgets, however, quality of
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Figure 1: Top: Active learning vs. Random sampling for NER (left) and sentiment (right). Bottom: Active
learning: adaptive voting vs. single annotation for NER (left) and sentiment(right).

the voted labels trumps quantity.
For sentiment (Figure 1, bottom right), results are

similar: voting has no benefit initially, but as find-
ing maximally informative examples to annotate be-
comes harder in later stages of learning, adaptive
voting gains an advantage over single annotations.

The main result of the experiment is that active
learning is better by about 7%F1 than random sam-
pling for NER and by 2.6% accuracy for sentiment
(averaged over two runs at budget 1756). Adaptive
voting further improves AL performance for both
NER and sentiment.

4.3 Annotation time per token

Most AL work assumes constant cost per annotation
unit. This assumption has been questioned because
AL often selects hard examples that take longer to
annotate (Hachey et al., 2005; Settles et al., 2008).

In annotation with MTurk, cost is not a function

of annotation time because workers are paid a fixed
amount per HIT. Nevertheless, annotation time plays
a part in whether workers are willing to work on a
given task for the offered reward. This is particularly
problematic for NER since workers have to examine
each token individually. We therefore investigate
for NER whether the time MTurk workers spend on
annotating sentences differs for random vs. AL.

We first compute median and mean annotation
times and number of tokens per sentence:

sec/sentence tokens/sentence
strategy median mean all required

random 17.2 33.1 15.0 3.4
AL 17.8 33.0 17.7 4.0

We see that most sentences are annotated in a very
short time; but the mean is much larger than the me-
dian because there are outliers of up to eight min-
utes. AL tends to select slightly longer sentences as
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well as sentences with slightly more uppercase to-
kens that require annotation.

In a more detailed analysis, we attempt to distin-
guish between (i) the effect of more uppercase (“an-
notation required”) tokens vs. (ii) the effect of ex-
ample difficulty. We fit a linear regression model
to annotation time vs. the number of uppercase to-
kens. For the regression fit, we removed all annota-
tion times> 60 seconds. Such long times indicate
distraction of the worker and are not a reliable mea-
sure of difficulty.

Figure 2 shows the distribution of annotation
times for both cases combined and the fitted models
for each. The model estimated an annotation time of

2.3 secs for each required token for random vs. 2.7
secs for AL. We conclude that the difference in dif-
ficulty between sentences selected by random sam-
pling vs. AL is small, but noticeable.

4.4 Influence of noise on the selection process

While NER performance for AL is much higher than
for random sampling, it is still quite a bit lower than
what is possible on gold labels. In the case of AL,
there are two reasons why this happens: (i) The
noisy labels negatively affect the classifier’s ability
to learn a good model that is used for classifying the
test set. (ii) The noisy labels result in bad interme-
diate models that then select suboptimal examples
to be annotated next. The AL selection process is
“misled” by the noisy examples.

We conduct an experiment to determine the con-
tribution of factors (i) and (ii) to the performance
loss. First, we preserve the sequence of sentences
chosen by our AL experiments on MTurk, with5-
voting for NER and4-voting for sentiment but re-
place the noisy worker-provided labels by gold la-
bels. The performance of classifiers trained on this
sequence is the dashed line “MTurk selection, gold
labels” in Figure 3 for NER (left) and sentiment
(right).

Second, we compare with a traditional simulated
AL experiment with gold labels. Here, the selection
too is controlled by gold labels, so the selection has
a noiseless classifier available for scoring and can
perform optimal uncertainty selection. These are the
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Figure 4: Worker accuracy vs. number of HITs. Each point corresponds to one worker (◦ = active,+
=random sampling; black and grey for different runs). Left: NER. Right: Sentiment.

dotted lines “gold selection, gold labels” in Figure 3.
We used a batch-mode AL setup for this compari-

son experiment. For a fair comparison, we adjust the
batchsize to be equal to the averagestalenessof a se-
lected example in concurrent MTurk active learning.
The staleness of an example is defined as the num-
ber of annotations the system has received, but not
yet incorporated in the computation of an example’s
uncertainty score (Haertel et al., 2010).

For our concurrent NER system, the average stal-
eness of an example was about 12 (min: 1, max: 40),
for sentiment it was about 2. The figure for NER is
higher than the number cited by Haertel et al. (2010)
because there are more annotators accessing our sys-
tem at the same time via MTurk but not as high for
sentiment since documents are longer and retraining
the sentiment classifier is faster. The average stale-
ness of an example in a batch-mode system is half
the batch size. Thus, we set the batch size of our
comparison system to 25 for NER and to 4 for sen-
timent.

Returning to the two factors introduced above –
(i) final effect of noise on test set performance vs.
(ii) intermediate effect of noise on example selec-
tion – we see in Figure 3 that (i) has a large effect
on NER whereas (ii) has a noticeable, but small ef-
fect.3 For example, at 1966 sentences,F1 scores are

3Our comparison unit for NER is the sentence. We can-
not compare on cost here since we do not know what the per-
sentence cost of a “gold” expert annotation is.

70.6 (MTurk-MTurk), 81.4 (MTurk-gold) and 84.9
(gold-gold). This means that a performance differ-
ence of 10 pointsF1 has to be attributed to noisy
labels resulting in a worse final classifier (effect i),
and another3.5 points are lost due to sub-optimal
example selection (effect ii).

For sentiment, the results are different. There is
no clear difference between the three runs. We at-
tribute this to the fact that the quality of the labels
is higher in sentiment than in NER. Our initial ex-
periments on sentiment were all negative (showing
no improvement of AL compared to random) be-
cause label quality was too low. Only after we intro-
duced the template described in Section 3 and used
4-voting withα = .75 did we get positive results for
AL. This leads to an overall label quality of about
90% (over all runs) which is so high that the differ-
ence to using gold labels is small if present at all.

5 Worker Quality

So far we have assumed that all workers provide
annotations of the same quality. However, this is
not the case. Figure 4 shows plots of worker accu-
racy as a function of worker productivity (number
of annotated examples). Some workers submit only
one or two HITs just to try out the task. For NER,
the majority of workers submit between 5 and 10
sentences, with label qualities between 0.5 and 0.8.
The chance level for correctness is around 0.25 (four
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different named entity categories for uppercase to-
kens). For sentiment, most workers submit 1 to 5
documents, with label qualities between 0.5 and 1.
Chance level lies at around 0.5 (for two equally dis-
tributed labels).

While quality for highly productive workers is
mediocre in our experiments, other researchers have
found extremely bad quality for their most prolific
workers (Callison-Burch, 2009). Some of these
workers might be spammers who try to submit an-
swers with automatic scripts. We encountered some
spammers that our heuristics did not detect (shown
in the bottom-right areas of Figure 4, left), but the
voting mechanism was able to mitigate their nega-
tive influence.

Given the large variation in Figure 4, using worker
quality in crowdsourcing for improved training set
creation seems promising. We now test two such
strategies for NER in an oracle setup.

5.1 Blocking low-quality workers

A simple approach is to refuse annotations from
workers that have been determined to provide low
quality answers. We simulated this strategy on NER
data using oracle quality ratings. We chose NER be-
cause of its lower overall label quality. The re-
sults are presented in Figure 5 for random (a) and
AL (b). For random, quality filtering with low cut-
offs helps by removing bad annotations that likely
come from spammers. While the voting strategy
prevented a performance decrease with bad anno-
tations, it needed to expend many extra annotations
for correction. With filtering, these extra annotations
become unnecessary and the system can learn faster.
When low-quality workers are less active, as in the
AL dataset, we find no meaningful performance in-
crease for low cutoffs up to 0.4. For very high cut-
offs (0.7), the beginning of the performance curve
shows that further cost reductions can be achieved.
However, we did not have enough recorded human
annotations available to perform a simulation for the
full budget.

5.2 Trusting high-quality workers

The complementary approach is to take annotations
from highly rated workers at face value and imme-
diately accept them as the correct label,bypassing
the voting procedure. Bypassing saves the cost of

repeated annotation of the same sentence. Figure 5
shows learning curves for two bypass thresholds on
worker quality (measured as proportion of correct
non-O tokens) for random (c) and AL (d). Bypass-
ing performs surprisingly well. We find a steeper
rise of the learning curve, meaning less cost for the
same performance. Not only do we find substantial
cost reductions, but also higher overall performance.
We believe this is because high-quality annotations
can sometimes be voted down by other annotations.
If we can identify high-quality workers and directly
use their annotations, this can be avoided.

These experiments are oracle experiments using
gold data that is normally not available. In future
work, we would like to repeat the experiments using
methods for worker quality estimation (Ipeirotis et
al., 2010; Donmez et al., 2009). For AL, the choice
as to which labels are used (as a result of voting, by-
passing or other) also has an influence on the selec-
tion. However, we had to keep the sequence of the
selected sentences fixed in the simulations reported
above. While our method of sample selection for
AL proved to be quite robust even in the presence
of noise, higher quality labels do have an influence
on the sample selection (see section 4.4), so the im-
provement could be even better than indicated here.

5.3 Differences in quality between AL and
random

The essence of AL is to select examples that are dif-
ficult to classify. As observed in our experiments
on annotation time, this difficulty is reflected in the
amount of time a human needs to work on examples
selected through AL. Another effect to expect from
difficulty could be lower annotation accuracy. We
therefore examined the accuracies for each worker
who contributed to both the AL and the random ex-
periment. We found that in the NER task, the 20
workers in this group had a slightly higher (0.07) av-
erage quality for randomly selected examples. This
difference is low and does not suggest a significant
drop in accuracy for examples selected in AL.

6 Conclusion

We have investigated the use of AL in a real-life
annotation experiment with human annotators in-
stead of traditional simulations with gold labels for
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Figure 5: Blocking low-quality workers: (a) random, (b) AL. Bypass voting: (c) random, (d) AL.

named entity recognition and sentiment classifica-
tion. The annotation was performed using MTurk in
an AL framework that features concurrent example
selection without wait times. We also evaluated two
strategies, adaptive voting and fragment recovery, to
improve label quality at low additional cost. We find
that even for the relatively high noise levels of anno-
tations gathered with MTurk, AL is successful, im-
proving performance by +6.9 pointsF1 compared to
random sampling for NER and by +2.6% accuracy
for sentiment. Furthermore, this performance level
is reached at a smaller MTurk cost compared to ran-
dom sampling. Thus AL not only reduces annotation
costs, but also offers an improvement in absolute
performance for these tasks. This is clear evidence
that active learning and crowdsourcing are comple-
mentary methods for lowering annotation cost and
should be used together in training set creation for
natural language processing tasks.

We have also conducted oracle experiments that
show that further performance gains and cost sav-
ings can be achieved by using information about
worker quality. We plan to confirm these results by
using estimates of quality in the future.
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Abstract

We present a named entity recognition (NER)
system for extracting product attributes and
values from listing titles. Information extrac-
tion from short listing titles present a unique
challenge, with the lack of informative con-
text and grammatical structure. In this work,
we combine supervised NER with bootstrap-
ping to expand the seed list, and output nor-
malized results. Focusing on listings from
eBay’s clothing and shoes categories, our
bootstrapped NER system is able to identify
new brands corresponding to spelling variants
and typographical errors of the known brands,
as well as identifying novel brands. Among
the top 300 new brands predicted, our system
achieves 90.33% precision. To output normal-
ized attribute values, we explore several string
comparison algorithms and found n-gram sub-
string matching to work well in practice.

1 Introduction

Traditional named entity recognition (NER) task has
expanded beyond identifying people, location, and
organization to book titles, email addresses, phone
numbers, and protein names (Nadeau and Sekine
2007). Recently there has been a surge of interest
in extracting product attributes from online data due
to the rapid growth of E-Commerce. Current work
in this domain focuses on mining product reviews
and descriptions from retailer websites. Such text
data tend to be long and generate enough context for
the target task (Brody and Elhadad 2010; Liu et al.
2005; Popescu and Etzioni 2005). In this paper, we
focus on mining short product listing titles, which
poses unique challenges.

Short listings are typical in classified ads where
each seller is given limited space (in terms of words)
to describe the product. On eBay, product listing ti-
tles cannot exceed 55 characters in length. Similarly,
on Craigslist and newspaper ads, the length of a list-
ing title is restricted. Extracting product attributes
from such short titles faces the following challenges:

• Loss of grammatical structure in short listings
where many nouns are piled together.
• Typographical errors, abbreviations, and

acronyms that must be normalized to the
standardized values.
• Lack of contextual information to infer product

attribute value.

It can be argued that the use of short listings simpli-
fies the problem of attribute extraction, since short
listings can be easily annotated and one can apply
supervised learning approach to extract product at-
tributes. However, as the size of the data grows, ob-
taining labeled training set on the scale of millions
of listings becomes very expensive. In such a sce-
nario, incorporating unlabeled examples in a semi-
supervised fashion to scale up the solution becomes
a necessity rather than a luxury.

We formulate the product attribute extraction
problem as a named entity recognition (NER) task
and investigate supervised and semi-supervised ap-
proaches to this problem. In addition, we have in-
vestigated attribute discovery, and normalization to
standardized values. We use listings from eBay’s
clothing and shoes categories and develop an at-
tribute extraction system for 4 attribute types. We
have 105, 335 listings from men’s clothing category
and 72, 628 listings from women’s clothing category1557



on eBay, constituting a dataset of 1, 380, 337 word
tokens.

In the first part of this work, we outline a super-
vised learning approach to attribute value extraction
where we train a sequential classifier and evaluate
the extraction performance on a set of hand-labeled
listings. Using maximum entropy and SVM as the
base classifier (for classifying the individual word
tokens), a hidden Markov model (HMM) is trained
on the the probabilistic output of the base classifier,
and a sequential label prediction is obtained using a
Viterbi decoding. We show a performance compar-
ison of supervised HMM, MaxEnt, SVM, and CRF
for this task.

In the second part of our work, to grow our seed
list of attributes, we present a bootstrapped algo-
rithm for attribute value discovery and normaliza-
tion, honing in on one particular attribute (brand).
The goal is given an initial list of unambiguous
brands, we grow the seed dictionary by discover-
ing context patterns that are often associated with
such attribute type. First, we automatically parti-
tion data into a training/test set by labeling word to-
kens in each listing using exact matching to entries
in the dictionary. Brand phrases that can be confused
with other attributes, e.g. the word camel — both a
brand and a color — will not be a part of this ini-
tial seed list to create the training set. A classifier
is then trained to learn context patterns surrounding
the known brands from the training set, and is used
to discover new brands from the test set.

Finally, for known attribute values, we normalize
the results to match to words in our dictionary. Nor-
malizing the variants of a known brand to a single
normalized output value is an important aspect of
a successful information extraction system. To this
end, we investigate several string similarity/distance
measures for this task and found that n-gram sub-
string similarity (Kondrak 2005) yields accurate nor-
malization results.

The main contribution of this work is a product
attribute extraction system that addresses the unique
problems of information extraction from short list-
ing titles. We combine supervised NER with boot-
strapping to expand the seed list, and investigate sev-
eral methods to normalize the extracted results. Our
system has been tested on large-scale eBay listing
datasets to demonstrate its effectiveness.

2 Related Work

Recent work on product attribute extraction by
(Brody and Elhadad 2010) applies a Latent Dirich-
let Allocation (LDA) model to identify different as-
pects of products from user reviews. Similar work
is presented in (Liu et al. 2005). Topic models such
as LDA groups similar words together by identify-
ing topics (product aspects) from patterns of word-
occurrences. Such grouping can discover new as-
pects of a product such as ”portability” (for net-
book computers), but it may generate aspects that
are vague and not easily interpretable. Indeed, how
to refine discovered aspects and clean up words in
each aspect remains an open question. The LDA
approach also treats documents as bags of words,
where important information in word sequences is
not taken into account in learning the model.

Our work is most closely related to (Ghani 2006),
where a set of product attributes of interests are pre-
defined and a supervised learning method is applied
to extract the correct attribute values for each class.
Starting out from a small set of training examples,
a bootstrapping technique is used to generate more
training data from unlabeled data. The main dif-
ference to our method lies in how bootstrapping is
used. (Ghani 2006) used EM to add more train-
ing data from unlabeled data, while in our approach
bootstrapping is used to expand the seed list. First,
we automatically generate labeled data by matching
seed list to unlabeled data. Then, these auto-labeled
training set is used to train a classifier to identify new
attribute values from a separate set of unlabeled data.
Thirdly, newly discovered product attribute values
are added back to our seed list. Thus our original
classifier for product attribute extraction can be im-
proved through an expanded seed list.

In (Ghani and Jones 2002; Jones 2005), several
bootstrapping methods are compared. These meth-
ods include self-training, co-EM and EM. All of
these approaches are different from ours, as de-
scribed in detail earlier. In (Probst et al. 2006),
a Naive Bayes learner is combined with Co-EM to
generate more training data from unlabeled data, and
attribute-value pairs are extracted on adjacent words.

The automatic bootstrapping in this paper was in-
spired by (Pakhomov 2002)—an acronym expansion
algorithm for medical text documents. The underly-
ing assumption is that abbreviated forms and their1558



corresponding expansions occur in similar contexts;
consequently, the surrounding context patterns can
be used in associating the correct expansion to its
acronym.

Our seed list expansion algorithm indeed bears
some similarity to the work of (Nadeau el al 2006)
and (Nadeau 2007). In (Nadeau el al 2006), automo-
bile brands are learned automatically from web page
context. First, a small set of 196 seed brands are ex-
tracted together with their associated web page con-
texts from popular news feed. The web context is
subsequently used to extract additional automobile
brands, which result in a total of 5701 brands. How-
ever, the reported results in (Nadeau el al 2006) have
low precision, in some case less than 50%. Eventu-
ally their approach needs to rely on rule-based ambi-
guity resolver to increase the precision. Our system
does not rely on manually created rules.

A more NLP-oriented approach is proposed in
(Popescu and Etzioni 2005), where noun phrases are
extracted from online user reviews. Their system
tries to identify product features and user opinions
from such noun phrases. A PMI (pointwise mutual
information) score is evaluated between each noun
phrase and discriminators associated with the prod-
uct class. The noun-phrase approach does not work
well in informal texts. In our case, user-generated
short product listings may have many nouns con-
catenated together without forming a phrase or
obeying correct grammatical rules.

Finally, another similar bootstrapping method is
presented in (Mintz et al. 2009), where instances
of known entity relations (or seed list in our paper)
are matched to sentences in a set of Wikipedia arti-
cles, and a learning algorithm is trained from the sur-
rounding features of the entities. The trained model
is then applied to a test set of Wikipedia articles,
and has been reported to be able to discover new in-
stances. In our case, we apply our learned model to
a new test set, and discover new brand names from
the listings.

The nature of non-grammatical text we face
makes our work similar to the NER work on infor-
mal texts. (Minkov et al. 2005) proposes an NER
system that extracts personal names from emails.
The work in (Gruhl et al 2009) identifies song titles
from online forums on popular music, where song
titles can be very ambiguous. By using real-world

constraints such as known song titles, (Gruhl et al
2009) restricts the set of possible entities and are
able to obtain reasonable recognition performance.

3 Corpus

The data used in all analysis in this paper is obtained
from eBay’s clothing and shoes category. Clothing
and shoes have been important revenue-generating
categories on the eBay site, and a successful at-
tribute extraction system will serve as an invaluable
tool for gathering important business and market-
ing intelligence. For these categories, the attributes
that we are interested in are brand (B), garment
type/style (G), size (S), and color (C). We gather
105, 335 listings from men’s clothing category and
72, 628 listings from women’s clothing category,
constituting a dataset of 1, 380, 337 word tokens. On
average, each listing title contains 7.76 words.

A few examples of listings from eBay’s clothing
and shoes categories are shown in Fig 1. When de-
signing an attribute extraction system to distinguish
between the 4 attribute types, we must take into ac-
count the fact that individual words alone — with-
out considering context — are ambiguous, as each
word can belong to multiple attribute types. To give
concrete examples, inc is a brand name of women’s
apparel but many sellers use it as an acronym for
inch (brand vs. size). The word blazer can be a
brand entity or it can be a garment type (brand vs.
garment type). In addition, like other real-world
user-generated texts, eBay listings are littered with
site-specific acronyms, e.g. BNWT (brand new with
tag), NIB (new in box), and abbreviations introduced
by individual sellers, e.g. immac (immaculate), trs
(trousers). In designing an information extraction
system for our dataset, we need to account for the
general as well as specific properties of our dataset.

4 Supervised Named Entity Recognition

In the first part of this work, we adopt a supervised
named entity recognition (NER) framework for the
attribute extraction problem from eBay listing titles.
The goal is to correctly extract attribute values cor-
responding to the 4 attribute types, from each list-
ing. One key assumption of the supervised learn-
ing paradigm is the availability of a labeled training
data for training a classifier to distinguish between
different classes. We generate our training data in1559



Figure 1: Example listings and their corresponding labels from the clothing and shoes category.

the following manner. For each listing, we remove
extraneous punctuation symbols (*,(,),!,:,;) and tok-
enize each listing into a sequence of tokens. Given 4
dictionaries of seed values for the 4 attribute types,
we match n-gram tokens to the seed values in the
dictionaries, and create an initial round of labeled
training set, which must then be manually inspected
for correctness. In this work, we tagged and manu-
ally verified 1, 000 listings randomly sampled from
the 105, 335 listings from the men’s clothing cate-
gory, resulting in a total of 7, 921 labeled tokens with
1, 521-word vocabulary. Fig. 1 shows examples of
labeled listings, with tags B corresponding to brand,
C for color, S for size, G for garment type/style, and
NA for none of the above.

4.1 Classifiers
One of the most popular generative model based
classifiers for named entity recognition tasks is Hid-
den Markov Model (HMM), which explicitly cap-
tures temporal statistics in the data by modeling
state (label/tag) transitions over time. Discrimina-
tive classifiers, which directly model the posterior
distribution of class label given features, i.e. SVM
(Isozaki and Kazawa 2002) and Maximum Entropy
model for NER (Chieu and Ng 2003), have been
shown to outperform generative model based clas-
sifiers. More recently, Conditional Random Fields
(CRF) (Feng and McCallum 2004; McCallum 2003)
has been proposed for a sequence labeling problem
and has been established by many as the state-of-
the-art model for supervised named entity recogni-
tion task. In this section, we briefly summarize the
pros and cons of each approach.

4.1.1 Hidden Markov Models
A hidden Markov model (HMM) is a probabilistic

generative model for sequential data. HMM is char-
acterized by 2 sets of model parameters — emission
probabilities which produce the observation variable
given the hidden state, and the state transition prob-
ability matrix which captures the temporal correla-
tion in the hidden state sequences. Given a set of la-

beled training sequences as shown in Figure 1, one
can train an HMM to model temporal statistics in
the observation sequences. In our task, a sequence
of word tokens from listing titles are our observa-
tions. One simple approach to use HMM is to set a
hidden state to correspond to a tag class. In the train-
ing phase, since all the tags are given, the hidden
states indeed become visible and inference in this
model becomes much more simplified. The multino-
mial parameter for the emission probabilities p(w|s)
can be learned with a closed-form update (maximum
likelihood estimate). During testing, however, an ef-
ficient forward-backward algorithm must be used to
infer the most likely tag sequence that accounts for
the observation.

One main drawback of HMM is the type of fea-
tures that it can handle. Like other probabilistic gen-
erative models, in order to account for rich, over-
lapping feature sets, e.g. text formatting features,
the correlation structures in the overlapping features
must be explicitly modeled. Indeed, in the clas-
sic HMM based NER, the simple feature used is
the word identity itself, which might not be suffi-
ciently discriminative in distinguishing between dif-
ferent classes. In addition, because of data sparsity
(out-of-vocabulary) problem due to the long-tailed
distribution of words in natural language, sophisti-
cated unknown word models are generally needed
for good performance (Klein et al. 2003).

4.1.2 Maximum Entropy models

The principle of maximum entropy states that
among all the distributions that satisfy feature con-
straints, we should pick the distribution with the
highest entropy, since it makes the least assumption
about the data and will have better generalization
capability to unseen data. Maximum entropy clas-
sifier, therefore, is the highest entropy conditional
distribution of the class label given features, which
has been shown to conveniently take an exponential
form. Maximum entropy classifier is thus closely
related to logistic regression model.1560



Position Features:
- Position from the beginning of listing
- Position to the end of listing
Orthographic Features:
- Identity of the current word
- Current word contains a digit
- Current word contains only digits
- Current word is capitalized
- Current word begins with a capitalized letter followed by
all non-cap letters.
- Current word is &
- Current word is £
- N -gram substring features of current word (N = 4, 5, 6)
Context Features:
- Identity of 2 words before the current word
- Identity of 2 words after the current word
- Previous word is from
- Previous word is by
- Previous word is and
- N -gram substring features of neighboring words (N = 4, 5, 6)
Dictionary Features:
- Membership to the 4 dictionaries of attributes
- Exclusive membership to dictionary of brand names
- Exclusive membership to dictionary of garment types
- Exclusive membership to dictionary of sizes
- Exclusive membership to dictionary of colors

Table 1: Feature set used in discriminative classifiers.

MaxEnt classifiers (Ratnaparkhi 1996; Ratna-
parkhi 1998) have been applied to various NLP ap-
plications. The attraction of the framework lies in
the ease with which different information sources
used in the modeling process are combined and the
good results that are reported with the use of these
models. The set of redundant features used for the
MaxEnt classifier is the same as those used for the
SVM classifier, which we outline in the next section.

4.1.3 Support Vector Machines
Support Vector Machine (SVM) is yet another

popular classifier for a supervised NER task. In a
binary classification case, SVM finds parameters of
a linearly separating hyperplane that best separates
data from the 2 classes, in a sense that the margin
of separation is maximized. Since only the samples
closest to the decision boundary (the so-called sup-
port vectors) determine the location of the separating
hyperplane, SVM can be trained on very few train-
ing examples even for data in a high-dimensional
space. For our supervised NER system, we use the
following features, as described in detail in Table 1,
as input to the discriminative classifiers.

The use of char N -gram (N -gram substring) fea-
tures was inspired by the work of (Klein et al. 2003),
where the introduction of such features has been

shown to improve the overall F1 score by over 20%.
In (Kanaris et al. 2006), char N -gram features con-
sistently outperform word features in learning effec-
tive spam classifiers. Indeed the use of character N -
gram features as an input to the classifier subsumes
the use of prefix, suffix, and the entire word features.
Generally speaking, char N -gram features provide a
more robust representation against misspelling since
string s1 and its spelling variant s2 may share many
char N -gram substrings in common.

POS and punctuation features are not used in our
NER system. This is mainly due to the fact that eBay
listing titles are not complete sentences and the out-
put from running a POS tagger through such data
can indeed be unreliable. For punctuation features,
eBay sellers are known to abuse punctuation marks
excessively to draw attention of the potential buyers
to click on their listings. In addition, we find that
morphological features are less predictive of entity
names in eBay listing titles than they are in formal
documents. To give a concrete example, capitaliza-
tion is a good predictor of entity names in traditional
NER systems, but on the eBay site, many sellers
use all-cap or all-lowercase letters for every word
in their titles, bringing into question the discrimi-
native power of widely used features in traditional
NER systems.

4.1.4 Viterbi Smoothing

The Viterbi algorithm can be used to smooth the
prediction output from SVM or MaxEnt. More
specifically, the Viterbi decoder enforces the tempo-
ral consistency on the individual label prediction as
inferred by the base classifier — MaxEnt or SVM,
independently based on the feature representation
of each word token. The probabilistic ouput of the
base classifier is the observation or evidence, while
the temporal consistency is encoded in the empirical
state transition probability matrix inferred from the
training data. This scenario is analogous to compar-
ing MAP (maximum a priori) estimate with that of
ML (maximum likelihood) in that the former incor-
porates a prior belief when making a final estimate
of the parameter values (most likely label sequence
predicted by the Viterbi algorithm), while the latter
uses only the observation to infer the most likely pa-
rameter estimate (independently inferred predicted
labels of each word token from the base classifier).1561



We adopt the approach from the work of (Chieu
and Ng 2003), which uses Viterbi to improve the
classification results from MaxEnt classifier for
NER tasks. Instead of computing the transition
probability matrix by recording the frequency of
how many times state i at time T transitions to state
j at time T + 1, we simply record that this state i
to j transition is admissible. This approach, indeed,
divides a set of all label sequences into ones that are
admissible and inadmissible, and assign equal prob-
abilities to all the admissible sequences. Such an ap-
proach therefore eliminates all the inadmissible se-
quences of labels (i.e. prohibit the scenario where
-in sub-tag is followed by -begin sub-tag), while al-
lowing the Viterbi algorithm to give more weight to
the classification outputs from SVM or MaxEnt.

4.1.5 Conditional Random Field (CRF)
Conditional Random Field, since its conception in

the seminal work of (Lafferty et al. 2002), is a dis-
criminative classifier for sequential data that com-
bines the best of both worlds. Like SVM and Max-
Ent, CRF is a discriminative classifier that directly
models the conditional distribution of the target vari-
able given the observed variable, i.e. no modeling
resource is wasted in modeling complex correlation
structures in the observation sequences. Like HMM,
CRF makes prediction on the label sequence by in-
corporating the temporal smoothness. Indeed CRF
has been established by many as the state-of-the-
art supervised named entity recognition system for
traditional NER tasks (Feng and McCallum 2004;
McCallum 2003), for NER in biomedical texts (Set-
tles 2004), and in various languages besides English,
such as Bengali (Ekbal et al. 2008) and Chinese
(Mao et al 2008). Various modifications to CRF
have recently been introduced to take into account
of non-local dependencies (Krishnan and Manning
2006) or broader context beyond training data (Du
et al. 2010).

4.2 Experimental Results
In this section, we compare the generative model
based and discriminative model classifiers for super-
vised NER tasks. Given 1, 000 manually tagged list-
ings from the clothing and shoes category in eBay,
we adopt a 90-10 split and use 90% of the data for
training and 10% for testing. Each listing title is to-
kenized into a sequence of word tokens, each manu-

SVM MaxEnt HMM CRF
w/o Viterbi 89.05% 87.64% - -
w/ Viterbi 89.47% 88.13% 83.82 93.35%

Table 2: Classification accuracy (%) on 9-class NER on
men’s clothing dataset, comparing SVM, MaxEnt, super-
vised HMM, and CRF.

ally assigned to one of the 5 tags: brand (B), size
(S), color (C), garment type (G), and none of the
above (NA). In order to more accurately capture the
boundary of multi-token attribute values, we further
sub-divide each tag into 2 classes using -beg and -in
sub-tags. This step increases the number of classes
that our classifier needs to handle from 5 to 9 classes
given as follows: {B-beg, B-in, C-beg, C-in, S-beg,
S-in, G-beg, G-in, and NA}.

Table 2 shows a comparison of classification ac-
curacy from 4 classifiers — SVM, MaxEnt, HMM,
and CRF. Supervised HMM, with the most simplis-
tic feature, yields the baseline result at 83.82% accu-
racy. All the discriminative classifiers — CRF, Max-
Ent, and SVM — outperform the baseline by HMM,
with CRF improving on the baseline performance by
the largest margin, concurring to other reports of its
state-of-the-art results. Indeed, when using exactly
the same set of features as SVM and MaxEnt, the
performance of CRF indeed drops to 89.11%, which
is on par with that of SVM and MaxEnt. However,
when restricting to using dictionary and word iden-
tity features, the performance of CRF improves, in-
dicating the importance of feature selection to such
model. SVM and MaxEnt yield similar performance
with SVM slightly outperforming MaxEnt classifier
by 1.6%. The incorporation of temporal smoothness
constraint enforced by the Viterbi algorithm slightly
improves the label sequence prediction (comparing
row 1 and row 2 in Table 2).

The HMM implementation used in our experi-
ments is the Hunpos tagger in (Halacsy et al. 2007),
which captures the state transitional probabilities us-
ing second-order Markov model. For SVM, we use
the popular libSVM package (Chang and Lin 2001)
which produces probabilistic output from fitting a
sigmoid function to the distances between samples
and the separating hyperplane. We use linear kernel
in our experiments, although RBF kernel with grid
search for optimal parameters yield slightly superior1562



performance, with a significantly higher computa-
tional cost. The MaxEnt implementation used in our
experiment is the version available from the NLTK
toolkit, with BFGS optimizer. For CRF, we use the
linear-chain CRF model available from the Mallet
package1.

5 Bootstrapping for Dictionary Expansion

The supervised learning approach assumes the ex-
istence of an annotated set of training data. Often
times, training data must be painstakingly marked
up and collecting large-scale labeled training exam-
ples can be very costly. In recent years, more and
more research effort has been focused on how to
leverage a vast amount of unlabeled data in a semi-
supervised or entirely unsupervised fashion for NER
as well as for other similar NLP tasks, e.g. POS
tagging, sentence boundary detection, and word
sense disambiguation (Riloff 1999; Ghani and Jones
2002; Probst et al. 2006; Brody and Elhadad 2010;
Haghighi 2010).

One way to incorporate a vast amount of unla-
beled data is to learn a clustering of words that as-
signs syntactically similar words to the same clus-
ters. Popular clustering algorithms used prevalently
in many NER systems are, for example, the combi-
nation of distributional and morphological similar-
ity work of (Clark 2003) or the classic N -gram lan-
guage model based clustering algorithm of (Brown
et al. 1992). In such a system, when training an
NER classifier, we introduce a word cluster id as an
additional feature in the input, with the hope that the
model will pick out clusters that are highly indica-
tive of each class. When encountering words that
are out-of-vocabulary (OOV) in the test set, if those
words are assigned the same cluster membership as
some other words in the training set, the cluster fea-
ture will fire, allowing for correct classification re-
sults to be obtained (Lin and Wu 2009; Faruqui and
Pado 2010).

5.1 Growing Seed Dictionary
In this work, we focus on the problem of how to
grow the seed dictionary and discovering new brand
names from eBay listing data. While the perfor-
mances of supervised NER classifiers as described
in sections 4.1.1-4.1.5 are satisfactory, in practice,

1http://mallet.cs.umass.edu/

however, especially with a small training set size,
we often find that the trained model puts too much
weight on the dictionary membership feature and
new attribute values are not properly detected. In
this section, instead of using the seed list of known
attribute values as a feature into a classifier, we
use the seed values to automatically generate la-
beled training data. For the specific case of brand
discovery, this initial list used to generate training
data must contain only names that are unambigu-
ously brands. We hence remove ambiguous names
or phrases that belong to multiple attribute types
from the list, such as jumpers(both a brand name
and a garment type), or (ii) camel is a short name
of brand Camel active as well as a color, or (iii) lrg
is an acronym for a brand as well as an acronym for
large which specifies size.

The training/test data is generated by matching
N -gram tokens in listing titles to all the entries in
the initial brand seed dictionary. Following the con-
vention in (Minkov et al. 2005), we use the follow-
ing set of 5 tags, (1) one-token entity (B1 tag) (2)
first token of a multi-token entity (Bo tag for Brand-
open) (3) last token of a multi-token entity (Bc tag
for Brand-close) (4) middle token of a multi-token
entity (Bi tag for Brand-inside) (5) token that is not
part of a brand entity (NA tag). The listings with
at least one non-NA tags are put in the training set,
and listings that contain only NA tags are in the test
set. Similar to the acronym expansion algorithm of
(Pakhomov 2002) which learns contexts that asso-
ciate acronyms to their correct expansions, the in-
tuition behind our work in this section is that the
classifier, trained on a labeled training set of known
brands, learns context patterns that can discriminate
the current word as being a brand (more precisely as
part of a brand) from the other attribute types, which
are now lumped together as NA.

5.2 Experiments

In the first experiment, a set of 72, 628 listings from
the women’s clothing category is partitioned into a
training set of 39, 448 listings and test set of 33, 180
listings based on an initial seed list of known 6, 312
women’s apparel brands manually prepared by our
fashion experts. The partitioning is done, as de-
scribed in great detail above, in such a way that
known brands in the seed list do not exist in the1563



Women’s Clothing Men’s Clothing Garment Type
’monsoon’ henley’s nightshirt

riverislandtop abercrombie&fitch cargoshorts
dorothyperkins lacost trenchcoat

river islanfd versace sweatpants
marks&spencers sonnetti cardigans

river islands supremebeing boardshorts
river islan brookhaven tracksuite
monsoomn guiness swimshorts

dorothry perkins ’next’ trouses
principle suprerdry microfleece

?river island henbury boilersuit
bnwtmonsoon paul smiths snopants

marella ricci pjs
soulcal craghopper jkt

Table 3: Discovered attribute values, ranked order by
their confidence scores. (Left) Discovered brands from
Women’s clothing category. We use 6,312 brands as seed
values. (Middle) Discovered brands from Men’s clothing
category, with 3,499 seed values used. (Right) Discov-
ered garment types (styles) from Men’s clothing category,
learned from 203 seed values.

test data (using exact string matching criterion). We
train a 5-class MaxEnt classifier and adopt the same
feature sets as described in Section 4.1.3. During
the test phase, the classifier predicts the most likely
brand attribute from each listing, where we are only
interested in the predictions with confidence scores
exceeding a set threshold. We ranked order the pre-
dicted brands by their confidence scores (probabil-
ities) and the top 300 unique brands are selected.
We manually verify the 300 predicted brands and
found that 90.33% of the predicted brands are indeed
names of designers or women’s apparel stores (true
positive), resulting a precision score of 90.33%.

Indeed, the precision score presented above is ob-
tained using an exact matching criterion where par-
tial extraction of a brand is regarded as a miss, i.e.
our extractor extracts only Calvin when Calvin Klein
is present in the listing (false positive). The left col-
umn of Table 3 shows examples of newly discovered
brands from Women’s clothing category. Many of
these newly discovered brands are indeed misspelled
versions of the known brands in the seed dictionary.

The middle column of Table 3 shows a set of
Men’s clothing brands learned automatically from a
similar experiment conducted on a set of 105, 335
listings from Men’s clothing category. Using an ini-

Seed list Test set 1 Test set 2
Orig. seeds 83.56% 90.02%

Orig. seed + 200 new brands 92.75% 93.66%

Table 4: NER Accuracy on 2 test sets as the seed dictio-
nary for brands grows. Results shown here are obtained
the same Men’s clothing category dataset, as used to show
the supervised NER results in Table 2.

tial set of 3, 499 known brand seeds, we partition
the dataset into a training set of 67, 307 listings and
a test set of 38, 028 listings (for later reference we
refer to this test set as set A). Based on the top 200
predicted brands, 179 of which are verified as being
true positive samples, resulting in 89.5% precision.
We carry out a similar experiment to grow the seed
dictionary for garment type, and are able to iden-
tify the top 60 new garment types. 54 out of 60 are
true positive samples, resulting in precision score =
90%. Examples of the newly discovered garment
types are shown in Table 3 (right column), where ab-
breviated forms of garment types such as jkt (short
for jacket) and pjs (short for pajamas) are also dis-
covered through our algorithm.

By adding these newly discovered attributes back
to the dictionary, we can now re-evaluate our super-
vised NER system from section 4 with the grown
seed list. To this end, we construct 2 test sets from
the same 105, 335 listings of Men’s clothing cate-
gory as used in Section 4. Test set 1 is a set of
500 listings randomly sampled from the 38, 028-
listing subset known not to contain any brands in
the original brand seed dictionary (set A). As seen
in Table 4, an improvement of 9% in accuracy re-
sults from the use of the grown seed list. Since
this dataset is known to not contain any brands from
the original brand seed dictionary, the addition of
200 new brands solely accounts for all the accuracy
boost. Test set 2 is constructed slightly differently
by randomly sampling 500 listings from the entire
105, 335 listings of Men’s clothing category. As
seen in Table 4, a smaller improvement of 3.7% is
observed.

6 Normalization

With the above described brand discovery algorithm,
the newly discovered brands from the test set can be
grouped into 2 categories — (i) misspelling, spelling1564



invariants, abbreviated forms of known brands in the
seed list or (ii) novel brands or clothing/shoes de-
signers, which are not members of the original seed
list. Normalizing the variants of a known brand to
a single normalized output value is an important as-
pect of our attribute extraction algorithm, as these
variants account for over 20% of listings in the eBay
clothing and shoes category. When gathering busi-
ness/marketing intelligence, missing out on 20% of
the data could skew the calculation of supply, de-
mand, and pricing metrics, and eventually lead to
the wrong policy decision made.

The problem of alternate spellings of names has
been addressed in the database community success-
fully using fuzzy string matching algorithms e.g.
Soundex or string edit distance. In this work, since
the attribute values are often partially extracted, i.e.
a word in a multi-word phrase is extracted, in or-
der to match to the correct normalized value, we
must investigate robust substring matching algo-
rithms suitable for partial matching. To this end,
we explore 2 string similarity/distance measures for
normalizing the extracted attributes. First, we in-
vestigate n-gram similarity measures defined as the
number of shared character n-grams, i.e. substrings
of length n (Kondrak 2005). More specifically, a
string similarity measure between s1 and s2 is de-
fined as the percentage of common substrings of
length n (out of all substrings of length n). This
similarity measure is quite robust to partial match-
ing, as a two-word phrase can appear out of order
while most of the character n-grams, where n = 3,
remain virtually unchanged. Certainly, finding the
right value of nwill greatly impact the matching per-
formance of the algorithm. In our experiment, we
find the optimal n for brands to be 3 and 4. Table 5
shows a few examples of normalized outputs as a re-
sult of finding the best match for the extracted brand
names from among a set of predefined normalized
values. When the best matching score falls below a
threshold, we declare no match is found and classify
the extracted brand as a new brand.

Another distance measure that we explore is the
Jaro-Winkler distance. Designed to be more suitable
for matching short strings such as people’s names,
Jaro-Winkler distance is defined based on the num-
ber of character transpositions and the number of
matching characters. In addition, a prefix scale p

Extracted brands Normalized values
river islands river island
fruit of loom fruit of the loom

fruit loom fruit of the loom
‘ralph lauren ralph lauren

mark & spencer marks & spencer
yvessaintlaurent yves saint laurent
yves st laurent yves saint laurent

combats combat
’kickers’ kickers
kickers kickers
armarni armani

abrecrombie abercrombie
life & limb NEW BRAND
oliver baker NEW BRAND

haines & bonner NEW BRAND
dehavilland NEW BRAND

nigel cabourn NEW BRAND

Table 5: Extracted brands and their corresponding nor-
malized values.

parameter is used and can be tuned to weigh more
favorably on strings that match from the beginning
for a set prefix length. In our experiments with brand
normalization, over 50% of the matches from the
Jaro-Winkler distance are, however, identified as be-
ing incorrect.

7 Conclusion

In this work, we have described an information ex-
traction system for applications in the domain of in-
ventory/business Intelligence. The goal is given an
eBay listing title, our system correctly extracts the
defining attributes in order to associate each item to
a specific product. We investigate and compare sev-
eral supervised NER systems — supervised HMM,
SVM, MaxEnt, and CRF — and found SVM and
MaxEnt with Viterbi decoding to yield the best per-
formance. Focusing on the clothing and shoes cat-
egories on eBay’s site, we presented a bootstrapped
algorithm that can identify new brand names corre-
sponding to (1) spelling invariants or typographical
errors of the known brands in the seed list and (2)
novel brands or designers. Our attribute extractor
correctly discovers new brands with over 90% pre-
cision on multiple corpora of listings. To output nor-
malized attribute values, we explore several fuzzy
string comparison algorithms and found n-gram sub-
string matching to work well in practice.1565
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Abstract 

With the recent rise in popularity and scale 
of social media, a growing need exists for 
systems that can extract useful information 
from huge amounts of data. We address the 
issue of detecting influenza epidemics. 
First, the proposed system extracts influen-
za related tweets using Twitter API. Then, 
only tweets that mention actual influenza 
patients are extracted by the support vector 
machine (SVM) based classifier. The ex-
periment results demonstrate the feasibility 
of the proposed approach (0.89 correlation 
to the gold standard). Especially at the out-
break and early spread (early epidemic 
stage), the proposed method shows high 
correlation (0.97 correlation), which out-
performs the state-of-the-art methods. This 
paper describes that Twitter texts reflect 
the real world, and that NLP techniques 
can be applied to extract only tweets that 
contain useful information. 

1 Introduction 

Twitter1, a popular micro-blogging service, has 
received much attention recently. It is an online 
network used by millions of people around the 
world to stay connected to their friends, family 
members, and co-workers through their computers 
and mobile telephones (Milstein et al., 2010). 

Nowadays, Twitter users have increased rapidly. 
Its community estimated as 120 million worldwide, 
                                                             
1 http://twitter.com/ 

posts more than 5.5 million messages (tweets) eve-
ry day (reported by Twitter.com in March 2011). 
Twitter can potentially serve as a valuable infor-
mation resource for various applications. Huber-
man et al. (2009) analyzed the relations among 
friends. Boyd et al. (2010) investigated commuta-
tion activity. Sakaki et al. (2010) addressed the 
detection of earthquakes. Among the numerous 
potential applications, this study addresses the is-
sue of detecting influenza epidemics, which pre-
sents two outstanding advantages over current 
methods. 
 
 Large Scale: More than a thousand messages 

include the word “influenza” each day (Nov. 
2008 – Oct. 2009). Such a huge data volume 
dwarfs traditional surveillance resources. 
 

 Real-time: Twitter enables real-time and di-
rect surveillance. This characteristic is ex-
tremely suitable for influenza epidemic 
detection because early stage detection is im-
portant for influenza warnings. 
 

Although Twitter based influenza warnings poten-
tially offer the advantages noted above, it might 
also expose inaccurate or biased information from 
tweets like the following (brackets []	
   indicate the 
comments): 
 

 Headache? You might have flu. [Suspi-­‐
cions]	
  

 The World Health Organization reports 
the avian influenza, or bird flu, epidemic 
has spread to nine Asian countries in the 
past few weeks. [General	
  News] 
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 Are you coming down with influenza? 
[Question] 

 
Although these tweets include mention of “influ-
enza” or “flu”, they do not indicate that an influen-
za patient is present nearby. We regard such 
messages (merely suspicions/questions, general 
news, etc.) as negative influenza tweets. We call 
others positive influenza tweets. In our experi-
ments, 42% of all tweets that include “influenza” 
are negative influenza tweets. The huge volume of 
such negative tweets biases the results. 

This paper presents a proposal of a machine-
learning based classifier to filter out negative in-
fluenza tweets. First, we build an annotated corpus 
of pairs of a tweet and positive/negative labels. 
Then, a support vector machine (SVM) (Cortes and 
Vapnik, 1995) based sentence classifier extracts 
only positive influenza tweets from tweets. In the 
experiments, the results demonstrated the high cor-
relation (0.89 of the correlation), which is equal 
performance to that of the state-of-the-art method. 
 
The specified research point of this study is two-
fold: 
(1) This report describes that an SVM-based clas-

sifier can filter out the negative influenza 
tweets (f-measure=0.76). 

(2) Experiments empirically demonstrate that the 
proposed method detects the influenza epidem-
ics with high accuracy (correlation ratio=0.89): 
it outperforms the state-of-the-art method. 

2 Influenza Epidemic Detection 

The detection of influenza epidemics is a national 
mission in every country for two reasons. 

(1) Anti-influenza drugs, which differ among in-
fluenza types, must be prepared before the epi-
demics. 

(2) We can only slightly predict what type of in-
fluenza will spread in any given season. 
 

This situation naturally demands the early detec-
tion of influenza epidemics. This section presents a 
description of previous methods of influenza epi-
demic detection. 

2.1 Traditional Approaches 

Most countries have their own influenza surveil-
lance organization/center: the U.S. has the Centers 

for Disease Control and Prevention (CDC)2, the 
E.U. has its European Influenza Surveillance 
Scheme (EISS), and Japan has its Infection Disease 
Surveillance Center (IDSC). Their surveillance 
systems fundamentally rely on both virology and 
clinical data. For example, the IDSC gathers influ-
enza patient data from 5,000 clinics and releases 
summary reports. Such manual systems typically 
have a 1–2 week reporting lag. This time lag is 
sometimes pointed out as a major flaw. 

2.2 Recent Approaches 

In an attempt to provide earlier influenza detection, 
various new approaches are proposed each year. 

Espino et al. (2003) described a telephone triage 
service, a public service, to give advice to users via 
telephone. They investigated the number of tele-
phone calls and reported a significant correlation 
with influenza epidemics. 

Magruder (2003) used the amount of over-the-
counter drug sales. Because an influenza patient 
usually requires anti-influenza drugs, this approach 
is reasonable. However, in most countries, anti-
influenza drugs are not available at the drug store 
(only hospitals provide such drugs). 

The state-of-the-art approach is that proposed by 
Ginsberg et al. (2009). They used Google web 
search queries that correlate with an influenza epi-
demic. Their approach demonstrated high accuracy 
(average correlation ratio of 0.97; min=0.92; 
max=0.99)3. Several research groups have used 
similar approaches. Polgreen et al. (2008) used a 
Yahoo! query log. Hulth et al. (2009) used a query 
log of a Switzerland web search engine.  

Although the above approaches use different in-
formation, they share the same approach, which is 
to observe patient actions directly. This approach 
was sufficient to obtain more numerous data than 
traditional services. Nevertheless, such information 
is unfortunately limited only to the service pro-
vider. For example, web search queries are avail-
able only for several companies: Google, Yahoo!, 
and Microsoft. 

This paper examines Twitter data, which are 
widely available. Note that Paul and Dredze (2011) 
also propose a similar Twitter based approach. 
While they focus on a word distribution, this paper 

                                                             
2 http://www.cdc.gov/flu/weekly/ 
3 Their service is available at http://www.google.org/flutrends/ 
(Google Flu Trend). 
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employs a sentence classification (discrimination 
of negative influenza tweets). 

3 Influenza Corpus 

As described in Section 1, it is necessary to filter 
out negative influenza tweets to infer precise 
amounts of influenza epidemics. To do so, we con-
structed the influenza corpus (Section 3). Then, we 
trained the SVM-based classifier using the corpus 
(Section 4). 

The corpus comprises pairs of sentences and a 
label (positive or negative). Several examples are 
presented in Table 1. This corpus was built using 
the following procedure. 

3.1 Influenza Tweet  

First, we collected 300 million tweets, starting 
from 2008 November to 2010 June, via Twitter 
API. Crawling results are presented in Figure 1. 
We extracted only influenza-related tweets using a 
simple word look-up of “influenza”. This operation 
gave us 0.4 million tweets. We separated the data 
into two data groups. 

Training Data are 5,000 tweets sent in Novem-
ber 2008. These were annotated by human annota-
tors, and were then used for training. 

Test Data are the other data. They were used in 
experiments of influenza epidemics detection. Be-
cause of the three dropout periods (Figure 1), the 
test data were separated into four periods (winter 
2008, summer 2009, winter 2009, and summer 
2010). 

3.2 Positive–negative Annotation 

To each tweet in the training dataset, a human an-
notator assigned one of two labels: positive or neg-
ative. In this labeling procedure, we regarded a 
tweet that meets the following two conditions as 
positive data. 
 
 
Condition 1 (A Tweet person or Surrounding 
persons have Flu): one or more people who have 
influenza should exist around the tweet person. 
Here, we regard “around” as a distance in the same 
city. In cases in which the distance is unknown, we 
regard it as negative. Because of this annotation 
policy, the re-tweet type message is negative. 
 
 

 
Figure 1: Twitter Data used in this Study. 

The data include three dropout periods because the Twitter API 
specifications changed in those periods. The dropout periods 
were removed from evaluation in the experiments (Section 5). 
 
Table 1: Corpus (Tweets with a Positive or Nega-
tive Label) 
Positive(+1)/	
  
Negative(-­‐1)	
  

Tweet	
  

+1	
   A	
  bad	
  	
  influenza	
  is	
  going	
  around	
  in	
  our	
  lab.	
  
+1	
   I	
  caught	
  the	
  flu.	
  I	
  was	
  burning	
  up.	
  
+1	
   I	
  think	
  	
  I'm	
  coming	
  down	
  with	
  the	
  flu.	
  
+1	
   It's	
  the	
  flu	
  season.	
  I	
  had	
  it	
  and	
  now	
  he	
  do	
  es.	
  
+1	
   Don't	
  give	
  me	
  the	
  flu.	
  

(Nearby	
  people	
  have	
  the	
  flu)	
  
+1	
   My	
  flu	
  is	
  worse	
  than	
  it	
  was	
  yesterday.	
  
-­‐1	
   In	
  the	
  normal	
  flu	
  season,	
  80	
  percent	
  of	
  deaths	
  

occur	
  in	
  people	
  over	
  65	
  
(Simply	
  a	
  fact)	
  

-­‐1	
   Influenza	
  is	
  now	
  raging	
  throughout	
  Japan.	
  
(Too	
  general.)	
  

-­‐1	
   His	
  wife	
  also	
  contracted	
  the	
  bird	
  flu,	
  but	
  has	
  
recovered.	
  
(Where	
  is	
  his	
  wife?)	
  

-­‐1	
   You	
  might	
  have	
  the	
  flu.	
  Has	
  anyone	
  around	
  
you	
  had	
  it?	
  
(Where	
  are	
  you?)	
  

-­‐1	
   Bird	
  flu	
  damage	
  is	
  spreading	
  in	
  Japan.	
  
(Too	
  general.)	
  

“+1” indicates a positive influenza tweet. “-1” indicates a 
negative influenza tweet. The case arc “()” indicates the rea-
son for the positive or negative annotation. 
 
 

 
Figure 2: Feature Representation. 

The word boundary is detected by a morph analyzer JUMAN4. 
 

                                                             
4 http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman.html 
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Condition 2 (Tense/Modality): The tense should 
be the present tense (current) or recent past. Here, 
we define the “recent past” as the prior 24 hour 
period (such as “yesterday”). The sentence should 
be affirmative (not interrogative and not subjunc-
tive). 

4 Influenza Positive–negative Classifier 

Using the corpus (Section 3), we built a classifier 
that judges whether a given tweet is positive or 
negative. This task setting is similar to a sentence 
classification (such as spam e-mail filtering, senti-
ment analysis, and so on). We used a popular 
means for sentence classification, which is based 
on a machine learning classifier under the bag-of-
words (BOW) representation (Figure 2). The 
parameters were investigated in preliminary ex-
periments in terms of feature window size (Section 
4.1) and machine-learning methods (Section 4.2). 
These preliminary experiments were conducted 
under the ten-fold cross variation manner using the 
training set. 

4.1 Feature (window size) 

Performance was dependent on the window size 
(the number of left/right side words). Figure 3 de-
picts the performance obtained using various win-
dow sizes. The best performance was scored at the 
BOTH=6 setting. Therefore, this window size was 
used for the following experiments. These results 
also indicated that entire sentences (BOTH=∞) are 
unsuitable for this task. 

4.2 Machine Learning Method 

We compared various machine-learning methods 
from two points of view: accuracy and time. The 
result, presented in Table 2, shows that SVM with 
a polynomial kernel showed feasibility from both 
viewpoints of accuracy and the training time. 

5 Experiments 

We assessed the detection performance using actu-
al influenza reports provided by the Japanese IDSC. 

5.1 Comparable Methods 

We compared the various methods as follows: 
 
 
 

 

 
Figure 3: Window size and Accuracy (F-measure). 
RIGHT shows a method used only the right context. LEFT 
shows a method used only the left context. BOTH represents a 
method using both the right and left context. The number 
shows the window size. ∞ uses all words in each context di-
rection. 
 
 

Classifier	
   F-­‐
Measure	
  

Training	
  
Time	
  (sec)	
  

AdaBoost	
  	
  (Freund	
  1996)	
   0.592	
   40.192	
  
Bagging	
  	
  (Breiman	
  1996)	
   0.739	
   	
  30.310	
  

Decision	
  Tree	
  (Quinlan1993)	
   0.698	
   239.446	
  
Logistic	
  Regression	
   0.729	
   696.704	
  

Naive	
  Bayes	
   0.	
  741	
   7.383	
  
Nearest	
  Neighbor	
   0.695	
   22.441	
  

Random	
  Forest	
  (Breiman	
  2001)	
   0.729	
   38.683	
  
SVM	
  (RBF	
  kernel)	
  	
  

(Cortes	
  and	
  Vapnik	
  1995)	
  
0.738	
   92.723	
  

SVM	
  (polynomial	
  kernel;	
  d=2)	
   0.756	
   13.256	
  

Table 2: Machine Learning Methods and Perform-
ance (F-measure and Training Time) 
 
 
 
 TWEET-SVM: The proposed SVM-based 

method (window size = 6). 
 TWEET-RAW: A simple frequency-based 

method. This approach outputs the relative 
frequency of word “influenza” appearing in 
Twitter. 

 DRUG: The amounts of drug sales (sales of 
cold medicines). Statistics are provided by 
the Japanese Ministry of Health, Labor and 
Welfare. 

 GOOGLE: Google flu trend detection (Japane-
se version). This method uses a query log of 
the Google search engine (Ginsberg et al., 
2009)5. 

                                                             
5 http://www.google.org/flutrends/ 
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5.2 Gold Standard and Test-Set 

For gold standard data, we used data that are de-
scribed in Section 2, as reported from IDSC. The 
report is released once a week. Therefore, the 
evaluation is done on a weekly basis. 

We split the data into four seasons as follows: 
 Season I: winter 2008, 
 Season II: summer 2009, 
 Season III: winter 2009, 
 Season IV: summer 2010. 

 
To investigate further detailed evaluations, we split 
the winters into two sub-seasons: before the peak 
and after the peak. We regard the peak point as 
the day with the highest number in that season. The 
statistics derived from the data are presented in 
Table 3. 
 
Excessive News Period: In our experimental data, 
Season II and the earlier peak of Season III are 
special periods because news related to swine flu 
(H1N1 flu) is extremely hot in those seasons (Fig. 
4). This paper calls them Excessive News Periods. 
We also investigated the results with and without 
the excessive news period. 
 

 
Figure 4: A CNN news on “swine flu” in June 
2009 (Season II in our experiment). 
Experimental data include such excessive news peri-
ods. 
 

5.3 Evaluation Metric 

The evaluation metric is based on correlation 
(Pearson correlation) between the gold standard 
value and the estimated value. 

5.4 Result 

The results are presented in Table 4. In the non-
excessive news period, the proposed method 
achieved the highest performance (0.890 correla-
tion). This correlation is considerably higher than 
the query-based approach (GOOGLE), demonstrat-
ing the basic feasibility of the proposed approach. 
However, during the excessive news periods, the 
proposed method suffers from an avalanche of 
news, generating a news bias. This phenomenon is 
a remaining problem to be resolved in future stud-
ies. 
 

6 Discussion 

6.1 SVM-based Negative Filtering contributes 
to Performance 

In most seasons, the proposed SVM approach 
(TWEET-SVM) shows higher correlation than the 
simple word lookup method (TWEET-RAW). The 
average improvement is 0.196 (max 0.56; min-
0.009), which significantly boosts the correlation. 
This result demonstrates the basic feasibility of the 
proposed approach. In the future, more advantages 
attributable to the proposed approach can be ob-
tained if the classification performance improves. 

6.2 All Methods Suffer from News Bias in 
Excessive News Period 

All methods expose the poor performance that pre-
vails during the excessive news period (from Sea-
son II to Season III before the peak). Especially, 
tweet-based methods show dramatically reduced 
correlation, which indicates that Twitter is vulner-
able to newswire bias. 

One reason for that vulnerability is that Twitter 
is a kind of communication tool by which a tweet 
affects other people. Consequently, the possibility 
exists that a few tweets related to “flu” might 
spread widely, generating an explosive burst of 
influenza-related tweets. Future studies must ad-
dress this burst phenomenon. 
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6.3 Tweets have Advantages in Early Stage 
Detection 

From practical viewpoints, the most important task 
is to detect influenza epidemics before the peak 
(early stage detection). Consequently, the correla-
tion of the two seasons, Season I before the peak 
and Season III before the peak, presents the practi-
cal performance. Figure 5 portrays detailed results 
of all methods. 

In Season I before the peak (Figure 5 Left), the 
proposed method (TWEET-SVM) shows the best 
performance among all methods. 

In Season II before the peak (Figure 5 Right), 
all methods including the proposed method showed 
poor correlation because they are included in the 
excessive news periods. During that season, the 
newswires heavily reported the swine flu twice 
(April 2009 and May 2009). Because of this news, 
we can see two peaks in Twitter-based methods 
(TWEET-SVM and TWEET-RAW), which indi-
cates that Twitter is more sensitive to the news-
wires. 

 
 

 

Table 3: Test-set Tracks and the number of data points (=weeks). 
The number in the bracket indicates the statistical significance level. 

 
 

	
   TWEET-RAW TWEET-SVM 
(Proposed 
Method) 

DRUG GOOGLE 

Excessive	
  news	
  period	
  	
   0.001	
   0.060	
   0.844	
   0.918	
  

Non-­‐ excessive	
  news	
  period	
   0.831	
   0.890	
   0.308	
   0.847	
  

	
  	
   0.683	
   0.816	
   -­‐0.208	
   0.817	
  

Before	
  peak	
   0.914	
   0.974	
   -­‐0.155	
   0.962	
  

	
  
	
  

Season	
  I	
  
After	
  peak	
   0.952	
   0.955	
   0.557	
   0.959	
  

Season	
  II	
  	
   -­‐0.009	
   -­‐0.018	
   0.406	
   0.232	
  

	
   0.382	
   0.474	
   0.684	
   0.881	
  

Before	
  peak	
   0.390	
   0.474	
   0.919	
   0.924	
  

	
  
	
  

Season	
  III	
  
After	
  peak	
   0.960	
   0.944	
   0.364	
   0.936	
  

Season	
  IV	
   0.391	
   0.957	
   0.130	
   0.976	
  

Table 4: Results (Correlation Ratio). 
The number in bold indicates the significance correlation (p=0.05). The number with underline indicates the highest value in each 
season. 
 
 

All	
  Season	
  
79	
  weeks	
  	
  (0.221)	
  

Season	
  I	
  
	
  

2008/11/9	
  -­‐	
  2009/4/5	
  

Season	
  II	
  
	
  

2009/4/12	
  -­‐	
  	
  
2009/7/5	
  

Season	
  III	
  
	
  

2009/7/12	
  -­‐	
  2010/2/14	
  

Season	
  IV	
  
	
  

2010/2/21	
  -­‐	
  
2010/7/4	
  

22	
  weeks	
  	
  (0.423)	
   26	
  	
  weeks	
  (0.388)	
  
Before	
  peak	
  

2008/11/9-­‐2009/1/25	
  
After	
  peak	
  

2009/2/1-­‐2009/4/5	
  
Before	
  peak	
  

2009/7/12-­‐2009/11/29	
  
After	
  peak	
  

2009/12/6-­‐2010/2/14	
  

12weeks	
  (0.576)	
   10	
  weeks	
  
(0.632)	
  

	
  
13	
  weeks	
  
(0.553)	
  

15	
  weeks	
  
(0.514)	
  

11	
  weeks	
  
(0.602)	
  

	
  
18	
  weeks	
  
(0.468)	
  

Non-­‐excessive	
  news	
  period	
  	
  
	
  

Excessive	
  news	
  period	
  	
   Non-­‐excessive	
  news	
  period	
  	
  

1573



 

 

6.4 Human Action is Sensitive before Epi-
demics 

Figure 6 presents the distribution between the de-
tected values (using GOOGLE and using TWEET-
SVM) and the gold standard value (before the peak 
is shown by “+”; that after the peak is shown as “-
”). Although the detected values fundamentally 
correlate with the gold standard, we can see differ-
ent sensitivity before and after peak (The distribu-
tion before peak “+” is a higher value than after 
peak “-”.). 

 Results show that human action, a web search 
(GOOGLE) and a tweet (TWEET-SVM), highly cor-
responds to the real influenza before the epidemic 
peaks, and vice versa. More acute detection is pos-
sible if we incorporate a model considering this 
aspect of human nature. 

7 Related Works 

The core technology of the proposed method is to 
classify whether the event is positive or negative. 
This task is similar to negation identification, 
which is a traditional topic, especially in medical 
fields. Therefore, we can find many previous stud-
ies of the topic in the relevant literature. An algo-
rithm based approach, NegEx (Chapman et al., 
2001), Negfinder (Mutalik et al., 2001), and Con-
Text (Chapman et al., 2007), a machine learning 
based approach (Elkin et al., 2005; Huang and H.J. 
Lowe, 2007). 
 
 
 
 

 
 
 
 
 
 

 
Figure 5: Predicted Values in Season I (Left) and Season II (Right): 

the X-axis shows the date; the Y-axis shows the relative predicted value using each method. 
 
 

 

       
Figure 6:  Patient Actions (Web Search Query and Tweet) is Sensitive before the Epidemic Peaks. 

Distribution between the gold standard and Detected Values (Search Engine Query (Left) and Tweet (Right)):  “+” denotes the 
distribution before the peak; “-” denotes the distribution after the peak. 
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 Previous	
  

Negation	
  
	
  
(Syntactic)	
  

This	
  study:	
  
Negative	
  
Influenza	
  
(Semantic)	
  

I	
  caught	
  a	
  flu.	
  
 

Positive	
  
sentence	
  

Positive	
  
Influenza 

I	
  don’t	
  have	
  the	
  flu!	
  
 

Negative	
  
sentence	
  

Negative	
  
Influenza 

I	
  have	
  enough	
  flu	
  drugs.	
   Positive	
  
sentence	
  

Negative	
  
Influenza 

I	
  have	
  not	
  recovered	
  from	
  
the	
  flu. 

Negative	
  
sentence 

Positive	
  
Influenza 

Table 5: Our target influenza negation (semantic) 
and previous negation (syntactic) 
 
 

Although these approaches specifically examine 
the syntactic negation, this study detects the nega-
tive influenza, which is a specified semantic nega-
tion. Table 5 presents the difference between both 
negations. In general, the semantic operation is 
difficult in general. However, this paper revealed 
that the domain (influenza domain) specific seman-
tic operation provides reasonable results. 

Another aspect of this study is the target mate-
rial, Twitter data, which have drawn much atten-
tion. Twitter can provide suitable material for 
many applications such as named entity recogni-
tion (NER) (Finin et al., 2010) and sentiment 
analysis (Barbosa and Feng, 2010). Although these 
studies specifically examine the fundamental NLP 
techniques, this study directly targets an NLP ap-
plication that can contribute to our daily life. 

8 Conclusion 

This paper proposed a new Twitter-based influenza 
epidemics detection method, which relies on the  
Natural Language Processing (NLP). Our proposed 
method could successfully filter out the negative 
influenza tweets (f-measure=0.76), which are post-
ed by the ones who did not actually catch the influ-
enza. The experiments with the test data 
empirically demonstrate that the proposed method 
detects influenza epidemics with high correlation 
(correlation ratio=0.89), which outperforms the 
state-of-the-art Google method. This result shows 
that Twitter texts precisely reflect the real world, 
and that the NLP technique can extract the useful 
information from Twitter streams. 

 

 
Figure 7:  An influenza severance system “INFLU 
kun” using the proposed method is available at 
http://mednlp.jp/influ/. 
 

 
Figure 8: The Timeline of Influenza Epidemics in 
Fukushima. While the Infection Disease Surveil-
lance Center (IDSC) sometimes stops (gold stan-
dard) due to the Great East Japan Earthquake, the 
proposed system could continue to work (Our Sys-
tem). 
 
Available Resources 
Corpus: The corpus of this study is provided at the 
http://mednlp.jp/~aramaki/KAZEMIRU/. 
Web System: The web service is also released at 
http://mednlp.jp/influ/ (Figure 7 and Figure 8).  
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Abstract

It is popular for users in Web 2.0 era to
freely annotate online resources with tags.
To ease the annotation process, it has been
great interest in automatic tag suggestion. We
propose a method to suggest tags according to
the text description of a resource. By consid-
ering both the description and tags of a given
resource as summaries to the resource written
in two languages, we adopt word alignment
models in statistical machine translation to
bridge theirvocabulary gap. Based on the
translation probabilities between the words in
descriptions and the tags estimated on a large
set of description-tags pairs, we build a word
trigger method (WTM) to suggest tags accord-
ing to the words in a resource description.
Experiments on real world datasets show that
WTM is effective and robust compared with
other methods. Moreover, WTM is relatively
simple and efficient, which is practical for
Web applications.

1 Introduction

In Web 2.0, Web users often use tags to collect and
share online resources such as Web pages, photos,
videos, movies and books. Table 1 shows a book
entry annotated with multiple tags by users1. On
the top of Table 1 we list the title and a short
introduction of the novel “The Count of Monte
Cristo”. The bottom half of Table 1 shows the
annotated tags, each of which is followed by a
number in bracket, the total number of users who

1The original record is obtained from the book review
website Douban (www.douban.com) in Chinese. Here we
translate it to English for comprehension.

use the tag to annotate this book. Since the tags of
a resource are annotated collaboratively by multiple
users, we also name these tags associal tags. For
a resource, we refer to the additional information,
such as the title and introduction of a book, as
description, and the user-annotated social tags as
annotation.

Description
Title: The Count of Monte Cristo
Intro: The Count of Monte Cristois one of the most
popular fictions by Alexandre Dumas. The writing of
the work was completed in 1844. ...
Annotation
Dumas (2748), Count of Monte Cristo (2716), foreign
literature (1813), novel (1345), France (1096), classic
(1062), revenge (913), famous book (759), ...

Table 1: An example of social tagging. The number
in the bracket after each tag is the total count of users
that annotate the tag on this book.

Social tags concisely indicate the main content
of the given resource, and potentially reflect user
interests. Social tagging has thus been widely
studied and successfully applied in recommender
systems (Eck et al., 2007; Yanbe et al., 2007; Zhou
et al., 2010), trend detection and tracking (Hotho
et al., 2006), personalization (Wetzker et al., 2010),
advertising (Mirizzi et al., 2010), etc.

The task of automatic social tag suggestion is
to automatically recommend tags for a user when
he/she wants to annotate a resource. Social tag
suggestion, as a crucial component for social tag-
ging systems, can help users annotate resources.
Moreover, social tag suggestion is usually consid-
ered as an equivalent problem to modeling social
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tagging behaviors, which is playing a more and more
important role in social computing and information
retrieval (Wang et al., 2007).

Most online resources contain descriptions, which
usually contain much resource information. For
example, on a book review website, each book entry
contains a title, the author(s) and an introduction
of the book. Some researchers thus propose
to automatically suggest tags based on resource
descriptions, which are collectively known as the
content-based approach.

One may think to suggest tags by selecting
important words from descriptions. This is far from
enough because descriptions and annotations are
using diverse vocabularies, usually referred to as a
vocabulary gapproblem. Take the book entry in
Table 1 for instance, the word “popular” used in the
description contrasts the tags “classic” and “famous
book” in the annotation; the word “novel” is used in
the description, while most users annotate with the
tag “fiction”. The vocabulary gap usually reflects in
two main issues:

• Some tags in the annotation do appear in the
corresponding description, but they may not be
statistically significant.

• Some tags may even not appear in the descrip-
tion.

It is not trivial to reduce the vocabulary gap and
find the semantic correspondence between descrip-
tions and annotations. By regarding both the de-
scription and the annotation asparallel summaries
of a resource, we use word alignment models in
statistical machine translation (SMT) (Brown et
al., 1993) to estimate the translation probabilities
between the words in descriptions and annotations.
SMT has been successfully applied in many ap-
plications to bridge vocabulary gap. For detailed
descriptions of related work, readers can refer to
Section 2.2. In this paper, besides employing word
alignment models to social tagging, we also propose
a method to efficiently build description-annotation
pairs for sufficient learning translation probabilities
by word alignment models.

Based on the learned translation probabilities
between words in descriptions and annotations,

we regard the tagging behavior as a word trigger
process:

1. A user reads the resource description to realize
its substance by seeing some important words
in the description.

2. Triggered by these important words, the user
translates them into the corresponding tags, and
annotates the resource with these tags.

Based on this perspective, we build a simple word
trigger method (WTM) for social tag suggestion. In
Fig. 1, we use a simple example to show the basic
idea of using word trigger for social tag suggestion.
In this figure, some words in the first sentence of the
book description in Table 1 are triggered to the tags
in annotation.

Figure 1: An example of the word trigger method
for suggesting tags given a description.

2 Related Work

2.1 Social Tag Suggestion

Previous work has been proposed to automatic
social tag suggestion.

Many researchers built tag suggestion systems
based oncollaborative filtering(CF) (Herlocker et
al., 1999; Herlocker et al., 2004), a widely used
technique in recommender systems (Resnick and
Varian, 1997). These collaboration-based methods
typically base their suggestions on the tagging
history of the given resource and user, without con-
sidering resource descriptions. FolkRank (Jaschke
et al., 2008) and Matrix Factorization (Rendle et al.,
2009) are representative CF methods for social tag
suggestion. Most of these methods suffer from the
cold-start problem, i.e., they are not able to perform
effective suggestions for resources that no one has
annotated yet.

The content-based approach for social tag sug-
gestion remedies the cold-start problem of the
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collaboration-based approachby suggesting tags
according to resource descriptions. Therefore, the
content-based approach plays an important role in
social tag suggestion.

Some researchers regarded social tag suggestion
as a classification problem by considering each tag
as a category label (Ohkura et al., 2006; Mishne,
2006; Lee and Chun, 2007; Katakis et al., 2008;
Fujimura et al., 2008; Heymann et al., 2008).
Various classifiers such as Naive Bayes,kNN, SVM
and neural networks have been explored to solve the
social tag suggestion problem.

There are two issues emerging from the
classification-based methods:

• The annotations provided by users are noisy,
and the classification-based methods can not
handle the issue well.

• The training cost and classification cost of
many classification-based methods are usually
in proportion to the number of classification
labels. These methods may thus be inefficient
for a real-world social tagging system, where
hundreds of thousands of unique tags should be
considered as classification labels.

Inspired by the popularity of latent topic models
such as Latent Dirichlet Allocation (LDA) (Blei et
al., 2003), various methods have been proposed to
model tags using generative latent topic models.
One intuitive approach is assuming that both tags
and words are generated from the same set of latent
topics. By representing both tags and descriptions
as the distributions of latent topics, this approach
suggests tags according to their likelihood given
the description (Krestel et al., 2009; Si and Sun,
2009). Bundschus et al. (2009) proposed a joint
latent topic model of users, words and tags. Iwata
et al. (2009) proposed an LDA-based topic model,
Content Relevance Model (CRM), which aimed at
finding the content-related tags for suggestion. Em-
pirical experiments showed that CRM outperformed
both classification methods and Corr-LDA (Blei and
Jordan, 2003), a generative topic model for contents
and annotations.

Most latent topic models have to pre-specify the
number of topics before training. We can either use
cross validation to determine the optimal number

of topics or employ the infinite topic models, such
as Hierarchical Dirichlet Process (HDP) (Teh et al.,
2006) and nested Chinese Restaurant Process (Blei
et al., 2010), to automatically adjust the number
of topics during training. Both solutions are
usually computationally complicated. What is more
important, topic-based methods suggest tags by
measuring the topical relevance of tags and resource
descriptions. The latent topics are of concept-level
which are usually too general to precisely suggest
those specific tags such as named entities, e.g.,
the tags “Dumas” and “Count of Monte Cristo” in
Table 1. To remedy the problem, Si et al. (2010)
proposed a generative model, Tag Allocation Model
(TAM), which considers the words in descriptions
as the possible topics to generate tags. However,
TAM assumes each tag can only have at most one
word as its reason. This is against the fact that a tag
may be annotated triggered by multiple words in the
description.

It should also be noted that social tag suggestion is
different from automatic keyphrase extraction (Tur-
ney, 2000; Frank et al., 1999; Liu et al., 2009a; Liu
et al., 2010b; Liu et al., 2011). Keyphrase extraction
aims at selecting terms from the given document
to represent the main topics of the document. On
the contrary, in social tag suggestion, the suggested
tags do not necessarily appear in the given resource
description. We can thus regard social tag sugges-
tion as a task of selecting appropriate tags from
a controlled tag vocabulary for the given resource
description.

2.2 Applications of SMT

SMT techniques have been successfully used in
many tasks of information retrieval and natural
language processing to bridge the vocabulary gap
between two types of objects. Some typical tasks are
document information retrieval (Berger and Laffer-
ty, 1999; Murdock and Croft, 2004; Karimzadehgan
and Zhai, 2010), question answering (Berger et al.,
2000; Echihabi and Marcu, 2003; Soricut and Brill,
2006; Riezler et al., 2007; Surdeanu et al., 2008;
Xue et al., 2008), query expansions (Riezler et al.,
2007; Riezler et al., 2008; Riezler and Liu, 2010),
paraphrasing (Quirk et al., 2004; Zhao et al., 2010a;
Zhao et al., 2010b), summarization (Banko et al.,
2000), collocation extraction (Liu et al., 2009b;
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Liu et al., 2010c), keyphrase extraction (Liu et
al., 2011), sentiment analysis (Dalvi et al., 2009),
computational advertising (Ravi et al., 2010), and
image/video annotation and retrieval (Duygulu et
al., 2002; Jeon et al., 2003).

3 Word Trigger Method for Social Tag
Suggestion

3.1 Method Framework

We describe the word trigger method (WTM) for
social tag suggestion as a3-stage process:

1. Preparing description-annotation pairs.
Given a collection of annotated resources, we first
prepare description-annotation pairs for learning
translation probabilities using word alignment mod-
els.

2. Learning a translation model. Given a
collection of description-annotation pairs, we adopt
IBM Model-1, a widely used word alignment model,
to learn the translation probabilities between words
in descriptions and tags in annotations.

3. Suggesting tags given a resource description.
After building translation probabilities between
words and tags, given a resource description, we
first compute the trigger power of each word in the
description and then suggest tags according to their
translation probabilities from the triggered words.

Before introducing the method in details, we
introduce the notations. In a social tagging system,
a resource is denoted asr ∈ R, whereR is the set of
all resources. Each resource contains a description
and an annotation containing a set of tags. The
descriptiondr of resourcer can be regarded as a bag
of wordswr = {(wi, ei)}Nr

i=1, whereei is the count
of word wi andNr is the number of unique words
in r. The annotationar of resourcer is represented
astr = {(ti, ei)}Mr

i=1, whereei is the count of tagti
andMr is the number of unique tags forr.

3.2 Preparing Description-Annotation Pairs

Learning translation probabilities requires a parallel
training dataset consisting of a number of aligned
sentence pairs. We assume the description and the
annotation of a resource as being written in two
distinct languages. We thus prepare our parallel
training dataset by pairing descriptions with anno-
tations.

The annotation of a resource is a bag of tags with
no position information. We thus select IBM Model-
1 (Brown et al., 1993) for training, which does not
take word position information into account on both
sides for each aligned pair.

In a social tagging system, the length of a
resource description is usually limited to hundreds
of words. Meanwhile, it is common that some
popular resources are annotated by multiple users
with thousands of tags. For example, the tag
Dumas is annotated by2, 748 users for the book
in Table 1. We have to deal with the length-
unbalance between a resource description and its
corresponding annotation for two reasons.

• It is impossible to list all annotated tags on
the annotation side of a description-annotation
pair. The performance of word alignment
models will also suffer from the unbalanced
length of sentence pairs in the parallel training
data set (Och and Ney, 2003).

• Moreover, the annotated tags may have differ-
ent importance for the resource. It would be
unfair to treat these tags without distinction.

Here we propose a sampling method to pre-
pare length-balanced description-annotation pairs
for word alignment. The basic idea is to sample
a bag of tags from the annotation according to tag
weights and make the generated bag of tags with
comparable length with the description.

We consider two parameters when sampling tags.
First, we have to select atag weighting type for
sampling. In this paper, we investigate two straight-
forward sampling types, including tag frequen-
cy (TFt) within the annotation and tag-frequency
inverse-resource-frequency (TF-IRFt). Given re-
sourcer, TFt and TF-IRFt of tag t are defined
as TFt = et/

∑
t et and TF-IRFt = et/

∑
t et ×

log
(
|R|/| ∑r∈R Iet>0|

)
, where | ∑r∈R Iet>0| in-

dicates the number of resources that have been
annotated with tagt.

Another parameter is thelength ratio between the
description and the sampled annotation. We denote
the ratio asδ = |wr|/|tr|, where|wr| is the number
of words in the description and|tr| is the number of
tags in the annotation.
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3.3 Learning Translation Probabilities Using
Word Alignment Models

Suppose the source language is resource description
and the target language is resource annotation.
In IBM Model-1, the relationship of the source
languagew = wJ

1 and the target languaget = tI1
is connected via a hidden variable describing an
alignment mapping from source positionj to target
positionaj :

Pr(wJ
1 |tI1) =

∑

aJ
1

Pr(wJ
1 , aJ

1 |tI1). (1)

The alignmentaJ
1 also contains empty-word align-

mentsaj = 0 which align source words to the
an empty word. IBM Model-1 can be trained
using Expectation-Maximization (EM) algorithm in
an unsupervised fashion, and obtains the translation
probabilities of two vocabularies, i.e.,Pr(w|t),
wheret is a tag andw is a word.

IBM Model-1 only produces one-to-many align-
ments from source language to target language.
The learned model is thus asymmetric. We will
learn translation models on two directions: one is
regarding descriptions as the source language and
annotations as the target language, and the other is
in reverse direction of the pairs. We denote the first
model asPrd2a and the latter asPra2d. We further
define Pr(t|w) as the harmonic mean of the two
models:

Pr(t|w) ∝
(
λ/ Pr d2a(t|w)+(1−λ)/ Pr a2d(t|w)

)−1
,

(2)
whereλ is the harmonic factor to combine the two
models. Whenλ = 1 or λ = 0, it simply uses model
Prd2a or Pra2d correspondingly.

3.4 Tag Suggestion Using Triggered Words and
Translation Probabilities

When given the description of a resource, we can
rank tags by computing the scores:

Pr(t|d = wd) =
∑

w∈wd

Pr(t|w) Pr(w|d), (3)

in whichPr(w|d) is the trigger power of the wordw
in the description, which indicates the importance of
the word. According to the ranking scores, we can
suggest the top-ranked tags to users.

Here we explore three methods to compute the
trigger power of a word in a resource description:
TF-IRFw, TextRank and their product. TF-IRFw and
TextRank are two most widely adopted methods for
keyword extraction.

Similar to TF-IRFt mentioned in Section 3.2, TF-
IRFw considers both the local importance (TFw) and
global specification (IRFw).

TextRank (Mihalcea and Tarau, 2004) is a graph-
based method to compute term importance. Given
a resource description, TextRank first builds a term
graph by connecting the terms in the description
according to their semantic relations, and then run
PageRank algorithm (Page et al., 1998) to measure
the importance of each term in the graph. Readers
can refer to (Mihalcea and Tarau, 2004) for detailed
information.

We also use the product of TF-IRFw and Tex-
tRank to weight terms, which potentially takes both
global information and term relations into account.

Emphasize Tags Appearing In Description for
WTM (EWTM) In some social tagging systems,
the tags that appear in the resource description are
more likely to be selected by users for annotation.
Therefore, we propose to emphasize the tags in the
description by ranking tags as follows

Pr(t|d) =
∑

w∈wd

(
γIt(w)+(1−γ) Pr(t|w)

)
Pr(w|d),

(4)
where It(w) is an indicator function which gets
value1 when t = w and0 when t 6= w; andγ is
the smooth factor with rangeγ ∈ [0.0, 1.0]. When
γ = 1.0, it suggests tags simply according to their
trigger powers within the description, while when
γ = 0.0, it does not emphasize the tags appearing in
the description and just suggests according to their
translation probabilities. In Section 4.4, we will
show the performance of EWTM.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets In our experiments, we select two real
world datasets which are of diverse properties to
evaluate our methods. In Table 2 we show the
detailed statistical information of the two datasets.
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Data R W T N̄w N̄t

BOOK 70, 000 174, 748 46, 150 211.6 3.5
BIBTEX 158, 924 91, 277 50, 847 5.8 2.7

Table 2: Statistical information of two datasets.R,
W , T , N̄w andN̄t are the number of resources, the
vocabulary of descriptions, the vocabulary of tags,
the average number of words in each description
and the average number of tags in each resource,
respectively.

The first dataset, denoted as BOOK, is obtained
from a popular Chinese book review websitewww.
douban.com, which contains the descriptions of
books and the tags collaboratively annotated by
users. The second dataset, denoted as BIBTEX, is
obtained from an English online bibliography web-
sitewww.bibsonomy.org2. The dataset contains
the descriptions for academic papers (including the
title and note for each paper) and the tags annotated
by users. As shown in Table 2, the average length of
descriptions in the BIBTEX dataset is much shorter
than the BOOK dataset. Moreover, the BIBTEX
dataset does not provide how many times each tag
is annotated to a resource.

Evaluation Metrics We use precision, recall and
F-measure to evaluate the performance of tag sug-
gestion methods. For a resource, we denote the
original tags (gold standard) asTa, the suggested
tags asTs, and the correctly suggested tags asTs ∩
Ta. Precision, recall and F-measure are defined as

p =
|Ts ∩ Ta|

|Ts|
, r =

|Ts ∩ Ta|
|Ta|

, F =
2pr

(p + r)
.

(5)
The final evaluation scores are computed by micro-
averaging (i.e., averaging on resources of test set).
We perform 5-fold cross validation for each method
on all two datasets. In experiments, the number of
suggested tagsM ranges from1 to 10.

4.2 Comparing Results

Baseline Methods We select four content-based
algorithms as the baselines for comparison: Naive
Bayes (NB) (Manning et al., 2008),k nearest
neighbor algorithm (kNN) (Manning et al., 2008),

2The dataset can be obtained fromhttp://www.kde.
cs.uni-kassel.de/bibsonomy/dumps

Content Relevance (CRM) model (Iwata et al.,
2009) and Tag Allocation Model (TAM) (Si et al.,
2010).

NB andkNN are two representative classification
methods. NB is a simple generative model, which
models the probability of each tagt given descrip-
tion d as

Pr(t|d) ∝ Pr(t)
∏

w∈d

Pr(w|t). (6)

Pr(t) is estimated by the frequency of the resources
annotated with the tagt. Pr(w|t) is estimated by the
frequency of the wordw in the resource descriptions
annotated with the tagt. kNN is a widely used
classification method for tag suggestion, which
recommends tags to a resource according to the
annotated tags of similar resources measured using
vector space models (Manning et al., 2008).

CRM and TAM are selected to represent topic-
based methods for tag suggestion. CRM is an LDA-
based generative model. The number of latent topics
K is the key parameter for CRM. In experiments, we
evaluated the performance of CRM with differentK
values, and here we only show the best one obtained
by settingK = 1, 024. TAM is also a generative
model which considers the words in descriptions as
the topics to further generate tags for the resource.
We set parameters for TAM as in (Si et al., 2010).
For comparison, we denote our method as WTM.

Complexity Analysis We compare the complexity
of these methods. We denote the number of training
iterations in CRM, TAM and WTM asI 3, and
the number of topics in CRM asK. For the
training phase, the complexity of NB isO(RN̄wN̄t),
kNN is O(1), TAM is O(IRN̄wN̄t), CRM is
O(IKRN̄wN̄t), and WTM isO(IRN̄wN̄t)

4. When
suggesting for a given resource description with
length Nw, the complexity of NB isO(NwT ),
kNN is O(RN̄wN̄t), CRM is O(IKNwT ), TAM

3In fact, the numbers of iterations of the three methods are
different from each other. For simplicity, here we denote them
using the same notation.

4In more detail, the training phase of WTM contains
preparing parallel training dataset withO(RN̄t) and learning
translation probabilities using word alignment models with
O(IRN̄wN̄t), whereI is the number of iterations for learning
translation probabilities, and̄Nt is the average number of tags
for each resource after sampling.
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is O(INwT ) and WTM is O(NwT ). From the
analysis, we can see that WTM is a relatively simple
method for both training and suggestion. This is
especially valuable because WTM also shows good
effectiveness for tag suggestion compared with other
methods as we will shown later.

Parameter Settings We use GIZA++ (Och and
Ney, 2003)5 as IBM Model-1 to learn transla-
tion probabilities using description-annotation pairs
for WTM. The experimental results of WTM are
obtained by setting parameters as follows: tag
weighting type as TF-IRFt, length ratioδ = 1,
harmonic factorλ = 0.5 and the type of word trigger
strength as TF-IRFw. The influence of parameters to
WTM can be found in Section 4.3.

Experiment Results and Analysis In Fig. 2 we
show the precision-recall curves of NB,kNN, CRM
and WTM on two datasets. Each point of a
precision-recall curve represents different numbers
of suggested tags fromM = 1 (bottom right, with
higher precision and lower recall) toM = 10
(upper left, with higher recall but lower precision)
respectively. The closer the curve to the upper right,
the better the overall performance of the method.
From Fig. 2, we observe that:

• WTM consistently performs the best on both
datasets. This indicates that WTM is robust and
effective for tag suggestion.

• The advantage of WTM is more significant on
the BOOK dataset. The reason is that WTM
can take a good advantage of annotation count
information of tags compared to other methods.

• The average length of resource descriptions is
short in the BIBTEX dataset, which makes
it difficult to determine the trigger powers of
words. But even on the BIBTEX dataset
with no count information of tags, WTM still
outperforms other methods especially when
recommending first several tags.

To further demonstrate the performance of WTM
and other baseline methods, in Table 3 we show the

5GIZA++ is freely available oncode.google.com/p/
giza-pp. The toolkit is widely used for word alignment in
SMT. In this paper, we use the default setting of parameters for
training.
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Figure 2: Performance comparison between NB,
kNN, CRM, TAM and WTM on two datasets.

precision, recall and F-measure of NB,kNN, CRM,
TAM and WTM on BOOK dataset when suggesting
M = 3 tags6. Due to the limit of space, we only
show the variance of F-measure. In fact, WTM
achieves its best performance whenM = 2, where
the F-measure of WTM is0.370, outperforming
both CRM (F = 0.263) and TAM (F = 0.277) by
about10%.

An Example In Table 4 we show top 10 tags
suggested by NB, CRM, TAM and WTM for the
book in Table 1. The number in bracket after
the name of each method is the count of correctly
suggested tags. The correctly suggested tags are
marked in bold face. We select not to show

6We select to show this number because it is near the average
number of tags for BOOK dataset
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Method Precision Recall F-measure
NB 0.271 0.302 0.247 ± 0.004
kNN 0.280 0.314 0.258 ± 0.002
CRM 0.292 0.323 0.266 ± 0.004
TAM 0.310 0.344 0.283 ± 0.001
WTM 0.368 0.452 0.355 ± 0.002

Table 3: Comparing results of NB,kNN, CRM,
TAM and WTM on BOOK dataset when suggesting
M = 3 tags.

the results ofkNN because the tags suggested by
kNN are totally unrelated to the book due to the
insufficient finding of nearest neighbors.

From Table 4, we observe that NB, CRM and
TAM, as generative models, tend to suggest general
tags such as “novel”, “literature”, “classic” and
“France”, and fail in suggesting specific tags such as
“Alexandre Dumas” and “Count of Monte Cristo”.
On the contrary, WTM succeeds in suggesting both
general and specific tags related to the book.

NB (+6): novel, foreign literature , literature , his-
tory , Japan,classic, France, philosophy, America,
biography
CRM (+5): novel, foreign literature , literature , bi-
ography, philosophy, culture,France, British, comic,
history
TAM (+5) : novel, sociology, finance,foreign liter-
ature, France, literature , biography,France litera-
ture, comic, China
WTM (+7) : novel, Alexandre Dumas, history,
Count of Monte Cristo, foreign literature , biogra-
phy,suspense, comic, America,France

Table 4: Top 10 tags suggested by NB, CRM, TAM
and WTM for the book in Table 1.

In Table 5, we list four important words (using
TF-IRFw as weighting metric) of the description and
their corresponding tags with the highest translation
probabilities. The values in brackets are the proba-
bility of tag t given wordw, Pr(t|w). For each word,
we eliminated the tags with the probability less than
0.1. We can see that the translation probabilities can
map the words in descriptions to their semantically
corresponding tags in annotations.

Count of Monte Cristo: Count of Monte Cristo
(0.728), Alexandre Dumas (0.270),. . .
Alexandre Dumas: Alexandre Dumas (0.966),. . .
revenge: foreign literature (0.168), classic (0.130),
martial arts (0.123), Alexandre Dumas (0.122),. . .
France: France (0.99),. . .

Table 5: Four important words (in bold face) in the
book description in Table 1 and their corresponding
tags with the highest translation probabilities.

4.3 Parameter Influences

We explore the parameter influences to WTM for
social tag suggestion. The parameters include
harmonic factor, length ratio, tag weighting types,
and types of word trigger strength. When inves-
tigating one parameter, we set other parameters
to be the values inducing the best performance
as mentioned in Section 4.2. Finally, we also
investigate the influence of training data size for
suggestion performance. In experiments we find
that WTM reveals similar trends on both the BOOK
dataset and the BIBTEX dataset. We thus only show
the experimental results on the BOOK dataset for
analysis.

Harmonic Factor In Fig. 3 we investigate the
influence of harmonic factor via the curves of F-
measure of WTM versus the number of suggested
tags on the BOOK dataset when harmonic factorλ
ranges from0.0 to 1.0. As shown in Section 3.3,
harmonic factorλ controls the proportion between
modelPrd2a andPra2d.

From Fig. 3, we observe that neither single model
Prd2a (λ = 1.0) nor Pra2d (λ = 0.0) achieves
the best performance. When the two models are
combined by harmonic mean, the performance is
consistently better, especially whenλ ranges from
0.2 to 0.6. This is reasonable because IBM Model-
1 constrains that only the term in source language
can be aligned to multiple terms in target language,
which makes the translation probability learned by a
single model be asymmetric.

Length Ratio Fig. 4 shows the influence of length
ratios on the BOOK dataset. From the figure, we
observe that the performance for tag suggestion is
robust as the length ratio varies, except when the
ratio breaks the default restriction of GIZA++ (i.e.,
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Figure 3: F-measure of WTM versus the number of
suggested tags on the BOOK dataset when harmonic
factorλ ranges from0.0 to 1.0.
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Figure 4: F-measure of WTM versus the number of
suggested tags on the BOOK dataset when length
ratio δ ranges from10/1 to 1/5.

Tag Weighting Types The influence of two
weighting types, TFt and TF-IRFt, on social tag
suggestion whenM = 3 on the BOOK dataset
is shown in Table 6. TF-IRFt tends to select the
tags more specific to the resource while TFt tends
to select the most popular tags, because the latter
does not consider global information (the IRFt part).

7GIZA++ restricts the values of length ratio within[ 1
9
, 9] by

setting parametermaxfertility=10. From Fig. 4, we can
see whenδ = 10, the performance becomes much worse since
GIZA++ will cut off the sentences out of range.

Table 6 verifies the analysis, where TF-IRFt is
slightly better than TFt.

Weighting Precision Recall F-measure
TFt 0.356 0.437 0.342 ± 0.002

TF-IRFt 0.368 0.452 0.355 ± 0.002

Table 6: Evaluation results for different tag weight-
ing types whenM = 3 on the BOOK dataset.

Methods for Computing Word Trigger Power
In Table 7, we show the performance of social tag
suggestions on the BOOK dataset with different
methods for computing word trigger power. From
the table, we can see that there is not significant
difference between TF-IRFw and the product of TF-
IRFw and TextRank, while TextRank itself performs
the worst. This indicates that TextRank is less
competitive to measure word trigger power since it
does not take global information into consideration.

Weighting Precision Recall F-measure
TF-IRFw 0.368 0.452 0.355 ± 0.002
TextRank 0.345 0.424 0.332 ± 0.002
Product 0.368 0.451 0.354 ± 0.002

Table 7: Evaluation results for different methods for
computing word trigger powers whenM = 3 on the
BOOK dataset.

Training Data Size We investigate the influence
of training data size for social tag suggestion. As
shown in Fig. 5, we increased the training data size
from 8, 000 to 56, 000 step by8, 000, and carried
out evaluation on4, 000 resources. The figure shows
that:

• When the training data size is small (e.g.,
8, 000), WTM can still achieve good sugges-
tion performance.

• As the training data size increases, the perfor-
mance of WTM improves, while the improve-
ment speed declines.

The observation indicates that WTM does not
require huge-size dataset to achieve good perfor-
mance.
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Figure 5: Precision-recall curves when the training
data size increases from8, 000 thousand to56, 000
thousand on the BOOK dataset.

Conclusion By analyzing the influences of pa-
rameters on WTM, we find that WTM is robust to
parameter variations.

4.4 Performance of EWTM

At the end of this section, we investigate the
performance of EWTM for social tag suggestion.
Here we simply set the smooth factorγ = 0.5.

As shown in Table 8, EWTM improves the
performance of WTM (in Table 7) on the BOOK
dataset when using TF-IRFw and the product as the
methods for computing the word trigger powers,
but decays when using TextRank. This verifies
that TF-IRFw is the best method to measure word
trigger powers for WTM. Table 8 indicates that
emphasizing the tags appearing in the descriptions
may enhance the suggestion power of the word
trigger method.

Weighting Precision Recall F-measure
TF-IRFw 0.385 0.472 0.371 ± 0.001
TextRank 0.344 0.423 0.332 ± 0.002
Product 0.374 0.457 0.360 ± 0.001

Table 8: The evaluation results of EWTM with dif-
ferent methods for computing word trigger powers
whenM = 3 on the BOOK dataset.

However, the performance of EWTM on the
BIBTEX dataset decays much compared to WTM.
The F-measure of EWTM is onlyF = 0.229
compared with WTMF = 0.267. The main reason

of the decay is that: the resource descriptions in
the BIBTEX dataset are usually too short to provide
sufficient information to precisely emphasize tags.
In this case, EWTM may emphasize wrong tags and
drop correct tags.

The experimental results on EWTM suggest that,
the performance of EWTM is heavily influenced by
the length of resource descriptions. Therefore, we
have to analyze the characteristics of social tagging
systems to decide whether to emphasize the tags that
appear in the corresponding resource descriptions.

As future work, we will investigate the influence
of the smooth factorγ to EWTM. It is also worth
to investigate the problem when combining with
collaboration-based methods for social tag sugges-
tion.

5 Conclusion and Future Work

In this paper, we present a new perspective to social
tagging and propose the word trigger method for
social tag suggestion based on word alignment in
statistical machine translation. Experiments show
that our method is effective and efficient for social
tag suggestion compared to other baselines.

There are still several open problems that should
be further investigated:

1. We can exploit other word alignment methods
like log-linear models (Liu et al., 2010a) for
social tag suggestion.

2. We will ensemble WTM with other content-
based and collaboration-based methods to build
a practical social tag suggestion system.

3. WTM and EWTM can only suggest the tags
that have appeared in translation models. In
future, we plan to incorporate keyphrase ex-
traction in social tag suggestion to make it
suggest more appropriate tags not only from
translation models but also from the resource
descriptions.
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Abstract

A rumor is commonly defined as a state-
ment whose true value is unverifiable. Ru-
mors may spread misinformation (false infor-
mation) or disinformation (deliberately false
information) on a network of people. Identi-
fying rumors is crucial in online social media
where large amounts of information are easily
spread across a large network by sources with
unverified authority. In this paper, we address
the problem of rumor detection in microblogs
and explore the effectiveness of 3 categories of
features: content-based, network-based, and
microblog-specific memes for correctly iden-
tifying rumors. Moreover, we show how these
features are also effective in identifying disin-
formers, users who endorse a rumor and fur-
ther help it to spread. We perform our exper-
iments on more than 10,000 manually anno-
tated tweets collected from Twitter and show
how our retrieval model achieves more than
0.95 in Mean Average Precision (MAP). Fi-
nally, we believe that our dataset is the first
large-scale dataset on rumor detection. It can
open new dimensions in analyzing online mis-
information and other aspects of microblog
conversations.

1 Introduction

A rumor is an unverified and instrumentally relevant
statement of information spread among people (Di-
Fonzo and Bordia, 2007). Social psychologists ar-
gue that rumors arise in contexts of ambiguity, when
the meaning of a situation is not readily apparent,
or potential threat, when people feel an acute need
for security. For instance rumors about ‘office ren-
ovation in a company’ is an example of an ambigu-
ous context, and the rumor that ‘underarm deodor-
ants cause breast cancer’ is an example of a context

in which one’s well-being is at risk (DiFonzo et al.,
1994).

The rapid growth of online social media has made
it possible for rumors to spread more quickly. On-
line social media enable unreliable sources to spread
large amounts of unverified information among peo-
ple (Herman and Chomsky, 2002). Therefore, it is
crucial to design systems that automatically detect
misinformation and disinformation (the former of-
ten seen as simply false and the latter as deliberately
false information).

Our definition of a rumor is established based on
social psychology, where a rumor is defined as a
statement whose truth-value is unverifiable or delib-
erately false. In-depth rumor analysis such as deter-
mining the intent and impact behind the spread of
a rumor is a very challenging task and is not possi-
ble without first retrieving the complete set of social
conversations (e.g., tweets) that are actually about
the rumor. In our work, we take this first step to
retrieve a complete set of tweets that discuss a spe-
cific rumor. In our approach, we address two basic
problems. The first problem concerns retrieving on-
line microblogs that are rumor-related. In the second
problem, we try to identify tweets in which the ru-
mor is endorsed (the posters show that they believe
the rumor).

2 Related Work

We review related work on 3 main areas: Analyzing
rumors, mining microblogs, and sentiment analysis
and subjectivity detection.

2.1 Rumor Identification and Analysis

Though understanding rumors has been the sub-
ject of research in psychology for some time (All-
port and Lepkin, 1945), (Allport and Postman,
1947), (DiFonzo and Bordia, 2007), research has
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only recently begun to investigate how rumors are
manifested and spread differently online. Mi-
croblogging services, like Twitter, allow small
pieces of information to spread quickly to large au-
diences, allowing rumors to be created and spread in
new ways (Ratkiewicz et al., 2010).

Related research has used different methods to
study the spread of memes and false information
on the web. Leskovec et al. use the evolution
of quotes reproduced online to identify memes and
track their spread overtime (Leskovec et al., 2009).
Ratkiewicz et al. (Ratkiewicz et al., 2010) created
the “Truthy” system, identifying misleading politi-
cal memes on Twitter using tweet features, includ-
ing hashtags, links, and mentions. Other projects
focus on highlighting disputed claims on the Inter-
net using pattern matching techniques (Ennals et al.,
2010). Though our project builds on previous work,
our work differs in its general focus on identifying
rumors from a corpus of relevant phrases and our at-
tempts to further discriminate between phrases that
confirm, refute, question, and simply talk about ru-
mors of interest.

Mendoza et al. explore Twitter data to analyze the
behavior of Twitter users under the emergency situ-
ation of 2010 earthquake in Chile (Mendoza et al.,
). They analyze the re-tweet network topology and
find that the patterns of propagation in rumors dif-
fer from news because rumors tend to be questioned
more than news by the Twitter community.

2.2 Sentiment Analysis
The automated detection of rumors is similar to tra-
ditional NLP sentiment analysis tasks. Previous
work has used machine learning techniques to iden-
tify positive and negative movie reviews (Pang et
al., 2002). Hassan et al. use a supervised Markov
model, part of speech, and dependency patterns to
identify attitudinal polarities in threads posted to
Usenet discussion posts (Hassan et al., 2010). Oth-
ers have designated sentiment scores for news sto-
ries and blog posts based on algorithmically gener-
ated lexicons of positive and negative words (God-
bole et al., 2007). Pang and Lee provide a detailed
overview of current techniques and practices in sen-
timent analysis and opinion mining (Pang and Lee,
2008; Pang and Lee, 2004).

Though rumor classification is closely related to

opinion mining and sentiment analysis, it presents
a different class of problem because we are con-
cerned not just with the opinion of the person post-
ing a tweet, but with whether the statements they
post appear controversial. The automatic identifica-
tion of rumors from a corpus is most closely related
to the identification of memes done in (Leskovec et
al., 2009), but presents new challenges since we seek
to highlight a certain type of recurring phrases. Our
work presents one of the first attempts at automatic
rumor analysis.

2.3 Mining Twitter Data

With its nearly constant update of new posts and
public API, Twitter can be a useful source for
collecting data to be used in exploring a num-
ber of problems related to natural language pro-
cessing and information diffusion (Bifet and Frank,
2010). Pak and Paroubek demonstrated experimen-
tally that despite frequent occurrences of irregular
speech patterns in tweets, Twitter can provide a use-
ful corpus for sentiment analysis (Pak and Paroubek,
2010). The diversity of Twitter users make this
corpus especially valuable. Ratkiewicz et al also
use Twitter to detect and track misleading political
memes (Ratkiewicz et al., 2010).

Along with many advantages, using Twitter as a
corpus for sentiment analysis does present unusual
challenges. Because posts are limited to 140 charac-
ters, tweets often contain information in an unusu-
ally compressed form and, as a result, grammar used
may be unconventional. Instances of sarcasm and
humor are also prevalent (Bifet and Frank, 2010).
The procedures we used for the collection and anal-
ysis of tweets are similar to those described in previ-
ous work. However, our goal of developing compu-
tational methods to identify rumors being transmit-
ted through tweets differentiates our project.

3 Problem Definition

Assume we have a set of tweets that are about the
same topic that has some controversial aspects. Our
objective in this work is two-fold: (1) Extract tweets
that are about the controversial aspects of the story
and spread misinformation (Rumor retrieval). (2)
Identify users who believe that misinformation ver-
sus users who refute or question the rumor (Belief
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Name Rumor Regular Expression Query Status #tweets
obama Is Barack Obama muslim? Obama & (muslim|islam) false 4975
airfrance Air France mid-air crash photos? (air.france|air france) & (photo|pic|pix) false 505
cellphone Cell phone numbers going public? (cell|cellphone|cell phone) mostly false 215
michelle Michelle Obama hired too many staff? staff & (michelle obama|first lady|1st lady) partly true 299
palin Sarah Palin getting divorced? palin & divorce false 4423

Table 1: List of rumor examples and their corresponding queries used to collect data from Twitter

classification).
The following two tweets are two instances of the

tweets written about president Obama and the Mus-
lim world. The first tweet below is about president
Obama and Muslim world, where the second tweet
spread misinformation that president Obama is Mus-
lim.

(non-rumor) “As Obama bows to Muslim leaders
Americans are less safe not only at home but also
overseas. Note: The terror alert in Europe... ”

(rumor) “RT @johnnyA99 Ann Coulter Tells Larry
King Why People Think Obama Is A Muslim
http://bit.ly/9rs6pa #Hussein via @NewsBusters
#tcot ..”

The goal of the retrieval task is to discriminate
between such tweets. In the second task, we use
the tweets that are flagged as rumorous, and identify
users that endorse (believe) the rumor versus users
who deny or question it. The following three tweets
are about the same story. The first user is a believer
and the second and third are not.

(confirm) “RT @moronwatch: Obama’s a Muslim. Or
if he’s not, he sure looks like one #whyimvotingre-
publican.”

(deny) “Barack Obama is a Christian man who had
a Christian wedding with 2 kids baptised in Jesus
name. Tea Party clowns call that muslim #p2 #gop”

(doubtful) “President Barack Obama’s Religion:
Christian, Muslim, or Agnostic? - The News
of Today (Google): Share With Friend...
http://bit.ly/bk42ZQ”

The first task is substantially more challenging
than a standard IR task because of the requirement of
both high precision (every result should be actually
discussing the rumor) and high recall (the set should
be complete). To do this, we submit a handcrafted

regexp (extracted from about.com) to Twitter and re-
trieve a large primitive set of tweets that is supposed
to have a high recall. This set however, contains a lot
of false positives, tweets that match the regexp but
are not about the rumor (e.g., “Obama meets muslim
leaders”). Moreover, a rumor is usually stated using
various instances (e.g., “Barack HUSSEIN Obama”
versus “Obama is muslim”). Our goal is then to de-
sign a learning framework that filters all such false
positives and retrieves various instances of the same
rumor

Although our second task, belief classification,
can be viewed as an opinion mining task, it is sub-
stantially different from opinion mining in nature.
The difference from a standard opinion mining task
is that here we are looking for attitudes about a sub-
tle statement (e.g., “Palin is getting divorce”) instead
of the overall sentiment of the text or the opinion
towards an explicit object or person (e.g., “Sarah
Palin”).

4 Data

As September 2010, Twitter reports that its users
publish nearly 95 million tweets per day1. This
makes Twitter an excellent case to analyze misin-
formation in social media.

Our goal in this work was to collect and annotate
a large dataset that includes all the tweets that are
written about a rumor in a certain period of time. To
collect such a complete and self-contained dataset
about a rumor, we used the Twitter search API, and
retrieved all the tweets that matched a given regular
expression. This API is the only API that returns re-
sults from the entire public Twitter stream and not
a small randomly selected sample. To overcome the
rate limit enforced by Twitter, we collected match-
ing tweets once per hour, and remove any duplicates.

To use the search API, we carefully designed reg-
ular expression queries to be broad enough to match

1http://twitter.com/about
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all the tweets that are about a rumor. Each query
represents a popular rumor that is listed as “false”
or only “partly true” on About.com’s Urban Leg-
ends reference site2 between 2009 and 2010. Table 1
lists the rumor examples that we used to collect our
dataset along with their corresponding regular ex-
pression queries and the number of tweets collected.

4.1 Annotation
We asked two annotators to go over all the tweets
in the dataset and mark each tweet with a “1” if it
is about any of the rumors from Table 1, and with
a “0” otherwise. This annotation scheme will be
used in our first task to detect false positives, tweets
that match the broad regular expressions and are re-
trieved, but are not about the rumor. For instance,
both of the following tweets match the regular ex-
pression for the palin example, but only the sec-
ond one is rumorous.

(0) “McCain Divorces Palin over her ‘untruths and out
right lies’ in the book written for her. McCain’s
team says Palin is a petty liar and phony”

(1) “Sarah and Todd Palin to divorce, according to local
Alaska paper. http://ow.ly/iNxF”

We also asked the annotators to mark each pre-
viously annotated rumorous tweet with “11” if the
tweet poster endorses the rumor and with “12” if the
user refutes the rumor, questions its credibility, or is
neutral.

(12) “Sarah Palin Divorce Rumor Debunked on Face-
book http://ff.im/62Evd”

(11) “Todd and Sarah Palin to divorce
http://bit.ly/15StNc”

Our annotation of more than 10,400 tweets shows
that %35 of all the instances that matched the regu-
lar expressions are false positives, tweets that are not
rumor-related but match the initial queries. More-
over, among tweets that are about particular ru-
mors, nearly %43 show the poster believe the rumor,
demonstrating the importance of identifying misin-
formation and those who are misinformed. Table 2
shows the basic statistics extracted from the annota-
tions for each story.

2http://urbanlegends.about.com

Rumor non-rumor (0) believe (11) deny/ (12) total
doubtful/neutral

obama 3,036 926 1,013 4975
airfrance 306 71 128 505
cellphone 132 74 9 215
michelle 83 191 25 299
palin 86 1,709 2,628 4,423
total 3,643 2,971 3,803 10,417

Table 2: Number of instances in each class from the an-
notated data

task κ
rumor retrieval 0.954
belief classification 0.853

Table 3: Inter-judge agreement in two annotation tasks in
terms of κ-statistic

4.2 Inter-Judge Agreement
To calculate the annotation accuracy, we annotated
500 instances twice. These annotations were com-
pared with each other, and the Kappa coefficient (κ)
was calculated. The κ statistic is formulated as

κ =
Pr(a)− Pr(e)

1− Pr(e)

where Pr(a) is the relative observed agreement
among raters, and Pr(e) is the probability that anno-
tators agree by chance if each annotator is randomly
assigning categories (Krippendorff, 1980; Carletta,
1996). Table 3 shows that annotators can reach
a high agreement in both extracting rumors (κ =
0.95) and identifying believers (κ = 0.85).

5 Approach

In this section, we describe a general framework,
which given a tweet, predicts (1) whether it is a
rumor-related statement, and if so (2) whether the
user believes the rumor or not. We describe 3 sets of
features, and explain why these are intuitive to use
for identification of rumors.

We process the tweets as they appear in the user
timeline, and do not perform any pre-processing.
Specially, we think that capitalization might be an
important property. So, we do not lower-case the
tweet texts either.

Our approach is based on building different Bayes
classifiers as high level features and then learning
a linear function of these classifiers for retrieval in
the first task and classification in the second. Each
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Bayes classifier, which corresponds to a feature fi,
calculates the likelihood ratio for a given tweet t, as
shown in Equation 1.

P (θ+i |t)
P (θ−i |t)

=
P (θ+i )

P (θ−i )

P (t|θ+i )

P (t|θ−i )
(1)

Here θ+i and θ−i are two probabilistic models built
based on feature fi using a set of positive (+) and
negative (−) training data. The likelihood ratio ex-
presses how many times more likely the tweet t is
under the positive model than the negative model
with respect to fi.

For computational reasons and to avoid dealing
with very small numbers we use the log of the like-
lihood ratio to build each classifier.

LLi = log
P (θ+i |t)
P (θ−i |t)

= log
P (θ+i )

P (θ−i )
+ log

P (t|θ+i )

P (t|θ−i )
(2)

The first term P (θ+i )

P (θ−i )
can be easily calculated us-

ing the maximum likelihood estimates of the prob-
abilities (i.e., the estimate of each probability is the
corresponding relative frequency). The second term
is calculated using various features that we explain
below.

5.1 Content-based Features

The first set of features are extracted from the text of
the tweets. We propose 4 content based features. We
follow (Hassan et al., 2010) and present the tweet
with 2 different patterns:

• Lexical patterns: All the words and segments
in the tweet are represented as they appear and
are tokenized using the space character.

• Part-of-speech patterns: All words are replaced
with their part-of-speech tags. To find the part-
of-speech of a hashtag we treat it as a word
(since they could have semantic roles in the
sentence), by omitting the tag sign, and then
precede the tag with the label TAG/. We also
introduce a new tag, URL, for URLs that appear
in a tweet.

From each tweet we extract 4 (2 × 2) features,
corresponding to unigrams and bigrams of each rep-
resentation. Each feature is the log-likelihood ra-
tio calculated using Equation 2. More formally,
we represent each tweet t, of length n, lexically
as (w1w2 · · ·wn) and with part-of-speech tags as
(p1p2 · · · pn). After building the positive and nega-
tive models (θ+, θ−) for each feature using the train-
ing data, we calculate the likelihood ratio as defined
in Equation 2 where

P (t|θ+)

P (t|θ−)
=

n∑

j=1

log
P (wj |θ+)

P (wj |θ−)
(3)

for unigram-lexical features (TXT1) and

P (t|θ+)

P (t|θ−)
=

n−1∑

j=1

log
P (wjwj+1|θ+)

P (wjwj+1|θ−)
(4)

for bigram-based lexical features (TXT2). Simi-
larly, we define the unigram and bigram-based part-
of-speech features (POS1 and POS2) as the log-
likelihood ratio with respect to the positive and neg-
ative part-of-speech models.

5.2 Network-based Features
The features that we have proposed so far are all
based on the content of individual tweets. In the
second set of features we focus on user behavior on
Twitter. We observe 4 types of network-based prop-
erties, and build 2 features that capture them.

Twitter enables users to re-tweet messages from
other people. This interaction is usually easy to de-
tect because the re-tweeted messages generally start
with the specific pattern: ‘RT @user’. We use this
property to infer about the re-tweeted message.

Let’s suppose a user ui re-tweets a message t from
the user uj (ui: “RT @uj t”). Intuitively, t is more
likely to be a rumor if (1) uj has a history of posting
or re-tweeting rumors, or (2) ui has posted or re-
tweeted rumors in the past.

Given a set of training instances, we build a pos-
itive (θ+) and a negative (θ−) user models. The
first model is a probability distribution over all users
that have posted a positive instance or have been re-
tweeted in a positive instance. Similarly, the sec-
ond model is a probability distribution over users
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that have posted (or been re-tweeted in) a negative
instance. After building the models, for a given
tweet we calculate two log-likelihood ratios as two
network-based features.

The first feature is the log-likelihood ratio that ui
is under a positive user model (USR1) and the sec-
ond feature is the log-likelihood ratio that the tweet
is re-tweeted from a user (uj) who is under a positive
user model than a negative user model (USR2).

The distinction between the posting user and the
re-tweeted user is important, since some times the
users modify the re-tweeted message in a way that
changes its meaning and intent. In the following ex-
ample, the original user is quoting president Obama.
The second user is re-tweeting the first user, but has
added more content to the tweet and made it sound
rumorous.

original message (non-rumor) “Obama says he’s do-
ing ‘Christ’s work’.”

re-tweeted (rumor) “Obama says he’s doing ‘Christ’s
work.’ Oh my God, CHRIST IS A MUSLIM.”

5.3 Twitter Specific Memes
Our final set of features are extracted from memes
that are specific to Twitter: hashtags and URLs.
Previous work has shown the usefulness of these
memes (Ratkiewicz et al., 2010).

5.3.1 Hashtags
One emergent phenomenon in the Twitter ecosys-

tem is the use of hashtags: words or phrases prefixed
with a hash symbol (#). These hashtags are created
by users, and are widely used for a few days, then
disappear when the topic is outdated (Huang et al.,
2010).

In our approach, we investigate whether hashtags
used in rumor-related tweets are different from other
tweets. Moreover, we examine whether people who
believe and spread rumors use hashtags that are dif-
ferent from those seen in tweets that deny or ques-
tion a rumor.

Given a set of training tweets of positive and neg-
ative examples, we build two statistical models (θ+,
θ−), each showing the usage probability distribution
of various hashtags. For a given tweet, t, with a set
of m hashtags (#h1 · · ·#hm), we calculate the log-
likelihood ratio using Equation 2 where

Feature LL-ratio model

Content

TXT1 content unigram content unigram
TXT2 content bigram content unigram
POS1 content pos content pos unigram
POS2 content pos content pos bigram

Twitter
URL1 content unigram target URL unigram
URL2 content bigram target URL bigram
TAG hashtag hashtag

Network USR1 tweeting user all users in the data
USR2 re-tweeted user all users in the data

Table 4: List of features used in our optimization frame-
work. Each feature is a log-likelihood ratio calculated
against a a positive (+) and negative (−) training models.

P (t|θ+)

P (t|θ−)
=

m∑

j=1

log
P (#hj |θ+)

P (#hj |θ−)
(5)

5.3.2 URLs
Previous work has discussed the role of URLs

in information diffusion on Twitter (Honeycutt and
Herring, 2009). Twitter users share URLs in their
tweets to refer to external sources or overcome the
length limit forced by Twitter. Intuitively, if a tweet
is a positive instance, then it is likely to be similar to
the content of URLs shared by other positive tweets.
Using the same reasoning, if a tweet is a negative
instance, then it should be more similar to the web
pages shared by other negative instances.

Given a set of training tweets, we fetch all the
URLs in these tweets and build θ+ and θ− once for
unigrams and once for bigrams. These models are
merely built on the content of the URLs and ignore
the tweet content. Similar to previous features, we
calculate the log-likelihood ratio of the content of
each tweet with respect to θ+ and θ− for unigrams
(URL1) and bigrams URL2).

Table 4 summarizes the set of features used in our
proposed framework, where each feature is a log-
likelihood ratio calculated against a positive (+) and
negative (−) training models. To build these lan-
guage models, we use the CMU Language Modeling
toolkit (Clarkson and Rosenfeld, 1997).

5.4 Optimization

We build an L1-regularized log-linear model (An-
drew and Gao, 2007) on various features discussed
before to predict each tweet. Suppose, a procedure
generates a set of candidates for an input x. Also,
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let’s suppose Φ : X × Y → RD is a function that
maps each (x, y) to a vector of feature values. Here,
the feature vector is the vector of coefficients corre-
sponding to different network, content, and twitter-
based properties, and the parameter vector θ ∈ RD
(D ≤ 9 in our experiments) assigns a real-valued
weight to each feature. This estimator chooses θ to
minimize the sum of least squares and a regulariza-
tion term R.

θ̂ = argmin
θ
{1

2

∑

i

||〈θ, xi〉 − yi||22 +R(θ)} (6)

where the regularizer term R(θ) is the weighted L1

norm of the parameters.

R(θ) = α
∑

j

|θj | (7)

Here, α is a parameter that controls the amount of
regularization (set to 0.1 in our experiments).

Gao et. al (Gao et al., 2007) argue that op-
timizing L1-regularized objective function is chal-
lenging since its gradient is discontinuous whenever
some parameters equal zero. In this work, we use
the orthant-wise limited-memory quasi-Newton al-
gorithm (OWL-QN), which is a modification of L-
BFGS that allows it to effectively handle the dis-
continuity of the gradient (Andrew and Gao, 2007).
OWL-QN is based on the fact that when restricted
to a single orthant, the L1 regularizer is differen-
tiable, and is in fact a linear function of θ. Thus,
as long as each coordinate of any two consecutive
search points does not pass through zero R(θ) does
not contribute at all to the curvature of the function
on the segment joining them. Therefore, we can use
L-BFGS to approximate the Hessian of L(θ) alone
and use it to build an approximation to the full reg-
ularized objective that is valid on a given orthant.
This algorithm works quite well in practice, and typ-
ically reaches convergence in even fewer iterations
than standard L-BFGS (Gao et al., 2007).

6 Experiments

We design 2 sets of experiments to evaluate our ap-
proach. In the first experiment we assess the effec-
tiveness of the proposed method when employed in
an Information Retrieval (IR) framework for rumor
retrieval and in the second experiment we employ
various features to detect users’ beliefs in rumors.

6.1 Rumor Retrieval
In this experiment, we view different stories as
queries, and build a relevance set for each query.
Each relevance set is an annotation of the entire
10,417 tweets, where each tweet is marked as rel-
evant if it matches the regular expression query and
is marked as a rumor-related tweet by the annotators.
For instance, according to Table 2 the cellphone
dataset has only 83 relevant documents out of the
entire 10,417 documents.

For each query we use 5-fold cross-validation,
and predict the relevance of tweets as a function of
their features. We use these predictions and rank
all the tweets with respect to the query. To evalu-
ate the performance of our ranking model for a sin-
gle query (Q) with the set of relevant documents
{d1, · · · , dm}, we calculate Average Precision as

AP (Q) =
1

m

m∑

k=1

Precision(Rk) (8)

where Rk is the set of ranked retrieval results from
the top result to the kth relevant document, dk (Man-
ning et al., 2008).

6.1.1 Baselines
We compare our proposed ranking model with a

number of other retrieval models. The first two sim-
ple baselines that indicate a difficulty lower-bound
for the problem are Random and Uniform meth-
ods. In the Random baseline, documents are ranked
based on a random number assignment to them. In
the Uniform model, we use a 5-fold cross validation,
and in each fold the label of the test documents is de-
termined by the majority vote from the training set.

The main baseline that we use in this work, is the
regular expression that was submitted to Twitter to
collect data (regexp). Using the same regular ex-
pression to mark the relevance of the documents will
cause a recall value of 1.00 (since it will retrieve all
the relevant documents), but will also retrieve false
positives, tweets that match the regular expression
but are not rumor-related. We would like to inves-
tigate whether using training data will help us de-
crease the rate of false positives in retrieval.

Finally, using the Lemur Toolkit software3, we
employ a KL divergence retrieval model with

3http://www.lemurproject.org/
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Dirichlet smoothing (KL). In this model, documents
are ranked according to the negation of the diver-
gence of query and document language models.
More formally, given the query language model θQ,
and the document language model θD, the docu-
ments are ranked by −D(θQ||θD), where D is the
KL-divergence between the two models.

D(θQ||θD) =
∑

w

p(w|θQ) log
p(w|θQ)

p(w|θD)
(9)

To estimate p(w|θD), we use Bayesian smoothing
with Dirichlet priors (Berger, 1985).

ps(w|θD) =
C(w,D) + µ.p(w|θS)

µ+
∑

w C(w,D)
(10)

where, µ is a parameter, C is the count function, and
thetaS is the collection language model. Higher val-
ues of µ put more emphasis on the collection model.
Here, we try two variants of the model, one using
the default parameter value in Lemur (µ = 2000),
and one in which µ is tuned based on the the data
(µ = 10). Using the test data to tune the parameter
value, µ, will help us find an upper-bound estimate
of the effectiveness of this method.

Table 5 shows the Mean Average Precision
(MAP) and Fβ=1 for each method in the rumor re-
trieval task. This table shows that a method that
employs training data to re-rank documents with
respect to rumors makes significant improvements
over the baselines and outperforms other strong re-
trieval systems.

6.1.2 Feature Analysis
To investigate the effectiveness of using indi-

vidual features in retrieving rumors, we perform
5-fold cross validations for each query, using
different feature sets each time. Figure 1 shows
the average precision and recall for our pro-
posed optimization system when content-based
(TXT1+TXT2+POS1+POS2), network-based
(USR1+USR2), and twitter specific memes
(TAG+URL1+URL2) are employed individually.

Figure 1 shows that features that are calculated us-
ing the content language models are very effective in
achieving high precision and recall. Twitter specific
features, especially hashtags, can result in high pre-
cisions but lead to a low recall value because many

Figure 1: Average precision and recall of the proposed
method employing each set of features: content-based,
network-based, and twitter specific.

tweets do not share hashtags or are not written based
on the contents of external URLs.

Finally, we find that user history can be a good
indicator of rumors. However, we believe that this
feature could be more helpful with a complete user
set and a more comprehensive history of their activ-
ities.

6.1.3 Domain Training Data
As our last experiment with rumor retrieval we in-

vestigate how much new labeled data from an emer-
gent rumor is required to effectively retrieve in-
stances of that particular rumor. This experiment
helps us understand how our proposed framework
could be generalized to other stories.

To do this experiment, we use the obama story,
which is a large dataset with a significant number of
false positive instances. We extract 400 randomly
selected tweets from this dataset and keep them for
testing. We also build an initial training dataset of
the other 4 rumors, and label them as not relevant.
We assess the performance of the retrieval model as
we gradually add the rest of the obama tweets. Fig-
ure 2 shows both Average Precision and labeling ac-
curacy versus the size of the labeled data used from
the obama dataset. This plot shows that both mea-
sures exhibit a fast growth and reach 80% when the
number of labeled data reaches 2000.

6.2 Belief Classification

In previous experiments we showed that maximiz-
ing a linear function of log-likelihood ratios is an
effective method in retrieving rumors. Here, we in-
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Method MAP 95% C.I. Fβ=1 95% C.I.
Random 0.129 [-0.065, 0.323] 0.164 [-0.051, 0.379]
Uniform 0.129 [-0.066, 0.324] 0.198 [-0.080, 0.476]
regexp 0.587 [0.305, 0.869] 0.702 [0.479, 0.925]
KL (µ = 2000) 0.678 [0.458, 0.898] 0.538 [0.248, 0.828]
KL (µ = 10) 0.803 [0.641, 0.965] 0.681 [0.614, 0.748]
LL (all 9 features) 0.965 [0.936, 0.994] 0.897 [0.828, 0.966]

Table 5: Mean Average Precision (MAP) and Fβ=1 of each method in the rumor retrieval task. (C.I.: Confidence
Interval)

Method Accuracy Precision Recall Fβ=1 Win/Loss Ratio
random 0.501 0.441 0.513 0.474 1.004
uniform 0.439 0.439 1.000 0.610 0.781
TXT 0.934 0.925 0.924 0.924 14.087
POS 0.742 0.706 0.706 0.706 2.873
content (TXT+POS) 0.941 0.934 0.930 0.932 15.892
network (USR) 0.848 0.873 0.765 0.815 5.583
TAG 0.589 0.734 0.099 0.175 1.434
URL 0.664 0.630 0.570 0.598 1.978
twitter (TAG+URL) 0.683 0.658 0.579 0.616 2.155
all 0.935 0.944 0.906 0.925 14.395

Table 6: Accuracy, precision, recall, Fβ=1, and win/loss ratio of belief classification using different features.

Figure 2: Average Precision and Accuracy learning curve
for the proposed method employing all 9 features.

vestigate whether this method, and in particular, the
proposed features are useful in detecting users’ be-
liefs in a rumor that they post about. Unlike re-
trieval, detecting whether a user endorses a rumor or
refutes it may be possible using similar methods re-
gardless of the rumor. Intuitively, linguistic features
such as negation (e.g., “obama is not a muslim”), or
capitalization (e.g., “barack HUSSEIN obama ...”),
user history (e.g., liberal tweeter vs. conservative
tweeter), hashtags (e.g., #tcot vs. #tdot), and URLs
(e.g., links to fake airfrance crash photos) should
help to identify endorsements.

We perform this experiment by making a pool
of all the tweets that are marked as “rumorous” in
the annotation task. Table 2 shows that there are
6,774 such tweets, from which 2,971 show belief
and 3,803 tweets show that the user is doubtful, de-
nies, or questions it.

Using various feature settings, we perform 5-fold
cross-validation on these 6,774 rumorous tweets.
Table 6 shows the results of this experiment in terms
of F-score, classification accuracy, and win/loss ra-
tio, the ratio of correct classification to an incorrect
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classification.

7 Conclusion

In this paper we tackle the fairly unaddressed prob-
lem of identifying misinformation and disinform-
ers in Microblogs. Our contributions in this pa-
per are two-fold: (1) We propose a general frame-
work that employs statistical models and maximizes
a linear function of log-likelihood ratios to retrieve
rumorous tweets that match a more general query.
(2) We show the effectiveness of the proposed fea-
ture in capturing tweets that show user endorsement.
This will help us identify disinformers or users that
spread false information in online social media.

Our work has resulted in a manually annotated
dataset of 10,000 tweets from 5 different controver-
sial topics. To the knowledge of authors this is the
first large-scale publicly available rumor dataset, and
can open many new dimensions in studying the ef-
fects of misinformation or other aspects of informa-
tion diffusion in online social media.

In this paper we effectively retrieve instances of
rumors that are already identified and evaluated by
an external source such as About.com’s Urban Leg-
ends reference. Identifying new emergent rumors
directly from the Twitter data is a more challenging
task. As our future work, we aim to build a sys-
tem that employs our findings in this paper and the
emergent patterns in the re-tweet network topology
to identify whether a new trending topic is a rumor
or not.
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Gonçalves, Snehal Patil, Alessandro Flammini, and
Filippo Menczer. 2010. Detecting and tracking
the spread of astroturf memes in microblog streams.
CoRR, abs/1011.3768.

1599



Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1600–1610,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Exploiting Parse Structures for Native Language Identification

Sze-Meng Jojo Wong
Centre for Language Technology

Macquarie University
Sydney, Australia

sze.wong@mq.edu.au

Mark Dras
Centre for Language Technology

Macquarie University
Sydney, Australia

mark.dras@mq.edu.au

Abstract

Attempts to profile authors according to their
characteristics extracted from textual data, in-
cluding native language, have drawn attention
in recent years, via various machine learn-
ing approaches utilising mostly lexical fea-
tures. Drawing on the idea of contrastive
analysis, which postulates that syntactic er-
rors in a text are to some extent influenced by
the native language of an author, this paper
explores the usefulness of syntactic features
for native language identification. We take
two types of parse substructure as features—
horizontal slices of trees, and the more gen-
eral feature schemas from discriminative parse
reranking—and show that using this kind of
syntactic feature results in an accuracy score
in classification of seven native languages of
around 80%, an error reduction of more than
30%.

1 Introduction

Inferring characteristics of authors from their tex-
tual data, often termed authorship profiling, has seen
a number of computational approaches proposed in
recent years. The problem is typically treated as a
classification task, where an author is classified with
respect to characteristics such as gender, age, native
language, and so on. This profile information is of-
ten of interest to marketing organisations for prod-
uct promotional reasons as well as governments or
law enforcements for crime investigation purposes.
The particular application that motivates the present
study is detection of phishing (Myers, 2007), the at-
tempt to defraud through texts that are designed to

deceive Internet users into giving away confidential
details. One class of countermeasures to phishing
consists of technical methods such as email authen-
tication; another looks at profiling of the text’s au-
thor(s) (Fette et al., 2007; Zheng et al., 2003), to
find any indications of the source of the text.

In this paper we investigate classification of a text
with respect to an author’s native language, where
this is not the language that that text is written in
(which is often the case in phishing); we refer to
this as native language identification. Initial work
by Koppel et al. (2005) was followed by Tsur and
Rappoport (2007), Estival et al. (2007), van Halteren
(2008), and Wong and Dras (2009). By and large,
the problem was tackled using various supervised
machine learning approaches, with mostly lexical
features over characters, words, and parts of speech,
as well as some document structure.

Syntactic features, in contrast, in particular those
that capture grammatical errors, which might po-
tentially be useful for this task, have received lit-
tle attention. Koppel et al. (2005) did suggest using
syntactic errors in their work but did not investigate
them in any detail. Wong and Dras (2009) noted
the relevance of the concept of contrastive analy-
sis (Lado, 1957), which postulates that native lan-
guage constructions lead to characteristic errors in a
second language. In their experimental work, how-
ever, they used only three manual syntactic construc-
tions drawn from the literature; an ANOVA analysis
showed a detectable effect, but they did not improve
classification accuracy over purely lexical features.

In this paper, we investigate syntactic features for
native language identification that are more general
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than, and that do not require the manual construction
of, the above approach. Taking the trees produced
by statistical parsers, we use tree cross-sections as
features in a machine learning approach to deter-
mine which ones characterise non-native speaker er-
rors. Specifically, we look at two types of parse
tree substructure to use as features: horizontal slices
of the trees—that is, characterising parse trees as
sets of context-free grammar production rules—and
the features schemas used in discriminative parse
reranking. The goal of the present study is therefore
to investigate the influence to which syntactic fea-
tures represented by parse structures would have on
the classification task of identifying an author’s na-
tive language relative to, and in combination with,
lexical features.

The remainder of this paper is structured as fol-
lows. In Section 2, we discuss some related work on
the two key topics of this paper: primarily on com-
parable work in native language identification, and
then on how the notion of contrastive analysis can be
applicable here. We then describe the models exam-
ined in Section 3, followed by experimental setup in
Section 4. Section 5 presents results, and Section 6
discussion of those results.

2 Related Work

2.1 Native Language Identification

The earliest work on native language identification
in this classification paradigm is that of Koppel et
al. (2005), in which they deployed a machine learn-
ing approach to the task, using as features func-
tion words, character n-grams, and part-of-speech
(PoS) bi-grams, as well as some spelling mistakes.
With five different groups of English authors (of na-
tive languages Bulgarian, Czech, French, Russian,
and Spanish) selected from the first version of In-
ternational Corpus of Learner English (ICLE), they
gained a relatively high classification accuracy of
80%. Koppel et al. (2005) also suggested that syn-
tactic features (syntactic errors) might be useful fea-
tures, but only investigated this idea at a shallow
level by treating rare PoS bigrams as ungrammati-
cal structures.

Tsur and Rappoport (2007) replicated the work
of Koppel et al. (2005) to investigate the hypothe-
sis that the choice of words in second language writ-

ing is highly influenced by the frequency of native
language syllables — the phonology of the native
language. Approximating this by character bi-grams
alone, they managed to achieve a classification accu-
racy of 66%.

Native language is also amongst the characteris-
tics investigated in the task of authorship profiling
by Estival et al. (2007), as well as other demographic
and personality characteristics. This study used a va-
riety of lexical and document structure features. For
the native language identification classification task,
their model yielded a reasonably high accuracy of
84%, but this was over a set of only three languages
(Arabic, English and Spanish) and against a most
frequent baseline of 62.9%.

Another related work is that of van Halteren
(2008), who used the Europarl corpus of parliamen-
tary speeches. In Europarl, one original language
is transcribed, and the others translated from it; the
task was to identify the original language. On the
basis of frequency counts of word-based n-grams,
surprisingly high classification accuracies within the
range of 87-97% were achieved across six languages
(English, German, French, Dutch, Spanish, and Ital-
ian). This turns out, however, to be significantly
influenced by the use of particular phrases used by
speakers of different languages in the parliamentary
context (e.g. the way Germans typically address the
chamber).

To our knowledge, Wong and Dras (2009) is the
only work that has investigated the usefulness of
syntactic features for the task of native language
identification. They first replicated the work of
Koppel et al. (2005) with the three types of lex-
ical feature, namely function words, character n-
grams, and PoS bi-grams. They then examined the
literature on contrastive analysis (see Section 2.2),
from the field of second language acquisition, and
selected three syntactic errors commonly observed
in non-native English users—subject-verb disagree-
ment, noun-number disagreement and misuse of
determiners—that had been identified as being in-
fluenced by the native language. An ANOVA anal-
ysis showed that the native language identification
constructions were identifiable; however, the over-
all classification was not improved over the lexi-
cal features by using just the three manually de-
tected syntactic errors. The best overall accuracy re-

1601



ported was 73.71%; this was on the second version
of ICLE, across seven languages (those of Koppel
et al. (2005), plus the two Asian languages Chinese
and Japanese).

As a possible approach that would improve the
classification accuracy over just the three manually
detected syntactic errors, Wong and Dras (2009)
suggested deploying (but did not carry out) an idea
put forward by Gamon (2004) (citing Baayen et al.
(1996)) for the related task of identifying the author
of a text: to use CFG production rules to characterise
syntactic structures used by authors.1 We note that
similar ideas have been used in the task of sentence
grammaticality judgement, which utilise parser out-
puts (both trees and by-products) as classification
features (Mutton et al., 2007; Sun et al., 2007; Fos-
ter et al., 2008; Wagner et al., 2009; Tetreault et al.,
2010; Wong and Dras, 2010). We combine this idea
with one we introduce in this paper, of using dis-
criminative reranking features as a broader charac-
terisation of the parse tree.

2.2 Contrastive analysis

Contrastive analysis (Lado, 1957) was an early at-
tempt in the field of second language acquisition
to explain the kinds and source of errors that non-
native speakers make. It arose out of behaviourist
psychology, and saw language learning as an issue
of habit formation that could be inhibited by previ-
ous habits inculcated in learning the native language.
The theory was also tied to structural linguistics:
it compared the syntactic structures of the native
and second languages to find differences that might
cause learning difficulties. The Lado work postu-
lated the Contrastive Analysis Hypothesis (CAH),
claiming that “those elements which are similar to
[the learner’s] native language will be simple for
him, and those elements that are different will be
difficult”; the consequence is that there will be more
errors made in those difficult elements.

While contrastive analysis was influential at first,
it was increasingly noticed that many errors were

1It is not entirely clear how this might work for author-
ship identification: would the Brontë sisters, the corpus Gamon
worked with, have used a significant number of different syntac-
tic constructions from each other? In the context of native lan-
guage identification, however, constrastive analysis postulates
that this is exactly the case for the different classes.

common across all language learners regardless of
native language, which could not be explained un-
der contrastive analysis. Corder (1967) then de-
scribed an alternative, error analysis, where con-
trastive analysis-style errors were seen as only one
type of error, ‘interlanguage’ or ‘interference’ er-
rors; other types were ‘intralingual’ and ‘develop-
mental’ errors, which are not specific to the native
language (Richards, 1971).

In an overview of contrastive analysis after the
emergence of error analysis, Wardhaugh (1970)
noted that there were two interpretations of the
CAH, termed the strong and weak forms. Under the
strong form, all errors were attributed to the native
language, and clearly that was not tenable in light of
error analysis evidence. In the weak form, these dif-
ferences have an influence but are not the sole deter-
minant of language learning difficulty. Wardhaugh
noted claims at the time that the hypothesis was no
longer useful in either the strong or the weak ver-
sion: “Such a claim is perhaps unwarranted, but a
period of quiescence is probable for CA itself”. This
appears to be the case, with the then-dominant error
analysis giving way to newer, more specialised theo-
ries of second language acquisition, such as the com-
petition model of MacWhinney and Bates (1989)
or the processability theory of Pienemann (1998).
Nevertheless, smaller studies specifically of inter-
language errors have continued to be carried out,
generally restricted in their scope to a specific gram-
matical aspect of English in which the native lan-
guage of the learners might have an influence. To
give some examples, Granger and Tyson (1996) ex-
amined the usage of connectors in English by a num-
ber of different native speakers – French, German,
Dutch, and Chinese; Vassileva (1998) investigated
the employment of first person singular and plural
by another different set of native speakers – Ger-
man, French, Russian, and Bulgarian; Slabakova
(2000) explored the acquisition of telicity marking
in English by Spanish and Bulgarian learners; Yang
and Huang (2004) studied the impact of the ab-
sence of grammatical tense in Chinese on the acqui-
sition of English tense-aspect system (i.e. telicity
marking); Franck et al. (2002) and Vigliocco et al.
(1996) specifically examined the usage of subject-
verb agreement in English by French and Spanish,
respectively. There are also a few teaching resources
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for English language teachers that collate such phe-
nomena, such as that of Swan and Smith (2001).

NLP techniques and a probabilistic view of na-
tive language identification now let us revisit and
make use of the weak form of the CAH. Interlan-
guage errors, as represented by differences in parse
trees, may be characteristic of the native language
of a learner; we can use the occurrence of these to
come up with a revised likelihood of the native lan-
guage. In this paper, we use machine learning in a
prediction task as our approach to this.

3 Models

This section describes the three basic models inves-
tigated: the lexical model, based on Koppel et al.
(2005), as the baseline; and then the two models that
exploit syntactic information. In Section 5 we look
at the performance of each model independently and
also in combination: to combine, we just concate-
nate feature vectors.

Lexical As Wong and Dras (2009), we replicate
the features of Koppel et al. (2005) to produce our
LEXICAL model. These are of three types: function
words,2 character n-grams, and PoS n-grams. We
follow Wong and Dras (2009) in resolving some un-
clear issues from Koppel et al. (2005). Specifically,
we use the same list of function words, left unspec-
ified in Koppel et al. (2005), that were empirically
determined by Wong and Dras (2009) to be the best
of three candidates; we used character bi-grams, as
the best performing n-grams, although this also had
been left unspecified by Koppel et al. (2005); and
we used the most frequently occurring PoS bi-grams
and tri-grams, obtained by using the Brill tagger pro-
vided in NLTK (Bird et al., 2009) being trained on
the Brown corpus. In total, there are 798 features
of this class with 398 function words, 200 most fre-
quently occurring character bi-grams, and 200 most
frequently occurring PoS bi-grams. Both function
words and PoS bi-grams have feature values of bi-
nary type; while for character bi-grams, the feature
value is the relative frequency. (These types of fea-
ture value are the best performing one for each lexi-

2As with most work in authorship profiling, only function
words are used, so that the result is not tied to a particular do-
main, and no clues are obtained from different topics that dif-
ferent authors might write about.

cal feature.)
We omitted the 250 rare bi-grams used by Koppel

et al. (2005), as an ablative analysis showed that they
contributed nothing to classification accuracy.

Production Rules Under this model (PROD-
RULE), we take as features horizontal slices of parse
trees, in effect treating them as sets of CFG produc-
tion rules. Feature values are binary. We look at
all possible rules as features, but also present results
for subsets of features chosen using feature selec-
tion. For each language in our dataset, we identify
the n rules most characteristic of the language using
Information Gain (IG). For m classes, we use the
formulation of Yang and Pedersen (1997):

IG(r) = −∑m
i=1 Pr (ci) log Pr (ci)

+ Pr (r)
∑m

i=1 Pr (ci|r) log Pr (ci|r)
+ Pr (r̄)

∑m
i=1 Pr (ci|r̄) log Pr (ci|r̄) (1)

We also investigated simple frequencies, fre-
quency ratios, and pointwise mutual information; as
in much other work, IG performed best, so we do not
present results for the others. Bi-normal separation
(Forman, 2003), often competitive with IG, is only
suitable for binary classification.

It is worth noting that the production rules being
used here are all non-lexicalised ones, except those
lexicalised with function words and punctuation, to
avoid topic-related clues.

Reranking Features As opposed to the horizontal
parse production rules, features used for discrimina-
tive reranking are cross-sections of parse trees that
might capture other aspects of ungrammatical struc-
tures. For these we use the 13 feature schemas de-
scribed in Charniak and Johnson (2005), which were
inspired by earlier work in discriminative estimation
techniques, such as Johnson et al. (1999) and Collins
(2000). Examples of these feature schemas include
tuples covering head-to-head dependencies, preter-
minals together with their closest maximal projec-
tion ancestors, and subtrees rooted in the least com-
mon ancestor.

These feature schemas are not the only possible
ones—they were empirically selected for the spe-
cific purpose of augmenting the Charniak parser.
However, much subsequent work has tended to use
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these same features, albeit sometimes with exten-
sions for specific purposes (e.g. Johnson and Ural
(2010) for the Berkeley parser (Petrov et al., 2006),
Ng et al. (2010) for the C&C parser (Clark and Cur-
ran, 2007)). We also use this standard set, specif-
ically the set of instantiated feature schemas from
the parser from Charniak and Johnson (2005) as
trained on the Wall Street Journal (WSJ), which
gives 1,333,837 potential features.

4 Experimental Setup

4.1 Data

We use the International Corpus of Learner English
(ICLE) compiled by Granger et al. (2009) for the
precise purpose of studying the English writings of
non-native English learners from diverse countries.
All the contributors to the corpus are claimed to
possess similar English proficiency levels (ranging
from intermediate to advanced learners) and are in
the same age group (all in their twenties at the time
of corpus collection.) This was also the data used by
Koppel et al. (2005) and Tsur and Rappoport (2007),
although where they used the first version of the cor-
pus, we use version 2.

Briefly, the first version contains 11 sub-corpora
of English essays contributed by second-year and
third-year university students of different native lan-
guage backgrounds (mostly European and Slavic
languages) — Bulgarian, Czech, Dutch, Finnish,
French, German, Italian, Polish, Russian, Spanish,
and Swedish; the second version has been extended
to additional 5 other native languages (including
Asian languages) — Chinese, Japanese, Norwegian,
Turkish, and Tswana.

As per Wong and Dras (2009), we examine seven
languages, namely Bulgarian, Czech, French, Rus-
sian, Spanish, Chinese, and Japanese. For each na-
tive language, we randomly select from amongst es-
says with length of 500-1000 words. For the purpose
of the present study, we have 95 essays per native
language. For the same reason as highlighted by
Wong and Dras (2009), we intentionally use fewer
essays as compared to Koppel et al. (2005)3 with a
view to reserving more data for future work. We
divide these into training sets of 70 essays per lan-

3Koppel et al. (2005) took all 258 texts per language from
ICLE Version 1 and evaluated using 10-fold cross valiadation.

guage, with a held-out test set of 25 essays per
language. There are 17,718 training sentences and
6,791 testing sentences.

4.2 Parsers

We use two parsers: the Stanford parser (Klein
and Manning, 2003) and the Charniak and John-
son (henceforth C&J) parser (Charniak and Johnson,
2005). Both are widely used, and produce relatively
accurate parses: the Stanford parser gets a labelled
f-score of 85.61 on the WSJ, and the C&J 91.09.

With the Stanford parser, there are 26,284 unique
parse production rules extractable from our ICLE
training set of 490 texts, while the C&J parser pro-
duces 27,705. For reranking, we use only the C&J
parser—since the parser stores these features during
parsing, we can use them directly as classification
features. On the ICLE training data, there are 6,230
features with frequency >10, and 19,659 with fre-
quency >5.

4.3 Classifiers

For our experiments we used a maximum entropy
(MaxEnt) machine learner, MegaM4 (fifth release)
by Hal Daumé III. (We also used an SVM for com-
parison, but the results were uniformly worse, and
degraded more quickly as number of features in-
creased, so we only report the MaxEnt results here).
The classifier is tuned to obtain an optimal classifi-
cation model.

4.4 Evaluation Methodology

Given our relatively small amount of data, we use k-
fold cross-validation, choosing k = 5. While testing
for statistical significance of classification results is
often not carried out in NLP, we do so here because
the quantity of data could raise questions about the
certainty of any effect. In an encyclopedic survey of
cross-validation in machine learning contexts, Re-
faeilzadeh et al. (2009) note that there is as yet no
universal standard for testing of statistical signifi-
cance; and that while more sophisticated techniques
have been proposed, none is more widely accepted
than a paired t-test over folds. We therefore use this
paired t-test over folds, as formulated of Alpaydin

4MegaM is available on http://www.cs.utah.edu/
∼hal/megam/.
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(2004). Under this cross-validation, 5 separate train-
ing feature sets are constructed, excluding the test
fold; 3 folds are used for training, 1 fold for tuning
and 1 fold for testing.

We also use a held-out test set for comparison,
as it is well-known that cross-validation can over-
estimate prediction error (Hastie et al., 2009). We
do not carry out significance testing here—with this
held-out test set size (n = 125), two models would
have to differ by a great deal to be significant. We
only use it as a check on the effect of applying to
completely new data.

5 Results

Table 1 presents the results for the three models in-
dividually under cross-validation. The first point
to note is that PROD-RULE, under both parsers,
is a substantial improvement over LEXICAL when
(non-lexicalised) parse rules together with rules lex-
icalised with function words are used (rows marked
with * in Table 1), with the largest difference as
much as 77.75% for PROD-RULE[both]* (n = all)
versus 64.29% for LEXICAL; these differences with
respect to LEXICAL are statistically significant. (To
give an idea, the paired t-test standard error for this
largest difference is 2.52%.) In terms of error reduc-
tion, this is over 30%.

There appears to be no difference according to the
parser used, regardless of their differing accuracy on
the WSJ. Using the selection metric for PROD-RULE

without rules lexicalised with function words pro-
duces results all around those for LEXICAL; using
fewer reranking features is worse as the quality of
RERANKING declines as feature cut-offs are raised.

Another, somewhat surprising point is that the
RERANKING results are also generally around those
of LEXICAL even though like PROD-RULE they are
also using cross-sections of the parse tree. We con-
sider there might be two possible reasons for this.
The first is that the feature schemas used were orig-
inally chosen for the specific purpose of augment-
ing the performance of the Charniak parser; perhaps
others might be more appropriate here. The second
is that we selected only those instantiated feature
schemas that occurred in the WSJ, and then applied
them to ICLE. As the WSJ is filled with predomi-
nantly grammatical text, perhaps those that were not

Features MaxEnt
LEXICAL (n = 798) 64.29

PROD-RULE[Stanford] (n = 1000) 65.72
PROD-RULE[Stanford]* (n = 1000) 74.08

PROD-RULE[Stanford]* (n = all) 74.49
PROD-RULE[C&J] (n = 1000) 62.25

PROD-RULE[C&J]* (n = 1000) 71.84
PROD-RULE[C&J]* (n = all) 71.63
PROD-RULE[both] (n = 2000) 67.96

PROD-RULE[both]* (n = 2000) 74.69
PROD-RULE[both]* (n = all) 77.75

RERANKING (all features) 67.96
RERANKING (>5 counts) 66.33

RERANKING (>10 counts) 64.90

Table 1: Classification results based on 5-fold cross vali-
dation with parse rules as syntactic features (accuracy %)

Features MaxEnt
Lexical features (n = 798) 75.43

PROD-RULE[Stanford] (n = 1000) 74.29
PROD-RULE[Stanford]* (n = 1000) 79.43

PROD-RULE[Stanford]* (n = all) 78.86
PROD-RULE[C&J] (n = 1000) 73.71

PROD-RULE[C&J] (n = 1000)* 79.43
PROD-RULE[C&J] (n = all)* 80.00
PROD-RULE[both] (n = 2000) 77.71

PROD-RULE[both] (n = 2000)* 78.85
PROD-RULE[both] (n = all)* 80.00

RERANKING (all features) 77.14
RERANKING (>5 counts) 76.57

RERANKING (>10 counts) 75.43

Table 2: Classification results based on hold-out valida-
tion with parse rules as syntactic features (accuracy %)

seen on the WSJ are precisely those that might indi-
cate ungrammaticality. In contrast, the production
rules of PROD-RULE were selected only from the
ICLE training data.

Table 2 presents the results for the individual
models on the held-out test set. The results are gen-
erally higher than for cross-validation—this is not
surprising, as the texts are of the same type, but all
the training data is used (rather than the 1−1/k pro-
portion for cross-validation). Overall, the pattern is
still the same, with PROD-RULE best, then RERANK-
ING and LEXICAL broadly similar; as expected, no
differences are significant with this smaller dataset.
The gap has narrowed, but without significance test-
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Features MaxEnt
LEXICAL (n = 798) 64.29

LEXICAL + PROD-RULE[both] (n = 2000) 63.06
LEXICAL + PROD-RULE[both]* (n = 2000) 72.45

LEXICAL + PROD-RULE[both]* (n = all) 70.82
LEXICAL + RERANKING (n = all) 68.17

Table 3: Classification results based on 5-fold cross vali-
dation for combined models (accuracy %)

Features MaxEnt
LEXICAL (n = 798) 75.43

LEXICAL + PROD-RULE[both] (n = 2000) 80.57
LEXICAL + PROD-RULE[both]* (n = 2000) 81.14

LEXICAL + PROD-RULE[both]* (n = all) 81.71
LEXICAL + RERANKING (n = all) 76.00

Table 4: Classification results based on hold-out valida-
tion for combined models (accuracy %)

ing it is difficult to say whether this is a genuine
phenomenon. The accuracy rate for LEXICAL here
is in line with Wong and Dras (2009); and given
the smaller dataset and larger set of languages, also
broadly in line with Koppel et al. (2005).

Tables 3 and 4 present results for model combina-
tions. It can be seen that the model combinations do
not produce results better than PROD-RULE alone.
Combining all features (results not presented here)
seems to degrade the overall performance even of
the MegaM: perhaps we need to derive feature vec-
tors more compactly than by feature concatenation.

6 Discussion

As illustrated in the confusion matrices (Table 5
for the PROD-RULE model, and Table 6 for the
LEXICAL model), misclassifications occur largely in
Spanish and Slavic languages, Bulgarian and Rus-
sian in particular. Unsurprisingly, Chinese is al-
most completely identified since it comes from a
entirely different language family, Sino-Tibetan, as
compared to the rest of the languages which are from
the branches of the Indo-European family (with
Japanese as the exception). Japanese and French
also appear to be easily distinguished, which could
probably be attributed to their word order or sen-
tence structure which are, to some extent, quite dif-
ferent from English. Japanese is a ‘subject-object-
verb’ language; and French, although having the
same word order as English, heads of phrases in

BL CZ FR RU SP CN JP
BL [14] 6 2 3 - - -
CZ 1 [20] - 3 1 - -
FR - - [25] - - - -
RU 1 4 3 [17] - - -
SP 2 1 3 1 [18] - -
CN - - - - - [24] 1
JP - - - - 1 2 [22]

Table 5: Confusion matrix based on all non-lexicalised
parse rules from both parsers on the held-out set
(BL:Bulgarian, CZ:Czech, FR:French, RU:Russian,
SP:Spanish, CN:Chinese, JP:Japanese)

BL CZ FR RU SP CN JP
BL [14] 3 2 4 2 - -
CZ 6 [16] - 2 1 - -
FR 1 - [24] - - - -
RU 3 2 3 [16] 1 - -
SP 1 2 3 1 [17] - 1
CN - - - - - [24] 1
JP - - - - 1 3 [21]

Table 6: Confusion matrix based on lexical features on
the held-out set (BL:Bulgarian, CZ:Czech, FR:French,
RU:Russian, SP:Spanish, CN:Chinese, JP:Japanese)

French typically come before modifiers as opposed
to English. Overall, the PROD-RULE model results
in fewer misclassifications compared to the LEXI-
CAL model; there are mostly only incremental im-
provements for each language, with perhaps the ex-
ception of the reduction in confusion in the Slavic
languages.

We looked at some of the data, to see what kind
of syntactic substructure is useful in classifying na-
tive language. Although using feature selection with
only 1000 features did not improve performance,
the information gain ranking does identify particu-
lar constructions as characteristic of one of the lan-
guages, and so are useful for inspection.

A phenomenon that the literature has noted as oc-
curring with Chinese speakers is that of the missing
determiner.5 This corresponds to a higher frequency
of NP rules without determiners. These rules may
be valid in other contexts, but are also used to de-
scribe ungrammatical constituents. One example is

5This does happen with native speakers of some other lan-
guages, such as Slavic ones, but not generally (from our knowl-
edge of the literature) with native speakers of others, such as
Romance ones.
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Rules Counts
BL CZ FR RU SP CN JP

NNP → <R> 0 0 3 0 0 67 0
: → - 55 51 23 39 10 9 4
PRN → -LRB- X -RRB- 0 1 7 2 0 42 0
SYM → * 0 1 7 3 1 42 0
: → : 30 39 58 46 47 11 6
X → SYM 0 2 7 4 4 42 6
NP → NNP NNP NNS 0 3 1 0 0 31 0
S → S : S . 36 34 53 39 41 5 9
PP → VBG PP 9 15 16 12 13 54 13
: → ... 16 13 39 11 24 1 3

Table 7: Top 10 rules for the Stanford parser according to Information Gain on the held-out set

(ROOT
(S

(NP
(NP (DT The) (NN development))
(PP (IN of)

(NP (NN country) (NN park))))
(VP (MD can)

(ADVP (RB directly))
(VP (VB elp)

(S
(VP (TO to)

(VP (VB alleviate)
(NP (NNS overcrowdedness)

(CC and)
(NN overpopulation))

(PP (IN in)
(NP (JJ urban)

(NN area))))))))
(. .)))

Figure 1: Parse from Chinese-speaking authors, illustrat-
ing missing determiner

(ROOT
(S

(PP (VBG According)
(PP (TO to)

(NP (NNP <R>))))
(, ,)
(NP

(NP (NN burning))
(PP (IN of)

(NP (JJ plastic)
(NN waste))))

(VP (VBZ generates)
(NP (JJ toxic)

(NNS by-products)))
(. .)))

Figure 2: Parse from Chinese-speaking authors, illustrat-
ing according to

NP → NN NN. In Figure 1 we give the parse (from
the Stanford parser) of the sentence The develop-
ment of country park can directly elp to alleviate
overcrowdedness and overpopulation in urban area.
The phrase country park should either have a deter-
miner or be plural (in which case the appropriate rule
would be NP → NN NNS). There is a similar phe-
nomenon with in urban area, although this is an in-
stance of the rule NP → JJ NN.

Another production rule that occurs typically—
in fact, almost exclusively—in the texts of native
Chinese speakers is PP → VBG PP (by the Stan-
ford parser), which almost always corresponds to the
phrase according to. In Figure 2 we give the parse
of a short sentence (According to <R>, burning of
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(S1
(S

(ADVP (RB Overall))
(, ,)
(NP (NNP cyber))
(VP (VBD cafeis)

(NP (DT a) (JJ good) (NN place))
(PP (IN as)

(NP (JJ recreational)
(NNP centre)))

(PP (IN with)
(NP

(NP
(DT a) (NN bundle))
(PP (IN of)

(NP (JJ up-to-dated)
(NN information))))))

(. .)))

Figure 3: Parse illustrating parser correction

plastic waste generates toxic by-products—<R>is
an in-text citation that was removed in the prepa-
ration of ICLE) that illustrates this particular con-
struction. It appears that speakers of Chinese fre-
quently use this phrase as a translation of gēn jù.
So in this case, what is identified is not the sort of
error that is of interest to contrastive analysis, but
just a particular construction that is characteristic of
a certain native speaker’s language, one that is per-
fectly grammatical but which is used relatively infre-
quently by others and has a slightly unusual analysis
by the parser.

We had expected to see more rules that displayed
obvious ungrammaticality, such as VP → DT IN.
However, both parsers appear to be good at ‘ig-
noring’ errors, and producing relatively grammati-
cal structures (albeit ones with different frequencies
for different native languages). Figure 3 gives the
C&J parse for Overall, cyber cafeis a good place as
recreational centre with a bundle of up-to-dated in-
formation. The correction of up-to-dated rather than
up-to-date is straightforward, but the simple typo-
graphical error of running together cafe and is leads
to more complex problems for the parser. Neverthe-
less, the parser produces a solid grammatical tree,
specifically assigning the category VBD to the com-
pound cafeis. This appears to be because both the
Stanford and C&J parsers have implicit linguistic

constraints such as assumptions about heads; these
are imposed even when the text does not provide ev-
idence for them.

We also present in Table 7 the top 10 rules chosen
under the IG feature selection for the Stanford parser
on the held-out set. A number of these, and those
ranked lower, are concerned with punctuation: these
seem unlikely to be related to native language, but
perhaps rather to how students of a particular lan-
guage background are taught. Others are more typi-
cal of the sorts of example we illustrated above: PP
→ VBG PP, for example, is typically connected to
the according to construction discussed in connec-
tion with Figure 2, and it can be seen that the dom-
inant frequency count there is for native Chinese
speakers (column 6 of the counts).

7 Conclusion

In this paper we have shown that, using cross-
sections of parse trees, we can improve above an al-
ready good baseline in the task of native language
identification. While we do not make any strong
claims for the Contrastive Analysis Hypothesis, the
usefulness of syntax in the context of this problem
does provide some support.

The best features arising from the classification
have been horizontal cross-sections of trees, rather
than the more general discriminative parse reranking
features that might have been expected to perform at
least as well. This relatively poorer performance by
the reranking features may be due to a number of
factors, all of which could be investigated in future
work. One is the use of feature schema instances that
did not appear in the largely grammatical WSJ; an-
other is the extension of feature schemas; and a third
is the use of a parser that does not enforce linguistic
constraints such as the Berkeley parser (Petrov et al.,
2006).

Examining some of the substructures showed
some errors that were expected; other constructions
that were grammatical, but were just characteris-
tic translations of constructions that were common
in the native language; and a large number where
grammatical errors were glossed over by the parser’s
linguistic constraints, suggesting another purpose
for further work with the Berkeley parser. Overall,
the use of these led to an error reduction in over 30%
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in the cross-validation evaluation with significance
testing.
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Abstract

This paper describes a novel probabilistic ap-
proach for generating natural language sen-
tences from their underlying semantics in the
form of typed lambda calculus. The approach
is built on top of a novel reduction-based
weighted synchronous context free grammar
formalism, which facilitates the transforma-
tion process from typed lambda calculus into
natural language sentences. Sentences can
then be generated based on such grammar
rules with a log-linear model. To acquire such
grammar rules automatically in an unsuper-
vised manner, we also propose a novel ap-
proach with a generative model, which maps
from sub-expressions of logical forms to word
sequences in natural language sentences. Ex-
periments on benchmark datasets for both En-
glish and Chinese generation tasks yield sig-
nificant improvements over results obtained
by two state-of-the-art machine translation
models, in terms of both automatic metrics
and human evaluation.

1 Introduction

This work focuses on the task of generating natu-
ral language sentences from their underlying mean-
ing representations in the form of formal logical ex-
pressions (typed lambda calculus). Many early ap-
proaches to generation from logical forms make use
of rule-based methods (Wang, 1980; Shieber et al.,
1990), which concern surface realization (ordering
and inflecting of words) but largely ignore lexical ac-
quisition. Recent approaches start to employ corpus-
based probabilistic methods, but many of them as-
sume the underlying meaning representations are of

specific forms such as variable-free tree-structured
representations (Wong and Mooney, 2007a; Lu et
al., 2009) or database entries (Angeli et al., 2010).

While these algorithms usually work well on spe-
cific semantic formalisms, it is unclear how well
they could be applied to a different semantic formal-
ism. In this work, we propose a general probabilis-
tic model that performs generation from underlying
formal semantics in the form of typed lambda calcu-
lus expressions (we refer to them as λ-expressions
throughout this paper), where both lexical acquisi-
tion and surface realization are integrated in a single
framework.

One natural proposal is to adopt a state-of-the-art
statistical machine translation approach. However,
unlike text to text translation, which has been ex-
tensively studied in the machine translation commu-
nity, translating from logical forms into text presents
additional challenges. Specifically, logical forms
such as λ-expressions may have complex internal
structures and variable dependencies across sub-
expressions. Problems arise when performing auto-
matic acquisition of a translation lexicon, as well as
performing lexical selection and surface realization
during generation.

In this work, we tackle these challenges by mak-
ing the following contributions:

• A novel forest-to-string generation algorithm:
Inspired by the work of Chiang (2007), we in-
troduce a novel reduction-based weighted bi-
nary synchronous context-free grammar for-
malism for generation from logical forms (λ-
expressions), which can then be integrated with
a probabilistic forest-to-string generation algo-
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rithm.
• A novel grammar induction algorithm: To au-

tomatically induce such synchronous grammar
rules, we propose a novel generative model
that establishes phrasal correspondences be-
tween logical sub-expressions and natural lan-
guage word sequences, by extending a previ-
ous model proposed for parsing natural language
into meaning representations (Lu et al., 2008).

To our best knowledge, this is the first probabilis-
tic model for generating sentences from the lambda
calculus encodings of their underlying formal mean-
ing representations, that concerns both surface real-
ization and lexical acquisition. We demonstrate the
effectiveness of our model in Section 5.

2 Related Work

The task of language generation from logical forms
has a long history. Many early works do not rely on
probabilistic approaches. Wang (1980) presented an
approach for generation from an extended predicate
logic formalism using hand-written rules. Shieber
et al. (1990) presented a semantic head-driven ap-
proach for generation from logical forms based on
rules written in Prolog. Shemtov (1996) presented a
system for generation of multiple paraphrases from
ambiguous logical forms. Langkilde (2000) pre-
sented a probabilistic model for generation from a
packed forest meaning representation, without con-
cerning lexical acquisition. Specifically, we are not
aware of any prior work that handles both automatic
unsupervised lexical acquisition and surface realiza-
tion for generation from logical forms in a single
framework.

Another line of research efforts focused on the
task of language generation from other meaning rep-
resentation formalisms. Wong and Mooney (2007a)
as well as Chen and Mooney (2008) made use
of synchronous grammars to transform a variable-
free tree-structured meaning representation into sen-
tences. Lu et al. (2009) presented a language gener-
ation model using the same meaning representation
based on tree conditional random fields. Angeli et
al. (2010) presented a domain-independent proba-
bilistic approach for generation from database en-
tries. All these models are probabilistic models.

Recently there are also substantial research efforts
on the task of mapping natural language to meaning

representations in various formalisms – the inverse
task of language generation called semantic parsing.
Examples include Zettlemoyer and Collins (2005;
2007; 2009), Kate and Mooney (2006), Wong and
Mooney (2007b), Lu et al. (2008), Ge and Mooney
(2009), as well as Kwiatkowski et al. (2010).

Of particular interest is our prior work Lu et al.
(2008), in which we presented a joint generative pro-
cess that produces a hybrid tree structure containing
words, syntactic structures, and meaning represen-
tations, where the meaning representations are in a
variable-free tree-structured form. One important
property of the model in our prior work is that it
induces a hybrid tree structure automatically in an
unsupervised manner, which reveals the correspon-
dences between natural language word sequences
and semantic elements. We extend our prior model
in the next section, so as to support λ-expressions.
The model in turn serves as the basis for inducing
the synchronous grammar rules later.

3 λ-Hybrid Tree

In Lu et al. (2008), a generative model was pre-
sented to model the process that jointly generates
both natural language sentences and their underly-
ing meaning representations of a variable-free tree-
structured form. The model was defined over a
hybrid tree, which consists of meaning representa-
tion tokens as internal nodes and natural language
words as leaves. One limitation of the hybrid tree
model is that it assumes a single fixed tree struc-
ture for the meaning representation. However, λ-
expressions exhibit complex structures and variable
dependencies, and thus it is not obvious how to rep-
resent them in a single tree structure.

In this section, we present a novel λ-hybrid tree
model that provides the following extensions over
the model of Lu et al. (2008):
1. The internal nodes of a meaning representation

tree involve λ-expressions which are not neces-
sarily of variable-free form;

2. The meaning representation has a packed forest
representation, rather than a single determinis-
tic tree structure.

3.1 Packed λ-Meaning Forest

We represent a λ-expression with a packed forest of
meaning representation trees (called λ-meaning for-
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est). Multiple different meaning representation trees
(called λ-meaning trees) can be extracted from the
same λ-meaning forest, but they all convey equiva-
lent semantics via reductions, as discussed next.

Constructing a λ-meaning forest for a given λ-
expression requires decomposition of a complete λ-
expression into semantically complete and syntacti-
cally correct sub-expressions in a principled man-
ner. This can be achieved with a process called
higher order unification (Huet, 1975). The process
was known to be very complex and was shown to be
undecidable in unrestricted form (Huet, 1973). Re-
cently a restricted form of higher order unification
was applied to a semantic parsing task (Kwiatkowski
et al., 2010). In this work, we employ a similar tech-
nique for building the λ-meaning forest.

For a given λ-expression e, our algorithm finds ei-
ther two expressions h and f such that (h f) ≡ e, or
three expressions h, f , and g such that ((h f) g) ≡
e, where the symbol≡ is interpreted as α-equivalent
after reductions1 (Barendregt, 1985). We then build
the λ-meaning forest based on the expressions h, f ,
and g. In practice, we develop a BUILDFOREST(e)
procedure which recursively builds λ-forests by ap-
plying restricted higher-order unification rules on
top of the λ-expression e. Each node of the λ-forest
is called a λ-production, to which we will give more
details in Section 3.2. For example, once a candi-
date triple (h, f, g) as in ((h f) g) ≡ e has been
identified, the procedure creates a λ-forest with the
root node being a λ-production involving h, and two
sets of child λ-forests given by BUILDFOREST(f)
and BUILDFOREST(g) respectively. For restricted
higher-order unification, besides the similar assump-
tions made by Kwiatkowski et al. (2010), we also
impose one additional assumption: limited free vari-
able, which states that the expression hmust contain
no more than one free variable. Note that this pro-
cess provides a semantically equivalent packed for-
est representation of the original λ-expression, with-
out altering its semantics in any way.

For better readability, we introduce the symbol
� as an alternative notation for functional appli-
cation. In other words, h � f refers to (h f) or
h(f), and h � f � g refers to ((h f) g). For ex-

1In this work, for reductions, we consider α-conversions
(changing bound variables) and β-conversions (applying func-
tors to their arguments).

ample, the expression λx.state(x)∧ loc(boston, x)
can be represented as the functional application form
of [λf.λx.f(x) ∧ loc(boston, x)] � λx.state(x).2

Such a packed forest representation contains ex-
ponentially many tree structures which all convey
the same semantics. We believe such a semantic
representation is more advantageous than the sin-
gle fixed tree-structured representation. In fact, one
could intuitively regard a different decomposition
path as a different way of interpreting the same se-
mantics. Thus, such a representation could poten-
tially accommodate a wider range of natural lan-
guage expressions, which all share the same seman-
tics but with very different word choices, phrase or-
derings, and syntactic structures (like paraphrases).
It may also alleviate the non-isomorphism issue that
was commonly faced by researchers when mapping
meaning representations and sentences (Wong and
Mooney, 2007b). We will validate our belief later
through experiments.

3.2 The Joint Generative Process
. . .

τa : πa � τb � τc

w1 τb : πb � τd

. . . w4

w2 τc : πc

w5

w3

Figure 1: The joint generative process of both λ-meaning tree
and its corresponding natural language sentence, which results
in a λ-hybrid tree.

The generative process for a sentence together
with its corresponding λ-meaning tree is illustrated
in Figure 1, which results in a λ-hybrid tree. Internal
nodes of a λ-hybrid tree are called λ-productions,
which are building blocks of a λ-forest. Each
λ-production in turn has at most two child λ-
productions. A λ-production has the form τa : πa �
τb, where τa is the expected type3 after type evalu-
ation of the terms to its right, πa is a λ-expression
(serves as the functor), and τb are types of the child
λ-productions (as the arguments). The leave nodes

2Throughout this paper, we abuse this notation a bit by al-
lowing the arguments to be types rather than actual expressions,
such as λy.λx.loc(y, x)) � e, which indicates that the functor
λy.λx.loc(y, x) expects an expression of type e to serve as its
argument.

3This work considers basic types: e (entities) and t (truth
values). It also allows function types, e.g., 〈e, t〉 is the type
assigned to functions that map from entities to truth values.
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r : 〈e, t〉 1

〈e, t〉 1 : λg.λf.λx.g(x) ∧ f(x)� 〈e, t〉 1 � 〈e, t〉 2

〈e, t〉 2 : λf.λg.λx.∃y.g(y) ∧ (f(x) y)� 〈e, 〈e, t〉〉 1 � 〈e, t〉 2

〈e, t〉 2 : λg.λf.λx.g(x) ∧ f(x)� 〈e, t〉 1 � 〈e, t〉 2

〈e, t〉 1 : λy.λx.loc(y, x)� e 1

runs throughe 1 : miss r

the mississippi

that

〈e, t〉 2 : λx.state(x)

states

〈e, 〈e, t〉〉 1 : λy.λx.next to(x, y)

bordering

〈e, t〉 1 : λx.state(x)

the states

give me

Figure 2: One example λ-hybrid tree for the sentence “give me the states bordering states that the mississippi runs through” together
with its logical form “λx0.state(x0) ∧ ∃x1.[loc(miss r, x1) ∧ state(x1) ∧ next to(x1, x0)]”.

w are contiguous word sequences. The model re-
peatedly generates λ-hybrid sequences, which con-
sist of words intermixed with λ-productions, from
each λ-production at different levels.

Consider part of the example λ-hybrid tree in Fig-
ure 2. The probability associated with generation of
the subtree that spans the sub-sentence “that the mis-
sissippi runs through” can be written as:

P
(
λx.loc(miss r, x), that the mississippi runs through

)

= φ(m→ wYw|p1)× ψ(that e 1 runs through|p1)

×ρ(p2|p1, arg1)× φ(m→ w|p2)× ψ(the mississippi|p2)

where p1 = 〈e, t〉 : λy.λx.loc(y, x)� e 1 , and p2 =
e : miss r.

Following the work of Lu et al. (2008), the gener-
ative process involves three types of parameters θ̄ =
{φ, ψ, ρ}: 1) pattern parameters φ, which model in
what way the words and child λ-productions are in-
termixed; 2) emission parameters ψ, which model
the generation process of words from λ-productions,
where either a unigram or a bigram assumption can
be made (Lu et al., 2008); and 3) meaning repre-
sentation (MR) model parameters ρ, which model
the generation process from one λ-production to its
child λ-productions. An analogous inside-outside
algorithm (Baker, 1979) used there is employed
here. Since we allow a packed λ-meaning forest rep-
resentation rather than a fixed tree structure, the MR
model parameters ρ in this work should be estimated
with the inside-outside algorithm as well, rather than
being estimated directly from the training data by
simple counting, as was done in Lu et al. (2008).

4 The Language Generation Algorithm

Now we present the algorithm for language gener-
ation. We introduce the grammar first, followed by
the features we use. Next, we present the method for
grammar induction, and then discuss the decoder.

4.1 The Grammar
We use a weighted synchronous context free gram-
mar (SCFG) (Aho and Ullman, 1969), which was
previously used in Chiang (2007) for hierarchical
phrase-based machine translation. The grammar is
defined as follows:

τ → 〈pλ , hw,∼〉 (1)

where τ is the type associated with the λ-production
pλ

4, and hw is a sequence consisting of natural lan-
guage words intermixed with types. The symbol
∼ denotes the one-to-one correspondence between
nonterminal occurrences (i.e., in this case types of
λ-expressions) in both pλ and hw.

We allow a maximum of two nonterminal sym-
bols in each synchronous rule, as was also assumed
in Chiang (2007), which makes the grammar a bi-
nary SCFG. Two example rules are:

〈e, t〉 →
〈
λy.λx.loc(y, x) � e 1 , that e 1 runs through

〉

e →
〈
miss r, the mississippi

〉

where the boxed indices give the correspondences
between nonterminals.

A derivation with the above two synchronous
rules results in the following λ-expression paired
with its natural language counterpart:

4Since type is already indicated by τ , we avoid redundancy
by omitting it when writing pλ, without loss of information.
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Type 1: 〈e, 〈e, t〉〉 →
〈
λy.λx.next to(x, y) , bordering

〉

〈e, t〉 →
〈
λg.λf.λx.g(x) ∧ f(x)� 〈e, t〉 1 � 〈e, t〉 2 , 〈e, t〉 2 〈e, t〉 1

〉

Type 2: 〈e, t〉 →
〈
λx.loc(miss r, x) ∧ state(x) , states that the mississippi runs through

〉

〈e, t〉 →
〈
λx.loc(miss r, x) , that the mississippi runs through

〉

Type 3: 〈e, t〉 →
〈
λf.λx.state(x) ∧ ∃y.[f(y) ∧ next to(y, x)]� 〈e, t〉 1 , the states bordering 〈e, t〉 1

〉

〈e, t〉 →
〈
λy.λx.loc(y, x) ∧ state(x)� e 1 , states that e 1 runs through

〉

Figure 3: Example synchronous rules that can be extracted from the λ-hybrid tree of Figure 2.

〈e, t〉→
〈
λx.loc(miss r, x) , that the mississippi runs through

〉

where the source side λ-expression is constructed
from the application λy.λx.loc(y, x) �miss r fol-
lowed by a reduction (β-conversion). Assuming the
λ-expression to be translated is λx.loc(miss r, x),
the above rule in fact gives one candidate translation
“that the mississippi runs through”.

4.2 Features
Following the work of Chiang (2007), we assign
scores to derivations with a log-linear model, which
are essentially weighted products of feature values.

For generality, we only consider the following
four simple features in this work:
1. p̃(hw|pλ): the relative frequency estimate of a

hybrid sequence hw given the λ-production pλ;
2. p̃(pλ|hw, τ): the relative frequency estimate of

a λ-production pλ given the phrase hw and the
type τ ;

3. exp(−wc(hw)): the number of words gener-
ated, where wc(hw) refers to the number of
words in hw (i.e., word penalty); and

4. pLM (ŝ): the language model score of the gen-
erated sentence ŝ.

The first three features, which are also widely
used in state-of-the-art machine translation models
(Koehn et al., 2003; Chiang, 2007), are rule-specific
and thus can be computed before decoding. The last
feature is computed during the decoding phase in
combination with the sibling rules used.

We score a derivation D with a log-linear model:

w(D) =

(∏

r∈D

∏

i

fi(r)
wi

)
× pLM (ŝ)wLM (2)

where r ∈ D refers to a rule r that appears in
the derivation D, ŝ is the target side (sentence) as-
sociated with the derivation D, and fi is a rule-
specific feature (one of features 1–3 above) which

is weighted with wi. The language model feature is
weighted with wLM .

Once the feature values are computed, our goal is
to find the optimal weight vector w̄∗ that maximizes
a certain evaluation metric when used for decoding,
as we will discuss in Section 4.4.

Following popular approaches to learning feature
weights in the machine translation community (Och
and Ney, 2004; Chiang, 2005), we use the minimum
error rate training (MERT) (Och, 2003) algorithm to
learn the feature weights that directly optimize cer-
tain automatic evaluation metric. Specifically, the
Z-MERT (Zaidan, 2009) implementation of the al-
gorithm is used in this work.

4.3 Grammar Induction

Automatic induction of the grammar rules as de-
scribed above from training data (which consists
of pairs of λ-expressions and natural language sen-
tences) is a challenging task. Current state-of-the-
art string-based translation systems (Koehn et al.,
2003; Chiang, 2005; Galley and Manning, 2010)
typically begin with a word-aligned corpus to con-
struct phrasal correspondences. Word-alignment in-
formation can be estimated from alignment models,
such as the IBM alignment models (Brown et al.,
1993) and HMM-based alignment models (Vogel et
al., 1996; Liang et al., 2006). However, unlike texts,
logical forms have complex internal structures and
variable dependencies across sub-expressions. It is
not obvious how to establish alignments between
logical terms and texts with such alignment models.

Fortunately, the generative model for λ-hybrid
tree introduced in Section 3 explicitly models the
mappings from λ-sub-expressions to (possibly dis-
contiguous) word sequences with a joint genera-
tive process. This motivates us to extract grammar
rules from the λ-hybrid trees. Thus, we first find
the Viterbi λ-hybrid trees for all training instances,
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Tree fragment :

〈e, t〉 2 : λg.λf.λx.g(x) ∧ f(x)� 〈e, t〉 1 � 〈e, t〉 2

〈e, t〉 1 : λy.λx.loc(y, x)� e 1

runs throughe 1 : . . .that

〈e, t〉 2 : λx.state(x)

states

Source : (substitution) λy′.
[
λg.λf.λx.g(x) ∧ f(x)� [λy.λx.loc(y, x)� y′]� λx.state(x)

]
� e 1

(two β-conversions)⇒ λy′.[λf.λx.loc(y′, x) ∧ f(x)� λx.state(x)]� e 1

(β-conversion)⇒ λy′.λx.loc(y′, x) ∧ state(x)� e 1

(α-conversion)⇒ λy.λx.loc(y, x) ∧ state(x)� e 1
Target : “states that e 1 runs through”

Rule : 〈e, t〉 →
〈
λy.λx.loc(y, x) ∧ state(x)� e 1 , states that e 1 runs through

〉

Figure 4: Construction of a two-level λ-hybrid sequence rule via substitution and reductions from a tree fragment. Note that the
subtree rooted by e 1 : miss r gets “abstracted” by its type e. The auxiliary variable y′ of type e is thus introduced to facilitate the
construction process.

based on the learned parameters of the generative λ-
hybrid tree model.

Next, we extract grammar rules on top of these
λ-hybrid trees. Specifically, we extract the follow-
ing three types of synchronous grammar rules, with
examples given in Figure 3:

1. λ-hybrid sequence rules: They are the conven-
tional rules constructed from one λ-production
and its corresponding λ-hybrid sequence.

2. Subtree rules: These rules are constructed from
a complete subtree of the λ-hybrid tree. Each
rule provides a mapping between a complete
sub-expression and a contiguous sub-sentence.

3. Two-level λ-hybrid sequence rules: These rules
are constructed from a tree fragment with one
of its grandchild subtrees (the subtree rooted by
one of its grandchild nodes) being abstracted
with its type only. These rules are constructed
via substitution and reductions.
Figure 4 gives an example based on a tree frag-
ment of the λ-hybrid tree in Figure 2. Note that
the first step makes use of the auxiliary vari-
able y′ of type e to represent the grandchild
subtree. λy′ is introduced so as to allow any
λ-expression of type e serving as this expres-
sion’s argument to replace y′. In fact, if the
semantics conveyed by the grandchild subtree
serves as its argument, we will obtain the exact
complete semantics of the current subtree. As
we can see, the resulting rule is more general,
and is able to capture longer structural depen-
dencies. Such rules are thus potentially more
useful.

The overall algorithm for learning the grammar
rules is sketched in Figure 5.

4.4 Decoding

Our goal in decoding is to find the most probable
sentence ŝ for a given λ-expression e:

ŝ = s

(
arg max
D s.t. e(D)≡e

w(D)

)
(3)

where e(D) refers to the source side (λ-expression)
of the derivation D, and s(D) refers to the target
side (natural language sentence) of D.

A conventional CKY-style decoder as used by
Chiang (2007) is not applicable to this work since
the source side does not exhibit a linear structure.
As discussed in Section 3.1, λ-expressions are rep-
resented as packed λ-meaning forests. Thus, in
this work, we make use of a bottom-up dynamic
programming chart-parsing algorithm that works di-
rectly on translating forest nodes into target natural
language words. The algorithm is similar to that of
Langkilde (2000) for generation from an underly-
ing packed semantic forest. Language models are
incorporated when scoring the n-best candidates at
each forest node, where the cube-pruning algorithm
of Chiang (2007) is used. In order to accommodate
type 2 and type 3 rules as discussed in Section 4.3,
whose source side λ-productions are not present in
the nodes of the original λ-meaning forest, new λ-
productions are created (via substitution and reduc-
tions) and attached to the original λ-meaning forest.
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Procedures

• f ← BUILDFOREST(e)

It takes in a λ-expression e and outputs its λ-
meaning forest f . (Sec. 3.1)

• θ̄ ← TRAINGENMODEL(f, s)
It takes in λ-meaning forest-sentence pairs (f, s),
performs EM training of the generative model, and
outputs the parameters θ̄. (Sec. 3.2)

• h← FINDHYBRIDTREE(f, s, θ̄)

It finds the most probable λ-hybrid tree h contain-
ing the given f -s pair, under the generative model
parameters θ̄. (Sec. 4.3)

• Γh ← EXTRACTRULES(h)

It takes in a λ-hybrid tree h, and extracts a set of
grammar rules Γh out of it. (Sec. 4.3)

Algorithm

1. Inputs and initializations:
• A training set (e, s), an empty rule set Γ = ∅

2. Learn the grammar:
• For each ei ∈ e, find its λ-meaning forest:
fi = BUILDFOREST(ei). This gives the set
(f, s).

• Learn the generative model parameter :
θ̄∗ = TRAINGENMODEL(f, s).

• For each (fi, si) ∈ (f, s), find the most proba-
ble λ-hybrid tree hi, and then extract the gram-
mar rules from it:
hi = FINDHYBRIDTREE(fi, si, θ̄

∗)
Γ = Γ ∪ EXTRACTRULES(hi)

3. Output the learned grammar rule set Γ.

Figure 5: The algorithm for learning the grammar rules

5 Experiments

For experiments, we evaluated on the GEOQUERY

dataset, which consists of 880 queries on U.S. geog-
raphy. The dataset was manually labeled with λ-
expressions as their semantics in Zettlemoyer and
Collins (2005). It was used in many previous re-
search efforts on semantic parsing (Zettlemoyer and
Collins, 2005; Wong and Mooney, 2006; Zettle-
moyer and Collins, 2007; Kwiatkowski et al., 2010).
The original dataset was annotated with English sen-
tences only. In order to assess the generation per-
formance across different languages, in our work
the entire dataset was also manually annotated with
Chinese by a native Chinese speaker with linguistics
background5.

For all the experiments we present in this sec-
tion, we use the same split as that of Kwiatkowski

5The annotator created annotations with both λ-expressions
and corresponding English sentences available as references.

et al. (2010), where 280 instances are used for test-
ing, and the remaining instances are used for learn-
ing. We further split the learning set into two por-
tions, where 500 instances are used for training the
models, which includes induction of grammar rules,
training a language model, and computing feature
values, and the remaining 100 instances are used for
tuning the feature weights.

As we have mentioned earlier, we are not aware
of any previous work that performs generation from
formal logical forms that concerns both lexical ac-
quisition and surface realization. The recent work
by Angeli et al. (2010) presented a generation sys-
tem from database records with an additional focus
on content selection (selection of records and their
subfields for generation). It is not obvious how to
adopt their algorithm in our context where content
selection is not required but the more complex log-
ical semantic representation is used as input. Other
earlier approaches such as the work of Wang (1980)
and Shieber et al. (1990) made use of rule-based
approaches without automatic lexical acquisition.

We thus compare our system against two state-
of-the-art machine translation systems: a phrase-
based translation system, implemented in the Moses
toolkit (Koehn et al., 2007)6, and a hierarchical
phrase-based translation system, implemented in the
Joshua toolkit (Li et al., 2009), which is a reim-
plementation of the original Hiero system (Chiang,
2005; Chiang, 2007). The state-of-the-art unsuper-
vised Berkeley aligner (Liang et al., 2006) with de-
fault setting is used to construct word alignments.
We train a trigram language model with modified
Kneser-Ney smoothing (Chen and Goodman, 1996)
from the training dataset using the SRILM toolkit
(Stolcke, 2002), and use the same language model
for all three systems. We use an n-best list of size
100 for all three systems when performing MERT.

5.1 Automatic Evaluation
For automatic evaluation, we measure the original
IBM BLEU score (Papineni et al., 2002) (4-gram
precision with brevity penalty) and the TER score
(Snover et al., 2006) (the amount of edits required
to change a system output into the reference)7. Note
that TER measures the translation error rate, thus a

6We used the default settings, and enabled the default lexi-
calized reordering model, which yielded better performance.

7We used tercom version 0.7.25 with the default settings.
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smaller score indicates a better result. For clarity,
we report 1−TER scores. Following the tuning pro-
cedure as conducted in Galley and Manning (2010),
we perform MERT using BLEU as the metric.

We compare our model against state-of-the-art
statistical machine translation systems. As a base-
line, we first conduct an experiment with the fol-
lowing naive approach: we treat the λ-expressions
as plain texts. All the bound variables (e.g., x
in λx.state(x)) which do not convey semantics
are removed, but free variables (e.g., state in
λx.state(x)) which might convey semantics are left
intact. Quantifiers and logical connectives are also
left intact. While this naive approach might not ap-
pear very sensible, we merely want to treat it as our
simplest baseline.

Alternatively, analogous to the work of Wong
and Mooney (2007a), we could first parse the λ-
expressions into binary tree structures with a deter-
ministic procedure, and then linearize the tree struc-
ture as a sequence. Since there exists different ways
to linearize a binary tree, we consider preorder, in-
order, and postorder traversal of the trees, and lin-
earize them in these three different ways.

As for our system, during the grammar learning
phase, we initialize the generative model parame-
ters with output from the IBM alignment model 1
(Brown et al., 1993)8, and run the λ-hybrid tree gen-
erative model with the unigram emission assumption
for 10 iterations, followed by another 10 iterations
with the bigram assumption. Grammar rules are then
extracted based on the λ-hybrid trees obtained from
such learned generative model parameters.

Since MERT is prone to search errors, we run each
experiment 5 times with randomly initialized fea-
ture weights, and report the averaged scores. Ex-
perimental results for both English and Chinese are
presented in Table 1. As we can observe, the way
that a meaning representation tree is linearized has
a significant impact on the translation performance.
Interestingly, for both Moses and Joshua, the pre-
order setting yields the best performance for En-
glish, whereas it is inorder that yields the best per-
formance for Chinese. This is perhaps due to the
fact that Chinese presents a very different syntactic
structure and word ordering from English.

8We assume word unigrams are generated from free vari-
ables, quantifiers, and logical connectives in IBM model 1.

Our system, on the other hand, employs a packed
forest representation for λ-expressions. Therefore,
it eliminates the ordering constraint by encompass-
ing exponentially many possible tree structures dur-
ing both the alignment and decoding stage. As a
result, our system obtains significant improvements
in both BLEU and 1−TER using the significance
test under the paired bootstrap resampling method
of Koehn (2004). We obtain p < 0.01 for all cases,
except when comparing against Joshua-preorder for
English, where we obtain p < 0.05 for both metrics.

English Chinese
BLEU 1−TER BLEU 1−TER

Moses

text 48.93 61.08 43.23 51.71
preorder 51.13 63.73 42.08 50.43
inorder 46.72 57.59 48.03 55.29

postorder 44.30 55.05 46.36 54.59

Joshua

text 37.40 48.97 36.60 46.20
preorder 51.40 64.69 40.05 49.70
inorder 40.31 50.47 48.32 54.64

postorder 31.10 42.44 41.31 49.71
This work (t) 54.58 67.65 55.11 63.77

(t) w/o type 2 rules 53.77 66.43 54.30 62.49
(t) w/o type 3 rules 53.68 66.17 50.96 60.13

Table 1: Performance on generating English and Chinese from
λ-expressions with automatic evaluation metrics (we report per-
centage scores).

5.2 Human Evaluation
We also conducted human evaluation with 5 eval-
uators each on English and Chinese. We randomly
selected about 50% (139) test instances and obtained
output sentences from the three systems. Moses and
Joshua were run with the top-performing settings in
terms of automatic metrics (i.e., preorder for En-
glish and inorder for Chinese). Following Angeli
et al. (2010), evaluators are instructed to give scores
based on language fluency and semantic correctness,
on the following scale:

Score Language Fluency Semantic Correctness
5 Flawless Perfect
4 Good Near Perfect
3 Non-native Minor Errors
2 Disfluent Major Errors
1 Gibberish Completely Wrong

For each test instance, we first randomly shuffled
the output sentences of the three systems, and pre-
sented them together with the correct reference to
the evaluators. The evaluators were then asked to
score all the output sentences at once. This eval-
uation process not only ensures that the annotators
have no access to which system generated the out-
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English Judge E1 Judge E2 Judge E3 Judge E4 Judge E5 Average
FLU SEM FLU SEM FLU SEM FLU SEM FLU SEM FLU SEM

Moses preorder 4.56 4.57 4.58 4.54 4.52 4.52 4.48 4.14 4.28 4.22 4.48 ± 0.12 4.40 ± 0.20
Joshua preorder 4.50 4.43 4.49 4.29 4.44 4.36 4.46 4.04 4.12 4.06 4.40 ± 0.16 4.24 ± 0.18

This work 4.76 4.73 4.73 4.70 4.68 4.60 4.64 4.37 4.49 4.44 4.66 ± 0.10 4.57 ± 0.16

Chinese Judge C1 Judge C2 Judge C3 Judge C4 Judge C5 Average
FLU SEM FLU SEM FLU SEM FLU SEM FLU SEM FLU SEM

Moses inorder 4.38 4.22 3.95 3.99 4.01 3.80 4.27 4.19 4.09 4.01 4.14 ± 0.18 4.04 ± 0.17
Joshua inorder 4.32 4.04 3.74 3.91 3.76 3.55 4.21 4.04 3.96 3.97 4.00 ± 0.26 3.90 ± 0.21

This work 4.61 4.47 4.53 4.43 4.50 4.31 4.71 4.55 4.57 4.32 4.59 ± 0.08 4.42 ± 0.10

Table 2: Human evaluation results on English and Chinese generation. FLU: language fluency; SEM: semantic correctness.

put, but also minimizes bias associated with scor-
ing different outputs for the same input. The de-
tailed and averaged results (with one standard devi-
ation) for human evaluation are presented in Table 2
for English and Chinese respectively. For both lan-
guages, our system achieves a significant improve-
ment over Moses and Joshua (p < 0.01 with paired
t-tests), in terms of both language fluency and se-
mantic correctness. This set of results is important,
as it demonstrates that our system produces more
fluent texts with more accurate semantics when per-
ceived by real humans.

5.3 Additional Experiments

We also performed the following additional experi-
ments. First, we attempted to increase the number
of EM iterations (to 100) when training the model
with the bigram assumption, so as to assess the ef-
fect of the number of EM iterations on the final gen-
eration performance. We observed similar perfor-
mance. Second, in order to assess the importance of
the two types of novel rules – subtree rules (type 2)
and two-level λ-hybrid sequence rules (type 3), we
also conducted experiments without these rules for
generation. Experiments show that these two types
of rules are important. Specifically, type 3 rules,
which are able to capture longer structural depen-
dencies, are of particular importance for generating
Chinese. Detailed results for these additional exper-
iments are presented in Table 1.

5.4 Experiments on Variable-free Meaning
Representations

Finally, we also assess the effectiveness of our
model on an alternative meaning representation for-
malism in the form of variable-free tree structures.
Specifically, we tested on the ROBOCUP dataset
(Kuhlmann et al., 2004), which consists of 300
English instructions for coaching robots for soc-

cer games, and a variable-free version of the GEO-
QUERY dataset. These are the standard datasets
used in the generation tasks of Wong and Mooney
(2007a) and Lu et al. (2009). Similar to the tech-
nique introduced in Kwiatkowski et al. (2010), our
proposed algorithm could still be applied to such
datasets by writing the tree-structured representa-
tions as function-arguments forms. The higher order
unification-based decomposition algorithm could be
applied on top of such forms accordingly. For exam-
ple, midfield(opp) ≡ λx.midfield(x) � opp. See
Kwiatkowski et al. (2010) for more details. How-
ever, since such forms present monotonous struc-
tures, and thus give less alternative options in the
higher-order unification-based decomposition pro-
cess, it prevents the algorithm from creating many
disjunctive nodes in the packed forest. It is thus hy-
pothesized that the advantages of the packed forest
representation could not be fully exploited with such
a meaning representation formalism.

Following previous works, we performed 4 runs
of 10-fold cross validation based on the same split
as that of Wong and Mooney (2007a) and Lu et
al. (2009), and measured standard BLEU percent-
age and NIST (Doddington, 2002) scores. For ex-
perimentation on each fold, we trained a trigram
language model on the training data of that fold,
and randomly selected 70% of the training data
for grammar induction, with the remaining 30%
for learning of the feature weights using MERT.
Next, we performed grammar induction with the
complete training data of that fold, and used the
learned feature weights for decoding of the test in-
stances. The averaged results are shown in Ta-
ble 3. Our approach outperforms the previous sys-
tem WASP−1++ (Wong and Mooney, 2007a) sig-
nificantly, and achieves comparable or slightly bet-
ter performance as compared to Lu et al. (2009).
This set of results is particularly striking. We note
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Variable-present dataset
λ-expression : argmax(x, river(x) ∧ ∃y.[state(y) ∧ next to(y, india s) ∧ loc(x, y)], len(x))

Reference : what is the longest river that flows through a state that borders indiana
Moses : what is the states that border long indiana
Joshua : what is the longest river surrounding states border indiana

This work : what is the longest river in the states that border indiana
λ-expression : density(ιx.loc(argmax(y, loc(y, usa co) ∧ river(y), size(y)), x) ∧ state(x))

Reference : which is the density of the state that the largest river in the united states runs through
Moses : what is the population density in lie on the state with the smallest state in the us
Joshua : what is the population density of states lie on the smallest state in the us

This work : what is the population density of the state with the largest river in the us
Variable-free datasets

λ-expression : population(largest one density(state all))
Reference : what is the population of the state with the highest population density
This work : how many people live in the state with the largest population density

λ-expression : rule(and(bpos(from goal line(our, jnum(n0.0, n32.0))), not(bpos(left(penalty area(our))))),-
dont(player our(n3), intercept))

Reference : player 3 should not intercept the ball if the ball is within 32 meters of our goal line and not in our left penalty area
This work : if the ball is within 32 meters from our goal line and not on the left side of our penalty area then player 3 should not

intercept it

Figure 6: Sample English outputs for various datasets. For the variable-present dataset, we also show outputs from Moses and
Joshua.

that the algorithm of Lu et al. (2009) is capable
of modeling dependencies over phrases, which gives
global optimization over the sentence generated, and
works by building conditional random fields (Laf-
ferty et al., 2001) over trees. But the algorithm of
Lu et al. (2009) is also limited to handling tree-
structured meaning representation, and is therefore
unable to accept inputs such as the variable ver-
sion of λ-expressions. Our algorithm works well
by introducing additional new types of synchronous
rules that are able to capture longer range depen-
dencies. WASP−1++, on the other hand, also makes
use of a synchronous parsing-based statistical ma-
chine translation approach. Their system, however,
requires linearization of the tree structure for both
alignment and translation. In contrast, our model
directly performs alignment and translation from a
packed forest representation to a sentence. As a
result, though WASP−1++ made use of additional
features (lexical weights), our system yielded bet-
ter performance. Sample English output sentences
are given in Figure 6.

Robocup Geoquery
BLEU NIST BLEU NIST

WASP−1++ 60.22 6.8976 53.70 6.4808
Lu et al. (2009) 62.20 6.9845 57.33 6.7459

This work 62.45 7.0011 57.62 6.6867

Table 3: Performance on variable-free representations

6 Conclusions and Future Work

In this work, we presented a novel algorithm for gen-
erating natural language sentences from their under-

lying semantics in the form of typed lambda calcu-
lus. We tackled the problem by introducing a novel
reduction-based weighted synchronous context-free
grammar formalism, which allows sentence genera-
tion with a log-linear model. In addition, we pro-
posed a novel generative model that jointly gener-
ates lambda calculus expressions and natural lan-
guage sentences. The model is then used for auto-
matic grammar induction. Empirical results show
that our model outperforms state-of-the-art machine
translation models, for both English and Chinese,
in terms of both automatic and human evaluation.
Furthermore, we have demonstrated that the model
can also effectively handle inputs with a variable-
free version of meaning representation.

We believe the algorithm used for inducing the
reduction-based synchronous grammar rules may
find applications in other research problems, such
as statistical machine translation and phrasal syn-
chronous grammar induction. We are interested in
exploring further along such directions in the future.
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Amigó, Enrique, 455
Ammar, Waleed, 1384
Andersson, Evelina, 385
Androutsopoulos, Ion, 96
AR, Balamurali, 1081
ARAMAKI, Eiji, 1568
Artzi, Yoav, 421
Asahara, Masayuki, 1479
Assaf, Dan, 680
Auli, Michael, 333
Axelrod, Amittai, 355
Azuma, Ai, 628

Baldwin, Timothy, 13
Bar-Haim, Roy, 1310
Basili, Roberto, 1034
Bauer, John, 725
Bender, Emily M., 397
Bentivogli, Luisa, 670
Berg-Kirkpatrick, Taylor, 313
Bhattacharyya, Pushpak, 1081
Bhole, Abhijit, 930
Birch, Alexandra, 857
Blei, David, 227
Bordino, Ilaria, 782
Börschinger, Benjamin, 1416
Boschee, Elizabeth, 1437
Bose, Ritwik, 1092
Brody, Samuel, 562
Burger, John D., 1301

Byrne, William, 1373

Callison-Burch, Chris, 1168
Candito, Marie, 1222
Cardie, Claire, 172
Chai, Kian Ming A., 814
Chan, Yee Seng, 294
Chang, Angel X., 1281
Chang, Yin-Wen, 26
Chaudhari, Dipak L., 1058
Che, Wanxiang, 1180
Chen, Bee-Chung, 571
Chen, Wenliang, 73, 1180
Chen, Xinxiong, 1577
Chen, Zheng, 771
Cherry, Colin, 583
Chieu, Hai Leong, 814
Chodorow, Martin, 1291
Choi, Yejin, 1092
Christodoulopoulos, Christos, 638
Chu-carroll, Jennifer, 712
Chua, Tat-Seng, 140
Church, Kenneth, 1116
Ciravegna, Fabio, 991
Clark, Sam, 1524
Clark, Stephen, 1147
Cohen, Shay B., 50, 1234
Cohen, William W., 529
Cohen, Yohai, 680
Collins, Michael, 26
Conroy, John, 467
Croce, Danilo, 1034
Cromieres, Fabien, 508

Dahlmeier, Daniel, 107, 375
Dale, Robert, 1158
Damani, Om P., 1058
Darwish, Kareem, 1384
Das, Dipanjan, 50

1623



Daume III, Hal, 250, 444, 930
de Gispert, Adrià, 1373
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